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Abstract

Gravitational waves carry information about far away phenomena which astronomers can use to form a better picture of the
universe. Over the past few years, numerous gravitational waves have been detected using a method called matched filtering;
however, this approach has two main drawbacks. First, it requires knowledge of the sought-after waveform beforehand.
Second, it is infeasible for gravitational wave searches which are precise or cover a long time span. While attempts have
been made to use classical machine learning to overcome these difficulties, the usage of quantum machine learning in this
context is relatively unexplored. Quantum variational rewinding is a hybrid quantum-classical machine learning algorithm for
time series anomaly detection. This work makes the first steps in investigating its potential for gravitational wave detection.
Training and testing the algorithm was done without depending on synthetic data. In a noiseless simulated environment,
quantum variational rewinding was able to pick out all confirmed gravitational wave signals from the background noise of
a detector with perfect accuracy when filtering was applied before hand and was able to do so to a high degree of success
without filtering. Anomaly detection with this algorithm was performed with two signals on quantum hardware as a proof
of concept. Using Fisher information, both the capacity and the trainability of quantum variational rewinding are described
so that future approaches can be compared in these regards. With new gravitational wave detectors under development, even
more data will be generated for analysis in the future, compounding the existing bottlenecks in the search pipeline. As such,
approaches which help tackle issues with the current approach to gravitational wave analysis are in demand, and the empirical
results from this work assert that quantum computing should not be overlooked in this process.

Keywords Gravitational wave - Quantum computing - Quantum machine learning - Anomaly detection - Noisy intermediate-
scale quantum

1 Introduction

Domenica Dibenedetto, Niels Neumann, and Ward van der Schoot con-
tributed equally to this work Gravitational waves (GWs) are perturbations in spacetime

caused by accelerating massive objects. Unlike electromag-
netic radiation, they are not obscured by matter as they travel
through the universe and thus offer unique insights into other-
wise imperceptible phenomena. At the time of writing, there
have been 90 confirmed GW detections (Abbott et al. 2021),
with the first taking place in 2015.

Laser interferometers can be used to detect GWs by
producing time-varying light intensity signals when GWs
propagate through them. Unfortunately, the extreme preci-
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confirmed with MF, but it is not without drawbacks. These
include the need for a template of the sought-after GW before
it is detected, and a time complexity which can render the
process infeasible for long or precise searches.

A recently proposed quantum-classical hybrid machine
learning (ML) algorithm for time series anomaly detection,
called quantum variational rewinding (QVR) (Baker et al.
2023), has potential in the GW detection domain. Thanks
to its use of a constant depth variational circuit, it is suit-
able for currently available quantum computers, which are
part of the noisy intermediate-scale (NISQ) quantum era. By
framing GW interferometer readings as anomalous signals
in otherwise non-anomalous background noise, the trained
model can perform GW detection in linear time, an improve-
ment over the quasilinear time complexity of MF. Also of
significance is the ability of QVR to learn complex patterns
with few parameters, while only requiring non-anomalous
data to train on. The latter point is of interest because of
the low number of confirmed GW signals, as approaches
relying on positive examples depend on synthetic data for
training, reducing their ability to flag GW signals of unknown
forms.

The main contribution of this work is the use of an NISQ-
era-compatible quantum algorithm for GW detection without
dependence on templates. Evidence is provided of the strong
performance of this approach on real data in both a simulated
environment and on real quantum hardware. The following
research questions are addressed:

e To what extent is quantum variational rewinding suc-
cessful in classifying known gravitational waves as
anomalies?

e How fast can quantum variational rewinding perform
anomaly detection on laser interferometer time series
data?

e Does quantum variational rewinding offer an advantage
over classical approaches in gravitational wave detection,
and if so, is this advantage inherently quantum?

Section 2 gives an overview of related approaches in
which ML or quantum computing has been used to aid
GW detection, followed by a brief background on GWs and
their detection using MF in Section 3. Section 4 introduces
concepts on which QVR is built on before the algorithm is for-
mally introduced in Section 5. In Section 6, the data and their
acquisition are described, after which Section 7 states QVR
implementation details. Then, Section 8 describes experi-
ments and reports their outcomes. Suggestions for why the
quantum nature of QVR is important are made in Section 9
before results are discussed in Section 10. Sections 11, 12,
and 13 go over limitations, provide concluding remarks, and
put forward interesting avenues to explore in future work
respectively.
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2 Related work

Numerous classical ML approaches, and a quantum algo-
rithmic approach, have been applied to GW detection. The
common goal has been to improve detection rates and alle-
viate both the computational intensity and dependence on
templates involved in searching for GW by means of MF.

In the work of Kim et al., artificial neural networks have
been shown to improve the performance of MF for specific
types of GW searches. This was done by considering proper-
ties of source objects as well as variables from the MF process
to make classifications (Kim et al. 2015). The intention was
for this to be used in combination with the current search pro-
cedure. While the approach put forward in this work should
also be used in tandem with traditional approaches as dis-
cussed in Section 10, it can alleviate computational load by
flagging interesting signals. Convolutional neural networks
implemented by Gabbard et al. have performed well for clas-
sifying specific types of GW using synthetic signals (Gabbard
et al. 2018), but the dependency on templates in the con-
struction of GW signals implies prior knowledge of the
sought-after waveforms. Work by Baker et al. demonstrated
the potential of random forests in distinguishing GWs from
background noise based on attributes of input signals (Baker
et al. 2015). This approach worked well for certain types of
GWs, but it was still necessary to model them before hand.
Morawski et al. used a convolutional autoencoder to learn
detector noise, thereby overcoming the need for templates
and then detected GWs as anomalies by comparing recon-
structed signal loss values to a threshold (Abbas et al. 2021).
Results showed promise on synthetic GW data, but testing
on real GW signals fell short; while the authors suggest that
this is due to the test signals being from older observational
runs, no results making use of more recent data are available.

Work by Dreissigacker et al. (2019) employed deep learn-
ing with a focus on continuous GW detection. This is a class
of GW which is yet to be detected and is especially prob-
lematic for MF due to its low amplitude and long duration.
Results on synthetic data are impressive, but again, the depen-
dence on synthetic data is undesirable. An overview of ML
for GW detection was given by Cuoco et al. (2020) who
also discussed efforts in glitch characterisation and parame-
ter estimation. A venture into the quantum realm was made by
Gao et al. (2022) with the application of Grover’s algorithm
to MF for a theoretical speed-up, but the space complexity is
still too great for current hardware.

3 Matched filtering for gravitational waves

Signal processing techniques are required to extract the rel-
evant parts of the signals produced by GW detectors from
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background noise (Jaranowski and Krdlak 2012). Matched
filtering is the technique most widely used for this purpose.
It looks for the similarity between a theorised signal called
a template and an actual signal which is affected by back-
ground noise. Based on some underlying assumptions about
the background noise, it allows a level of statistical certainty
to be computed that a given incoming signal matches a tem-
plate. Properties of MF which are relevant to this work are
mentioned here, and a mathematical description is included
in Appendix C. Understanding the details of how GWs are
generated and subsequently picked up by hardware on earth
are not required for following this work. For reference, an
overview is given in Appendix A. Other approaches which
have seen success are also briefly mentioned in this section.

Various types of GW detectors exist, with laser interferom-
eters, which are the only type this work concerns, being the
most popular. These instruments produce time-varying light
intensity signals when GWs pass through (Davis et al. 2021),
and because the perturbations caused by GWs are tiny even
for highly catastrophic events, these instruments are required
to be extremely precise. While this allows the influence of
passing GWs to be picked up, it also means that the result-
ing signal is susceptible to noise of terrestrial origin. Such
noise manifests itself as fluctuations in the resulting signal
and can come from a wide array of sources simultaneously,
ranging from environmental factors to properties of the hard-
ware (Aasi et al. 2015; Davis et al. 2021). Fluctuations which
are consistently present in the interferometer signal over time
make up background noise, but when they are temporary
they are known as glitches. Such atypical noise transients
can resemble GWs (Cabero et al. 2019), and glitch signals
with power comparable to those of GWs have appeared with a
frequency of roughly one per minute in Laser Interferometer

Gravitational-Wave Observatory (LIGO) detectors (Abbott
et al. 2020). In Fig. 1, a background noise signal as well as
two GW signals are displayed. The first GW wave is appar-
ent just from visual inspection while the second is hidden in
noise.

The most computationally expensive step in MF is the
conversion of the input signal from the time domain into
the frequency domain. This is done with the fast Fourier
transform, which has time complexity O (N log N) for a
signal of length N (Cooley et al. 1967). In this case, the
length of a signal is the sampling frequency multiplied by
the signal’s duration. The overall time complexity of MF is
O (MN log N), where M is the number of templates, due to
the need to perform a search for each template.

