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Presentazione

Questa tesi è dedicata all’ottica lineare dei due Anelli Principali della φ-factory Dafne

dei Laboratori Nazionali di Frascati. Riporto in questo lavoro lo studio e l’attività

svolta da me all’interno della Divisione Acceleratori dei Laboratori.

Il mio compito è stato quello di migliorare l’accuratezza del modello teorico che descrive

l’ottica dei due anelli di accumulazione per individuare ed eventualmente correggere

le cause dell’accoppiamento residuo dei moti di betatrone, una delle possibili cause di

limite di luminosità dell’acceleratore.

A tal fine ho svolto attività sperimentale nella sala controllo di Dafne, partecipando ai

turni dedicati allo studio di macchina, particolarmente alle misure di orbita, funzioni

ottiche, frequenze di betatrone, emittanze.

In seguito ho elaborato tali misure per determinare un modello degli anelli tramite la

scelta dei parametri fisici che descrivono la struttura magnetica dell’acceleratore.
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Capitolo 1

Introduzione

In un anello di accumulazione le particelle, guidate dalla struttura magnetica dell’ac-

celeratore, eseguono moti di oscillazione trasversi al piano dell’orbita di equilibrio,

detti oscillazioni di betatrone. I campi magnetici guida dei dipoli e dei quadrupoli

sono lineari rispetto alla posizione delle particelle nei piani trasversi e determinano

le grandezze fisiche che descrivono l’ottica del fascio: gli invarianti (emittanze) e le

ampiezze dei moti (funzioni di betatrone e dispersione) che forniscono le dimensioni

del fascio punto per punto dell’anello, e le frequenze di betatrone. Nel Capitolo 1 di

questa tesi introduco le equazioni di moto e il formalismo dell’ottica lineare con parti-

colare attenzione all’accoppiamento dei moti di betatrone che determina le dimensioni

verticali e l’orientazione del profilo trasverso del fascio e ricopre particolare importanza

a Dafne per ottimizzare la luminosità geometrica.

Per progettare e controllare l’ottica lineare di un anello è necessario un modello ma-

tematico con il quale calcolare sia le emittanze, le frequenze di betatrone e le funzioni

ottiche punto per punto della macchina fissata una certa struttura magnetica, sia le
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8 CAPITOLO 1. INTRODUZIONE

variazioni da imporre ai campi o ai gradienti magnetici di ciascun elemento (tramite le

correnti di alimentazione) per modificare i valori delle emittanze, delle frequenze o delle

funzioni ottiche in punti determinati. Nella fase di progetto e installazione il campo

e la lunghezza di ogni elemento magnetico di Dafne sono stati misurati e il campo

magnetico caratteristico è stato calibrato rispetto alle correnti di alimentazione.

Sulla base di queste misure è stato messo a punto dal gruppo di Dafne un primo model-

lo dei due anelli di accumulazione utilizzando mad (Methodical Accelerator Design), il

programma di simulazione di acceleratori più diffuso sviluppato al CERN di Ginevra.

Oltre ai campi lineari dei dipoli e dei quadrupoli sono presenti anche elementi magnetici

non lineari, come i sestupoli, e termini magnetici di ordine superiore. I contributi di

questi elementi nel modello della macchina possono dipendere anche dalle condizioni

operative, in particolare dall’orbita di riferimento. Nel caso di Dafne vanno considerati

gli effetti focheggianti dei campi di bordo dei dipoli curvanti che dipendono dagli an-

goli con cui entra e esce il fascio rispetto alle facce laterale dei magneti, i termini di

quadrupolo efficace dovuti alla traiettoria ondulata in presenza di un sestupolo nei

magneti wiggler 1, le calibrazioni dei quadrupoli delle Regioni di Interazione dove a

causa della separazione dei fasci le traiettorie passano alcuni centimetri fuori dall’asse

magnetico e infine le sorgenti di accoppiamento residuo dovuto a disallineamenti dei

magneti o a spostamenti dell’orbita reale rispetto all’orbita di progetto in presenza di

termini magnetici sestupolari.

Nel Capitolo 2 spiego le caratteristiche particolari della φ-factory Dafne e la funzione

degli elementi magnetici degli Anelli Principali. Questo capitolo, basato sulle Note

Tecniche di Dafne sulle misure magnetiche, aggiunge un contributo di considerazioni

1Con il termine wiggler si indica un tipo di magnete dipolare “ondulatore” utilizzato in Dafne per
diminuire i tempi di smorzamento e aumentare l’emittanza del fascio.
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utili per la comprensione dei limiti e dei punti critici del modello. Per ciascun tipo

di elemento riporto le caratteristiche magnetiche cercando di dare un’interpretazione

fisica alle correzioni da apportare ad alcuni dei parametri del modello.

Quindi nel Capitolo 3 descrivo la strumentazione e il sistema di acquisizione delle mi-

sure delle orbite, della dispersione, delle frequenze e delle funzioni di betatrone, delle

emittanze e dell’accoppiamento di betatrone.

In seguito nel Capitolo 4 descrivo come ciascun elemento viene modellizzato in mad e

come il modello è stato aggiustato variando i parametri con un fit delle misure delle

funzioni di betatrone e di dispersione che ho eseguito utilizzando alcuni comandi dello

stesso programma mad. Il limite di questo modello è che il numero di parametri da

variare è circa uguale al numero di misure da riprodurre e quindi ha bisogno di ulteriori

verifiche su misure indipendenti da quelle del fit. Per ridurre il numero dei parametri

liberi, tutti gli elementi magnetici appartenenti a una stessa famiglia sono descritti

dagli stessi parametri e non si tiene conto di eventuali differenze tra di essi. Inoltre

la precisione delle misure delle funzioni di betatrone usate per questo modello è tale

che non è possibile ricavare da esse informazioni per individuare piccole sorgenti di

accoppiamento dei moti di betatrone.

Misure molto più accurate dell’ottica sono costituite invece delle cosiddette matrici

di risposta dell’orbita degli anelli. Queste sono date dalla differenza di orbita del fa-

scio ottenuta imprimendo una piccola variazione al campo di ciascun dipolo correttore.

Ciascuna matrice di risposta contiene migliaia di dati misurati che dipendono dalla

struttura magnetica di tutto l’anello.

Si è quindi rivelato particolarmente efficace l’uso del programma loco (Linear Optics

from Closed Orbit) che illustro nel Capitolo 5. Dati i campi magnetici e i gradienti

dei magneti di un anello di accumulazione, dalle equazioni di moto di una particella è
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possibile calcolare la matrice di risposta. L’analisi di loco rovescia questo processo e

calcola la struttura magnetica di un anello, cioè i parametri del modello che lo descrive,

data la matrice di risposta. Per fare ciò i parametri descrittivi del nostro modello per

mad vengono variati da loco fino a che le orbite della matrice calcolata convergono a

quelle della matrice misurata. Le misure delle orbite di risposta sono sensibili anche a

piccole sorgenti di accoppiamento e inoltre l’elevato numero di dati misurati forniti dal-

la matrice di risposta di un anello permette di variare indipendentemente i parametri

di ogni singolo elemento appartenente a una stessa famiglia di magneti.

Dall’analisi delle matrici di risposta relative a diverse configurazioni sia dell’anello

degli elettroni che di quello dei positroni ho ottenuto informazioni molto accurate sui

quadrupoli, i dipoli e i wiggler che ho confrontato con le misure magnetiche che erano

state eseguite su questi elementi magnetici. Particolarmente utile è stata la scoperta

di una sorgente non trascurabile di accoppiamento nei cosiddetti dipoli correttori “C”,

dovuta al passaggio fuori asse in presenza di un termine di sestupolo.

Nel Capitolo 6 infine mi soffermo sul sestupolo dei magneti “C”, confrontando ulteri-

ori misure magnetiche e ottiche che confermano il risultato di loco e indicano che il

contributo sestupolare dei “C” è importante sia per l’accoppiamento sia per lo studio

delle nonlinearità.



Capitolo 2

Ottica lineare

In questo capitolo presento i principi dell’ottica lineare degli anelli di accumulazione

di elettroni con lo scopo di introdurre il formalismo e le funzione fisiche necessarie

alla comprensione delle caratteristiche dell’ottica di Dafne e del modello a cui mi sono

dedicato.

Anelli di accumulazione di elettroni

In un acceleratore circolare gli elettroni iniettati nella camera da vuoto sono guidati

da un campo magnetico guida con proprietà di focheggiamento che mantengono gli

elettroni intorno a un’orbita chiusa e li inducono a eseguire oscillazioni di betatrone

(trasverse: radiali e verticali) intorno ad essa.

In un anello a funzioni separate la funzione di curvare le particelle e quella di focheg-

giarle è svolta da elementi magnetici distinti: i dipoli curvanti e i quadrupoli.

Durante il moto di rivoluzione gli elettroni perdono una (piccola) frazione della loro
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2 CAPITOLO 2. OTTICA LINEARE

energia per radiazione di sincrotrone. Questa è emessa in avanti entro un angolo di

circa 1/γ = mec
2/E. L’impulso è quindi diminuito sia nella direzione longitudinale al

moto che trasversa.

Per gli elettroni accumulati questa perdita è compensata dall’energia fornita da una

Cavità a Radio-Frequenza che accelera imprimendo impulso solo nella direzione longi-

tudinale, provocando il restringimento delle dimensioni trasverse del fascio. Il campo

elettrico periodico accelerante accumula gli elettroni in pacchetti dentro ai quali cias-

cuna particella carica oscilla in posizione longitudinale e in energia relativa a un’ideale

particella di riferimento sincrona con la radio-frequenza.

La perdita di energia per radiazione di sincrotrone insieme al guadagno di energia dal-

la cavità a radio-frequenza danno luogo a uno smorzamento di radiazione di tutte le

ampiezze di oscillazione (betatrone e sincrotrone): la traiettoria di ogni elettrone si

avvicina via via a quella di una particella ideale di riferimento al centro del pacchetto

che si muove con energia e velocità costante lungo l’orbita di progetto.

Lo smorzamento comunque si arresta a causa di una continua eccitazione delle oscil-

lazioni dovuta alle fluttuazioni quantistiche della perdita di energia, cioè al fatto che

la radiazione di sincrotrone non è emessa in modo continuo ma in fotoni di energia

discreta.

Si raggiunge quindi un equilibrio tra eccitazione quantistica e smorzamento di radi-

azione, ottenendo una distribuzione statisticamente stazionaria delle ampiezze e fasi

di oscillazione degli elettroni in un pacchetto. Il pacchetto assume cioè la stessa dis-

tribuzione trasversa ad ogni successivo passaggio in qualsiasi punto fissato.

Fino qui gli effetti di singola particella (elettroni non interagenti fra loro), che sono i

responsabili principali delle proprietà di un fascio di elettroni accumulato.

L’ottica lineare, di cui richiameremo i principi nel seguito dell’introduzione, riguarda
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specificamente le proprietà focheggianti dell’acceleratore. L’argomento di questa tesi

tratta questo ambito nel caso di Dafne1.

2.1 Equazioni di moto

Sistema di coordinate e approssimazione lineare

Considereremo sempre elettroni ultrarelativistici2, per i quali E = cp.

L’orbita ideale di progetto in un anello di accumulazione è una traiettoria chiusa gia-

cente sul piano orizzontale composta da una sequenza di tratti diritti e archi di cerchio,

corrispondenti alle sezioni rette e ai magneti curvanti della macchina. I magneti sono

alimentati in modo che un elettrone con energia nominale E0 = ecB0ρ - essendo B0 il

campo diretto perpendicolarmente al piano dell’orbita e ρ il raggio di curvatura del-

l’orbita di progetto3 - una volta partito con le condizioni iniziali opportune si muove

sempre lungo l’orbita ideale.

La posizione di questa speciale particella è parametrizzata dalla coordinata curvilinea

(azimutale) s che la individua lungo l’orbita di progetto.

Tutte le altre particelle si muovono sotto l’azione del campo su traiettorie stabili (quasi

chiuse) vicino all’orbita ideale. La loro posizione è descritta in un sistema di coordinate

cartesiane locali (x, y) (radiale e verticale) relative all’orbita ideale (Figura 2.1). Le co-

ordinate x e y delle particelle dovranno essere molto minori del raggio locale di curvatu-

1Per una trattazione più dettagliata sull’ottica lineare degli acceleratori si può fare riferimento ai
testi [13, 14, 27, 33] in bibliografia.

2Una trattazione del tutto identica vale ovviamente anche per i positroni con il segno opportuno
per la carica elettrica.

3La quantità B0ρ è detta rigidità magnetica della particella ed è usata spesso come fattore di
normalizzazione dei campi magnetici di un acceleratore. Per Dafne B0ρ = E0/ec = 1.70 Tm.
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Figura 2.1: Sistema di riferimento locale.

ra ρ della traiettoria, in modo che considerando le variazioni del campo magnetico vicino

all’orbita ideale, si possano prendere solo i termini lineari in x e y (approssimazione

lineare).

Equazioni di moto

Poiché l’orbita di progetto è assunta piana e orizzontale, il campo magnetico B0 deve

essere puramente verticale lungo tutta l’orbita. Si assume inoltre che il campo sia

sempre trasverso (si trascurano tutti gli effetti di bordo dei magneti) e simmetri-

co rispetto al piano orizzontale. In queste ipotesi dalle equazioni di Maxwell si ha:

∂Bx/∂x = −∂By/∂y = 0 e ∂By/∂x = ∂Bx/∂y; di conseguenza considerando le com-

ponenti del campo magnetico agenti su un elettrone nella posizione (s, x, y) si trovano
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le equazioni di moto nel piano trasverso [14, 27]:

x′′ + kx(s)x =
1

ρ

δE

E0

e : (2.1)

y′′ + ky(s)y = 0 (2.2)

dove con l’apice (′) si intende la derivazione rispetto alla coordinata s, ρ è il raggio di

curvatura locale dell’orbita ideale cioè ρ(s) = E0/qcB0(s) e δE/E0 è lo spostamento

relativo di energia rispetto all’energia nominale, mentre:

kx(s) =
1

ρ2
+

qc

E0

∂By

∂x
e : (2.3)

ky(s) = − qc

E0

∂By

∂x
(2.4)

Notiamo che nella nostra approssimazione lineare i moti in x e y sono indipendenti.

Un’altra importante proprietà viene dal fatto che nei quadrupoli le costanti per il moto

radiale kx e per quello verticale ky hanno sempre segno opposto. Quindi un quadrupo-

lo F (focheggiante nel piano orizzontale) sarà defocheggiante nel piano verticale e

viceversa.
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Separazione dei moti radiali: funzione di dispersione

L’equazione radiale (2.1) in x è un’equazione differenziale lineare non omogenea, la

soluzione sarà la composizione di due moti:

x(s) = xε(s) + xβ(s) (2.5)

Come soluzione particolare xε(s) si sceglie una curva chiusa spostata che è l’orbita di

equilibrio per gli elettroni di energia spostata, xβ(s) (soluzione dell’omogenea associata)

descrive dunque le oscillazioni libere di betatrone intorno a questa orbita. x(s) è quindi

soluzione se sono soddisfatte entrambe:

x′′
ε + kx(s)xε =

1

ρ

δE

E0
e : (2.6)

x′′
β + kx(s)xβ = 0 (2.7)

Lo spostamento xε è proporzionale alla deviazione di energia δE, quindi:

xε(s) = η(s)
δE

E0
(2.8)

La funzione η(s) è detta funzione di dispersione e soddisfa:

η′′ + kx(s)η =
1

ρ
(2.9)
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La funzione di dispersione ha le dimensioni di una lunghezza, è periodica con periodo

pari alla lunghezza L dell’anello (η(s + L) = η(s), η′(s + L) = η′(s)) ed è caratteristica

della struttura magnetica dell’intero anello. La dispersione entra in gioco anche nella

compensazione tra smorzamento di sincrotrone e eccitazione quantistica dei moti di

betatrone, determinando le dimensioni trasverse del fascio.

Per quanto riguarda il moto verticale, l’equazione (2.2) in y invece avrà solo una

soluzione del tipo (2.7) e dispersione nulla avendo supposto l’orbita di progetto piana.

Oscillazioni di betatrone

Le equazioni omogenee (2.2) e (2.7) possono essere genericamente scritte entrambe

come:

z′′ + k(s)z = 0 (Equazione di Hill) (2.10)

k(s) è una funzione periodica, che descrive l’intensità di focheggiamento lungo l’orbita.

La soluzione generale dell’equazione di Hill non è in generale periodica in s ed è del

tipo4:

z(s) = A
√

β(s) cos (µ(s) + µ0) (2.11)

e la derivata prima:

z′(s) = − A√
β(s)

[α(s) cos (µ(s) + µ0) + sin(µ(s) + µ0)] (2.12)

4Assumiamo il caso di strutture magnetiche con soluzioni stabili, altrimenti la funzione di betatrone
della macchina non è definita.
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dove β(s) è detta funzione di betatrone (“funzione beta”), ha le dimensioni di una

lunghezza, è periodica con periodo L, dipende dalla configurazione totale dell’anello e

si dimostra [14] che deve soddisfare :

2ββ ′′ − β ′2 + 4kβ2 − 4 = 0 (2.13)

α(s) è definita:

α(s) = −1

2
β ′(s) (2.14)

e µ(s) è l’avanzamento di fase di betatrone:

µ(s) =

∫ s

0

ds̄

β(s̄)
(2.15)

La soluzione generale dell’equazione di Hill è dunque un’oscillazione pseudo-armonica;

ampiezza e lunghezza d’onda dipendono dalla coordinata s e sono entrambe date in

termini della funzione beta:

ampiezza ∝
√

β(s) ; λ(s) = 2πβ(s) (2.16)

Si può ragionevolmente intuire, e lo studio dell’andamento qualitativo dell’equazione

(2.13) lo conferma, che la funzione beta orizzontale sarà massima nei quadrupoli F

(focheggianti nel piano orizzontale) e minima nei quadrupoli D (defocheggianti). Ri-

portiamo come esempio in Figura 2.2 le funzioni di betatrone orizzontale e verticale βx

e βy nell’anello degli elettroni di Dafne.
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Figura 2.2: Un esempio delle funzioni beta orizzontale e verticale e della dispersione calcolate
per l’anello di elettroni di Dafne

Numero di betatrone Q: risonanze e punto di lavoro

Si definisce il numero di betatrone Q come il numero di oscillazioni compiute da una

particella in un giro completo dell’anello. L’avanzamento di fase di un elettrone in una

rivoluzione completa dell’anello sarà µ = 2πQ, quindi:

Q =
1

2π

∫ s0+L

s0

ds

β(s)
(2.17)

Poiché β(s) è periodica, questo integrale è lo stesso per ogni s0. Il numero di betatrone
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è dunque un parametro descrittivo della struttura dell’intero anello e in generale per i

moti radiali e orizzontali Qx e Qy saranno diversi.

L’importanza maggiore dei due numeri di betatrone Qx e Qy è legata all’esistenza di

risonanze che modificano la dinamica delle particelle. Per esempio se Q è un intero,

il periodo di oscillazione di betatrone è un multiplo del periodo di rivoluzione, e la

minima imperfezione nel campo magnetico eccita una risonanza delle oscillazioni con

una crescita esponenziale dell’ampiezza.

