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An excellent series of lectures on the renormalization group the- 

ory for critical phenomena have been given at this school by Professor 

Wegner and I will assume in my discussion that the basic ideas of this 

theory are known to you. I would like to discuss some new developments 

based on recent work done in collaboration with a graduate student, 

Bernard Nienhuis, at the University of Utrecht. We have extended the 

renormalization group approach to evaluate the complete free energy for 

general Ising spin models, which give a concrete realization of the sca- 

ling operators introduced by Professor Wegner. In particular we can 

evaluate not only the critical exponents and critical temperature but 

also the coefficients of the singular terms which had not been deter- 

mined previously except for the special case of a logarithmic singulari- 

ty. Two basic assumptions of renormalization group theory, the existen- 

ce of a fixed point Hamiltonian and the analyticity of the renormaliza- 

tion group transformations have been verified for planar Ising models 

in a cell cluster approximation of Niemeijer and van Leeuwen, but the 

third assumption introduced by Professor Wegner, the continuity of the 

renormalization transformations as functions of the dimension of the 

Kadanoff cells, cannot be justified in this model. 

To start, I will discuss a new method of solution of the basic 

equations of renormalization group theory and later on I will illustra- 

te the derivation of these equations in the simplest case, the original 

one dimensional Ising model. This model consists of spins with only com- 

ponents s = ±I arranged on an infinite one dimensional lattice with nea- 

rest neighbor interactions. It was invented by Lenz in 1920 to explain 

ferromagnetism and later solved by his student Ising who found that in 

fact it did not give rise to such a phase transition. Not until 1944 

did Onsager solve the corresponding model in two dimensions where a 

phase transition does occur, but up to now no one has been able to ex- 

tend his methods to three dimensions or even to include an external 

magnetic field in two dimensions. At the end of my lecture I will show 

you the results we have obtained for a square Ising lattice in a four 

cell cluster approximation and compare them with Onsager's and with 
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approximate numerical results. Our approximate renormalization group 

method can be extended straightforwardly to include a magnetic field (7) 

and to three dimensions. 

After summing over specific degrees of freedom of the Kadanoff 

cells, (I) " we find a scaling equation for the free energy f(K) as a 

function of the spin interaction coupling constants K of the form (2) 

f(K') : L {f(K) - g(K)} I. 

where L is the number of spins in a Kadanoff cell, Lg(K) is the self 

energy of this cell, and K' are the effective spin cell interaction 

coupling constants determined by the renormalization transformations 

K'~ : F (K)_ 2. 

The coupling constants K and K' correspond to the fields associated 

with the scaling operators introduced by Professor Wegner except for 

one important difference: we do not include a field associated with the 

unit operator or what Niemeijer and van Leeuwen have referred to as the 

"empty set". (2) This accounts for the explicit appearance of the self 

energy function g(K) in the scaling equation. This field has been pre- 

viously identified incorrectly as the regular part of the free energy 

and consequently discarded in considering the singularities associated 

with the phase transition, but as we shall see it plays an essential 

role in our approach. 

The mathematical problem we face now is to solve the scaling 

equation, eq. I, for f(K) given the self energy g(K) and the correspon- 

ding renormalization transformation eq. 2, subject to an appropriate 

physical boundary condition, e.g. in the case that all spin interactions 

vanish, i.e. K = O, f(0) = in 2. It is then straightforward to prove 

uniqueness of the solution of the scaling equation. I will show you a 

practical method of solution via an infinite series expansion based on 

the semi-group property of the renormalization transformations. First 

re-write the scaling equation in the form 

1 f(K') + g(K) 5. f(K) = 

and apply the renormalization transformation on the argument of both 

sides of eq. 3 to obtain 

1 
f(K') : ~ f(K'') + g(K') 4. 

where K'' = F (K'). Substituting eq. 4 in eq. 3 we have 
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f(K) - f(K'') + g(K) + 1 
L 2 ~ g (K') 5. 

and repeating this procedure n times we obtain 

m:n-1 (m) 
f(K) - f(K(n)) + Z g(K ) 6. 

L n m=O L m 

(n) is given by the recurrence relation K (n) F (K (n-l)) ob- where m~ ~ = 

rained from eq. 2. 