Matched filtering has demonstrable success in GW detec-
tion. In fact, for an event to be published it has been a
requirement that MF identifies the signal in at least two dif-
ferent detectors (Abbott et al. 2020). That being said, there
are drawbacks. First, an accurate template is required. In cir-
cumstances where perfect knowledge of the form of the GW
is attainable, this is a non-issue. Unfortunately, it is rare that
there is enough knowledge about the GW source to construct
an accurate template, and a search is done over a range of
template parameters in reality. In addition, it means unex-
pected GW signals which do not match a template, or GW
signals which do match a template but overlap with each
other, will remain burried in the background noise. Second,
the quasilinear time complexity of MF means that using it
becomes infeasible for precise searches, searches for long
signals, or a combination of both. This issue is compounded
by the fact that the number of templates can be upward of
10'2 (Abbott et al. 2019). It is worth noting that the amount
of information available about the sources of GWs can vary,
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Fig.1 Second long interferometer responses from LIGO Livingstone’s third observing run. The top is from background noise, and the middle and
bottom are from GW. These signals were subjected to the filtering described in Section 8
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and so the severity of the computational load for data analysis
is context dependent. The time complexity of MF is in and of
itself not unmanageable, but when coupled with the sheer size
of some current and future searches, it becomes problematic.
Even for binary black hole coalescences, which are responsi-
ble for emitting all of the GWs detected to date (Abbott et al.
2021), factors like eccentric orbits can dramatically increase
the difficulty of searches (The LIGO Scientific Collaboration
et al. 2023).

A popular alternative approach makes use of multiple
detector signals to avoid the need for templates and so
facilitates the search for GWs of unknown form (Klimenko
et al. 2016). For narrow searches such methods can be com-
parable in performance to MF; in fact, it was an initial
low latency search with such an unmodelled approach that
flagged the first detected GW within minutes of it reaching the
detectors (Abbott et al. 2016). For more extensive searches,
however, the time complexity of this approach (Necula et al.
2012) may become problematic just like in the MF case. It
should also be noted that singular value decomposition has
been investigated as a way to reduce the number of templates
to search through (Cannon et al. 2010). With the ongoing
development of more precise GW detectors, like the Ein-
stein Telescope and the Laser Interferometer Space Antenna,
the problems related to the computational cost of GW data
analysis are expected to become more severe, increasing the
demand for efficient algorithms (Couvares et al. 2021).

4 Variational simulation of hamiltonian
evolution

Quantum variational rewinding is a hybrid quantum-classical
ML algorithm which aims to approximate the evolution gen-
erated by a time-independent Hamiltonian with a variational
circuit to detect anomalies in time series (Baker et al. 2023).
The general idea is to learn the parameters of this circuit in
a way that allows it to rewind the values of non-anomalous
input time series back to some initial quantum state such that,
upon measurement, there is a collapse into a predictable basis
state. This way, the measurement of a different state after
rewinding is an indication that the time series in question is
anomalous. This technique has serious potential in the identi-
fication of GWs. Before delving into QVR in the next section,
its foundational principals are explained here.

Quantum states evolve according to Eq. 1, which is
Schrodinger’s equation. The Hamiltonian H is an Hermitian
operator which acts on the quantum state |1 (¢)) to bring
about its time evolution at time ¢. 7 denotes Planck’s con-
stant. When H is time-independent, it leads to Eq. 2, which
describes the continuous evolution of a quantum state from
an initial time ¢ = 0 to some time ¢t = T thereafter (Cresser
2011). Such evolution is necessarily unitary due the Hermi-
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tian nature of A . Note that units are chosen such that i = 1
for simplicity in Eq. 2, and this remains the case from here
on out.
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Evolution of a quantum system with a Hamiltonian as
shown in Eq. 2 can be simulated with a variational circuit
using the Suzuki-Trotter formula, which is shown in its first-
order form in Eq. 3. The left-hand side corresponds to the
operator on the right-hand side of Eq. 2. A summation term
is present to take advantage of the fact that Hamiltonians
can be decomposed into the sum of simpler Hamiltonians
which are possible to simulate variationally. On the right-
hand side, there is a product of matrix exponentiation terms,
which are power series expansions. Each of these terms
is evolution by one of the simpler Hamiltonians for time
At. Taking the product of these terms after expanding them
involves multiplying the H; matrices with each other, and
because matrix multiplication is generally not commutative,
an error is incurred (Schuld and Petruccione 2021). The right-
most term captures this error and is dependent on A, which
reflects that the source of this issue is the simulation of a
continuous process with discrete time steps. Therefore, tak-
ing more time steps r with a smaller step size At improves the
approximation. The number of time steps required to reach

atime T isr = %.
Sy :
e I = ([T | +o (Aﬂ) 3)
J

Current quantum computers are part of the NISQ era
(Schuld and Petruccione 2021), which is characterised by
the presence of errors in quantum computations. There are
a variety of causes, each contributing to less reliable results.
Among these is quantum decoherence. This is a process by
which information is lost due to the inability to maintain a
quantum superposition for the amount of time required for
a computation (Chuang and Nielsen 2010). The more quan-
tum operations that are performed, the greater the presence of
errors from these sources. Taking advantage of current quan-
tum computers to implement variational algorithms therefore
requires consideration of circuit depth. This is the maximum
number of operators that need to be applied in succession
in a quantum circuit. Evolving a quantum state using the
Trotter-Suzuki formula has the drawback of depending on the
repeated application of the gates implementing the desired
Hamiltonian evolution for each time step. This, in com-
bination with the fact that using smaller time steps gives
a better approximation, means that quantum circuits can



Quantum Machine Intelligence (2025) 7:17

Page50f22 17

become deep for sophisticated computations, which accu-
mulates errors due to, among other causes, need to maintain
superpositions for longer. Therefore, the error due to quan-
tum decoherence can accumulate and become unmanageable
for evolution beyond a given time.

Variational fast forwarding addresses this issue by per-
forming a spectral decomposition of the evolution described
by a Hamiltonian, as shown in Eq. 4. r applications of the
Suzuki-Trotter equation can then be replaced by a single
application of the spectral decomposition with the diagonal
matrix raised to the power r, as shown in Eq. 5 (Cirstoiu
et al. 2020). Because the left-hand side is unitary, such a
spectral decomposition always exists. The columns of W are
the eigenvectors of the operator and D is a diagonal matrix
containing the corresponding eigenvalues. By the spectral
theorem, W, W, and D are each unitary. With this approach,
the depth of the variational circuit required to approximate
the evolution brought about by the Hamiltonian remains con-
stant as D" captures the number of discrete time steps so that
they do not need to be applied one by one. Thus, error caused
by NISQ era devices is avoided, although the error incurred
by discretising the evolution remains (Cirstoiu et al. 2020).

e tHA _ wpwt 4)
. r .
(e—lHAt) — WDVW1 (5)

5 Quantum variational rewinding

The ideas from variational fast-forwarding can be used in
QVR. Again, a constant depth variational circuit is used to
simulate the quantum evolution brought about by a Hamil-
tonian. Instead of considering forward evolution, however,
QVR should be conceptualised as rewinding backwards
through time. An overview of QVR is given here, with spe-
cific details given in Section 7. Discussion of how variational
fast forwarding and QVR are linked to a concept called the
no fast-forwarding theorem can be found in Appendix D, but
this is only loosely related to this work.

The goal is to take each value of a time series X at time
steps ¢; in turn and rewind it back to some initial value at time
t = Oby applying Eq. 5 with r = ¢;. In this setting, time goes
backwards, so At is negative, causing ¢; to be negative. The
evolution of a quantum state with negative time is equivalent
to the case where time is positive but the Hamiltonian is
negated. The target Hamiltonian implemented by W DW T in
this rewinding setting is still valid because the negation of a
Hermitian matrix is still Hermitian.

Given a set of time series, the goal is to determine which
are anomalous by using this rewinding mechanism. That is,
which of the time series do not follow a typical pattern. By
rewinding values which belong to non-anomalous time series

to the same initial quantum state, it is possible to tell which
values belong to anomalous time series because they are
rewound to a different initial state.

A quantum-classical hybrid ML scheme is used to this
end, whereby a circuit is learned to approximate the back-
wards evolution brought about by a Hamiltonian capable
of rewinding non-anomalous input values to a predictable
quantum state. This Hamiltonian is unknown before train-
ing and will be referred to as the target Hamiltonian. By
learning parameters of W and D, the target Hamiltonian is
learned automatically. Training consists of a quantum com-
ponent, wherein input time series values are encoded into a
quantum superposition before being passed through W DW '
and measured using an observable operator, and a classical
component, in which circuit parameters are updated based
on derivative-free gradient calculations. Anomaly detection
utilises the trained circuit, which now implements backwards
evolution defined by the target Hamiltonian, by feeding in
(value, time) tuples of a time series one by one and deter-
mining whether their initial state corresponds to that expected
of anon-anomalous time series. Quantum variational rewind-
ing yields a quantum state for each input tuple. Determining
whether a full time series is anomalous means averaging over
all of the quantum states which come from its individual
inputs.

