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1. Introduction

The problem of statistical noise is ubiquitous in lattice field theory calculations, which employ
Monte Carlo sampling to estimate field theory expectation values. Euclidean correlation functions
C(7) parameterized by imaginary-time separation 7 are generically affected by an exponential decay
of the signal-to-noise (StN) ratio with increasing 7 [1, 2],

SIN[C(7)] = |{C(7))| /V/Var[C(7)] ~ exp(—const. X T). ey

This severe signal-to-noise problem crucially limits the values of T which provide meaningful
information at a given level of precision. The signal-to-noise problem also affects correlation
functions parameterized by multiple distance scales. In lattice gauge theories, the expectation
values of rectangular Wilson loops W,x, of dimension r X 7 can be interpreted as correlation
functions of a static particle/anti-particle pair separated by a spatial distance r and Euclidean time
7. A hallmark of confinement in pure gauge theories is the area-law scaling of Wilson loop
expectation values, (W,x;) ~ e~ A where A = r X 7 and o is the confining string tension [3].
The signal-to-noise problem can be shown to be maximally severe in this case, with StN ~ e=74,

o

making this an interesting test bed for approaches to mitigate the signal-to-noise problem in gauge
theories.

Recently, [4, 5] introduced an approach to signal-to-noise improvement based on complex
contour deformations of the path integral, which can be used to define families of observables
with identical expectation values but generally distinct variance properties. Similar approaches
have been applied to solving sign problems introduced by a complex action [6—-16], for example
arising from a non-zero chemical potential or a real-time path integral; see [15] for a comprehensive
review. Optimizing the choice of deformation was shown in [4, 5] to exponentially reduce the noise
of the Euclidean-time correlation function of Wilson loops in 2D U(1) and SU(N) lattice gauge
theories. However, a key simplification in these results was to first change integration variables in
the path integral from gauge links to (untraced) plaquettes as allowed by the 2D geometry with open
boundary conditions.

In this work, we introduce a new approach to defining contour deformations of the path integral
for SU(N) lattice gauge theory which is applicable to gauge theories defined in arbitrary spacetime
dimensions. In contrast to previous work, these contour deformations are defined to act directly
on link degrees of freedom and are therefore applicable to theories defined with generic boundary
conditions, including those with periodic boundaries. We introduce and demonstrate the approach
in the context of an SU(2) pure gauge theory in 3D, where it is possible to exponentially improve
the signal-to-noise ratio of Wilson loops over a wide range of areas. We also investigate the
lattice volume dependence of these results. Finally, we conclude by discussing the straightforward
generalization to SU(N) and higher dimensions and giving an outlook for this work.

2. Path integral deformations for signal-to-noise improvement

We start from the Euclidean path integral definition of the expectation value of a quantum
operator O in a lattice gauge theory,

<O)E%/d[U]O[U]e_S[U], zE/d[U]e—swL (2)
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where f d[U] indicates integration with respect to the Haar measure of gauge field configurations,
S[U] is a discretized action, and O[U] is the representation of the operator acting on the field
configurations. In this work we assume S[U] € R, in which case equation (2) is typically estimated
by a statistical expectation value, (O) = Eg[O[U]], where Eg [-] expresses the statistical mean over
field configurations U sampled according to the probability measure d[U]e~ SV,

When the Boltzmann weight exp(—S[U]) and operator O [U] are complex analytic (‘“holomor-
phic”), the path integral can be deformed continuously into the complexified domain of gauge field
configurations without modifying its value, as a result of Cauchy’s theorem [6, 17]. For contin-
uous gauge groups, the complexified space can be straightforwardly identified by complexifying
the associated Lie algebra; for example, SU(N) is complexified to SL(N, C), the group of N x N
matrices with unit determinant. Typically, the weight exp(—S[U]) and operators O [U] are initially
defined only on the original (real) domain of integration, but these can be analytically continued
to the complexified domain by replacing instances of the Hermitian conjugate links UIT, (x) with
inverses U;l (x).

Following [4, 5], we consider a deformation of the original domain of the integral in equation (2)
to a new domain M. , abstractly written as

©) = [_awio1e1) G

where we leave the evaluation of Z unchanged. In practice, the integration over the new manifold
M is defined by an injective map U(U), such that we can write the result of the deformation as

<0>=%/d[U]J[U]O[U(U)]e—S[O(U)]

: )
= Es |/[U10[0()]eS1V S| = Bg [Q[U]].

where J[U] = det(dU/0U) is the Jacobian of the map. Because the new observable Q[U] =
JUIO[U(U)]e™S [UW)1+SIU] hag identical expectation value to O, one can choose to estimate it
instead of O[U]. It will generally have different variance properties from O[U], and by optimizing
the choice of deformation U (U) this variance can be minimized.