Le risonanze devono ovviamente essere evitate in entrambe le oscillazioni di betatrone,

radiali e verticali. Si trova che compaiono risonanze quando Qx e Qy soddisfano:

mQx + nQy = r (2.18)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Qx

HP/UX version 8.22/14 08/09/00  14.43.26
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0Qy

Figura 2.3: Griglia delle risonanze per Dafne fino al quarto ordine sul diagramma Qx, Qy.
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dove m, n e r sono interi e |m| + |n| = N è l’ordine di risonanza. Gli effetti più

significativi sono dati dalle risonanze di ordine più basso. Il punto di lavoro dell’anello

di accumulazione è specificato fissando Qx e Qy, che devono essere scelti in modo da

evitare importanti risonanze. Nella Figura 2.3 sono indicate le linee delle risonanze di

ordine più basso.

Errori di campo e Orbite chiuse

Se in un breve intervallo azimutale ∆s intorno al punto s0 (un tratto in cui l’avanza-

mento di fase di betatrone sia trascurabile) il campo magnetico subisce una variazione

di una quantità δB0, lo spostamento di orbita chiusa di equilibrio che si ricava dalla

soluzione di un’equazione di moto del tipo (2.1) è [14, 27]:

z(s) =
θ0

√
β0β(s)

2 sin(πQ)
cos(µ(s) − µ0 − πQ) (2.19)

dove θ0 = (ec δB0 ∆s)/E0 è la deflessione impressa alla traiettoria nel punto s0 dalla

variazione di campo δB0. L’orbita chiusa dipende quindi dall’intera struttura dell’anello

tramite la funzione beta e l’avanzamento di fase.

È questo l’effetto che ad esempio dà un magnete correttore (§ 3.5).

Per una distribuzione arbitraria di errori di campo δB(s) lungo tutto un anello, ad

ogni azimuth s si somma la differenza di orbita chiusa causata dagli errori a tutte le

altre posizioni:

z(s) =
ec
√

β(s)

2E0 sin(πQ)

∮
δB0(s̄)

√
β(s̄) cos(µ(s) − µ(s̄) − πQ) ds̄ (2.20)
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In un acceleratore ci sono sempre errori di campo distribuiti lungo tutto l’anello dovuti

a imperfezioni dei magneti, a campi dispersi, a errori di allineamento degli elementi

magnetici... per cui l’orbita reale di equilibrio si scosta sempre dall’orbita ideale di

progetto. L’orbita risultante viene corretta con un’opportuna combinazione dei ma-

gneti correttori disposti lungo l’anello. Per ottimizzare l’orbita, oltre a ridurre lo scarto

rispetto all’orbita nominale di progetto, si deve trovare un compromesso con una serie

di effetti come il flusso di particelle di fondo nei rivelatori sperimentali, gli effetti non-

lineari dei campi magnetici, l’accoppiamento di betatrone... che si presentano a causa

di inevitabili disallineamenti e imperfezioni dell’acceleratore. A Dafne si è osservata

inoltre una sensibile dipendenza della struttura ottica della macchina (frequenze di

betatrone, dispersione...) anche dalla scelta dell’orbita che determina sia gli angoli di

incidenza del fascio all’entrata e all’uscita dei magneti e quindi le loro proprietà focheg-

gianti. Nel caso di Dafne l’orbita di equilibrio scelta si scosta dall’orbita nominale di

progetto mediamente di 1 mm.

Invarianti ed emittanza

Poiché nell’equazione di Hill non compaiono termini dissipativi, l’energia delle oscil-

lazioni di betatrone si conserva; questo corrisponde all’esistenza di un invariante del

moto rappresentato dalla costante di integrazione A della (2.11), infatti si trova [14]

che:

A2 = γ(s)z2(s) + 2α(s)z(s)z′(s) + β(s)z′2(s) (2.21)
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Figura 2.4: L’ellisse dell’Eq. 2.21 in termini dei parametri α, β, γ e ε = A2.

dove β e α sono quelle definite nelle (2.13)-(2.14) e:

γ(s) =
1 + α2(s)

β(s)
(2.22)

A è chiamato invariante di Courant-Snyder 5, β(s), α(s) e γ(s) sono anche dette fun-

zioni di Twiss e descrivono tutte le proprietà dell’ottica dell’anello.

Nota la struttura magnetica dell’anello (e quindi le funzioni ottiche β(s), α(s) e γ(s)),

se si conoscono le coordinate z0 e z′0 di un elettrone in un qualsiasi punto s = s0,

l’invariante A è fissato e, tramite la (2.11), si conosce la traiettoria giro dopo giro in

tutto l’anello. Inoltre fissato un azimuth s, giro dopo giro le coordinate nello spazio

5L’esistenza dell’invariante di Courant-Snyder è la conseguenza del Teorema di Liouville che af-
ferma [17] che per un sistema di particelle sottosposte a campi di forze conservativi, la densità di
particelle nello spazio delle fasi è costante.
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delle fasi (z, z′)6 della particella giacciono sempre su un ellisse di area πA2 (Figura 2.4)

definito dalla (2.21).

Si può dimostrare che è possibile definire l’emittanza ε di un fascio di elettroni come

l’area dello spazio delle fasi (z, z′) che comprende le traiettorie nello spazio delle fasi

contenute entro una deviazione standard della funzione di distribuzione delle ampiezze7.

La traiettoria di una particella può essere scritta come:

z(s) = A
√

β(s) cos (µ(s) + µ0) (2.23)

quindi la massima posizione trasversa di è:

zmax(s) = A
√

β(s) (2.24)

Poichè ogni particella ha una diversa fase µ0, è facile vedere che la dimensione del-

l’inviluppo che contiene le particelle entro una deviazione standard della distribuzione

delle ampiezze è:

σβ =
√

εβ(s) (2.25)

Le varie traiettorie delle particelle hanno in aggiunta la componente del moto dovuta

alla dispersione dell’energia del fascio. Statisticamente si deve sommare la dimensione

σβ dovuta alle oscillazioni di betatrone in quadratura con la dimensione dovuta alla

6Generalmente si considerano la pendenza z′ = dz/ds piuttosto che la variabile canonica pz per la
quale nel nostro caso vale: pz = mβγcz′ (β e γ di Lorentz).

7Generalmente l’emittanza di un fascio di elettroni è definita a meno di un fattore π:
area ellisse = πε ed ε si misura in mm · mrad.
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dispersione (2.8):

σtot =

√
β ε +

(
η
∆E

E0

)2

(2.26)

dove ∆E/E0 è la dispersione naturale di energia del fascio.

Questa trattazione vale tanto per il moto radiale che verticale. Nel caso di orbita

piana però, non è presente nessuna dispersione verticale e di conseguenza in un fascio

di elettroni l’eccitazione quantistica darebbe un contributo bassissimo all’emittanza

verticale di equilibrio. Tuttavia è sempre presente un piccolo accoppiamento tra il

moto di betatrone verticale e orizzontale che allarga l’emittanza verticale.

È possibile fare uso del trattamento per moto accoppiato e trovare gli invarianti per le

coordinate dei modi normali del sistema come indicato nel § 2.2.

Le matrici di trasporto

La soluzione generale della 2.1 può anche essere scritta nella forma:

x(s) = C(s)x0 + S(s)x′
0 + D(s)

δE

E0

(2.27)

Le funzioni C e S sono funzioni di tipo coseno e seno, soluzioni dell’equazione omogenea

(2.7) con condizioni iniziali:

C(0) = 1, C ′(0) = 0; S(0) = 0, S ′(0) = 1 (2.28)
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e D è una soluzione particolare della (6) con δE/E0 = 1 e condizioni iniziali:

D(0) = D′(0) = 0 (2.29)

La pendenza di questa traiettoria è data da:

x′(s) = C ′(s)x0 + S ′(s)x′
0 + D′(s)

δE

E0
(2.30)

e le equazioni della traiettoria per x, x′, e δE/E0 possono essere scritte in forma

matriciale come:

⎛
⎜⎜⎜⎜⎝

x(s)

x′(s)

δE(s)
E0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

C(s) S(s) D(s)

C ′(s) C ′(s) D′(s)

0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

x0

x′
0

δE0

E0

⎞
⎟⎟⎟⎟⎠ 8. (2.31)

Se si trascurano le deviazioni di energia si può studiare la soluzione del moto, per le

coordinate x, x′, dovuta unicamente alle oscillazioni di betatrone.

L’invariante A e la costante di integrazione µ0 nella soluzione dell’equazione di Hill (2.11)

e (2.12) dipendono dalle condizioni iniziali z(s0) = z0, z′(s0) = z′0. La soluzione

8La funzione η(s) e η′ della (2.9) possono essere viste come le componenti dell’autovettore della
matrice di trasferimento 3 × 3 corrispondente all’autovalore +1 con δE

E0
= 1, cioè come l’orbita di

equilibrio dovuta alla deviazione relativa di energia unitaria:⎛
⎝ C S D

C′ C′ D′

0 0 1

⎞
⎠
⎛
⎝ η

η′

1

⎞
⎠ =

⎛
⎝ η

η′

1

⎞
⎠

Intorno a questa avvengono le oscillazioni di betatrone. La matrice 3× 3 è utile quando si conoscono
il momento e le coordinate iniziali di una particella e si vuole sapere come si propagano lungo l’anello.
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dell’equazione di Hill può quindi essere scritta nella forma:

⎛
⎜⎝ z(s)

z′(s)

⎞
⎟⎠ =

⎛
⎜⎝ m11(s, s0) m12(s, s0)

m21(s, s0) m22(s, s0)

⎞
⎟⎠
⎛
⎜⎝ z0

z′0

⎞
⎟⎠ (2.32)

ovvero:

z(s) = M(s, s0) z0 (2.33)

dove M(s, s0) rappresenta la matrice di trasferimento del tratto da s0 a s. M(s, s0) ha

determinante unitario (o antiunitario) ed è simplettica9.

Considerando la matrice di trasporto per un giro completo dell’anello:

M(s + L, s) = T (s) =

⎛
⎜⎝ m11(s) m12(s)

m21(s) m22(s)

⎞
⎟⎠ (2.34)

si trova che la condizione di stabilità per il moto è:

|Tr(T )| < 2 (2.35)

9Si definisce matrice simplettica 2 × 2 una matrice M per cui vale:

M tSM = S

con:

S =
(

0 −1
1 0

)

Le trasformazioni simplettiche conservano i volumi nello spazio delle fasi. La definizione si estende
analogamente a matrici 2n × 2n.
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e che quindi la matrice T può essere sempre scritta nella forma:

T (s) =

⎛
⎜⎝ cos µ + α(s) sinµ β(s) sinµ

−γ(s) sin µ cos µ − α(s) sinµ

⎞
⎟⎠ (2.36)

dove β, α e γ sono ancora i parametri di Twiss, mentre µ è l’avanzamento di fase di

betatrone lungo l’intero anello:

µ = 2πQ =

∫ s0+L

s0

ds

β(s)
(2.37)

mentre la matrice di trasporto da s0 a s della (2.32) può essere espressa solo in termini

delle funzioni ottiche iniziali e finali10:

⎛
⎜⎝

√
β(s)
β0

[cosφ(s) + α0 sin φ(s)]
√

β(s)β0 sin φ(s)

(α(s)−α0) cos φ(s)−(1+α0α(s)) sinφ(s)√
β(s)β0

√
β(s)
β0

[cos φ(s) − α(s) sin φ(s)]

⎞
⎟⎠ (2.38)

con φ(s) = µ(s) − µ0 avanzamento di fase tra le due posizioni.

10Dalla definizione (2.21) dell’invariante di Courant-Snyder si trova inoltre che i parametri di Twiss
si trasformano da s a s0 secondo:⎛

⎝ β
α
γ

⎞
⎠

s

=

⎛
⎝ m2

11 −m11m12 m2
12

−m11m21 m11m22 + m12m21 −m12m22

m2
21 −2m21m22 m2

22

⎞
⎠

s,s0

⎛
⎝ β

α
γ

⎞
⎠

s0

è importante quindi notare che il problema del calcolo dei parametri di Twiss e il problema del calcolo
delle matrici di trasporto della traiettoria di una particella sono equivalenti.
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2.2 Accoppiamento di betatrone

Moto accoppiato

Nelle precedenti sezioni abbiamo considerato equazioni di moto che possono essere

trattate come casi separati per le due coordinata x e y. Questo significa che nel piano

trasverso la matrice di trasporto è diagonale a blocchi:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x

x′

y

y′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

s

=

⎛
⎜⎝ M 0

0 N

⎞
⎟⎠

s,s0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x

x′

y

y′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

s0

(2.39)

con M e N matrici 2 × 2 del tipo (2.36) che trasportano i moti orizzontali e verticali.

Se nella struttura magnetica si inseriscono elementi (quadrupoli ruotati, solenoidi... )

che accoppiano le due componenti del moto, la matrice di trasferimento T 4×4 assume

la forma:

T =

⎛
⎜⎝ M m

n N

⎞
⎟⎠ (2.40)

con M , m, n e N matrici 2 × 2 non nulle, e le equazioni del moto di betatrone (2.7) e

(2.2) si modificano:

x′′ + k2
xx = −by′ − ky

y′′ + k2
yy = bx′ − kx (2.41)
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dove:

k =
qc

E0

∂Bx

∂x
= − qc

E0

∂By

∂y
e b =

qc

E0

Bsolen (2.42)

Per capire quale effetto produce la presenza di una sorgente di accoppiamento, con-

sideriamo un elemento di lunghezza s sottile (cioè lungo cui l’avanzamento di fase sia

trascurabile) e vediamo ad esempio come viene trasferito parte del moto orizzontale

alla componente verticale nel passaggio attraverso tale elemento.

Per un quadrupolo ruotato di 45◦ (skew) :

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 ks 0

0 0 1 0

−ks 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x

0

0

−ks x

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.43)

la divergenza y′ del moto verticale viene variata, producendo un allargamento o re-

stringimento delle dimensioni verticali del fascio all’uscita dallo skew. A causa delle

oscillazioni di betatrone, nei punti dell’anello in quadratura di fase con lo skew non

avremo invece nessuna variazione di y′ ma uno spostamento verticale y, ottenendo

quindi una rotazione del fascio nel piano trasverso. Analogamente per un solenoide

sottile:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 bs 0

0 1 0 bs

−bs 0 1 0

0 −bs 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x

0

−bs x

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.44)
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viene quindi trasmesso uno spostamento verticale alla particella. Questo porta a una

rotazione del fascio nel piano x, y all’uscita dal solenoide e ad un’allargamento invece

nei punti in quadratura di fase. È dunque importante riuscire a controllare opportuna-

mente l’accoppiamento di betatrone sia per avere buona sovrapposizione dei fasci nei

punti di interazione, ottimizzarando cos̀ı la luminosità, sia per avere una vita media

dei fasci dovuta all’effetto Touschek (vedi pagina 30) sufficientemente lunga.

La matrice C di accoppiamento

Per la matrice T di trasferimento per un giro in presenza di accoppiamento è sempre

possibile trovare una trasformazione V di coordinate dallo spazio delle fasi

X ≡ (x, x′; y, y′) alle nuove coordinate W ≡ (a, a′; b, b′) dei modi normali del

sistema:

W = V −1X (2.45)

che cambia la matrice T in una nuova matrice U diagonale a blocchi, e ricondursi al

caso di moti disaccoppiati. T allora sarà:

T = V UV −1 (2.46)

dove:

U =

⎛
⎜⎝ A 0

0 B

⎞
⎟⎠ (2.47)
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con A matrici di trasporto del primo modo normale del tipo:

A =

⎛
⎜⎝ cos µa + αa sin µa βa sin µa

−γa sin µa cos µa − αa sin µa

⎞
⎟⎠ (2.48)

e analogamente B. V è la “rotazione simplettica” (trasformazione canonica), per pas-

sare dalle coordinate X dello spazio delle fasi del laboratorio alle coordinate dei modi

normali W . Seguendo Sagan e Rubin [26]:

V =

⎛
⎜⎝ γI C

−C+ γI

⎞
⎟⎠ 11 (2.49)

con:

γ2 + det C = 1 (2.50)

Il parametro γ (da non confondere con γ di Twiss) dà l’accoppiamento complessivo

e varia, come la matrice T , punto per punto dell’anello (0 < γ2 ≤ 1); mentre la

matrice C 2 × 2:

C =

⎛
⎜⎝ c11 c12

c21 c22

⎞
⎟⎠ (2.51)

11C+ indica la simplettica coniugata C+ ≡ SCtSt:

C+ =
(

c22 −c12

−c21 c11

)
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dà lo specifico modo di accoppiamento. Per esempio nei punti con αa = αb = 0, c11 e c22

sono gli angoli di cui sono ruotati i modi normali a e b rispetto agli assi del laboratorio

x e y [1, 6, 22], mentre c12 dà la frazione delle ampiezze di x e y accoppiata con quelle

di a′ e b′ [22] e di conseguenza si associa all’allargamento della sezione del fascio nello

spazio reale.

Le emittanze εx e εy

Nel caso di moto accoppiato si ha l’esistenza di due invarianti Aa e Ab [16] del tipo di

Courant-Snyder (2.21) per i modi normali (vedi pagina 21) che permettono di definire

le due emittanze εx e εy. Queste si ottengono mediando A2
a e A2

b lungo tutto l’anello e

su tutte le particelle [30].

Se l’anello non presenta accoppiamento si ha γ = 1 ovunque e quindi:

εx = ε0

εy = 0
(2.52)

altrimenti:

εx = γ2ε0

εy = (1 − γ2)ε0

(2.53)

come accade nei casi reali. Quindi:

εx + εy = ε0 (2.54)
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ε0 è l’emittanza naturale del fascio e si conserva.

Il rapporto fra le emittanze k = εy/εx, importante in Dafne per ottenere la luminosità

di progetto (Equazione (3.4)), si identifica con:

k =
1

γ2
− 1 (2.55)

ed è un parametro caratteristico dell’intera struttura dell’anello.



Capitolo 3

La Φ-factory Dafne

Il collider elettroni-positroni DAFNE (Double Annular Φ-factory for Nice Experi-

ments), in funzione dal 1998 presso i Laboratori Nazionali di Frascati, è un acceleratore

ad alta luminosità [31, 32] ottimizzato all’energia di risonanza del mesone Φ (1.020 Gev

c.m.).

L’elevata produzione delle Φ permette principalmente di studiare il sistema dei mesoni

K. In particolare con l’esperimento KLOE (K Long Experiment) si vuole ottenere una

misura del parametro �( ε′
ε
), che caratterizza la violazione diretta della simmetria CP

nel sistema dei K neutri, con un’accuratezza pari a 10−4, superiore a quella ottenuta

negli esperimenti svolti in altri laboratori fino ad oggi.

In questo capitolo, partendo dalle prestazioni per cui è stato progettato Dafne, riporto

le caratteristiche degli Anelli Principali e le proprietà magnetiche degli elementi istal-

lati che ho raccolto per comprendere e ottimizzare il modello dell’ottica lineare.

25
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Figura 3.1: Il complesso della Φ-factory Dafne a Frascati.
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3.1 La luminosità

Nei collider elettrone-positrone i due fasci sono immagazzinati in due anelli distinti o

in un singolo anello e circolano con velocità opposte. Le particelle sono raggruppate in

pacchetti e la frequenza di interazione in ciascun punto di incrocio è proporzionale al

numero di pacchetti.

La luminosità1 in ciascun punto di interazione per due fasci con gli stessi parametri

caratteristici è data da:

L = hfriv
N2

4πσ∗
xσ

∗
y

(3.1)

dove h è il numero dei pacchetti, friv la frequenza di rivoluzione, N il numero di parti-

celle per pacchetto, σ∗
x e σ∗

y le dimensioni quadratiche medie orizzontali e verticali nel

punto di interazione di un fascio gaussiano.

