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Limits on atomic qubit control from laser noise
Matthew L. Day 1✉, Pei Jiang Low1, Brendan White 1, Rajibul Islam 1 and Crystal Senko1

Technical noise present in laser systems can limit their ability to perform high fidelity quantum control of atomic qubits. The
ultimate fidelity floor for atomic qubits driven with laser radiation is due to spontaneous emission from excited energy levels. The
goal is to suppress the technical noise from the laser source to below the spontaneous emission floor such that it is no longer a
limiting factor. It has been shown that the spectral structure of control noise can have a large influence on achievable control
fidelities, while prior studies of laser noise contributions have been restricted to noise magnitudes. Here, we study the unique
spectral structure of laser noise and introduce a metric that determines when a stabilised laser source has been optimised for
quantum control of atomic qubits. We find requirements on stabilisation bandwidths that can be orders of magnitude higher than
those required to simply narrow the linewidth of a laser. The introduced metric, the χ-separation line, provides a tool for the study
and engineering of laser sources for quantum control of atomic qubits below the spontaneous emission floor.
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INTRODUCTION
The laser has become an invaluable tool in the control of atomic
systems due to electronic transitions in atoms typically having
optical wavelengths. The application of the laser to the field of
quantum information has been particularly effectual1–4, and single
atomic qubit control at the 10−4 error level has been demon-
strated5,6. The use of laser radiation for manipulating atomic
energy levels will be fundamentally limited by spontaneous
emission (SE), either due to the finite lifetime of qubits stored in
optical transitions, or due to off-resonant scattering during two-
photon Raman transitions. However, experimental demonstrations
at the SE error floor have not been forthcoming due in part to
technical noise sources dominating qubit errors. It is of interest to
understand and reduce the technical error to the SE floor to
enable low-overhead fault tolerant quantum computation.
One dominant technical noise source is the local oscillator (LO)

interacting with the qubit for quantum control. In this paper, we
consider LOs derived from laser radiation. Previous studies have
connected qubit fidelities to the total magnitude of laser noise7–12,
and it has been demonstrated that the spectral structure of LO
noise fields can have a critical influence in qubit fidelities through
a study of phase noise in microwave sources13. The effect of
specific laser noise spectra on Rydberg excitation has also been
investigated14. Here, we identify general conditions on the
spectral structure of frequency and intensity noise of laser
radiation to reduce these technical errors to, or below, the SE
floor. We focus strictly on the influence of laser noise on the qubit
transition in the absence of other neighbouring transitions that
could lead to additional error pathways. It has been previously
acknowledged that the spectral structure of laser noise can
interact with the motional modes of trapped ions10,15.
We find that, contrary to common belief10,16,17, narrowing the

LO linewidth alone is not sufficient for high fidelity qubit control.
The effective linewidth the qubit experiences is larger than the
one given by a simple full-width-half-maximum (FWHM) measure-
ment of the LO linewidth. This is because high frequency sideband
noise on the LO carrier can have a sizeable effect on qubit
fidelities, and stabilisation techniques are limited in their control
bandwidth15,18–20.

We find that laser frequency noise is a primary consideration, as
we show that the qubit infidelity from shot-noise limited laser
intensity noise is always below the SE floor, across all commonly-
used atomic species and qubit types. In practice, laser sources are
rarely shot noise limited and we outline requirements on intensity
noise stabilisation bandwidths to suppress these errors below the
SE floor.
The results presented in this manuscript provide a roadmap to

suppress qubit errors from technical laser noise to below the
fundamental limit of atomic spontaneous emission. The findings
guide the choice of laser source and requirements for laser
stabilisation. We find that for a stabilised laser source, there are
three primary regimes. In the first regime, the stabilisation is
insufficient to reduce qubit control errors. In the second regime,
the stabilisation reduces control errors, but the unstabilised noise
still dominates the error. In the third regime, the stabilisation is
sufficient such that the errors are dominated by the stabilised
noise amplitude. We develop a metric, called the χ-separation line,
that determines when the third regime is satisfied, and that can be
easily used to analyse realistic laser noise spectra. Critically, the χ-
separation line places stricter requirements on stabilisation loops
than those for simply narrowing the laser linewidth. For a laser
operating in the third regime we outline the requirements to
operate below the SE floor for both laser frequency and intensity
noise and find no fundamental obstacles to this goal. The results
are derived for a general Hamiltonian of a two-level system
interacting with a LO, and apply broadly to optical and hyperfine
qubits in both trapped ions and neutral atoms. The results also
apply to cascaded qubits, such as in Rydberg excitation, under
some assumptions we outline below. Extensions beyond the two-
level Hamiltonian used here are outlined in the discussion.

RESULTS
Background
Atomic qubits are typically encoded in energy levels separated by
either optical or microwave transition frequencies. One or more
lasers can be used to drive transitions with either one-photon or
multi-photon processes, where we restrict our analysis to one- and
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two-photon transitions. For optical transition frequencies (Fig. 1a),
narrow-linewidth laser radiation can be directly used to coherently
rotate the qubit state10 with a one-photon process, which we refer
to as an optical qubit. Alternatively, if there is an intermediate
transition between the ground and excited state, two lasers of
different wavelengths can be used to drive a two-photon
transition to coherently rotate the qubit state. We refer to these
as cascaded qubits, and are typically used for Rydberg excitation.
For microwave transitions (Fig. 1b), two phase-coherent optical
fields offset by the qubit frequency can be used to control the
qubit state through a two-photon Raman transition5,21. One way
to generate the beatnote for hyperfine qubit control is to phase-
lock two continuous-wave (CW) lasers and interfere them at the
atom position. A more recent approach is to use the output of a
mode-locked (ML) laser. The pulse train of an ML laser forms a
comb of optical frequencies, with each comb tooth separated by
the repetition rate of the laser22. The mode-locking process
ensures all comb teeth are phase coherent, and when the comb is
split into two paths and interfered at the atom position, a series of
beatnotes are generated. By placing a frequency shifter, such as
an acousto-optical modulator (AOM), in one arm of the
interferometer, beatnote harmonics can be finely tuned to the
qubit frequency21,23. We note that for the purpose of our analysis
both cascaded and hyperfine qubits are analogous, with the
difference between them being contained in how the laser noise
is manifested in LO noise. For clarity, we concentrate on hyperfine
qubits and comment under what approximations our results also
hold for cascaded qubits as applicable.

