
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

i- flow: High-dimensional integration and sampling
with normalizing flows
To cite this article: Christina Gao et al 2020 Mach. Learn.: Sci. Technol. 1 045023

 

View the article online for updates and enhancements.

You may also like
Some higher-dimensional vacuum
solutions
Metin Gürses and Atalay Karasu

-

Influence of molecular oxygen on iodine
atoms production in an RF discharge
P A Mikheyev, N I Ufimtsev, A V
Demyanov et al.

-

High dimensional quantum network coding
based on prediction mechanism over the
butterfly network
Xingbo Pan, Xiubo Chen, Gang Xu et al.

-

This content was downloaded from IP address 131.225.78.3 on 01/02/2022 at 22:19

https://doi.org/10.1088/2632-2153/abab62
/article/10.1088/0264-9381/18/3/310
/article/10.1088/0264-9381/18/3/310
/article/10.1088/0963-0252/25/3/035027
/article/10.1088/0963-0252/25/3/035027
/article/10.1088/2058-9565/ac3387
/article/10.1088/2058-9565/ac3387
/article/10.1088/2058-9565/ac3387


Mach. Learn.: Sci. Technol. 1 (2020) 045023 https://doi.org/10.1088/2632-2153/abab62

OPEN ACCESS

RECEIVED

18 February 2020

REVISED

24 July 2020

ACCEPTED FOR PUBLICATION

31 July 2020

PUBLISHED

12 November 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

i- flow: High-dimensional integration and sampling with
normalizing flows
Christina Gao, Joshua Isaacson and Claudius Krause
Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL, 60510, United States of America

E-mail: ckrause@fnal.gov

Keywords: normalizing flows, Monte Carlo integration, importance sampling, random number generators, Monte Carlo, density
estimation

Abstract
In many fields of science, high-dimensional integration is required. Numerical methods have been
developed to evaluate these complex integrals. We introduce the code i-flow, a Python package
that performs high-dimensional numerical integration utilizing normalizing flows. Normalizing
flows are machine-learned, bijective mappings between two distributions. i-flow can also be used
to sample random points according to complicated distributions in high dimensions. We compare
i-flow to other algorithms for high-dimensional numerical integration and show that i-flow
outperforms them for high dimensional correlated integrals. The i-flow code is publicly available
on gitlab at https://gitlab.com/i-flow/i-flow.

1. Introduction

Simulation based on first principles is an important practice, because it is the only way that a theoretical
model can be checked against experiments or real-world data. In high-energy physics (HEP) experiments, a
thorough understanding of the properties of known physics forms the basis of any searches that look for new
effects. This can only be achieved by an accurate simulation, which in many cases boils down to performing
an integral and sampling from it. Often high-dimensional phase space integrals with non-trivial correlations
between dimensions are required in important theory calculations. Monte-Carlo (MC) methods still remain
as the most important techniques for solving high-dimensional problems across many fields, including for
instance: biology [1, 2], chemistry [3], astronomy [4], medical physics [5], finance [6] and image
rendering [7]. In high-energy physics, all analyses at the Large Hadron Collider (LHC) rely strongly on
multipurpose Monte Carlo event generators [8, 9] for signal or background prediction. However, the
extraordinary performance of the experiments requires an amount of simulated data that soon cannot be
delivered with current algorithms and computational resources [10, 11].

A main endeavour in the field of MC methods is to improve the error estimate. In particular, stratified
sampling—dividing the integration domain in sub-domains, and importance sampling—sampling from
non-uniform distributions [12] are two ways of reducing the variance. Currently, the most widely used
numerical algorithm that exploits importance sampling is the VEGAS algorithm [13, 14]. But VEGAS assumes
the factorizability of the integrand, which can be a bad approximation if the variables have complex
correlations amongst one another. Foam [15] is a popular alternative that tries to address this issue. It uses an
adaptive strategy to attempt to model correlations, but requires exponentially large samples in high
dimensions.

Lately, the burgeoning field of machine learning (ML) has brought new techniques into the game. For the
following discussion, we restrict ourselves to focus on progress made in the field of high-energy physics,
see [16] for a recent review. However, these techniques are also widely applied in other areas of research.
Concerning event generation, [17] used boosted decision trees and generative adversarial networks (GANs)
to improve MC integration. Reference [18] proposed a novel idea that uses a dense neural network (DNN) to
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learn the phase space directly and shows promising results. In principle, once the neural network
(NN)-based algorithm for MC integration is trained, one can invert the network and use it for sampling.
However, the inversion of the NN requires evaluating its Jacobian, which incurs a computational cost that
scales asO(D3) for D-dimensional integrals 1. Therefore, it is extremely inefficient to use a standard
NN-based algorithm for sampling.

In addition to generating events from scratch, it is possible to generate additional events from a set of
precomputed events. References [19–25] used GANs and Variational Autoencoders (VAEs) to achieve this
goal. While their work is promising, they have a few downsides. The major advantage of this approach is the
drastic speed improvement over standard techniques. They report improvements in generation of a factor
around 1000. However, this approach requires a significant number of events already generated which may
be cost prohibitive for interesting, high-multiplicity problems. Furthermore, these approaches can only
generate events similar to those already generated. Therefore, this would not improve the corners of
distributions [26] and can even result in incorrect total cross-sections. Yet another approach to speed up
event generation is to use NN as interpolator and learn the Matrix Element [27].

Our goal is to explore NN architectures that allow both efficient MC integration and sampling. A ML
algorithm based on normalizing flows (NF) provides such a candidate. The idea was first proposed by
non-linear independent components estimation (NICE) [28, 29], and generalized in [30–32], for example.
They introduced coupling layers (CL) allowing the inclusion of NNs in the construction of a bijective
mapping between the target and initial distributions such that theO(D3) evaluation of the Jacobian can
be reduced to an analytic expression. This expression can now be evaluated inO(D) time. These
techniques have also been combined with Markov Chain Monte Carlo methods, showing promising
results [33–35].

Our contribution is a complete, openly available implementation of normalizing flows into
TensorFlow [36], to be used for any high-dimensional integration problem at hand. Our code includes the
original proposal of [31] and the additions of [32]. We further include various different loss functions, based
on the class of f -divergences [37]. The paper is organized in the following way. The basic principles of MC
integration and importance sampling are reviewed in section 2. In section 3, we review the concept of
normalizing flows and work done on CL-based flow by [28, 29, 31, 32]. We investigate the minimum number
of CLs required to capture the correlations between every other input dimension. Section 4 sets up the stage
for a comparison between our code, VEGAS, and Foam on various trial functions, of which we give results in
section 5. This comparison is based on several criteria, allowing a potential user to judge whether it might be
worth trying out. Section 6 contains our conclusion and outlook.