Quando due pacchetti sono in collisione le particelle di un fascio sentono la forza elet-

tromagnetica dell’altro fascio e i due fasci si focheggiano reciprocamente causando uno

spostamento (positivo) delle frequenze di betatrone ∆Qx,y ( beam-beam tune shift). La

parte lineare di questa forza focheggiante è descritta dal parametro (adimensionale) di

tune shift lineare ξx,y dato da:

ξx,y =
reNβ∗

x,y

2πγσ∗
x,y(σ

∗
x + σ∗

y)
(3.2)

1Sia σ la sezione d’urto di un processo che può avvenire nella collisione fra particelle appartenenti
ai due fasci, il tasso di conteggi R per quel dato processo è dato da:

R = L · σ

dove L è la luminosità della macchina, cioè il tasso di conteggi in unità di sezione d’urto.
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dove γ è l’energia dell’elettrone in unità della sua massa a riposo, re il raggio classico

dell’elettrone, β∗
x,y il valore della funzione di betatrone orizzontale (verticale) nel punto

di interazione.

Se il collider ha più punti di incrocio gli effetti dovuti all’interazione fascio-fascio si

sommano.

È noto per esperienza che in ogni collider elettrone-positrone, ξ non può superare un

valore massimo ξmax oltre il quale la perturbazione dovuta a un fascio sull’altro è cos̀ı

forte da cambiare in modo significativo la distribuzione di equilibrio delle particelle,

provocando una saturazione della luminosità con la corrente accumulata o una vita

media del fascio troppo breve o un flusso di particelle di fondo nei rivelatori degli

esperimenti non tollerabile.

Nella scelta dei parametri di un collider si può imporre ottimizzare il beam-beam tune

shift nei due piani contemporaneamente con:

ξx = ξy = ξ (3.3)

Tale condizione si ottiene scegliendo:

k =
εy

εx

=
β∗

y

β∗
x

=
σ∗

y

σ∗
x

(3.4)

dove k è il coefficiente di accoppiamento, che può assumere valori tra 0 e 1, e εx,y sono

le emittanze del fascio.

Dalle relazioni precedenti la luminosità può essere scritta nella forma:

L = π(
γ

re
)2hfrivξ

2ε0(1 + k)

β∗
y

(3.5)
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e il parametro di tune shift :

ξ =
reN

2πγε0

(3.6)

dove ε0 = εx + εy è l’emittanza naturale del fascio.

Il massimo valore di ξ sostenibile dalla macchina non può essere calcolato dalla teo-

ria. Tuttavia da un confronto con i collider e+/e− esistenti è ragionevole per Dafne

assumere ξmax ≈ 0.04. Questo fissa un limite empirico al rapporto tra il numero di

particelle N e l’emittanza del fascio ε0 (Equazione (3.6)), cioè un limite alla densità

trasversale del fascio. Poichè N e ε0 non possono crescere indefinitamente a causa

dei limiti di instabilità e dell’apertura fisica degli anelli, ξmax stabilisce un limite sulla

luminosità.

3.2 I parametri del Collider

L’equazione (3.5) mostra che per aumentare la luminosità si può agire diminuendo β∗
y

(e β∗
x di conseguenza) e aumentando il numero h di pacchetti accumulati per fascio.

Per potere aumentare la frequenza di collisione senza aumentare il numero di punti

di incrocio, si è scelto di fare circolare gli elettroni e i positroni in due anelli separati

con due regioni di interazione in comune, dove le traiettorie dei due fasci si incrociano

con un angolo nel piano orizzontale 12.5 mrad rispetto all’asse della camera, in modo

da evitare collisioni parassite fuori del punto di interazione. Con questa soluzione è

possibile accumulare un numero di pacchetti pari al numero armonico della cavità a
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radio-frequenza (ωrf = hωrivoluzione).

Per quanto riguarda la funzione beta verticale nel punto di interazione2, questa non

può essere minore della lunghezza del pacchetto σ∗
z . Inoltre per ottenere β∗

y molto

basso, occorre un focheggiamento molto forte che si può ottenere soltanto mettendo

un quadrupolo molto forte vicino all’IP, che inevitabilmente va inserito all’interno del

rivelatore sperimentale (vedi § 3.4).

Il focheggiamento forte ha lo svantaggio di aumentare il cromatismo dell’anello (la

dipendenza delle frequenze di betatrone dall’energia della particella) che deve essere

corretto installando nell’anello anche dei forti sestupoli che riducono però l’apertura

dinamica3.

Di conseguenza il valore di β∗
y non può essere arbitrariamente basso e la scelta fatta è:

β∗
y = 4.5 cm con : σ∗

z = 3 cm

Resta infine da scegliere il valore del rapporto fra le emittanze k = εy/εx.

Per questa scelta è importante tenere conto della vita media del fascio. Per anelli a

energia relativamente bassa (510 MeV per Dafne), con pacchetti con alta densità di

carica, in corrette condizioni di lavoro, la principale causa di decadimento del fascio

è la diffusione coulombiana fra particelle del fascio stesso (effetto Touschek) [27] . Il

tasso di decadimento del fascio in questo caso è inversamente proporzionale alla densità

2Intorno a un minimo la funzione beta varia secondo:

β(s − s0) = β∗ +
(s − s0)2

β∗

e volendo β costante lungo tutta lunghezza in cui i due pacchetti si sovrappongono nella collisione,
deve essere σ∗

z < β∗. σ∗
z dipende dalla tensione della cavità a radio-frequenza, dalla corrente del

pacchetto e dall’impedenza della struttura della camera da vuoto.
3Si definisce apertura dinamica bidimensionale la regione dello spazio fisico (x, y) in cui il moto di

betatrone di una particella è stabile
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di particelle nel pacchetti. Pertanto è stato scelto il coefficiente di accoppiamento:

k = 0.01

come compromesso tra un’elevata luminosità e una vita media Touschek accettabile

(τTouschek ≈ 3 ÷ 4 ore).

Con questi parametri di progetto, con un’emittanza ε = 1 mm · mrad, compatibile

con l’apertura fisica e dinamica della macchina e con il massimo numero di particelle

immagazzinabili nel fascio (N ≈ 8.9 · 1010 particelle/pacchetto) e con 120 pacchetti si

vuole ottenere una luminosità L ≈ 1032cm−2s−1. I parametri di progetto di Dafne sono

riportati nella tabella 3.1.

Energia del fascio E 510.0 MeV
Circonferenza degli anelli L 97.68 m
Funzione beta all’IP β∗

x/β
∗
y 4.5/0.045 m

Dimensioni trasverse del fascio all’IP σ∗
x/σ

∗
y 2.0/ 0.02 mm

Emittanza trasversa εx/εy 1/0.01 mm · mrad
Linear beam-beam tune-shift ξ 0.04
Frequenza RF fRF 368.263 MHz
Numero armonico h 120
Frequenza di rivoluzione friv 3.0688 MHz
Corrente media per pacchetto I0 43.7 mA
Particelle per pacchetto N 9.0 · 1010

Dispersione naturale di energia σε/E 3.96 · 10−4

Lunghezza del pacchetto σs 2.0 ÷ 3.0 cm
Radiazione di sincrotrone emessa U0 9.3 keV/giro
Tempo di smorzamento τε/τx 17.8 / 36.0 ms
Tensione RF VRF 100 ÷ 250 kV
Luminosità massima Lmax 5.3 · 1032 cm−2s−1

Tabella 3.1: Parametri di Dafne
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3.3 Struttura degli Anelli Principali

La pianta degli anelli principali di Dafne è mostrata nella figura 3.2: due anelli uguali,

uno per i positroni e uno per gli elettroni, lunghi 97 metri con due regioni di interazione

lunghe circa 10 metri in comune in cui i fasci attraversano la stessa camera da vuoto.

Ciascun anello è costituito da una sezione più esterna, detta Long, e una più interna,

Short. Le quattro sezioni si uniscono ai limiti delle regioni di interazione attraverso

quattro magneti, gli splitter, ciascuno con due camere con campo opposto.

La struttura di ogni anello consiste di quattro archi acromatici4 (Figura 3.3, ciascuno

dei quali è delimitato da due magneti curvanti e alloggia tre quadrupoli, un magnete

wiggler di 1.8 T × 2 m e due sestupoli per correggere il cromatismo dell’anello. Questa

disposizione permette di annullare la dispersione nei due punti di interazione e nella

cavità a radio-frequenza. Uno dei due dipoli per arco è di tipo rettangolare5 cioè ha

le facce laterali parallele in modo da fornire focheggiamento verticale utile per avere

funzioni beta orizzontale e verticale con valori ben separati nei sestupoli.

I wiggler sono stati introdotti per poter raddoppiare l’emissione di radiazione di sin-

crotrone e ridurre quindi i tempi caratteristici di smorzamento. La loro presenza inoltre

costituisce un importante contributo all’emittanza naturale del fascio ε0 che permette

di ottenere un’alta luminosità (Equazione (3.5)). Variando con i quadrupoli le funzioni

ottiche nei wiggler è possibile modulare il valore di ε0.

I kicker e il setto di iniezione e la cavità a radio-frequenza sono alloggiati nelle sezioni

diritte ortogonali alle Regioni di Interazione.

4Si dice acromatica una cella della macchina in cui la dispersione e la sua derivata sono entrambe
nulle ai limiti. È una configurazione che si può ottenere combinando opportunamente i magneti
curvanti e i quadrupoli.

5Vedi l’Appendice A per le proprietà focheggianti dei dipoli.
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Figura 3.2: I due Anelli Principali di Dafne.
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Figura 3.3: Un arco acromatico di una delle sezioni Short di Dafne durante la fase di
installazione.

Fuori dagli archi sono presenti 8 sestupoli, per correggere la variazione della frequenza

di betatrone con l’ampiezza di oscillazione e con l’impulso, e 8 quadrupoli ruotati di

45o (Skew) sono installati in ogni anello per correggere o controllare l’accoppiamento.

È da mettere in risalto l’assenza di qualsiasi simmetria all’interno della struttura del-
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l’anello (nemmeno le due zone di interazione sono uguali fra loro): le funzioni ottiche

quindi non hanno altra periodicità che quella pari alla lunghezza dell’intero anello6,

anche se nella sezione Long e Short sono state progettate quanto più simili possibile.

Per avere la massima flessibilità nella scelta dell’ottica degli anelli e dato che non si pos-

sono sfruttare proprietà di simmetria, ogni quadrupolo è alimentato individualmente.

La deviazione dall’orbita di progetto è controllata tramite 47 monitor della posizione

del fascio e variata e corretta con 31 magneti correttori in ogni anello. Un altro stru-

mento di diagnostica del fascio sono i monitor per la luce di sincrotrone: uno per ciascun

anello, mostrano il profilo trasverso del fascio al centro di un magnete curvante.

Nel § 3.5 sono riportate le caratteristiche degli elementi magnetici e nel Capitolo 4 sono

descritti la diagnostica e il sistema di acquisizione delle misure studiate in questa tesi.

3.4 Le Regioni di Interazione

Dafne ha due Regioni di Interazione (IR1 e IR2) lunghe circa 10 m, delimitate dagli

splitter, con struttura magnetica e funzioni ottiche simmetriche rispetto ai Punti di

Interazione (IP1 e IP2).

I due fasci passano fuori asse nelle IR, con un angolo di incrocio nel piano orizzontale

di ±12.5 mrad e una separazione orizzontale relativa di 12 cm ai limiti (Figura3.4).

Per ottenere un valore basso della funzione beta verticale (§ 3.2) nei Punti di Interazio-

ne (β∗
y = 4.5 cm mentre nel resto della macchina oscilla fra 1 e 20 metri circa) si usano

due tripletti di quadrupoli molto intensi simmetrici rispetto all’IP, con una sequenza

6Generalmente negli acceleratori la gran parte della struttura è costituita da un certo numero di
celle consecutive una uguale all’altra. È molto utile sfruttare queste proprietà di periodicità quando
esitono perchè diminuiscono il numero di parametri liberi da cambiare negli elementi magnetici quando
si vogliono variare le funzioni ottiche.



36 CAPITOLO 3. LA Φ-FACTORY DAFNE

Figura 3.4: Le misure di posizione ai monitor orizzontali (in alto) e verticali (in basso) del
fascio dei positroni (unite dalla linea continua) e del fascio degli elettroni (unite dalla linea
tratteggiata) nella Regione di Interazione di Kloe, mostrate dal sistema di controllo di Dafne.

di focheggiamento FDF, che costituiscono le cosiddette Inserzioni Low-Beta [13].

Nella IR2 è attualmente presente l’esperimento Dear che però, date le ridotte dimen-

sioni del suo apparato, non interferisce con l’ottica del fascio, né impone limitazioni

meccaniche agli elementi dell’acceleratore.

Nella IR1 è installato dal 1999 il rivelatore di Kloe con un magnete solenoidale super-

conduttore da 0.6 Tesla × 4 metri.

I primi quadrupoli rispetto all’IP1 devono essere distanti solo 45 cm, quindi i tripletti

sono necessariamente alloggiati all’interno di Kloe, lasciando libero per il rivelatore un

angolo solido del 99 %. L’unica possibilità per inserirli in uno spazio cos̀ı ristretto è
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Figura 3.5: Lo schema di rotazione dei tripletti nella Regione di Interazione di Kloe.

quello di usare quadrupoli magnetici permanenti.

Il campo magnetico di Kloe costituisce una forte perturbazione per il fascio. Infatti il

campo integrato del solenoide, pari a 2.4 T m, è dell’ordine di grandezza della rigidità

magnetica7 di 1.7 T m di un elettrone con energia di 510 MeV . L’effetto del magnete

solenoidale è quello di focheggiare e accoppiare i moti di betatrone ruotando il fascio nel

piano trasverso di un angolo proporzionale all’integrale del campo lungo la traiettoria

del fascio stesso (circa 40◦):

θrot =
ec

2E0

∫
Solen

Bz(s) ds (3.7)

La rotazione del fascio dovuta ai campi solenoidali è annullata nel Punto di Interazione

e fuori della Regione di Interazione compensando il magnete dell’esperimento mediante

due magneti solenoidali (Compensatori) con campo opposto a quello di Kloe (1.2 T ×
1 m) posti simmetricamente fra il rivelatore e gli splitter. Ogni quadrupolo del tripletto

deve inoltre essere ruotato intorno al proprio asse longitudinale esattamente di un

7Vedi nota a pagina 3.
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angolo (figura 3.5):

θ(s) =
ec

2E0

∫ s

s0

Bz(s̄) ds̄ (3.8)

essendo s0 un punto dove il campo è nullo e s la posizione longitudinale del quadrupolo.

Poiché i quadrupoli hanno lunghezza finita ogni quadrupolo dovrebbe essere ruotato

come un’elica. Praticamente si ruota ogni quadrupolo di un angolo corrispondente al

proprio centro longitudinale. L’accoppiamento residuo si può correggere con l’uso dei

quadrupoli skew istallati negli anelli e con aggiustamenti del campo del magnete di

Kloe e dei magneti compensatori.

3.5 Caratteristiche degli elementi magnetici

Su tutti gli elementi magnetici degli anelli di Dafne sono state eseguite misure magne-

tiche prima della loro istallazione. I risultati sono riportati nelle Note Tecniche citate

e riassumo di seguito quelli utili allo sviluppo del modello.

Quadrupoli, sestupoli e solenoidi

Il campo dei quadrupoli, dei sestupoli, del solenoide di Kloe, dei due solenoidi com-

pensatori e dei sei quadrupoli permanenti della Regione di Interazione di Kloe è stato

misurato lungo l’asse longitudinale di ciascun elemento. Per i quadrupoli i sestupoli e

magneti solenoidali è stata verificata la dipendenza lineare con la corrente di alimen-
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tazione nell’intervallo di utilizzo.

Le caratteristiche del campo di tali elementi ricavate dalle misure non presentano

difficoltà di interpretazione e sono state introdotte facilmente nel modello dell’ottica

lineare (Capitolo 5).

Magneti Correttori

I magneti correttori sono 31 dipoli di piccola intensità [20] (il campo magnetico in-

tegrato dei correttori più forti con le correnti di alimentazione generalmente usate è

dell’ordine di 0.01 T · m) distribuiti lungo ciascuno degli anelli. Sono usati per cor-

reggere le orbite chiuse o spostare la traiettoria del fascio in determinate regioni (ad

esempio separare i fasci nelle regioni di interazione), sia nel piano verticale che in quello

orizzontale. Ciascun correttore possiede due avvolgimenti intorno a due ferromagneti

distinti; il primo ferromagnete (Correttore Orizzontale: CH) crea un campo dipolare

verticale e deflette il fascio nel piano orizzontale, il secondo ferromagnete (Correttore

Verticale: CV) crea un campo dipolare orizzontale e deflette nel piano verticale.

Dipoli: Curvanti, Splitter e Wiggler

I dipoli presentano maggiori difficoltà ad essere caratterizzati nel modello, in particolare

riguardo agli effetti focheggianti dovuti agli angoli di entrata e uscita tra la traiettoria

del fascio e le facce dei dipoli e agli effetti lineari dovuti a offset della traiettoria in

presenza di contributi sestupolari.

Dalle Note citate nel seguito è nota la componente verticale del campo dei magneti
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misurata a passi fissi lungo la traiettoria nominale (definita come un arco di cerchio di

lunghezza Lmag e raggio di curvatura nominale, e due segmenti diritti tangenti che si

allungano per tutta l’estensione dei campi di bordo) e lungo più traiettorie parallele a

questa. Con questa griglia di punti misurati si può interpolare e ottenere il campo in

ogni punto e si possono stimare le componenti multipolari dei magneti8.

È stato inoltre misurata per tutti i magneti la dipendenza dell’intensità del campo con

le correnti di alimentazione intorno al punto di utilizzo.

Dipoli Curvanti e Splitter

I principali parametri di progetto9 [10, 9, 5, 11] delle quattro famiglie di dipoli curvanti,

due del tipo a settore e due del tipo rettangolare, e degli splitter sono riportati nella

tabella 3.2. Nelle figure 3.6-3.7 sono riportati i gradienti trasversi lungo le traiettorie

nominali ricavati dalle misure magnetiche con la corrente nominale di alimentazione.

Il segno positivo corrisponde ad una azione focheggiante orizzontale. I magneti di tipo

8Se si hanno n punti trasversi per ogni posizione azimutale lungo la traiettoria nominale, si possono
trovare i coefficienti polinomiali dell’espansione del campo fino all’ordine n − 1 in x. Per esempio
l’espansione della componente verticale del campo lungo l’asse longitudinale z rispetto alla coordinata
trasversa x è:

By(x, 0, z) = B0(z) + B1(z)x + B2(z)x2 + · · ·

dove B0(z) corrisponde al valore del campo dipolare By lungo la traiettoria nominale, B1(z) al termine
di quadrupolo ∂By/∂x, B2(z) al termine di sestupolo 1

2∂2By/∂x2 e cos̀ı via.. Inoltre una volta noto
il campo in tutto il magnete si può calcolare la traiettoria reale attraverso il magnete integrando
l’equazione di moto delle particelle cariche nel campo misurato.

9Definiamo la Lunghezza Magnetica Lmag di un magnete dalla relazione:

B0 · Lmag =
∫ +∞

−∞
B(s) ds
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Figura 3.6: Primo termine dell’espansione trasversa del campo intorno alla traiettoria
nominale nei dipoli curvanti di tipo a settore e di tipo rettangolare della sezione Short.