Noise in the laser sources used for optical and hyperfine qubit
control (Fig. 1c, d) leads to noisy evolution of the qubit on the
Bloch sphere (Fig. 1e). Frequency noise causes unwanted rotations
around the Z axis, while intensity noise causes unwanted rotations
around the X and Y axes. The accumulation of these perturbations
leads to an imperfect overlap of the final quantum state with the
target state. The overlap can be quantified by the fidelity, which
can be calculated using filter function theory. For sufficiently small
noise, the fidelity can be expressed as24–26

FðuÞðτÞ ¼ 1
2

1þ expð�χðuÞÞ
h i

� 1� χðuÞ

2
; (1)

where the fidelity decay constant, χ(u), is a spectral overlap of the
laser noise power spectral density (PSD) with the filter function of
the target operation, u, of duration τ (see Methods). In this paper
we derive our results for general filter functions and present
examples for a primitive π-pulse between the ground and excited
state in an ideal two-level atom with a Rabi frequency Ω= π/τ. The
fidelity of a π-pulse is chosen for ease of interpretation, and we
note that fidelities of other common operations, such as a Ramsey
sequence, are within an order of magnitude of the π− pulse for
the same operation times13.
The connection of the laser noise PSDs to the operation fidelity

motivates the suppression of noise in the laser sidebands. As
shown in Fig. 1f, g for frequency noise, this is typically performed
using active stabilisation (servo) loops of a finite bandwidth. We
use Eq. 1 to investigate the requirements on these stabilisation
loops for maximising operation fidelities.
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Fig. 1 Atomic qubit control using lasers as the local oscillator (LO). a For optical qubits, the laser light is resonant with the qubit transition.
b For hyperfine qubits, the LO is derived from the beatnote between two closely spaced optical frequencies. For continuous-wave (CW) lasers,
this is performed by off-set phase locking two lasers by the qubit frequency. For modelocked (ML) lasers, this is performed by interfering two
frequency combs at the atom position, with one comb shifted in frequency such that the qubit is driven by the frequency difference between
comb pairs. c Noise away from the laser carrier frequency leads to a time-dependent variation in the LO control field, which can itself be
expressed as a power spectral density, as shown in (d). e The time-dependent noise causes perturbations in qubit evolution on the Bloch
sphere. f Example servo loops for stabilising laser frequency noise. g The servo loops act to reduce noise within the servo bandwidth, while
free-running noise at higher frequencies is unaffected.
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Models of laser noise
Noise processes in laser systems, which depend on properties of
both the gain medium and the laser cavity, are typically expressed
as either double- or single-sided PSDs27–35. For consistency, results
presented here are in terms of single-sided PSDs. All laser systems
have similar structural features in their PSDs, with the exact
placement and magnitude of these features varying between laser
technologies. Further, free-running relative intensity noise PSD,
SRIN(ω), and frequency noise PSD, Sωopt ðωÞ, follow a similar
structure (as shown in Fig. 2), and therefore we introduce them
together.
The fundamental limits of intensity and frequency noise PSDs

take the form of white noise (i.e. constant for all Fourier
frequencies, ω)36. For relative intensity noise, this limit is the shot
noise limit (SNL)37

SSNLRIN ðωÞ ¼
2_ωopt

P
; (2)

arising due to the Poisson statistics of the number of photons in
the laser beam. Here, ωopt is the optical frequency and P is the
mean power in the optical field. For frequency noise, the white
noise floor is given by the quantum noise limit, setting a minimum
linewidth of the laser (often called the modified Schawlow-
Townes linewidth). The PSD of the quantum noise limit (QNL)
takes the value (see Supplementary Note 1)

SQNLωopt
ðωÞ ¼ 2πhωoptγ

2
c

P
; (3)

where γc is the bandwidth of the laser cavity, which is inversely
proportional to the cavity length.
In practice, lasers do not typically exhibit fundamentally limited

noise PSDs. We refer to all noise processes above the fundamental
limit as technical noise. The Fourier frequency response (modula-
tion transfer function) of the gain medium inside a laser cavity acts
as a low pass filter for pump noise36. The filter bandwidth is
approximately set by the inverse of the upper-state lifetime of the

laser gain medium, often called the relaxation frequency, ωrlx.
Below ωrlx, the laser has a flat frequency response. Around ωrlx, the
laser has a resonant response to modulation and undergoes
relaxation oscillations. Above ωrlx, the relaxation oscillations are
damped. The modulation response predominantly transfers pump
noise into laser intensity noise. Intensity noise can modulate the
refractive index of the gain medium, which alters the phase of the
laser light. Therefore, the frequency noise is increased due to the
intensity noise, with the increase characterised by the linewidth
enhancement factor, α36.
At low Fourier frequencies, the technical noise from the pump

takes the form of 1/ωa-type noise (commonly referred to as 1/f
noise). For low-noise pumps, 1/ωa-type noise is dominated by 1/ω1