2. Monte Carlo integrators

While techniques exist for accurate one-dimensional integration, such as double exponential
integration [38], using them for high dimensional integrals requires repeated evaluation of one dimensional
integrals. This leads to an exponential growth in computation time as a function of the number of
dimensions. This is often referred to as the curse of dimensionality. In other words, when the dimensionality
of the integration domain increases, the points become more and more sparse and no statistically significant
statement can be made without increasing the number of points exponentially. This can be seen in the ratio
of the volume of a D-dimensional hypersphere to the D-dimensional hypercube, which vanishes as D goes to
infinity. However, Monte-Carlo techniques are statistical in nature and thus always converge as 1/

√
N for any

number of dimensions.
Therefore, MC integration is the most important technique in solving high-dimensional integrals

numerically. The naive MC approach samples uniformly on the integration domain (Ω). Given N uniform
samples, the integral of f(x) can be approximated by,

I≈ V

N

N∑
i=1

f(xi)≡ V〈 f〉x, (1)

and the uncertainty is determined by the standard deviation of the mean,

σI =
√
Var≈ V

√
〈 f2 〉x −〈 f〉2x

N− 1
, (2)

1 An N particle final state phase space is a D ≈ 4N− 3 dimensional integral, when including recursive multichannel selection in the
integral.
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where V is the volume encompassed by Ω and 〈 〉x indicates that the average is taken with respect to a
uniform distribution in x. While this works for simple or low-dimensional problems, it soon becomes
inefficient for high-dimensional problems. This is what our work is concerned with. In particular, we are
going to focus on improving current methods for MC integration that are based on importance
sampling.

In importance sampling, instead of sampling from an uniform distribution, one samples from a
distribution g(x) that ideally has the same shape as the integrand f (x). Using the transformation
dx = dG(x)/g(x), with G(x) the cumulative distribution function of g(x), one obtains

I=

ˆ
Ω

f(x)

g(x)
dG(x) = V〈 f/g〉G , σI = V

√
〈( f/g)2 〉G −〈 f/g〉2G

N− 1
. (3)

In the ideal case when g(x)→f (x)/I, equation 3 would be estimated with vanishing uncertainty. However, this
requires already knowing the analytic solution to the integral! The goal is thus to find a distribution g(x) that
resembles the shape of f (x) most closely, while being integrable and invertible such as to allow for fast
sampling. We review the current MC integrators that are widely used, especially in the field of high-energy
physics.

VEGAS [13, 14] approximates all 1-dimensional projections of the integrand using a histogram and an
adaptive algorithm. This algorithm adjusts the bin widths such that the area of the bins are roughly equal. To
sample a random point from VEGAS can be done in two steps. First, select a bin randomly for each
dimension. Second, sample a point from each bin according to a uniform distribution. However, this
algorithm is limited because it assumes that the integrand factorizes, i.e.

f (⃗x) = f1 (x1) · · · fD (xD) , (4)

where f : RD 7→ R and fi : R 7→ R. High-dimensional integrals with non-trivial correlations between
integration variables, that are often needed for LHC data analyses, cannot be integrated efficiently with the
VEGAS algorithm (c.f. [39]). The resulting uncertainty can be reduced further by applying stratified
sampling, in addition to the VEGAS algorithm, after the binning [40].

Foam [15] uses a cellular approximation of the integrand and is therefore able to learn correlations
between the variables. In the first phase of the algorithm, the so-called exploration phase, the cell grid is built
by subsequent binary splits of existing cells. Since the first cell consists of the full integration domain, all
regions of the integration space are explored by construction. The second phase of the algorithm uses this
grid to generate points either for importance sampling or as an event generator. In this work we use the
implementation of [41], which implemented an additional reweighting of the cells at the end of the
optimization.

However, both Foam and VEGAS are based on histograms, whose edge effects would be detrimental to
numerical analyses that demand high precision. As we will explain below, our code i-flow uses a spline
approximation which does not suffer from these effects. These edge effects are an important source of
uncertainty for high-precision physics [42].

3. Importance sampling with normalizing flows

As we detailed in the previous section, importance sampling requires finding an approximation g(x) that can
easily be integrated and subsequently inverted, so that we can use it for sampling. Mathematically, this
corresponds to a coordinate transformation with an inverse Jacobian determinant that is given by g(x).
General ML algorithms incorporate NNs in learning the transformation, which inevitably involve evaluating
the Jacobian of the NNs. This results in inefficient sampling. Coupling Layer-based Normailzing Flow
algorithms precisely circumvent this problem. To begin, let us review the concept of a normalizing flow (NF).

Let ck, with k= 1, ...,K, be a series of bijective mappings on the random variable x⃗:

x⃗K = cK(cK−1(· · · c2(c1(⃗x)))). (5)

Based on the chain rule, the output x⃗K’s probability distribution, gK , can be inferred given the base
probability distribution g0 from which x⃗ is drawn:

gK(⃗xK) = g0(⃗x0)
K∏

k=1

∣∣∣∣∂ck(⃗xk−1)∂x⃗k−1

∣∣∣∣−1 , where

{
x⃗0 = x⃗

x⃗k = ck(⃗xk−1)
. (6)

3
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Figure 1. Structure of a Coupling Layer.m is the output of a neural network and defines the Coupling Transform, C, that will be
applied to xB. See equations (7), (8), (9) for the mathematical description of a Coupling Layer.

One sees that the target and base distributions are related by the inverse Jacobian determinant of the
transformation. For practical uses, the Jacobian determinant must be easy to compute, restricting the
allowed functional forms of ck. However, with the help of coupling layers, first proposed by [28, 29], then
generalized by [31, 32], one can incorporate NNs into the construction of ck, thus greatly enhancing the
level of complexity and expressiveness of NF without introducing any intractable Jacobian
computations.

Figure 1 shows the basic structure of a coupling layer, which is a special design of the bijective mapping c.
For each map, the input variable x⃗= {x1, ..,xD} is partitioned into two subsets, x⃗A and x⃗B, which can be
determined arbitrarily so long as neither is the empty set. This arbitrary partitioning will be referred
to as amasking. Without loss of generality, one simple partitioning is given by x⃗A = {x1, ..,xd} and
x⃗B = {xd+1, ..,xD}. Different maskings can be achieved via permutations of the simple example above. Under
the bijective map, C, the resulting variable transforms as

xA = xA, A ∈ [1,d] ,

xB = C(xB;m(⃗xA)), B ∈ [d+ 1,D] .
(7)

The NN takes xA as inputs and outputsm(⃗xA) that represents the parameters of the invertible ‘Coupling
Transform’, C, that will be applied to xB. We detail various choices for C, like piecewise linear, piecewise
quadratic, or piecewise rational quadratic spline functions in appendix A. The inverse map is given by

xA = xA ,

xB = C−1(xB;m(⃗xA)) = C−1(xB;m(⃗xA)) ,
(8)

which leads to the simple Jacobian∣∣∣∣∂c(⃗x)∂x⃗

∣∣∣∣−1 = ∣∣∣∣( 1⃗ 0
∂C
∂m

∂m
∂x⃗A

∂C
∂x⃗B

)∣∣∣∣−1 = ∣∣∣∣∂C(⃗xB;m(⃗xA))

∂x⃗B

∣∣∣∣−1 . (9)

Note that equation (9) does not require the computation of the gradient ofm(⃗xA), which would scale as
O(D3) with D the number of dimensions. In addition, taking ∂C/∂x⃗B to be diagonal further reduces the
computation complexity of the determinant to be linear with respect to the dimensionality of the problem.
Linear scaling makes this approach tractable even for high dimensional problems. In summary, the NN
learns the parameters of a transformation and not the transformation itself, thus the Jacobian can be
calculated analytically.