To feed values into a quantum device, a quantum state
needs to be created depending on this value. Encoding such
an input value into a superposition can be seen as evolving
the state from #y to #;, a process which will be undone in the
rewinding step. All qubits start in state |0), but as will be
shown, this is not necessarily the initial state which will be
targeted by the rewinding step. Equation 6 shows the encod-
ing of the value of a time series x; at time ¢; with a unitary
operation based on this value. The dependence of this encod-
ing unitary on the value it is encoding is crucial, as it uses
this value to create a quantum state representing the time
series at time 7;. The rewinding step does not have access to
this value and must rewind inputs from any non-anomalous
time series at any time back to the same initial state using
only ¢;. The difference between these steps is that the latter
is general enough to undo the forward evolution using only
t; when the input is non-anomalous. The rewinding step is
the application of the Hamiltonian for time ¢; via its spectral
decomposition W D% W, Equation 7 shows the Hamiltonian
approach, and Eq. 8 shows the variational approach.

i (1)) = U (xi (2)) 10)®" ©)
xi (1)), @, €) = e |x; (1)) )
i (17) @ &) = W@ D (€, 1;) W @ |x (17)) ®)

The W operations are parameterised by & and the D oper-
ation is parameterised by €, and it being raised to the power

@ Springer



17  Page6of 22

Quantum Machine Intelligence (2025) 7:17

of ¢; means that ¢; is also written as one of its parameters. o
and € are vectors containing trainable parameters which are
updated during training, while ¢; is the time corresponding
to the input value. Because of this dependence on 7, both the
time series value and its corresponding time are fed into the
circuit. Note that ¢; determines how much backwards evo-
lution is applied, in accordance with Eq. 8, but it does not
fundamentally change the form of this evolution, and so it
does not parameterise the target Hamiltonian like o and €
do. This can be seen by the absence of r in the parameters
of H in Eq. 5, upon which Eq. 8 is based. Ideally, W (@) is
a combination of single qubit general parameterised unitary
gates G, the form of which is given by Eq. 9 up to a global
phase for a set of parameters 6= (91 0> 93), and entangling
gates (Schuld et al. 2020). Section 7 gives the exact form of
these components.

G (5) _ ( eiﬁzigcios.é‘l e,l,g; sin 61 ) ©)
—e '3 sinf) e 2 cos O
Constructing D is a more involved process. While the
structure of W constrains it to be unitary for any parameter-
isation, D must be diagonal, and so it is not unitary for an
arbitrary selection of diagonal entries. For this reason, the
construction in Eq. 10 is used where M is a diagonal matrix

with entries €. This forces D to be unitary regardless of its
parameters.

D (E,1j) = e M@ (10)

Consider now two sine waves which are identical except
for the fact that they are out of phase with each other. Let-
ting either of these be a non-anomalous time series implies
that the other one is as well because they change in the exact
same way over time. It should be possible, then, to rewind
all of their values to the same initial state so as to classify
them both as non-anomalous. Choosing some ¢;, the QVR
algorithm will rewind a value from each using the same time
interval according to this value, which may result in differ-
ent initial states. Overcoming this would require choosing a
different ¢; for one of the time series to account for the phase
difference. After evaluating the matrix exponential in Eq. 10
to compute D, ¢; ends up multiplying each element of €.
What this means is that it is possible to see the desired effect
of modifying #; by instead modifying €. This is achieved by
sampling each of the diagonal elements € of M from their
own normal distributions. This entails having a distribution
for each diagonal entry in M. To sample multiple M matrices,
the elements at each diagonal entry are all sampled from the
normal distribution which corresponds to that entry. These
distributions are defined as € ~ N (i1, &), where the vector
of means u and the vector of standard deviations o both have
a length equivalent to the number of diagonal entries in M.

@ Springer

Strictly speaking, the elements of € are not trainable
parameters; rather the i and & defining the distributions
from which these are sampled are. That means that for a
set of parameters, the circuit structure is not fixed because
it depends on sampling from these trainable distributions.
Therefore, multiple different circuits can be generated from
the same set of parameters. Combating the difficulties related
to signals displaying similar behaviour at different times is
done by generating several circuits for each input tuple, each
differing only in its composition of D due to the resampling
of €. A single input (value, time) tuple is fed through each
one of these circuits and the outcome is averaged. When
values from a time series are not rewound to the initial state
expected of inputs from non-anomalous time series, it should
be because behaviour is present in the signal which does
not fit the trends of non-anomalous signals. Because of the
resampling of D, there is a lower chance that a signal which
does not exhibit such behaviour is flagged as an anomaly
because non-anomalous signals which are out of phase with
each other are accounted for.

Of course, the D matrices must be similar enough to each
other so that the circuits still implement rewinding proce-
dures which are similar to each other. How different the D
matrices are from each other will depend on what the optimi-
sation routine determines is an appropriate balance between
having enough variety to be able to account for patterns
appearing at different times and having enough similarity
to facilitate a consistent rewinding process. Regularisation
is applied on the standard deviations of the distributions to
control this balance.

After encoding and subsequent rewinding, the quantum
state is measured in the bases defined by a trainable observ-
able. A consequence of this is that the superposition can
collapse to a basis state not in the original {|0), |1)} basis.
In this way, rewinding is done to ensure that non-anomalous
time series inputs cause a collapse to a predictable state
defined by this observable. During training, a loss value is
computed for each (value, time) input tuple based on the
expected value of the observable acting on the superposi-
tion. Optimising the circuit involves computing the gradients
of this expected value with respect to each parameter. On
quantum hardware, standard approaches to gradient com-
putations in classical ML, like backpropagation, are not
applicable (Schuld and Petruccione 2021). To overcome this,
gradients can be computed by parameter shift rules (Schuld
and Petruccione 2021) or derivative-free optimisation rou-
tines can be used (Baker et al. 2023). After training, a time
series is assigned an anomaly score based on the average loss
across all of its (value, time) input tuples. If the anomaly
score of a time series equals or exceeds a tunable threshold
it is flagged as an anomaly. The whole process has a time
complexity of O (N) when run on a quantum computer.
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Working directly with the parameters of the spectral
decomposition of the unitary implementing the evolution
brought about by the Hamiltonian avoids having to imple-
ment a non-elementary unitary after each parameter update.
Of course, it is possible to learn the parameters of the uni-
tary operation implementing the rewinding directly, but were
this the case then every time the parameters were updated, a
new circuit would need to be constructed to implement it as
a series of elementary gates, which would invoke unneces-
sary overhead. The W and W { operations in the formulation
in Eq. 4 already consist of only elementary operations by
design and the diagonal unitary D can be approximated by
elementary gates efficiently (Welch et al. 2014). The result-
ing circuit has constant depth and avoids the overhead related
to the implementation of parameterised non-elementary uni-
taries.

6 Data

All data were collected as 4096 Hz one-second signals from
the LIGO Livingston interferometer during its third observ-
ing run which spanned from 01/04/2019 to 27/03/2020 using
the gwgml package (Gobeil 2023; Nitz et al. 2023; Macleod
et al. 2021; Christ et al. 2018). All signals, therefore, were
comprised of 4096 time stamps. Non-anomalous data were
signals caused by the background noise of the detectors in
the absence of GWs. These were sampled starting at ran-
dom times between 100 and 1000s after confirmed GW
wave signals, which ensured that no confirmed events were
sampled as non-anomalous data. Anomalous data were sig-
nals labeled by the LIGO-Virgo-KAGRA collaboration as
auxiliary, marginal, or confident, categories which reflect
increasing levels of confidence that an incoming signal was
caused by a GW. These were positioned off-centre uniformly
at random between —0.25 and 0.25 seconds to imitate the
uncertainty of the position of potential GW signals in the
treatment of real interferometer readings. The signals ranged
from as short as 0.2 seconds (Abbott et al. 2016) to over 100
seconds long (Abbott et al. 2017). Therefore, some anoma-
lous signals contained full events while others only contained
parts of events.

A total of 5000 background noise signals made up the
non-anomalous data. 4000 of these were used for training,
78 made up a validation set which was used for threshold
tuning, and an additional 78 were used for testing. The vali-
dation and testing data sets were of size 78 because this is the
total number of GW signals which made up the anomalous
data. Testing was done by attempting to separate all 78 of
the anomalous signals from the 78 non-anomalous signals
in the testing set. Between training and testing, validation
data was used to set the threshold. One way to do this was
to compute anomaly scores for a number of anomalous and

non-anomalous signals and then perform a grid search across
various thresholds, choosing the one which was best able
to separate the anomalies from the non-anomalies. Another
option was to set the threshold using statistical properties
of only the anomaly scores of the non-anomalous validation
data. For example, the threshold could have been set using
the scaled standard deviation of these anomaly scores, but
seeing as this choice lacked theoretical motivation, the deci-
sion was made to tune the threshold with the first option, a
grid search. This was done by computing the anomaly scores
for anomalous and non-anomalous signals in the validation
set and then computing the accuracy in separating them using
1000 different thresholds ranging from zero to the maximum
computed anomaly score. The threshold which resulted in
the best accuracy was chosen. Because the testing set was
already of limited size, the same anomalous signals were
used for threshold tuning and for testing instead of reduc-
ing its size further by splitting the data into two sets as was
done with the non-anomalous signals. While this decision
had no impact on the training process or the computation
of anomaly scores, there are consequences related to actu-
ally flagging anomalies. Section 11 discusses these. Blind
injections, which are fake GW signals produced to test data
analysis capabilities, were not included at any stage, except
for the injection of a signal intended to emulate a continuous
GW, which was present for most of the third observing run
at a low enough amplitude to not interfere with the analysis
of other data.

7 Implementation

Armed with a description of QVR and the data to use it on,
the specific implementation details can now be described.
Recall that the goal was to learn the gates of a quantum circuit
to rewind non-anomalous signals to the same initial states
optimally. To do so, gate parameters had to be initialised, and
then, iteratively, an output measured, a loss value computed,
and the parameters updated. These are the steps described
here. For an illustration of how QVR is used to detect GWs,
refer to Fig. 2.

