
ゲージ重力対応における量子情報と時空の幾何

著者 山代 和志
発行年 2021-12
出版者 静岡大学
URL http://doi.org/10.14945/00029018



THESIS

QUANTUM INFORMATION AND GEOMETRY OF SPACE-TIME

IN THE GAUGE/GRAVITY CORRESPONDENCE

ゲージ重力対応における
量子情報と時空の幾何

静岡大学創造科学技術大学院
自然科学系教育部 情報科学専攻

山代　和志

2021年 12月



　



概 要

ゲージ重力対応の深い理解を得ることは、量子重力理論の時空創発の機構を解明するために重要だと
考えられている。近年、量子情報理論からゲージ重力対応に関して重要な洞察を得られている。本学
位論文では、2つの量子情報量に着目して量子情報と時空の幾何との関係を調べる。1つは、量子情報
計量がどのように重力双対における時空の幾何によって記述されるかを研究する。ここで、場の量子
論側は 2つの理論の基底状態の差を測る量子情報計量を考える。その結果、重力側では余次元 2の超
曲面の体積におけるバックリアクションによって表現できることを示す。また、このような解釈を得
るためには、背景の重力理論とその双対な場の量子論にポアンカレ対称性が必要であることを見る。
もう 1つは、ターゲット空間におけるエンタングルメントとバルク空間の幾何との関係について研究
する。ここでは複素行列模型と Lin-Lunin-Maldacenaによって発見されたバブリングAdS幾何の対
応関係に着目する。この場合、複素行列模型のターゲット空間は複素行列の固有値が分布する 2次元
面に相当し、固有値分布はバブリング AdS幾何を決定する液滴配位と同一視することができる。そ
の上で、いくつかの典型的な状態についてターゲット空間エンタングルメントエントロピーと、対応
するバブリングAdS幾何における部分領域の境界の面積 (長さ)を計算する。これらが定性的に同じ
ふるまいをすることを示す。以上の 2つの研究から、場の量子論の量子情報からバルク時空のダイナ
ミクスを理解するための手掛かりを得る。
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第1章 背景と目的

1.1 背景
自然界には電磁気力、弱い力、強い力、重力の 4つの力が存在している。その中のうち、重力を除

いた 3つの力は標準模型によって記述されている。しかし、現在は重力を含んだ 4つの力の統一理
論は完成されていない。その最も有力な候補が超弦理論である。この理論は、開いた弦と閉じた弦の
2つのオブジェクトで記述されている理論である。しかし、超弦理論は摂動論でしか定義されていな
く、非摂動論的な定式化は最重要課題の一つである。これは、重力の量子論を解明するために重要な
点である。具体的には、宇宙の誕生や始まり、ブラックホールの特異点などの重力相互作用が強くな
るミクロスケールでの現象を説明できない。この問題は超弦理論の非摂動論的定式化の必要である理
由の一つである。
このような問題を克服するために、明らかにしなければならない重力の量子論的な性質の一つが時

空の創発である。重力理論とは時空のダイナミクスを記述する理論であるため、時空そのものを量子
化した際に、量子揺らぎから時空が生成される現象があると考えられる。これは宇宙の誕生などを説
明するために重要な概念である。そのような時空の創発を具現化する例の一つが行列模型である。行
列模型は超弦理論の非摂動論的定式化の候補として知られている [1–3]。その特徴は、時間や空間の
存在を仮定せずに、理論に存在する行列の自由度から時空が創発する点である。具体的には、10次元
の超対称ヤンミルズ理論を時間のみの 1次元の理論に次元還元した BFSS行列模型を考える [1]。こ
の模型には、時間のみ仮定されていて空間の自由度は存在しない。しかし、行列の固有値を空間の座
標として解釈することによって、もともと理論に存在しない時空を仮定することができる。これは、
行列模型のもつ時空創発の例の一つである。
また、行列模型とは別の観点から、時空の創発の例として盛んに研究されているのがゲージ重力対

応である。これは、バルク時空の重力理論とその境界上の場の量子論の間に双対性がある、という予
想である。つまり視点を変えると、重力を仮定しない場の量子論から、重力理論によって記述される
1次元高い時空が創発したと見ることができる。特に、超弦理論から予想されるゲージ重力対応は現
在でも盛んに研究されている [4–7]。最も典型的なゲージ重力対応の例として、境界の場の量子論側
が 4次元N = 4 超対称ヤンミルズ理論 (SYM)で、バルク側の重力理論として AdS5 × S5上の IIB

型超弦理論の対応関係がMaldacenaによって提唱された [4]。このような、反ドジッター (AdS)時空
上の重力理論とその境界の共形場理論 (CFT)の双対性は、AdS/CFT対応とも呼ばれる。ゲージ重
力対応では、重力側の弦の効果を小さくする強結合極限と重力側の弦の量子論的な効果を小さくする
ラージN 極限が存在する。この双対性はこの 2つの極限操作の下で成り立つことがよく確かめられ
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ているが、極限操作を取り除いたときにどこまで対応しているかは確立していない。
近年、ゲージ重力対応において、場の量子論の量子情報量が重要な役割を果たしていることが指摘

されている。その証拠として、境界の場の量子論で計算されるエンタングルメントエントロピーと、
重力双対におけるバルク幾何の最小曲面の面積が等価であることが示されている [8]。量子情報理論
において、エンタングルメントエントロピーは量子エンタングルメントの度合いを測る量子情報量の
一つである。この関係は、量子情報が双対なバルク時空の幾何の創発と関係していることを示す典型
的な例である。
本学位論文では、ゲージ重力対応に基づいた量子情報とバルク時空の関係について、特に、量子情

報計量とターゲット空間エンタングルメントという 2つの情報量に着目する。

ゲージ重力対応の下で量子情報計量とバルク時空の幾何

ゲージ重力対応の下で情報量の一つである量子情報計量の研究がなされている [9–17]。量子情報計
量は 2つの量子状態の差を測る情報量で、エンタングルメントエントロピーとは違うバルク幾何の情
報を持つと考えられている。[9]では、CFTと CFTからある演算子によって摂動された理論を考え
て、この 2つの理論の基底状態の間の距離を測るような情報計量を計算している。ここでは、上記 2

つの理論を合わせて得られる場の量子論の重力双対を調べ、量子情報計量が超曲面の体積で表せるこ
とを発見した。この方向での発展は [10–13]で研究されている。また [15–17]では別の方向性で量子
情報計量の研究がなされている。

ターゲット空間エンタングルメントとバルク時空の幾何

近年、場の量子論における新しい情報量としてターゲット空間のエンタングルメントエントロピー
が研究されている [18–23]。通常の平坦な時空上の場の量子論で考えられるようなエンタングルメン
トエントロピーは、場が存在する空間である基底空間に対して任意の部分領域と補空間に分割するこ
とによって定義される。一方、場の配位空間であるターゲット空間を任意の部分領域とその補空間に
分割することでターゲット空間エンタングルメントエントロピーは定義される。特に、0 + 1次元の
場の量子論である量子力学では基底空間が存在しないため基底空間の分割によるエンタングルメン
トエントロピーは定義できないが、ターゲット空間エンタングルメントエントロピーは定義できる。
例えば、ある 11次元の量子重力理論を記述する行列量子力学では、行列の固有値が分布する空間が
ターゲット空間となり、物理的な時空と対応すると考えられる。また、第一量子化の弦理論では、時
空の分割は弦の埋め込まれた座標の制限にあたる。これは、基底空間にあたる世界面の分割ではなく、
ターゲット空間の分割に相当する。このように、ターゲット空間のエンタングルメントを考えること
は、量子重力を記述する時空の量子論的な性質を理解する上で重要であると考えられる。

[19]では、Dpブレーンホログラフィーのもとで、場の量子論のターゲット空間に対するエンタン
グルメントエントロピーが、バルクエンタングルメントエントロピーと等価であると予想された。特
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に、D0ブレーンホログラフィーでは、境界の理論が行列量子力学で記述される [1]。そして、D0ブ
レーン行列量子力学におけるある部分領域のターゲット空間エンタングルメントエントロピーは、重
力側のバルクにおける対応する部分領域の境界の面積に比例係数 1/4GN で比例すると予想される。
最近、量子力学におけるターゲット空間の部分領域の分割によるエンタングルメントエントロピー

が定式化されてた [18]。量子力学系では空間方向を自由度のラベルとして扱わないため、場の量子
論でよく行われているようにエンタングルメントエントロピーを定義することができない。一方で、
空間方向そのものがターゲット空間にあたる。このターゲット空間に領域分割にあたる制限を与える
ことで、この制限に対して部分密度行列を定義し、フォンノイマンエントロピーを計算する。これが
ターゲット空間エンタングルメントエントロピーである。一般にターゲット空間の領域分割に対して
ヒルベルト空間はテンソル積であらわすことができない。ここでは代数的なアプローチでこのような
ターゲット空間の制限に対する部分密度行列を定義している。[22]では、波動関数がスレーター行列
式で書けるような N個のフェルミオン系でのターゲット空間エンタングルメントエントロピーが定
式化されている。

1.2 目的
ゲージ重力対応の下で量子情報計量とバルク時空の幾何

3章と 4章ではゲージ重力対応の下で量子情報計量とバルク時空の幾何の関係を調べる [28]。
本研究では、[9]と同じ 2つの場の量子論で、それぞれ重力双対を考える。1つはCFTに双対なAdS

時空、もう一つはCFTから摂動された場の量子論に双対な漸近的AdS時空である。後者の重力双対
のバルク時空は AdS時空からの摂動によって引き起こされるバックリアクションによって与えられ
る。ここで 2つの場の量子論の基底状態の差を測る情報計量が、双対な時空における余次元 2の超曲
面の体積へのバックリアクションによって与えられることを発見した。これは、摂動がスカラー、ベ
クトル、テンソルのいずれの演算子で与えられても成立し、普遍的な公式である。
次に、3章で見つけた量子情報計量と余次元 2の体積との関係をより一般的な場合に拡張する。こ

こでは重力双対を持ち、CFTとは限らない任意の場の量子論でも関係式が満たされることを示す。こ
こで重力側では共変な形式で計算を行うことで、量子情報計量が余次元 2の超曲面の体積へのバック
リアクションの効果で表現されるために、双対な時空が満たすべき条件を導き出すことができる。こ
の条件は、場の量子論がポアンカレ対称性を持つことを意味している。

ターゲット空間エンタングルメントとバルク時空の幾何

5章と 6章ではターゲット空間のエンタングルメントとバルク時空の幾何の関係を調べる。
本学位論文では、D3ブレーンホログラフィーを考える。この時、場の量子論側は 4次元N = 4SYM

で与えられ、原理的には、D3ブレーンの位置を表す 6個のスカラー場のターゲット空間に対して何ら
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かの制限を加え、その制限に対する部分密度行列を計算することでターゲット空間エンタングルメン
トエントロピーを計算できると考えれる。しかし、場の量子論に対するターゲット空間エンタングル
メントエントロピーの計算方法が知られていない現状でこれは非常に難しい問題である。そのため、
考える自由度を 6個のスカラー場のうちの 2つのダイナミクスに限定した複素行列模型を考える。こ
の時、ターゲット空間は行列の固有値が分布する 2次元面として考えられる。この複素行列模型のホ
ロモロフィックセクターを考えると、4次元N = 4 SYMの超対称性の半分を保持する (1/2BPSで
ある)カイラルプライマリー演算子のダイナミクスを記述するのに十分な模型となっている [27]。特
に、このような演算子に双対な重力理論の解として、R×SO(4)×SO(4) 対称性の下で不変な IIB型
超重力理論の 1/2BPS解であるバブリングAdS幾何 [26]が知られている。この時、バブリングAdS

幾何はある 2次元平面の境界条件を与えることで解が一つ与えられる。そのような境界条件は 2次元
フェルミオンの液滴配位とみることができ、この液滴配位が複素行列模型の固有値の配位に対応して
いる。この複素行列模型とバブリング AdS幾何との対応の下で、ターゲット空間エンタングルメン
トエントロピーとバルク時空における余次元 2の境界の面積 (長さ)との関係を調べる。
まず、複素行列模型におけるホロモロフィックセクターを与える状態は、N 個のフェルミオン系の

スレーター行列式でかけることが知られている [27]。この時、スレーター行列内の一体系の波動関数
は量子ホール効果における最低ランダウ準位の波動関数で与えられる。これより、このスレーター行
列式に対するターゲット空間エンタングルメントエントロピー考える。このとき、ターゲット空間の
部分領域は原点を中心とした円とする。ここでは、AdS5×S5とAdSジャイアントグラビトン、ジャ
イアントグラビトンに対応する状態についてターゲット空間エンタングルメントエントロピーを計算
する。一方、重力側ではそれぞれの状態に対応するバブリング AdS幾何の下で、ターゲット空間の
部分領域に対応する 2次元面の領域を考える。この部分領域の境界の面積 (長さ)を計算すると、対
応するターゲット空間エンタングルメントエントロピーと同じふるまいをすることがわかる。

1.3 構成
この論文は以下の様に構成されている。

• 2章では、ゲージ重力対応についての基本的な概念を簡単に説明する

• 3章では、AdS/CFT対応の下で量子情報計量はバルクの幾何とどのように関係づくかを見る。

• 4章では、量子情報計量とバルク幾何との関係を一般のゲージ重力対応に拡張する。

• 5章では、複素行列模型におけるターゲット空間エンタングルメントエントロピーを計算する。

• 6章では、バブリング AdS幾何におけるバルクエンタングルメントエントロピーを計算し、5

章での結果と比較する。

• 7章では、まとめと考察を行う。
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• 付録Aでは、3章と 4章で扱うリッチテンソルの計算を行う。

• 付録Bでは、5章で得たN フェルミオン系のターゲット空間エンタングルメントエントロピー
について詳しい計算を行う。

• 付録Cでは、6章で用いた (AdS)ジャイアントグラビトンのバブリングAdS幾何に対する内部
計量の具体的な表式を示す。
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第2章 ゲージ重力対応

ここではゲージ重力対応の基本的な概念についてレビューする。
2.1節では超弦理論から導かれるゲージ重力対応を見る。2.2節では、ゲージ重力対応の下で、境界

の場の量子論の相関関数とバルクの重力理論の相関関数の間の関係をみる。特に、3章や 4章で用い
るGKP-Wittenの関係式について説明する。2.3節では、ゲージ重力対応のもとで量子情報を考える
発端となったホログラフィックエンタングルメントエントロピーについて簡単に説明する。

2.1 ゲージ重力対応
超弦理論では、最も基本的な物質として開弦と閉弦によって記述される。特に、低エネルギー極限

で開弦はゲージ粒子、閉弦は重力子として見ることができる。ここで、10次元 IIB型超弦理論のD3

ブレーンがN枚重なっているものを考えよう。まず、開弦の見方では、D3ブレーンは開弦の端がつ
く部分空間として定義することができる。このとき、開弦の 1ループを考える。この時、閉弦の見方
では、閉弦はこの 10次元の空間を伝搬し、D3ブレーンと閉弦の相互作用と見ることができる。特
に、D3ブレーンは質量をもっているため、背景の時空は曲げられ、その中を閉弦が伝搬していると
見られる。この 2つの見方は開弦/閉弦対応と呼ばれ、ゲージ重力対応の超弦理論による説明である。
このとき、D3ブレーンのホライズン近傍を見てみる。これは開弦の長さ ls → 0に対応している。

これより、開弦は D3ブレーン上のゲージ場の励起と見ることができるためN = 4 超対称ヤンミル
ズ理論 (SYM)で記述される。一方、D3ブレーンがたくさん集まった配位は、時空が曲げられブラッ
クホール解となる。そのときホライズン近傍は

dS2 = R2dz
2 + ηµνdx

µdxν

z2
+R2dΩ2

5 (2.1.1)

になることが知られている。これがAdS5 × S5の計量で、IIB型超弦理論で記述される閉弦はこの時
空を伝搬する。以上の 2つの理論の対応が、Maldacenaが提唱したAdS/CFT対応 [4]

4D N = 4 SYM

g2YM = 4πgs
↔

AdS5 × S5上の IIB型超弦理論
R4

l4s
= g2YMN ≡ λ

(2.1.2)

でゲージ重力対応の典型的な例である。ここで λはゲージ理論を 1/N で展開したときの実質的な結
合定数で t’Hooft結合定数と呼ばれる。このとき、λを固定して D3ブレーンの枚数が多い極限であ
るラージN 極限をとると、IIB型超弦理論のループ補正は O(1/N)と知られているため、ループ補
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図 2.1: (a)の図は重なった D3ブレーンについている開弦の 1ループの世界面を表している。(b)の
図は閉弦が D3ブレーンと相互作用し、伝搬している。この伝搬による世界面を表している。(a)と
(b)は、それぞれの弦の世界面だけを見れば互いに区別はできなく等価であることがわかる。これが
弦理論の開弦/閉弦対応と呼ばれている。

正が無視でき古典的な弦で記述される。次にラージN 極限のもとで λを大きくする強結合極限をと
る。これが、弦の効果を小さくする極限に対応している。したがって、これらの極限の下で、強結合
の N = 4 超対称ヤンミルズ理論と AdS時空上の IIB型超弦理論の低エネルギー極限である IIB型
超重力理論が等価になる。この双対性は 2つの極限操作の下で成り立つよく確かめられているが、極
限操作を取り除いたときにどこまで対応しているかは確立していない。また、Dpブレーンホログラ
フィーにおいて、N 個のDpブレーンとそれらを結ぶ開弦の低エネルギー有効理論は (p+ 1)次元の
超対称Yang-Mills理論 (SYM)によって記述される [5]。特に、SYMのN ×N エルミート行列であ
る 9− p個のスカラー場の固有値はバルク上のDpブレーンの位置と解釈される。また、非対角要素
はDpブレーンを結ぶ開弦として解釈される。このような固有値が表している空間は境界の理論にお
いてはターゲット空間として解釈される。

2.2 相関関数
ゲージ重力対応において、境界の場の量子論の相関関数とバルクの重力理論の相関関数の間の関係

を与えているのがGKP-Wittenの関係式 [6, 7]である。特に、重力側の古典近似がよい場合は⟨
exp

(
i

∫
ϕO
)⟩

= eiSon−shell[Φ] (2.2.1)