Although the series for f(K) eq. 6 is valid for every integer n 

it is still not very useful because it depends on the unknown function 

f(K(n)). However if we take the limit n ÷ ~ we obtain 

f(K) : h(K) + ~ g(K(n)) 7. 
n=O L n 

where the function h(K) = lim f(K(n)) n÷~ ~ can then be calculated. 

It satisfies the homogeneous scaling equation 

h(K') : L h(K) 8. 

and therefore it is singular at the critical point, unless, of course, 

the coefficient of all singular terms vanishes. In fact it turns out 

that h(K) : O although the derivative with respect to the magnetic 

field H, ~h(K------!) = lim 1 ~f(Kn) is finite below the critical tempera- 
H n÷~ L n ~ H 

ture and gives the spontaneous magnetization. 

We will now show that the infinite series in eq. 7 must be 

singular on the critical surface defined by an unstable fixed point 

K W . Recall that this critical surface is defined by the domain of 

points K which map into K W in the limit of an infinite number of con- 

secutive renormalization mappings, i.e. lim K (n) : K W . Now suppose 
n÷~ 

that a given point K is arbitrarily close to one side of this critical 

surface. Then repeated renormalization transformations map K along 

points which remain close to the critical surface until for some in- 

teger no, K(no ) approaches closest to the fixed point. Then further 

transformations must map K (n) away from the fixed point without crossing 

the critical surface. In fact, it turns out that two points K 1 and K 2 

arbitrarily close but on opposite sides of the critical surface map in 

the limit n÷~ into two different fixed points, one at K W = 0 and K ~ = ~. 
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It is clear therefore that the infinite series for f(K I) and f(K 2) 

differ for all terms with integer n > n o and hence f(K) is singular 

on the critical surface. 

In order to obtain the singular part of f(K) we introduce a new 

set of variables ~i by a non-linear transformation (3) (q) 

K : G (~) 9. 

which is defined by the condition that the renormalization transforma- 

tion, eq. 2, in the ~-space is 
! 

~i : li ~i lO. 

The constants A i are the eigenvalues of the matrix ~F~/ ~K B at the fixed 

point K~ corresponding to ~i = O, and define relevant, marginal and 

irrelevant variables ~i according to whether ki is greater, equal or 

less than one respectively. The critical surface is determined by the 

condition that the relevant variables vanish. In terms of the ~i vari- 

ables, the expansion for the free energy, eq. 7, takes the form 

f(E1,E2 .... ) : h(EI,E 2 .... ) + Z 
n=O 

1 n n 
L n g(~l~l '12~ 2 .... ) ll. 

Let us now assume for simplicity that Xl>l and Xj < I for all j ~ i. 

m L for some smallest integer m and the m-th partial derivation Then ~1 > 

f(m)(~l,~2...) ~ ~mf(~l...)/~ ~ becomes 

f(m)(~l' ~2''" ) = h(m)(~1'~2"'" ) + g(m) n n 
n=O ~L i (klE1'k2~2"'") 12. 

Hence in the limit ~I + 0 the infinite series in eq. 12 diverges. To 

obtain an explicit representation for the singular part fs of f(~), 

neglecting the irrelevant variables ~j, j ~ 1, we must first find the 

regular solution fr (m) of the m-th derivative with respect to £1 of the 

scaling equation, eq. 1. Expanding each side of eq. 1 in a power seri- 

es in ~I and re-summing we obtain 

® / ~m \-n 

~(m) (~1): r [~I.~__) g(m)(kln~1 ) 13. I r 

n=l 

as can also be verified by direct substitution in eq. i. Subtracting 
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eq. 13 from eq. 12, we then obtain the singular part 

n 

($I f(m)(~l) : h(m)(~ I) + Z g(m)(k~ I) 
n_--co 

which is a solution of the homogeneous scaling equation 

f(m)(~l~ 1) = (~IfJm)(~l) 

~(m)(~ I) : c+ (~I) Setting ~s 

m - InL/inkl, it follows from eq. 

i~ I I -e for ~I 

15 that 

I, where m : 

C± (~i~i) : C± (~i) 

Expanding C±(~ I) in a Fourier series in inl~ll/in ~I 

14. 

15. 

16. 