An advantage of QVR is that various components can
be adapted to suit the problem at hand. A summary of the
algorithm design can be found in Table 1, which shows that
much of the originally proposed structure was left unaltered.
Table 2 describes the trainable parameters and their initiali-
sation.

For GW detection, two qubits were used; one to encode
the input values and another as an additional output reg-
ister. Angle encoding was used on the first qubit, which
corresponds to the top wire in both Figs. 3 and 4, to cre-
ate a quantum representation of the input data, while the
second qubit was left unaltered. Angle encoding was chosen
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because it facilitates expressive models (Schuld and Petruc-
cione 2021). W was implemented in three layers of the form
shown in Fig. 3 and W7 was its conjugate transpose. Each
layer consisted of the single qubit rotation gates X, Y, and Z
in succession to implement the rotation given by Eq. 9, fol-
lowed by a single controlled not gate, with the angle encoded
qubit as the control, to generate entanglement.

D was approximated using a process involving Walsh
series (Welch et al. 2014), resulting in the circuit shown in
Fig. 4. In this figure, y, y2, and y3 are the diagonal entries
of D, which are not the same as €, which define M upon
which D is based. The final depth in terms of single qubit
rotation gates controlled not gates, and a measurement gate
was 30. Contributions to this depth from the different compo-
nents were as follows. One from angle encoding, four from
each layer of W and WT, four from D, and one from the
measurement observable.

Table 1 Summary of QVR components

Component Implementation

Number of time series 10

per batch

Number of times per batch 10

Number of distributions 3

Regularisation 15

hyperparameter

Number of qubits 2

Encoding X rotation on the first qubit

Eigenvector operator

Diagonal operator
Optimisation

Loss function
Anomaly score
Threshold setting
Observable

Number of shots

Three layers of Fig. 3

Walsh operator approximation in

Fig. 4

Powell’s conjugate direction
method

Eq. 14

Average contribution from Eq. 13

Grid search
Eq. 11
256

Both of the n = 2 qubits were measured using the observ-
able O shown in Eq. 11, which is the same as taking the total
energy resulting from a Z basis measurement on each qubit,
denoted by o, scaled by a factor of % Then the distance
between this output and a trainable parameter n was taken
over anumber of shots. What was left was a distance measure
Q2 representing how far the expected value of the measure-
ment was from 7, something which is shown in Eq. 12.

1 0 0 O
. I1%2Q0. 40, ® 1%? 00 0 0
0= 2 1o 0o 0 o an
0 0 0-1
Q(xi(tj))zn—<x,-(tj),&,g éxi(tj),&,g> (12)

Each individual (value, time) input contributed to the
loss value used to perform the parameter updates. The square
of the average distance in Eq. 12 across several circuits,
differing due to the resampling of €, was this single point
contribution and is shown in Eq. 13. The training was done
in mini-batches B of size N = 100, which were constructed

Table2 Summary of QVR trainable parameters

Parameter  shape Description Initialisation

a (3,2,3) Anglesfor X,Y,and Uniformly at random
Z rotations for each in the range [0, 27)
qubit in each layer of
74

m (1,3) Means of the normal ~ Uniformly at random
distributions from in the range [0, 27)
which € is drawn

o (1,3) Standard deviations Uniformly at random
of the normal distri- in the range [0, 277)
butions from which €
is drawn

n (1) Value from which Uniformly at random

distance to Z is mea-
sured to calculate
loss

in the range [—1, 1]
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Fig.3 A single layer of the eigenvector operator W

by sampling ten-time series from the training data uniformly
at random, and, for each one of these, sampling ten stamps
uniformly at random. It is for this reason that the loss func-
tion, shown in Eq. 14, takes multiple time series. The loss
across a whole mini-batch was the average of the losses of the
individual inputs with a regularisation term given by Eq. 15
added to penalise high standard deviations in the sampling
distributions for €. This regularisation expression was not
modified from the original formulation (Baker et al. 2023).

2
Csingle ()C,' (tj)) =. E 2 ()C,‘ (t./)) (13)
e~N(u, o)
— 1
Courer (YD) = % D Cotngre + R (14)
Xi (IJ')EBN
1 2
R = E Z arctan (27wt |0y,]) (15)
m=1
Ten diagonal M matrices were sampled from Q0 = 3

normal distributions per input. Therefore, each € had three
elements which made up the first three diagonal entries of one
of the M matrices, with the last entry being zero. Equation 15
shows that the regularisation term took an average across the
arc tangents of the standard deviations o7, of the normal dis-
tributions from which € was sampled. The hyperparameter
was set to 15. The number of diagonal matrices and the values
for Q and t were as originally proposed (Baker et al. 2023).
Regularisation ensured that the D operations were similar
enough to each other that the circuit as a whole still imple-
mented roughly the same rewinding operation. After training,
each input time series was assigned an anomaly score which
was the average of the individual contributions Cg;y4/e of all
of its (value, time) tuples.

Optimisation was done with Powell’s conjugate direc-
tion method, which is not dependent on derivatives (Powell
1964). It works by evaluating the loss function along vec-
tors in parameter space to find minima. Here, the search
was bounded for each parameter by the same range that

— Rz (m)

— Rz (2) —&

Rz (v3)

fan)
A\

Fig.4 The diagonal operator W

parameter was initialised with, which can be seen in Table 2.
While all training was done classically here, the method being
derivative-free means training could also be done on a quan-
tum computer without needing to adapt the optimiser. This
is relevant because recent evidence suggests that learning the
noise of a quantum computer during the training of a quantum
ML algorithm may be advantageous (Liao et al. 2023).

Time series values were normalised to be between zero
and 27 before training. As opposed to doing this across all
data, normalisation was performed on the different series at
each time stamp individually. That is, for each of the 4096
measurement times, the values of all series at that time were
grouped and normalised. As a result, at each time stamp the
time series values range between zero and 27, so what is
learned is not the extremity of the signal values, but how
spread out they are within this range. The non-anomalous
data that was learned by QVR was a combination of station-
ary Gaussian noise, small fluctuation patterns, and glitches.
In pure stationary Gaussian noise, the spread of values at any
given time is even across multiple signals. Additional fluc-
tuations in the detector readings then condense the spread
around specific values. Where the dense regions are at con-
secutive time stamps is what is learned. The actual times were
also normalised such that the first measurement corresponds
to time # = 0 and the final measurement corresponds to time
t=2m.

8 Results

Three sets of experiments were performed. The first and
second tested QVR on filtered and unfiltered GW data respec-
tively, both in a simulated environment. Signals which were
filtered were passed through both a band-pass filter with cut-
offs at 50 Hz and 250 Hz and a notch filter with notches at —60
Hz, 120 Hz, 180 Hz, and 240 Hz, which removed some infea-
sible frequencies. Figure 5 shows that the patterns become
obscured by fluctuations which are orders of magnitude big-
ger when no filtering is applied, as evidenced by the large
difference in scale between the two responses to the same
GW. In the final experiments, QVR on filtered GW data was
implemented on a quantum computer. The results which fol-
low are all rounded to three significant figures. When multiple
runs were performed, results were selected to be displayed
based on how informative they were. These graphs therefore
show results from different runs. In general, however, the
patterns were similar across the runs in an experiment. All
code, with the QVR implementation being heavily based on
the original implementation by Baker et al. (2023), has been
made publicly available (Github Repository 2023).
Pennylane’s (Bergholm et al. 2022) lightning.qubit was
used to perform a noiseless simulation in which QVR was
trained on filtered non-anomalies and validated and tested on
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Fig. 5 The interferometer response to the same GW with and without filtering. The filtered signal is also shown as a dashed line in the bottom

graph

both filtered non-anomalies and filtered anomalies. A modi-
fied version of five-fold cross validation was used. Namely,
the validation and testing sets consisted of the same anoma-
lous data while for the non-anomalous data they differed.
This decision was made to avoid taking some of the anoma-
lies from the testing set, which was already limited due to the
low number of available GW signals, to put them in a val-
idation set. Section 6 describes the data partitioning which
was performed for each run. Aside from training on different
data partitions, cross validation also meant that the param-
eters were reinitialised, preventing the misrepresentation of
results which were caused by a specific initialisation rather
than by general performance. It is from these partitions that
2000 mini-batches were sampled for training in each run.
Training loss across the mini-batches is shown in Fig. 6
for two runs. These were selected to display the difference in
convergence pattern between a model that did not start with
near optimal parameters and one which did, a difference aris-
ing from random parameter initialisastion. The models ended
up at around the same training loss after 2000 mini-batches,
and in fact all of the models converged to training losses
within 0.009 of each other. This is a measure of how close
the rewound states were to the initial states after training.

Because units were chosen such that Planck’s constant was
1 in Eq. 1, this number on its own does not hold any signifi-
cance. Looking at the range of loss values expressed during
the training after unlucky initialisation in Fig. 6, it becomes
apparent that each model was able to converge to similar loss
values regardless of the initial parameters.