の様に与えられる。ここで左辺の演算子 Oは境界の理論の演算子を表しており、ϕはソースにあた
る。つまり、左辺は演算子Oの相関関数についての生成汎関数 e−W [ϕ]である。一方、右辺のΦは重
力理論のOに双対な場で、境界での値が ϕに一致する。そして、右辺の Son−shell[Φ]は重力場中のΦ

の作用に運動方程式を代入したオンシェル作用にあたる。この関係式は重力双対が存在するような強

9



結合の場の量子論の解析に用いられる。通常の摂動論的な解析では強結合の場の量子論の相関関数を
求めるのは困難である。しかし、その場の量子論に対する重力双対の存在を仮定することで、この関
係式から古典的な重力理論の計算によって場の量子論の相関関数を求めることに用いられる。
ここでは、AdS/CFT対応の下で境界の理論のプライマリー演算子Oの 2点関数が、双対なバルク

の重力理論の計算によって求まることをみる。この時、境界のゲージ理論が d次元のCFTで、対応す
るバルクの重力理論が d+1次元のユークリッドAdS時空である。まずバルクのAdSd+1について考え
る。ここで座標について次のような表記を用いる:xµ = (x0, xi) = (τ, x⃗)で、ここで µ = 0, . . . , d− 1、
i = 1, . . . , d− 1、zM = (z, xµ)である。これより、ポアンカレ座標のAdSd+1の計量を

ds2 = GMNdz
MdzN =

1

z2
(dz2 + dxµdxµ) (2.2.2)

のような形でとることにする。AdSd+1上の z = ϵに境界の超曲面を定義する。ここで、ϵはUVカッ
トオフである。CFTdはこの境界上で定義されている。
Φについての重力側の作用は

SM =
1

2

∫
dd+1x

√
G
(
GMN∂MΦ∂NΦ+m2Φ2

)
(2.2.3)

で与えられる。ここで Φの 2次の項のみを保持し、質量はプライマリー演算子Oのスケール次元∆

を用いて

m2 = ∆(∆− d) (2.2.4)

で与えられる。
Φについての運動方程式は (2.2.3)から

− 1√
G
∂M (

√
GGMN∂NΦ) +m2Φ = 0 (2.2.5)

のように得ることができる。Φについての境界条件は

Φ(z = ϵ, x) = ϵd−∆ϕ(x) (2.2.6)

で与える。このとき、ϕ(x)が Φ(z, x)の境界での値であり、プライマリー演算子 Oのソースにあた
る。境界条件 (2.2.6)を満たすような (2.2.5)の解 [7]は

Φ(z, x) =

∫
ddx′K(z, x− x′)ϕ(x′) (2.2.7)

と得ることができる。ここでKは境界バルクプロパゲーター (boundary to bulk propagator)と呼ば
れているもので

K(z, x) =
α∆z

∆

(z2 + x2)∆
(2.2.8)
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である。ここで

α∆ =
Γ(∆)

π
d
2Γ(∆− d

2)
(2.2.9)

で、Γ(x)はガンマ関数である。(2.2.3)にを代入することによって、Φのオンシェル作用は

Son−shell =
1

2

∫
dd+1x∂M

(√
GGMNΦ∂NΦ

)
− 1

2

∫
dd+1x

√
GΦ

{
1√
G
∂M

(√
GGMN∂NΦ

)
−m2Φ

}
= −1

2

∫
z=ϵ

ddx ϵ−d+1 Φ∂zΦ

= −∆α∆

∫
ddxddx′

ϕ(x)ϕ(x′)

(ϵ2 + (x− x′)2)∆
(2.2.10)

と評価することができる。ここで 3行目を得るために運動方程式 (2.2.5)を用いた。
スカラー演算子Oの 2点関数は双対なスカラー場 Φのオンシェル作用 (2.2.10)より

⟨O(x)O(x′)⟩ = − δ2W [ϕ0]

δϕ0(x)δϕ0(x′)

= −δ
2Son−shell[Φ]

δϕ0(x)δϕ0(x′)

=
∆α∆

(x− x′)2∆
(2.2.11)

となる。ここで ϵ → 0とした。このように、GKP-Wittenの関係式をもちいて CFTdにおける演算
子Oの 2点関数が与えられる。

2.3 ホログラフィックエンタングルメントエントロピー
量子多体系の量子エンタングルメントの度合いを測るエンタングルメントエントロピーがAdS/CFT

対応に適用できることが発見された [8]。そのエンタングルメントエントロピーと重力を結びつける
関係式が笠・高柳公式である。
まず、AdS空間の境界の領域をAとBに分けるとする。この時、境界のCFTの系全体のヒルベル

ト空間Hは各領域のヒルベルト空間HAとHBのテンソル積でH = HA⊗HBと書くことができる。
そして、密度行列 ρを部分領域 Bのヒルベルト空間HB について部分トレースをとることで、部分
領域Aに制限した密度行列 ρAを

ρA = TrBρ (2.3.1)
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図 2.2: この図は、ホログラフィックエンタングルメントエントロピーにおける境界の部分領域Aと、
その境界からバルク方向に伸びる最小曲面 ΓAを表している。

と定義する。これをもちいて部分領域Aにおけるエンタングルメントエントロピー SAは

SA = −TrρA log ρA (2.3.2)

と定義される。一方で、この領域AのBとの境界を ∂Aとする。この ∂Aを端に持つようなAdS空間
の曲面を考え、そのなかで、特に面積が最小になる極小曲面をΓAと置く。このΓAの面積をArea(ΓA)

としたときに、AdS空間の境界の CFTのエンタングルメントエントロピー SAは

SA =
Area(ΓA)

4GN
(2.3.3)

で与えられることが知られている。ここでGN はニュートンの重力定数である。この (2.3.3)式が笠・
高柳公式と呼ばれ、このようにして計算されたエンタングルメントエントロピーはホログラフィック
エンタングルメントエントロピーと呼ばれる。(2.3.3)式は、境界に住む量子多体系の量子情報である
エンタングルメントエントロピーが、バルクの重力理論の幾何に対応していることを示している。
このように、AdS/CFT 対応の下で、AdS 時空の境界の CFT が持つ量子論的な情報は、AdS 時

空のどの領域に存在するのかという問いに対して量子情報理論の観点から様々な研究がされている。
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第3章 バルク幾何に対する情報計量の解釈

この章では、AdS/CFT対応の下で、場の量子論から計算される量子情報計量がバルクの幾何に対
してどのような解釈が得られるかを調べる。特に、量子情報計量とバルク幾何の間の関係式を導き、
この関係式が普遍的なものになっていることを見る。
3.1節では、量子情報計量の基本的な定義を確認する。3.2節では量子情報理論で与えられていた量

子情報計量を、場の量子論で扱えるよう経路積分によって再定義する。それより、量子情報計量が 2

点関数で与えられることをみる。3.3節では、量子情報計量が 2点関数で与えられることから、重力
双対の場のオンシェル作用によって書き換えることができることを見る。3.4節では、アインシュタ
イン方程式を解くことにより、そのオンシェル作用が余次元 2の体積に対するバックリアクションに
よって与えられることをみる。ここまでの、3.2∼3.4節は重力双対の場がスカラー場の場合について
計算し、量子情報計量とバックリアクションの関係を表す公式が得られる。以下 3.5と 3.6節では、
重力双対の場がそれぞれベクトル場とテンソル場の場合について、公式が成り立つかをみる。

3.1 量子情報計量
物性や情報理論で用いられる量として fidelityが知られている。これは実際には、実験などで得ら

れたノイズを含めた量子状態が、本来作りたかった量子状態とどれだけ異なるかの尺度の一つとして
用いられる。一般的な 2つの量子状態AとBについて密度行列がそれぞれ ρAと ρB と与えられると
する。この時、fidelityF (ρA, ρB)は

F (ρA, ρB) = tr

√
ρ
1/2
A ρBρ

1/2
A (3.1.1)

の様に定義される。ここで、すべての量子状態に対するヒルベルト空間についてトレースをとって
いる。
量子状態AとBが純粋状態であるとすると密度行列は ρA = |ΨA⟩ ⟨ΨA|と ρB = |ΨB⟩ ⟨ΨB|で与え

られ、この時、fidelityは (3.1.1)より

F (ΨA,ΨB) = | ⟨ΨA|ΨB⟩ | (3.1.2)

となる。
今、量子状態が 1つのパラメーター λで与えられているとしよう。そのとき、量子状態 |Ψλ⟩とそ
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こから微小な量だけずれた量子状態 |Ψλ+δλ⟩の間の fidelityは、δλで展開すると

F (Ψλ,Ψλ+δλ) = 1− gλλδλ
2 +O(δλ3) (3.1.3)

のように与えられる。この時、δλ2の展開係数である gλλが量子情報計量として定義される。これの
一般化として、複数次元のパラメーター空間 λ = {λa}, a = 1, . . . , N が存在する場合は

F (Ψλ,Ψλ+δλ) = 1−
N∑

a,b=1

gabδλ
aδλb +O(δλ3) (3.1.4)

と与えられ、量子情報計量 gabはパラメーター空間の計量として見ることができる。

3.2 場の量子論における情報計量
Rd上に定義された場の量子論を考える。ここで座標は (τ, x⃗)で、τはユークリッド時間で x⃗は (d−1)

次元の空間座標である。この理論の基底状態 |Ω⟩について、時間 τ = 0での場 ψ(0, x⃗)の値を ψ̃(x⃗)と
固定した時の波動関数は、時間が−∞から 0についての経路積分によって

⟨ψ̃|Ω⟩ = 1

Z1/2

∫
ψ(0,x⃗)=ψ̃(x⃗)

Dψ exp

[
−
∫ 0

−∞
dτ

∫
dd−1x L

]
(3.2.1)

の様に与えられる。ここで場Ψの値は τ = 0で ψ̃(x⃗)に固定されていて、Zはこの理論の分配関数で
ある。また基底状態は

⟨Ω|Ω⟩ = 1 (3.2.2)

の様に規格化されている。
次に同じ場で定義されいるような 2つの理論のラグランジアン L1と L2を考える。それぞれの理

論の基底状態は |Ω1⟩と |Ω2⟩で書くことにする。その時、(3.2.1)で与えた基底状態についての波動関
数をはり合わせることによって、基底状態の間の内積を経路積分によって

⟨Ω2|Ω1⟩ =
1

(Z1Z2)1/2

∫
Dψ exp

[
−
∫
dd−1x

(∫ 0

−∞
dτ L1 +

∫ ∞

0
dτ L2

)]
(3.2.3)

とあらわすことができる。ここで Z1と Z2はそれぞれの理論の分配関数である。
次に 2つのラグランジアンの差を δLとすると、理論 2のラグランジアンは

L2 = L1 + δL (3.2.4)
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の様に得られる。この δLを用いて内積 (3.2.3)を書き直すと

⟨Ω2|Ω1⟩ =
⟨
exp

[
−
∫∞
0 dτ

∫
dd−1x δL

]⟩
1⟨

exp
[
−
∫∞
−∞ dτ

∫
dd−1x δL

]⟩1/2
1

(3.2.5)

の様になる。ここで ⟨ ⟩1は理論 1による真空の期待値

⟨O⟩1 =
1

Z1

∫
Dψ O e−S1 = ⟨Ω1|O|Ω1⟩ (3.2.6)

を表している。[9]の様に (3.2.5)を δLについてO(δL2)で展開すると内積は

⟨Ω2|Ω1⟩ =1− 1

2

∫ ∞

0
dτ

∫ 0

−∞
dτ ′
∫
dd−1x

∫
dd−1x′ ⟨δL(τ, x⃗)δL(τ ′, x⃗′)⟩1 (3.2.7)

となる。ここで δLの 1点関数が消えること

⟨δL(τ, x⃗)⟩ = 0 (3.2.8)

と時間反転対称性

⟨δL(τ, x⃗)δL(τ ′, x⃗)⟩ = ⟨δL(−τ, x⃗)δL(−τ ′, x⃗)⟩ (3.2.9)

を仮定した。
さらに、δLについて

δL = ϕ(x⃗)O(τ, x⃗) (3.2.10)

の様にとることを仮定する。ここで ϕ(x⃗)は時間 τ によらないソースでO(τ, x⃗)は局所的な演算子で
ある。その時、(3.2.7)と (3.2.10)を使って、情報計量 Gを

G =
1

T
(1− ⟨Ω2|Ω1⟩) =

∫
dd−1x

∫
dd−1x′ Gx⃗,x⃗′ ϕ(x⃗)ϕ(x⃗′) (3.2.11)

Gx⃗,x⃗′ =
1

2T

∫ ∞

0
dτ

∫ 0

−∞
dτ ′⟨O(τ, x⃗)O(τ ′, x⃗′)⟩1 (3.2.12)

の様に導入する。ここで T は時間方向の体積で、後での計算でソースが時間によらないことから生じ
る定数因子を取り除くための規格化として導入している。Gx⃗,x⃗′ は (3.1.4)における gabに対応してい
て、ϕ(x⃗)が λa、x⃗がパラメーター λaのラベル aに、積分 ∫ dd−1xがラベル aの和に対応している。
したがって、Gは 2つの理論の基底状態の間の微小な差を、無限次元の配位空間の微小距離として見
ることができる。
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3.3 オンシェル作用と情報計量
理論 1が CFTで (3.2.10)のO(τ, x⃗)が CFTで共形次元∆のスカラーのプライマリー演算子を考

える。したがって、理論 2はスカラープライマリー演算子によって CFTを摂動した理論である。以
下では理論 1についてラベルを’1’から’CFT’とて、理論 2についてはラベルをつけない。つまり、ラ
グランジアンは

L = LCFT + ϕ(x⃗)O(τ, x⃗) (3.3.1)

の様に書く。
プライマリー演算子Oの一点関数は (3.2.8)を満たすように消えていてる。プライマリー演算子O

の 2点関数は

⟨O(τ, x⃗)O(τ ′, x⃗′)⟩CFT =
C∆

(ϵ2 + (τ − τ ′)2 + (x⃗− x⃗′)2)∆
(3.3.2)

の様に与えられる。ここで、C∆は規格化定数で (2.2.11)より

C∆ = ∆α∆ (3.3.3)

と決まる。また、UVカットオフ ϵである。また時間反転対称性 (3.2.9)を満たすことは (3.3.2)から
見ることができる。
情報計量 (3.2.11)と (3.2.12)は

G =
1

T
(1− ⟨Ω|ΩCFT ⟩)

=
1

8

∫ ∞

−∞
ds

∫
dd−1x

∫
dd−1x′

C∆ϕ(x⃗)ϕ(x⃗
′)

(ϵ2 + s2 + (x⃗− x⃗′)2)∆
(3.3.4)

と得られる。
CFTがAdS上で定義されている重力双対を持っているとする。特に、重力側は古典的な近似が十

分な状況を考える。情報計量は 2点関数の生成汎関数の形をしていることから、Oに双対なバルクの
場 Φについてのオンシェル作用で表すことができる。
したがって、2.2節より、重力側のバルクの場 Φについてのオンシェル作用を考える1。
Φについての境界条件は

Φ(z = ϵ, τ, x⃗) = ϵd−∆ϕ(x⃗) (3.3.5)

1ここで座標について 2.2 節と同様に次のような表記を用いる:xµ = (x0, xi) = (τ, x⃗) で、ここで µ = 0, . . . , d − 1、
i = 1, . . . , d− 1、zM = (z, xµ)である。
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で与えるられ、時間によらないことに注意する。境界条件 (3.3.5)を満たすような (2.2.5)の解 [7]は

Φ(z, x) =

∫
ddx′K(z, x− x′)ϕ(x⃗′) (3.3.6)

と得ることができる。ここでK は

K(z, x) =
α∆z

∆

(z2 + x2)∆
(3.3.7)

である。
Φの作用 (2.2.3)にこれを代入することによって、Φのオンシェル作用は

Son−shell = −1

2

∫
z=ϵ

ddx ϵ−d+1 Φ∂zΦ

= −∆α∆

∫ ∞

0
dτ

∫ ∞

−∞
ds

∫
dd−1xdd−1x′

ϕ(x⃗)ϕ(x⃗′)

(ϵ2 + s2 + (x⃗− x⃗′)2)∆
(3.3.8)

と評価することができる。その時、(3.3.4)と (3.3.8)を比較することによって

Son−shell = −4TG (3.3.9)

と、バルク場のオンシェル作用と情報計量の関係を得ることができる。

3.4 AdS幾何へのバックリアクション
プライマリー演算子によってCFTを摂動することで得られた理論 (3.3.1)は幾何がAdS幾何にバッ

クリアクションがあるような重力双対を得られると考えられる。このとき、バックリアクションは境
界の理論の摂動として与えたソース ϕ(x)によって引き起こされる。以下ではO(ϕ2)のバックリアク
ションについて扱う。
バックリアクションを持つような計量を

ds2 = GMNdz
MdzN =

1

z2
(dz2 + gµν(z, x)dx

µdxν) (3.4.1)

のように定義する。ここで

gµν(z, x) = δµν + hµν(z, x) (3.4.2)

で、hµν はAdS幾何へのバックリアクションを表しておりO(ϕ2)の寄与を与えるとする。
重力作用は

SG =
1

16πGN

[∫
dd+1x

√
G (−R[G] + 2Λ)−

∫
z=ϵ

ddx
√
γ(2K + λ)

]
(3.4.3)

17



で与えられる。ここで宇宙定数 Λは Λ = −d(d−1)
2 、境界の宇宙定数 λは λ = −2(d− 1)、γは境界の

内部計量でKは外的曲率である。スカラー曲率R[G]は (A.8)で定義されている。このとき、第一項
目はアインシュタイン・ヒルベルト作用である。第二項目はギボンス・ホーキング項で、境界がある
時空においてアインシュタイン方程式を求める際にアインシュタイン・ヒルベルト作用から生じる表
面項を消去するための項である。
アインシュタイン方程式は (3.4.3)と (2.2.3)から

R[G]MN + dGMN = 8πGNTMN (3.4.4)

の様に得られる。ここでリッチテンソルR[G]MN は (A.7)で定義されていて、TMN は

TMN ≡ TMN − 1

d− 1
GMNG

IJTIJ (3.4.5)

のように定義されている。エネルギー運動量テンソルは

TMN = ∂MΦ∂NΦ− 1

2
GMN

(
∂LΦ∂

LΦ+m2Φ2
)

(3.4.6)

である。
アインシュタイン方程式 (3.4.4)の各成分は以下のようになる:

