RENORMALIZATION GROUP SOLUTION OF ISING SPIN MODELS

Michael Nauenberg

University of California, Santa Cruz, California

An excellent series of lectures on the renormalization group the-
ory for critical phenomena have been given at this school by Professor
Wegner and I will assume in my discussion that the basic ideas of this
theory are known to you. I would like to discuss some new developments
based on recent work done in collaboration with a graduate student,
Bernard Nienhuis, at the University of Utrecht. We have extended the
renormalization group approach to evaluate the complete free energy for
general Ising spin models, which give a concrete realization of the sca-
ling operators introduced by Professor Wegner. In particular we can
evaluate not only the critical exponents and critical temperature but
also the coefficients of the singular terms which had not been deter-
mined previously except for the special case of a logarithmic singulari-
ty. TwWo basic assumptions of renormalization group theory, the existen-
ce of a fixed point Hamiltonian and the analyticity of the renormaliza-
tion group transformations have been verified for planar Ising models
in a cell cluster approximation of Niemeijer and van Leeuwen, but the
third assumption introduced by Professor Wegner, the continuity of the
renormalization transformations as functions of the dimension of the
Kadanoff cells, cannot be justified in this model.

To start, I will discuss a new method of sclution of the basic
equations of renormalization group theory and later on I will illustra-
te the derivation of these equations in the simplest case, the original
one dimensional Ising model. This model consists of spins with only com-
ponents s = *1 arranged on an infinite one dimensional lattice with nea-
rest neighbor interactions. It was invented by Lenz in 1920 to explain
ferromagnetism and later solved by his student Ising who found that in
fact it did not give rise to such a phase transition. Not until 1944
did Onsager solve the corresponding model in two dimensions where a
phase transition does occur, but up to now no one has been able to ex-
tend his methods to three dimensions or even to include an external
magnetic field in two dimensions. At the end of my lecture I will show
you the results we have obtained for a square Ising lattice in a four
cell cluster approximation and compare them with Onsager's and with
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approximate numerical results. Our approximate renormalization group
method can be extended straightforwardly to include a magnetic field(7)
and to three dimensions.

After summing over specific degrees of freedom of the Kadanoff

(1)

cells, we find a scaling equation for the free energy f(K) as a

function of the spin interaction coupling constants K_ of the form(2)
£(K') = L {£(K) - g(K)} 1.

where L is the number of spins in a Kadanoff cell, Lg(X) is the self
energy of this cell, and K' are the effective spin cell interaction
coupling constants determined by the renormalization transformations
K; = Fu(K) 2.

The coupling constants Kaand K; correspond to the fields associated
with the scaling operators introduced by Professor Wegner except for
one important difference: we do not include a field associated with the
unit operator or what Niemeijer and van Leeuwen have referred to as the

"empty set".(2)

This accounts for the explicit appearance of the self
energy function g(K) in the scaling equation. This field has been pre-
viously identified incorrectly as the regular part of the free energy
and consequently discarded in considering the singularities associated
with the phase transition, but as we shall see it plays an essential

role in our approach.

The mathematical problem we face now is to solve the scaling
equation, eq. 1, for f(K) given the self energy g(K) and the correspon-
ding renormalization transformation eq. 2, subject to an appropriate
physical boundary condition, e.g. in the case that all spin interactions
vanish, i.e. K = 0, £f(0) = 1In 2. It is then straightforward to prove
uniqueness of the solution of the scaling equation. I will show you a
practical method of solution via an infinite series expansion based on
the semi-group property of the renormalization transformations, First
re-write the scaling equation in the form

£(K) = 2 £(K') + g(K) 3.

and apply the renormalization transformation on the argument of both
sides of eq. 3 to obtain

£(X') = £(K'") + g(K") b,

i
L

where K&' = Fa(K')' Substituting eq. 4 in eq. 3 we have
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Tt
e = BED gy 4 L ) 5.
LZ
and repeating this procedure n times we obtain
(n) m=n-1 (m)
f(K) = fﬁgﬁ__) + 3 Eiﬁﬁ__) 6.
L m=0 L
where Kén) is given by the recurrence relation Kén) = Fa(K(n_l))ob—

tained from eq. 2.