Categories have been created to flag when there are exces-
sive amounts of noise present in LIGO data (Abbott et al.
2023), which leads to an especially high concentration of
glitches (Aasi et al. 2015). Specifically, these target periods of
time when detector data should not be used for GW searches
of certain types. One such category indicates segments of
data for which it is infeasible to search for GWs produced by
events called compact binary coalescences. These make up
all confirmed instances of GW signals found to date (Abbott
et al. 2021), and thus define all of the anomalies in the
test data. Data in this category is marked as unsuitable for
analysis, but was not excluded from the sampling of non-
anomalous training, threshold tuning, and testing data in
this work. Therefore, a small amount of the used data was
unsuitable for searching for the type of GW signal which
QVR was trying to flag as anomalous in these experiments.
Of the 5000 non-anomalous signals, 57 overlapped with an

Training Loss
Unlucky Parameter Initialisation
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mowwww
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Fig. 6 Loss per mini-batch during training for two of the five runs. Bars indicate the presence of at least two unsuitable signals in a mini-batch.
Training of the run corresponding to the bottom graph was terminated early because the loss was not decreasing
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Fig.7 Accuracy on validation data at different thresholds

unsuitable segment in the LIGO Livingstone detector. Quan-
tifying the presence of unsuitable data during training was
done by counting how many of the one second long sig-
nals out of the ten in each mini-batch fell within segments
of detector data which were in this category. Mini-batches
which contained at least two signals sampled from an unsuit-
able segment are marked with a red bar in Fig. 6. That is, the
red bars mark when at least 20% of the data in a mini-batch
was unsuitable. In these two runs, no mini-batch contained a
higher than 30% concentration of unsuitable signals.

Figure 7 illustrates the performance of the model for dif-
ferent thresholds. For thresholds set too low, all validation
data was classified as non-anomalous and for thresholds set
too high, all validation data was classified anomalous. This
is because the validation data was equal part non-anomalous
and anomalous, so half of the examples were classified cor-
rectly in each case, explaining the flattening at an accuracy
of 0.5. Accuracy was an appropriate metric to gauge model
performance because there was no class imbalance. This held
for all threshold tuning and testing in all of the experiments in
this work. There were a range of thresholds for which maxi-
mum accuracy was achieved on the validation data, and the
threshold was set at the midpoint of these. For the unlucky
model, this was at 0.0144. There was no special treatment of
unsuitable data during threshold tuning.

Both runs depicted in Fig. 6 achieved 100% accuracy on
their respective test data, which is depicted for the s model
by the full separation in Fig. 8. In four of the five runs, this
was the case, but the other only achieved an underwhelm-
ing accuracy of 0.596. This is also shown in Fig. 8. Note
that the anomaly scores are represented on different scales
for clarity. The boxes cover the first to third quartiles of
the anomaly scores, with the horizontal lines they contain
showing the median. The whiskers indicate 1.5 interquar-
tile ranges on both sides of the medians, and the circles
beyond these are data which fell outside of this range. Finally,
the dashed blue lines represent the thresholds of the respec-
tive models. Clearly, the successful model was better able to
distinguish between anomalies and non-anomalies in calcu-
lating their anomaly scores, as indicated by there being no
overlap compared to the large overlap for the unsuccessful
model. In addition, all non-anomalies were contained within
the whiskers, unlike the unsuccessful model. The maximum
number of signals which at least partially overlapped with
unsuitable detector segments in the any of the testing sets was
two. Therefore, no testing set contained a significant number
of non-anomalies which were unsuitable for analysis.

Next, experiments were done under the same conditions
except that none of the signals underwent filtering before
hand. An example of each of the steps of QVR applied to
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Fig. 9 All phases of QVR on unfiltered GW data. Training was terminated early because the loss was not decreasing in the top left, which also
shows an enhanced version of the training loss for the first 100 mini-batches

unfiltered GW data are shown in Fig. 9. The best accuracy
achieved across the five runs was 0.833. Recall is a more
appropriate metric in cases where it is important to detect all
of the GWs, even if it is at the expense of some false positives.
Perfect recall can be achieved by classifying all examples as
anomalies, so it was not used on its own for threshold tun-
ing or model testing. Instead, accuracy was used under the
condition of perfect recall. This entailed looking at the set
of thresholds for which perfect recall was achieved, meaning
all GWs were classified as anomalies, and then maximising
accuracy across this set. Figure 9 shows performance during
threshold tuning in terms of both accuracy and recall and
shows the optimised threshold in terms of both accuracy and
accuracy under perfect recall during testing. Table 3 details
the performance of the best models, both filtered and unfil-
tered, as measured by highest regular accuracy on the testing
data after training and then by the lowest achieved loss to
break ties. Each run on unfiltered data resulted in classifying

Table 3 Summaries of the best and performing and average perfor-
mance of the QVR runs on filtered and then unfiltered data

Filtered Unfiltered

Best model Model mean Best model Model mean
Final loss  0.509 0.510 0.514 0.523
Threshold  0.0106 0.0131 0.0131 0.0196
Accuracy 1 0.919 0.904 0.75
Alternative  0.00894 0.0105 0.0129 0.0155
threshold
Alternative 1 0.9 0.904 0.671
accuracy

Alternative columns indicate what the results are under the condition
that recall is perfect

@ Springer

some non-anomalies as anomalies, but at most one of these
per run was from a period of unsuitable data.

Unsurprisingly, the best models had lower than average
final loss values, and the models using filtered data, which
generally outperformed the models using unfiltered data, had
a lower average loss value. In Table 4, the initialised and
trained values for n are given. All values ended up within
the range (—0.5,0.5) despite the initialisation range being
[—1, 1]. Furthermore, in eight out of the 10 total runs, the
final value was closer to zero than the initial value.

The learned parameters of the model which performed
best on filtered data were hard-coded into a Qiskit (Qiskit
contributors 2023) circuit, which was then submitted to
the quantum computer ibm_kyoto to compute the anomaly
scores of one filtered non-anomalous and one filtered anoma-
lous time series. This conversion was made to allow for the
batching of jobs from within a session to reduce queuing
times. Twirled readout error extinction was applied by using
Qiskit’s default resilience level of one. Using ibm_koyto, a
127 qubit computer, for computations on two qubits was inef-
ficient due to the large number of idle qubits but it was used

Table4 Eachrun’s value for  before and after training for experiments
on both the filtered and unfiltered data

Filtered Unfiltered

Initial n Final n Initial n Final n
First run 0.4926 0.4704 0.4719 0.4344
Second run —0.6432 —0.0311 0.4375 0.3211
Third run —0.1072 0.0537 0.0952 0.1738
Forth run 0.2265 0.2319 —0.8090 0.0257
Fifth run —0.8983 —0.0118 —0.9861 —0.1903
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Fig. 10 Anomaly scores of one anomalous and one non-anomalous signal, both filtered, as computed in a noiseless simulation and by the ibm_kyoto
quantum computer. The dashed line shows the threshold calculated in a simulation

because of limited access to quantum hardware. For this same
reason, only 70 (value, time) tuples were averaged over to
compute the anomaly scores in the quantum case. These were
selected from the input signal at evenly spaced intervals. The
classical computations made use of all 4096 tuples.

No further error mitigation techniques were applied.
Individual contributions of the (value, time) inputs were
computed on quantum hardware before averaging was done
locally. The times taken by the quantum processing unit,
ignoring classical data transfer, were 496 seconds and 503
seconds for the non-anomaly and the anomaly respectively.
These times are how long the quantum processing unit was
dedicated to computations. Figure 10 shows that the thresh-
old computed in the simulation was sufficient to separate the
non-anomaly from the anomaly in the quantum setting.

9 The significance of a quantum approach

Itis important to address whether the quantum nature of QVR
is essential for attaining the results presented in Section 8. If
time series anomaly detection for GW detection using clas-
sical computation is sufficient, it becomes difficult to justify
the use of quantum hardware for this purpose, especially
considering the high cost and scarce availability of quantum
computers and the fact that the time complexity of this QVR
is the same as that of classical neural networks. Showing
that the algorithm is necessarily quantum is difficult because
the paradigms of quantum and classical computing are fun-
damentally different. As such, no fair comparison can be
made between the same algorithm implemented on a classi-
cal computer and on a quantum computer. Because classical
computers can simulate quantum computers, any quantum
algorithm can also be run classically, but with a significantly
higher time complexity. Classically, a state vector can be
evolved by a matrix similar to how a quantum state is evolved

by a Hamiltonian. An important distinction is that the former
depends on matrix algebra, but for the latter this is just a way
of describing the evolution which itself is much faster than
performing the calculations associated with this description.

In comparing the QVR to the classical ML approaches
mentioned in Section 2, it appears to perform better based
on the evidence from Section 8. Seeing as these compar-
isons are based on different data, they should be taken with a
grain of salt. Explaining the cause for apparent performance
advantage can be done in part by the concepts of capacity
and trainability. Respectively, these describe the extent of a
ML model’s abilities to express a variety of functions and to
actually learn those functions by training. It has been shown
that certain types of quantum neural networks are stronger in
these regards than their classical counterparts, as measured
by the spectrum of the Fisher information matrices of the
models (Abbas et al. 2021). Based on this, it is plausible that
the quantum nature of QVR translates to better trainability
and capacity.

This idea can be used to explain discrepancies in the per-
formance of quantum and classical ML approaches to GW
detection. Unfortunately, doing this requires comparing the
Fisher information matrix spectra of the models in question.
The implications for this work are that a basis for comparison
can be laid out, and indeed has been, but determining whether
QVRs apparent success compared to classical approaches
can be attributed to these principals relies on future work.
Readers are encouraged, therefore, to make such compar-
isons to the results in this section.