To construct a complete Normalizing Flow, one simply compounds a series of Coupling Layers with the
freedom of choosing any of the outputs of the previous layer to be transformed in the subsequent layer. We
show in Section 3.1 that 2dlog2De number of Coupling Layers are required in order to express all
non-separable structures of the integrand.

3.1. Number of coupling layers
The minimum number of coupling layers required to capture all possible correlations between every
dimension of the integration variable, nmin, depends on the dimensionality of the integral, D [31]. In the
cases of D= 2 and D= 3, each dimension is transformed once based on the other dimension(s) and thus
nmin = 2 and nmin = 3, respectively. This way of counting nmin could be generalized to higher D. In fact, this
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is what autoregressive flows are based on [43]. Here we show that the number of coupling layers required to
capture all the correlations is 2dlog2De for D> 5, and D layers for D≤ 5. This can be considered the
minimum number of layers required in order to capture all correlations, adding an additional layer will not
add any new information, and similar effects should be achieved with increasing the depth of the network
associated with each layer. On the other hand, this can be considered the maximum number of layers needed
to capture all the correlations. If a function has fewer correlations, then all the correlations can be captured
with less than 2dlog2De.

Theorem. Given a set of correlated random variables x, if a transformation exists that takes the variables x to
z, such that the correlation between the variables z is zero, then a composition of normalizing flows can create
such a transformation. Given a set of infinitely wide NNs that are universal function approximators, and
requiring that all variables are transformed equal number of times, it is possible to represent all the correlations
between variables in a normalizing flow using 2dlog2De layers for D> 5.When D≤ 5 it is possible to represent
all correlations with D layers.

Proof. Given the random variables x1, . . .xD, with means µ1, . . . ,µD and joint probability distribution
f(x1, . . . ,xD), the correlation between all the variables is given by:

〈(x1−µ1) . . .(xD −µD)〉=
ˆ 1

0
dx1 . . .dxD (x1−µ1) . . .(xD −µD) f(x1, . . . ,xD) . (10)

Using two layers of a normalizing flow network, which can be seen as a universal function approximator,
defines a transformation T : x 7→ y, with the bounds of integration being mapped such that yi (T(x= 0)) = 0
and yi (T(x= 1)) = 1 ∀i ∈ [1,D], with the sets {ya}= {yi| i≡ 1 (mod 2), i ∈ [1,D]} and {yb}= {yi| i≡ 0
(mod 2), i ∈ [1,D]}, such that f(x1, . . .xD) 7→ g({ya})h({yb}), and with the Jacobian J(y, x). The
transformation also maps the means: µ 7→ µy. This decomposition is possible following from the arguments
section 2.2 of [44]. Applying the transformation to equation (10) gives:

〈(x1−µ1) . . .(xD −µD)〉=
ˆ 1

0
dy1 . . .dyDJ(y,x)

(
y1−µ

y
1) . . .(yD −µ

y
D

)
g({ya})h({yb}) . (11)

If we now consider the correlation between the variables y, we obtain:

〈
(
y1−µ

y
1

)
. . .
(
yD −µ

y
D

)
〉=
ˆ 1

0
dy1 . . .dyD

(
y1−µ

y
1 ). . .(yD −µ

y
D

)
g({ya})h({yb})

=

ˆ 1

0

∏
{ya}

(dya (ya −µy
a))g({ya})×

ˆ 1

0

∏
{yb}

(
dyb
(
yb −µ

y
b

))
h({yb})

=

〈∏
{ya}

(
ya −µy

a

)〉〈∏
{yb}

(
yb −µ

y
b

)〉
. (12)

The result of the transformation shows that the variables ya are now not correlated with yb. We can construct
a subsequent transformation T : y 7→ z, with zi

(
T(y=0)

)
= 0 and zi

(
T(y=1)

)
= 1 ∀i ∈ [1,D], and the sets

{za}= {zi| i≡ 1 (mod 4), i ∈ [1,D]}, {zb}= {zi| i≡ 2 (mod 4), i ∈ [1,D]}, {zc}= {zi| i≡ 3
(mod 4), i ∈ [1,D]}, and {zd}= {zi| i≡ 0 (mod 4), i ∈ [1,D]}, such that
g({ya})h({yb}) 7→ g({za,zb})h

({zc,zd}) with the constraint that such a transformation does not introduce new
correlations between the variables that have already been decorrelated. In other words, the composition of T
and T can be defined as a transformation T: x 7→ z, with zi(T(x) = 0) = 0 and zi(T(x) = 1) = 1 ∀i ∈ [1,D], such
that:

f(x1, . . . ,xN) 7→ g1 ({za})g2 ({zb})g3 ({zc})g4 ({zd}) ,

and the means are mapped from µ to µz. Thus, the correlation between the variables z is given by:

〈(z1−µz
1) . . .(zD −µz

D)〉=
ˆ 1

0
dz1 . . .dzD (z1−µz

1) . . .(zD −µz
D)g1 ({za})g2 ({zb})g3 ({zc})g4 ({zd})

=

〈∏
{za}

(za −µz
a)

〉〈∏
{zb}

(zb −µz
b)

〉〈∏
{zc}

(zc −µz
c)

〉〈∏
{zd}

(zd −µz
d)

〉
. (13)

The above transformations can be iterated until all the variables are decorrelated. A method of
determining the mapping for each step can be obtained by the following procedure:

5
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Table 1. Finding the unique masking to capture all correlations in a D= 12 space, using the procedure detailed above.

Dimension 0 1 2 3 4 5 6 7 8 9 10 11

Transformation 1 0 1 0 1 0 1 0 1 0 1 0 1
Transformation 2 0 0 1 1 0 0 1 1 0 0 1 1
Transformation 3 0 0 0 0 1 1 1 1 0 0 0 0
Transformation 4 0 0 0 0 0 0 0 0 1 1 1 1

(a) Reindex the dimension numbers from [1,D] to [0,D− 1]
(b) Convert all dimensions to their binary representation, using the minimum number of bits required to

represent the number D− 1
(c) Consider the least significant bit for each dimension, and define the transformation as T : x 7→ y, with

f({x0},{x1}) 7→ g({x0})h({x1}), where {x0}({x1}) is the set of variables with a 0 (1) for the least signi-
ficant bit

(d) Repeat the third step taking the next least significant bit, until the most significant bit is reached

See table 1 for an example of the steps above. In that example, transformation 1 would groups the first 8
dimensions in g(x0) and the last 4 in h(x1) etc

The number of steps for this procedure can easily be seen to be dlog2 (D)e. However, since we need two
layers per transformation to ensure that all variables are equally transformed by the network leads to a
requirement of 2dlog2 (D)e.

In the situation of D≤ 5, the ith coupling layer can be defined to take the ith variable and transform the
variable, such that it is not correlated with any other variable. This leads to a requirement of D layers.