Figura 3.7: Primo termine dell’espansione trasversa del campo intorno alla traiettoria
nominale nei dipoli curvanti di tipo a settore e di tipo rettangolare della sezione Long.
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Tipo I (A) B0 (T) α (◦) Ldes (m) Lmag (m)
Settore Short 266.20 1.207 40.50 0.990 1.002
Rettangolare Short 266.20 1.221 40.50 0.990 0.988
Settore Long 266.20 1.214 49.50 1.210 1.217
Rettangolare Long 266.20 1.230 49.50 1.210 1.200
Splitter 436.00 0.1768 8.75 1.450 1.470

Tabella 3.2: Parametri dei dipoli curvanti e degli splitter. I è la corrente nominale corrispon-
dente a un’energia del fascio di 510 MeV, B0 è il campo misurato al centro del magnete, α
è l’angolo di deflessione, Ldes è la lunghezza magnetica di progetto, Lmag è la lunghezza ma-
gnetica misurata. I nomi Short e Long con cui distinguiamo le famiglie di magneti indicano
la sezione dell’anello in cui sono alloggiati.

rettangolare hanno due grandi picchi nelle regioni di bordo dovuti all’angolo di en-

trata della traiettoria (metà dell’angolo totale di curvatura). Il loro valore integrato

(−0.77 T nello Short, −0.96 T nel Long) è minore del valore teorico per un magnete

rettangolare ideale (−0.86 T e −1.05 T ). Questo può essere spiegato come un’asim-

metria destra-sinistra della struttura rispetto alla traiettoria nominale. Tale effetto è

presente in misura minore anche nei dipoli a settore dove compaiono due picchi più

piccoli (0.026 T e 0.010 T ).

Sono stati misurati anche i gradienti sestupolari dei campi di bordo, il valore massimo

integrato è circa 0.30 T/m per la famiglia dei Dipoli a settore Short, il contribu-

to all’accoppiamento è trascurabile se l’orbita verticale viene corretta entro 1–2 mm

dall’asse10.

10Il campo magnetico in un sestupolo ha una dipendenza del secondo ordine con le coordinate
trasverse:

Bx = m xy By =
1
2
m(x2 − y2)

ma in presenza di uno spostamento della traiettoria dall’asse del magnete, il sestupolo può dare
un contributo lineare all’ottica. Infatti se si ha uno spostamento orizzonatale ∆x della traiettoria
compaiono i gradienti quadrupolari normali :

∂Bx

∂y
=

∂By

∂x
= m ∆x



3.5. CARATTERISTICHE DEGLI ELEMENTI MAGNETICI 43

Figura 3.8: Le traiettorie nominali dei fasci nello splitter. I rettangoli mostrano l’apertura
libera nei traferri tra gli avvolgimenti. (Con y è indicata la coordinata longitudinale che nel
testo è indicata sempre con z.)

Gli splitter di Dafne sono degli speciali magneti posti ai limiti delle Regioni di Inte-

razione, costituiti da due dipoli adiacenti con avvolgimenti distinti, che generano un

campo opposto nelle due regioni adiacenti. I due traferri sono divisi da un setto che

separa la camera da vuoto dei positroni da quella degli elettroni. Ciascuno dei due

fasci entra (o esce, a seconda del verso del moto) nello splitter con un angolo di −0.25◦

ed esce con un angolo di 9◦ (Figura 3.8) rispetto alla direzione normale alla faccia del

magnete.

Le misure magnetiche (con corrente di alimentazione di 440.38 A) hanno messo in evi-

e in presenza di uno spostamento verticale ∆y della traiettoria compaiono i gradienti quadrupolari
skew :

∂Bx

∂x
= m ∆y

∂By

∂y
= −m ∆y
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Figura 3.9: Componente verticale del campo vicino al bordo del magnete (y = −4.5 mm
nella Figura 3.8).

denza una dipendenza della componente verticale del campo dalla posizione orizzontale

nella regione del campo di bordo. Come si vede dalla figura 3.9 dal lato del magnete in

cui la traiettoria passa a circa 6 cm dall’asse dello splitter il fascio sentirà un gradiente

trasverso, mentre dall’altro lato in cui la traiettoria passa a circa 18 cm la dipendenza

del campo è invece quasi piatta.

È stata inoltre messa in evidenza l’influenza di un avvolgimento sul traferro adiacente

alimentando un solo avvogimento e misurando il campo nell’altro traferro. L’effetto è

non trascurabile vicino alle facce laterali dalla parte interna del traferro.

Riporto in Figura 3.10 il termine del primo ordine dell’espansione trasversa del campo

lungo la traiettoria nominale. Il picco pronunciato all’entrata dello splitter, che in un

magnete rettangolare ideale con angolo di entrata di −0.25◦ dovrebbe essere trascura-

bile, è dovuto al gradiente trasverso vicino all’avvolgimento interno nella regione dei

campi di bordo (vedi Figura 3.10), mentre il picco all’uscita è dovuto principalmente



3.5. CARATTERISTICHE DEGLI ELEMENTI MAGNETICI 45

Figura 3.10: Termine del primo ordine dell’espansione trasversa del campo dello splitter
intorno alla traiettoria nominale.

Figura 3.11: Termine del secondo ordine dell’espansione trasversa del campo dello splitter
intorno alla traiettoria nominale.
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all’angolo di 9◦ tra la faccia del polo e la traiettoria del fascio (Figura 3.8)).

Infine in Figura 3.11 è riportato il termine del secondo ordine dell’espansione trasversa.

Il contributo sestupolare integrato del campo di bordo all’entrata, dove la traiettoria

passa a 6 cm dal setto, è molto maggiore (0.17 T/m) di quello all’uscita, dove passa a

18 cm (0.06 T/m).

A causa della separazione verticale dei fasci nelle Regioni di Interazione, la traiettoria

entra nello splitter con uno spostamento verticale di alcuni millimetri (Figura3.4) e il

fascio sente un contributo quadrupolare skew efficace dovuto al sestupolo che dà un

debole accoppiamento di betatrone11.

Wiggler

I quattro wiggler di Dafne [2, 12] sono costituiti da 5 poli centrali di tipo rettangolare,

lunghi 32 cm, con polarità alternata e due “semipoli” terminali (poli più corti, 20 cm

e meno intensi) ai lati sempre di tipo rettangolare, con un campo massimo di 1.8 T e

una lunghezza totale di 2 m. I poli centrali di tutti i wiggler sono alimentati in serie,

mentre ogni coppia terminale è alimentata in modo indipendente, cos̀ı cambiando il

campo nei semipoli si può aggiustare opportunamente l’integrale del campo lungo la

traiettoria.

In Figura 3.12 è riportato il valore del campo lungo il wiggler alimentato con le correnti

nominali di 712.8 A nei poli centrali e 562.1 A nei poli terminali.

La traiettoria all’interno del wiggler segue un’andamento ondulato nel piano orizzon-

tale con uno spostamento massimo di circa 2.5 cm (Figura 3.13).

11Vedi Nota pagina 43.
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Figura 3.12: La componente verticale del campo misurata lungo l’asse del wiggler.

Figura 3.13: La traiettoria del fascio calcolata all’interno del wiggler. L’asse del wiggler è
spostato di 1.4 cm rispetto all’asse della camera da vuoto.
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Figura 3.14: Componente verticale del campo misurata lungo x all’interno del
wiggler (z = 0.68 m).

Figura 3.15: Termine del secondo ordine dell’espansione trasversa del campo del wiggler
lungo l’asse longitudinale.
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Le misure magnetiche hanno messo in evidenza un andamento parabolico della compo-

nente verticale del campo lungo la direzione trasversa x (Figura 3.14) che corrisponde

alla presenza di un termine sestupolare. In Figura 3.15 è riportato l’andamento di tale

termine lungo l’asse del wiggler.

I termini sestupolari danno quadrupoli efficaci normali (non skew) efficaci in presen-

za di spostamenti orizzontali della traiettoria12 che si aggiungono al focheggiamento

dovuto ai campi di bordo dei poli del wiggler.

Per potere avere integrale di campo nullo lungo la traiettoria e soprattutto perché il

fascio attraversi la regione migliore del campo [2], l’asse del wiggler è stato spostato di

1.4 cm in orizzontale rispetto all’asse della camera da vuoto (Figura 3.13).

12Vedi Nota pagina 43.



Capitolo 4

Misure dell’ottica di Dafne

4.1 Misure di orbite

Monitor di Posizione del Fascio

Per misurare l’orbita di equilibrio del fascio accumulato, in ciascuno dei due anelli

di Dafne sono installati 41 monitor di posizione del fascio (Beam Position Monitor :

BPM) del tipo elettrostatico a bottone e 8 in ciascuna Regione di interazione. Sono

state realizzate varie configurazioni dei monitor adatte alle dimensioni e la forma della

camera da vuoto lungo gli anelli. La posizione del fascio è calcolata a partire dalle

tensioni indotte sugli elettrodi dei BPM. Ad esempio per il monitor schematizzato in

50
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1 2

3 4

x

y

Figura 4.1: Profilo schematico di un monitor di posizione del fascio di tipo rettangolare.
Dalle tensioni V1, V2, V3, V4 indotte sui quattro elettrodi si ricava la posizione traversa del
fascio.

figura 4.1 si ricavano le informazioni sulle coordinate trasverse:

U = V2+V4−V1−V3

V2+V4+V1+V3

V = V1+V2−V3−V4

V2+V4+V1+V3

(4.1)

A causa della risposta non lineare del monitor, le pseudo posizioni U, V devono essere

corrette usando una funzione nonlineare che riproduce accuratamente la posizione del

fascio:

x = gx(U, V )

y = gy(U, V )
(4.2)

Le funzioni g(U, V ) sono dei polinomi i cui coefficienti (per ogni diverso tipo di BPM)

sono stati ottenuti da un fit ai minimi quadrati dei dati delle misure di calibrazione dei

monitor [28].
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Figura 4.2: La finestra del programma del sistema di controllo di Dafne per l’acquisizione
delle orbite degli Anelli Principali.

L’elettronica di rivelazione è stata sviluppata dalla Bergoz Beam Instrumentation Sys-

tem per Dafne [18]: consiste di un ricevitore superheterodyne che converte la 240-esima

frequenza armonica (il doppio della radio-frequenza accelerante) del segnale indotto dal

fascio in una frequenza intermedia di 21.4 MHz prima della rivelazione dell’ampiezza.

All’uscita del circuito sono fornite due tensioni U, V che vengono processate dal soft-

ware per ottenere le posizioni verticali e orizzontali x, y.

Il sistema di acquisizione è stato sviluppato nello standard VME. I segnali sono misurati

con un Multiplexer FET HP E1352A e un Multimetro Digitale HP E1326B controllati

da appositi processori.

Il sistema di controllo di secondo livello di Dafne raccoglie i dati sulle posizioni da queste

unità periferiche che vengono usati dal sistema di terzo livello per la ricostruzione del-

l’intera orbita e per i programmi di analisi. L’intera orbita di un anello è acquisita
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con una frequenza di 5 Hz. Nella figura 4.2 è riportata la finestra del programma di

acquisizione dell’orbita di Dafne.

L’errore sulla misura di posizione misurata rispetto all’orbita ideale di riferimento che

passa al centro dei magneti dipende dagli errori di allineamento dei magneti rispetto

alla camera da vuoto che sono generalmente noti, dalle tolleranze meccaniche con cui

sono montati i monitor, da errori di calibrazione (trascurabili intorno al centro della

camera da vuoto) e infine dal rumore termico dell’elettronica di aquisizione.

Nelle misure di differenza tra due orbite resta solo l’errore dovuto al rumore termico

dell’elettronica (eventualmente anche un contributo dovuto alle calibrazioni se l’orbita

si sposta di diversi millimetri dal centro del camera da vuoto) e si raggiunge un’in-

certezza di 5 − 10 µm generalmente acquisendo la media su 20-30 misure [29].

Matrici di Risposta dell’Orbita

Se si hanno n monitor di posizione e m magneti correttori orizzontali e verticali, la

matrice di correlazione R dell’orbita è definita da:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

...

xn

y1

...

yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝ Rxx Rxy

Ryx Ryy

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θx
1

...

θx
m

θy
1

...

θy
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.3)
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Figura 4.3: Finestra del programma del sistema di controllo per la lettura delle matrici di
risposta dell’orbita.

dove θx,y
j = ec

E0

∫ Lcorr

0
∆Bcorr

y,x ds è la variazione di intensità del campo integrato del

j-esimo correttore orizzontale o verticale (pari alla variazione impressa all’angolo x′

o y′ all’uscita del correttore) e (x1 . . . xn, y1 . . . yn) è la variazione di orbita risultante

misurata agli n monitor di posizione.

Le matrici di correlazione sono utilizzate ad esempio dagli algoritmi di correzione locale

o globale dell’orbita, che calcolano l’opportuna combinazione delle intensità θx,y
j dei

correttori per ottenere le variazioni di orbita volute [25].

La matrice di risposta M dell’orbita di un anello è definita come:
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M =

⎛
⎜⎝ Mxx Mxy

Myx Myy

⎞
⎟⎠ =

⎛
⎜⎝ Rxx Rxy

Ryx Ryy

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

θx
1

. . .

θy
m

⎞
⎟⎟⎟⎟⎠ . (4.4)

La j-esima colonna della matrice M corrisponde all’orbita di risposta

(x1j · · ·xnj, y1j · · · ynj) del tipo dell’equazione (2.19), misurata variando il j-esimo ma-

gnete correttore. I blocchi incrociati Mxy e Myx danno i termini di accoppiamento, cioè

le variazioni di orbita verticale yi cambiando un correttore orizzontale θx
j e le variazioni

orizzontali xi con un correttore verticale θy
j .

Poiché ciascun elemento della matrice di risposta tramite la frequenza, la funzione e la

fase di betatrone dipende dalla configurazione dell’intero anello, le matrici di risposta

possono essere usate per ottenere informazioni sulla struttura magnetica degli anelli.

Questo argomento è trattato nel Capitolo 6.

4.2 Misure delle funzioni ottiche

Misure di Dispersione

La misura della funzione di dispersione è ricavata dall’orbita indotta da uno sposta-

mento della radio-frequenza. Una variazione della frequenza ∆fRF cambia l’energia del
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fascio della quantità1:

∆E

E0

= − 1

αc

∆fRF

fRF

. (4.5)

Combinando le equazioni (2.8) e (4.5), si può ricavare la dispersione alle posizioni dei

monitor di posizione del fascio dalla differenza di orbita misurata xε(s):

η(s) = −αc
xε(s)

∆fRF /fRF
. (4.6)

La radio-frequenza fRF = 368.259 MHz viene variata generalmente di ∆fRF = 0.010 MHz

ed è nota con un incertezza dell’ordine di 1 Hz. La differenza di orbita xε corrispon-

dente varia lungo l’anello da alcuni micron a 1 − 2 mm con un’errore dell’ordine di

5 − 10 µm.

Il valore del fattore di dilatazione viene ricavato dalla relazione [13]:

αc =
f 2

sin

f 2
riv

2πE0

h eVcav cos φsin
(4.7)

dove fsin è la frequenza di sincrotrone (un tipico valore è intorno a 30 KHz) che si

misura con l’analizzatore di spettro con un errore dell’ordine di 0.1 KHz, friv è la

frequenza di rivoluzione che è nota con un’incertezza dell’ordine di 1 Hz, h = 120

1Le oscillazioni di betatrone intorno all’orbita di riferimento non producono al primo ordine in x
e in y una variazione della lunghezza delle traiettorie. Invece la traiettoria data dalla funzione di
dispersione η(s), dovuta ad una deviazione dell’energia (vedi la (2.9)) cambia la lunghezza dell’orbita
di equilibrio.
È utile quindi definire il fattore di dilatazione αc = ∆L/L

∆E/E0
, chiamato generalmente momentum

compaction, e si trova:

αc =
∆L/L

∆E/E0
=

1
L

∮
η(s)
ρ(s)

ds .

La lunghezza dell’orbita è L = c h
fRF

, quindi ∆L/L = −∆fRF /fRF .
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è il numero armonico, Vcav cos φsin la pendenza della tensione della cavità vista dalla

particella sicrona nota con un errore del 5 % che dà quindi il contributo prevalente

all’errore su αc. Una tipica misura del fattore di dilatazione in uno degli anelli di

Dafne può dare αc = 0.020 ± 0.001.

Nella propagazione degli errori sulla misura della dispersione il contributo dovuto a

fRF è trascurabile quindi l’errore su η è:

δ(η) =

∣∣∣∣ xε

∆fRF /fRF

∣∣∣∣ δ(αc) +

∣∣∣∣ αc

∆fRF /fRF

∣∣∣∣ δ(xε) (4.8)

il primo termine è pari al 5% della dispersione (vale da pochi millimetri nei punti di

dispersione più bassa a 5 − 10 cm nei punti più alti), il secondo vale circa 7 mm.

Numero di betatrone Q

La parte frazionaria del numero di betatrone orizzontale Qx e verticale Qy è misurata

dando al fascio un’eccitazione elettromagnetica a radio-frequenza con due kickers a

stripline trasversi e misurando la risposta del fascio nel piano di eccitazione con un

monitor a bottone elettrostatico in tutto simile a quelli usati per i monitor di posizione

già descritti.

Il fascio viene eccitato a tutte le frequenze con un generatore di rumore bianco e

risponde solo alle frequenze proprie di oscillazione. Il segnale di oscillazione viene

estratto tramite degli elettrodi a bottone a banda ampia e inviato a un Analizzatore

di Spettro (sistema HP 70000). L’uscita a frequenza intermedia dell’Analizzatore è

processata da un analizzatore FFT in tempo reale HP 3587S.
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Figura 4.4: Nella finestra in alto è mostrato un esempio dello spettro delle frequenze del fascio
come viene mostrato dall’analizzatore di spettro: i due picchi corrispondono alle frequenze
di betatrone orizzontale e verticale. Nella finestra sottostante è mostrato lo spettrogramma
durante le misure delle funzioni beta: si vedono chiaramente gli spostamenti delle frequenze
di betatrone ottenuti variando l’intensità dei quadrupoli.

In figura 4.4 è riportata la rappresentazione dello spettro del fascio. La risoluzione

della misura di Q è 1 · 10−4.

Misure delle funzioni Beta

La misura della funzione di betatrone si ricava dallo spostamento della frequenza di

betatrone quando viene variato il gradiente di un singolo quadrupolo.

Nell’approssimazione per lente sottile una variazione ∆k del gradiente di un quadrupolo
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produce uno spostamento delle frequenze Qx,y [27, 14, 34] proporzionale alla funzione

beta alla posizione del quadrupolo stesso secondo la relazione:

∆Qx,y = ± 1

4π
∆kL βx,y (4.9)

dove L è la lunghezza magnetica del quadrupolo e i segni ± corrispondono rispettiva-

mente alla funzione beta orizzontale e verticale che vogliamo misurare alla posizione

del quadrupolo.

Questa relazione vale se si approssima il quadrupolo con una lente sottile, per piccole

variazioni di Q (2πQ � 1) e lontano dalle risonanze con Q interi o seminteri.

Gli spostamenti ∆Q vengono misurati variando prima di una quantità +∆I e poi −∆I

la corrente di alimentazione del quadrupolo e prendendo poi come misura della funzione

beta la media fra i valori ottenuti dalle due variazioni:

β =
1

2
(β+ + β−) . (4.10)

∆K viene cambiato variando la corrente di alimentazione in modo da avere ∆Q del-

l’ordine di 0.001-0.010 entro cui lo spostamento della frequenza di betatrone è lineare

con la variazione di corrente di alimentazione ∆I. La quantità ∆kL viene calcolata

dalle calibrazioni dei gradienti integrati dei quadrupoli [20] e ha un’incertezza relativa

di 0.1%. ∆Q viene misurato con l’analizzatore di spettro con un incertezza assoluta

pari a 1 · 10−4.