The Fisher information matrix treats a model as the con-
ditional probability distribution in Eq. 16. That is, for a
parameterisation 6, the probability of observing the label y
associated with an input x is conditional on x and depends
on the probability of selecting the pair (x, y) form a prior
distribution p. In this case, the parameter vector 6 contains
all the trainable parameters in Table 2. With this, the Fisher

@ Springer



17  Page 14 0of 22

Quantum Machine Intelligence (2025) 7:17

information matrix is formulated as in Eq. 17 and is approx-
imated by the empirical Fisher information matrix using
Eq. 18.

p(x,y;é) = p(ylx;é)p(X) (16)
F(@)= B [z p (vid) 22inp (v5i0) |

(17)

F(7) = ;jzl;émp(xj,y,;a) 2 np (xy.95:9)

(18)

In Egs. 17 and 18, a partial derivative is taken for all
parameters to produce a column vector. Multiplying this col-
umn vector by its transpose leaves a matrix. Pairs (x iy j)
were drawn uniformly at random from the training data
p (x, v; 5), with y € {0, 1}, where zero or one indicated
that the x associated with y was from a non-anomalous
or anomalous signal respectively. The Fisher information
matrix depends on how the output changes with movements
in parameter space. The phase of QVR which concerns move-
ments in parameter space is during training, which means
that computing its Fisher information matrix involves only
data used in training, which was non-anomalous. As such,
of interest is the probability that the model associates x with
the output y = 0 for each sampled x. A few adjustment were
necessary to convert QVR into a form facilitating a Fisher
information matrix.

First, it had to be framed as a statistical model. This was
done by feeding the squared distance measure from Eq. 13
through Eq. 19, which is depicted in Fig. 11. Because the
squared distance measure was guaranteed to be greater than
one, the new output was a probability value between zero and
one. With this addition, the contribution of an individual input
tuple to the anomaly score could be assigned a value accord-
ing to the model’s confidence that the label belonging to that
tuple was zero. Classifications were made by the original
QVR model by comparing the average individual contribu-

tions to a threshold. During training, therefore, the individual
contributions generally had to be less than the threshold
because the data was non-anomalous. The post-processing
function, Eq. 19, was centered at such a threshold ¢ so that
the further below the threshold an individual contribution
was, the higher the output probability of it being classified
as a contribution from a non-anomalous signal, represented
by the label zero. Conversely, high individual contributions
indicated a low probability that the outcome was zero. A con-
tribution on the threshold meant an output of 0.5 to reelect
maximum uncertainty in the label of the training example it
came from. Knowledge of the threshold was required before
hand to do this, and one of the thresholds, ¢ &~ 0.0144, for
a model which achieved perfect accuracy on unfiltered data
was selected. Recall that these new outputs are to reflect the
probability that the model associated the correct label with an
input training example. Because all training examples were
non-anomalies, the output of this step reflects the model’s
confidence that it has correctly classified a non-anomalous
signal as such assuming knowledge of the threshold before
hand. This process is similar to how the softmax function is
applied in classical ML to convert a model’s output into a
probability value.

fx) = (19)

Eadb]

To compute the empirical Fisher information matrix with
Eq. 18, the partial derivative of the natural log of Eq. 19 with
respect to each parameter 6 € 6 needs to be taken. Because
the results reported in this work made use of gradient-free
optimisation, there was no access to these partial derivatives.
A second modification was therefore made to use a parame-
ter shift to compute the distance measure instead of Powell’s
method. The partial derivative with respect to a parame-
ter 6 using a parameter shift is shown in Eq. 20, where
[co, ag, so] = [%, 1, %] and [c1, a1, s1] = [—%, 1, —%]

Post Processing Function
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Fig. 11 Post processing function to convert model output into a probability value
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These are the default values for parameter shift in Pennylane.

1
d
%Csingle = gcicsingle (@i0 + si) (20)

Using these components, it was possible to compute the
empirical Fisher information matrix. The parameters of the
QVR model were initialised randomly 100 times, and for
each initialisation, k = 100 pairs (x, y) were sampled to cal-
culate an empirical Fisher information matrix. This resulted
in 100 different matrices, one for each parameter initiali-
sation, after computation in a simulated environment. The
average spectrum is shown in Fig. 12

The more evenly distributed the average spectrum, the bet-
ter the model capacity and trainability (Abbas et al. 2021).
The eigenvalues are plotted on a logarithmic scale, and this
graph does not necessarily show an even spread of eigenval-
ues, but this needs to be judged through comparison to other
models attempting the same task. As such, whether or not this
approach describes an advantage of QVR remains to be seen.

Aside from providing a basis for comparison for future
work, an advantage which can be pointed to empirically is
the number of parameters. Classical ML tends to be liberal
with the number of trainable parameters in a model because
using more parameters allows more complex functions to be
approximated. On the other hand, QVR approach has shown
promise with a mere 24 parameters. Because the way quan-
tum computers work is fundamentally different from the way
classical computers work, it would be unfair to say that QVR
is simpler because it uses less parameters. Nevertheless, it is
encouraging that only a few parameters need to be learned
to be able to capture the information necessary to separate
GWs from background noise reasonably well.

10 Discussion

Numerous results have been presented in this work, and this
section is concerned with explaining these. Some are clearly

explained while for others suggestions are made. In some
cases, more investigation is needed.

The convergence patterns during QVR training tend to go
through periods of relative stability followed by sharp drops.
It is possible that this tendency may be a result of the barren
plateau phenomenon, which occurs when loss gradients with
respect to quantum circuit parameters tend towards zero with
only a small deviations (McClean et al. 2018). The effect
of barren plateaus on the results presented is likely limited
seeing as the effect is less severe for a small number of qubits.
For all of the runs, the loss during training flatlined after
initially decreasing. It could be that certain patterns of non-
anomalous data were learned at this point, hence the initial
decrease, but that others were too complex to pick up on,
hence the flatlining before reaching zero. While all models
ended up around the same loss value after training, only one
of the five which used filtered data performed poorly. The
reason for this is unknown.

A potential cause of the spikes in these convergence
patterns was the mini-batch size being too small. If diffi-
cult training examples made up a large enough portion of
a mini-batch, the loss for that mini-batch will have been
especially high. Assuming difficult examples made up the
minority of the training data, and were therefore less likely
to be sampled, the chance of having a disproportionately
high number of them would have been smaller for larger
mini-batches. Because only 100 data samples were taken
per loss calculation, it is possible that only a small num-
ber of these contributing an abnormal amount to the loss is
already enough to cause a spike. It seems logical to attribute
these spikes to the presence of glitches in the training data.
The apparent robustness of QVR to the presence of a small
proportion of glitch signals, however, contradicts this idea.
This is evident by the lack of a clear overlap between train-
ing data from observation periods marked as unsuitable for
analysis, indicated by red bars in the loss graphs, and the
spikes in these graphs. Although filtering likely removed
some glitches, there was also no clear overlap for the unfil-
tered data either. It could be that regular observational periods
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Fig.12 Average spectrum of empirical Fisher matrices for 100 sets of randomly initialised parameters
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produce signals which are difficult enough to cause these
spikes. Seeing as the spikes during training did not seem to
impact the performance of QVR, no attempt was made to
mitigate them with larger mini-batches.

Recall that each model learned a parameter 1, which after
training acted as a constant to compare to circuit output via
Egs. 12 and 13. Because during training these parameters
tended to shift closer to zero, shown in Table 4, it may be
that high loss was associated with parameterisations where
n was far from zero.

As a proof of concept, QVR for GW detection is promis-
ing. Perfect accuracy was achieved with noiseless simula-
tions on filtered GW data on the, albeit limited, testing sets
for multiple runs using different starting conditions and dif-
ferent non-anomalous data partitions for training, threshold
setting, and testing. The time complexity of filtering the sig-
nals dominates that of the QVR algorithm asymptotically,
giving rise to a total time complexity of O (N log N) for asig-
nal of length N. This is an improvement over MF, which has
O (MN log N) for M templates. The performance of QVR
on unfiltered GW data was worse but still respectable. This
decrease in performance may be worth it because leaving out
the filtering process removes the time complexity associated
with the fast Fourier transform. This leaves the time com-
plexity of QVR, O (N), as the most expensive component of
the GW anomaly detection process described in this work.
This upper bound does not take into account the extra time
complexity incurred by simulating a quantum algorithm on
a classical computer.

In principle, QVR can be run in parallel for an additional
speed-up. With access to unlimited resources, the contribu-
tion of each (value, time) tuple could be computed by a
different quantum computer, with the only remaining step
being to average these contributions. Most ML models which
deal with time series depend on the sequential or simultane-
ous processing of values, and thus are not subject to this
kind of improvement. In reality, a more modest speedup can
be expected due to the scarcity of quantum computers, like
the x2 speed-up achieved with the original implementation
of QVR by splitting computations between two quantum
computers (Baker et al. 2023). Additional speedup can be
achieved by computing anomaly scores by averaging over a
subset of the input time series, like was done for the tests on
ibm_nairobi. Using as few as 70 from the 4096 tuples each,
the anomaly was clearly separated from the non-anomaly
without having to adjust the classically trained threshold.