The requirement on the above theorem is that we require that a transformation exists in order to perform
the above mapping. However, even if a transformation does not exist for the integrand itself, with the use of
importance sampling, it is only necessary to find a function g which is as close to the integrand as possible. In
i-flow splines are used to create the function g, and according to the Stone-Weierstrass Theorem [45–47], it
is possible to represent g such that it is ε close to f. A corollary of the Stone-Weierstrass Theorem for Rn can
be expressed as:

Corollary. Given a function f : Rn 7→ R, ε> 0, and C(Rn,R): the space of all real-valued continuous
functions in Rn, there exists a polynomial spline g ∈ C(Rn,R) such that:

|f(x)− g(x)|< ε, (14)

for all x ∈ Rn.
Proof. The space Rn is a subset of the spaces proved in the Stone-Weierstrass Theorem, and thus the proof

of the corollary follows directly from the Stone-Weierstrass Theorem.

Furthermore, this can be extended to a sum of piecewise polynomials, such that any continuous and
bounded function f can be represented by an infinite series of polynomials (see Theorem C from [45]). In
i-flow, we will consider the case of discontinuous functions, but these can be approximated as a continuous
function with a slope of 1/ε in the region of discontinuity. This will lead to some difference between f and g,
but since the goal is to find a function g as close to f as possible, then this is acceptable and should still allow
for high precision importance sampling.

3.2. Using i-flow
The i-flow package requires three pieces of information from the user: the function to be integrated, the
normalizing flow network, and the method of optimizing the network. Figure 2 shows schematically how one
step in the training of i-flow works. The code is publicly available on gitlab at
https://gitlab.com/i-flow/i-flow. Running the script iflow_test.py will produce the results
presented in section 5.

3.2.1. Integrand
The function to be integrated has very few requirements on how it is implemented in the code. Firstly, the
function must accept an array of points with shape (nbatch,D), where nbatch is the number of points to sample
per training step. Secondly, the function must return an array with shape (nbatch) to be used to estimate the
integral. Finally, the number of dimensions in the integral is required to be at least 2. However, one

6
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Figure 2. Illustration of one step in the training of i-flow. Users need to provide a normalizing flow network, a function f to
integrate, and a loss function. Ĩ stands for the Monte-Carlo estimate of the integral using the sample of points x⃗i, and g(⃗xi) is the
probability of a given point occurring in the i-flow sampling.

dimension can be treated as a dummy dimension integrated from 0 to 1, which will not change any
result.

3.2.2. Normalizing flow network
A normalizing flow network consists of a series of coupling layers compounded together. To construct each
coupling layer, one needs to specify the choice of coupling transform C (cf appendix. A), the number of
coupling layers, the masking for each level, and the neural networkm(xA) that constitutes the coupling
transform. We provide the ability to automatically generate the masking and number of layers according to
section 3.1.

The neural networksm(xA) must be provided by the user. However, we provide examples for a dense
network and the U-shape network of [31]. This provides the user the flexibility to achieve the expressiveness
required for their specific problem.

3.2.3. Optimizing the network
To uniquely define the optimization algorithm of the network, two pieces of information are required.
Firstly, the loss function to be minimized is required. We supply a large set of loss functions from the set of
f -divergences, which can be found in appendix B. By default, the i-flow code uses the exponential loss
function. Secondly, an optimizer needs to be supplied. In the examples we used the ADAM optimizer [48].
However, the code can use any optimizer implemented within TensorFlow.

3.2.4. Hyperparameters
The setup we presented here has several hyperparameters that can be adjusted for better performance.
However, i-flow has the flexibility for the user to implement additional features in each section beyond
what is discussed below. This would come with additional hyperparameters as well.

The first group concerns the architecture of the NNsm(xA). Once the general type of network (dense or
U-shape) is set, the number of layers and nodes per layer have to be specified. In the case of the U-shape
network, the user can specify the number of nodes in the first layer and the number of ‘downward’ steps.

The second group of hyperparameters concerns the optimization process. Apart from setting an
optimizer (e.g. ADAM [48]), a learning schedule (e.g. constant or exponentially decaying), an initial learning
rate, and a loss function have to be specified. Some of these options come with their own, additional set of
hyperparameters. The number of points per training epoch and the number of epochs have to be set as well.

The third group of hyperparameters concerns the setup of i-flow directly. As was discussed in [31],
there are two ways to pass xA intom(xA): either directly or with one-blob encoding. i-flow supports both
of these options. One-blob encoding [31] is a generalization of one-hot encoding. The input xA is passed
through a Gaussian kernel and several adjacent bins are activated. If one-blob encoding is used, the number
of input bins has to be specified, the width of the Gaussian is set to the inverse of the number of bins.
Further, the type of coupling function C(xB,m(xA)), the number of output bins, the number of CLs and the
maskings have to be set.

7
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3.2.5. Putting it all together
The networks are trained by sampling a fixed number of points using the current state of g(x)2. We use one
of the statistical divergences as a measure for how much the distribution g(x) resembles the shape of the
integrand f (x), and an optimizer to minimize it. Because we can generate an infinite set of random numbers
and evaluate the target function for each of the points, this approach corresponds to supervised learning with
an infinite dataset. Drawing a new set of points at every training epoch automatically also ensures that the
networks cannot overfit.

4. Integrator Comparison

To illustrate the performance of i-flow and compare it to VEGAS and Foam, we present a set of six test
functions, each highlighting a different aspect of high-dimensional integration and sampling. These
functions demonstrate how each algorithm handles the cases of a purely separable function, functions with
correlations, and functions with non-factorizing hard cuts. In most cases, an analytic solution to the integral
is known.

The first test function is an n-dimensional Gaussian, serving as a sanity check:

f1(⃗x) = (α
√
π)−n exp{−

∑
i(xi − 0.5)2

α2
} . (15)

The result of integrating f 1 from zero to one is given by:

ˆ 1

0
dnx⃗ f1(⃗x) = erf

(
1

2α

)n

. (16)

In the following, we use α = 0.2.
The second test function is an n-dimensional Camel function, which would show how i-flow learns

correlations that VEGAS (without stratified sampling) would not learn:

f2(⃗x) =
1

2
(α

√
π)−n

(
exp{−

∑
i(xi −

1
3 )
2

α2
}+ exp{−

∑
i(xi −

2
3 )
2

α2
}

)
. (17)

The result of integrating f 2 from zero to one is given by:

ˆ 1

0
dnx⃗ f2(⃗x) =

(
1

2

(
erf

(
1

3α

)
+ erf

(
2

3α

)))n

. (18)

In the following, we use α = 0.2.
The third case is given by

f3(x1,x2) = xa2 exp{−w|(x2− p2)
2+(x1− p1)

2− r2|}
+(1− x2)

a exp{−w|(x2− 1+ p2)
2+(x1− 1+ p1)

2− r2|} .
(19)

This function has two circles with shifted centers, varying thickness and height. Also, the function exhibits
non-factorizing behavior. The integral of f 3 between 0 and 1 can be computed numerically using
Mathematica [49], which is 0.013 684 8± (5 · 10−9), with p1 = 0.4,p2 = 0.6, r= 0.25,w= 1/0.004 and
a= 33.