Trg−1g′′ − 1

z
Trg−1g′ − 1

2
Trg−1g′g−1g′ = −16πGNTzz , (3.4.7)

∇µTrg
−1g′ −∇λg′λµ = −16πGNTzµ , (3.4.8)

g′′µν − g′µλg
λσg′σν +

1

2
Tr
(
g−1g′

)
g′µν − (d− 1)

1

z
g′µν −

1

z
Tr
(
g−1g′

)
gµν − 2Ricµν(g)

= −16πGNTµν (3.4.9)

で

Tzz = ∂zΦ∂zΦ+
m2

d− 1

1

z2
Φ2 ,

Tzµ = ∂zΦ∂µΦ ,

Tµν = ∂µΦ∂νΦ+
m2

d− 1

1

z2
gµνΦ

2 , (3.4.10)

である。ここでA′ = dA
dz について ′は zに対する微分を表して、TrはTrA = δµνAµν で定義されてい

る。また、∇µは計量 gµν についての共変微分で、Ricµν [g]は gµν についてのリッチテンソルである。
(3.4.7), (3.4.8)と (3.4.9)の右辺はO(ϕ2)であるため、O(ϕ2)で hµν を評価するために運動方程式

の左辺をO(hµν)で展開する。ここで、Φが τ に依存しないため、hµν も τ に依存しない。また、x⃗方
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向についての全微分項はこの後に全空間で積分するため無視することができる。その時、(3.4.7)は

Trh′′ − 1

z
Trh′ = −16πGN

(
∂zΦ∂zΦ+

m2

d− 1

1

z2
Φ2

)
(3.4.11)

(3.4.9) は

h′′µν − (d− 1)
1

z
h′µν −

1

z
Trh′δµν = −16πGN

(
∂µΦ∂νΦ+

m2

d− 1

1

z2
δµνΦ

2

)
(3.4.12)

となる。(3.4.12)のトレースをとると

Trh′′ − (2d− 1)
1

z
Trh′ = −16πGN

(
∂µΦ∂µΦ+

m2

d− 1

d

z2
Φ2

)
(3.4.13)

となる。(3.4.12)の 00成分は

h′′00 − (d− 1)
1

z
h′00 −

1

z
Trh′ = −16πGN

m2

d− 1

1

z2
Φ2 (3.4.14)

と得られる。
(3.4.11), (3.4.13) and (3.4.14)を適当な線形結合をとることによって、hµν について

trh′′ − d− 1

z
trh′ = −8πGN

{
∂z(Φ∂zΦ)−

d− 1

z
Φ∂zΦ

}
(3.4.15)

と得られる。ここで trA = Aii = TrA−A00で、(2.2.5)を用いた。(3.4.15)を zで積分すると

trh′ = −8πGNΦ∂zΦ (3.4.16)

が得られる。ここで、境界条件 limz→∞ hµν = 0を使った。
(2.2.10)の 3行目と (3.4.16)を使うことによって、オンシェル作用は

Son−shell =
1

16πGN

∫
z=ϵ

ddxϵ−d+1trh′ (3.4.17)

と得られる。ここで (3.4.16)の全微分項が無視できることがわかる。
(3.3.9)と (3.4.17)を比較することによって、関係式

G = − 1

64πGN

∫
z=ϵ

dd−1xϵ−d+1trh′ (3.4.18)

が得られる。この公式は、境界の場の量子論の情報計量がバルクの AdS幾何へのバックリアクショ
ンによって表せることを示している。(3.4.18)の右辺を幾何学的な解釈ができることを次で示す。
z = ϵと τ = const.を満足する余次元 2の超曲面 (図 3.1)を考える。静的ゲージで超曲面の内部計
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図 3.1: 赤線は余次元 2の超曲面を表している。

量は

γij =
∂zM

∂xi
∂zN

∂xj
GMN

=
1

z2
gij (3.4.19)

で与えられる。超曲面の体積はO(hij)で評価すると

v =

∫
z=ϵ

dd−1x
√
γ

=

∫
z=ϵ

dd−1xz−d+1
√

detgij

=

∫
z=ϵ

dd−1xz−d+1

(
1 +

1

2
trh

)
(3.4.20)

の様になる。ここから hij = 0のAdSの場合の超曲面の体積を差っ引いたものを δvと書くと

δv =
1

2

∫
z=ϵ

dd−1xz−d+1trh (3.4.21)

が得られる。これを zで微分することによって、

δv′ =
1

2

∫
z=ϵ

dd−1x
(
(−d+ 1)z−dtrh+ z−d+1trh′

)
(3.4.22)

が得られる。(3.4.22)の 1項目は体積のカノニカルなスケーリングを表している。2項目は体積の非
自明な hij によるスケーリングを表していて (3.4.18)の右辺と比例することがわかる。したがって、
(3.4.18)は

G = − 1

32πGN
δv′nontrivial (3.4.23)
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と書き直すことができる。ここで

δv′nontrivial =
1

2

∫
z=ϵ

dd−1x z−d+1trh′ (3.4.24)

である。

3.5 ベクトル場
この章では、関係式 (3.4.18)がベクトル場の場合でも成り立つことを確かめる。
まず、U(1) ベクトルカレント J µ(x) によって CFT を摂動することを考える。ラグランジアン

(3.3.1)は

L = LCFT + aµ(x⃗)J µ(x) (3.5.1)

で与えられる。ここでソース aµ(x⃗)は時間 τ に依存しなく、a0 = 0である。J µ(x)の 2点関数は

⟨Jµ(τ, x⃗)Jν(τ ′, x⃗′)⟩ =
CV

(ϵ2 + |x− x′|2)d−1
Jµν(ϵ, τ − τ ′, x⃗− x⃗′) (3.5.2)

で与えられる。ここで

Jµν(ϵ, τ − τ ′, x⃗− x⃗′) = δµν −
2(x− x′)µ(x− x′)ν

ϵ2 + |x− x′|2
(3.5.3)

で CV は規格化定数である。ここで (3.2.8)と (3.2.9)を満たすことに注意する。
(3.3.4)に対応する情報計量は

G =
CV
8

∫ ∞

∞
ds

∫
dd−1x

∫
dd−1x′ai(x⃗)aj(x⃗′)

Jij(ϵ, s, x⃗− x⃗′)

(ϵ2 + s2 + (x⃗− x⃗′)2)d−1
(3.5.4)

となる。
Jµに一致するバルクの場は U(1)ゲージ場AM で、AM についての作用 SAは

SA =
1

4

∫
dd+1x

√
GFMNFMN , (3.5.5)

で与えられる。ここで FMN = ∂MAN − ∂NAM である。AM についての運動方程式は (3.5.5)より
1√
G
∂M (

√
GFMN ) = 0 (3.5.6)

で与えられる。ゲージAz = 0を保つようにかつ境界条件Aµ(ϵ, x) = aµ(x⃗) を満たすように、AdS計
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量 (2.2.2)のもとでこれらの方程式を解くと

Aµ(z, x) = αV

∫
ddx′

zd−2

(z2 + |x− x′|2)d−1
J i
µ (z, τ − τ ′, x⃗− x⃗′)ai(x⃗

′) (3.5.7)

が導き出せる。ここで

αV =
1

2

Γ(d)

π
d
2Γ(d2)

(3.5.8)

である。Aµ(z, x)は τ に依存しなく、A0 = 0なことに注意する。
(3.5.5)に (3.5.7)を代入すると、オンシェル作用は

SA,on−shell =
1

2

∫
dd+1x∂M

(√
GGKMGLNANFKL

)
− 1

2

∫
dd+1xAN∂M (

√
GFMN )

= −1

2

∫
z=ϵ

ddxz−d+3AiFzi

= −(d− 2)αV
2

∫ ∞

−∞
ds

∫
dd−1xdd−1x′ai(x⃗)

Jij(ϵ, s, x⃗− x⃗′)

(ϵ2 + s2 + |x⃗− x⃗′|2)d−1
aj(x⃗

′) (3.5.9)

の様に得られる。このオンシェル作用は (3.5.2)の 2点関数の生成汎関数となっているため、規格化
定数 CV を CV = (d − 2)αV のように決めることができる。されに、(3.5.4)と (3.5.9)を比較するこ
とによって (3.3.9)を得ることができる。
次に、AdS幾何へのバックリアクションを考えよう。バルクの作用は重力の部分が (3.4.3)でゲー

ジ場の部分が (3.5.5)となっている。このバルク作用からアインシュタイン方程式は (3.4.7), (3.4.8)

と (3.4.9)で、ここで

Tzz =
d− 2

d− 1
z2gµνFzµFzν −

1

2(d− 1)
z2FµνFµν ,

Tzµ = z2gαβFzαFµβ ,

Tµν = z2
(
FzµFzν −

1

d− 1
gµνg

αβFzαFzβ + gαβFµαFνβ −
1

2(d− 1)
gµνF

αβFαβ

)
(3.5.10)

のものである。
再び、(3.4.2)のようにAdS計量周りで計量を展開すると、その時 (3.4.11)にあたるものは

Trh′′ − 1

z
Trh′ = −16πGN

(
d− 2

d− 1
z2δµνFzµFzν −

1

2(d− 1)
z2FµνFµν

)
(3.5.11)

で、(3.4.12)にあたるものは

h′′µν − (d− 1)
1

z
h′µν −

1

z
Trh′δµν

= −16πGN

(
FzµFzν −

1

d− 1
δµνδ

αβFzαFzβ + δαβFµαFνβ −
1

2(d− 1)
δµνF

αβFαβ

)
(3.5.12)
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となる。(3.5.12)のトレースは

Trh′′ − (2d− 1)
1

z
Trh′ = −16πGNz

2

(
1

1− d
δµνFzµFzν +

d− 2

2(d− 1)
FµνFµν

)
(3.5.13)

で (3.5.12)の 00成分は

h′′00 − (d− 1)
1

z
h′00 −

1

z
Trh′

= −16πGN

(
Fz0Fz0 −

1

d− 1
δαβFzαFzβ + δαβF0αF0β −

1

2(d− 1)
FαβFαβ

)
(3.5.14)

となる。そして、(3.5.11), (3.5.13)と (3.5.14)の適当な線形結合をとり、運動方程式を使うことに
よって

trh′′ − d− 1

z
trh′

= −16πGN

{
1

2
∂z(z

2AαFzα)−
d− 1

2
zAαFzα − ∂z(z

2A0∂zA0) + (d− 1)zA0∂zA0

}
(3.5.15)

を得ることができる。ここで x⃗についての全微分項は無視している。(3.5.15)を積分することで

trh′ = −8πGNz
2AiFzi (3.5.16)

が得られる。ここで、境界条件 limz→∞ hµν = 0を用いている。
(3.5.9)と (3.5.16)から、関係式 (3.4.17)を得ることができる。したがって、(3.3.9)と (3.4.17)を得

られたことから、スカラー場の場合と同じ関係式 (3.4.23)を得ることができる。

3.6 テンソル場
最後に、エネルギー運動量テンソルによって CFTを摂動した場合を考えよう。摂動されたラグラ

ンジアンは

L = LCFT + ĥµν(x⃗)T
µν(x) (3.6.1)

である。ここでソースは時間に依存しなく、ĥ0µ = 0をみたす。Tµµ = 0より、ソース ĥµν が一般的
に ĥµµ = 0を満たしていることを仮定できる。Tµν の 2点関数は

⟨Tµν(τ, x⃗)Tρσ(τ ′, x⃗′)⟩ =
CTPαβρσ

(ϵ2 + |x− x′|2)d−1
Jµα(ϵ, τ − τ ′, x⃗− x⃗′)Jνβ(ϵ, τ − τ ′, x⃗− x⃗′) (3.6.2)
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と得られる。ここで

Jµν(ϵ, τ − τ ′, x⃗− x⃗′) = δµν −
2(x− x′)µ(x− x′)ν

ϵ2 + |x− x′|2
,

Pαβρσ =
1

2
(δαρδβσ + δασδβρ)−

1

d
δαβδρσ (3.6.3)

で、CT は規格化定数である。また (3.2.8)や (3.2.9)を満たしていることに注意する。
(3.3.4)に対応する情報計量は

G =
1

2T

∫ ∞

0
dτ

∫ 0

−∞
dτ ′
∫
dd−1x

∫
dd−1x′ĥij(x⃗) ⟨Tij(τ, x⃗)Tkl(τ ′, x⃗′)⟩ ĥkl(x⃗′)

=
CT
8

∫ ∞

−∞
ds

∫
dd−1x

∫
dd−1x′ĥij(x⃗)ĥkl(x⃗′)

Jiα(ϵ, s, x⃗− x⃗′)Jjβ(ϵ, s, x⃗− x⃗′)Pαβkl
(ϵ2 + s2 + (x⃗− x⃗′)2)d−1

(3.6.4)

となる。
Tµνに一致するバルクの場は (3.4.2)より hµνである。したがって、について重力作用 SG (3.4.3)に

ついてのアインシュタイン方程式を解く。この時、hµν(ϵ, x) = ĥµν(x⃗)のような境界条件のもと、hµν
を

hµν = h(1)µν + h(2)µν + · · · (3.6.5)

の様に展開する。ここで h(1)µν と h(2)µν は ĥµν の 1次の寄与と 2次の寄与である。(3.4.7), (3.4.8)と
(3.4.9)について TMN = 0とおいたものがこの場合のアインシュタイン方程式である。
アインシュタイン方程式を O(h(1)µν)で展開することによって h(1)µν の方程式が次の様に得られ

る:(3.4.7)は

Trh′′(1) −
1

z
Trh′(1) = 0 (3.6.6)

で、(3.4.8)については

(∂µTrh(1) − ∂νh(1)
ν
µ
)′ = 0 (3.6.7)

で、(3.4.9)については

h′′(1)µν − (d− 1)
1

z
h′(1)µν −

1

z
Trh′(1)δµν = ∂α

(
∂µh(1)να + ∂νh(1)µα − ∂αh(1)µν

)
− ∂µ∂νTrh(1) (3.6.8)

となる。これらの方程式の解が

Trh′(1) = 0 , Trh(1) = 0 (3.6.9)

の様に得られる。
境界条件 h(1)µν(ϵ, x) = ĥµν(x⃗)を満たすような (3.6.9), (3.4.8)と (3.4.9)についての解は [29]に
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よって

h(1)µν(z, x) = αT

∫
ddx′

zd

(z2 + |x− x′|2)d
Jµρ(z, τ − τ ′, x⃗− x⃗′)Jνσ(z, τ − τ ′, x⃗− x⃗′)

× Pρσij ĥij(x⃗
′) (3.6.10)

と得られる。ここで

αT =
d+ 1

d− 1

Γ(d)

π
d
2Γ(d2)

(3.6.11)

である。この時。hµν(z, x)は時間 τ に依存しなく、h0i = 0に注意する。
(3.6.6)と (3.6.8)を使うことによって、重力場 h(1)µν についてのオンシェル作用は

SG,on−shell =
1

16πGN

∫
z=ϵ

ddxz−d+1

{
−1

4
h(1)

ijh(1)
′
ij
− 1

4
h(1)00h(1)

′
00

}
(3.6.12)

の様に得られる。(3.6.12)に (3.6.10)を代入することで

SG,on−shell = − dαTT

64πGN

∫ ∞

−∞
ds

∫
dd−1xdd−1x′ĥij(x⃗)

Jiα(ϵ, s, x⃗− x⃗′)Jjβ(ϵ, s, x⃗− x⃗′)Pαβkl
(ϵ2 + s2 + |x⃗− x⃗′|2)d−1

ĥkl(x⃗
′)

(3.6.13)

が得られる。ここでCT = dαT
32πGN

であることが示される。以上からエネルギー運動量テンソルによる
摂動でも、情報計量とオンシェル作用の同じ関係式が (3.3.9)と得られる。
次に、バックリアクションh(2)について考える。以下では x⃗についての全微分項は無視する。(3.4.7)は

Trh′′(2) −
1

z
Trh′(2) = h(1)

µνh(1)
′′
µν

− 1

z
h(1)

µνh(1)
′
µν

+
1

2
h′(1)

µν
h(1)

′
µν

(3.6.14)

となり、(3.4.9)は

h′′(2)µν − (d− 1)
1

z
h′(2)µν −

1

z
Trh′(2)δµν − 2Ric(1)(h(2))µν

= h(1)
′
µα
δαβh(1)

′
βν

− 1

z
h(1)

αβh(1)
′
αβ
δµν −

1

2
Trh′(1)h

′
µν +

1

z
Trh′hµν + 2Ric(2)(h(1))µν (3.6.15)

となる。(3.6.15)のトレースと 00成分はそれぞれ

Trh′′(2) − (2d− 1)
1

z
Trh′(2) =

1

2
h(1)

µνh(1)
′′
µν

+ h(1)
′µνh(1)

′
µν

− 3d− 1

2z
h(1)

µνh(1)
′
µν
, (3.6.16)

h′′(2)00 − (d− 1)
1

z
h′(2)00 −

1

z
Trh′(2) =h(1)

α
0
h′′(1)0α

+ h′(1)
α

0
h′(1)0α

− d− 1

z
h(1)

α
0
h′(1)0α

− 1

z
h(1)

µνh(1)µν (3.6.17)

25



となる。ここで (3.6.6), (3.6.7), (3.6.8)と (3.6.9)を用いた。(3.6.14), (3.6.16)と (3.6.17)について適
当な線形結合をとることによって trh′(2) = δijh′(2)ij についての方程式が

trh′(2) =
3

4
h(1)

ijh′(1)ij
− 1

4
h(1)00h

′
(1)00

(3.6.18)

と得ることができる。
3.6.18)をつかうことで、重力のオンシェル作用 (3.6.12)は

SG,on−shell =
1

16πGN

∫
z=ϵ

ddxz−d+1
{
trh′(2) − h(1)

ijh(1)
′
ij

}
(3.6.19)

の様に得られる。1項目は SEH から来ていて (3.4.17)に対応するものである。
τ を z固定した超曲面の内部計量は γij = z−2(δij + h(1)ij + h(2)ij)のように得られる。これより、

超曲面の体積は

v =

∫
dd−1x

√
γ

=

∫
dd−1xz−d+1(1− 1

4
h(1)

ijh(1)ij +
1

2
trh(2)) (3.6.20)

と得られる。(3.4.22)に対応するものは

δv′ =
1

2

∫
dd−1x

{
(−d+ 1)z−d(trh(2) −

1

2
h(1)

ijh(1)ij) + z−d+1(trh′(2) − h(1)
ijh(1)