(flicker) noise, with higher order a noise being restricted to Fourier
frequencies ω < 2π × 100 Hz. In all scenarios of interest, we find
that these higher order noise terms do not contribute significantly
to qubit fidelities unless they span the Rabi frequency of the
quantum operation. Therefore, for simplicity, we restrict our study
to pure flicker noise.
At the flicker corner frequency, ωflk, the flicker noise reaches a

white noise floor. For intensity noise, this floor is given by the
higher of the pump noise and the SNL. In realistic laser sources,
the frequency noise floor for Fourier frequencies from ωflk to ωrlx is
enhanced from the QNL by the coupling to intensity noise by a
factor of α2 36. For Fourier frequencies above the relaxation
oscillation peak, pump noise is increasingly damped and the noise
amplitude approaches the SNL or QNL accordingly.
In this study we concentrate on two common laser sources used

for qubit control: the external cavity diode laser (ECDL) and the
optically-pumped solid state laser (OPSSL), where most contem-
porary OPSSLs are diode-pumped. A OPSSL typically has higher
intensity noise than an ECDL due to pump noise amplification, and
lower frequency noise due to a longer laser cavity. ECDLs typically
have relaxation oscillation frequencies, ωrlx, of order GHz27,
whereas for OPSSL they are sub-MHz29–31.
For ECDLs, the semiconductor’s asymmetric gain profile leads to

α having typical values between 3 and 638. For OPSSL, the gain
profile is more symmetric and typically α ≈ 0.339,40 and therefore is
not a dominant contribution to frequency noise. Enhanced
frequency instability in OPSSL typically occurs due to mechanical
and thermal effects41.
In addition to the general structural trends of laser noise PSDs,

for realistic laser sources there are bumps and spurs present in the
laser spectrum. These features typically occur due to mechanical
instabilities and actuator resonances in the laser cavity. For well
designed laser cavities (e.g. Toptica DL Pro42), relatively smooth
laser noise PSDs can be achieved. In this study, we focus on the
gross structural features of laser noise PSDs due to the lasing
process itself. Uncontrolled spurs in laser noise PSDs will affect
qubit fidelities, however their influence is limited to when the Rabi
frequency is close to the spur frequency. Calculations of qubit
control fidelities for a measured laser frequency noise PSD are
presented in the following section.
The technical noise present in both intensity and frequency

noise of laser sources often requires the stabilisation of laser
sources for use in quantum control. We model the PSDs of
stabilised laser sources with the simplified model

SsrvðωÞ ¼
ha forω<ωsrv

hb forω>ωsrv

�
; (4)

such that ha is a constant white noise amplitude within the
stabilisation bandwidth, ωsrv, and hb is the residual free-running
white noise amplitude outside the stabilisation bandwidth. The
approximation that hb is constant simplifies our derivations, and
we demonstrate that our results typically hold even when this is
not the case. We assume that ha < hb, and we address the case
where this is not automatically valid (e.g. solid state lasers) in the
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Fig. 2 Idealised free-running laser noise PSDs for external cavity
diode lasers (ECDL) and optically-pumped solid-state lasers
(OPSSL). a The RIN PSD, demonstrating the low frequency 1/ω
(flicker) noise, mid-frequency white noise, the relaxation oscillation
peak, and shot noise. b The frequency noise PSD with the same
general features as RIN with a fundamental limit of quantum noise.
The noise above the β-separation line contributes to the linewidth
of the laser, while the noise below the β-separation line contributes
to the wings of the laser lineshape.
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Discussion. Such a model has previously been used to explore the
effect of stabilisation bandwidths on laser linewidth reduction43. In
the followings section we connect this general PSD to qubit
fidelities and derive requirements on laser frequency and intensity
noise to achieve high fidelity qubit control.

Frequency noise stabilisation requirements
For LOs derived from laser radiation, the frequency noise of the LO
directly results from noise in the laser source. In this instance the
PSD of LO frequency noise, SωLOðωÞ, is equivalent to the stabilised
laser frequency noise, which we approximate with the simple
expression in Eq. 4. For the purposes of a general discussion on
how stabilised frequency noise affects qubit control, we express all
results in terms of the parameters ha, hb and ωsrv. For an
exposition of the specific way that laser noise processes connect
to these parameters for different qubit and laser types, see the
Supplementary Information.
To connect laser noise parameters to qubit fidelities for arbitrary

single-qubit operations, we require a general expression for
single-qubit filter functions. We approximate a general filter
function of a quantum operation as the piece-wise function

FðuÞðωÞ ¼ cðuÞa ωnu forω<ω
ðuÞ
cut

cðuÞb forω>ω
ðuÞ
cut

(
; (5)

such that the qubit has a flat response to control noise above the
cut-off frequency, ωðuÞ

cut, and noise below the cut-off is damped at
10log10ðnuÞ dB per decade, where nu is the order of the filter
function. The condition of continuity sets the requirement
cðuÞb ¼ cðuÞa ðωðuÞ

cutÞ
nu
, and ca,b are constants set by the form of the

filter function. Such a general model can approximate a wide
range of quantum operations, including composite pulse
sequences designed to correct for control errors and noise24,44.
The use of filter functions over numerically solving the Schrö-
dinger equation in the presence of noise allows the analytical
derivation of conditions on arbitrary laser noise PSDs. A thorough
exposition on the use of filter function theory for assessing qubit
control in the presence of noise is given in Ref. 26.
We find that to improve qubit control over using a free-running

laser, the servo bandwidth must be above the filter function cut-
off frequency, which in the case of a primitive π− pulse is the Rabi
frequency. Substituting the piece-wise expressions for the
frequency noise PSD (Eq. 4) and the general filter function into
Eq. 1 (see Supplementary Note 3), we can derive an approximate
expression for the fidelity decay constant, χ(u), of a general single-
qubit operation. In the regime that the servo bandwidth is below
the filter function cut-off frequency, ωsrv <ωcut, we find
χðuÞ � ncðuÞb hb=ð4πðn� 1ÞωcutÞ. In this instance, the qubit fidelity
is dominated by the free-running noise of the laser, hb, and the
contribution from ha has negligible influence on qubit errors. We
refer to this regime as hb-limited.
In the regime ωsrv > ωcut, the expression for the fidelity decay

constant becomes

χðuÞ ¼ cðuÞb

4π
nu

nu � 1
ha

ω
ðuÞ
cut

þ hb � ha
ωsrv

 !
: (6)