The fourth case is an annulus function with hard cuts:

f4(x1,x2) =

{
1 0.2<

√
x21+ x22 < 0.45

0 else
. (20)

This function demonstrates how i-flow learns hard, non-factorizing cuts. The result of integrating f 4 from
zero to one is given by: π

(
0.452− 0.22

)
= 0.1625π.

The fifth case is motivated by high energy physics, and is a one-loop scalar box integral representative of
an integral required for the calculation of gg→ gh in the Standard Model. This calculation is an important
contribution for the total production cross-section of the Higgs boson. As explained in appendix C, after
Feynman parametrisation and sector decomposition [50], the integral of interest is given by

2 Since we initialize the last layer of each network with vanishing bias and weights, in the first sampling g(x) is constant.
3 There is no known analytic solution to this given function.

8



Mach. Learn.: Sci. Technol. 1 (2020) 045023 C Gao et al

Table 2. Number of functional calls to reach a total relative uncertainty of 10−4 (for the first 11 cases) or 10−5 (for the last 3 cases). The
total relative uncertainty is defined as the inverse-variance weighted combination of the uncertainties of each optimization iteration
divided by the true integral value. The integrator with the fewest functional calls, which also is within 5 standard deviations of the true
result, is highlighted in boldface. We set an upper cut-off of 5 · 107 calls. A † indicates that the algorithm did not converge to the true
integral value within 5 standard deviations (see table 3), a ∗ indicates cases where the algorithm ran out of memory before the cut-off
was reached. α= 0.2 for Gaussian and Camel functions.

Dim VEGAS Foam i-flow

2 164,436 6, 259, 812 2, 310, 000
4 631,874 24, 094, 679 2, 285, 000
8 1,299,718 > 50,000,000† 3, 095, 000

Gaussian

16 2,772,216 > 50,000,000† 7, 230, 000
2 421,475 5, 619, 646 2, 225, 000
4 24, 139, 889 21, 821, 075 8, 220, 000
8 > 50,000,000† > 50,000,000† 19, 460, 000

Camel

16 993,294 † > 50,000,000† 32,145,000 †5
Entangled circles 2 43, 367, 192 17,499,823 23, 105, 000
Annulus w. cuts 2 4,981,080 † 11,219,498 17, 435, 000
Scalar-top-loop 3 152, 957 5, 290, 142 685, 000

18 42, 756, 678 > 50, 000, 000 585, 000
54 > 50, 000, 000 > 21, 505, 000 ∗ 685, 000

Polynomial

96 > 50,000,000† > 10, 325, 000∗ > 1, 145, 000

f5 =SBox(s12, s23, s1, s2, s3, s4,m
2
t ,m

2
t ,m

2
t ,m

2
t )

+ SBox(s23, s12, s2, s3, s4, s1,m
2
t ,m

2
t ,m

2
t ,m

2
t )

+ SBox(s12, s23, s3, s4, s1, s2,m
2
t ,m

2
t ,m

2
t ,m

2
t )

+ SBox(s23, s12, s4, s1, s2, s3,m
2
t ,m

2
t ,m

2
t ,m

2
t )

SBox(s12, s23, s1, s2, s3, s4,m
2
1,m

2
2,m

2
3,m

2
4) =

ˆ 1

0
dt1dt2dt3

1

F̃2
Box

F̃Box = (−s12)t2+(−s23)t1t3+(−s1)t1+(−s2)t1t2+(−s3)t2t3

+(−s4)t3+(1+ t1+ t2+ t3)(t1m
2
1+ t2m

2
2+ t3m

2
3+m24)

(21)

The result of integrating f 5 from zero to one can be obtained through the use of LoopTools [51], which gives
a numerical result of 1.936 964 023 8 · 10−10 for the inputs s12 = 1302, s23 =−1302, s1 = 0, s2 = 0,
s3 = 0, s4 = 1252,mt = 175.

As a sixth test function, we consider the polynomial

f6(x1, . . . ,xn) =
n∑

i=1

−x2i + xi. (22)

The result of integrating f 6 from zero to one is given by:

ˆ 1

0
dx1 . . .dxn f6(x1, . . . ,xn) =

n

6
(23)

This function can easily be integrated in a high number of dimensions and, unlike the Gaussian or Camel
functions, has support in almost all of the integration domain. It therefore does not suffer that much from
the curse of dimensionality.

Further applications to event generation of high-energy particle collisions is discussed in [52] and also
in [53]. These papers investigate using normalizing flows to improve upon phase space integration for event
simulation at particle colliders. The integral dimension for processes with nf particles in the final state is
D= 4nf−3. In [52], we studied processes with nf ≤ 6.

5. Results

In this section we show the performance of i-flow and compare it to VEGAS and Foam based on the test
functions we introduced in section 4. For the VEGAS algorithm, we use the default parameters as
implemented in [40]. This includes the use of stratified sampling and a maximum of 1000 bins per axis. We
further set the number of points per iteration to 5000. However, the implementation in [40] uses this
number as a maximum, so we monitor the actual number of function calls separately. The setup of Foam
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Table 4. Relative uncertainty on the integral estimate of the last iteration of the runs of table 2, based on a sample of 5000 points. The
integrator that adapted best to the integrand is boldfaced. A ∗ indicates when the value was still decreasing and had not yet converged, a
† is in place where the algorithm did not converge to the true integrand.

Dim VEGAS Foam i-flow

2 7 · 10−4 3 · 10−3 2 · 10−3 ∗

4 1.5 · 10−3 3 · 10−3 1.5 · 10−3 ∗
8 2.5 · 10−3 3 · 10−2 1.5 · 10−3 ∗

Gaussian

16 3.5 · 10−3 2 · 10−2 2.5 · 10−3 ∗
2 2 · 10−3 2 · 10−3 2 · 10−3 ∗
4 8 · 10−3 1 · 10−2 4 · 10−3
8 4 · 10−2 1.6 · 10−2 5 · 10−3

Camel

16 † 1.5 · 10−1 5 · 10−3
Entangled circles 2 1 · 10−2 4 · 10−3 5 · 10−3 ∗

Annulus w. cuts 2 3 · 10−3 4 · 10−3 ∗ 5 · 10−3
Scalar-top-loop 3 7 · 10−4 5 · 10−4 5 · 10−4 ∗

18 1.5 · 10−3 1.5 · 10−3 ∗ 8 · 10−5 ∗
54 3 · 10−3 9 · 10−4 ∗ 8 · 10−5 ∗

Polynomial

96 † 8 · 10−4 ∗ 1 · 10−4 ∗

requires a number of points per cell, which we fix to 5000. In the setup of i-flow, we use 2dlog2De number
of coupling layers with the masking discussed in section 3.1, and the coupling transform C taken to be a
Piecewise Rational Quadratic spline (appendix A.3). The neural network in each CL is taken to be a DNN of
5 layers with 32 nodes in each of the first four layers. The number of nodes in the last layer depends on the
coupling transform C and the dimensionality of the integrand. For the case of Piecewise Rational Quadratic
splines, the number of nodes is given by d · (3nbins+ 1), where d is the number of dimensions to be
transformed. We further set the number of bins (nbins) in each output dimension to 16. The learning
rate was set to 1 · 10−3 in all cases. We use the exponential divergence, see equation (B19), as loss function.