3. Contour deformation of SU(2) Wilson loops

We next focus on the signal-to-noise problem of Wilson loops of various sizes in SU(2) pure
gauge theory in three dimensions, introducing our choice of deformations U (U) in this context.

3.1 Complexification and analytic continuation

We consider the Wilson gauge action, which is given by

Puy(x) = Up(x)Uy (x + DU, (x + DU, (x).

S[U]
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Here, § is the inverse coupling constant and P, is the oriented plaquette located at position x. For
the SU(2) gauge group, N = 2 and U, (x), P, (x) € SU(2). We have analytically continued the
action in the usual way by using inverses P;}, (x) and Uljl (x) in equation (5).

In this work, we adopt the Bronzan parametrization of SU(2) matrices [18]

sin (GN(X))ei¢1,M(x) CcOS (Qﬂ(x))e“ﬁly(x)

Up(x) = U(Hﬂ(x)"pl,ﬂ(x)"ﬁlﬂ(x)) = oS (Hﬂ(x))e_"‘bz’”(x) sin (gﬂ(x))e—itm,u(X) ’

(6)

where 6,,(x) € [0, /2] is the polar angle, and ¢ ,,(x), ¢2,,,(x) € [0, 2) are periodic azimuthal an-
gles with periods of 2. The complexified domain SL(2, C) is given by considering 6,,(x), ¢; ,,(x) €
C. For general U, (x) € SL(2,C), the inverse is equal to U;l (x) = U0, (x), =1, (x), =2, (X))T.
In terms of these parameters, the path integral in equation (2) can be written as

=5 [ (][]0 (001,186,416, 6 e 1 @0 [U)]. )
X,

where O indicates the set of all angular variables, U(®) is the set of gauge links parametrized by
those variables, and ,(x) = 1/(4x?) sin(260,,(x)) is the normalized SU(2) Haar measure.

In [5], an equivalent parametrization of SU(2) matrices based on Euler angles was also
considered and could serve as another starting point for deformation. Though equivalent, the
choice of parameterization can significantly affect whether specific deformations are simple or
complicated to write. For the simple class of deformations discussed next, this class defined
using the Bronzan parametrization contains all analogous deformations defined using Euler angles,
motivating the use of the Bronzan parametrization here.

3.2 Constant deformations

To feasibly explore the effects of contour deformations on the signal-to-noise problem, we dras-
tically reduce the space of possible deformations U(U) by considering only variable-independent
deformations, or constant deformations, which have been used successfully in [4, 5] to reduce
Wilson loops variances. In the Bronzan parametrization, this is defined by deforming each 6, (x),
é1,u(x), and ¢2 ,(x) by constant shifts into the imaginary direction. Because the 6,(x) are not
periodic, deformations must fix the endpoints at 0 and 7/2, which leaves no non-trivial constant
shifts for these variables. On the other hand, ¢ ,(x) and ¢, ,(x) are periodic variables and their
contour of integration can safely be shifted, giving in general the deformation map

U(H,u (X), ¢)1,,u (X), ¢2,,u (X)) = U(H,u (X), d;],,u (X), (52,,11 (X)), (8)

where

Giu(X) = @i (x) +iA; (%), (P = 1,2), ©)

in terms of the shift fields, A; ,, (x) € R.

Because A; ,(x) does not depend on the explicit values of 6,,(x) and ¢; ,(x), the Jacobian
J[U] = det(0U/dU) of this transformation is trivial. The normalized Haar measure h u(x) is also
not changed by this deformation. We can thus write the new observable

Q[0] = O[U(®)]e SV OISO (10)

where © is the complexified set of all angles, and as before we have (O) = Eg [Q[®]].
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3.3 Maximal tree gauge fixing

Unsurprisingly, minimizing the variance of Q by optimizing the deformation parameters
A; ;(x) leads to negligible improvement to the signal-to-noise ratio. Intuitively, constant defor-
mations are restricted in this case to independently deform gauge links, which do not independently
encode gauge invariant physical quantities. Instead, inspired by the previous construction of con-
stant deformations with open boundary conditions in [5], we first restrict the path integral by fixing
to a maximal tree gauge and then deform the remaining degrees of freedom in this formulation.