′
ij
)

}
(3.6.21)

の様に得られる。この時、(3.6.21)の 1項目と 2項目が体積のカノニカルなスケーリングを表してい
る。3項目と 4項目が体積の非自明なスケーリングを表しており、(3.6.19)の右辺と比例する。した
がって、(3.6.19)から、再び関係式 (3.4.23)を得ることができる。ここで 3.4.24)を

δv′nontrivial =
1

2

∫
z=ϵ

dd−1x z−d+1(trh′(2) − h(1)
ijh(1)

′
ij
) (3.6.22)

に置き換えることに注意する。

26



第4章 ゲージ重力対応における量子情報計量の幾
何学的解釈

前章で、AdS/CFT対応の下で量子情報計量とバックリアクションの対応関係を与える公式を得た。
それに基づいて、この章では、前章で得た公式がより一般的なゲージ重力対応の下で成り立つかをみ
る。ここでは、バルク時空はより一般的なものを扱うため、可能な限り共変な計算を行っていく。
まず、4.1節では、ゲージ重力対応の下でGKP―Wittenの関係式より、量子情報計量が重力双対

の場のオンシェル作用で記述できることを確かめる。4.2節で、アインシュタイン方程式を解くこと
により、量子情報計量とバックリアクションの関係をつける。そこでは、前章で得られた公式と同様
な幾何学的な解釈を得るためには、背景時空とその双対な場の量子論にポアンカレ対称性が必要であ
ることを見る。

4.1 ゲージ重力対応における情報計量
今、ユークリッド時間と空間 d− 1次元の場の量子論を考える。そのうえで、演算子O(x)のソース

項によって理論に摂動を加える。このとき、ソース ϕ(x)は理論の結合定数として繰り込み群によっ
て流れ、またGKP-Wittenの関係よりバルクの重力と結合するスカラー場としてバルクに伝搬する。
この時、繰り込み群の流れに沿った方向はバルク幾何の余剰次元として解釈できる。この理論のラグ
ランジアン密度 Lは

L = L0 + ϕ(0)(x⃗)O(x) (4.1.1)

と定義する。
さて、この理論の量子状態について情報計量を導入する。L,L0のそれぞれの理論の量子状態の基

底状態を |Ω⟩ , |Ω0⟩とする。ここでこの状態はラグランジアンが繰り込み群によって流れると共に基
底状態も流れる。これらの異なった理論間の内積を ⟨Ω|Ω0⟩とし、それぞれの理論の分配関数をZ,Z0

と定義する。この内積は経路積分によって

⟨Ω|Ω0⟩ = (ZZ0)
−1/2

∫
Dϕ exp[−

∫
dd−1x(

∫ 0

−∞
dτL0 +

∫ ∞

0
dτL)] (4.1.2)

と書かれる。この時、演算子 O(τ, x⃗) の 2 点関数に対して、時間反転対称性 ⟨O(τ, x⃗)O(τ ′, x⃗′)⟩ =
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⟨O(−τ, x⃗)O(−τ ′, x⃗′)⟩を課すと 2次の摂動項は

1

T
(1− ⟨Ω′|Ω⟩) = 1

2T

∫ ∞

0
dτ

∫ 0

∞
dτ ′
∫
dd−1x

∫
dd−1x′ ⟨δL(τ, x)δL(τ ′, x′)⟩0

=
1

2T

∫ ∞

0
dτ

∫ 0

∞
dτ ′
∫
dd−1x

∫
dd−1x′ϕ(0)(x⃗) ⟨O(τ, x⃗)O(τ ′, x⃗′)⟩0 ϕ(0)(x⃗

′) (4.1.3)

と得られる。ここで、⟨O(τ, x⃗)O(τ ′, x⃗′)⟩0 = ⟨Ω0| O(τ, x⃗)O(τ ′, x⃗′) |Ω0⟩のような d次元の場の量子論
L0の 2点相関関数である。このとき、バルク時空の場の境界における相関関数とその場に双対な境
界の演算子の相関関数の関係を表すGKP-Wittenの関係が

⟨
∫
ddxϕ(0)(x)O(x)⟩ = exp{−SΦonshell} (4.1.4)

と与えられるとする。ここで zは 2点関数に正則化を与えるパラメーターである。この時、s = τ − τ ′

と変数変換すると (4.1.3)式は

SΦonshell = 4TG (4.1.5)

と与えられる。

4.2 オンシェル作用とアインシュタイン方程式
この章では、物質場のオンシェル作用がアインシュタイン方程式から導出されることを見る。
時空の足について、以下のような定義をとる：xµ = (z, xi)で、ここで i, j, ... = 0, ..., d − 1を、

a, b, ... = 1, ..., d− 1を走る添え字である。
時空の計量は

ds2 = gµνdx
µdxν = gzzdzdz + gijdx

idxj (4.2.1)

の漸近的AdS時空を考える。この時、z方向を境界の場の量子論のスケールとして見たいので gzi =

0, ∂igµν = 0のゲージ条件を課す。また gµν = ĝµν + g̃µν で展開され、ĝはバックグラウンドの計量で
g̃はそこからの揺らぎである。特に、g̃zµ = 0のゲージをとる。
境界のある重力作用は、アインシュタイン-ヒルベルト作用にギボンス-ホーキング項を加えて

SG =
1

16πGN
[

∫
dd+1x

√
g (−R[g] + 2Λ)−

∫
boundary

ddx
√
γ(2K + λ)] (4.2.2)

で与えられる。ここで、宇宙項Λ = −d(d−1)
2 、Kは外的曲率のトレース、境界の宇宙項 λ = −2(d−1)

28



で、γは境界の内部計量である。また,曲率Rµνρσ は

Rµνρσ = ∂ρΓ
µ
νσ − ∂σΓ

µ
νρ + ΓµλρΓ

λ
σν − ΓµνλΓ

λ
σρ (4.2.3)

Rµν = Rρµρν (4.2.4)

と定義する.

物質場に関する作用は

SM =

∫
dd+1x

√
g

(
1

2
∂µΦ∂

µΦ+ V (Φ) +
1

2
∂µΨ∂

µΨ+ U(Ψ)

)
(4.2.5)

で与えられる。この時、Φは背景時空 ĝに作用するスカラー場で、Ψは境界の場の摂動に由来するス
カラー場である。V (Φ), U(Ψ)はそれぞれのポテンシャルである。
アインシュタイン方程式は

Rµν −
1

2
gµνR+ Λgµν = 8πGNTµν (4.2.6)

で与えられる。これについて、gについて展開し、エネルギー運動量テンソルについてはTµν = T̂µν+T̃µν

で展開すると、背景時空は

R̂µν −
1

2
ĝµνR̂+ Λĝµν = 8πGN T̂µν (4.2.7)

によって決まっている。次に、バックリアクション g̃について

R̃µν −
1

2
R̃ĝµν −

1

2
g̃µνR̂+ Λg̃µν = 8πGN T̃µν (4.2.8)

で与えられる。この時、

T̂µν = ∂µΦ̂∂νΦ̂− ĝµν

(
1

2
∂ρΦ̂∂

ρΦ̂ + V (Φ̂)

)
(4.2.9)

T̃µν = ∂µΨ̂∂νΨ̂− ĝµν

(
1

2
∂ρΨ̂∂

ρΨ̂ + U(Ψ̂)

)
− g̃µν

(
1

2
∂ρΦ̂∂

ρΦ̂ + V (Φ̂)

)
(4.2.10)

で与えられる。
ここで、空間方向に対する並進のキリングベクトル ξµを導入する。このとき ξµは

∇̂µξν + ∇̂νξµ = 0 (4.2.11)

を満たす。
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これを用いて、アインシュタイン方程式の縮約を取る。
ξµξν

ξ2

(
R̃µν −

1

2
R̃ĝµν −

1

2
g̃µνR̂+ Λg̃µν

)
= 8πGN

ξµξν

ξ2
T̃µν (4.2.12)

ここで、ξ2 = ĝµνξ
µξν である。これを g̃について整理すると

1

2
∇̂ρ

{
1

ξ2
∇̂µ(ξ2)ĝρσ g̃µσ − ∇̂ρ

(
ξµξν

ξ2
g̃µν

)
− ξρξσ

ξ2
ĝµν∇̂σ g̃µν +

2

ξ2
∇̂ρ(ξµξν)g̃µν

+∇̂ρ

(
2

ξ2

)
ξµξν g̃µν −

1

2

1

ξ2
∇̂ρ(ξ2)ĝµν g̃µν

}
+

1

2

{
ĝµν∇̂ρ∇̂ρg̃µν − ĝµν ĝρσ∇̂ρ∇̂ν g̃µσ

}
−1

2
∇̂ρ

(
1

ξ2

)
∇̂µ(ξ2)g̃µρ − ∇̂ρ

(
1

ξ2

)
∇̂ρ(ξ

µξν)g̃µν + ∇̂ρ

(
1

ξ2

)
∇̂ξ2 ξ

µξν

ξ2
g̃µν

+
1

ξ2
∇̂ρξ

σ∇̂ρξσ
ξµξν

ξ2
g̃µν −

2

ξ2
∇̂ρξ

µ∇̂ρξν g̃µν +
1

4

{
∇̂ρ

(
1

ξ2

)
∇̂ρ − 2

ξ2
∇̂ρξ

σ∇̂σξ
ρ

}
ĝµν g̃µν

= 8πGN

(
1

2
∂µΨ∂

µΨ+ V (Ψ)

)
(4.2.13)

となる。この時、並進対称性のキリングベクトル ξµについてのリー微分 Lξ に対して、g̃,Φ,Ψが

Lξ g̃µν = 0,LξΦ = LξΨ = 0 (4.2.14)

であることを仮定した。この (4.2.13)式の右辺はΨの運動方程式を用いると表面項で書ける。
一方、左辺が表面項で与えらえれるためには

− 1

2
∇̂ρ

(
1

ξ2

)
∇̂µ(ξ2)g̃µρ − ∇̂ρ

(
1

ξ2

)
∇̂ρ(ξ

µξν)g̃µν + ∇̂ρ

(
1

ξ2

)
∇̂ξ2 ξ

µξν

ξ2
g̃µν

+
1

ξ2
∇̂ρξ

σ∇̂ρξσ
ξµξν

ξ2
g̃µν −

2

ξ2
∇̂ρξ

µ∇̂ρξν g̃µν +
1

4

{
∇̂ρ

(
1

ξ2

)
∇̂ρ − 2

ξ2
∇̂ρξ

σ∇̂σξ
ρ

}
ĝµν g̃µν = 0

(4.2.15)

を満たす必要がある。これを解くと ĝµν は

ξµ∂z

(
ĝµν
ξ2

)
= 0 (4.2.16)

満たす。よって (4.2.13)式は
1

2
∇̂ρ

{
1

ξ2
∇̂µ(ξ2)ĝρσ g̃µσ − ∇̂ρ

(
ξµξν

ξ2
g̃µν

)
− ξρξσ

ξ2
ĝµν∇̂σ g̃µν +

2

ξ2
∇̂ρ(ξµξν)g̃µν

+∇̂ρ

(
2

ξ2

)
ξµξν g̃µν −

1

2

1

ξ2
∇̂ρ(ξ2)ĝµν g̃µν + ĝµν∇̂ρg̃µν − ĝµν ĝρσ∇̂ν g̃µσ

}
= 8πGN

{
1

2
∇̂µ

(
Ψ∇̂µΨ

)}
(4.2.17)

の様に両辺が表面項で与えられることがわかる。これを両辺積分すると表面項として、計量 (4.2.1)
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より ∫
ddx
√
ĝ

{
ĝzz∂z

((
ĝij − ξiξj

ξ2

)
g̃ij

)
− ĝzz

2

(
∂z ĝ

ij +
1

ξ2
∂zξ

2ĝij
)
g̃ij

}
= 8πGN

∫
ddx
√
ĝĝzzΨ∂zΨ (4.2.18)

となる。(4.2.18)式の右辺はΨのオンシェル作用

SΨonshell = −1

2

∫
ddx
√
ĝĝzzΨ∂zΨ (4.2.19)

に比例しているため、(4.2.18)式は∫
ddx
√
ĝ

{
ĝzz∂z

((
ĝij − ξiξj

ξ2

)
g̃ij

)
− ĝzz

2

(
∂z ĝ

ij +
1

ξ2
∂zξ

2ĝij
)
g̃ij

}
= −16πGNSΨonshell (4.2.20)

で与えられる。
ここで、(4.2.18)式の左辺を考えるために、xiの空間について dxi = (ξjgjadσ

a, dσa)の様に、ξjに
垂直な空間と水平な空間 σaにADM分解する。ここで a, b, ...は ξj に垂直な空間を走る d− 1次元の
足で、計量 gは

gij =

(
1
N2 −Nb

N2

−Na
N2 γab +

NaNb
N2

)
, gij =

(
N2 +NaNa N b

Na γab

)
(4.2.21)

となる。この時、γabは空間 σaの誘導計量である。これをN = N̂+Ñ ,Na = N̂a+Ña, γab = γ̂ab+ γ̃ab

で展開すると

ĝij =

(
1
N̂2

− N̂b
N2

− N̂a

N̂2
γ̂ab +

N̂aN̂b

N̂2

)
, g̃ij =

(
−2 Ñ

N̂3
2 N̂bÑ

N̂3
− Ñb

N̂2

2 N̂aÑ
N̂3

− Ña

N̂2
γ̃ab − 2 N̂aN̂b

N̂2
Ñ + ÑaN̂b

N̂2
+ N̂aÑb

N̂2

)
(4.2.22)

となる。この時、

ξ2 =
1

N̂2
,
√
ĝ =

√
N̂2 + N̂aN̂a

N̂2

√
gzz
√
γ̂ (4.2.23)

で、また (4.2.14)式は

∂zN̂a = 0 (4.2.24)
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に書き直される。これを (4.2.18)式に代入すると

−16πGNSΨonshell =

∫
ddx

√
N̂2 + N̂aN̂a

N̂2
√
ĝzz

√
γ̂

{
∂z

(
γ̂abγ̃ab

)
− 1

2

(
∂zγ̂

ab − 1

N̂2
∂zN̂

2γ̂ab
)
γ̃ab

}
(4.2.25)

となる。
今、z一定で ξiに垂直な空間の体積を計算する。この余次元 2の超曲面の体積Vは

V =

∫
dd−1x

√
γ

=

∫
dd−1x

√
γ̂(1 +

1

2
γ̂abγ̃ab) (4.2.26)

で与えられる。ここから γ̃の 0次の寄与を引いたものを δV とし、δV を zで微分すると

δV ′ =
1

2

∫
dd−1x∂z(

√
γ̂) γ̂abγ̃ab + δV ′

nontri,

δV ′
nontri =

1

2

∫
dd−1x

√
γ̂ ∂z

(
γ̂abγ̃ab

)
(4.2.27)

が得られる。これより、(4.2.25)式は

−8πGNSΨonshell =

∫
dτ

√
N̂2 + N̂aN̂a

N̂2
√
ĝzz

{
δV ′

nontri −
1

4

∫
dd−1x

√
γ̂

(
∂zγ̂

ab − 1

N̂2
∂zN̂

2γ̂ab
)
γ̃ab

}
(4.2.28)

となる。ここで、(4.2.28)式の右辺の第 2項が 0となることを仮定すると、γ̂abは対称な定テンソル
Cabを用いて

γ̂ab =
1

N̂2
Cab (4.2.29)

が得られる。(4.2.24)より ĝij は

ĝij =
1

N̂2

(
1 −N̂b

−N̂a Cab + N̂aN̂b

)
=

1

N̂2
Dij (4.2.30)

の様に、定テンソルDij で書ける。そのため、Dij は対角化することができるので N̂a = 0とおくこ
とができる。したがって、以上から (4.2.28)式は

SΨonshell =
T

8πGN
δV ′

nontri (4.2.31)
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が得られる。この時、
1

N̂
= ĝττ

√
ĝzz (4.2.32)

T =

∫
dτ ĝττ (4.2.33)

を用いた。AdS計量は (4.2.30)式を満たす計量であるため、

ĝzz =
1

z2
, N̂ = z, N̂a = 0, γ̂ab =

1

z2
δab (4.2.34)

ととると、[28]の結果を再現する。
(4.2.30)は ξµを時間方向に対するキリングベクトルとすると、空間方向と時間方向が関係づくこと

を示しているため、この公式のもとで双対な境界の理論にポアンカレ対称性があることが重要になっ
てくる。
また、この (4.2.30)を与える背景時空 ĝµν とその物質場 Φ(z)は場の方程式

(d− 1)

(
f ′′

f
− f ′2

f2
+

1

z

f ′

f

)
= −16πGN∂zΦ∂zΦ (4.2.35)

z2Φ′′ − (d− 1)zΦ′ +
d

2

f ′

f
z2Φ′ =

∂V

∂Φ
(4.2.36)

の解として、ポテンシャル V (Φ)を指定したときに決まる。この時、′ = ∂zで、 (4.2.30)を ĝzz =
1
z2
、

1
N̂2

= f(z)
z2
と再定義した。具体的な解の例として、d = 4の時、N = 4SYM理論から IRでN = 1SYM

理論への繰り込み群のフローに双対な重力解として、GPPZ flow [30]が知られている。これはスカ
ラー場が non zeroのVEVを持つような変形で、ポテンシャル V (Φ)が

V (Φ) = − 3

32πGN

[
−5 +

(
cosh

(
4
√
πGN√
3

Φ

))2

+ cosh

(
4
√
πGN√
3

Φ

)]
(4.2.37)

で与えられ、解が

Φ =

√
3

4
√
πGN

log
1 + z

1− z
, f(z) = 1− z2 (4.2.38)

であることが知られている。この解は、(4.2.35)式と (4.2.36)式を満たす解となっている。
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第5章 複素行列模型におけるターゲット空間エン
タングルメント

ホログラフィーの下で、ターゲット空間におけるエンタングルメントはバルクの時空を探るうえ重
要であると考えられている。そこで、この章と次の章では、D3ブレーンホログラフィーの下で、複
素行列模型とバブリング AdS幾何の関係に着目する。この章では、複素行列模型におけるターゲッ
ト空間エンタングルメントエントロピーについて調べる。ここで、ターゲット空間は複素行列の固有
値が存在している 2次元面を表している。ここでは、
5.1節では、ターゲット空間エンタングルメントエントロピーの代数的なアプローチによって定義す