The first term contains the ratio of the stabilised frequency
noise ha to the cut-off frequency of the quantum operation, ωðuÞ

cut,
which determines a fundamental limit to the fidelity based on the
stabilised laser noise. The second term places a limit on the fidelity
from the free-running noise, hb, and the servo bandwidth, ωsrv. For
servo bandwidths

ωsrv >ωðuÞ
χ � ðnu � 1ÞωðuÞ

cut

nu

hb
ha

� 1

� �
; (7)

the first term in Eq. 6 exceeds the second term such that ha is the
dominant contribution to the qubit fidelity (ha-limited). For servo
bandwidths below this frequency, the fidelity is limited by the
insufficient suppression of the free-running noise (servo-limited).
Here, ωðuÞ

χ defines the cutoff between the ha-limited and servo-
limited regions.
As an example, we consider the filter function for the primitive

π-pulse with Rabi frequency Ω. In this instance, cðπÞb ¼ 4, nπ= 2
and ω

ðπÞ
cut ¼ Ω (see Methods), such that Eq. 6 becomes

χðπÞ ¼ 1
π

2ha
Ω

þ hb � ha
ωsrv

� �
; (8)

and Eq. 7 becomes

ωsrv >ωðπÞ
χ ¼ Ω

2
hb
ha

� 1

� �
: (9)

Eq. 9 can be reformulated as a bound on the PSD (see
Supplementary Note 3) such that the π-pulse error from laser
noise is dominated by residual noise in the region

SωLOðωÞ � ha
2ω
Ω

þ 1

� �
: (10)

We define the boundary of this region as the χ-separation line.
The requirement on the servo bandwidth is therefore to suppress
all free-running noise to below the χ-separation line. For typical
values of ha and Ω, this limitation is stricter than the requirement
on narrowing the linewidth of a laser source from the β-separation
line (see Supplementary Note 4)

SωLOðωÞ � πω : (11)

The β-separation line divides the frequency noise PSD into a
region that contributes to the laser linewidth and a region that
only contributes to the lineshape wings (see Fig. 2b). The required
servo bandwidth to narrow the linewidth of the laser is the one
that suppresses all free-running noise to below this β-separation
line, while a much higher servo bandwidth is needed to suppress
noise below the χ-separation line to minimise π-pulse control
errors. The χ-separation line can be applied to LO frequency noise
spectra for optical and hyperfine qubits, as well as cascaded qubits
when each laser is stabilised with the same servo bandwidth, ωsrv.
To illustrate the above findings and confirm that the χ-

separation line provides a useful measure of fidelity optimization,
we show numerical calculations of primitive qubit infidelities in
Fig. 3. We use the the frequency noise PSD shown in Fig. 3a and
the exact expression for the first-order filter function of a π− pulse
(see Methods, Eq. 34). Such a PSD applies equally to a single
servoed ECDL addressing an optical qubit, or two phase-locked
ECDLs addressing a hyperfine qubit. In contrast to the simplified-
model PSD used to derive Eq. 6, we have included the relaxation
oscillation peak found in ECDLs.
Our simulations confirm the existence of the three regions – hb-

limited, servo-limited, and ha-limited – that were identified in our
analysis using piece-wise approximations. These regions can be
seen in Fig. 3b and c as the servo bandwidth, ωsrv is varied. For
ωsrv <Ω (the hb-limited region), changing the servo bandwidth has
little effect on the fidelity. The reason for this is illustrated by Fig.
3d, where the filter function in frequency space is shown for a
primitive operation. The response of the filter function is flat for
Fourier frequencies above Ω, and free-running noise in this region
dominates the qubit errors. For Ω<ωsrv <ω

ðπÞ
χ (the servo-limited

region), the contribution of hb is reduced by the stabilisation loop;
however, it can still have a sizeable effect compared to the
contribution to the error from ha. To improve fidelity in this
regime, the servo bandwidth must be increased, as the fidelity is
largely independent of Ω. For ωsrv >ω

ðπÞ
χ (the ha-limited region),

the contribution to the fidelity from ha becomes dominant, as hb is
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suppressed below the χ-separation line and increasing the servo
bandwidth further provides diminishing returns.
We also confirm numerically the importance of the χ-separation

line to qubit fidelities. In Fig. 3e and f the β- and χ-separation lines
are directly compared. For high values of hb and low servo
bandwidths, there is no coherence between the laser source and
the qubit, indicated by fidelities of F ¼ 0:5. The β-separation line
relates only to properties of the laser, and therefore does not
necessarily imply qubit coherence, as seen in the case shown in Fig.
3e and f. As hb decreases and/or ωsrv increases, fidelities improve up
until the χ-separation line where the fidelity becomes limited by ha.
These trends are further illustrated in Fig. 3g. In the instance that
any part of the free-running noise is above the β-separation line,

this free-running noise dominates the FWHM linewidth. Similarly,
when any part of the free-running noise is above the χ-separation
line, that free-running noise reduces the fidelity compared with an
idealized white-noise LO of the same FWHM linewidth.
To demonstrate that the χ− separation line is a useful metric for

realistic laser sources, we use it to analyse the frequency noise of
an ultra-stable laser from Menlo Systems. As shown in Fig. 4a, the
laser is stabilized to a sub-Hz linewidth (as defined by the β-
separation line), with a servo bump at ω= 105Hz from the slow
integrator that provides feedback to the piezo element in the
ECDL cavity. The total servo loop has an approximate servo
bandwidth of ωsrv= 3MHz, and we have extrapolated the free-
running noise of the laser outside the measurement band as white
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noise. The χ− separation line for ha= (4π)−1 Hz is plotted with the
Rabi frequency of Ω= 1.5kHz, selected such that the high
frequency noise falls below the line. The value of ha corresponds
to the low Fourier frequency white-noise of the PSD.
In Fig. 4b we calculate the π-pulse error for the Menlo laser