Even with a tree-based gauge fixing scheme such as a maximal tree gauge, there is significant
choice as to how the fixed links are arranged. We have found that these choices can drastically affect
the signal-to-noise improvements which we have been able to achieve. After some exploration, the
most significant reduction in variance was observed by choosing the maximal tree gauge defined by

U()(Xo < LQ - 1,x1 = O,X2 = 0) =1,
Ui(xg,x1 <L —1,x,=0) =1, (11)

Us(x0,x1,x2 < Ly = 1) =1L

Here (L, L1, L,) are the lattice dimensions in lattice units and x = (xg, x1, x) is the lattice coordi-
nate with x; € {0,1,--- ,L; — 1} (i = 0, 1,2). To obtain the most significant reduction in variance,
we also chose the arrangement of the Wilson loop observable to lie in the (0, 1)-plane with the
lower left corner located at the origin x = (xg = 0,x; = 0,x2 = 0).

3.4 Deformation parameters from U-nets

For small lattices, for example with dimensions 8%, optimizing A;, u(x) directly on gauge-fixed
configurations straightforwardly provides orders-of-magnitude improvement of Wilson loop signal-
to-noise ratios. However, if the lattice dimension is taken large while statistics are held fixed, the
abundance of parameters A; ,(x) quickly leads to an overfitting regime during optimization. We
expect on physical grounds that the reduction in variance achieved for Wilson loops of identical
size should be nearly equivalent across lattices with dimensions sufficiently larger than the size of
the loop (when S is held fixed), but these expected variance improvements are not reached when
overfitting is encountered on larger lattices.

To overcome this training issue, we reparametrize the shift field, A; ,(x), as

Ai () = fiu(xsw), (12)

where f; ,, (x;w) is the output of a neural network and w is the set of weights defining the neural
network, which implicitly parameterize this output. This is a new parameterization of approximately
the same space of deformations, albeit one where the parameters w at some finite neural network
complexity are less prone to overfitting. To produce f; ,(x;w), we use the U-net architecture [19]
applied to a constant input given by a collection of Boolean fields specifying the gauge-fixed links
and the links making up the Wilson loop. Figure 1 shows an example of the U-net for 8° lattices.
For a generic lattice geometry, the U-net is constructed so that each coarsening step (‘“down-
convolution”) reduces the lattice dimensions by a factor of two along each axis while increasing the
number of channel dimensions by a factor of two; on the other hand, the prolongation steps (“up-
convolution”) double the lattice dimensions along each axis while reducing the channel dimension
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Figure 1: U-net architecture used to compute constant shift deformation parameters (gray output) from
the gauge fixing and Wilson loop masks (gray input). The architecture is defined using a combination of
convolutions (gray arrows), down-convolutions (green arrows), up-convolutions (red arrows), and copy-and-
add operations (blue arrows). Each box depicts the number of channels (width) and the 3D lattice geometry
(height and depth, third dimension suppressed) at each stage of the network. The 6 input channels correspond
to gauge-fixing masks and the Wilson loop masks for the three orientations of links, while the six output
channels correspond to the components of A; ,, (x).

> =
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Figure 2: The decoder architecture that takes A; , (x) for a Wilson loop of size r X 7 in an 83 lattice geometry
as the input and outputs A; , (x) for a Wilson loop of size (2r) x (27) in a 163 lattice geometry. The meanings
of the operations and boxes are the same as in figure 1.

by a factor of two. In this work, we always coarsen until the lattice dimensions are 23 at the coarsest
level before prolongation. Because the gauge-fixed links cannot be deformed, we multiply by a
mask as a final step to enforce f; ,,(x;w) = 0 for all u, x where U, (x) are gauge-fixed.

The use of the U-net in training not only allows us to reach much smaller variances on lattice
sizes X 16°, but also enables much faster training on smaller lattices by reducing the total number
of updating steps to the weights. For these reasons, all results in this work are based on this U-net
parametrization of the shift field.

3.5 Decoder network and transfer learning

The U-net parametrization by itself is sufficient to parameterize the shift field at any given
lattice volume and Wilson loop geometry. However, as a practical improvement, we additionally
introduce and study the use of a decoder network that uses convolutions to transform a shift field
from a smaller volume to a larger volume for lattices with identical S and gauge fixing schemes.
Figure 2 shows an example of the convolutional decoder architecture that we use to transform shift
fields between 8° and 16° lattice volumes.
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To train the network to transform between a smaller and larger lattice geometry differing by a
factor of two in each dimension, we first train a U-net to produce a shift field A; ,, (x) for a Wilson
loop size of r X T on the smaller lattice volume. The decoder takes this shift field as the input
and outputs a new shift field which is used to deform the path integral for a Wilson loop size of
(2r) x (27), with the variance of this larger loop used as a target for optimization.