Il contributo maggiore all’incertezza sulla misura della funzione beta in un quadrupolo

viene quindi dall’approssimazione per lente sottile. Per stimare tale incertezza si può

simulare la procedura di misura con il modello di mad calcolando la differenza tra i
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valori della funzione beta cos̀ı ottenuti e quelli della macchina inperturbata. Si trova

che un valore affidabile dell’errore assoluto sulle funzioni beta misurate è 1 m in tutti

i quadrupoli. Quindi le funzioni beta nei punti di minimo, dove valgono 1− 2 m, sono

misurate con un errore relativo molto più alto che nei punti di massimo dove valgono

10 − 20 m.

4.3 Misure di emittanza

Monitor per Luce di Sincrotrone

Il Monitor per Luce di Sincrotrone (SLM) è usato per misurare le dimensioni trasverse

del fascio alla posizione del monitor.

La radiazione visibile di sincrotrone emessa dal fascio al passaggio in un magnete cur-

vante è estratta dalla camera da vuoto, tramite uno specchio raffreddato di alluminio

che assorbe la radiazione X, attraverso una finestra di silicio fuso. L’immagine del pro-

filo trasverso del fascio, dopo avere attraversato un’iride e un sistema di lenti, è messa

a fuoco su una camera a CCD PHILIPS VCM6250 e processata da un analizzatore di

immagine SPIRICON LBA-100A.

Le emittanze trasverse del fascio sono valutate direttamente dalle dimensioni orizzon-

tale e verticali, inoltre dall’immagine del profilo del fascio si può misurare la rotazione

della sezione trasversa del fascio nella posizione del magnete.

Nella figura 4.5 è riportata un’immagine del profilo trasverso del fascio dei positroni.
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Misure di emittanza

È noto dalla relazione (2.26) che le dimensioni trasverse di un fascio in un punto

dell’anello dipendono dalle funzioni ottiche e dalla dispersione di energia del fascio:

σx =

√
βxεx +

(
ηx

∆E

E0

)2

(4.11)

Nel posizione del SLM il termine proveniente dalla dispersione è trascurabile rispetto

a quello dovuto al moto di betatrone.

Dal SLM abbiamo la misura della dimensione orizzontale σx (a seconda della struttura

ottica può essere circa 2 mm con un errore tipico di 0.05 mm dovuto prevalentemente

Figura 4.5: Il profilo trasverso del fascio dei positroni come viene mostrato nello schermo
dell’analizzatore di immagine SPIRICON.
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al numero dei pixel) e del rapporto R = σy/σx (valori tipici sono dell’ordine di 0.1 con

un incertezza pari a 0.005).

Poiché εx = ε0/(1 + k) dalla (4.11) si ricavano:

ε0 = (1 + k)
σ2

x

βx
(4.12)

R =

√
k
βy

βx
(4.13)

e quindi:

k = R2

(
βx

βy

)
(4.14)

Le funzioni βx e βy nella posizione del SLM si ricavano dalle misure delle funzioni beta

nei due quadrupoli più vicini (l’andamento delle funzioni beta intorno al dipolo dove è

installato il SLM è lineare entro l’approssimazione con cui sono misurate).

k per gli anelli di Dafne è inferiore a 0.01, con un’incertezza dovuta prevalentemente alle

funzioni beta pari a 0.001. Per un’emittanza tipica di circa 1.0 mm ·mrad l’incertezza

sulla misura di ε0 dovuta ai vari contributi è circa 0.1 mm · mrad, quindi nella (4.12)

il termine dovuto al parametro k può essere trascurato.



Capitolo 5

Il modello dell’ottica lineare

con MAD

Il modello per l’ottica degli Anelli Principali di Dafne è stato sviluppato dal gruppo

di Dafne [4] usando il programma di simulazione mad ( Methodical Accelerator De-

sign [19, 21]) sviluppato presso il CERN di Ginevra. mad può descrivere l’ottica per

particelle cariche in acceleratori a gradiente alternato, può risolvere differenti tipi di

problemi: calcolo dei parametri di una struttura magnetica lineare (funzioni di beta-

trone, dispersione, parametri di accoppiamento...), raccordo (matching) di strutture

lineari, raccordo di matrici di trasferimento, calcolo di orbite chiuse...

In mad un anello viene rappresentato da sequenza di elementi fisici - magnetici (dipoli,

quadrupoli, multipoli, solenoidi...) e non (sezioni di deriva, cavità RF, monitor...) -

ciascuno dei quali è descritto da una opportuna matrice di trasporto (Appendice A).

Ogni elemento deve essere definito dai parametri fisici opportuni (la lunghezza, l’inten-

sità del campo...). Il problema fisico di questa tesi è la determinazione dei parametri

63
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che descrivono tutti gli effetti magnetici lineari per potere predire le frequenze e le

funzioni di betatrone, la dispersione, l’emittanza, il coefficiente di accoppiamento e

tutte le informazioni utili a migliorare la conoscenza e l’uso degli Anelli Principali.

Indico nel paragrafo seguente come viene caratterizzato ciascun elemento di Dafne per

la modellizzazione con mad.

5.1 Descrizione degli elementi fisici per MAD

Su ogni elemento magnetico di Dafne sono state eseguite misure in laboratorio e il cam-

po magnetico caratteristico è stato calibrato rispetto alla corrente di alimentazione [20].

Il modello per mad si basa su queste misure.

Quadrupoli e Sestupoli

I 14 Quadrupoli Grandi per anello usati negli archi acromatici e nella sezione Short

adiacente alla Regione di Interazione di Kloe hanno lunghezza magnetica1 nominale

di 29.0 cm. La dipendenza del gradiente normalizzato del quadrupolo al centro del

quadrupolo k2
quad = ec

E0

∣∣∣∂By

∂x

∣∣∣, dalle correnti di alimentazione è lineare entro i valori

delle correnti con cui sono generalmente alimentati [20]:

k2
quad (m−2) = (16.963 · |I| (A) + 5.62)/E0 (MeV ) ; I < 123 A. (5.1)

1Definiamo la Lunghezza Magnetica Lmag di un quadrupolo dalla relazione:

k2
quad · Lmag =

ec

E0

∣∣∣∣
∫ +∞

−∞

∂By

∂x
ds

∣∣∣∣ .
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Gli altri 25 Quadrupoli Piccoli installati nel resto dell’anello hanno lunghezza ma-

gnetica nominale di 30.0 cm. E il gradiente normalizzato dipende dalla corrente di

alimentazione secondo:

k2
quad (m−2) = (9.1277 · |I| (A) + 4.53)/E0 (MeV ) ; I < 304 A. (5.2)

Tutti quadrupoli sono alimentati con valori di corrente nel regime lineare ad eccezione

di quelli molto più intensi della inserzione low-beta di Dear, i quali tuttavia vengono

rappresentati nel modello in maniera differente come è descritto nel seguito.

I 16 sestupoli per anello hanno gradiente sestupolare integrato2 lineare con le correnti

di alimentazione [20]:

|ksxp| · Lmag (m−2) = (51.177|I|(A) + 49.34)/E0(MeV ) ; I < 150 A. (5.3)

Il gradiente quadrupolare o sestupolare lungo l’asse longitudinale di tali elementi è rapp-

resentato da mad con il modello rettangolare (gradiente costante per tutta la lunghezza

magnetica dell’elemento e zero fuori). La matrice di trasporto di un quadrupolo è la

(A.8) dell’Appendice A.

I sestupoli nel modello degli anelli non danno contributo all’ottica lineare, nel caso

reale però compaiano (deboli) termini di quadrupolo nel caso in cui l’orbita passi fuori

dall’asse dei magneti3. Per questo si ha cura di correggere l’orbita nei sestupoli quando

vengono accesi.

2Definito come:

ksxp · Lmag =
ec

E0

∫ +∞

−∞

∂2By

∂x2
ds .

3Vedi Nota pagina 43.
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Dipoli Curvanti e Splitter

I parametri nominali con cui i dipoli curvanti e gli splitter sono definiti in mad sono

riportati nella tabella 5.1.

Tipo Ldes (m) gap (cm) α (o) ρ (m) e1/ e2 (o) fint
Settore Short 0.990 7.56 40.50 1.401 0.00/0.00 1.2
Rettangolare Short 0.990 7.56 40.50 1.401 20.25/20.25 1.2
Settore Long 1.210 7.56 49.50 1.401 0.00/0.00 1.2
Rettangolare Long 1.210 7.56 49.50 1.401 24.75/24.75 1.2
Splitter 1.450 7.53 9.00 9.495 -0.25/9.00 1.5

Tabella 5.1: Parametri nominali dei dipoli degli Anelli Principali con cui devono definiti in
mad. L è la lunghezza magnetica di progetto, gap è l’ampiezza del traferro, α è l’angolo di
deflessione impresso dal magnete, ρ è il raggio di curvartura della traiettoria nel magnete,
e1/e2 sono gli angoli nel piano orizzontale con cui la traiettoria nominale del fascio entra/esce
rispetto alla normale della faccia laterale del magnete (Figura A.1), fint è l’integrale primo
del campo normalizzato definito dalla (A.5).

Tuttavia nelle condizioni operative di Dafne alcuni dei parametri che descrivono real-

mente la struttura degli anelli si scostano dai valori teorici. Una asimmetria destra-

sinistra nella struttura di un magnete (§ 3.5), una divergenza locale della traiettoria,

una differenza tra la lunghezza magnetica e la lunghezza della traiettoria reale, possono

tutte essere cause di effetti focheggianti aggiuntivi nei vari magneti.

Nei parametri e1 e e2 e nella correzione del focheggiamento verticale fint, definiti per

un dipolo ideale in § A, si possono però inglobare tutti questi effetti localizzati nelle

regioni dei campi di bordo e rappresentarli su ciascuna delle facce laterali dei magneti

tramite una lente sottile (Equazione A.6).

Nel paragrafo § 3.5 abbiamo descritto come i gradienti integrati dei magneti curvanti

e degli splitter, a causa di asimmetrie, siano diversi da quelli teorici e che in tutti i

quattro tipi di dipoli curvanti la differenza è nel verso di dare contributo focheggiante
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orizzontale .

Inoltre dalle misure magnetiche è noto che la lunghezza magnetica misurata dei dipoli

curvanti differisce da quella di progetto di circa 1 cm (vedi Tabella 3.2), nel verso

di aumentare il focheggiamento orizzontale nei dipoli rettangolari e di diminuirlo nei

dipoli a settore4 (l’ordine di grandezza di tale contributo è di un ordine di grandezza

inferiore rispetto a quello delle asimmetrie di campo).

Nella tabella 5.2 sono riportate le correzioni agli angoli dovuti alle asimmetrie di campo

e alle differenze di lunghezza magnetica.

Tipo e1/e2 (rad) ∆e1/∆e2 (rad) ∆e1,2 (rad)
Settore Short 0.00/0.00 -0.015/-0.015 0.004
Rettangolare Short 0.353/0.353 -0.043/-0.043 -0.001
Settore Long 0.00/0.00 -0.007/-0.007 0.002
Rettangolare Long 0.432/0.432 -0.042/-0.042 -0.002
Splitter -0.004/0.157 0.120/-0.023 0.001

Tabella 5.2: Gli angoli nominali di entrata/uscita e1/e2, le correzioni ∆e1/∆e2 dovute alle
asimmetrie del campo e le ulteriori correzioni ∆e1,2 dovute alla differenza tra la lunghezza
magnetica misurata e quella di progetto.

Riguardo invece a scostamenti del valore degli angoli di entrata della traiettoria nei

magneti dovuti all’orbita (la traiettoria di equilibrio chiusa che dipende dalla struttura

magnetica di tutto l’anello) non si può avere nessuna misura diretta in quanto occor-

rerebbero due monitor di posizione consecutivi tra ogni dipolo e il successivo elemento

magnetico. Inoltre i campi di bordo dei dipoli possono far cambiare localmente la di-

vergenza della traiettoria anche di 10−20 mrad, sufficienti quindi a dare una correzione

al focheggiamento paragonabile con quella delle asimmetrie del campo.

4Dalle A.6-A.7 dell’Appendice A una differenza ∆L = Lmag − Ldes equivale, nell’elemento di
matrice M bend

21 che dà il termine focheggiante, a una variazione ∆e1 = ∆e2 ≈ ∆L
2L .
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Wiggler

Il campo di ogni polo del wiggler è descritto in mad con un modello a gradini (figura

5.1). In mad ogni polo è rappresentato tramite tre dipoli, quelli laterali con campo e

lunghezza magnetica la metà di quello centrale.

Ogni dipolo è definito come un magnete a settore inserito tra due lenti sottili che

riproducono il focheggiamento verticale e orizzontale. La correzione al focheggiamento

verticale dovuta all’integrale primo del campo fint è usata solo nei dipoli centrali di

ogni polo dove la curvatura è maggiore.

Il valore dei due parametri e1 e2 è la metà dell’angolo di curvatura di ciascuno dei

dipoli rettangolari in cui abbiamo ripartito il wiggler. A tale valore viene sommato il

Figura 5.1: Il modello del campo del wiggler.
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contributo quadrupolare efficace ∂2By

∂x2 x dovuta al passaggio fuori asse della traiettoria

ondulata in presenza di termini sestupolari5. Questo ha segno costante lungo il wiggler

(Figura 5.2) nel verso di aumentare il focheggiamento verticale. Il valore integrato

(0.58 T ) di tale contributo quadrupolare ripartito polo per polo viene distribuito su

ciascuna delle lenti sottili all’entrata e all’uscita dei singoli poli aumentando i valori di

e1, e2 del 25% [12]. Infine come nei magneti curvanti anche nei wiggler si deve tenere

conto di correzioni ai termini focheggianti dovuti allo scostamento dell’orbita del fascio

dalla traiettoria nominale.

Solenoide di KLOE e Compensatori

Nel modello di mad ciascun magnete solenoidale è ripartito in sezioni di 3 cm di

lunghezza, con campo longitudinale che varia secondo le misure del campo magnetico

solenoidale lungo l’asse. La matrice con cui è rappresentata ogni sezione è la (A.12)

nell’Appendice.

Quadrupoli Permanenti in IR1

I due tripletti di quadrupoli della Regione di Interazione di Kloe sono immersi nel

campo solenoidale del rivelatore. Ciascun quadrupolo ruotato è rappresentato in mad

come una sequenza di lenti sottili, alternate con le sezioni lunghe 3 cm del magnete

solenoidale di Kloe. Ciascuna lente ha un’intensità che varia secondo il gradiente

misurato lungo l’asse di ciascuno dei tre tipi di quadrupoli.

5Vedi Nota pagina 43.
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I Quadrupoli in IR2

I sei quadrupoli della seconda Regione di Interazione sono di due tipi: due piccoli e

quattro con apertura larga. Il passaggio fuori dall’asse dei quadrupoli, dovuto all’an-

golo di incrocio tra le traiettorie dei due fasci, porta alla presenza di termini dipolari.

In mad quindi questi quadrupoli vengono rappresentati come magneti dipolari con un

termine di quadrupolo. La matrice di trasporto della IR2 è stata prima calcolata in-

tegrando la traiettoria fuori asse e considerando anche i campi di bordo ricavati dalle

misure magnetiche [4]. Il valore del campo e del gradiente inseriti nel modello sono

quelli che meglio riproducono la matrice di trasferimento cos̀ı ottenuta.

5.2 Il modello di MAD

La modellizzazione degli anelli di Dafne si basa sulle misure magnetiche eseguite sugli

elementi. I parametri che non si possono conoscere da queste o altre misure dirette si

devono ricavare indirettamente dalle misure ottiche.

Nel modello i valori degli angoli di entrata e di uscita nei dipoli curvanti, negli splitter e

nei wiggler vengono aggiustati con un fit delle misure della dispersione e delle funzioni

di betatrone, che può essere eseguito usando alcuni comandi di mad. Riporto di seguito

il procedimento con cui ho sviluppato un modello che riproducesse l’ottica dell’anello

degli elettroni del 13 maggio 2000.

Il precedente modello era stato calcolato per riprodurre una diverso punto di lavoro

con una diversa orbita di riferimento. Utilizzava calibrazioni dei quadrupoli diverse da
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Modello mad elettroni 13 maggio 2000
Parametri valore valore
del fit nominale mad
QUAI1K01/6 1.000 0.985
QUAI1K02/5 1.000 1.001
QUAI1K03/4 1.000 1.035
QUAI2001/7 1.000 0.971
QUAI2002/6 1.000 0.978
QUAI2003/5 1.000 0.939
∆E1,2 SLS (rad) -0.010 0.046
∆E1,2 PES (rad) -0.044 -0.032
∆E1,2 SLL (rad) -0.004 0.022
∆E1,2 PEL (rad) -0.022 -0.041
Fint SLS 1.05 1.04
Fint PES 1.15 0.45
Fint SLL 1.09 0.48
Fint PEL 1.18 0.48
∆E1 SPLI1001 (rad) 0.000 -0.076
∆E1 SPLI1002 (rad) 0.000 -0.015
∆E1 SPLI2001 (rad) 0.000 -0.007
∆E1 SPLI2002 (rad) 0.000 -0.057
Poli Int. Wiggler 1.00 1.087
Poli Term. Wiggler 1.00 0.622
Fint Wiggler 0.00 0.004

Tabella 5.3: I parametri ricavati dal fit delle misure del 13 maggio 2000 delle funzioni e
delle frequenze di betatatrone e della dispersione dell’anello degli elettroni. Le calibrazioni
dei quadrupoli degli archi non sono state variate. QUAI1K01-6 indicano le calibrazioni dei
magneti permanenti della IR1, QUAI2001-7 indicano le calibrazioni dei magneti della IR2,
∆E1,2 SLS etc. e Fint SLS etc. le correzioni aggiuntive agli angoli di entrata/uscita e i fint dei
dipoli curvanti Sector-Like/Parallel-End Short e Long, ∆E1 SPLI1001-2002 le correzioni agli
angoli di entrata degli splitter Poli Int. e Poli Term. le calibrazioni dei termini di quadrupolo
lente sottile nei poli interni e nei poli terminali dei wiggler.
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quelle delle misure magnetiche, ottenute da un fit delle funzioni ottiche.

Ho invece scelto di usare come punto di partenza un modello che utilizzasse le cali-

brazioni dei quadrupoli, i valori degli angoli di entrata e di uscita nei dipoli curvanti

e nei wiggler uguali a quelli ricavati dalle misure magnetiche che ho discusso in § 3.5.

Magneti distinti della stessa famiglia sono descritti come identici.

Con i valori iniziali dei parametri ottenevo funzioni ottiche non verosimili fisicamente.

Con i parametri riportati nella tabella 5.3 ho quindi eseguito un fit delle misure delle

funzioni beta nei punti di massimo (in cui le misure hanno errore relativo piò basso)

e della dispersione nei intorno ai Punti di Interazione (dove la dispersione è bassa e

l’errore è minore) eseguite sull’anello degli elettroni il 13 maggio 2000. Le funzioni di

betatrone e la dispersione riprodotte dal modello dopo il fit di mad sono riportate e

messe a confronto con quelle predette dopo il fit di loco nel capitolo successivo.