To compare the integrators, we set a relative uncertainty on the integral estimate as target. We then
optimize the algorithms until the standard deviation of the inverse-variance weighted combination of the
estimates of each optimization iteration (epoch) reaches this target. The inverse-variance weighted
combination is defined as:

µ=

∑
iµi/σ

2
i∑

i 1/σ
2
i

, σ2 =
1∑

i 1/σ
2
i

, (24)

where µi(σi) is the mean (standard deviation) of the ith epoch and µ(σ) is the combination. The relative
uncertainty is defined as the uncertainty of the given estimate, normalized to the true value of the integral 4.
Given this setup, there are three metrics that we use to compare the integrators: 1) the number of function
calls needed to reach the target uncertainty; 2) how close the estimated integral value is to the true value; 3)
the uncertainty of the estimates in the last iterations. Each of those highlights a different aspect of the
integrator and we detail them below. The results are shown in tables 2–4. We chose a relative target
uncertainty of 10−4 for the non-polynomial test functions and 10−5 for the polynomials. For Gaussian and
Camel functions, we use α = 0.2. In addition, we set a cut-off at 5 · 107 function calls.

Number of function calls. This number shows how often the integrand was evaluated by the algorithm
until the target uncertainty was reached. Having fewer function calls is especially important when the
function is numerically expensive to evaluate and the computational overhead of the integration algorithm
becomes subleading. The results are shown in table 2. We highlight the entry with the fewest calls in boldface.
In addition, we mark entries in which the final integral estimate differs by more than 5 standard deviations
from the true result with a † and entries in which too much memory was required by a ∗.

Integral estimate and uncertainty. This obviously shows how well the integrator estimated the value of the
integral. We show our results in table 3 and compare them to the true, known results. We highlight in
boldface the entry with the smallest relative deviation (‘pull’), defined as

Icode− Itrue√
(∆I2code+∆I2true)

. (25)

4 Note that Foam directly gives the uncertainty including all sampled points up to the given iteration and no combination is needed.
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Figure 3. Accumulated (total) relative uncertainty of the integral, defined as the inverse-variance weighted combination of the
uncertainties (normalized to the integral value) per iteration, as a function of number of points used in training for four different
test functions. The dashed lines indicate a 1/

√
N scaling.

Here, Icode is the result from VEGAS, Foam, or i-flow, Itrue is the true value of the integral, and the∆I terms
signify the uncertainty in the integral. Note, that∆Itrue is only non-zero for the case of the entangle circles
for which it is 5 · 10−9. Cases in which the cut-off for function calls was reached (see table 2) are marked with
a †, cases that ran into memory problems are marked with a ∗.

Relative uncertainty on the integral estimate in the last iterations. The uncertainty on the integral estimate
after adaptation is a measure for how well the algorithm adapted to the integrand. Once the algorithm is fully
adapted, the uncertainty of a single integral estimate will be constant and the combination of all iterations
will follow the 1/

√
N scaling law for MC estimates based on N points. A better adapted algorithm introduces

a smaller coefficient for that scaling and therefore require fewer function calls to reach a smaller uncertainty.
We show our results in table 4. Cases in which VEGAS failed to converge to the right integral value are marked
with a †, a ∗ shows entries that still showed a downward trend at the end of the optimization, indicating that
the algorithm was still adapting to the integrand. We highlight the integrator with the smallest uncertainty in
boldface.

For the Gaussians, VEGAS always has the fewest calls. This is expected, since the integrand factorizes.
However, the number grows rapidly for increasing integrand dimension, whereas the number for i-flow
grows slower. Foam is not able to reach the target uncertainty for D= 8, 16 before the cut-off of 5 · 107
function calls. i-flow has adapted best to all Gaussians of D> 2, as can be seen in table 4. This means that if
a sufficiently small target uncertainty is required, i-flow would potentially need fewer function calls to
reach it. The fact that the optimization of i-flow was not complete when the target uncertainty was reached
can also be seen in figure 3(a), where the accumulated uncertainty of i-flow (red line) was falling quicker
than 1/

√
N (dashed gray lines). In almost all of the cases, the integral estimate of i-flow was closest to the

true integral value.

12



Mach. Learn.: Sci. Technol. 1 (2020) 045023 C Gao et al

Figure 4. A set of 7500 points sampled after training i-flow with 5 M points on the Ring function. 6720 are inside (blue), 780
outside (red).

For the Camel functions, VEGAS only has the fewest calls for D= 2, in higher dimensions i-flow needs
fewer calls. Note that in 16 dimensions, VEGAS completely misses one of the two peaks, yielding an estimate
that is off by a factor of two. Since in this case the integrand is like a Gaussian, VEGAS converges quicker than
the other algorithms. The integral estimate of i-flow seems also off,5 but this is due to the fact that it needs
roughly 200 epochs to ‘see’ the structure of the integrand and all of those iterations contribute to the final
number in table 2. Again, Foam needs too many points for D> 4 to reach the target uncertainty, the integral
estimates of i-flow are closest to the true value, and i-flow has adapted best to the integrand. The latter
can be seen by the small relative uncertainties in table 4 and the scaling in the 4 dimensional case shown in
figure 3(b).

We discuss the entangled circles and the annulus after the polynomials. For the scalar top loop, VEGAS
needs the fewest function calls, but all 3 integrators estimate the true value within one standard deviation. It
is, however, interesting to see that both VEGAS and Foam seem to be fully adapted, whereas the uncertainties
of the estimates of i-flow were improving much faster than the 1/

√
N expectation, see figure 3(d).

The polynomials show the strength of i-flow. It has no problems adapting to the high-dimensional
integrand, as can be seen in table 4. Therefore, i-flow needs comparatively few function calls to reach the
target uncertainty. Since the polynomial does not factorize, VEGAS does not adapt well, or in the case of
D= 96 not at all. The difference between the adaptation of the algorithms is also visible in figure 3(c). There,
however, we see an interesting pattern in the accumulated uncertainty of Foam that we want to comment on.
First, since Foam estimates the integral and uncertainty of a given iteration always on the points of all previous
iterations, the uncertainty can grow for a growing number of points if the central value shifts. Second, due to
the symmetry of the polynomial integrand, we see a periodic pattern that we can understand as follows. We
start with an uncertainty based on the first 5000 points. Adding more points at this initial stage lets the
algorithm ‘see’ more structure of the integrand and the uncertainty grows. A large cell with a large spread of
functional values within it is then further split consecutively into many smaller cells. That reduces the spread
of functional values per cell and therefore the uncertainty of the integral estimate. Once the uncertainty
drops below a certain value, Foam stops splitting these (smaller) cells and returns to one of the ‘bigger’ cells it
did not split in the beginning and starts splitting it. This initially increases the uncertainty again, because the
spread of functional values in the large cell is larger than it was in the smaller cells. The result is the oscillating
pattern we see in figure 3(c). Note that the minima of this pattern follow the 1/

√
N scaling.