る。5.2節では、実際に、スレーター行列で与えられるN フェルミオン系に適応する。ここで、付録
BではN フェルミオン系でのターゲット空間エンタングルメントエントロピーの詳細な計算を行って
いる。5.3節では、実際にターゲット空間エンタングルメントエントロピーとバルク幾何の関係をみ
るために、複素行列模型と 2次元フェルミオン系の関係をみる。最後に、5.4節で、AdS5 ×S5、AdS

ジャイアントグラビトン、ジャイアントグラビトンに対応する複素行列模型の状態について、ター
ゲット空間エンタングルメントエントロピーのふるまいをみる。

5.1 ターゲット空間エンタングルメントエントロピー
(1+ d)次元のQFTについて、場が存在する空間を部分領域Aとそれ以外に分けることを考えると

き、通常は全ヒルベルト空間Hをテンソル積としてH = HA⊗HĀ に分解できることを仮定する。そ
の時、部分領域Aについての部分密度行列 (Reduced density matrix, RDM)をHĀについての部分
トレースを取ることによって定義する。よくあるこの手順は量子力学や (1+ 0)次元のQFTなどの場
のパラメータとしての空間が存在しない系に直接適応することはできない。この時、物理的な空間は
ターゲット空間であり、一般的にターゲット空間の分割に対してヒルベルト空間はH =

∑
iHAi ⊗HĀi

のようにテンソル積に分解されない。
そこで代数的なアプローチによって、単純なテンソル積に分解できない構造を持つ理論についてエン

タングルメントの概念を定義する [18]。初めに、全ヒルベルト空間Hをテンソル積としてH = HA⊗HĀ

に分解できる場合についてRDMを代数的アプローチで与えてみる。全ヒルベルト空間の密度行列を
ρとすると、部分領域AのRDMはどのような演算子OA ∈ L(HA)に対して

trA(ρAOA) = tr[ρ(OA ⊗ 1Ā)] (5.1.1)
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を満たす。ここで L(V )はベクトル空間 V 上のすべての線形演算子の組である。これは演算子 ρA ∈
L(H)を

ρA = ρA ⊗ 1Ā
dim(HĀ)

(5.1.2)

として導入したとき、部分代数A = L(HA)⊗ 1Ā ⊂ L(H)に含まれるどのような演算子OAについて
tr(ρAOA) = tr(ρOA)が得られることを意味する。ここで部分代数Aは L(H)のサブセットで、演算
子は以下の代数のもと閉じている:

1H ∈ A

∀x ∈ C, ∀OA ⇒ xOA ∈ A

∀OA1,OA2 ∈ A ⇒ OA1 +OA2,OA1OA2 ∈ A

∀OA ⇒ O†
A ∈ A (5.1.3)

ここで 1H は L(H)上の単位演算子である。このような任意の部分代数A ⊂ L(H)が閉じる領域を抽
象的な部分領域として定義することで、テンソル分解の部分領域の概念を一般化する。
一般的な部分代数A ∈ L(H)について考える。前の例の様に一般的にAはテンソル分解できない

が、Aに対する全ヒルベルト空間はテンソル積の直和として

H =
⊕
k

HA,k ⊗HĀ,k (5.1.4)

の様に分解できる。このとき、Aは各セクター kのテンソル分解として

A =
⊕
k

L(HA,k)⊗ 1Ā,k (5.1.5)

のように与えられる。
ここで、部分領域Aの観測量にのみアクセスできるような代数Aに対して、制限された密度行列

ρAを構成する。そのために、まず直和 (5.1.4)式の任意のセクターHA,k ⊗HĀ,k への射影演算子 Πk

を導入する。これを用いると、各セクターに対する確率分布と密度行列は

pk ≡ Tr(ΠkρΠk) (5.1.6)

ρk ≡
1

pk
ΠkρΠk (5.1.7)

で与えられる。特に、ρkに対する Ākの部分トレースを取ることで各セクターに対するRDMρA,kを

ρA,k ≡ TrĀ,kρk (5.1.8)
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のように定義することで、制限された密度行列 ρAは

ρA =
∑
k

pkρA,k ⊗
1HĀ,k

dim(HĀ,k)
(5.1.9)

のように与えられる。これは、どのような演算子 ∀OA ∈ Aに対して

Tr(ρAOA) = Tr(ρOA) (5.1.10)

を満たす。
エンタングルメントエントロピーを考えるために、ρAの各セクターをそれぞれHĀ,kに関して部分

トレースをとったものを、ヒルベルト空間HA ≡ ⊕kHA,kに対するRDMとして

ρA ≡
⊕
k

pkρA,k (5.1.11)

と定義することができる。この ρAに対するフォンノイマンエントロピーを計算することでAに対す
るエンタングルメントエントロピーを定義する。エンタングルメントエントロピーは

S(ρ,A) ≡ −TrHA
ρA log ρA

= −
∑
k

pk log pk +
∑
k

pkSA,k(ρk) (5.1.12)

と定義する。ここげ SAk
(ρk)は i番目のセクターのヒルベルト空間HAk

⊗HĀk
上の密度行列 ρkにた

いする部分系HAk
のエンタングルメントエントロピーで

SA,k(A, k) = −TrA,kρA,k log ρA,k (5.1.13)

である。S(ρ,A)は古典的な部分と量子的な部分に分けることができる。第一項目は

Scl(ρ,A) = −
∑
k

pk log pk (5.1.14)

は古典的な部分で、古典的な確率密度 { pk }のシャノンエントロピーである。一方、第 2項目は

Sq(ρ,A) =
∑
k

pkSA,k(ρA,k) (5.1.15)

量子的な部分で、重みを pkとした各セクターのエンタングルメントエントロピー SA,k(ρA,k)の期待
値である。
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5.2 スレーター行列式で与えられるNフェルミオン系の量子力学
ここでは、非相対論的なN 個のフェルミオンの量子力学についてターゲット空間エンタングルメ

ントを紹介する。特に、ハミルトニアンに各粒子の相互作用がない場合に波動関数はスレーター行列
式で与えられる。その時、ターゲット空間エンタングルメントエントロピー [22]についてレビュー
する。
スレイター行列式は 1つのフェルミオンの波動関数 χ(x⃗)を用いて

ψ(x⃗1, · · · x⃗N ) = ⟨x⃗1, · · · , x⃗N |ψ⟩ =
1√
N !

det(χi(x⃗j))

=
1√
N !

∑
σ∈SN

(−)σχ1(x⃗σ(1)) · χN (x⃗σ(N)) (5.2.16)

の様に与えることで、特定の n粒子のフェルミオン系の波動関数を与える。この時、空間座標 x⃗ =

(x1, x2, · · · , xd)は各粒子の座標を表すようなターゲット空間 x⃗ ∈ Rdと見ることができる。また、χi(x⃗)
は ∫

M
ddx χi(x⃗)χ

∗
j (x⃗) = δij (5.2.17)

の様に規格化されている。
では、ターゲット空間Rdでのエンタングルメントエントロピーを考えるために、部分空間Aとそ

の補空間 Āに分けることを考える。まず、N ×N のオーバーラップ行列Xij を

Xij ≡
∫
A
ddx χi(x⃗)χ

∗
j (x⃗)

X̄ij ≡
∫
Ā
ddx χi(x⃗)χ

∗
j (x⃗) = δij −Xij (5.2.18)

を導入する。行列Xij はエルミート行列なので、一般的にはXij は非対角成分も存在するが、任意の
ユニタリー行列 U で対角化することができる。この時、得られる対角化によって得られた行列の固
有値を λiとすると

λi =

∫
A
|χ̃i(x⃗)2| (5.2.19)

で与えられて、1粒子の波動関数 χ̃i(x⃗) = Uijχj(x⃗)について部分領域Aで粒子が見つかる確率を表し
ている。
この波動関数 ψ(x⃗1, x⃗2, · · · , x⃗N )についてエンタングルメントエントロピーを考えるために、まず
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(5.1.7)式で与えられる確率分布 {pk}は

pk =

(
N

k

)∫
A
dkx

∫
Ā
dN−ky|ψ(x⃗1, · · · , x⃗k, y⃗k+1, · · · , y⃗N )2|

=
∑
I∈Fk

∏
i∈I

λi
∏
j∈Ī

(1− λj) (5.2.20)

と計算することができる。ここで Fkは 1, N の整数のうち k個選ぶすべての部分集合の集合である1。
pkはそれぞれの粒子が部分領域Aに存在する確率が λのとき、部分領域Aで k個の粒子が観測され
る確率である。つまりエンタングルメントエントロピーの古典的な部分 (5.1.14)式はこの確率分布 pk

のシャノンエントロピーである。
次に、量子論的な部分 Sq を得るために、RMD{ρA,i}の計算をする。座標基底での ρA,i の行列要

素は

⟨x⃗| ρk,A |x⃗′⟩ =

(
N

k

)
pk

∫
Ā
dN−kyψ(x⃗, y⃗)ψ∗(x⃗′, y⃗)

=
1

pk

∑
I∈Fk

λI λ̄IψI(x⃗)ψ
∗
I (x⃗

′) (5.2.21)

の様に与えられる。ここで Fk のある部分集合 I に対して、λI ≡
∏
i∈I λi, λ̄I ≡

∏
i∈I(1− λi)とおき

k個の粒子の波動関数を

ψI =
1√
λI

∑
σ∈Sk

(−1)σ√
k!

χ̃iσ(1)
(x⃗1) · · · χ̃iσ(i)

(x⃗i) (5.2.22)

を導入した。同様に

⟨x⃗| ρnA,k |x⃗′⟩ =
1

pnk

∑
I∈Fi

(λI λ̄I)
nψI(x⃗)ψ

∗
I (x⃗

′) (5.2.23)

が得られる。特に、ρnA,kの行列要素が各部分集合 I について分離していることがわかる。
したがって、エンタングルメントエントロピーの量子論的な部分は

Sq =

N∑
k=0

pk log pk −
N∑
k=0

∑
I∈Fi

λI λ̄I log(λI λ̄I) (5.2.24)

と計算することができる。

1例えば、N = 3, k = 2ならば、F2 = {{1, 2}, {1, 3}, {2, 3}}となる
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以上から、全体のエンタングルメントエントロピー (5.1.13)式は (5.2.21),(5.2.24)より

S(ρ;A) = Scl + Sq = −
N∑
k=0

∑
I∈Fk

λI λ̄I log(λI λ̄I) (5.2.25)

で与えられ、H(λ) ≡ −λ log λ− (1− λ) log(1− λ)を導入することで

S(ρ;A) =
N∑
i=1

H(λi) (5.2.26)

が得られる。ここでH(λ)はベルヌーイ分布 (λ, 1 − λ)に対するシャノンエントロピーであるため、
スレーター行列式に対するエンタングルメントエントロピー S(ρ;A)は、各粒子の波動関数の固有値
λiから得られるベルヌーイ分布のシャノンエントロピーH(λi)の和で与えられることがわかる2。
一般に、”第一量子化”によって得られたターゲット空間エンタングルメントエントロピーは”第二

量子化”の手順で得られた通常の基底空間のエンタングルメントエントロピーと等価であるとされて
いる [18]。実際に、スレーター行列式によって与えられる状態から得られたターゲット空間エンタン
グルメントエントロピー (5.2.25)も、第二量子化によって得られた自由フェルミオンのN 粒子状態
の通常のエンタングルメントエントロピーと等価であることがわかる。
また、ポテンシャルがなく相互作用がない 1次元のフェルミオンに対して、N 個の粒子に対する基

底状態のエンタングルメントエントロピー (5.1.13)を考えた場合、S ∼ O(logN)でふるまうことが
わかる。これは、一般的に 1次元の系におけるエンタングルメントエントロピーが S ∼ logLのよう
にふるまうことを再現していることがわかる。ここで Lは部分領域の長さである。

5.3 複素行列模型と2次元フェルミオン
まず、R × SO(4)× SO(4) 対称性の下で不変な IIB型超重力理論の 1/2 BPS解である LLMバブ

リング幾何とN = 4 SYMのカイラルプライマリー演算子のクラスを記述する複素行列模型のホロモ
ロフィックセクターが関係づくことをレビューする [27]。ここでは S3 × R上のN = 4 SYMの 1/2

BPSセクターに注目する。この時、カイラルプライマリー演算子は

OJ1,J2,··· ,Jp(t) =

p∏
a=1

Tr(ZJa) (5.3.1)

の様に与えられる。ここで、tは S3 × RのRの方向を表しており、Z = 1√
2
(ϕ1 + iϕ2) で与えられ、

ϕ1と ϕ2はN = 4 SYMの 6個の実スカラー場のうちの 2つである。また、この演算子は U(N)変換
の下でシングレットであり、Z のみにしかよらないホロモロフィックな性質をもつ。重力側でのKK

重力子、ジャイアントグラビトンや AdSジャイアントグラビトンをこの演算子の線形結合で表すこ

2物性理論では、量子ホール効果の文脈で’実空間’のエンタングルメントエントロピーが、このように各粒子の固有値
のシャノンエントロピーの和で計算されている [31]。
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とできることが知られている。この演算子のダイナミクスはN = 4 SYMを Z(t)の自由パートに還
元することによってを計算することができる。還元された理論は

Z =

∫
[dZ(t)dZ†(t)]eiS

S =

∫
dtTr(Ż(t)Ż†(t)− Z(t)Z†(t)) =

∫
dt
∑
i,j

(Ż(t)ijŻ∗(t)ij − Z(t)ijZ
∗(t)ij) (5.3.2)

によって定義される行列量子力学によって与えられる。ここで Z(t)はN ×N 複素行列で、経路積分
測度は行列の配位空間のノルム

||dZ(t)||2 = 2Tr(dZ(t)dZ†) = 2
∑
i,j

dZ(t)ijdZ
∗(t)ij (5.3.3)

によって定義される。作用のポテンシャル項は S3の曲率にコンフォーマルマターが結合することか
ら生じる。また、時間や場は適切にリスケールされている。
次に、演算子 (5.3.1)の相関関数を複素行列模型から得ようとすると、2次元の球対称なフェルミオ

ンの調和振動子のホロモロフィックセクターを考えることで得られることを示す。以下で登場する 2

次元フェルミオンの波動関数の導出は次のサブセクションで詳しく導出する。
複素行列模型の作用 (5.3.2)から、2次元の単体系の調和振動子と同じアナロジーでカノニカルに

量子化すると、量子化されたハミルトニアンは

Ĥ =
∑
i,j

(
− ∂

∂Zij∂Z∗
ij + ZijZ∗

i,j

)
(5.3.4)

で与えられる。このハミルトニアンに対して、規格化された基底状態は

χ0 =
1

π
N2

2

e−Tr(ZZ
†) =

1

π
N2

2

eΣi,jZijZ
∗
ij (5.3.5)

で、励起状態の波動関数として

χ(J1,··· ,JK) =

(
K∏
b=1

Tr(ZJb)

)
χ0 (5.3.6)

が得られる。この波動関数は固有値N2 + ΣKb=1Jbを持つような Ĥ の固有関数であり、U(N)変換の
下でシングレットである。これより、波動関数 (5.3.6)の相関関数を計算することで (5.3.1)の相関関
数を得ることができる。
複素行列 Zは一つのユニタリー行列 U と三角複素行列 T で Z = UTU †とあらわすことができる。

ここで UU † = 1で、T は i > j について Tij = 0な上三角行列である。Z の固有値は zi = Tii (i =
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1, · · · , N)である。この変換の下で波動関数 (5.3.6)は

χ(J1,··· ,JK) =

(
K∏
a=1

∑
ia

zJaia

)
χ0

χ0 =
1

π
N2

2

e−Σiziz
∗
i −Σj<kTjkT

∗
jk (5.3.7)

と書き直すことができる。このとき、経路積分測度は∫ ∏
dZijdZ

∗
ij

∫ ∏
i>j

dHijdH
∗
ij

∏
k<l

dTkldT
∗
kl

∏
m

dzmdz
∗
m|∆(z)|2 (5.3.8)

である。ここで∆(z) =
∏
i<j(zi−zj)で、dH = −iU †dUである。これより、波動関数χをχF ≡ ∆(z)χ

と再定義すると、最低ランダウレベルの波動関数 Φl(zi, z
∗
i )を用いることで χ

(J1,··· ,JK)
F は

det(Φli(zi, z
∗
i ))×

∏
j<k

Φ0(Tij , T
∗
jk) (5.3.9)

の任意の線形結合で書き換えられる。これは 2次元の N 個のフェルミオンと 1
2N(N − 1)個のボゾ

ンであらわされる。特に、複素行列の固有値 (zi, z
∗
i )は N 個のフェルミオンの座標を表していると

見ることができて、このフェルミオンの全エネルギーは 1
2N(N + 1) + ΣKb=1Jb である。これに対し

て、ボゾンの寄与として Tij はフェルミオンと相互作用していなく、χ(J1,··· ,JK)
F において常に基底状

態の寄与しかない。そのため、Tij はあらかじめ積分することができ、相関関数に対して全体の定数
として寄与する。したがって、(5.3.9)においては Φl(z, z

∗)のスレーター行列式として書かれている
det(Φli(zi, z

∗
i ))の寄与について考えればよい。このように、演算子 (5.3.1)のダイナミクスを再現する

ような複素行列模型のシングレットなホロモロフィックセクターは 2次元の調和振動子におけるフェ
ルミオンに還元することができる。

5.4 2次元調和振動子のNフェルミオン系に対するターゲット空間エンタ
ングルメント

この章では、D3ブレーンホログラフィーの下で、4次元N = 4SYM理論の還元模型である複素行
列模型のいくつかの低エネルギー状態におけるターゲット空間エンタングルメントエントロピーを計
算する。複素行列模型における複素行列は SYMの 6個のスカラー場のうち 2つを複素に組んだもの
である。そのため、ターゲット空間は 2次元複素座標で表されその複素行列の固有値分布は、バルク
空間のある 2次元面の領域と対応していると考えられる。
複素行列模型のシングレットホロモロフィックセクターは最低ランダウレベルのスレーター行列式

の線形結合として書かれるため、ここではそのようなスレーター行列式におけるターゲット空間エン
タングルメントエントロピーを計算する。
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まず、2次元の球対称な調和振動子について考える。ハミルトニアンは複素座標 (z, z∗)を用いると

ĥ = − ∂

∂z

∂

∂z∗
+ zz∗ = ĉ†1ĉ1 + ĉ†2ĉ2 + 1 (5.4.10)

で与えられる。ここで

ĉ1 ≡
1√
2

(
z +

∂

∂z∗

)
, ĉ2 =

1√
2

(
z∗ +

∂

∂z

)
ĉ†1 ≡

1√
2

(
z∗ − ∂

∂z

)
, ĉ†2 =

1√
2

(
z − ∂

∂z∗

)
(5.4.11)

である3。交換関係は

[ĉi, ĉ
†
j ] = δij , [ĉi, ĉj ] = [ĉ†i , ĉ

†
j ] = 0 (5.4.12)

より基底状態 Φ0,0(z, z
∗)は消滅演算子 ĉΦ0,0 = 0より

Φ0,0 =
1√
π
e−zz

∗
(5.4.13)

である。したがって、励起状態の波動関数はこの基底状態に生成演算子 ĉ†1, ĉ
†
2 を作用させることに

よって

Φk,l(z, z
∗) =

1√
k!l!