driving an optical qubit transition over a range of typical Rabi
frequencies. At low Rabi frequencies, the error approximately
follows the ha-limit line (ha-limited operation), before starting to
plateau at around Ω= 1.5kHz as the high frequency noise
crosses the χ− separation line (servo-limited operation). The
slow integrator servo bump appears as an increased error rate
for when ωsrv ≈ Ω. At high Rabi frequencies, the error trends to
the hb-limit (hb-limited operation). This analysis shows that the
χ-separation line is a useful tool for the analysis of laser sources
even when spurs and bumps are present, and when there is a
gradual, rather than step, transition between the stabilised and
free-running noise.
The demonstration that the χ-separation line is a useful tool for

non-ideal frequency noise PSDs suggests that it can be applied to
the cases of cascaded qubits even in the instance that their servo
parameters are non-identical. In this case, the LO noise PSD -which
is the summation of the individual, servoed noise PSDs - can be
bounded by the χ− separation line. Each laser can then be
optimised by reducing its individual contribution to any noise
above the line that would then limit qubit fidelities.
To determine the conditions under which the error from an ha-

limited laser source is smaller than the fundamental SE error, we
set the requirement ϵSE > χ(u)/2. Here, ϵSE is the spontaneous
emission error (see Methods for definition). In the asymptotic limit,
ωsrv→∞, this rearranges to the requirement

ha<
8πðnu � 1ÞϵSEωðuÞ

cut

nuc
ðuÞ
b

; (12)

which for a π-pulse reduces to ha < πϵSEΩ. For a finite value of ωsrv,
the fidelity does not appreciably change from this asymptote in the
ha-limited region, as seen in Fig. 3c. The maximum value of ha that

saturates this bound is plotted in Fig. 5 for both optical and hyperfine
qubits with varying spontaneous emission floors. For optical qubits,
the spontaneous emission error is inversely proportional to the Rabi
frequency (see Methods), setting a constant requirement on ha for all
Ω. For hyperfine and cascaded qubits, the spontaneous emission
error is constant with Rabi frequency; thus, increasing Ω allows
higher values of ha to satisfy the inequality in Eq. 12.

Intensity noise
The results presented for the effect of laser frequency noise on
qubit control share many similarities with the effect of laser
intensity noise. For stabilised intensity noise, we approximate the
PSD, SRIN(ω), using the simple model of Eq. 4, with noise
amplitudes h0a and h0b replacing ha and hb, respectively. Here, h

0
a

and h0b have different physical units than ha and hb. Similar to our
analysis for frequency noise, the fidelity decay constant, χ(u), for
intensity noise takes the form

χðuÞ ¼ κΩ2cðuÞb

4π
nðuÞ

nðuÞ � 1
h0a
ω
ðuÞ
cut

þ h0b � h0a
ωsrv

 !
; (13)

with the constant κ= 1/4 for optical qubits and κ= 1 for hyperfine
and cascaded qubits. For simplicity, in the case that two separate
laser sources are used to generate the LO, we assume that they
have identical intensity noise PSDs. The additional factor of κΩ2

over the fidelity decay constant for frequency noise in Eq. 6 comes
from the conversion of intensity noise to Rabi frequency noise (see
Methods). Thus, the servo bandwidth requirement and the χ-
separation line take the same form as for frequency noise in Eqs. 7
and 10 respectively.
Similarly to frequency noise, we derive the requirement for the

intensity noise error to be below the fundamental SE floor by

ha-limited servo-limited hb-limited

a

b

Fig. 4 Analysis of measured laser frequency noise using the χ-
separation line. a Laser frequency noise of a Menlo Systems ORS-
Compact at a wavelength of 1397 nm. The β-separation line
indicates an ultra-narrow, sub-Hz linewidth. A χ-seperation line
corresponding to the white noise at low Fourier frequency has been
plotted, with a Rabi frequency chosen such that the high frequency
noise is bounded by the line. b The calculated π-pulse error
corresponding to driving an optical transition with the measured
laser noise. The laser exhibits the three regimes of operation
identified in our analysis, demonstrating that the χ-separation line is
a useful tool for analysing real laser noise.
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Fig. 5 Maximum allowed laser frequency noise to be at the SE
floor in the infinite servo bandwidth limit for a primitive
operation. In this limit the linewidth of the LO is approximately
equivalent to ΓFWHM= ha/4π. a Optical qubits, where the SE floor is
given by the lifetime of the qubit state. Typical lifetimes of
metastable atomic states are used, which approximately correspond
to SE errors, ϵSE, of 6 × 10−6, 6 × 10−5, 6 × 10−5, and 6 × 10−3, from
longest to shortest respectively. The SE floors of S1/2→ D5/2
transitions in a selection of optical qubit candidates are shown for
reference16,52. b Hyperfine qubits, where the SE floor is given by off-
resonant scattering. We define ϵ ¼ 1�F . The requirement on laser
noise is relaxed for higher Rabi frequency as less noise is sampled by
the qubit and the SE error is constant with Rabi frequency. The value
of ha corresponding to the minimum value of ϵSE for a selection of
hyperfine trapped ion and neutral atom qubit candidates at Ω=
1MHz are shown for reference.
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enforcing the constraint ϵSE > χ(u)/2. In the asymptotic limit,
ωsrv→∞, this becomes

h0a<
8πðn� 1ÞϵSEωðuÞ

cut

nκΩ2cðuÞb

; (14)

which simplifies to h0a < 2ϵSE=ðκΩÞ for a π-pulse.
The fundamental limit of laser intensity noise, and therefore h0a, is