5The estimate of i-flow only deviates from the true value because the estimates from all iterations are combined and the first 200 epochs
only “see” one of the two peaks. Combining 15 of the last epochs yields 0.86377(136), which is closer to the true value.
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Figure 5.Weights of 10 000 points, sampled after training i-flow on Entangled circles (19). g is a flat distribution before training
and approximately resembles the shape of f after training.

The entangled circles are best integrated by Foam, as it is only 2 dimensional, yet non-factorizable.
i-flow is slightly worse, but not by much. VEGAS, however, does not perform well. Similar statements can be
made about the annulus function with hard cuts. VEGAS does the worst because of the non-factorizing
structure of the integrand and Foam does well because it is only a 2-dimensional problem. As discussed in the
earlier sections, i-flow also allows efficient sampling once it ‘learns’ the integral up to small uncertainty, we
therefore use these test functions to illustrate the sampling performance of i-flow. As an example, figure 4
shows a sample distribution after training i-flow with 5 · 106 points (1000 epochs with 5000 points per
epoch) on the annulus function of equation (20). For training, we used a learning schedule with exponential
decay. An initial learning rate of 2 · 10−3 is halved every 250 epochs. The cut efficiency, defined as the fraction
of the generated points that pass the hard cut, is 89.6%. Figure 5 shows the weights of 10 000 points sampled
after training with 10 M points on the Entangled Circles of equation (19). In the ideal case of g→ f /I, we
expect the weight distribution to approach a delta function. In figure 5, we see that the trained results are
much more like a delta function than the flat prior, showing significant improvement in the ability to draw
samples from this function.

It is clear from these considerations that for the low-dimensional integrals (D≤ 4), all three integrators
achieve reasonable results. If the target uncertainty is not very small, VEGAS or Foam provide the best
integrator, depending on the integrand at hand. If, however, a very small target uncertainty is needed,
i-flow is the better option as it adapts really well to the shape of the integrand. It is only the fact that
i-flow adapts slower than VEGAS that makes i-flow lose in the beginning, as illustrated in figure 3. For
higher-dimensional integrands (D≥ 4) i-flow requires fewer function calls because it adapts better to the
integrand. For example, VEGAS fails in the integration of 16-dimensional Camel function completely
(missing one of the peaks) and Foam has a large uncertainty on the final result, even though it has much
more function calls. Foam also performs poorly in the case of the Gaussian in 16 dimensions. In both of these
cases, Foam approximately requires bD number of cells to map out all the features of a function, where b is the
average number of bins in each dimension. If b is taken to be 2, for 16 dimensions, the number of cells
required is at least 216, which is far greater than our set cut-off of 10 000 cells. Therefore, when dealing with
high-dimensional integrals, Foam is the least efficient integrator.

To quantify the computational overhead of i-flow in comparison to VEGAS, we trained both for 100
iterations with 5000 points per iteration on the polynomial function. It took VEGAS consistently 2 seconds
for 2, 4, 8, 16, and 32 dimensions, and it took i-flow 14.7, 37.2, 80.1, 176.4, and 359.2 seconds, respectively,
on a laptop with Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz. This increase is due to needing more
Coupling Layers and therefore increasing the number of trainable parameters in higher dimensions. Working
out the time for the 32 dimensions, we find that if the function evaluation takes much longer than 720 µs
then the overhead starts to become unimportant. Additionally, if the difference in function evaluations to
reach a target precision are taken into account, the time for function evaluation is even smaller in order for
the additional overhead of i-flow to become insignificant.

To summarize, i-flow provides the best integrator for integrals in 4 or more dimensions, especially if a
high precision is needed and/or the integrand is numerically expensive and slow to evaluate.
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6. Conclusion and outlook

As shown in the previous section, i-flow tends to do better than both VEGAS and Foam for all the test cases
provided. However, i-flow comes with a few downsides. Since i-flow has to learn all the correlations of
the function, it takes significantly longer to achieve optimal performance compared to the other integrators.
This can be seen in figure 3. This obviously translates to longer training times. Additionally, the memory
footprint required for i-flow is much larger due to requiring storage for quicker parameter updates within
the NNs. Both of these can be overcome with future improvements.

There are several directions in which we plan to improve the presented setup in the future. So far, we only
used simple NN architectures in our coupling layers. Using convolutional NNs instead might improve the
convergence of the normalizing flow for complicated integrands, as these networks have the ability to learn
complicated shapes in images with fewer parameters than dense networks.

The setup suggested in [54] would allow the extension of i-flow to discrete distributions, which also has
applications in HEP [52, 53]. Another way to implement this type of information is utilizing Conditional
Normalizing Flows [55].

The implementation of transflow-learning, which was suggested in [56], would allow the use of a trained
normalizing flow on different, but similar problems without retraining the network. Such problems arise in
HEP when new-physics effects from high energy scales modify scattering properties at low energies slightly
and are described in an effective field theory framework. Another application for transflow-learning would
be to train one network for a given dimensionality and adapt the network for another problem with the same
dimensionality.

Using techniques like gradient checkpointing [57] have the potential to reduce the memory usage
substantially, therefore allowing more points to be used at each training step or larger NN architectures.

The setup presented in [58], which introduces invertible 1× 1 convolutions, showed an improved
performance over the vanilla implementation of the normalizing flows, which possibly also applies to our
case. These 1× 1 convolutions are generalizations of permutation operators acting on the inputs.
Additionally, this would modify the maximum number of coupling layers required by having more
expressive permutations.
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Appendix A. Coupling layer details

The implementation of the layers available in i-flow are detailed below. The layers are based on the work
of [31, 32] and are reproduced here for the convenience of the reader.

Appendix A.1. Piecewise Linear

For the piecewise linear coupling layer [31], given K bins of width w, the probability density function (PDF)
is defined as:

qi(t) =


Qi1/w t< w

Qi2/w w≤ t< 2w
...

QiK/w 1−w≤ t< 1

. (A1)
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The cumulative distribution function (CDF) is defined by the integral giving:

C(xBi ;Q) = αQib +
b−1∑
k=1

Qik, (A2)

where b is the bin in which xBi occurs ((b− 1)w≤ xBi < bw), and α=
xBi −(b−1)w

w . Alternatively, we can define

b as the maximal b for which
(
Ci −

∑b−1
k=1Qik

)
> 0. The inverse CDF is given by:

xBi (Ci;Q) =
w
(
Ci −

∑b−1
k=1Qik

)
Qib

+(b− 1)w. (A3)

The Jacobian for this network is straightforward to calculate, and gives:∣∣∣∣ ∂C∂xB
∣∣∣∣=∏

i

Qib/w . (A4)

The piecewise linear layers require fixed bin widths in each layer. For details on why this is required, see
appendix B of [31].