(ĉ†1)
k(ĉ†2)

lΦ0,0 (5.4.14)

で与えられ、エネルギー固有値は k + l+ 1である。特に、ĉ†2e−zz
∗
=

√
2ze−zz

∗ より、ĉ†2のみを作用
させた励起状態 Φl(z, z

∗) ≡ Φ0,l(z, z
∗)は

Φl(z, z
∗) =

√
2l

l!π
zle−zz

∗
(5.4.15)

であたえられるホロモロフィックな波動関数である。Φl(z, z
∗)は量子ホール効果の文脈で最低ランダ

ウ準位の波動関数として得られ、(5.3.9)のスレーター行列式を与える一体系の波動関数は (5.4.15)で
与えられる。また、この波動関数は半径

√
lの円周上に局在していて、r方向に 1/

√
2程度の広がり

を持つ。したがって、有限の面積 S = πr20を考えた場合、このランダウ準位に属するフェルミオンの
状態の個数はN = S/πであり、r0 =

√
N と関係づく。

次に、一体系の波動関数を任意の最低ランダウ準位の波動関数 (5.4.15)で与えた時のスレーター行
列式 (5.2.16)におけるエンタングルメントエントロピーを考ていく。このとき、ターゲット空間の分
割として部分空間を原点から半径 rの円 A : 0 ≤ r′ ≤ rととる。このような部分空間 Aに対して、

3通常の座標 (q1 =
√
2(z + z∗), q2 =

√
2(z − z∗))ではハミルトニアンが ĥ = − 1

2

∑2
i=1

(
∂2

∂q2i
+ q2i

)
=

∑2
i=1 â

†
i âi + 1

でよく見る調和振動子の形である。ここで âi ≡ 1√
2

(
qi +

∂
∂qi

)
, â†

i = 1√
2

(
qi − ∂

∂qi

)
, (i = 1, 2) の生成消滅演算子で交換

関係は [âi, â
†
j ] = δij , [âi, âj ] = [â†

i , â
†
j ] = 0である。
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(a) AdS5 × S5 (b) AdS giant graviton (c) giant graviton

(d) AdS5 × S5 (e) AdS giant graviton (f) giant graviton

図 5.1: (5.1a), (5.1b),(5.1c)は固有値の配位を、(5.1d), (5.1e), (5.1f)は占有されたエネルギー準位を
それぞれの対応する状態について表している。

オーバーラップ行列 (5.2.18)は

Xl,l′(A) = 2

∫
A
dzdz∗Φl(z, z

∗)Φl′(z, z
∗)

= δl,l′al(r) (5.4.16)

となる。この時、オーバーラップ行列は自然と対角化されているため固有値 λlは

λl = al(r) =
γ[l + 1, r2]

Γ[l + 1]
(5.4.17)

と与えられ、各粒子の部分領域Aの存在確立とみることができる。ここで、Γ[x]はガンマ関数で γ[a, x]

は不完全ガンマ関数で

γ[a, x] =

∫ x

0
ta−1e−tdt (5.4.18)

である。一般には、各一体系の波動関数 χlが最低ランダウ準位の波動関数の線形結合で与えられる
ようなスレーター行列式でも、任意のユニタリー変換を行うことによって計算することができる。
したがって、この最低ランダウ準位で与えられるN フェルミオン系のターゲット空間エンタング
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図 5.2: 基底状態のエンタングルメントエントロピー S = S0をN = 40, 60, 80, 100について部分領域
の半径 rでプロットした。

ルメントエントロピーは (5.2.25)より任意の準位の固有値 al(i)(r)から

S(r,N) =
N∑
i=1

H(al(i)(r)), H(al(i)(r)) = −al(i)(r) log al(i)(r)− (1− al(i)(r)) log(1− al(i)(r))

(5.4.19)

と得られる。
具体的な例として、基底状態のターゲット空間エンタングルメントエントロピーを計算する。この

N フェルミオン系の基底状態は、最低準位から順に準位が埋まっていくことから 0 ∼ N − 1番目の
準位に対するスレーター行列式で与えられる。(5.2.25)は

S0(r,N) =

N−1∑
i=0

H(ai(r)),H(ai(r)) = −ai(r) log ai(r)− (1− ai(r)) log(1− ai(r)) (5.4.20)

(5.2)では、N = 40, 60, 80, 100についてエンタングルメントエントロピー Sを部分領域の半径 rでプ
ロットしたものである。そこでは、半径が r <

√
N の領域では Sが rに比例していることが分かる。

この時、比例係数は S ∼ 1.81rである。これは、物性理論の分野で”ターゲット空間の”エンタングル
メントエントロピーとは別の文脈で計算されているエンタングルメントエントロピー [31]は、ラー
ジN の解析の結果より S = 2

√
2πr cdisc ∼ 1.804で、この結果と非常に近いものとなっている。ここ

で cdisc =
∫∞
−∞

dµ
2πH(12Erfc(µ)) ∼ 0.203である。また r >

√
N の領域で S = 0となるのは、すべての
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図 5.3: 線のグラフは AdSジャイアントグラビトンに対応する状態のエンタングルメントエントロ
ピー SAdSをN = 51, J = 50について部分領域の半径 rでプロットしたもので、破線のグラフは基底
状態のエンタングルメントエントロピー S0をN = 50について部分領域の半径 rでプロットしたも
のである。

N 個の粒子が部分領域Aに束縛されているためAの内部と外部でエンタングルメント しないことを
表している。
次に、基底状態からN 個のうちの最高エネルギー準位であるN − 1番目の粒子のみをN − 1 + J

番目に励起させた状態のエンタングルメントエントロピーを計算する。これは、重力理論ではAdS5

上の S3に存在するようなジャイアントグラビトンに対応する状態である。(5.2.25)は

SAdS(r,N, J) =
N−2∑
i=0

H(ai(r)) +H(aN−1+J(r)) (5.4.21)

で計算される。(5.3)は、N = 51, J = 50についてエンタングルメントエントロピー SAdS を部分領
域の半径 rでプロットしたものである。また、(5.4)は、N = 51, J = 50について、SAdS と基底状態
のエンタングルメントエントロピー S0

4の差 dSAdS = SAdS(r, 51, 50) − S0(r, 50)を rでプロットし
たものである。(5.4)で、r =

√
N + J の位置にピークが存在することから、エンタングルメントエ

ントロピー SAdS がAdSジャイアントグラビトンの位置を示していることがわかる。
次に、基底状態からN 個のうちの n = N − 1−J 番目の粒子をN 番目に励起させた状態を考える。

4ここで、次のセクションの bubblingとの対応から、SAdS や Sg とフェルミオンの個数 N が異なることに注意する。
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図 5.4: N = 51, J = 50についてAdSジャイアントグラビトンに対応する状態のエンタングルメント
エントロピー SAdS とN = 50について基底状態のエンタングルメントエントロピー S0の差 dSAdS

をプロットしたものである。

これはS5上のS3に存在するようなジャイアントグラビトンに対応するような状態である。(5.2.25)は

Sg(r,N, J) =
N−2−J∑
i=0

H(ai(r)) +
N∑

j=N−J
H(aj(r)) (5.4.22)

で計算される。(5.5)は、N = 100, J = 49についてエンタングルメントエントロピー Sg を部分領域
の半径 rでプロットしたものである。また、(5.6)は、N = 100, J = 49についての SAdS と基底状態
のエンタングルメントエントロピー S0

100の差 dSg = Sg(r, 100, 49)− S0(r, 100)を rでプロットした
ものである。(5.6)より,r =

√
N − J の位置にピークが存在することから、エンタングルメントエン

トロピー Sg がジャイアントグラビトンの位置を示していることがわかる。
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図 5.5: 線のグラフはジャイアントグラビトンに対応する状態のエンタングルメントエントロピー Sg

をN = 100, J = 49について部分領域の半径 rでプロットしたもので、破線のグラフは基底状態のエ
ンタングルメントエントロピー S0をN = 100について部分領域の半径 rでプロットしたものである。

図 5.6: N = 100, J = 49についてAdSジャイアントグラビトンに対応する状態のエンタングルメント
エントロピー SAdS とN = 100について基底状態のエンタングルメントエントロピー S0の差 dSAdS

をプロットしたものである。
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第6章 バブリングAdS幾何におけるバルクエンタ
ングルメント

前章では、場の量子論側にあたる複素行列模型のターゲット空間エンタングルメントエントロピー
を計算したので、この章ではバルク時空にあたるバブリングAdS幾何について見ていく。
6.1節では、Lin, Lunin, Maldacena(LLM)らによって発見された IIB型超重力理論の1/2BPS解 [26]

についてレビューする。6.2節で、前章で計算した複素行列模型のターゲット空間エンタングルメン
トエントロピーに対応するような、バブリングAdS幾何におけるエンタングル面の面積を計算する。
そして、比較することでターゲット空間エンタングルメントとバルク幾何の関係についての洞察を
得る。

6.1 バブリングAdS幾何
R× SO(4)× SO(4) 対称性に不変な IIB型超重力理論の 1/2BPS解は以下のような計量

ds2 = −h−2

[
dt+

2∑
i=1

Vidx
i

]
+ h2

[
dy2 +

2∑
i=1

dxidxi

]
+ yeGdΩ2

3 + ye−GdΩ̃2
3 (6.1.1)

で与えられる。ここで hやGは 3つの座標の関数 z(x1, x2, y)と

h−2 = 2y coshG, z =
1

2
tanhG, (6.1.2)

の様に関係づいていて、Viは

y∂yVi = ϵij∂jz, y(∂iVj − ∂jVi) = ϵij∂yz (6.1.3)

で決定される。また、この幾何は、自己双対 5-形式の場の強さ1によってサポートされている。

1自己双対 5-形式の場の強さは

F = dBt ∧ (dt+ V ) +BtdV + dB̂, F̃ = dB̃t ∧ (dt+ V ) + B̃tdV + d
˜̂
B,

Bt =
1

4
y2e2G, B̃t ==

1

4
y2e−2G, dB̂ =

1

4
y3 ∗3 d(

z + 1
2

y2
), d

˜̂
B =

1

4
y3 ∗3 d(

z − 1
2

y2
) (6.1.4)

のように与えられている。
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関数 zは微分方程式

∂i∂iz + y∂y

(
∂yz

y

)
= 0 (6.1.5)

に従うような関数で、y → 0で z → ±1/2となるような境界条件を一つ設定することで幾何 (6.1.1)

が一つ決まる。ここで z → −1/2の領域は計量 dΩ2
3の S3を示していて、z → 1/2の領域は計量 dΩ̃2

3

の S̃3を示している。このような境界条件は x1 − x2平面での液滴の配位として (図)のような色分け
をすることによってわかりやすくなる。ここで y → 0で z = −1/2を黒で描いて、z = 1/2を白で書
いている。

6.2 バブリングAdS幾何におけるエンタングル面の面積とターゲット空間
エンタングルメントエントロピー

まず、具体的にAdS5 × S5幾何を与えるような液滴の配位を考える。ここで、x1 − x2平面に極座
標 (r, ϕ)を導入したとき、r < r0で z = −1/2、r > r0で z = 1/2となるような境界条件の解は

z̃(r, y; r0) ≡ z − 1

2
=

r2 − r20 + y2

2
√
(r2 + r20 + y2)2 − 4r2r20

− 1

2

Vϕ = −1

2

(
r2 + r20 + y2√

(r2 + r20 + y2)2 − 4r2r20
− 1

)
(6.2.6)

で与えられる。この解は Fig.(5.1a)のような円形の液滴配位で与えられる。ここで、r0は AdS半径
R2
AdS と r0 = RAdS =

√
N の様に関係づく。

この円形の液滴配位の解をもとにして、円対称な解を作ることができる。そのような解は

z̃ =
∑
i

(−1)i+1z̃(r, y; ri), VΦ =
∑
i

(−1)i+1Vϕ(r, y; ri) (6.2.7)

で与えられる。この時、r1は最も外側の円の半径で z̃(r, y; r1), Vϕ(r, y; r2)が (6.2.6)で与えられ、r2
が次の半径で,Fig.(5.1b)(5.1c)の様に与えられる。特に Fig.(5.1c)の液滴配位の白いリングは S5上の
S̃3 に存在するようなジャイアントグラビトンを表しており、Fig.(5.1b)の液滴配位の黒いリングは
AdS5上の S3存在するようなジャイアントグラビトンを表している。
前章で、複素行列模型の固有値がはる 2次元平面を原点から半径 r =

√
N の円で分けた内部を部

分領域Aとしてターゲット空間エンタングルメントエントロピー (5.2.25)を計算した。今、複素行列
模型の固有値の配位が LLM解をあたえる液滴の配位を再現することから、このような複素行列模型
のターゲット空間にあたる 2次元平面と LLM解を与えるような 2次元平面が同一視できると考えら
れる。したがって、バルクの理論として考えるエンタングルメント面は y = 0の x1 − x2平面上の原
点から半径 r =

√
N の円周である。そのため、次にこの考察が正確かどうかを確かめるために、エン

タングルメントに対する半径 r =
√
N の円周の長さを計算する。具体的には 2章で計算した固有値の
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配位に対応する液滴配位 Fig.(5.1a), (5.1b), (5.1c)における半径 r =
√
N の円周の長さのふるまいを

見ていく。
まず、計量 (6.1.1)において静的な x1 − x2平面の内部計量 γij は

γrr = h2, γϕϕ = −h−2V 2
ϕ + h2r2, γrϕ = γϕr = 0 (6.2.8)

で与えられる。これより、x1 − x2平面上の原点から半径 r =
√
N の円周の長さ Lは

L(r) =

∫ 2π

0
dϕ

√
γϕϕ = 2π

√
−h−2V 2

ϕ + h2r2 (6.2.9)

を計算することとなる。ここで h や Vϕ は (6.1.2) で定義されていて、任意の液滴配位に対応する
z(r, y; r0)を決めることによって与えられる。

AdS5 × S5

ここではAdS5 × S5に対する bubbling AdS geometryで y = 0の x1 − x2平面上の原点から半径 r

の円周の長さのふるまいを見る。そして、対応するターゲット空間エンタングルメントエントロピー
のふるまいと比較する。
まずAdS5 ×S5に対応する液滴の配位 Fig.(5.1a)は (6.2.6)によって与えられる。したがって、γϕϕ

は y → 0で

γϕϕ = lim
y→0

(−h−2V 2
ϕ + h2r2) ∼ r2 + r20 − |r2 − r20|

2r0
(6.2.1)

となる。してがって、円周の長さは

L(r) =

∫ 2π

0

√
γϕϕ =

√
2π

√
r2 + r20 − |r2 − r20|

r0
(6.2.2)

で与えられる。これは、r < r0で L(r) =
√

2
r0
πrのように rに比例するようにふるまい、r > r0で

L(r) =
√
2r0πの定数となる。

(AdS) ジャイアントグラビトン

次に、(AdS)ジャイアントグラビトンに対する円周の長さを AdS5 × S5と同様に考えていく。特
に、AdS5 × S5の幾何と比較することで (AdS)ジャイアントグラビトンの bubbling AdS geometry

にあたえる効果を見ていく。
まず、Fig.(5.1b), (5.1c)の液滴配位の (AdS)ジャイアントグラビトンについての関数 z と Vϕ は
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図 6.1: 線のグラフは AdSジャイアントグラビトンに対応する液滴配位の円周の長さ LAdS を r1 =√
101, r2 = 10, r3 =

√
50について半径 rでプロットしたもので、破線のグラフは AdS5 × S5に対応

する液滴配位の円周の長さ L0を r0 =
√
50について半径 rでプロットしたものである。

(6.2.6)(6.2.7)より

z = z̃ +
1

2
=

3∑
i=1

(−1)i+1z̃(r, y; ri) +
1

2

Vϕ =

3∑
i=1

(−1)i+1Vϕ(r, y; ri) (6.2.1)

で与えられる。ここで r1 > r2 > r3 である。したがって、Fig.(5.1b), (5.1c)のような y → 0での
z → ±1/2を分ける円周が 3つあるような液滴配位での円周の長さ L(r)は (6.2.9),(6.2.8)より計算さ
れる。具体的な γϕϕの計算はAppendix.Aにある。
まず、Fig.(6.1)は、r1 =

√
101, r2 = 10, r3 =

√
50について AdSジャイアントグラビトンに対応

する円周の長さ LAdS(r)と、r0 = r3についてAdS5 × S5に対応する円周の長さ L0(r)を rについて
プロットした。Fig.(6.2)は、dLAdS = LAdS(r)−L0(r)を rについてプロットしたもので、AdSジャ
イアントグラビトンの bubbling AdS geometryにあたえる効果を表している。これより、dLAdS は
r = r1 =

√
N あたりにピークが来ていることがわかる。これは、Fig.(5.4)の様にふるまうターゲッ

ト空間エンタングルメントエントロピーの結果と定性的に一致している。
同様に、Fig.(5.1c)のジャイアントグラビトンについて計算する。(6.3)は r1 =

√
101, r2 =

√
51, r3 =√

50についてジャイアントグラビトンに対応する幾何での円周の長さ Lg(r)と、r0 = r1 について
AdS5×S5に対応する円周の長さL0(r)を rについてプロットした。Fig.(6.4)は、dLg = Lg(r)−L0(r)
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図 6.2: 線のグラフは r1 =
√
101, r2 = 10, r3 =