the SNL (Eq. 2). Therefore, the lowest achievable error depends on
the SNL, which is inversely proportional to laser power. As Ω
increases with increasing laser intensity, the condition of Eq. 14 can
be reduced to involve only the beam size, which is determined by
the usable numerical aperture (NA) of the addressing beam. We find
(see Supplementary Note 6) that for hyperfine, cascaded and optical
qubits, the condition is satisfied for all physical numerical apertures
up to the Abbe limit in vacuum (NA= 1). Therefore, the intensity
noise error from SNL laser light is always below the SE floor. For
hyperfine and cascaded qubits, this result is true for all single-valence
electron ions and neutral atoms where the lower qubit state is
defined in the ground state manifold. For optical qubits, this result is
true for all quadrupole transitions in ions and neutral atoms. The
reason for this universality is that changes from system to system are
contained within ϵSE (see Supplementary Note 6).
As well as contributing to Rabi noise, the intensity noise can

couple to an effective dephasing noise through AC Stark shifts.
The varying laser intensity changes the effective electric field
strength at the atomic position, leading to a time-varying change
in the qubit frequency. Assuming a static laser frequency, this
causes an effective detuning that can lead to a non-trivial error
contribution from dephasing. We neglect the contribution of AC
Stark shift for optical qubits driven on resonance, and the
following results apply to hyperfine qubits.
For CW laser radiation, the Stark shift, ΔðcwÞ

AC , depends on the

two-photon Rabi frequency, Ω2γ, as Δ
ðcwÞ
AC ¼ μcwΩ2γ . Here, the

dimensionless proportionality constant, μcw, can be calculated
from atomic and laser parameters and its value typically takes an
order of magnitude of 10−3 45. We find that Stark shift noise from
CW laser radiation causes less infidelity than Rabi noise for
μcw<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðπ2 þ 4Þ=8p � 1:3 (see Supplementary Note 9), and is
therefore typically negligible.
When the laser radiation is a frequency comb, each comb tooth

frequency contributes to the Stark shift, ΔðfcÞ
AC , and its magnitude

depends quadratically on the two-photon Rabi frequency as

Δ
ðfcÞ
AC ¼ μfcΩ

2
2γ . The proportionality constant, μfc, is again calculated

from atomic and laser parameters, typically taking the value
of ~ 10−9Hz−1 (see Supplementary Table 2). We find that
infidelities from frequency comb Stark shifts are below those of

Rabi noise for μfc<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðπ2 þ 4Þ=ð32Ω2

2γÞ
q

� 0:65=ðΩ2γÞ. Therefore, for
typical Stark shift values and Rabi frequencies, AC Stark shift noise
from intensity noise is not a dominant contribution.
In the above analysis we have concentrated on the noise from

the lasing process itself. There are other sources of intensity noise
between the laser head and the atom position, such as AOM
diffraction efficiency noise, polarisation-to-intensity noise and
beam pointing jitter. These effects may contribute a greater
source of intensity noise than the laser itself, especially for tightly
focused individual addressing beams. However we consider these
technical, and not fundamental, limits to qubit fidelities and their
consideration is beyond the scope of our present analysis.

DISCUSSION
We have outlined the requirements for laser sources to perform
quantum control with errors below the SE floor. The noise of a free-
running laser necessitates the use of stabilisation loops to reach this
fundamental floor, and we have shown how the specific details of

this loop are important for fidelity optimisation. Specifically, there is
an interplay between the stabilized noise amplitude, ha, the servo
bandwidth, ωsrv, the Rabi frequency, Ω, and the residual free-running
noise of the noise spectrum, hb. The interplay can be summarised in
the introduced concept of the χ-separation line, such that when free-
running noise is suppressed below this line, the fidelity of qubit
operations will be approximately limited at a fundamental level by
the value of ha. Within this ha-limited regime, noise from the laser
source can become non-dominant by appropriately minimising the
value of ha, which can be below the SE floor. Therefore, the task of
performing optimal quantum control using laser LOs is first to
determine the required value of ha such that errors are below the SE
floor, and then to determine the appropriate servo bandwidth to
suppress free-running noise such that ha-limited operation is
achieved.
The simple PSD used to model stabilised laser sources does not

capture some non-universal features of realistic laser noise spectra,
such as spurs and servo bumps. However, we find numerically that
deviations from the simple model do not compromise the use of the
χ-separation line as a metric for laser noise optimisation. For example,
when we introduce a servo bump at ωsrv, we find that if the noise is
below the χ-separation line, its influence is negligible. Similarly, for
the relaxation oscillation peak we numerically find that in the regime
where the ωrlx is close to ωsrv, the relaxation peak has a negligible
influence as long as it sits below the χ-separation line. These
examples suggest that any noise below the χ-separation line has little
influence on qubit fidelities, irrespective of its exact structure. This
conclusion is further supported by the application of the χ-separation
line to the frequency noise PSD of an ultra-stable laser from Menlo
Systems, where the χ-separation line correctly predicts the numeri-
cally calculated π− pulse error despite spurs and servo bumps being
present.
Our results on the influence of LO noise from a laser source

perspective also provide informative design constraints on LOs
derived from microwave sources. It has previously been shown
that lab-grade microwave oscillators can cause significant fidelity
limitations on qubit operations, and that composite pulse
sequences provide a negligible improvement in achievable
fidelities13. These lab-grade oscillators have a remarkably similar
frequency noise PSD to a diode laser locked to a high finesse
cavity (ha ~ 10−1Hz), with a servo bandwidth of approximately
2π × 104Hz. As we have shown, such a servo bandwidth is
insufficient to narrow the effective linewidth the qubit experi-
ences. Similarly, it was shown that a precision LO has a smaller
low-frequency noise (ha ~ 10−4Hz), but is still servo-limited in its
operation. Therefore, to improve the use of microwave oscillators
for driving qubit operations, either the phase-locked-loop
bandwidth must be increased, or the intrinsic phase noise of the
variable oscillator must be improved. For microwave oscillators
with Ω= 100kHz, servo bandwidths would have to be increased to
approximately 5MHz to achieve ha-limited operation.
The simple PSD model used in this manuscript does not match