Although the series for f(K) eq. 6 is valid for every integer n
it is still not very useful because it depends on the unknown function
f(K(n)). However if we take the limit n + « we obtain

(n)
£() = n(x) + 5 BE D) 7.
n=0 L
. kD))
where the function h(K) = 1lim can then be calculated.
n->o L

It satisfies the homogeneous scaling equation
h(K') = L h(X) 8.

and therefore it is singular at the critical point, unless, of course,
the coefficient of all singular terms vanishes, In fact it turns out
that h(K) = O although the derivative with respect to the magnetic

n
2h(K) _ 1im 1n DI(K)
2 n+eo L 2 H

ture and gives the spontaneous magnetization.

field H, is finite below the critical tempera-

We will now show that the infinite series in eq. 7 must be

singular on the critical surface defined by an unstable fixed point
K*. Recall that this critical surface is defined by the domain of
points K which map into k* in the limit of an infinite number of con-
secutive renormalization mappings, i.e. lim K(n) = K*.
n+o

Now suppose

that a given point X is arbitrarily close to one side of this critical
surface. Then repeated renormalization transformations map K along
points which remain close to the critical surface until for some in-
teger nos K(no) approaches closest to the fixed point. Then further

transformations must map K(n)

away from the fixed point without crossing
the critical surface. In fact, it turns out that two points K1 and K,
arbitrarily close but on opposite sides of the critical surface map in

the limit n+e into two different fixed points, one at k¥ = 0 and k¥ = =,
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It is clear therefore that the infinite series for f(Kl) and f(Kz)
differ for all terms with integer n »> n, and hence f(K) is singular
on the critical surface.

In order to obtain the singular part of f(XK) we introduce a new

(3) ()

set of variables §; by a non-linear transformation

K,°l = GG(E) 9.
which is defined by the condition that the renormalization transforma-
tion, eq. 2, in the g-space is

10.

The constants A; are the eigenvalues of the matrix oF_/ 3Ky at the fixed
point Kf corresponding to £y = 0, and define relevant, marginal and
irrelevant variables £y according to whether A is greater, equal or
less than one respectively. The critical surface is determined by the
condition that the relevant variables vanish. In terms of the £ vari-
ables, the expansion for the free energy, eq. 7, takes the form

£(E5E,,es) = h(E,,6,,...) + 5 _1 Neg a0
12 22 1950 n=0 Ln g(Alil,A2€2,...) 11.

Let us now assume for simplicity that i,>1 and xj < 1 for all j # 1.

Then AT > L for some smallest integer m and the m-th partial derivation

f(m)(£1,52...) H amf(gl...)/aeq becomes

n

Am
1 (m),.n n
(r—) g ()‘151,)\252...) 12,

f(m)(el, Epeee) = h(m)(gl,ga...) + I
n=0
Hence in the limit £y > O the infinite series in eq. 12 diverges. To
obtain an explicit representation for the singular part fs of f(g),
neglecting the irrelevant variables gj, Jj # 1, we must first find the
regular solution fr(m) of the m-th derivative with respect to g4 of the
scaling equation, eq. 1. Expanding each side of eq. 1 in a power seri-
es in £, and re-summing we obtain

® Al R
fI(,‘“) (g,) = . (El—) g(m)(xinal) 13.

as can also be verified by direct substitution in eq. 1. Subtracting
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eq. 13 from eq. 12, we then obtain the singular part

n
® m

£ gy = 0™ + 3 ( ‘1) g™ (e 14.
Nn=«=w ;

which is a solution of the homogeneous scaling equation

(m) o L) p(m)
£ Oy8y) = (‘ﬁ")fsm (gy)

15.
*
setting £{™ (g;) = C, (g;) 1&g |™® for g; ; 1, where o =
m - 1nL/lnAl, it follows from eq. 15 that
C, (A;8;) = C, (&) 16.
Expanding C+(£1) in a Fourier series in lnlgll/ln A
o2 (2) 2 imn 1n|g.,|/3nA 17.
c, (g1) = L c, ' e 1 1
n=—o
we obtain the Fourier coefficients Cét) from eq. 14,
(¢) _ 1 % a=1 _{(m) -2 imnlng /1nX
Cn = ml é dg & g (x£) e 1
A .
s L I 1 ae £° 1 h(m>(tg) e-zlﬂnlni/lnxl
ini,; 1 18.