Even if QVR worked perfectly on quantum hardware to
achieve the aforementioned time complexity improvements,
the classifications made only identify anomalous signals
without linking them to specific events. As such, the use of
QVR in GW detection would be in part of a search pipeline,
in which it would flag interesting signals for further analysis
by other means. The usefulness of a component of the search
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pipeline which can identify promising signals efficiently and
effectively should not be underestimated, as in both real-time
searches and database scans, computing resources can be a
limiting factor. Because of this, QVR is worth considering
as an approach.

It was suggested that the success of QVR hinges on
whether or not non-anomalous states ' = {|)77) 1<

x) = M)

i <m,l < j < n} can be evolved as
such that upon measurement, the resulting state ¢ ()T; ) =
—>| A |—
<xl.*’ i|o x; j> is approximately the same for each state in I,
This is the case when the difference between any two of the
states after measurement is bounded by some positive €, so
|c ()T;) —c (xl_/;)| < € (Baker et al. 2023). The ability of
QVR to distinguish GW signals from noise signals implies
that this condition likely holds for quantum states created
by encoding noise signals into a superposition. Here, I is
the set of states created by angle encoding individual values
from noise signals from LIGO Livingston, where i indicates
which background noise signal is under consideration and
j the specific time in that signal. This condition therefore
suggests that evolving these quantum states with the same
Hamiltonian H for a time given by j and the measuring with
some observable O results in expected values which are close
to each other.

Based on the performance of the QVR, it seems that the
choice of sampling frequency for the interferometers signals
was appropriate. There is a tradeoff that comes with increas-
ing sampling frequency. On one hand, more values in an input
time series would allow the algorithm to capture behaviour
which takes place on short time scales. On the other hand,
the goal remains to perform GW searches in a timely man-
ner, and more data to process means QVR will take more
time to pick out anomalies. The sampling frequency should
be chosen to strike a balance between the two. The data from
LIGO Livingstone was originally collected at 16,384 Hz, so
the sampling rate can certainly be adjusted.

11 Limitations

While the results reported in this work indicate that QVR
has potential in GW detection, some should be seen as first
steps rather than as definitive claims. In any case, more test-
ing is required to fully determine the feasibility of QVR for
practical use.

For one, more extensive experiments need to be run on
NISQ devices. While the results on two signals are encour-
aging, it would unfair to claim that quantum computers can
perform anomaly detection on GW data without testing more
signals. Also, the reported quantum processing unit times did
not include the latency overhead involved in submitting jobs
and extracting them once completed. Moreover, using the full
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4096 tuples in a signal to make a classification would increase
the reported time. Reducing the signals to a length of 70 to
save is an attractive option to save time. However, while it
worked on the two tested signals, it is possible that for others,
this approach may be detrimental to performance seeing as
the contributions to the anomaly score from important parts
of the time series could be skipped over.

In principle, QVR should pick up any deviation from the
behaviour of noise signals as anomalies. However, here the
threshold was tuned so as to maximise performance on known
examples of GWs. Because these are all from compact binary
coalescence events, no testing of the capabilities of QVR
on anomalies from other types of GW was performed. It is
possible that the threshold which worked for the GW signals
tested in this work does not work as well for other types
of GW. Additionally, a total of 78 anomalies were used for
testing. Ideally, more real GW signals would be used for
testing but these were not available. Instances where perfect
accuracy was reported should therefore be taken with a grain
of salt.

The general unitary operator in Eq. 9 can be decomposed
into the three rotations Z, Y, and Z in that order (Krol et al.
2022). Therefore, this series of gates, which requires only
two angles to be learned, could have been used instead of X,
Y, and Z, which requires three angles to be learned.

This work assumed that it was possible to discern which
signals are from GWs using only one second of those sig-
nals. This may not be the case for certain GWs. For example,
signals produced by continuous GWs will likely require con-
sideration over a longer time window. Another drawback is
that, with each hardware update, the QVR model will need
to be retrained to learn to characterise the behaviour of the
noise associated with the new interferometer hardware.

An advantage of MF is that it proves a degree of statistical
certainty a given signal is associate with a specific GWs.
Quantum variational rewinding indicates how far an input
signal is from the classification threshold, which can be seen
as the model’s confidence in a classification, but there is no
formal measure of confidence, which is also the case for
classical ML approaches (Gebhard et al. 2019). As such, this
approach is best combined with existing methods which do
not suffer from such drawbacks.

12 Conclusion

Gravitational waves carry information about the distant uni-
verse which scientists can learn from. Already, much has been
learned the confirmed detections, and Appendix B highlights
some discoveries that were possible due to their detection.
For this reason, the use of QVR for GW detection is of inter-
est and was investigated in this work.

The QVR algorithm saw varying degrees of success in a
noiseless simulated setting when classifying known GW sig-
nals as anomalies. Using filtered data, perfect accuracy was
achieved, and using unfiltered data, an accuracy of approx-
imately 0.904 was achieved at perfect recall. It was shown
that the algorithm runs on quantum hardware, but insufficient
results were generated to reach a general conclusion about
how well QVR works on a quantum computer.

The advantages over MF offered by QVR are the indepen-
dence from templates to allow searches for unknown wave
forms, asymptotic time complexity improvements, and the
possibility to perform GW searches without filtering signals
before hand. These features come at a cost. Anomalous sig-
nals are identified without saying anything about the event
causing the GWs, and without providing a statistical degree
of certainty that a signal classified as an anomaly is actually
aGW.

Determining whether QVR offers an inherently quantum
advantage over classical approaches is difficult. Numerical
indications of model capacity and trainability were provided
such that future work can be compared to QVR. This was
done so that QVR can be shown to be more or less effective
than classical ML approaches in these regards.

Not only are new GW detectors under development, but
quantum computers are also continually improving. It is
probable that the current online nature of quantum comput-
ers will be replaced by hybrid quantum-classical setups in
high performance computing centres. Even though QVR is
well suited to the NISQ era and this exploratory investiga-
tionis promising, these developments are likely facilitate data
analysis on GWs with sources other than binary black hole
coalescences.

13 Future work

As a next step, the feasibility of and QVR for large-scale
GW searches should be determined. The focus should be on
performance and run time in practice. In addition to this, work
should look into the detection of new GWs with QVR. This
can be done, for example, by lowering the tunable threshold
until signals which are not caused known GWs are classified
as anomalies. Investigating these signals could shed light on
previously undetected GWs.

Exploring the effectiveness of using signals from mul-
tiple sources simultaneously for GW detection is another
interesting avenue for further research. The algorithm works
with multi-dimensional time series (Baker et al. 2023), and a
tradeoff between the additional information from additional
detectors and the information lost to decoherence due to a
deeper circuit most likely exists. This could be especially
relevant moving forwards as detectors are built which pro-
duce multiple streams of data (Meijer et al. 2023).
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Finally, readers are encouraged to compare the spectrum
of the empirical Fisher information matrix of future ML mod-
els for GW detection to the one provided here. This could help
determine whether QVR is in accordance with evidence that
suggests quantum ML models have better capacity and train-
ability than their classical counterparts (Abbas et al. 2021).

Appendix A: Gravitational wave emission
and detection

Although an in-depth treatment of GW emission (Perlick
2023) is outside the scope of this work, a general overview
is given here. General relativity dictates that spacetime, con-
sisting of three spatial coordinates and one time coordinate,
is a four-dimensional manifold equipped with a metric tensor
which defines distances between points. Taking the derivative
of the metric tensor produces a geodesic equation describing
the curvature of the manifold, and evaluating this at a point
gives the forces acting on some particle due to gravity. In this
way, curved spacetime is the cause of gravity. Gravitational
waves are packets of energy which propagate by perturbing
the metric tensor, which constitutes a warping of spacetime.

The original formulation of Einstein’s field equations is
shown in Eq. 21, in which the Einstein tensor G, is related
to T, the energy-momentum tensor, via the universal gravi-
tational constant G. On the left-hand side, the Einstein tensor
is a function of the metric tensor, which describes gravity
as a consequence of curved spacetime, and the Ricci ten-
sor, which describes the deviation from flat spacetime as
measured by the volume change caused by the deviation of
geodesics from straight lines. On the right-hand side, the
energy-momentum tensor encodes how different forms of
energy are distributed at a point in space. Analogous to how
mass density is the cause of a gravitational field in Newtonian
gravity, this description of energy is the cause of a gravita-
tional field in general relativity. This relationship describes
how energy changes the geometry of space time and vice
versa. Einstein’s notation of lower and upper indices is used in
general relativity which imply summation and not exponenti-
ation. u and v indicate that the tensors are of rank two. There
are 4 rows and three columns, with one of each being for
time entries and the remaining three rows and three columns
being for spatial entries.