the typical noise spectra of stabilised OPSSLs. Solid state gain
media typically have long relaxation times, and therefore low
values of ωrlx (of order 2π × 105kHz), and it is possible for ωsrv <ωrlx

such that the relaxation peak is suppressed. In this instance the
free running frequency noise is actually the QNL, such that ha > hb.
In this case, the qubit fidelities are automatically limited by the
value of ha without the servo bandwidth having to satisfy the
requirement from the χ-separation line. Therefore, OPSSLs have a
distinct advantage over ECDLs in that ha-limited operation can be
achieved with comparably relaxed servo bandwidth requirements.
In the instance where active stabilisation bandwidths needed to

achieve ha-limited fidelities are technologically demanding, or
even prohibitive, it may be preferable to use passive stabilisation
techniques. For an LO of an optical qubit, this can be performed
using the transmitted light of a high-finesse cavity, such that the
resulting laser frequency noise is low-pass filtered by the cavity
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linewidth15. Offset injection locking can be used to passively lock
two diode lasers, where the light of a primary laser is shifted in
frequency by the qubit frequency and injected into a secondary
laser46. The effective bandwidth of the phase locking is that of the
cavity bandwidth, which, for the short cavity lengths present in
ECDLs, can be of order GHz. Similar to frequency noise, the
suppression of intensity noise could be performed passively to
avoid the demanding requirements on servo bandwidths. The use
of a saturated optical amplifier can generate SNL light with watts
of optical power over at least a 50MHz bandwidth47. Alternatively,
collinear balanced detection can be used as a notch filter on laser
intensity noise, with center frequencies of the notch filter being
able to be passively selected from MHz to GHz48. Therefore, this
technique can be used to suppress noise around ωcut.
The interplay between laser noise and an arbitrary filter function

was derived. In the general expressions of Eqs. 6 and 7, the order
of the filter function, nu, plays an important role in both the
achievable fidelity and the required servo bandwidth. As nu is
increased (better low frequency filtering), the fidelity is improved.
However, filter functions of higher order nu are constructed using
concatenated pulses. For the same laser power, these concate-
nated sequences are longer in duration than a primitive π-pulse,
reducing ωcut. Therefore, there is a competing effect between the
increasing order of nu and decreasing value of ωcut. This result is
reflected in the previous finding of an unreliable improvement in
fidelity of a dynamically corrected gate (DCG) for typical
microwave oscillators that have approximately the same fre-
quency PSD as Eq. 413. We have confirmed these findings for the
simple model PSD using a fixed laser power, and find negligible
improvement in fidelity of a DCG over a π− pulse. A slight
improvement is only found in the instance that noise is
suppressed below the χ-separation line. Further investigations
are required to explore whether these improvements are
maintained for actual laser noise PSDs.
The analysis presented here has focused on single-qubit gates,

where the sideband noise causes infidelities on the qubit carrier
transition. In physical atomic systems of interest, there are often
other nearby transitions that the sideband noise could interact
with, such as Zeeman states, or motional modes due to
confinement. The coupling of sideband noise to these transitions
could lead to additional infidelity pathways not quantified here10.
In particular, when the motional modes are used for two-qubit
entangling operations, such as the Mølmer-Sorensen gate in
trapped ion chains, excess phase noise at the carrier transition
frequency will cause two-qubit gate infidelities. The analysis here
should therefore be extended to Hamiltonians beyond the two-
level qubit to include additional transitions and quantum
operations. These further analyses would require extensions to
the filter function theory formalism employed here, which has
previously been performed for the Mølmer-Sorensen gate49. These
extensions would allow for the studies to be applied more broadly
to other fields, such as quantum simulation experiments, with the
Ising Hamiltonian as one example. Such analyses would allow for
the appropriate choice and tailoring of LOs for a vast array of
quantum systems of interest, to maximise the fidelity and
usefulness of these apparatus.

METHODS
Spontaneous emission
For optical qubits, the fundamental limit to qubit fidelities is from the finite
upper-state lifetime. The fidelity of a primitive pulse to an excited state of
finite lifetime,τe, is given by50

F ¼ 1� ϵSE ¼ 1
2

1þ e�
3π

4Ωτe

� �
; (15)

such that higher Rabi frequency and longer state lifetimes leads to higher
gate fidelities.

For two-photon transitions, the spontaneous emission is due to photons
off-resonantly scattering from the intermediate state. For equal intensity
laser beams driving σ± transitions, the scattering probability is indepen-
dent of the Rabi frequency, such that51

F ¼ 1� ϵSE ¼ 1� Γπ
3
ωF

� 1
Δ
þ 2
Δ� ωF

� �
; (16)

where Γ is the linewidth of the intermediate transition, ωF is the splitting to
the next closest excited state to the intermediate transition, and Δ is the
detuning of the laser light from the intermediate transition. The off-
resonant scattering probability can be minimised for Δ ≈ 0.4ωF, and its
exact value is strongly dependent on the atomic species used, due to
different values of Γ and ωF that can vary over orders of magnitude. Typical
values of the SE error are presented in the Supplementary Information.