® 2 i~n inI~ll/ink 1 
C± (~i) : z C~ ±) e 

17. 

(±) from eq. 14, we obtain the Fourier coefficients C n 

~o 

C(±) : i-~ii OI d~ ~-i g(m)(±~) e-2 i~nln~ /Ink I 

÷ 1 I ~I d~ ~-i h(m)(±~) e-2i~nln~/inkl 

ink I 1 18. 

In particular for n:O, we obtain from eq. 18 the coefficient of 

the well known power singularities discussed in previous lectures. 

However, we find also apparently additional oscillating terms in in~ I. 

Up to this point we have not made any assuptions concerning the depen- 

dence of the renormalization transformations and the free energy on the 

number of spins L in a Kadanoff cell. Recall that Professor Wegner as- 

sumed in his derivation of the power law singularity that these trans- 

formations were continuous functions in L, but this cannot be applied 

to the Ising model where L could only have integer values. However, 

since the period in~ I of the oscillatory terms in the variable in~, 

does depend on L while the exact free energy is independent of L, we 

should expect C n = 0 for n # O. 
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Now I would like to illustrate the derivation of the basic equa- 

tions of renormalization group theory in a simple example, namely the 

one dimensional Ising model, t5)" " 

We start with the familiar hamiltonian HN(K) for the one dimen- 

sional Ising spin model for N spins, S i = ~ I, i = 1,2...N, with nearest 

neighbour interaction coupling constant K, 

N 
H N (K) = K Z S i Si+ 1 19. 

i:l 

where SN+ 1 : S 1. Following Kramers and Wannier (6), we introduce the 

ESI = eKSIS2 which enables us to write the 2 x 2 transfer matrix $2 

-HN(K) 
Boltzmann probability function e ,(kT : I), in the form 

-H N (K) 

e : ~$1S2 ~$2S3... ~SNS1 

Instead of computing the usual partition sum, 

HN(K) 
~N, we consider here only the partial sum of e over all possible 

values of the even spins, S i = ±I, i=2,4.., and obtain for N even 

20. 

-HN(K) 
Z e = trace 

{S} 

-HN(K) : ~2 ~2 .. ~2 21. 
Z e SIS3 S3S5. 
{$2S4...S N} SN-IS 1 

The idea behind this partial summation is to find a renormalization 

transformation K ÷ K' such that 

~2 (K) : e2g(K)~ (K') 

where g(K) is a scalar of function K. 

effective Ising coupling constant for the remaining odd spins Si, 

i=1,3,5... N-I and eq. 21 takes the form 

-HN(K) -HN(K) + N g (K) 
Z e : e ~ 23. 

{$2S4...S N} 

This is the basic equation of the renormalization group approach. 

matrix condition, eq. 22, is readily satisfied by 

1 
K' : ~ in cosh 2K 24. 

and 
g(K  : ½ ÷ ½ ln2 25. 

22. 

Then K' can be interpreted as an 

The 
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The non-linear renormalization transformation, eq. 24, has fixed points 

at K ae = 0 and K ~ = ~ with associated eigenvalues k = 0 and ~ = I respec- 

tively, where ~ = dK'/dK evaluated at K = K W . Since a necessary con- 

dition for a critical transition is the existence of an eigenvalue ~>i, 

this establishes the well known result that there is no phase transiti- 

on for the one dimensional Ising model. After applying the renormali- 

zation n times, the mapping K ÷K (n) can be obtained from the recurrence 

relation 

: I 2K(n-l)} K (n) ~ in (cosh 26. 

where K (0) = K. It can be readily shown that lim K (n) : O, i.e. every 
n÷® 

finite point K is mapped towards the fixed point at the origin K * = O. 

In order to solve eq. 26 we introduce a new variable ~ related to K by 

a nonlinear transformation in such a way that the renormalization trans- 

formation in the ~ variable becomes simpler. For k # O,1 this trans- 

formation is defined by the condition (3,4) ~, = ~, but this is not 

possible in the present case. Instead we require 

4' =42 27. 

and find the solution 

and 

= tanh K 28. 

2 n 
K (n) : ½ in (1 + ~ ) , -I< ~ < 1 29. 

I- ~ 2n 

Introducing the free energy per spin for N spins 

-H~(K) 
fN(K) = ~- in  r. e 30. 

