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Abstract For compact Calabi-Yau geometries with D5-branes we study N =1
effective superpotentials depending on both open- and closed-string fields. We
develop methods to derive the open/closed Picard-Fuchs differential equations,
which control D5-brane deformations as well as complex structure deformations
of the compact
Calabi-Yau space. Their solutions encode the flat open/closed coordinates and the
effective superpotential. For two explicit examples of compact D5-brane Calabi-
Yau hypersurface geometries we apply our techniques and express the calculated
superpotentials in terms of flat open/closed coordinates. By evaluating these super-
potentials at their critical points we reproduce the domain wall tensions that have
recently appeared in the literature. Finally we extract orbifold disk invariants from
the superpotentials, which, up to overall numerical normalizations, correspond to
orbifold disk Gromov-Witten invariants in the mirror geometry.

1 Introduction

Since D-branes have been discovered in string theory as non-perturbative BPS
objects (1), they have played an important role. Besides serving as crucial ingre-
dients in phenomenological string model building they have increased our insight
into non-perturbative physics in both string and field theory. Over and above D-
branes have also deepened our understanding of the web of string dualities. Such
dualities often map theories in the quantum regime to dual descriptions in which
semiclassical methods are applicable. One prominent example of this kind is given
by mirror symmetry, which connects classical geometry to a notion of quantum
geometry. In the context of D-branes mirror symmetry is further refined and leads
towards the homological mirror symmetry conjecture (2; 3).
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Mirror symmetry in the closed string sector relates type IIA string theory com-
pactified on a Calabi-Yau threefold, X , to type IIB string theory compactified on
the mirror Calabi-Yau threefold, Y . Among other things the duality implies that the
associated four-dimensional low energy effective N = 2 supergravity theories are
the same. In
particular the target space manifolds of the scalar fields in the N = 2 vector mul-
tiplets are captured by the same holomorphic prepotential. On the type IIB side
this holomorphic function is derived by analyzing the complex structure moduli
space of the Calabi-Yau, Y , by means of classical geometry, whereas on the mir-
ror type IIA side the prepotential arises from the quantum geometry of the Kähler
moduli space of the Calabi-Yau, X .

The holomorphic prepotential arises from the underlying N = 2 special geom-
etry, which is a consequence of the N = 2 local supersymmetry of the compactified
type II string theories. Another approach to this N = 2 special geometry structure
appears by investigating the topological A- and B-model (4). These topological
string theories can be viewed as subsectors of the physical type IIA and type IIB
string theories respectively (4; 5; 6). Then mirror symmetry connects the A-model
on the Calabi-Yau manifold, X , to the B-model on the Calabi-Yau manifold, Y . In
this context mirror symmetry can be extended to the open-string sector by includ-
ing topological branes. The homological mirror symmetry conjecture states that
the category of topological B-branes in the B-model is equivalent to the category
of topological A-branes in the mirror A-model (2; 3; 7; 8; 9). Excellent reviews of
these matters may be found in refs. (10; 11).

Analogously to the closed-string sector one would like to take advantage of
this
extended version of mirror symmetry for explicit computational purposes in the
open-string sector. As type II string theories with branes compactified on Calabi-
Yau manifolds exhibit only N =1 local supersymmetry their low-energy regime is
given by four-dimensional N =1 supergravity theories. Part of the defining data of
these supergravity theories is the holomorphic superpotential, on which we focus
in this work.

Similarly as the prepotential in a purely closed-string setup it turns out that
the N =1 superpotential of string compactifications with branes and fluxes are
given on the type IIB side by classical obstruction theory, whereas on the type IIA
side they are generated non-perturbatively by open-string disk instantons (12; 13).
Thus from the N =1 superpotential of the topological B-model we get a handle
on the non-perturbative superpotential of the topological A-model for the mirror
configuration.

As the superpotential corresponds in the topological A-model to the disk par-
tition function (14; 15), open mirror symmetry provides a powerful tool in enu-
merative geometry. In the large radius region of the topological A-model the disk
partition function counts integer disk invariants (14), whereas, as investigated re-
cently in refs. (16; 17; 18), in the vicinity of orbifold points the superpotential
encodes rational orbifold disk invariants (19; 20; 21).

Moreover, the effective superpotential is a relevant quantity not only in enu-
merative geometry but also in string phenomenology. It constitutes an important
ingredient in string model building because, for instance, it stabilizes moduli fields
and/or triggers supersymmetry breaking. Most of the phenomenological N =1
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type II string models are either constructed from non-compact geometries, and
hence gravity is decoupled, or they are obtained by semi-classical Kaluza-Klein
reductions, for which the explicit quantum corrections are often not known. In
order to capture some of these corrections in the context of compact Calabi-Yau
scenarios it is desirable to get at least a handle on the quantum-corrected N =1
effective superpotential.