The Hamiltonian
We consider the Hamiltonian of an atom interacting with a LO field and
subject to time-dependent errors in its frequency and Rabi fre-
quency13,25,26,

HðtÞ ¼ 1
2
δΔðtÞσz þ 1

2
ðΩcðtÞ þ δΩðtÞÞσθ ; (17)

where σθ ¼ fcos½ϕcðtÞ�σx þ sin½ϕcðtÞ�σyg, Ωc(t) and ϕc(t) are the Rabi
frequency and phase of the control field respectively, δΔ(t) describes the
time-varying detuning of the LO frequency from the qubit frequency, and
δΩ(t) is the time-varying fluctuations of the Rabi frequency. The
Hamiltonian can be used to represent both optical and two-photon
Raman transitions.
For optical transitions Ωc /

ffiffi
I

p
, where I is the laser intensity, the

relationship between RIN and Rabi frequency noise is given by

δΩðtÞ ¼ 1
2
Ωc

δIðtÞ
I

; (18)

where δI(t) is the time-varying intensity noise of the laser field.
For two-photon Raman transitions Ω / ffiffiffiffi

I1
p ffiffiffiffi

I2
p

, where I1 and I2 are the
intensities of each laser beam. Making the assumption that I1= I2= I, and
the Rabi frequency noise is then related to the RIN by

δΩðtÞ ¼ Ωc
δIðtÞ
I

: (19)

In the instance of the detuning of the LO field from the qubit resonance
being entirely due to LO frequency noise, δΔ= δωLO.
For CW Raman transitions, the intensity-to-frequency conversion of AC

Stark shifts enters the Hamiltonian as an effective frequency detuning
term, ΔðcwÞ

AC / g2, where g / ffiffi
I

p
is the contribution of one laser beam’s

intensity to the two-photon Rabi frequency. As Ω2γ∝ I, variations in the AC
Stark shift with intensity noise lead to a noise field of

δΔ
ðcwÞ
AC ¼ μcwΩ2γ

δI
I
; (20)

where Δ
ðcwÞ
AC ¼ μcwΩ2γ . Similarly, for a ML laser, where all comb lines

contribute to the AC Stark shift such that

δΔ
ðfcÞ
z;AC ¼ 2μfcðΩ0

2γÞ2
δI
I
; (21)

where Δ
ðfcÞ
AC ¼ μfcðΩ0

2γÞ2. Typical values of μcw and μfc are presented in the
Supplementary Information.

Filter function theory
Consider a classical noise field βj(t) such that it contributes an error term to
the Hamiltonian

HerrðtÞ ¼ βjðtÞσj ; (22)

where j= {z, θ}. The single-sided PSD of βj(t) is defined through the Weiner-
Khinchin theorem as

hβjðt1Þβjðt2Þi ¼
1
2π

Z 1

0
SjðωÞeiωðt2�t1Þdω ; (23)

where 〈⋅〉 denotes ensemble-averaging. The total fidelity of a unitary
operation, defined by its filter function FðuÞj ðωÞ can be calculated to first
order as24–26

FðuÞðτÞ ¼ 1
2

1þ exp½�χðuÞðτÞ�
n o

; (24)
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with

χðuÞðτÞ ¼
X
j

1
π

Z 1

0

dω
ω2

SjðωÞFðuÞj ðωÞ ; (25)

such that Sz and Sθ determine the dephasing and amplitude noise errors.
These PSDs can be related to physical noise processes by again
considering the Weiner-Khinchin theorem. Expressing the noise field as
βj= αfj(t), where α is constant and fj(t) is a time-varying function. Through
the linearity of the ensemble-averaging operation

hβjðt1Þβjðt2Þi ¼ α2hδf jðt1Þδf jðt2Þi ; (26)

¼ α2

2π

Z 1

0
Sf j ðωÞeiωðt2�t1Þdω ; (27)

such that SjðωÞ ¼ α2Sf j ðωÞ, providing a way to convert between PSDs
given their functional relation of the corresponding parameters.
Inspecting the full Hamiltonian (Eq. 17) the noise fields are given by

βzðtÞ ¼
1
2
δΔðtÞ ; (28)

βθðtÞ ¼
1
2
δΩðtÞ ; (29)

such that the relation between the PSDs of these parameters are

SzðωÞ ¼ 1
4
SΔðωÞ ; (30)

SθðωÞ ¼ 1
4
SΩðωÞ : (31)

The PSDs for dephasing and amplitude errors can then be related to
physical noise processes using the expressions in Eqs. 18–21. For example,
for optical transitions, SΩðωÞ ¼ 1

4Ω
2
c SRINðωÞ such that

SθðωÞ ¼ 1
16

Ω2
c SRINðωÞ ; (32)

and for LO frequency noise SΔðωÞ ¼ SωLO ðωÞ, such that

SzðωÞ ¼ 1
4
SωLO ðωÞ ; (33)

which is the expression previously used in Ref. 13.
Once the PSDs are well defined, the fidelity can be calculated using

knowledge of the corresponding filter functions, FðuÞz ðωÞ and FðuÞθ ðωÞ, for
the desired operation. For a π-pulse around X, the dephasing filter function
is given by

FðπÞz ðωÞ ¼ ω2

ω2 � Ω2 ðeiωτπ þ 1Þ
����

����
2

þ iωΩ

ω2 � Ω2 ðeiωτπ þ 1Þ
����

����
2

; (34)

where τπ= π/Ω. By Taylor expanding FðπÞz ðωÞ and taking the leading order,
FðπÞz ðωÞ can be approximated by the piecewise function

FðπÞz ðωÞ � 4ω2=Ω2 forω<Ω

4 forω>Ω

(
; (35)

such that the approximate analytic fidelity in Eq. 6 can be derived. The
filter function for amplitude noise is the same for all values of ϕc such that
the fidelity of an arbitrary π-pulse can be calculated using the filter
function

FðπÞθ ðωÞ ¼ 1� eiωτπ
�� ��2 ¼ 4sin2

ωτπ
2

� �
; (36)

which on Taylor expansion can be approximated by

FðπÞθ ðωÞ � π2ω2=Ω2 forω<Ω

4 forω>Ω

(
; (37)

These Taylor expansions provide the values of cðπÞb and nπ used in the
results.
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