5.3 Necessità di un modello più accurato

L’accuratezza del modello cos̀ı calcolato dipende dalle incertezze sulle misure da cui

lo abbiamo ricavato, e le misure delle funzioni di betatrone hanno errori relativi non

inferiori al 5-10%. Un insieme di misure di beta e dispersione corrispondenti a una

struttura può essere facilmente riprodotta da un fit con mad. Poichè il numero di

parametri è uguale o spesso maggiore del numero di misure è sempre possibile ot-

tenere un buon accordo con l’insieme di misure scelte. Questo non significa però che i

parametri trovati corrispondano agli elementi reali degli Anelli. Se ad esempio non si

aggiungono come vincolo del fit i numeri di betatrone misurati, questi non sono gene-
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ralmente ben riprodotti dal modello cos̀ı ottenuto.

Per verificare quanto i parametri del modello siano in accordo con le caratteristiche

magnetiche reali degli anelli si può testare il modello trovato su diversi insiemi di mi-

sure corrispondenti a altri punti di lavoro e configurazioni.

Generalmente è necessario iterare la procedura di fit usando diversi insiemi di misure

fino a trovare dei valori “medi” dei parametri che riproducono abbastanza bene tutte

le configurazioni [4].

L’utilità di un modello “medio” è quello di avere un unico strumento per trattare punti

di lavoro e configurazioni abbastanza differenti. Il prezzo è che nella semplificazione

con cui abbiamo descritto gli Anelli si perdono informazioni importanti come ad esem-

pio la dipendenza dell’ottica dall’orbita di riferimento scelta. Inoltre descrivendo con

parametri identici tutti gli elementi di una stessa famiglia di magneti non si ha la pos-

sibilità di considerare differenze sensibili che possono essere presenti fra di essi.

Infine poichè l’accoppiamento è stato corretto entro o meglio dei valori di progetto, le

perturbazioni dovute alle deboli sorgenti residue di accoppiamento sulle funzioni ot-

tiche dei due modi disaccoppiati sono molto piccole. Il fit delle funzioni di betatrone

e della dispersione non può quindi riprodurre accuratamente l’accoppiamento e non si

possono individuare le sorgenti se non dall’analisi delle matrici di risposta dell’orbita

(§ 4.1) ciascuna delle quali contiene migliaia di dati sull’intera struttura magnetica del-

l’anello con un’accuratezza molto maggiore di quella delle misure delle funzioni beta.

L’analisi delle matrici di risposta è stato eseguita con il programma loco ed è descritta

nel capitolo seguente.

Prima però di procedere all’utilizzo di loco ho portato alcuni miglioramenti nella

descrizione dei wiggler e degli splitter nel modello di mad.
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Wiggler

Nel modello già utilizzato gli angoli di entrata e uscita in ciascuno dei dipoli in cui è

stato ripartito ogni polo del wiggler sono la metà dell’angolo di deflessione del dipolo.

In realtà la traiettoria entra ed esce in ogni dipolo con due angoli differenti: ad esempio

entra nel primo dipolo terminale perpendicolarmente alla faccia laterale (e1 = 0) ed

esce con un angolo pari alla deflessione del dipolo, entra nel secondo dipolo con un

angolo negativo ed esce con un angolo positivo pari alla alla deflessione totale dei primi

due dipoli e cos̀ı via.

In secondo luogo il contributo di quadrupolo efficace dovuto al sestupolo era introdot-

Figura 5.2: Termine quadrupolare efficace lungo la traiettoria all’interno del wiggler (Figu-
ra 3.13) dovuto al termine sestupolare lungo l’asse (Figura 3.15). Dà un contributo
focheggiante verticale in tutti i poli.
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to aumentando il focheggiamento dei campi di bordo di ciascun dipolo. In realtà il

contributo di quadrupolo è distribuito abbastanza uniformemente anche all’interno di

ciascun dipolo (Figura 5.2).

Tenendo conto di queste due caratteristiche, ho disegnato un nuovo modello dei wiggler

con gli angoli di entrata e uscita nominali della traiettoria calcolati per ciascun dipolo.

Il contributo del quadrupolo efficace è invece descritto nei dipoli centrali di ciascun

polo come un gradiente uniforme, ∂By

∂x
· Ldip =

∫
dip

B1(z) dz, e il valore del quadrupolo

efficace integrato sui dipoli più corti è introdotto con due lenti sottili poste sui picchi

di figura 5.2. Nei “semipoli” terminali ho messo semplicemente due lenti sottili nella

posizione dei due picchi.

La calibrazione del quadrupolo efficace nei poli negativi, nei poli positivi e nei poli

terminali è descritta da tre parametri indipendenti per tenere meglio conto delle vari-

azioni con gli spostamenti della traiettoria.

Splitter

Ho corretto i valori degli angoli e1,2 secondo la tabella 5.2. I vecchi angoli erano dedot-

ti dalle caratteristiche geometriche della traiettoria negli splitter (Figura 3.8) mentre

quelli nuovi tengono conto delle misure del gradiente trasverso dovuto all’avvolgimento

vicino nella regione dei campi di bordo.

Ho tenuto conto della presenza del termine di sestupolo in questi magneti, introducendo

un quadrupolo skew lente sottile di intensità pari al sestupolo integrato per lo sposta-

mento verticale della traiettorie nello splitter : ∂By

∂y
· L = (

∫
2 B2 dz) · ∆y. Questo

termine è una piccola sorgente di accoppiamento.



Capitolo 6

Ottimizzazione del modello

con LOCO

La misura delle matrici di risposta delle orbite (Capitolo 4) può essere utile per cali-

brare in modo accurato l’ottica lineare di un acceleratore circolare. Nel 2000 è stato

introdotto l’uso di loco a Dafne ( Linear Optics from Closed Orbit) [24]: un codice

fortran sviluppato da James Safranek presso lo NSLS X-Ray Ring di Brookhaven per

determinare i campi e i gradienti degli elementi magnetici, e la calibrazione e le ro-

tazioni intorno alla direzione longitudinale del fascio dei correttori e dei monitor di

posizione del fascio (BPM).

Il lavoro di debugging del codice è stato svolto da Catia Milardi. Con lei ho in seguito

collaborato per adattare il programma al modello di Dafne.

La matrice di risposta per ciascuno dei due anelli di Dafne è data dallo spostamento

di orbita misurato in 33 monitor orizzontali e 33 verticali per ciascuno dei 31 magneti

correttori orizzontali e 31 verticali: 4092 punti misurati con un’accuratezza inferiore ai

76
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Figura 6.1: Un esempio di convergenza ottenuta con loco dell’orbita verticale dovuta al
correttore verticale CVVES101 dell’anello degli elettroni. Gli errori sulle misure sono inferiori
a 10 µm come detto in § 4.1.

10 µm che dipendono dalla struttura magnetica dell’intero anello.

Le misure nei monitor delle due Regioni di Interazione non sono state considerate per

il fit poichè, a causa del passaggio del fascio fuori dall’asse della camera da vuoto, la

nonlinearità della risposta dei monitor è maggiore e quindi la calibrazione con cui è

misurata la posizione è meno precisa.

Per questa tesi ho analizzato misure acquisite fra marzo e ottobre 2000.

6.1 Modello dalle Matrici di Risposta

Dati i campi magnetici e i gradienti dei magneti di un anello di accumulazione, è pos-

sibile calcolare la matrice di risposta dalle equazioni (2.19) e (4.4). L’analisi di loco

rovescia questo processo e calcola la struttura magnetica di un anello data la matrice
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di risposta. Per fare ciò i parametri descrittivi del nostro modello per mad vengono

variati da loco fino a che le orbite della matrice calcolata riproducono con ragionevole

accuratezza quelle della matrice misurata. La figura 6.1 mostra ad esempio la conver-

genza ottenuta per l’orbita dovuta a uno dei correttori.

Prima di parlare della convergenza ottenuta è importante dire che l’accuratezza con

cui sono misurate le orbite eccede di gran lunga l’accuratezza con cui un modello per

l’ottica lineare di Dafne deve riuscire a riprodurle.

La presenza di componenti magnetiche nonlineari lungo gli anelli alcune delle quali non

del tutto note, il campo dei dipoli correttori e l’eventuale passaggio dell’orbita di rife-

rimento fuori dall’asse dei quadrupoli, l’influenza dei campi dispersi dei magneti della

linea di trasferimento degli elettroni o di un anello rispetto all’altro, sono effetti non

compresi nel modello che danno sicuramente contributi sulle orbite di risposta misurate

dell’ordine di alcuni micron1 .

Osservando come si distribuiscono gli scarti tra il modello e le misure si può fare una

stima ragionevole sulla propagazione degli errori sistematici sui parametri del modello

come è riportato nel seguito.

L’utilità del modello non deve essere quello di calcolare le orbite di risposta. Esso deve

costituire uno strumento utile per la messa a punto dell’ottica e per la ricerca di nuovi

punti di lavoro della macchina.

I parametri del modello di mad sono variati in maniera da minimizzare la deviazione χ2

1Per valutare l’ordine di grandezza del contributo che tutti questi effetti possono dare alle orbite
di risposta, si possono ad esempio confrontare più orbite di risposta acquisite intorno a orbite di
riferimento diverse, oppure calcolare con mad le orbite di risposta simulando la presenza di nonlinearità
magnetiche e di errori di campo distribuiti casualmente.
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tra la matrice di risposta misurata e quella del modello (Mmis e Mmod).

χ2 =
∑
i,j

(Mmod
ij − Mmis

ij )2

σ2
i

:=
∑

k

B2
k ; (6.1)

dove la somma è sui 31 correttori orizzontali e verticali di Dafne e sui 41 monitor di

posizione orizzontali e verticali; σi sono gli errori casuali dovuti al rumore dell’elettron-

ica di acquisizione misurati per ciascun monitor (§ 4.1).

Il vettore Bk, con k = 1, 2, · · · , 2n × 2m che ordina tutti gli elementi di Mij , ha 4092

punti, uno per ogni elemento della matrice di risposta. Minimizzare χ2 è equivalente a

minimizzare il modulo del vettore Bk. Si parte da dei valori iniziali dei parametri del

modello, XN , che danno il vettore iniziale Bk0; loco trova le variazioni ∆XN che azzer-

ano meglio l’equazione Bk0 + ∆Bk = 0. Assumendo piccole variazioni dei parametri,

Bk può essere presa come una funzione lineare in XN , ∆Bk = ∂Bk

∂XN
∆XN . Il sistema di

equazioni da risolvere per minimizzare χ2 è dunque:

Bk +
∑
N

∂Bk

∂XN
∆XN = 0 . (6.2)

Si tratta quindi di risolvere un problema lineare di minimi quadrati con un numero

elevato di parametri da calcolare. loco usa il metodo di minimizzazione della scom-

posizione in valori singolari (Singular Value Decomposition2: SVD).

Poiché la dipendenza delle orbite dai gradienti dei quadrupoli e dagli altri parametri

non sarà generalmente lineare, loco deve essere iterato più volte fino a che non con-

verge ai migliori parametri XN per il modello.

Per minimizzare le incertezze sui parametri calcolati, il numero di gradienti incogniti da

2Vedi Appendice B.
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calcolare dovrebbe essere minimizzato. Errori di gradiente possono provenire da errori

nei quadrupoli o da spostamenti dell’orbita chiusa nei sestupoli. Le misure analizzate

sono quindi state acquisite con i sestupoli e i quadrupoli skew spenti.

Per gli anelli di Dafne i parametri del fit che ho variato con loco sono i gradienti nor-

mali di ciascuno dei quadrupoli, gli angoli di entrata e uscita della traiettoria rispetto

alle facce laterali dei magneti curvanti, i gradienti efficaci dei wiggler, le calibrazioni dei

solenoidi di Kloe e dei compensatori, le calibrazioni dei BPM e dei magneti correttori,

gli errori di rotazione dei BPM e dei correttori.

A questi si possono aggiungere gli errori di rotazione dei quadrupoli che però non da-

vano un contributo significativo alla convergenza del fit per Dafne e finivano spesso

per aumentare la degenerazione delle soluzioni. Perciò non ho considerato le rotazioni

dei quadrupoli, ad eccezione degli offset di rotazione dei due tripletti di quadrupoli

permanenti dentro Kloe che sappiamo essere non trascurabili.

Inoltre, analogamente all’X-Ray Ring di Brookhaven [24] per cui è stato sviluppato lo-

co, ho osservato che le orbite di risposta dei magneti correttori vicino ad altro materiale

ferromagnetico erano quelle con il fit peggiore. Nel caso di Dafne corrispondevano in

genere ai correttori adiacenti ai dipoli curvanti e agli splitter. Questi correttori hanno

campi di bordo molto allungati che facilmente vengono catturati dai ferromagneti dei

dipoli. L’effetto è quello di aumentare l’intesità dei correttori e di spostarne il centro

magnetico dal centro meccanico. Ho perciò preso in considerazione questo fenomeno

variando anche la posizione dei centri magnetici dei correttori.

Tutti questi parametri non erano però sufficienti a riprodurre i termini di accoppiamen-

to delle matrici risposta. Sapevamo infatti che l’accoppiamento osservato a Dafne non

era originato solo dalle rotazioni dei tripletti dei quadrupoli dentro Kloe e dai solenoidi

della IR1. Variando la posizione verticale del fascio o intorno a IR1 o intorno a IR2 si
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è più volte osservato una variazione dell’accoppiamento analoga nelle due Regioni di

Interazione sia per i positroni sia per gli elettroni [15]. Questa osservazione suggeriva

la presenza di sorgenti di accoppiamento presenti in entrambe le Regioni di Interazione

o vicino ad esse.

Gli elementi magnetici comuni alla struttura delle due Regioni sono solo gli splitter,

che hanno un termine sestupolare noto, come già accenato nel capitolo 3, ma non suf-

ficiente a giustificare le nostre misure.

L’ipotesi fatta da me è stata che potessero essere i magneti correttori “C” la sorgente

di accoppiamento. Questi magneti posizionati di seguito agli splitter fuori dalle Re-

gioni di Interazione sono utilizzati per aggiustare l’incrocio orizzontale dei fasci e la

separazione intorno ai Punti di Interazione.

Introducendo come parametri del modello un quadrupolo skew nella posizione dei ma-

gneti “C”, le orbite accoppiate venivano molto ben riprodotte dal fit di loco.

In seguito ho trovato che questo termine quadrupolare skew efficace è dovuto al pas-

saggio del fascio fuori dall’asse di tali magneti in presenza di un termine di sestupolo

non trascurabile. Nel Capitolo 7 è descritta dettagliatamente questa sorgente di ac-

coppiamento nei cosiddetti correttori “C”.

Complessivamente sono stati variati 251 parametri (tabella 6.1) per riprodurre 4092

elementi di ciascuna matrice di risposta dei due anelli di Dafne.

Nei seguenti paragrafi è discusso l’accordo fra i modelli per i due anelli e i dati misurati,

e entro quali limiti le calibrazioni, le rotazioni e gli altri parametri calcolati corrispon-

dono ai valori reali degli elementi di Dafne.
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Parametro variato numero
Calibrazioni Gradienti Quadrupoli archi 39
Calibrazioni Gradienti Quadrupoli IR 6
Rotazioni Tripletti IR1 2
Guadagni BPM 33
Rotazioni BPM 33
Calibrazioni Magneti Correttori 31
Rotazioni Magneti Correttori 31
Centri Longitudinali Magneti Correttori 31
Angoli entrata/uscita Dipoli e Splitter 12
Fint Dipoli e Wiggler 13
Gradienti efficaci Wiggler 3
Calibrazioni Solenoidi Kloe e Compensatori 3
Quadrupoli normali efficaci “C” 4
Quadrupoli skew efficaci “C” 4
Totale parametri variati 251

Tabella 6.1: I parametri del fit di loco.

6.2 Analisi degli errori

Gli errori casuali sui dati misurati, come il rumore casuale sulle misure delle matrici di

risposta, si propagano in modo noto sull’incertezza dei parametri calcolati dal fit e si

possono ad esempio calcolare analiticamente come fa il programma loco utilizzando

la relazione (B.5). Gli errori sistematici invece — e in un sistema complesso come

un anello di accumulazione di Dafne è impossibile eliminarli tutti — influenzano il fit

in maniera non prevedibile a priori, cosicché può essere difficile valutare il grado di

incertezza dei parametri calcolati.
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Errori casuali e scomposizione in valori singolari

Il numero di punti dati, 4092, è molto maggiore del numero di parametri del modello,

251, ma questo non basta per essere sicuri dell’unicità della soluzione trovata.

Un criterio per valutare l’unicità si ricava dai cosiddetti valori singolari con cui è costru-

ita la soluzione del sistema lineare (6.2). Il metodo di scomposizione in valori singo-

lari (Appendice B), costruisce la soluzione come somma di tante combinazioni lineari

ortogonali fra loro dei valori dei parametri del fit, una per ogni valore singolare dell’e-

quazione (B.2). La presenza di autovalori molto piccoli è indice di degenerazione nella

soluzione del sistema. Ho dovuto quindi stabilire una soglia per il mio problema sotto la

quale scartare i contributi alla soluzione che introdurrebbero errori di approssimazione.

Una singolarità della matrice ∂Bk/∂Xn è nota a priori e corrisponde al fatto che se

le calibrazioni dei correttori sono moltiplicate per un fattore costante e i guadagni

dei BPM sono scalati in modo inverso si ottiene la stessa matrice di risposta. L’au-

tovalore corrispondente a tale singolarità è ben riconoscibile in questo caso, essendo

quasi 10 ordini di grandezza minore del successivo autovalore più piccolo. Eliminando

solo questo valore singolare, loco trovava soluzioni non verosimili fisicamente, se-

gno della presenza di ulteriori degenerazioni più difficili da individuare. Per stabilire

la soglia sotto cui scartare i valori singolari sono partito da un valore molto basso

(sogliaSV D ≡ autovalmin/autovalmax = 10−4) e la ho via via alzata dopo varie prove

fino ad ottenere una buona convergenza del modello con valori dei parametri verosimili

fisicamente e che dessero soluzioni delle funzioni ottiche (funzioni beta, dispersione,

frequenze di betatrone) in accordo con quelle misurate (sogliaSV D = 10−2).

Ho ottenuto che gli autovalori da scartare erano circa 40. L’interpretazione che ho

dato per giustificare la presenza di tali degerazioni nella matrice ∂Bk/∂Xn è che cor-
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rispondano al fatto che quando tra un BPM e il successivo sono inseriti più di un

elemento magnetico (quadrupoli o dipoli), possono esistere più combinazioni dei rela-

tivi parametri del fit che generano proprietà focheggianti molto simili. Per esempio

aumentare l’intensità di un quadrupolo defocheggiante o l’angolo di entrata della tra-

iettoria in un dipolo poco distante, può avere effetti molto simili sull’ottica dell’anello.

A conferma che è la presenza di tali parametri a creare degenerazioni nella soluzione,

ho osservato che lasciando un solo parametro da variare tra un BPM e il successivo,

non si trovano queste degenerazioni (si ha però una convergenza leggermente peggiore,

come mi potevo attendere).

Errori sistematici

La valutazione degli errori sistematici presenta problemi più complessi. Una fonte nota

di errori sistematici nelle misure è la nonlinearità della risposta dei BPM. Aumentando

le variazioni dei correttori per ottenere orbite della matrice di risposta più ampie, si

migliora il rapporto tra segnale e rumore delle misure. Dall’altra parte però si intro-

ducono maggiori errori sistematici dalla nonlinearità dei BPM e si aumentano tutti gli

effetti non descritti dal modello dell’ottica lineare citati in § 6.1. Facendo alcune prove

e confronti si trova il compromesso migliore con orbite di risposta di ampiezza 2 mm:

con queste orbite le nonlinearità dei BPM sono trascurabili rispetto al livello medio del

rumore delle misure di circa 0.010 mm.