In practice computing such effective superpotential is rather hard. First of all
for a given brane configuration in a compact Calabi-Yau manifold on the B-model
side the corresponding brane configuration on the mirror A-model side is only
known in special situations. Second even if the mirror configurations are known
on both sides one still needs to find the open-closed string mirror map, which
provides for the dictionary translating the classical computation in the topological
B-model to the quantum computation in the topological A-model.

For non-compact Calabi-Yau manifolds the program sketched above has suc-
cessfully been carried out in refs. (22; 23; 24; 25; 26). In ref. (22; 23) the boundary
condition at infinity has been used, whereas in refs. (24; 25) the concept of N =1
special geometry has been introduced and applied. Although the connection be-
tween these two approaches is not obvious both methods yield results which are
in agreement.

For compact Calabi-Yau manifolds the analog analysis seems to be more in-
volved and to our knowledge the above sketched endeavor, namely to compute
quantum corrected superpotentials depending on both open- and closed-string
moduli has not been carried out explicitly so far. Recently, however, in refs. (27;
28) a major step in this direction has been achieved by computing quantum-
corrected domain wall tensions on the quintic threefold using open-string mirror
symmetry. Following this recipe similar computations have been carried out suc-
cessfully for other one-parameter Calabi-Yau geometries in refs. (29; 30).

Guided by the N =1 special geometry techniques applied to non-compact
Calabi-Yau geometries in refs. (24; 25), we propose in this work an analog method
to derive Picard-Fuchs equations governing effective superpotentials for D5-brane
configurations in compact Calabi-Yau manifolds. The resulting Picard-Fuchs par-
tial differential equations depend on both open- and closed-string moduli, and their
solutions encode in addition to the effective superpotential the open-/closed-string
mirror map. Thus our approach is not only suitable to compute effective superpo-
tentials but also to extract enumerative invariants in the topological A-model of
the mirror geometry.

We apply these novel techniques to D5-branes in Calabi-Yau threefolds, which
are related to the geometries discussed in the context of domain wall tensions in
refs. (27; 29; 30). For two examples we explicitly derive the quantum corrected
superpotential, which we express in the vicinity of the orbifold point by a uniquely
distinguished set of open/closed flat coordinates. Then, similarly to the analysis
performed for D-branes in local Calabi-Yau geometries (16; 17; 18), we extract
(up to overall numerical normalizations) from the flat superpotential a tower of
orbifold disk invariants for the mirror D-brane configuration in the compact mirror
Calabi-Yau geometry. Finally, as a bonus and as a highly non-trivial consistency
check we reproduce for our two examples the domain wall tension computed in
refs. (27; 29; 30) by evaluating the calculated effective superpotential at its critical
points.
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The outline of this paper is as follows. In Sect. 2 we review some relevant
aspects of N =1 special geometry along the lines of refs. (24; 25). Then in Sect. 3
we develop the tools to derive the open/closed Picard-Fuchs differential equations,
and we argue that their solutions capture the necessary information to extract the
effective superpotential in terms of flat coordinates. In Sect. 4 and Sect. 5 we apply
our techniques in detail to two concrete examples. The first example is given by a
family of D5-branes in the degree eight Calabi-Yau hypersurface of the weighted
projective space, WP4

(1,1,1,1,4)/(Z8)2×Z2, whereas the second example is a family
of D5-branes in the mirror quintic Calabi-Yau threefold. For these examples we
extract orbifold disk invariants for the associated mirror geometries and determine
domain wall tensions in agreement with the results in the literature. Finally we
present our conclusions in Sect. 5. In the two appendices we supplement further
computational details for the two discussed examples.

2 Effective Superpotentials and N=1 Special Geometry

It is well-known that type II string theory compactified on Calabi-Yau threefolds
with background fluxes or space-time filling D-branes is described in the low-
energy regime by N =1 effective supergravity theories. For such string compact-
ifications we present in this work new techniques to compute the effective su-
perpotential, which is part of the defining data of N =1 supergravities and plays
an important role in many phenomenological applications. To set the stage for the
subsequent sections we first review some aspects of N =1 special geometry, which
are relevant for our computations.