In particular for n=0, we obtain from eq. 18 the coefficient of
the well known power singularities discussed in previous lectures.
However, we find also apparently additional oscillating terms in 1ngl.
Up to this point we have not made any assuptions concerning the depen-
dence of the renormalization transformations and the free energy on the
number of spins L in a Kadanoff cell. Recall that Professor Wegner as-
sumed in his derivation of the power law singularity that these trans-
formations were continuous functions in L, but this cannot be applied
to the Ising model where L could only have integer values. However,
since the period 1nay of the oscillatory terms in the variable 1lng,
does depend on L while the exact free energy is independent of L, we
should expect C, = 0 for n # O.
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Now I would like to illustrate the derivation of the basic equa-
tions of renormalization group theory in a simple example, namely the
one dimensional Ising model.(5)

We start with the familiar hamiltonian HN(K) for the one dimen-

sional Ising spin model for N spins, S; = + 1, i = 1,2...N, with nearest

i
neighbour interaction coupling constant K,

N

HN (K) = K ;_ Si Si+1 19.
1=1
where SN+1 = Sl’ Following Kramers and Wannier(6), we introduce the

2 x 2 transfer matrix Es 3. = eKSISZ which enables us to write the
172

-Hy (K
Boltzmann probability function e N 5(kT = 1), in the form
-HN (K) . ?
e = .o B 20.
5182 5283 SNS1
. . ~Hy (K)
Instead of computing the usual partition sum, I e = trace
{S}
N H,, (K)
B, we consider here only the partial sum of e over all possible
values of the even spins, Si = #1, i=2,4... and obtain for N even
-Hy (K)
re N : B2 o B5 o ... B2 21.
(3284...SN} 1°3 35 SN—131

The idea behind this partial summation is to find a renormalization
transformation K » XK' such that

B° (K) = ¢28(K)p (k) 22,

where g(K) is a scalar of function K. Then K' can be interpreted as an
effective Ising coupling constant for the remaining odd spins S;,
i=1,3,5... N-1 and eq. 21 takes the form
-Hy (K) -Hg(K) + N g (K)

L e e 3 23,

{SZSH"‘SN}
This is the basic equation of the renormalization group approach. The
matrix condition, eq. 22, is readily satisfied by

K' = % ln cosh 2K 24,
and
g(K) = 3 K' + 5 1n2 25.
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The non-linear renormalization transformation, eq. 24, has fixed points
at K* = 0 and K® = » with associated eigenvalues A = O and A» = 1 respec-
tively, where A = dK'/dK evaluated at K = K*. Since a necessary con-
dition for a critical transition is the existence of an eigenvalue A>1,
this establishes the well known result that there is no phase transiti-
on for the one dimensional Ising model. After applying the renormali-
zation n times, the mapping K +K(n) can be obtained from the recurrence
relation

k(M) % In {cosh 2k(N"1)y 26.

where K(9) = K. Tt can be readily shown that lim k(M) = 0, i.e. every
n-sw

finite point K is mapped towards the fixed point at the origin K* = o.
In order to solve eq. 26 we introduce a new variable ¢ related to K by

a nonlinear transformation in such a way that the renormalization trans-
formation in the ¢ variable becomes simpler. For A # 0,1 this trans-

formation is defined by the condition (3,4) t' = Az, but this is not
possible in the present case. Instead Wwe require
¢! =;2 27.
and find the solution
r = tanh K 28.
and
oh
k() . % in (1—-1—5—-5) , 1< g <1 29.
2

Introducing the free energy per spin for N spins
-Hy (K)
£K) =3 5 el 30.
{S}

we obtain from eq.23 the functional relation

£y (K) = 2 {fy (K) - g (K)} 31.

Nz

In the thermodynamie 1limit, eq. 31 then leads to the scaling equation

for f(K) = lim fN(K), eq. 1 with L = 2
N+m
£(K') = 2 {f(X) - g (K)} 32.