Prima del fit lo scarto quadratico medio tra Mmod e Mmis per entrambi gli anelli era

circa 0.15 mm con χ2 iniziale dell’ordine di 106, dopo il fit si converge sia per i positroni

che per gli elettroni a uno scarto quadratico medio di circa 0.020 mm corrispondente
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a χ2 ≈ 25000 per 3841 gradi di libertà.

Questo significa che gli errori sistematici nella descrizione ottenuta dal modello danno

un contributo sui parametri del fit confrontabile con quello degli errori casuali.

Per dare una valutazione degli errori complessivi sui parametri del fit dovuti alla

propagazione degli errori casuali e sistematici, ho osservato che gli scarti tra modello

e misure sono distribuiti in maniera uniforme sia per i monitor che per i correttori:

nella figura 6.2 è riportata la media dei residui per ciascun monitor di posizione di

Figura 6.2: La media dei residui del fit di loco nel caso dei positroni del 13 maggio 2000
per ciascuno dei 33 monitor di posizione orizzontali e verticali.
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una delle matrici di risposta analizzate. Questo confermerebbe che gli effetti trascurati

nel modello dell’ottica lineare di Dafne sono distribuiti in maniera piuttosto uniforme

lungo gli anelli.

Una stima degli errori dei parametri si può ottenere aumentando gli errori casuali σi

nell’equazione (6.1) di un fattore di scala S definito come:

S =
√

χ2/(N − M) (6.3)

con N numero di dati, 4092, M numero di parametri del modello, 251, e calcolando

nuovamente la propagazione degli errori sui parametri del modello. Le incertezze cos̀ı

stimate per ciascun tipo di parametro sono riassunte nella tabella 6.2.

Parametro Variazione
Gradienti Quadrupoli archi 0.05 %
Gradienti Quadrupoli IR 0.5 %
Rotazioni Quadrupoli IR1 2 mrad
Angoli entrata/uscita Dipoli 1 mrad
Angoli entrata/uscita Splitter 3 mrad
Gradienti efficaci Wiggler 1 %
Fint Dipoli Splitter e Wiggler 5 %
Solenoide Kloe 0.2 %
Solenoidi Compensatori 0.4 %
Guadagni BPM 1 %
Rotazioni BPM 4 mrad
Calibrazioni Magneti Correttori 1 %
Rotazioni Magneti Correttori 5 mrad
Centri Longitudinali Magneti Correttori 1 cm

Tabella 6.2: Errori quadratici medi dei parametri del fit per i positroni e per gli elettroni
dovuti sia al rumore casuale delle misure sia agli errori sistematici del modello.

Le due analisi della matrice dei positroni e di quella degli elettroni si confermano fra

loro, infatti forniscono gli stessi valori per i parametri relativi agli elementi in comune
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fra i due anelli (solenoidi e i tripletti dei quadrupoli delle due Regioni di Interazione)

con scarti dell’ordine degli errori calcolati analiticamente e danno risultati analoghi per

il resto dei due anelli.

Infine un criterio per valutare se, nonostante non si possano eliminare tutte le cause di

errori sistematici nel modello, i risultati dell’analisi delle matrici di risposta corrispon-

dano realmente agli anelli di Dafne, è quello di confrontarli con misure indipendenti da

quelle delle orbite da cui sono stati ricavati: misure magnetiche, funzioni e numero di

betatrone, dispersione, emittanze e accoppiamento, confermano che i parametri del fit

sono consistenti. Queste misure sono discusse nel paragrafo seguente.

6.3 Risultati

Per Dafne ho analizzato due diverse matrici di risposta per ciascuno dei due anelli degli

elettroni e dei positroni misurate su differenti punti di lavoro della macchina e intorno

a diverse orbite di riferimento.

I parametri degli anelli di Dafne che riproducono meglio le matrici di risposta, predicono

accuratamente anche l’emittanza, il coefficiente di accoppiamento, la dispersione, le

funzioni e le frequenze di betatrone misurate.

Le frequenze di betatrone sono generalmente riprodotte entro uno scarto di 0.005,

migliorando di un ordine di grandezza la precisione con cui sono riprodotte dal fit delle

funzioni beta e della dispersione che si può fare con mad [4].

L’emittanza e il coefficiente di accoppiamento sono predetti entro gli errori di misura.

Nelle pagine seguenti sono riportate le distribuzioni dei residui del modello per le

quattro matrici di risposta analizzate. Tali distribuzioni sono ben riprodotte dalla
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Anello elettroni 13 maggio 2000
punto di lavoro misure modello iniziale modello loco
Qx 5.1143 5.1185 5.1176
Qy 5.1450 5.1492 5.1468
ε0 0.80 ± 8 0.85 0.81
k 0.003 ± 1 0.0004 0.0025
χ2 / gdl matrici risposta 23725 / 3841
χ2 / gdl beta x 20.6 / 45
χ2 / gdl beta y 28.6 /45
χ2 / gdl dispersione 43.3 / 47

Tabella 6.3: Numeri di betatrone, emittanza e accoppiamento dell’anello degli elettroni del
13 maggio 2000.

Figura 6.3: La distribuzione dei residui prima e dopo il fit della matrice di risposta degli
elettroni del 13 maggio 2000.
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Figura 6.4: Gli scarti fra le funzioni di betatrone e la dispersione misurate e quelle calcolate
dal modello, prima e dopo la convergenza di loco.
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Anello elettroni 27 marzo 2000
punto di lavoro misure modello iniziale modello loco
Qx 5.1500 5.1320 5.1520
Qy 5.2140 5.2203 5.2097
ε0 0.80 ± 8 0.87 0.79
k 0.010 ± 2 0.0004 0.008
χ2 / gdl matrici risposta 27363 / 3841
χ2 / gdl beta x 23.1 / 45
χ2 / gdl beta y 35.7 /45
χ2 / gdl dispersione 46.6 / 47

Tabella 6.4: Numeri di betatrone, emittanza e accoppiamento dell’anello degli elettroni del
27 marzo 2000 dell’anello degli elettroni.

Figura 6.5: La distribuzione dei residui prima e dopo il fit della matrice di risposta degli
elettroni del 27 marzo 2000.
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Figura 6.6: Gli scarti fra le funzioni di betatrone e la dispersione misurate e quelle calcolate
dal modello, prima e dopo la convergenza di loco.
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Anello positroni 13 maggio 2000
punto di lavoro misure modello iniziale modello loco
Qx 5.1564 5.1416 5.1660
Qy 5.2078 5.2113 5.2101
ε0 1.00 ± 10 0.92 0.95
k 0.002 ± 1 0.0004 0.0026
χ2 / gdl matrici risposta 21870 / 3841
χ2 / gdl beta x 53.2 / 45
χ2 / gdl beta y 19.7 /45
χ2 / gdl dispersione 21.6 / 47

Tabella 6.5: Numeri di betatrone, emittanza e accoppiamento dell’anello degli positroni del
13 maggio 2000.

Figura 6.7: La distribuzione dei residui prima e dopo il fit della matrice di risposta dei
positroni del 13 maggio 2000.
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Figura 6.8: Gli scarti fra le funzioni di betatrone e la dispersione misurate e quelle calcolate
dal modello, prima e dopo la convergenza di loco.
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Anello positroni 23 settembre 2000
punto di lavoro misure modello iniziale modello loco
Qx 5.1517 5.1410 5.1580
Qy 5.2167 5.2268 5.2155
ε0 1.00 ± 10 0.92 0.95
k 0.002 ± 1 0.0004 0.0024
χ2 / gdl matrici risposta 27688 / 3841
χ2 / gdl beta x 35.1 / 45
χ2 / gdl beta y 42.8 /45
χ2 / gdl dispersione 28.9 / 47

Tabella 6.6: Numeri di betatrone, emittanza e accoppiamento dell’anello degli positroni del
23 settembre 2000.

Figura 6.9: La distribuzione dei residui prima e dopo il fit della matrice di risposta dei
positroni del 23 settembre 2000.
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Figura 6.10: Gli scarti fra le funzioni di betatrone e la dispersione misurate e quelle calcolate
dal modello, prima e dopo la convergenza di loco.
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somma di due gaussiane:

x = 3841

(
N1

1√
2πσ2

1

e−(x−x1)2/2σ2
1 + N2

1√
2πσ2

2

e−(x−x2)2/2σ2
2

)
(6.4)

come mostrano le figure 6.3, 6.5, 6.7, 6.9.

Dal confronto degli scarti fra le funzioni di betatrone e la dispersione misurate e quelle

predette dal modello prima e dopo l’analisi di loco riportato nelle figure 6.4, 6.6, 6.8,

6.10, è evidente il miglioramento della accuratezza del modello stesso.

Gli elementi magnetici degli anelli

I parametri descrittivi degli elementi magnetici dei due anelli trovati dai quattro fit

sono riportati nella tabella 6.7. I risultati sono analoghi per i due anelli ma con dif-

ferenze apprezzabili fra i diversi punti di lavoro analizzati dovute principalmente alla

dipendenza dall’orbita di riferimento.

Per molti parametri è possibile fare un confronto con le misure magnetiche delle carat-

teristiche degli elementi di Dafne fatte in laboratorio.

Le calibrazioni dei gradienti dei quadrupoli degli archi dei due anelli ricavate dalle mi-

sure magnetiche sono confermate dall’analisi di loco, infatti tutte le variazioni delle

calibrazioni dei gradienti ricavate dal fit sono inferiori all’accuratezza (0.1 %) con cui

erano note dalle misure magnetiche . È anche probabile che la degenerazione del sis-

tema (6.2) di cui abbiamo parlato, riduca la sensibilità del nostro fit agli errori di

calibrazione dei quadrupoli, comunque si deve pensare che tali errori devono dare ef-

fetti inferiori a quelli associati ai campi di bordo dei dipoli, determinanti invece per la

convergenza del modello.
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Parametri valore elettroni positroni
del modello nominale 13.5.2000 27.3.2000 13.5.2000 23.9.2000
QUAI1K01/6 1.000 1.010 1.008 0.986 0.992
QUAI1K02/5 1.000 0.997 0.995 0.999 0.990
QUAI1K03/4 1.000 1.015 1.021 1.036 1.022
QUAI2001/7 1.000 0.940 0.948 0.974 0.971
QUAI2002/6 1.000 0.978 0.976 0.973 0.972
QUAI2003/5 1.000 0.989 0.980 0.960 0.950
∆E1,2 SLS1 (rad) -0.010 0.029 0.032 0.032 0.037
∆E1,2 SLS2 (rad) -0.010 0.037 0.040 0.047 0.045
∆E1,2 PES1 (rad) -0.044 -0.035 -0.035 -0.035 -0.031
∆E1,2 PES2 (rad) -0.044 -0.033 -0.032 -0.033 -0.033
∆E1,2 SLL1 (rad) -0.004 0.019 0.019 0.018 0.018
∆E1,2 SLL2 (rad) -0.004 0.019 0.022 0.019 0.018
∆E1,2 PEL1 (rad) -0.022 -0.039 -0.044 -0.053 -0.053
∆E1,2 PEL2 (rad) -0.022 -0.038 -0.034 -0.052 -0.052
Fint SLS1 1.05 0.91 0.88 1.08 1.04
Fint SLS2 1.05 1.02 0.95 1.20 1.25
Fint PES1 1.15 0.35 0.33 0.39 0.42
Fint PES2 1.15 0.34 0.33 0.37 0.37
Fint SLL1 1.09 0.44 0.44 0.32 0.29
Fint SLL2 1.09 0.44 0.44 0.41 0.41
Fint PEL1 1.18 0.48 0.47 0.44 0.42
Fint PEL2 1.18 0.45 0.45 0.39 0.39
∆E1 SPLI1001 (rad) 0.000 0.025 0.024 0.001 0.003
∆E1 SPLI1002 (rad) 0.000 -0.041 -0.037 0.012 0.015
∆E1 SPLI2001 (rad) 0.000 0.007 0.007 -0.017 -0.020
∆E1 SPLI2002 (rad) 0.000 -0.004 -0.012 -0.018 -0.021
Grad. Wig. poli positivi 1.000 1.056 1.035 1.027 0.998
Grad. Wig. poli negativi 1.000 1.207 1.173 1.064 1.073
Grad. Wig. poli terminali 1.000 1.004 1.003 0.993 0.989
Fint Wiggler 0.00 0.004 0.004 0.004 0.004
Calib. Kloe. 1.000 1.002 1.001 1.000 1.001
Calib. Comp1 1.000 0.999 1.000 0.998 0.998
Calib. Comp2 1.000 0.995 0.996 1.002 1.000
Rot. IR1 Tripl. Short 0.018 0.024 0.026 0.024 0.023
Rot. IR1 Tripl. Long -0.013 -0.021 -0.018 -0.019 -0.019

Tabella 6.7: I parametri del modello per mad calcolati da loco per i quattro punti di
lavoro analizzati dei due anelli. Le calibrazioni dei quadrupoli degli archi non sono cam-
biate. QUAI1K01-6 indicano le calibrazioni relative dei magneti permanenti della IR1,
QUAI2001-7 indicano le calibrazioni relative dei magneti della IR2, ∆E1,2 SLS etc. e Fint SLS
etc. le correzioni aggiuntive agli angoli di entrata/uscita e i fint dei dipoli curvanti Sector-
Like/Parallel-End Short e Long, ∆E1 SPLI1001-2002 le correzioni agli angoli di entrata degli
splitter.
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Per i quadrupoli delle due Regioni di Interazione invece si trovano con loco delle

calibrazioni diverse da quelle nominali come già era stato trovato con mad. Queste

sono da attribuire al passaggio fuori asse della traiettoria dei due fasci. I gradienti

dei quadrupoli della IR2 non sono da confrontare con le misure magnetiche poiché nel

modello (Capitolo 5) sono stati descritti con i valori calcolati teoricamente che meglio

riproducevano la traiettoria reale dei fasci nella zona di interazione.

Gli altri parametri importanti per l’ottica lineare sono gli angoli di entrata e uscita

della traiettoria e gli integrali primi fint del campo nei vari tipi di dipoli.

Per i magneti della stessa famiglia si ottengono gli stessi valori degli angoli e dei fint.

Solo fra i due dipoli curvanti a settore Short e fra i due a settore Long dell’anello dei

positroni loco trova due valori distinti degli angoli di entrata e uscita e dei fint. Questo

è in accordo proprio con le misure magnetiche [7] che hanno trovato termini sestupolari

diversi solo fra i due magneti di queste due famiglie e quindi ci si può aspettare una

diversa sensibilità agli effetti dovuti alla traiettoria.

Il modello con cui ho descritto i wiggler è confermato da loco. L’accordo fra i

quadrupoli efficaci trovati dal fit e quelli ricavati dalle misure magnetiche è molto

buono.

Previsioni sull’accoppiamento

Le rotazioni dei BPM, dei correttori e dei quadrupoli, le componenti skew dei corret-

tori “C”, le calibrazioni dei solenoidi della IR1, sono calcolate da loco cercando di

riprodurre i blocchi accoppiati Mxy e Myx della matrice di risposta della (4.4). Queste

variazioni di orbita hanno ampiezza dell’ordine dei 100 µm con la solita incertezza di

10 µm, pertanto i parametri calcolati dall’analisi accoppiata avranno certamente una
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Figura 6.11: Un esempio di convergenza ottenuta con loco dell’orbita orizzontale dovuta al
correttore verticale CVVES101 dell’anello degli elettroni. Gli errori sulle misure sono inferiori
a 10 µm come detto in § 4.1.

precisione inferiore a quelli normali. Prima della nostra analisi il basso accoppiamento

residuo ossevato negli anelli non poteva essere riprodotto bene dal modello, con loco

si ottiene una buona convergenza anche per le orbite accoppiate (Figura 6.11).

La tabella 6.8 contiene il valore quadratico medio delle rotazioni dei BPM e dei cor-

rettori, i valori massimi trovati da loco e la risoluzione del fit.

Le rotazioni calcolate da loco nella maggioranza dei casi sono inferiori o dello stesso

ordine di grandezza della sensibilità delle misure meccaniche di allineamento effettuate

(5 mrad per i BPM e 10 mrad per i correttori). Per quelle maggiori si potranno fare

nuove misure meccaniche per confermare i risultati trovati.

Rotazioni da loco media massimo risoluzione
BPM 8 mrad 21 mrad 4 mrad
Magneti correttori 11 mrad 29 mrad 5 mrad

Tabella 6.8: Rotazioni quadratiche medie degli 66 BPM di Dafne (33 per ciascun anello) e
dei 62 correttori (31 per anello), i valori massimi trovati, la risoluzione del fit.
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misure (mrad) loco (mrad)
δθshort 17 ± 4 24 ± 2
δθlong 13 ± 4 19 ± 2

Tabella 6.9: Gli offset di rotazioni δθ dei due tripletti della IR1 (“short” e “long” sono
riferiti alle sezioni vicine dell’anello degli elettroni). Sono riportate l’incertezza della misure
e lo scarto massimo tra i parametri ottenuti da quattro diversi fit per i positroni e per gli
elettroni.

Le rotazioni calcolate per i tripletti della IR1 e le calibrazioni del solenoide di Kloe e

dei due compensatori sono le stesse sia nella analisi dei positroni che degli elettroni.

Riporto nella tabella 6.9 gli offset di rotazione dei due tripletti della regione di intera-

zione di Kloe. Ciascun tripletto è costituito da tre quadrupoli permanenti solidali fra

loro tramite una sbarra di sostegno. Nel 1999 era stato trovato da misure di controllo

che i tripletti si erano spostati nel verso di diminuire la rotazione dei quadrupoli. loco

conferma la presenza di tali offset di rotazione, nel verso delle misure del 1999, ma di

entità maggiore. Si potrebbe in seguito verificare con misure dirette se veramente nel

corso del 2000 siano aumentati gli spostamenti.

Inoltre le componenti quadrupolari skew dei “C” calcolate da loco sono in accordo

con il valore dedotto dalle misure misure magnetiche e dagli spostamenti dell’orbita

nella loro posizione, tuttavia la conferma migliore che sono questi magneti la sorgente

dell’accoppiamento residuo osservato viene dall’analisi delle misure delle frequenze di

betatrone in funzione dello spostamento verticale dell’orbita nelle Regioni di Interazio-

ne che descrivo dettagliatamente nel capitolo 7.

Infine si può dire che l’analisi di loco fatta sulle due matrici di risposta dei positroni

e degli elettroni conferma che il maggior contributo all’accoppiamento di betatrone

viene dalle Regioni di Interazione e che eventuali errori di rotazione di quadrupoli o

altri termini sestupolari nel resto degli anelli devono dare effetti molto minori.



Capitolo 7

Il sestupolo nel Correttore “C”

I quattro dipoli correttori “C” sono istallati simmetricamente vicino agli splitter e ven-

gono utilizzati per aggiustare l’incrocio orizzontale e la separazione verticale dei due

fasci nelle Regioni di Interazione.

Ho detto nel precedente capitolo che le matrici di risposta sono ben riprodotte in-

troducendo una sorgente di accoppiamento nella posizione dei magneti correttori “C”.

L’effetto osservato sulle orbite è quello dato da un quadrupolo skew di piccola intensità.

Seguendo questa indicazione ho controllato le misure magnetiche eseguite su questi cor-

rettori, trovando che il termine sestupolare presente non era trascurabile e in presenza

di spostamenti della traiettoria dal centro dei magneti dà contributi quadrupolari effi-

caci.