√
50についてAdSジャイアントグラビトンに対応す

る液滴配位の円周の長さLAdSと r0 =
√
50についてAdS5 ×S5に対応する液滴配位の円周の長さL0

の差 dLAdS を半径 rでプロットしたものである。

を rについてプロットしたもので、ジャイアントグラビトンの bubbling AdS geometryにあたえる
効果を表している。これより、dLAdS は r = r2 =

√
N あたりにピークが来ていることがわかる。こ

れは、Fig.(5.6)の様にふるまうターゲット空間エンタングルメントエントロピーの結果と定性的に一
致している。ただし、ジャイアントグラビトンの効果がエンタングルメントエントロピーを逆符号に
ピークが表れている。これは、エンタングルメントエントロピーのジャイアントグラビトンによる寄
与は対応する位置のフェルミオンを取り除いたものを計算しているので負の符号でピークが出ている
が、実際は取り除いたフェルミオンはホールとして見ることができるので基底状態を取り換えること
でホールの寄与として正の符号として現れると考えられる。
以上の様に、(AdS)ジャイアントグラビトンに対応する幾何への効果と複素行列模型におけるター

ゲット空間エンタングルメントエントロピーが同じふるまいをしていることがわかる。
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図 6.3: 線のグラフはジャイアントグラビトンに対応する液滴配位の円周の長さ LAdS を r1 =√
101, r2 =

√
51, r3 =

√
50について半径 r でプロットしたもので、破線のグラフは AdS5 × S5 に

対応する液滴配位の円周の長さ L0を r0 =
√
101について半径 rでプロットしたものである。

図 6.4: 線のグラフは r1 =
√
101, r2 =

√
51, r3 =

√
50について AdSジャイアントグラビトンに対応

する液滴配位の円周の長さ Lg と r0 =
√
100について AdS5 × S5に対応する液滴配位の円周の長さ

L0の差 dLg を半径 rでプロットしたものである。
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第7章 まとめと考察

本学位論文では、ゲージ重力対応の下で量子情報と時空の幾何との関係を、量子情報計量とター
ゲット空間エンタングルメントエントロピーの 2つの量子情報量に着目して調べた。それにより、場
の量子論の量子情報からバルク時空のダイナミクスを再構成するための手掛かりを得ることができ
た。以下は、2つのアプローチに対するそれぞれのまとめと考察である。

量子情報理論とバルク時空の幾何

3章では、量子情報計量がどのようにバルクの幾何で記述されるかを調べた。ここでは、任意の
CFTの基底状態とその CFTの摂動から得られた理論の間の距離を測る量子情報計量を考えた。こ
の時、摂動から得られるバルク幾何へのバックリアクションによって情報計量を表すことができた。
そしてバルクの余次元 2の超曲面の体積について AdS時空の場合との差に情報計量が比例すること
がわかった。この公式は摂動がスカラー、ベクトル、テンソルの場合でも成り立つことから、他のす
べての種類の場でも成り立つ普遍的な公式であると予想される。このように情報計量はバックリアク
ションによって記述されることから重力のダイナミクスと関連していると考えられる。
4章では、この公式を一般的なゲージ重力対応の下でどのように働くかを調べた。ここでは、CFT

でなく任意の場の量子論とその理論から摂動した理論の間の量子情報計量を考えた。重力側では、場
の量子論の摂動に対応するスカラー場のオンシェル作用がバルク時空に対するバックリアクションで
表すことができる。ここで 3章で得られた公式のように、量子情報計量がある余次元 2の超曲面の体
積におけるバックリアクションによって記述できるためには、背景時空にポアンカレ対称性を課す必
要があることがわかった。それは摂動をかける前の場の量子論にポアンカレ対称性を要求することに
等価である。
ここで情報計量と関係する超曲面は z = ϵで τ = const.の余次元 2の超曲面である。ここで ϵは十

分小さく、場の量子論側ではUVカットオフとして与えられる。したがって、場の量子論による情報
計量から完全なバルク幾何を再構成するためには、繰り込み群を用いて zが任意の定数で指定される
ような超曲面と関係づける必要がある。また、境界面の空間方向にあたる x⃗方向にも局所的な情報計
量とバルク幾何との関係を見つける必要がある。ポアンカレ対称性の存在は、重力側の幾何学的な解
釈をシンプルにしている。もしポアンカレ対称性がない非相対論的な場の量子論の場合でも、量子情
報計量ついての公式がどのような解釈ができるか調べるたい。
最後に、重力の量子論を構築するために、弦の効果や量子論的な揺らぎに対してこの公式を適用で
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きるように拡張したい。

バルクエンタングルメントとターゲット空間エンタングルメント

5章と 6章では、複素行列模型とバブリングAdS幾何の対応に着目し、ターゲット空間エンタング
ルメントとバルクの幾何の関係を調べた。
5章では複素行列模型におけるホロモロフィックセクターの状態に対してターゲット空間エンタン

グルメントを考えた。この状態は一体系の波動関数が最低ランダウ準位の波動関数であるスレーター
行列式でかけるため、このようなスレーター行列式に対するターゲット空間エンタングルメントエン
トロピーを計算した。このとき、複素行列の固有値が存在する 2次元面がターゲット空間にあたる。
この 2次元複素座標系で張られるターゲット空間を、原点を中心とする円で分割したとき、ターゲッ
ト空間エンタングルメントエントロピーは各準位のベルヌーイ分布のシャノンエントロピーの和に
よって与えられることがわかった。特に、基底状態と AdSジャイアントグラビトン、ジャイアント
グラビトンに対応する状態に関して具体的に計算した。
6章では、5章でのターゲット空間の部分領域の分割に対応すると考えられるバルク領域の境界の

長さを計算した。具体的は、バブリング AdS幾何の解を与える液滴配位が存在する 2次元面上で原
点を中心とした円周の長さを計算した。特に、AdS5 × S5と AdSジャイアントグラビトン、ジャイ
アントグラビトンに対応するバブリング AdS幾何の下で計算した。得られた結果を、対応するター
ゲット空間エンタングルメントエントロピーと比較することで、これらは同じふるまいをすることを
示した。
これらの結果はゲージ重力対応のもとで [19]の予想を示す一つの証拠となっている。ただし、定量

的な整合性を確認することは次の課題である。重力側では、バブリング AdS幾何の下で境界の面積
(長さ)を計算した。実際にバルクエンタングルメントエントロピー計算するためには

S =
A

4GN
(7.0.1)

の様に重力定数GN を考慮する必要がある。ここで、Aは境界の面積 (長さ)である。ただし、考え
ている空間は 10次元中の時間を含めた 3次元面である。そのため、10次元 IIB型超重力理論をこの
3次元の理論まで還元することで、対応する重力定数を得る必要がある。そのためには、直和空間に
なっていないような重力理論を還元する必要があると考えられる。また、カイラルプライマリー状態
と液滴の関係をより精密なものにする必要があると考えられる。この場合、波動関数が 1つのスレー
ター行列で記述できるとは限らない。
将来的には、10次元 IIB型超重力理論と 4次元 N = 4SYMの間のバルクエンタングルメントと

ターゲット空間エンタングルメントの関係を探る必要がある。このとき、場の量子論のターゲット空
間は場の配位空間である。5章で与えたようなターゲット空間エンタングルメントエントロピーの表
式は、第一量子化された粒子に対するものにあたる。そのため、場の量子論でも適用できるようにそ
れを拡張する必要があると考える。
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また、超弦理論の非摂動論的な定式化である行列模型、BFSS行列模型や IIB型行列模型などで
ターゲット空間エンタングルメントを考えたい。特に、[20]では、BFSS行列模型のような複数の行
列をもつ行列模型のターゲット空間の分割方法を提案している。しかし、それ自体の計算が複雑なこ
とや、そもそもそのような行列模型の波動関数を得ること自体が難しい。
以上から、ターゲット空間エンタングルメントとバルク時空の幾何の関係をより深く理解すること

により、量子エンタングルメントによる時空の創発のメカニズムにさらに重要な知見が得られると考
えられる。
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付 録A リッチテンソルとスカラー曲率の計算

この付録ではリッチテンソルやスカラー極率の計算をする。クリストッフェル記号は

Γzzz = − 1

z2
, (A.1)

Γzαβ =
1

z
gαβ −

1

2
g′αβ , (A.2)

Γαzγ =
1

2
gαβg′βγ −

1

z
δαγ , (A.3)

Γαβγ =
1

2
gαδ (∂βgγδ + ∂γgβδ − ∂δgβγ)

= Γαβγ(g) , (A.4)

Γzαz = Γαzz = 0 (A.5)

で与えられる。
リーマン曲率、リッチテンソル、スカラー曲率は

RIJKL[G] = ∂KΓIJL − ∂LΓ
I
JK + ΓIMKΓMLJ − ΓIMLΓ

M
KJ , (A.6)

RMN [G] = RKMKN [G] , (A.7)

R[G] = GMNRMN [G] , (A.8)

によって定義される。
リッチテンソルの成分は

R[G]zz = −1

2

(
Trg−1g′′ − 1

z
Trg−1g′ − 1

2
Trg−1g′g−1g′ +

2

z2

)
, (A.9)

R[G]zµ =
1

2

(
∇αg′αµ −∇µTrg

−1g′
)
, (A.10)

R[G]µν = −1

2

(
−2Ricµν(g) + g′′µν − g′µλg

λσg′σν +
1

2
Tr
(
g−1g′

)
g′µν

−(d− 1)
1

z
g′µν −

1

z
Tr
(
g−1g′

)
gµν +

2d

z2
gµν

)
, (A.11)

の様に得られ、ここで

Ric(g)µν = ∂αΓ
α
µν(g)− ∂νΓ

α
µα(g) + Γαβα(g)Γ

β
νµ(g)− Γαµβ(g)Γ

β
να(g) (A.12)

58



スカラー曲率は

R[G] = GMNR[G]MN = GzzR[G]zz +GµνR[G]µν

= z2
(
−Trg−1g′′ +

3

4
Trg−1g′g−1g′ +

d

z
Trg−1g′ − 1

4

(
Trg−1g′

)2 − d2 + d

z2
+R(g)

)
, (A.13)

の様に得られ、ここでR(g) = gµνRic(g)µν である。
Ric(g)µν を (3.4.2)の hµν で展開すると

Ric(g)µν = Ric(1)(h)µν +Ric(2)(h)µν + ... (A.14)

となり、ここで hµν の一次,Ric(1)(h)µν は

Ric(1)(h)µν =
1

2
∂α (∂µhνα + ∂νhµα − ∂αhµν)−

1

2
∂µ∂νh

α
α (A.15)

となり、hµν の２次Ric(2)(h)µν は

Ric(2)(h)µν =− 1

2
∂α

{
hαβ (∂µhνβ + ∂νhµβ − ∂βhµν)

}
+

1

2
∂ν

{
hαβ∂µhαβ

}
+

1

4
∂βhαα (∂µhνβ + ∂νhµβ − ∂βhµν)

− 1

4
δαγδβδ (∂µhβγ∂µhαδ + ∂βhµγ∂αhµδ

−∂βhµγ∂δhµα − ∂γhµβ∂δhµα + ∂γhµβ∂δhµα) . (A.16)

となる。その時、R(g)について hµν の２次は

R(2)(h) =δµνRic(2)(h)µν − hµνRic(1)(h)µν

=− 1

2
∂α

{
hαβ

(
2∂µhµβ − ∂βh

µ
µ

)}
+

1

2
∂µ
{
hαβ∂µhαβ

}
+

1

4
∂βhαα

(
2∂µhµβ − ∂βh

µ
µ

)
− 1

4
(2∂αhµν∂νhµα − ∂αh

µν∂αhµν)

− hµν
{
1

2
∂α (2∂µhνα − ∂αhµν)−

1

2
∂µ∂νh

α
α

}
. (A.17)

となる。
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O(h2)でアインシュタイン―ヒルベルト作用とギボンス―ホーキング項を展開すると

SEH =
1

16πGN

∫
dd+1x

√
G (−R[G] + 2Λ)

=
1

16πGN

∫
dd+1xz−d+1

{
−2d

z2
+ h′′

µ
µ −

d

z
h′
µ
µ +

d

z2
hµµ

− hµνh′′µν −
3

4
h′
µν
h′µν +

d

z
hµνh′µν −

d

2z2
hµνhµν +

1

4
∂αhµν∂αhµν −

1

2
∂αhµν∂µhµα

+
1

2
hµµh

′′ν
ν +

1

4
(h′

µ
µ)

2 − d

2z
hνµh

′ν
ν +

d

4z2
(hµµ)

2 +
1

2
∂νh

µν∂µh
α
α − 1

4
∂αhµµ∂αh

ν
ν

}
(A.18)

SGH =− 1

16πGN

∫
z=ϵ

ddx
√
γ(2K + λ)

=
1

16πGN

∫
z=ϵ

ddxz−d
{
−2− hµµ −

1

4
(hµµ)

2 +
1

2
hµνhµν − hµνh′µν + h′

µ
µ +

1

2
hµµh

′ν
ν

}
(A.19)

となる。
(3.6.7), (3.6.8) and (3.6.9)についてのアインシュタイン方程式を使うとアインシュタイン―ヒルベ

ルト作用 SEH は

SEH,on−shell =
1

16πGN

∫
dd+1x

d

dz

{
−3

4
z−d+1hµνh′µν +

1

2
z−dhµνhµν − 2z−d

}
(A.20)

と得られ。ギボンス―ホーキング項は SGH

SGH,on−shell =
1

16πGN

∫
z=ϵ

ddxz−d
{
−zhµνh′µν +

1

2
h(1)

µνh(1)µν − 2

}
(A.21)

と得られる。したがって、(A.20)と (A.21)を使うことによって, 境界が z = ϵでのオンシェル作用
(3.6.12)が得られる。
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付 録B N個のフェルミオンの非相対論的な量子
力学におけるターゲット空間エンタング
ルメントエントロピー

この付録では、N 個のフェルミオンの非相対論的な量子力学におけるターゲット空間エンタングル
メントエントロピーについて考える。
実線R上を動くN 個のフェルミオン系におけるターゲット空間エンタングルメントエントロピー

から始める。ここで、第一量子化の観点からRはターゲット空間にあたる。このターゲット空間の部
分領域 A ⊂ Rにおけるエンタングルメントエントロピーを計算したい。この時、Aは実数 aによっ
てを x > aとする領域であり、Āはその補空間である。このように、領域をAと Āに分けたとき、一
つの粒子のヒルベルト空間H1は直積ではなく直和の構造が

H1 = HA +HĀ (B.1)

の様に得られる。ここで、

HA = span{|x1⟩ , x1 ∈ A}

HĀ = span{|x1⟩ , x1 ∈ Ā} (B.2)

で与えられる。次に、ターゲット空間エンタングルメントエントロピーを得るために、2個のフェル
ミオンのヒルベルト空間H2の議論から始めよう。2個のフェルミオンの波動関数は一般的に

|ψ⟩ =
∫
dx1

∫
dx2ψ(x1, x2) |x1, x2⟩a =

∫
dx1

∫
dx2ψa(x1, x2) |x1, x2⟩ (B.3)

で与えられる。ここで

|x1, x2⟩a ≡
1√
2
(|x1⟩ ⊗ |x2⟩ − |x2⟩ ⊗ |x1⟩)

ψa(x1, x2) ≡
1√
2
(ψ(x1, x2)− ψ(x2, x1)) (B.4)

で与えられ、aの添え字は反対称性を表している。2粒子のヒルベルト空間は自然に 3つのセクター

H2 = H2,0 +H1,1 +H0,2 (B.5)
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に分けることができる。ここで

H2,0 = span{|x1, x2⟩a , x1, x2 ∈ A}

H1,1 = span{|x1, x2⟩a , x1,∈ A, x2 ∈ Ā}

H1,1 = span{|x1, x2⟩a , x1, x2 ∈ Ā} (B.6)

である。x1, x2に対する積分の範囲をそれぞれの領域 A, Āに限定することで、それぞれのセクター
への波動関数が、例えば

|ψ⟩1,1 =
∫
A
dx1

∫
Ā
dx2ψ(x1, x2) |x1, x2⟩a (B.7)

のように与えられる。これらは、(B.3)より射影演算子Π(p,q) : H2 → H(p,q)を

Π2,0 =
1

2

∫
A,A

dx1dx2 |x1, x2⟩a a ⟨x1, x2|

Π1,1 =
1

2

(∫
A
dx1

∫
Ā
dx2 +

∫
Ā
dx1

∫
A
dx2

)
|x1, x2⟩a a ⟨x1, x2|

Π0,2 =
1

2

∫
Ā,Ā

dx1dx2 |x1, x2⟩a a ⟨x1, x2| (B.8)

と与えることで得られる。ここで

a ⟨x1, x2|ψ⟩ = ψ(x1, x2) (B.9)

である。
これらをN 個のフェルミオン系に一般化しよう。ヒルベルト空間は

HN = ⊗p,q;p+q=NHp,q (B.10)

の様に分割する。ここで、Hp,q は領域 Aに p個の粒子、Āに q個の粒子が存在するセクターを表し
ている。これに対して、射影演算子Π(p,q)(p+ q = N) : HN → H(p,q)を得られるだろ。
さらに、Rd 上の N フェルミオンに上の議論を一般化できる。ターゲット空間の部分領域 A は

x1 > a, x2, . . . , xd ∈ Rで、補空間 Āは Ā = Rd−Aで定義する。N 粒子の座標を x⃗i, i = 1, 2, . . . , N

とすると、Hp,q に属する波動関数は

|ψp,q⟩ =
∫
A

p∏
i=1

ddxi

∫
Ā

N∏
j=p+1

ddxjψ({x⃗i}, {x⃗j}) |{x⃗i}, {x⃗j}⟩a (B.11)

で与えられる。ヒルベルト空間の分割は (B.10)と同様で、1次元の議論を d次元の積分に置き換える
ことで簡単に拡張できる。
次に、全ヒルベルト空間の密度行列を ρにたいして、部分領域AにおけるRDMを ρAを定義した
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い。部分領域Aで測定できる観測量OAにたいして、trA(ρAOA) = tr[ρ(OA ⊗ 1Ā)] を満たす様に定
義される。
場の量子論で時空を分割した時の様に、ヒルベルト空間がH = HA⊗HĀのようなテンソル積で与