To obtain a unique solution of eq. 32, we must impose a boundary con-
dition on f(K), e.g. for K = O, absence of spin interactions, f(0)= 1ln2.
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To prove uniqueness suppose there are two solutions fi(K) and f2(K) of
eq. 32 which satisfy this boundary condition. Then the difference
f (K) = fl(K) - fz(K) satisfies the homogeneous scaling egquation
£ (K') = 2 £_(K) 33,
and applying the renormalization mapping n-times leads to the relation
£ (K) = Lnoe (x\™)) 34,
2

since 1im k™) = o, and £_(0)

n>o

0, eq. 34 implies £ (X) = 0, Q.E.D.

Actually, this proof shows that we need to demand only the weaker bound-
ary condition that f(X) be finite at K = 0, because the solution of
eq. 32 determines the value of f£(0).

We obtain the solution of the scaling equation by substituting
eq. 25 for g(K) in eq. 7 noting that h(XK) = O because f(0) = 1n 2,

x(n)

«©
f(K) = In 2 + L o

n=1 2

35.

This series converges very rapidly and can be readily used to evaluate
f(K). For example, for K = 1, the sum of the first four terms of this
series gives an accuracy of 10 '. We can also sum this series by sub-
stituting eq. 29 in eq. 35 to abtain

1
- on 2n+i
f(K) =1In2 + 1In 7 1+z 36.
n=1 2n
1 -t
Applying the easily proven identity
1
w o0 ontl
_._1_:11’ (_1__“_'__)&_.;1__) 1 <1 37.
- = 2 =-1<
1-% n=o 1 - x 3 X
we find
f(K) = 1n (2 //1_Cz ) 38.
and from eq. 27, we obtain
f(K) = 1In (2 cosh K) 39.

which is the well known solution of the one dimensional Ising model.

We can verify that this solution satisfies the scaling equation by sub-
stituting eq. 39 together with eq. 24 into eq. 32. A second solution
of the scaling equation is } (K) = 1n (2sinh K) for which h(X) = 1n
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(tanh K). This solution is also of physical interest because the spin

correlation function Cli—j[(K) <sisj> is given by

H

-li-31/% (K)
Cli_jl (K) e 4o.

v -
where the correlation length &(K) = |f(K) - f(K)| 1. Hence 4(XK) satis=-
fies the excepted homogeneous scaling relation

2(K') = L (K) b1,

[NSTEES

These results can be readily extended to include a magnetic
field, and to higher spins, eq. s = + 1, and O,

For two dimensional models the renormalization transformations
are much more complicated and an exact analytic treatment has not been
given. However, an excellent approximation obtained by keeping only a
finite number of spins has been developed by Niemeijer and van Leeuwaéz)
for triangular lattices and by us for square 1attices.(u’6) Time does
not permit me to discuss these interesting developments in this lecture
and I refer you for details to our papers.(u’5’6’7) The results of a
numerical calculation for 16 spins are shown in Fig. 1 which shows the
free energy, energy and specific heat compared with Onsager's exact
result, and Fig. 2 which shows the critical surface in the subspace of
nearest neighbor coupling constant Kl’ next to nearest neighbor constant
K2, and four spin interactions Ky. Note in particular the ridge in the
upper half of the critical surface; it corresponds precisely to Baxter's
critical curve for the solution of the eight vertex model. The inter-
section of the critical surface with K3 = 0 plane agrees with the
approximate calculation by Dalton and WOOd(s) using high temperature
expansions, but their method fails to converge for Ky > 0 and K, < O,
while the renormalization group approach works also quite well for
this case.
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Fig. 1

dashed curve ---- Onsager's free energy
crosses + £ (Kl) free energy, eq. 7

dashed-dot curve ----- Onsager's energy
triangles a 2£(K1) energy from first derivative eq.7

solid curve Onsager's specific heat

dots e specific heat from second

aK1 derivative eq. 7
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Critical surface in the range -2

Ky, K

direction K; =1, K, = 1 and K3 = -1,

3

+2 seen along the
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