Ho cos̀ı scoperto che la variazione del coefficiente di accoppiamento k, dell’orientazione

del profilo trasverso del fascio al monitor di luce di sincrotrone e delle frequenze di

101
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Figura 7.1: Il magnete correttore “C”.

betatrone più volte osservata facendo un bump verticale chiuso1 di orbita intorno alle

Regioni di Interazione era dovuta agli stessi correttori “C” che adoperiamo insieme ai

primi due correttori vicini per spostare la traiettoria. Le misure delle variazioni delle

frequenze di betatrone sono molto accurate e hanno confermato molto bene la dipen-

denza dal sestupolo presente nei “C”.

Su questa scoperta ho scritto anche una Nota Tecnica per Dafne [3] che ho allegato

alla tesi.

1Si chiama generalmente bump (bozzo) chiuso di orbita uno spostamento locale della posizione del
fascio che lascia invariata l’orbita nel resto dell’anello.
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7.1 Richiamo delle misure magnetiche

Nelle figure 7.2-7.3 sono mostrate le serie delle misure lungo la direzione orizzontale e

verticale del campo magnetico eseguite sui correttori “C” orizzontali (CH) e verticali

(CV).

Facendo un fit delle curve nelle figure 7.2-7.3 con un polinomio, sono stati ricavati

i termini sestupolari integrati presenti nei “C” [8]. Il correttore orizzontale ha un

gradiente sestupolare normale integrato:

SCH (T/m) =

∫
(∂2By/∂x2)dz = 4.36 · 10−3 · I (A) (7.1)

mentre il correttore verticale ha un gradiente sestupolare skew integrato:

SCV (T/m) =

∫
(∂2Bx/∂y2)dz = 1.35 · 10−2 · I (A) (7.2)

Posso confrontare l’ordine di grandezza del sestupolo integrato di un correttore “C”

alimentato a una corrente tipica con i gradienti sestupolari dei sestupoli istallati negli

archi di Dafne e di altri elementi magnetici degli anelli:

“C” CH @ 50 A −→ 0.22 T/m

“C” CV @ 50 A −→ 0.67 T/m

Sestupolo Grande @ 10 A −→ 1.90 T/m

Quindi il sestupolo presente nel “C” non è trascurabile ed è confrontabile anche con

i sestupoli usati abitualmente per la correzione del cromatismo. Ovviamente l’effetto

del sestupolo dei “C” dipende anche dalle funzioni beta nella sua posizione e il suo

contributo lineare dipende dallo spostamento della traiettoria del fascio dall’asse ma-
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Figura 7.2: Serie di misure lungo la direzione orizzontale x della componente verticale inte-
grata del campo del magnete “C” a diverse posizioni verticali z mm (la coordinata verticale
z nel testo è indicata con y) con CH 171 A, CV spento (da [8]).

Figura 7.3: Serie di misure lungo la direzione orizzontale x della componente orizzontale in-
tegrata del campo del magnete “C” a diverse posizioni verticali z mm (la coordinata verticale
z nel testo è indicata con y) con CV 109 A, CH spento (da [8]).
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gnetico del magnete come spiego di seguito.

7.2 Il sestupolo nel Magnete Correttore “C”

Il correttore orizzontale CH ha un termine sestupolare normale nel campo magnetico

che ha quindi andamento:

Bx = −sCHxy

By = −1
2
sCH(x2 − y2)

(7.3)

che in presenza di uno spostamento orizzontale ∆x della traiettoria, dà i gradienti

quadrupolari normali :

∂By

∂x
=

∂Bx

∂y
= −sCH∆x (7.4)

e per uno spostamento verticale ∆y, dà i gradienti quadrupolari skew :

∂By

∂y
= −∂Bx

∂x
= sCH∆y (7.5)

Il correttore verticale CV ha invece un termine sestupolare skew nel campo magnetico

che ha quindi andamento:

Bx = 1
2
sCV (x2 − y2)

By = −sCV xy
(7.6)
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che in presenza di uno spostamento orizzontale ∆x dà i gradienti quadrupolari skew :

∂By

∂y
= −∂Bx

∂x
= −sCV ∆x (7.7)

e per uno spostamento verticale ∆y i gradienti quadrupolari normali :

∂By

∂x
=

∂Bx

∂y
= −sCV ∆y (7.8)

Queste equazioni mostrano che spostamenti orizzontali e verticali ∆x, ∆y della traiet-

toria del fascio nei correttori “C” danno luogo a termini quadrupolari che si aggiun-

gono alla struttura magnetica degli anelli, cambiando le frequenze di betatrone (termini

quadrupolari normali) e accoppiando i moti di betatrone (termini quadrupolari skew).

7.3 Spostamento dell’orbita e frequenze di beta-

trone

Nel bump verticale del fascio degli elettroni intorno alla seconda Regione di Intera-

zione mostrato nella figura 7.4 lo spostamento dell’orbita nella posizione dei “C” è

proporzionale allo spostamento verticale nel Punto di Interazione:

∆y @ ′′C ′′ ∝ ∆y @ IP (7.9)

quindi dalla equazione (7.8) si ottiene la variazione del gradiente quadrupolare inte-
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grato fornito dal magnete correttore:

∆kCV · Lmag =
1

B0ρ
SCV · ∆y (7.10)

che dà la variazione delle frequenze di betatrone secondo la relazione 4.9:

∆Qx,y = ± 1

4π
(∆kCV · Lmag)βx,y (7.11)

Da questa relazione si vede bene che Qx,y in presenza di un sestupolo devono variare

linearmente con ∆y (per avere un andamento parabolico si deve avere un ottupolo).

Tutto ciò se il sestupolo SCV è indipendente dallo spostamento.

Ma nel nostro caso per cambiare la posizione della traiettoria si deve variare pro-

Figura 7.4: Bump verticale di +1 mm nel Punto di Interazione 2 (linea continua). I cor-
rettori “C” si trovano vicino ai due picchi negativi. La linea tratteggiata è la corrispondente
variazione di orbita orizzontale.
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Figura 7.5: La variazione delle frequenze orizzontali di betatrone degli elettroni in funzione
dello spostamento verticale in IP2.

Figura 7.6: La variazione delle frequenze verticali di betatrone degli elettroni in funzione
dello spostamento verticale in IP2.
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porzionalmente la corrente di alimentazione nei correttori “C”, a sua volta il sestupolo

SCV è proporzionale alla corrente di alimentazione (Eq. 7.1) e quindi a ∆y. Di con-

seguenza l’andamento della variazione delle frequenze di betatrone diviene quadratico

con ∆y.

Riporto nella tabella 7.1 i dati delle misure fatte sulla seconda Regione di Interazione

per il fascio degli elettroni con il confronto fra gli spostamenti ∆Qx,y misurati diretta-

mente e quelli calcolati dal sestupolo delle misure magnetiche della equazione 7.11, in

funzione dello spostamento verticale. I risultati sono mostrati nelle figure 7.5-7.6.

Calcolando un fit ai minimi quadrati con una parabola, i coefficienti del termine

quadratico delle due curve sono in accordo, il coefficiente del termine lineare invece

dipende probabilmente dallo spostamento orizzontale nei sestupoli normali presenti

∆y@IP2 ∆y@”C” I@cdves201 I@cdvel201 ∆Qx ∆Qy ∆Qx ∆Qy

(mm) (mm) (A) (A) mis mis calc calc
-2.00 9.00 -101.70 -92.50 -0.0167 0.0100 -0.0155 0.0071
-1.78 8.01 -90.17 -81.35 -0.0131 0.0083 -0.0122 0.0056
-1.43 6.44 -78.64 -70.20 -0.0098 0.0063 -0.0085 0.0039
-1.14 5.15 -67.11 -59.05 -0.0070 0.0040 -0.0058 0.0026
-0.86 3.87 -55.59 -47.90 -0.0045 0.0030 -0.0035 0.0016
-0.57 2.57 -44.06 -36.75 -0.0025 0.0020 -0.0018 0.0008
-0.28 1.28 -32.53 -25.60 -0.0011 0.0002 -0.0007 0.0003
0.00 0.00 -21.00 -14.45 0.0000 0.0000 0.0000 0.0000
0.30 -1.35 -9.47 -3.30 0.0004 -0.0008 0.0002 -0.0001
0.60 -2.68 2.06 7.85 0.0004 -0.0008 -0.0002 0.0001
0.89 -4.01 13.59 19.00 -0.0002 -0.0010 -0.0012 0.0005
1.17 -5.29 25.11 30.15 -0.0013 -0.0006 -0.0026 0.0012
1.48 -6.66 36.64 41.30 -0.0021 -0.0046 0.0021
1.77 -7.99 48.17 52.45 -0.0045 -0.0071 0.0033
2.05 -9.25 59.70 63.60 -0.0092 -0.0101 0.0046

Tabella 7.1: I dati del bump eseguito con i due “C” intorno a IR2. Le funzioni beta nella
posizione dei due correttori sono: per CDVES201 βx = 15.5 βy = 6.4 e per CDVEL201
βx = 13.1 βy = 6.3.
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nei dipoli curvanti e negli splitter dato che il bump verticale genera anche una vari-

azione di orbita orizzontale lungo tutto l’anello come mostrato in figura 7.4.

Considerando inoltre l’approssimazione per lente sottile contenuta nella 7.11 e la vari-

azione dell’accoppiamento dei moti che abbiamo trascurato nel calcolo, l’accordo è

molto buono e la dipendenza delle frequenze di betatrone dallo spostamento verticale

nei Punti di Interazione è ben spiegato dal termine sestupolare del correttore verticale

”C”.

Misure analoghe sono state eseguite anche intorno alla Regione di Interazione di Kloe

sia per gli elettroni che per i positroni confermando l’influenza del sestupolo di questi

magneti.



Conclusioni

L’analisi delle matrici di risposta misurate ha fornito molte informazioni sull’ottica

degli anelli di Dafne e si sta dimostrando utile nella attuale messa a punto del collider

per l’incremento della luminosità.

loco ha permesso di individuare le sorgenti di accoppiamento vicino alle Regioni di

Interazione osservato negli Anelli Principali di Dafne. Una nuova struttura magnetica

applicata agli anelli con i magneti correttori “C” spenti mostra che non ci sono ulteriori

importanti sorgenti di accoppiamento da individuare: il coefficiente di accoppiamento

misurato ai monitor di luce di sincrotrone è inferiore allo 0.2 % per entrambi gli anelli

e i blocchi accoppiati delle matrici di risposta misurate degli anelli sono praticamente

nulli.

La conoscenza dei gradienti e degli effetti lineari focheggianti dovuti ai dipoli curvan-

ti, ai wiggler e agli splitter permette di avere un modello lineare che può essere uno

strumento più esatto sia per calcolare aggiustamenti dell’ottica degli anelli sia per in-

trodurre nel modello i termini magnetici non lineari che sono sempre oggetto di studio

per il miglioramento della vita media e per l’allargamento dell’apertura dinamica del

fascio.

Il confronto dei risultati ottenuti dalle quattro matrici analizzate con loco prova come

previsto che il modello dipende sensibilmente dal punto di lavoro e dall’orbita di rife-

rimento del fascio. Questo vuole dire che per lo studio preliminare e la messa a punto

di nuovi punti di lavoro della macchina è più utile usare un modello “medio” per le

prime simulazioni e raffinarlo in seguito quando sono disponibili misure delle matrici

di risposta e delle funzioni ottiche da analizzare.
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Matrici di trasporto degli elementi

magnetici

Fisicamente una particella con vettore posizione noto (x0, x′
0; y0, y′

0) ad un certo azi-

muth s0, attraversa una sequenza di elementi magnetici fino all’azimuth s; il passaggio

attraverso ogni elemento magnetico può essere descritto tramite una matrice 4×4, che

trasforma il vettore posizione prima dell’elemento nel vettore dopo di esso.

La matrice di trasporto da s0 a s sarà quindi il prodotto delle matrici dei singoli

elementi:

M(s, s0) = M(s, sn)M(sn, sn−1) · · ·M(s1, s0) (A.1)

Descriviamo di seguito la forma delle matrici rappresentative dei vari tipi di elemen-

ti magnetici [13, 21]; queste sono ottenute calcolando la soluzione dell’equazione di

Hill (2.10).

112



113

Sezione di deriva di lunghezza L:

Mdrift =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 L 0 0

0 1 0 0

0 0 1 L

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A.2)

lascia cioè invariata pendenza z′ e aumenta lo spostamento z di z′L.
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Figura A.1: Sistema di riferimento per un Magnete Curvante.

Dipoli: nel caso di un dipolo si devono considerare anche il contributo della di-

spersione dovuto alle deviazioni di energia di una particella definito nella matrice di

trasferimento della (2.31). Riportiamo quindi la matrice 5× 5 che trasferisce il vettore

(x, x′; y, y′; δE/E0).

La matrice di trasferimento di un dipolo curvante è composta di tre termini, il campo

di bordo (fringing) all’entrata del magnete F1, il corpo del dipolo B e il campo di bordo
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all’uscita del magnete F2:

Mbend = F1BF2 (A.3)

Gli angoli di rotazione rispetto alle facce dei poli all’entrata e all’uscita determinano gli

effetti focheggianti dei bordi e li indichiamo con e1 e e2 rispettivamente (Figura A.1).

Per un dipolo a settore si avrà e1 = e2 = 0, mentre per un dipolo rettangolare si tiene

conto della diversa geometria ponendo e1 = e2 = α/2.

Se i campi di bordo hanno estensione finita l’angolo di focheggiamento verticale viene

cambiato:

ei = ei − hgI1(1 + sin2 ei) (A.4)

dove h è la curvatura dell’orbita di riferimento nel dipolo, g è l’ampiezza del traferro,

e I1 è l’integrale primo del campo di bordo (spesso detto fint):

I1 =

∫ +∞

−∞

By(s)(B0 − By(s))

g · B2
0

ds (A.5)

Per l’entrata e per l’uscita la matrice di trasferimento è:

Fi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

h tan ei 1 0 0 0

0 0 1 0 0

0 0 −h tan ei 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.6)

che corrisponde a una lente sottile di lunghezza focale f = ρ cot ei con focheggiamento
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opposto nei due piani.

Il corpo del dipolo a settore di raggio e angolo di curvatura ρ e α con campo uniforme

ha matrice di trasporto:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos α ρ sin α 0 0 ρ(1 − cos α)

−1
ρ
sin α cos α 0 0 sinα

0 0 1 ρα 0

0 0 0 1 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.7)

Nel piano in cui curva dà un contributo focheggiante dovuto ad un effetto puramente

geometrico del magnete: le traiettorie che entrano più vicine al centro di curvatura at-

traversano un tratto più breve del magnete e quindi vengono curvate meno e viceversa.

Nell’altro piano agisce come una sezione di deriva di lunghezza ρα.

Quadrupolo F (focheggiante orizzontalmente) di intensità k2 = ec
E0

∂By

∂x
e lunghezza L:

MF,D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos(kL) 1
k

sin(kL) 0 0

−k sin(kL) cos(kL) 0 0

0 0 cosh(kL) 1
k

sinh(kL)

0 0 −k sinh(kL) cosh(kL)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A.8)

se invece ∂By

∂x
è negativo il quadrupolo è di tipo di D: defocheggia nel piano orizzontale

e focheggia in quello verticale, e nella matrice le funzioni trigonometriche e quelle

iperboliche sono scambiate.

Nell’approssimazione per lente sottile (kL � 1 con L → 0 e k2L costante) la matrice
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si riduce a:

MF,D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

∓k2L 1 0 0

0 0 1 0

0 0 ±k2L 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

∓ 1
f

1 0 0

0 0 1 0

0 0 ± 1
f

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A.9)

dove f è la lunghezza focale della lente.

Se il quadrupolo è ruotato di un angolo θ intorno all’asse longitudinale:

Mquad(θ) = R(θ)MquadR
−1(θ) (A.10)

dove Mquad è la matrice di un quadrupolo normale e R(θ) è una rotazione nel piano x,

y e x′, y′ di un angolo θ:

R(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cos θ 0 sin θ 0

0 cos θ 0 sin θ

− sin θ 0 cos θ 0

0 − sin θ 0 cos θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(A.11)

Solenoide di intensità ks = 1
2

ec
E0

Bs e lunghezza L:

Msol =

⎛
⎜⎝ cos(ksL)Q sin(ksL)Q

− sin(ksL)Q cos(ksL)Q

⎞
⎟⎠ (A.12)
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dove Q è una matrice 2 × 2 del tipo di un quadrupolo focheggiante:

Q =

⎛
⎜⎝ cos(ksL) 1

ks
sin(ksL)

−ks sin(ksL) cos(ksL)

⎞
⎟⎠ (A.13)

Il solenoide agisce cioè focheggiando in entrambi i piani e ruotando di un angolo ksL.



Appendice B

Scomposizione in Valori Singolari

Il metodo della scomposizione in valori singolari (Singular Value Decomposition: SVD)

è usato per risolvere problemi lineari di minimi quadrati con molti parametri.

Consideriamo il caso in cui si debba risolvere un sistema lineare di m equazioni in n

incognite:

A · x = b (B.1)

con A matrice m × n e x vettore degli n parametri da calcolare.

Se m ≥ n la matrice A può essere scomposta come [23]:

A = U ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w1

w2

. . .

wn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

· V t (B.2)
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I valori wi sono detti valori singolari della matrice A. Le colonne della matrice U m×n

e quelle della matrice V n × n sono ortonormali:

U · U t = In

V · V t = In

(B.3)

con In la matrice unitaria n× n. Se la matrice A è singolare (ha rango minore di n) si

troveranno alcuni valori wi = 0.

Se A non è singolare e il sistema ha una soluzione, questa ha in generale la forma:

x = V ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1/w1

1/w2

. . .

1/wn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

· U t · b (B.4)

Nel caso in cui A è singolare e si hanno uno o più wi = 0, non esiste più un’unica

soluzione, tuttavia sostituendo per questi valori singolari 1/wi con zero nella (B.4) si

dimostra che la soluzione che si ottiene è quella con modulo |x| minore.

Se il sistema non ha una soluzione esatta, il vettore x calcolato con la SVD è una

“soluzione” del sistema nel senso dei minimi quadrati, cioè quella che minimizza il

residuo r = |A · x − b|.
Nei casi pratici i valori singolari non saranno esattamente zero, ma si potranno trovare

alcuni wi che sono molto più piccoli degli altri. Usare questi valori singolari nel calcolo

della soluzione potrebbe portare ad un vettore soluzione x con componenti ampie che

si cancellano algebricamente quando si moltiplica x per la matrice A, ma che ripro-

ducono con una scarsa approssimazione il vettore b. In questi casi il vettore x ottenuto
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ponendo a zero 1/wi corrispondenti ai valori singolari wi più piccoli dà la soluzione

migliore nel senso dei minimi quadrati.

La SVD deve essere applicata con una certa discrezione. Problema per problema si

deve capire l’origine dei valori singolari più piccoli e si deve stabilire la soglia al di sotto

della quale trascurare i wi.

Nel caso della minimizzazione di loco, la matrice A e il vettore b si identificano con la

matrice ∂Bk

∂XN
e con il vettore dei dati Bk della (6.2). Come mostra la (B.4) il vettore dei

parametri del fit XN sarà una combinazione lineare delle colonne di V con coefficienti

ottenuti dal prodotto scalare tra le colonne di U e il vettore Bk pesato con i valori

singolari wi.

Si può dimostrare che anche gli errori standard σ2(Xj) sui parametri del fit sono

combinazioni lineari delle colonne di V secondo la relazione [23]:

σ2(Xj) =

M∑
i=1

(
Vij

wi

)2

(B.5)

che viene utilizzata da loco per calcolare la propagazione degli errori sui parametri

del modello dell’ottica lineare di Dafne.
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