えられるとき、ρA = TrHĀ
ρと導かれる。

しかし、ターゲット空間の部分領域については、テンソル分解されない。上でみたように、1粒子
のヒルベルト空間はAと Āに関する直積ではなく直和で与えられる。これはN粒子のヒルベルト空
間についても同様である。N粒子のヒルベルト空間の各セクターHp,q は、それぞれ部分領域Aと Ā

に関する部分空間のテンソル積によって与えられる。
まず、H1,1 ⊂ H2の場合を例にとって考えよう。セクターH1,1は

H1,1 = HA ∧HĀ = HA ⊗HĀ −HĀ ⊗HA (B.12)

で与えられる。ここでこの章では、反対称性を明確にするため反対称のテンソル積 ∧を導入した。
このようなヒルベルト空間H1,1に対して演算子の代数を考える。H1,1 → H1,1の変換をする演算

子は

Span{|x, y⟩a a ⟨x
′, y′|, x, x′ ∈ A, y, y′ ∈ Ā} (B.13)

の形で与えられる。これらから、領域Aでの観測量に一致する演算子OAは |y⟩ , y ∈ Āにどんな影響
も与えなく

OA |x, y⟩a =
∫
A
dx′O(x, x′) |x′, y⟩a (B.14)

の性質をもつ必要がある。実際には、対応する演算子代数は (B.13)で y = y′として y座標を積分す
ることによって得ることができる。これにより

A1,1 =Span{
∫
Ā
dy |x, y⟩a a ⟨x

′, y|, x, x′ ∈ A}

=Span{|x⟩ ⟨x′| ⊗ 1Ā + 1Ā ⊗ |x⟩ ⟨x′| , x, x′ ∈ A} (B.15)

が与えられる。ここで

1Ā ≡
∫
Ā
dy |y⟩ ⟨y| (B.16)

である。この演算子代数は 2乗に閉じていることは簡単に示すことができる。これより、(B.14)で定
義した演算子OAは (B.15)に書き直すと

OA = O1,1 ⊗ 1Ā + 1Ā ⊗O1,1 (B.17)
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となる。ここで

O1,1 ≡
∫
A,A

dxdx′O(x, x′) |x⟩ ⟨x′| (B.18)

と x ∈ Aについて 1Ā |x⟩ = 0であることに注意する。
次に、密度行列について考える。2つのフェルミオン系のヒルベルト空間での一般できな状態は密

度行列

ρ =

∫
dx1dx2

∫
dx′1dx

′
2ρ(x1, x2;x

′
1, x

′
2) |x1, x2⟩a a ⟨x

′
1, x

′
2| (B.19)

に関する部分空間のテンソル積によって与えられる。この ρをヒルベルト空間H1,1に射影したものは

ρ̃1,1 = Π1,1ρΠ1,1 =

∫
A,Ā

dxdy

∫
A,Ā

dx′dy′ρ(x, y;x′, y′) |x, y⟩a a ⟨x
′, y′| (B.20)

で与えられる。これをHĀについて部分トレースを実行すると

ρ1,1 = TrHĀ
Π1,1ρΠ1,1

=

∫
Ā
dy1 ⟨y1|

(∫
A,Ā

dxdy

∫
A,Ā

dx′dy′ρ(x, y;x′, y′) |x, y⟩a a ⟨x
′, y′|

)
=

∫
A,A

dxdx′
∫
Ā
dyρ(x, y;x′, y) |x⟩ ⟨x′| (B.21)

となり、これよりTrH2(ρOA) = TrHA
(ρ1,1O1,1)が得られる。ここで、LHSの演算子は 2粒子の演算

子であるのに対して、RHSの演算子は領域Aに対する (B.12)の 1粒子の演算子である。
一般には、2粒子の議論を直接的に拡張すればよく、N 個のフェルミオンのヒルベルト空間HN を

p+ q = N によってラベルされるHp,qのセクターに分ける。それぞれのHp,qでは、部分領域Aと Ā

に関連する 2つのヒルベルト空間でテンソル積による分解がなされる。すなわち

Hp,q = Hp
A ∧Hq

Ā
(B.22)

で与えられる。ここで V p ≡ V ∧ . . . ∧ V である。Hp
Aは Aに pこのフェルミオンが存在しているこ

とを表している。定義から、H0
A = |0⟩A = C のような Aに粒子が存在しない自明な空間であること

を表す。(B.21)を一般化すると各セクターのRDMは

ρp,q = TrHq

Ā
Πp,qρΠp,q (B.23)

で与えられることがわかる。これよりターゲット空間エンタングルメントエントロピーは得られてす
べてのセクターについてのフォンノイマンエントロピーを足し上げることで

SEE = −
∑

p,q;p+q=N

TrHp
A
ρp,q log(ρp,q) (B.24)
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で与えられる。

具体的な計算

以上のことを、より具体的なターゲット空間エンタングルメントエントロピーの計算を行っていく。
まずN = 2の場合を考える。この場合それぞれのセクターは

H2,0 =
(
∧2HA

)
⊗ C, H1,1 = HA ∧HĀ, H2,0 = C ⊗

(
∧2HĀ

)
(B.25)

の様にテンソル分解で与えられる。ここで、一般的な 2粒子状態は

|ψ⟩ = 1√
2

∫
dx1

∫
dx2 ψa(x1, x2)|x1, x2⟩a (B.26)

で与えられる。これより、密度行列 ρは

ρ = |ψ⟩⟨ψ| = 1

2

∫
dx1dx2

∫
dx′1dx

′
2 ψa(x1, x2)ψ

∗
a(x

′
1, x

′
2)|x1, x2⟩a a⟨x′1, x′2|

=
1

2

∫
dx1dx2

∫
dx′1dx

′
2 ρa(x1, x2;x

′
1, x

′
2)|x1, x2⟩a a⟨x′1, x′2| (B.27)

と得られる。(2,0)セクターは Āについてのトレースは自明であり、積分の範囲を制限した射影演算
子のみを作用させればよい。したがって、

ρ2,0 = TrĀ(ρ2,0) = ρ2,0

=
1

2

∫
A
dx1dx2

∫
A
dx′1dx

′
2 ψa(x1, x2)ψ

∗
a(x

′
1, x

′
2)|x1, x2⟩a a⟨x′1, x′2| (B.28)

が得られる。次に、(1, 1)セクターでは、H1,1に制限するような射影演算子は

Π1,1 =

∫
A
dx1

∫
Ā
dx2|x1, x2⟩a a⟨x1, x2| (B.29)

で与えられる。まず、これを |ψ⟩に作用させると

Π1,1|ψ⟩ =
1√
2

∫
A
dx1

∫
Ā
dx2|x1, x2⟩aa⟨x1, x2|

∫
dy1dy2 ψa(y1, y2)|y1, y2⟩a

=
1√
2

∫
A
dx1

∫
Ā
dx2|x1, x2⟩a

∫
dy1dy2 ψa(y1, y2)

× (δ(x1 − y1)δ(x2 − y2)− δ(x1 − y2)δ(x2 − y1))

=
1√
2

(∫
A
dx1

∫
Ā
dx2 +

∫
Ā
dx1

∫
A
dx2

)
ψa(x1, x2)|x1, x2⟩a (B.30)
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となる。ここで a⟨x1, x2|y1, y2⟩a = δ(x1 − y1)δ(x2 − y2) − δ(x1 − y2)δ(x2 − y1)を用いた。したがっ
て、制限された密度行列は

ρ̃1,1 = Π1,1 |ψ⟩ ⟨ϕ|Π1,1 = 2

∫
A
dx1dx

′
1

∫
Ā
dx2dx

′
2 ψa(x1, x2)ψ

∗
a(x

′
1, x

′
2)|x1, x2⟩aa⟨x′1, x′2| (B.31)

となる。これをHĀについてトレースをとると

ρ1,1 = TrHĀ
(ρ1,1) = 2

∫
A
dx1dx

′
1

∫
Ā
dx2dx

′
2 ψa(x1, x2)ψ

∗
a(x

′
1, x

′
2)

×
∫
Ā
dz⟨z|

(
|x1, x2⟩aa⟨x′1, x′2|

)
|z⟩

= 2

∫
A
dx1dx

′
1

∫
Ā
dx2dx

′
2 ψa(x1, x2)ψ

∗
a(x

′
1, x

′
2)|x1⟩⟨x′1|⟨x2|x′2⟩

= 2

∫
A
dx1dx

′
1

∫
Ā
dx2 ψa(x1, x2)ψ

∗
a(x

′
1, x2)|x1⟩⟨x′1| (B.32)

が得られる。最後に (0, 2)セクターについて射影演算子はΠ0,2 =
1
2

∫
Ā dx1

∫
Ā dx2|x1, x2⟩a a⟨x1, x2| で

与えられる。これより、RDMは

ρ0,2 = TrĀ(ρ̃0,2) =
1

2

∫
Ā
dx1dx2 ψa(x1, x2)ψ

∗
a(x1, x2) (B.33)

と得られる。
ここで、より具体的な例として、状態と波動関数が

|ψ⟩ = 1√
2!

(|χ1, χ2⟩ − |χ2, χ1⟩) =
1√
2!

2∑
i1,i2=1

εi1i2 |χi1χi2⟩

ψa(x1, x2) =
1√
2
(χ1(x1)χ2(x2)− χ2(x1)χ1(x2)) (B.34)

のようなスレーター行列で与えられるものを考える。ここで、|χi⟩ =
∫
dx χi(x)|x⟩は 1粒子の波動

関数である。これらから、密度行列は

ρ = |ψ⟩⟨ψ| = 1

2!
(|χ1, χ2⟩ − |χ2, χ1⟩) (⟨χ1, χ2| − ⟨χ2, χ1|)

=
1

2!

2∑
i1,i2,j1,j2=1

εi1i2εj1j2 |χi1χi2⟩⟨χj1χj2 | (B.35)
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で与えられる。この状態について、(B.28)と (B.32),(B.33)はそれぞれ

ρ̃2,0 =
1

2!
(|χ1, χ2⟩AA − |χ2, χ1⟩AA) (AA⟨χ1, χ2| − AA⟨χ2, χ1|) (B.36)

ρ̃1,1 =

2∑
i′s,j′s=1

εi1i2εj1j2 |χi1⟩A A⟨χj1 |⟨χj2 |χi2⟩Ā =

A⟨χ1| A⟨χ2|[ ]
(1− p2) −q21Ā |χ1⟩A
−q12Ā (1− p1) |χ2⟩A

(B.37)

ρ̃0,2 =
1

2!

2∑
i1,i2,j1,j2=1

εi1i2εj1j2⟨χj1χj2 |χi1χi2⟩Ā = (1− p1)(1− p2)− |q12Ā|2 (B.38)

と得られる。ここで |χi, χj⟩AA = |χi⟩A|χj⟩A, |χ⟩A ≡
∫
A dx χ(x)|x⟩, ⟨χi|χj⟩Ā ≡

∫
Ā dx χ

∗
i (x)χj(x),

p1 =
∫
A dx|χ1(x)|2, p2 =

∫
A dx|χ2(x)|2, q12Ā =

∫
Ā dx χ∗

1(x)χ2(x)である。
以上から、ターゲット空間のエンタングルメントエントロピーは

S = −Tr(ρ log ρ) = − (Tr(ρ2,0 log ρ2,0) + Tr(ρ1,1 log ρ1,1) + Tr(ρ0,2 log ρ0,2)) (B.39)

で与えられる。
次に、一般のN でターゲット空間エンタングルメントエントロピーを与える。一般的なN 個のフェ

ルミオンの状態は

|ψ⟩ = 1√
N !

∫
dx1 . . . dxN ψa(x1, . . . , xN ) |x1, . . . xN ⟩a (B.40)

で与えられる。ここで、

ψa(x1, . . . , xN ) ≡
1√
N !

∑
σ∈SN

(−1)σψ(xσ(1), . . . , xσ(N))

|x1, . . . , xN ⟩a ≡
1√
N !

∑
σ∈SN

(−1)σ |xσ(1), . . . , xσ(N)⟩ (B.41)

で定義されている。密度行列は

ρ = |ψ⟩ ⟨ψ|

=
1

N !

∫
dx1dx

′
1 . . . dxNdx

′
Nψa(x1, . . . , xN )ψ

∗
a(x

′
1, . . . , x

′
N ) |x1, . . . , xN ⟩a a ⟨x

′
1, . . . , x

′
N |

=
1

N !

∫
dx1dx

′
1 . . . dxNdx

′
Nρ(x1, . . . , xN ;x

′
1, . . . , x

′
N ) |x1, . . . , xN ⟩a a ⟨x

′
1, . . . , x

′
N | (B.42)

で与えられる。N 粒子状態について、Aに k粒子存在し ĀにN − k粒子存在するセクターが全部で
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N − 1存在する。その中でも (k,N − k)番のセクターについて、射影演算子は

Πk,N−k =
1

N !

(
N

k

)∫
A
dx1 . . . dxk

∫
Ā
dxk+1 . . . dxN |x1, . . . , xN ⟩a a ⟨x1, . . . , xN | (B.43)

で与えられる。これに ψを作用させると

Πk,N−k |ψ⟩ =
1

N !

(
N

k

)∫
A
dx1 . . . dxk

∫
Ā
dxk+1 . . . dxN |x1, . . . , xN ⟩a

× 1√
N !

∫
dy1 . . . dyN ψa(y1, . . . , yN )a ⟨x1, . . . , xN |y1, . . . yN ⟩a

=
1

N !

(
N

k

)∫
A
dx1 . . . dxk

∫
Ā
dxk+1 . . . dxNψa(x1, . . . , xN ) |x1, . . . , xN ⟩a (B.44)

が得られる。最後の行では a ⟨x1, . . . , xN |y1, . . . yN ⟩aを用いた。このセクターに制限された密度行列は

ρ̃k,N−k =Πk,N−kρΠk,N−k =

∫
A
dx1dx

′
1 . . . dxkdx

′
k

∫
Ā
dxk+1dx

′
k+1 . . . dxNdx

′
N

× 1

N !

(
N

k

)2

ψa(x1, . . . , xN )ψ
∗
a(x

′
1, . . . , x

′
N ) |x1, . . . , xN ⟩ aa ⟨x1, . . . , xN | (B.45)

となる。次に、Āに存在する粒子についてトレースをとる必要がある。これは

ρk,N−k = TrĀ(ρ̃) =
1

(N − k)!

∫
Ā
dzk+1 . . . dzN a⟨zk+1 . . . zN |ρk,N−k|zk+1 . . . zN ⟩a

=
1

N !

(
N

k

)2 ∫
A
dx1dx

′
1 . . . dxkdx

′
k

∫
Ā
dxk+1dx

′
k+1 . . . dxNdx

′
N ψa(x1, . . . , xN )

× ψ∗
a(x

′
1, . . . , x

′
N )|x1, . . . , xk⟩aa⟨x′1 . . . , x′k| a⟨xk+1, . . . , xN |yk+1 . . . , yN ⟩a

=
1

k!

(
N

k

)∫
A
dx1dy1 . . . dxkdyk

∫
Ā
dxk+1 . . . dxN ψa(x1, . . . , xN )ψ

∗
a(x

′
1, . . . , x

′
N )

× |x1, . . . , xk⟩a a⟨x′1 . . . , x′k| (B.46)

となる。ここで
1

(N − k)!

∫
Ā
dzk+1 . . . dzN a⟨zk+1 . . . zN |xk+1, . . . , xN ⟩aa⟨x′k+1, . . . , x

′
N |zk+1 . . . zN ⟩a

= |x1 . . . xk⟩a a⟨x1 . . . xk| a⟨yk+1 . . . yN |xk+1, . . . , xN ⟩a (B.47)

を用いた。
より具体的に一粒子状態が χ1, χ2, . . . , χN で与えられるようなスレーター行列式によって与えられ
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る状態を考える。そのような状態と波動関数は

|ψ⟩ = 1√
N !

∑
i′s

εi1...iN |χi1 . . . χiN ⟩

ψa(x1, . . . , xN ) =
∑
i′s

1√
N !
εi1...iNχi1(x1) . . . χiN (xN ) (B.48)

で与えられる。それぞれの iは 1からN の値をとる。したがって,(k,N − k)セクターのRDMは

ρk,N−k =

(
N

k

)
1

N !

∑
i′s,j′s

εi1...iN εj1...jN |χi1 . . . χik⟩A A⟨χj1 . . . χjk |
N∏

n=k+1

⟨χjn |χin⟩Ā (B.49)

で与えられる。
したがって、このようなRDMをに対して一般的な形のエンタングルメントエントロピーが

S = −Trρ̃ log ρ̃ = −
∑
k

Tr ρk,N−k log ρk,N−k (B.50)

の様に与えられる。
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付 録C (AdS)ジャイアントグラビトンのバブリ
ングAdS幾何に対するγϕϕ

γϕϕは y → 0で rについて (i)r > r1, (ii)r1 > r > r2 ,(iii)r2 > r > r3, (iv)r3 > rで場合分けする
と以下の様に与えられる;

(i) r > r1

lim
y→0

γϕϕ =
r21(r

6 + r22(r
4 + 3r3r

2)− r23(4r
4 + r42))− r4(r2 + r22)(r

2
2 − r23)

(r2 − r21)(r
2 − r22)

2(r2 − r23)

√
r21

(r2−r21)2
− r22

(r2−r22)2
+

r23
(r2−r23)2

(C.1)

(ii) r1 > r > r2

lim
y→0

γϕϕ =
−r2(r2 + r23)(r

2(r2 − 4r23) + r21(r
2
2 − r23)− r22r

2
3)

(r2 − r21)(r
2 − r22)(r

2 − r23)
2

√
r21

(r2−r21)2
+

r22
(r2−r22)2

− r23
(r2−r23)2

(C.2)

(iii) r2 > r > r3

lim
y→0

γϕϕ =
r2r21(r

4 − r2(r22 + r23)− 3r22r
2
3)− r6(r22 + r23) + 4r4r22r

2
3 − r41(r

2
2r

2
3 + r4)

(r2 − r21)
2(r2 − r22)(r

2 − r23)

√
− r21

(r2−r21)2
+

r22
(r2−r22)2

+
r23

(r2−r23)2

(C.3)

(iv) r3 > r

lim
y→0

γϕϕ =
r2(−r6 + r2r22(3r

2 + r23) + (r22 − r23)(r
2 + r22)− r42(4r

2 − r23))

(r2 − r21)(r
2 − r22)

2(r2 − r23)

√
r21

(r2−r21)2
− r22

(r2−r22)2
+

r23
(r2−r23)2

. (C.4)
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