{St 

we obtain from eq.23 the functional relation 

fN (~) = 2 (fN (K) - g (K)} 31. 

In the thermodynamic limit, eq. 31 then leads to the scaling equation 

for f(K) = lim fN(K), eq. i with L = 2 

f(K') : 2 {f(K) - g (K)} 32. 

To obtain a unique solution of eq. 32, we must impose a boundary con- 

dition on f(K), e.g. for K = O, absence of spin interactions, f(O)= in2. 
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To prove uniqueness suppose there are two solutions fl(K) and f2(K) of 

eq. 32 which satisfy this boundary condition. Then the difference 

f_(K) = fl(K) - f2(K) satisfies the homogeneous scaling equation 

f_(K') = 2 f_(K) 33. 

and applying the renormalization mapping n-times leads to the relation 

f_(K) : !n f_(K (n)) 34. 
2 

Since lim K (n) = O, and f_(O) = O, eq. 34 implies f_(K) = O, Q.E.D. 

Actually, this proof shows that we need to demand only the weaker bound- 

ary condition that f(K) be finite at K = O, because the solution of 

eq. 52 determines the value of f(O). 

We obtain the solution of the scaling equation by substituting 

eq. 25 for g(K) in eq. 7 noting that h(K) = 0 because f(O) = in 2, 

K(n) 
f(K) = in 2 + 7. 

n=l 2 n 
55. 

This series converges very rapidly and can be readily used to evaluate 

f(K). For example, for K = I, the sum of the first four terms of this 

series gives an accuracy of 10 -4. We can also sum this series by sub- 

stituting eq. 29 in eq. 55 to abtain 

1 
~2 n ) 

= _ 3 6 .  

n=l ~2 n 

Applying the easily proven identity 

1 
2 n 2 n+1 

~ :  (1+X 1 ~ . )  
2 n 

I-X n:o i - X 

we find 

, -1< X < 1 
37. 

f(K) : in (2 / 1_~ ) 

and from eq. 27, we obtain 

38. 

f(K) : in (2 cosh K) 39. 

which is the well known solution of the one dimensional Ising model. 

We can verify that this solution satisfies the scaling equation by sub- 

stituting eq. 39 together with eq. 24 into eq. 32. A second solution 

of the scaling equation is f (K) = in (2sinh K) for which h(K) = In 
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(tanh K). This solution is also of physical interest because the spin 

correlation function C~i-J f(K)II : <s.s.> is given by z j 

Cli_j I (K) : e -li-jl/£ (K) 

where the correlation length £(K) = If(K) - f(K)I 

lies the excepted homogeneous scaling relation 

i ~(K') = ~ £ (K) 

4O. 

Hence ~(K) satis- 

41. 

These results can be readily extended to include a magnetic 

field, and to higher spins, eq. s = + 1, and O. 

For two dimensional models the renormalization transformations 

are much more complicated and an exact analytic treatment has not been 

given. However, an excellent approximation obtained by keeping only a 
(2) 

finite number of spins has been developed by Niemeijer and van Leeuwen 

for triangular lattices and by us for square lattices. (4'6) Time does 

not permit me to discuss these interesting developments in this lecture 

and I refer you for details to our papers. ~4'5'6'7J'' The results of a 

numerical calculation for 16 spins are shown in Fig. i which shows the 

free energy, energy and specific heat compared with Onsager's exact 

result, and Fig. 2 which shows the critical surface in the subspace of 

nearest neighbor coupling constant KI, next to nearest neighbor constant 

K2, and four spin interactions K 4. Note in particular the ridge in the 

upper half of the critical surface; it corresponds precisely to Baxter's 

critical curve for the solution of the eight vertex model. The inter- 

section of the critical surface with K~ = 0 plane agrees with the 

n W o (8) " hi h approximate calculation by Dalton a d o d uslng "g temperature 

expansions, but their method fails to converge for K~ > O and K 2 < O, 

while the renormalization group approach works also quite well for 

this case. 
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Critical Surface 

KI 

Fig. 2 

Critical surface in the range -2 ~ KI, K 3 ! +2 seen along the 

direction K 1 = 1, K 2 = 1 and K 3 = -1. 
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