Appendix A.2. Piecewise quadratic

For the piecewise quadratic coupling layer [31], given K bins with widthsW ik, with K + 1 vertex heights
given by V ik, the PDF is defined as:

qi(t) =



Vi2−Vi1
Wi1

t+Vi1 t<Wi1

Vi3−Vi2
Wi2

(t−Wi1)+Vi2 Wi1 ≤ t<Wi1+Wi2

...
Vi(K+1)−ViK

WiK

(
t−
∑K−1

k=1 Wik

)
+ViK

∑K−1
k=1 Wik ≤ t< 1

(A5)

Integrating the above equation leads to the CDF:

C(xBi ;W,V) =
α2

2
(Vib+1−Vib)Wib +VibWibα+

b−1∑
k=1

Vik+1+Vik

2
Wik, (A6)

where b is defined as the solution to 6
∑b−1

k=1Wik ≤ xBi <
∑b

k=1Wik, and α=
xBi −

∑b−1
k=1Wik

Wib
is the relative

position of xBi in bin b. Inverting the CDF leads to:

xBi (Ci;W,V) =Wib

(
−Vib

Vib+1−Vib
+

√
V2ib

(Vib+1−Vib)
2 + 2β

)
+

b−1∑
k=1

Wik, (A7)

where b is defined as the solution to

b−1∑
k=1

Vik +Vik+1

2
Wik ≤ Ci <

b∑
k=1

Vik +Vik+1

2
Wik, (A8)

and β is the relative position of Ci in the bin b, and is given by:

β =
Ci −

∑b−1
k=1

Vik+Vik+1

2 Wik

(Vib+1−Vib)Wib
. (A9)

Appendix A.3. Piecewise rational quadratic

For the piecewise rational quadratic coupling layer [32], given K + 1 knot points
{(

x(k),y(k)
)}K

k=0
that are

monotonically increasing, with (x(0),y(0)) = (0,0) and (x(K),y(K)) = (1,1), and K + 1 non-negative

derivatives
{
d(k)
}K
k=0
, the CDF can be calculated using the algorithm from [59], which is roughly reproduced

below.

6 Note that this definition means b∈ [1,K].
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First, we define the bin widths (w(k) = x(k+1) − x(k)) and the slopes (s(k) = y(k+1)−y(k)

w(k) ). We next obtain

the fractional distance (ξ) between the two knots that the point of interest (x) lies (ξ = x−x(k)

w(k) , where k is the
bin x lies in). The CDF is given by:

g(x) =
α(ξ)

β(ξ)
, (A10)

where the details of α(ξ) and β(ξ) can be found in [59], but simplifies to:

g(x) = y(k) +

(
y(k+1) − y(k)

)[
s(k)ξ2+ d(k)ξ (1− ξ)

]
s(k) +

[
d(k+1) + d(k) − 2 s(k)

]
ξ (1− ξ)

, (A11)

which is noted to be less prone to numerical issues [59]. The inverse can be found by solving a quadratic
equation [32]:

q(x) = α(ξ)− yβ(ξ) = ax2+ bx+ c= 0, (A12)

where the coefficients are given in [32], solving this equation for the solution that gives a monotonically
increasing x results in:

x=
−b+

√
b2− 4ac
2a

=
2c

−b−
√
b2− 4ac

, (A13)

where the second form is numerically more precise when 4ac is small, and is also valid for a= 0 [32].

Appendix B. Loss functions

We implemented several different divergences that can be used as loss functions. They differ in p↔ q
symmetry, relative weight between small and large deviations, treatment of p= 0 case (also in the derivative),
and numerical complexity. All of them are from the class of f -divergences [37].
Pearson χ2 divergence:

Dχ2 =

ˆ
(p(x)− q(x))2

q(x)
dx (B14)

Kullback-Leibler divergence:

DKL =

ˆ
p(x) log

(
p(x)

q(x)

)
dx (B15)

squared Hellinger distance:

DH2 =

ˆ
2
(√

p(x)−
√

q(x)
)2

dx (B16)

Jeffreys divergence:

DJ =

ˆ
(p(x)− q(x))(logp(x)− logq(x)) dx (B17)

Chernoff ’s α-divergence:

DCα =
4

1−α2

(
1−
ˆ

p(x)
1−α
2 q(x)

1+α
2 dx

)
(B18)

exponential divergence:

De =

ˆ
p(x) log

(
p(x)

q(x)

)2
dx (B19)

(α,β)-product divergence:

17



Mach. Learn.: Sci. Technol. 1 (2020) 045023 C Gao et al

Dαβ =
2

(1−α)(1−β)

ˆ (
1−

(
q(x)

p(x)

) 1−α
2

)(
1−

(
q(x)

p(x)

) 1−β
2

)
p(x) dx (B20)

Jensen-Shannon divergence:

DJS =
1

2

ˆ
p(x) log

(
2p(x)

p(x)+ q(x)

)
+ q(x) log

(
2q(x)

p(x)+ q(x)

)
dx (B21)

Appendix C. Sector decomposition of scalar loop integrals

Following [50], we give the integral representations of triangle and box functions in 4 dimensions using the
Feynman parametrisation. To begin with, the triangle integral with external particles of energy

√
s1,

√
s2,

√
s3

and internal propagators of massesm1,m2,m3 is given by

I3(s1, s2, s3,m
2
1,m

2
2,m

2
3) =

ˆ
d4k

iπ2
1

[(k− r1)2−m21][(k− r2)2−m22][k
2−m23]

=−
ˆ ∞

0
d3xδ(1− x123)

x−1123
FTri

FTri = (−s1)x1x3+(−s2)x1x2+(−s3)x2x3+ x123(x1m
2
1+ x2m

2
2+ x3m

2
3)− iϵ

x123 = x1+ x2+ x3

(C22)

The 3-dimensional integral is further split into 3 sectors by the decomposition:

1=Θ(x1 > x2,x3)+Θ(x2 > x1,x3)+Θ(x3 > x1,x2) (C23)

For example, when x3 > x1,x2, after the variable transformation ti = xi/x3(i= 1,2), the integral simplifies to

STri(s1, s2, s3,m
2
1,m

2
2,m

2
3) =

ˆ 1

0
dt1dt2

(1+ t1+ t2)−1

F̃Tri(s1, s2, s3,m21,m
2
2,m

2
3, t1, t2)

F̃Tri(s1, s2, s3,m
2
1,m

2
2,m

2
3, t1, t2) = (−s1)t1+(−s2)t1t2+(−s3)t2

+(1+ t1+ t2)(t1m
2
1+ t2m

2
2+m23)

(C24)

Therefore,

I3 = STri(s1, s2, s3,m
2
1,m

2
2,m

2
3)+ STri(123 → 231)+ STri(123 → 312) (C25)

One can perform the same trick to treat the box integral with 4 external fields and 4 propagators. After
sector decomposition, one gets

I4 =SBox(s12, s23, s1, s2, s3, s4,m
2
1,m

2
2,m

2
3,m

2
4)+ permutations

SBox(s12, s23, s1, s2, s3, s4,m
2
1,m

2
2,m

2
3,m

2
4) =

ˆ 1

0
dt1dt2dt3

1

F̃2
Box

F̃Box = (−s12)t2+(−s23)t1t3+(−s1)t1+(−s2)t1t2+(−s3)t2t3

+(−s4)t3+(1+ t1+ t2+ t3)(t1m
2
1+ t2m

2
2+ t3m

2
3+m24)

(C26)
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