Gy = 87GT, 1)

Equation 21 is deceptively concise, and finding exact
solutions under this formulation is arduous. Fortunately, a
simplifying assumption can be made leading to linearised
gravity. This assumption entails that the gravitational field at
the point of interest is weak, so spacetime is approximately
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Minkowski, meaning that GWs can be treated as pertur-
bations on otherwise flat spacetime. On earth, the terms
discarded because of this assumption would have had negligi-
ble impact if they were kept. The emission of GWs takes place
when a gravitational quadrupole moment behaves in a certain
way. A gravitational quadrupole moment is a distribution of
mass around a centre. It is non-zero when this distribution is
non-uniform. When this distribution of mass around a cen-
tre changes, the quadrupole moment generates a GW. For
example, expanding a sphere would not generate GWs, but
squashing it such that it flattens does. Equation 22 is the grav-
itational quadrupole moment, where 7% is the entry of the
energy-momentum tensor corresponding to energy density,
and Eq. 23 describes how the behaviour of this quadrupole
moment is linked to y,,,, which is the perturbation of the
metric tensor.

o (1) = f T (1, ) x*xldv (22)
KR
2r Kl N 1 d2 Kl r
_— t, = ——F t— - 23
PR @) 2¢2 dt? 0 ( c) (23)

The indices k and [ have replaced p and v to show that the
gravitational quadrupole Q is a composed of spatial informa-
tion without a time component. In Eq. 22, an integral is taken
over aregion K of the (0, 0) entry of the energy-momentum
tensor. Under linearised gravity, the energy-momentum ten-
sor is assumed to be zero outside the region generating GW's
so that the only gravitational effect in the far zone, which
is the region of interest far from the source, is that of the
GWs and not the gravitational field induced by the energy-
momentum tensor. As such, it is only necessary to consider
the emitting region. The integrand is the energy density at
a time ¢ and a position ¥ multiplied by two spatial coordi-
nates. In Eq. 23, the perturbation of the spatial components
of the metric tensor y at time ¢ and position  is related to
the second derivative of the quadrupole moment with respect
to time through constants. The argument of the quadrupole
moment is the retarded time, which is the difference between
the time of the emission, ¢, and the time that the GW arrives
in the far zone, as calculated by the distance travelled and the
speed of the GW, £. Implied by the second time derivative,
acceleration of the quadrupole moment is required for GWs
to be generated. More specifically, asymmetric acceleration
of components making up the quadrupole is required, as this
changes the mass distribution. The result is a plane harmonic
wave with form dictated by Eq. 24. This is a description of
the Euclidean distance by which a particle is offset by a GW,
where x and y are positions in an arbitrary co-system and
a free-falling coordinate system with respect to the particle
in question respectively. A4 and A, are the two polarisa-
tion states of the GW, and the presence of sinusoidal terms
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indicates that the particle is indeed being offset by a wave.
Indices i and j run from one to three to represent spatial
coordinates.

. 2 2
Sy vl = 8ixix; + | Ayl ((xl) - (x?) )cos (@ — wt)
+2|A x| x'x% cos (¥ — wt) (24)

Detecting GW is done with laser interferometers, which
take advantage of the fact the GWs propagate by warping
spacetime. A laser is split into two components that run down
perpendicular tunnels of equal length. At the end of both tun-
nels hangs a mirror which reflects the beams back so that they
meet and interfere with each other before the recombined
laser is measured. A passing GW wave will stretch one tun-
nel while simultaneously compressing the other resulting in a
continuous change in the interference pattern while the wave
is passing through. Across short time spans with slowly vary-
ing amplitude modulation functions this response is modelled
by Eq. 25, although other types GW signal require different
treatment (Jaranowski and Krélak 2012). The response £ is
a function of time ¢ based on constant amplitude Ay, ini-
tial phase ¢, and extrinsic parameters of the GW ¢*. These
extrinsic parameters also define the amplitude modulation
function g of # and the phase ¢ of 7.

h(t; Ao, do, ") = Aog (t; £") cos (¢ (1 ") — ¢o)  (25)

Appendix B: The relevance of gravitational
waves

The first GW detection was also the first observation of a
binary black hole merger (Abbott et al. 2016) and allowed for
the calculation of various properties of the objects involved
like orbital frequencies, orbital separation, velocities, and
masses before the merger, as well as properties like mass and
spin after it. Subsequent detections of GWs emitted by binary
black hole mergers have given astronomers insights into other
properties of the sources, like the spin pre-merger (Abbott
et al. 2016) and sky location post-merger (Abbott et al.
2017). While GWs can provide information about the objects
emitting them in the absence of other evidence like electro-
magnetic counterparts (Abbott et al. 2020), they also bring
forth new opportunities in multi-messenger astronomy in that
GWs data can be used in tandem with evidence produced by
other astrophysical processes to form a more complete pic-
ture of such events (Abbott et al. 2017). Gravitational waves
travel at the speed, and because they take time to propagate,
information gleaned by their detection allows us to determine
what the universe looked like at the time of their emission,
with some confirmed detections stemming from events dating

back to around two billion years after the big bang (Belczyn-
ski et al. 2016). On top of information about GW sources
imparted by such detections, they also yield consequences
relating to fundamental physics theory. The correspondence
between detected GWs and the predictions of not only their
existence but also their strength, supplements the body of evi-
dence for Einstein’s theory of general relativity while ruling
out alternative theories of gravity (Pardo et al. 2018; Boran
et al. 2018).

Because this work deals with both general relativity and
quantum mechanics, the question of whether there is a
related quantum gravity arises. There are two distinct phases
involved in detecting GWs with QVR, the translation of GW
waves into a time series and the processing of the time series
with a quantum computer. Quantum variational rewinding is
absent from the first phase and the general relativistic descrip-
tion of general relativity is absent from the second. In this
way, this work does not involve an overlap between quantum
computing and general relativity and is unrelated to quantum
gravity.

Appendix C: Mathematical details
of matched filtering

The concepts in MF covered here are a skeleton of more
extensive overviews (Turin 1960; Janquart 2020). Consider
the signal produced by a detector as a starting point. It can be
written as an additive combination of a GW component / (t)
and anoise componentn (t) attime ¢, where both components
are individually zero centred. When there is a GW traversing
through the detector, the signal is i () = n(t) + h(t) as
opposed toi (1) = n (¢) in the absence of a GW. It is this sig-
nal that is used at the input to a matched filter, which is a linear
transformation that produces an output signal o (7). Because
the system is linear, its response to an impulse is the convo-
lution of an impulse response and the impulse itself. In this
case, then, the output is the convolution o (¢) = k () i (¢) of
the impulse response function & (¢) and the input i (¢). Con-
verting to the frequency domain allows this to be formulated
as z (w) = K (w) T (w) where w is angular frequency. Taking
the inverse Fourier transform then leaves Eq. 26.

o(t) = / - K ()T (w) e dw (26)

Because it is assumed that a template of the sought-after
wave h (¢) is available, k (f) can be designed as k (¢) =
ak (T —t), which is the template scaled by a constant a,
delayed by a constant 7', and reversed. A consequence of
this is that the transfer function I (w) from Eq. 26 takes the
form given by Eq. 27 for some . The numerator is the Fourier-
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transformed impulse response function, and the denominator
is the full power spectral density of the input signal. The latter
is the Fourier transform of the input signal’s autocorrelation
function.

aT* (w) e~

K () =
@ =N P

27)

Now it is possible to define the signal to noise ratio cap-
tured by Eq. 28. The numerator is the square of output from
Eq. 26, which is the power of the template in the input signal,
and the denominator is inverse Fourier transformed square
of the transfer function, which is the power spectral density
of the noise component of the input signal. Importantly, a
function has been obtained which describes of how much of
the input signal is composed of a template signal and how
much is made up of noise. Times for which this ratio is high
correspond to when the presence of the template is high. The
difference between the measured signal-to-noise ratio and
that of the expected value when the template GW is present
can be used to perform a x test.

2 (/%K (@) T (@) e dw)’
IS0 (K ()* do

p )= (28)

By making use of the Cauchy-Schwarz inequality, it can
be shown that the signal-to-noise ratio is maximised when
the impulse response is a scaled, delayed, and reversed ver-
sion of the template, and it is from this matching of the filter
and the sought-after signal that MF gets its name. Matched
filtering makes the assumption that the background noise is
both stationary and Gaussian. Unfortunately, the background
noise from laser interferometers does not always adhere to
this assumption due to the workings of certain components
of the detector and terrestrial factors. Such noise can often
be either mitigated or marked as part of a segment of data
which unsuitable for analysis (Abbott et al. 2020). Another
cause for deviation from these assumptions are incoming
stochastic GWs, which are combinations of weak GW's com-
ing in from all directions and appear as additional background
noise (Romano and Cornish 2017).

Appendix D: Relation to the no
fast-forwarding theorem

The no fast-forwarding theorem states that simulating quan-
tum evolution is impossible with a quantum gate complexity
which is less than the evolution time up to some predefined
maximum evolution time (Gu et al. 2021). When the Hamilto-
nian driving the evolution is completely unknown, this holds,
but arbitrary violations are possible when the Hamiltonian
is completely known (Atia and Aharonov 2017). Research
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in fast-forwarding quantum evolution deals with violations
caused by classes of Hamiltonians which are only partially
known.

A general procedure for simulating Hamiltonian evolution
variationally when no assumption is made about its struc-
ture can lead to violations of the no fast-forwarding theorem,
but not arbitrarily. That is, knowing the actual entries of the
Hamiltonian does not necessarily mean that a general proce-
dure for simulating the evolution it brings about arbitrarily
violates the no fast-forwarding theorem. This is because the
conversion to a gate-based representation induces a tradeoff
between gate complexity and simulation accuracy. The direct
learning of the parameters of a gate-based representation of
a target Hamiltonian in QVR constitutes a full knowledge of
the Hamiltonian, and thus allows for arbitrary violations of
the no fast-forwarding theorem. This is because it avoids the
conversion to a gate-based representation.
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