Comparing deformations produced from a U-net targeting the final lattice geometry versus
using the U-net output at smaller volume together with a decoder network, we find that both reach
the same variance improvement once properly trained. However, once the decoder network is
trained to transform from 8 to 163 lattice volumes, we can fine-tune the same network by a smaller
number of optimization steps to transform the shift field on the 16 lattices to a shift field suitable
for 323 lattices. This transfer learning scheme is crucial for training on lattice volumes X 32° where
the training costs needed for directly training a U-net become large.

4. Training details and results

In this work, we present results for lattice theories with fixed § = 3.75, periodic boundary
conditions, and three choices of lattice sizes, 8%, 163, and 323. The bare coupling corresponds to a
string tension of a>c ~ (0.4)? in lattice units [20]. For the three volumes, we respectively generate
1.5x 10°, 1.1 x 10°, and 2.4 x 10* configurations for training and 500 configurations for testing.
No significant autocorrelations of plaquette values are observed within these configurations.

For the 8% ensemble, we find the optimal constant deformation by directly training U-nets as
described in section 3.4; for the 16> ensemble, we use the decoder architecture shown in figure 1.
We also compared directly training a U-net on the 16° ensemble, with those two methods giving the
same performance. For the 323 ensemble, we reuse the decoder network previously trained for the
16° ensemble and fine-tune it with fewer than 103 steps of weight updates, a much lesser amount of
additional training than directly training the shift fields.

To avoid numerical stability issues, we train in all cases by minimizing the logarithm of the
variance of the targeted Wilson loop for each geometry using the numerically stable LogSumExp
function. We also use the trick introduced in [5] of measuring and optimizing only the (1, 1)
component of the untraced Wilson loop. All training is done on a single compute node with eight
NVIDIA A100 GPUs. We use mini-batch sizes of 32 configurations per GPU with the default
settings of the Adam optimizer [21]. Training for each Wilson loop size takes at most a few
node-hours.

The resulting improvement factors in the Wilson loop variance are shown in figure 3. Up to
three orders of magnitude of variance reduction is obtained at the largest Wilson loop studied. As
the area is increased, we find increasing improvements. The reduction in variance obtained using
the techniques discussed above is also nearly independent of the total lattice volume, depending
much more strongly on the Wilson loop geometry.

5. Outlook and conclusion

In this work, we showed for the first time how to use constant contour deformations to mitigate
the signal-to-noise problem of Wilson loops for three dimensional SU(2) gauge theory with periodic
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Figure 3: Ratios of variances between the original (O) and improved (Q) Wilson loop observables of various
areas for 83, 16°, and 323 ensembles.

boundary conditions. To achieve this result, we used a maximal tree gauge fixing scheme (equa-
tion (11)), a U-net parametrization of the deformation (equation (12) and figure 1), and decoder
networks with transfer learning (section 3.5 and figure 2).

Our approach of constant contour deformations parametrized by a U-net can easily be gener-
alized to 4D by using four-dimensional convolutions and a four-dimensional maximal tree gauge.
These deformations are also applicable to other choices of N, including the SU(3) gauge group, by
working with the corresponding Bronzan angular parametrizations [18]. We are currently working
to apply the method to four dimensional SU(2) and SU(3) gauge theories.

Within the framework of the constant deformation presented in this work, many avenues are
left to be explored that may lead to better performance. Most importantly, we have observed that the
choice of the gauge fixing scheme heavily influences the final variances of improved observables.
In addition, the maximal tree gauge fixing scheme we use here completely obscures the translation
symmetry of the lattice, as it must be combined with gauge transformations to maintain the gauge
fixing scheme. This means that performing volume averaging that is commonly used for variance
reduction is expensive since each translation requires additional gauge fixing. Other gauge fixing
schemes, such as partial subsets of a maximal tree gauge, could simplify the process of (partial)
volume averaging and may yield similar or better variance improvements. Finally, field-independent
deformations represent a small class of all possible deformations. Exploring contour deformation
beyond this simple choice, such as the Fourier series expansion presented in [5], may further boost
the performance and eliminate the needs of gauge fixing completely.
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