2.1 Flux-induced and D5-brane superpotentials

Let us consider type IIB string theory compactified on the Calabi-Yau threefold,
Y . Then in the presence of internal background fluxes an effective superpotential
is induced. Here we mainly focus on the quantized three-form RR fluxes, F(3),
which takes values in the integer cohomology group, H3(Y,Z). Then the resulting
superpotential reads (31; 32)

WRR(z) =
∫

Y
Ω(z)∧F(3), (2.1)

where Ω(z) is up to normalization the unique holomorphic three form of the
Calabi-Yau threefold, Y , depending on the complex structure moduli parametrized
by the coordinates, z.1 The dependence on the complex structure moduli can be
made more explicit by expressing the three-form superpotential in terms of the pe-
riod vector, Π α(z), of the Calabi-Yau manifold, which is obtained by integrating
the holomorphic three form, Ω , over a basis, Γα , of the integer homology group,
H3(Y,Z),

Π
α(z) =

∫
Γα

Ω(z), Γα ∈ H3(Y,Z). (2.2)

1 Strictly speaking a modulus parametrizes a flat direction in the scalar potential of the effec-
tive field theory. In this paper, however, a modulus refers to the complex scalar field of a neutral
chiral multiplet, which may or may not be obstructed by the superpotential.
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The periods, Π α(z), of a Calabi-Yau manifold are governed by the underlying
N = 2 special geometry, which gives rise to the holomorphic prepotential of the
vector multiplets in the associated N = 2 supergravity theory. Here we also express
the flux-induced superpotential, WRR, in terms of these periods

WRR(z) = Nα Π
α(z), (2.3)

where the integers, Nα , are the quanta of the three-form background fluxes, F(3).
A similar effective superpotential arises from space-time filling D-branes wrap-

ping even-dimensional cycles in type IIB Calabi-Yau compactifications. For branes
filling the whole compactification space the open-string partition function, which
in our context yields the resulting effective superpotential, arises from the holo-
morphic Chern-Simons action (12). As we focus in this work on a space-time
filling D5-brane wrapping a two cycle, C, of the internal Calabi-Yau, Y , we need
to consider the dimensional reduction of the holomorphic Chern-Simons action to
two dimensions, which becomes (13; 22; 33)

WD5 =
∫

C
Ωi jw ζ

i
∂̄wζ

j dwdw̄. (2.4)

Here ζ i are sections of the normal bundle of the two cycle, C, embedded in its
ambient Calabi-Yau space, Y , and they parametrize infinitesimal deformations of
the D5-branes. The holomorphic Chern-Simons action also depends on the com-
plex structure moduli through its coupling to the holomorphic three form, Ω , and
therefore the superpotential, WD5, depends on both the complex structure moduli
and the D5-brane open-string moduli for the deformations of the embedding cycle,
C.

Analogously to the flux-induced superpotential the moduli dependence be-
comes explicit by writing the D5-brane superpotential in terms of semi-periods.
The semi-period vector, Π̂ α̂ , is defined by

Π̂
α̂(z,u) =

∫
Γ̂ α̂ (u)

Ω(z), (2.5)

where Γ̂ α̂(u) constitutes a basis of three chains that have non-trivial boundaries,
∂Γ̂ α̂(u), lying in the union of non-trivial two-cycles, S, of the Calabi-Yau man-
ifold, Y . As this basis of open three chains depends on the open-string moduli,
u, the semi-period vector, Π̂ α̂(z,u), becomes a function of both closed and open
fields, and the moduli-dependent D5-brane superpotential (2.4) reads (22; 33; 34)

WD5(z,u) = N̂α̂ Π̂
α̂(z,u). (2.6)

Here the integers, N̂α̂ , specify the topology of the internal two cycle, C, of the
D5-brane worldvolume by specifying a linear combination of the two cycles in
the set, S.

Since both the flux-induced and the D5-brane superpotential arise from inte-
grals of the holomorphic three form, Ω , it is natural to consider the combined
superpotential (24; 25)

W (z,u) = WRR(z)+WD5(z,u) = Na Π
a(z,u), (2.7)
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in terms of the relative period vector

Π
a(z,u) =

∫
Γ a(u)

Ω(z), Γ
a(u) ∈ H3(Y,S,Z). (2.8)

Here Γ
a denotes a basis of three chains in the relative integer homology group,

H3(Y,S,Z). We should stress that the basis, Γ
a, captures closed three chains, Γ α ,

and open three chains, Γ̂ α̂ , with boundaries in the set of two cycles, S. Therefore
the effective superpotential (2.7) does indeed get contributions from three-form
RR fluxes and D5-branes, and the integers, Na, specify now both the three-form
flux quanta and the
D5-brane topology. Note that also from a physics point of view the interplay of
three-form fluxes and space-time filling D5-branes in the effective superpotential
is not very surprising because D5-branes and three-form fluxes are often related
by geometric transitions (35).

Although the effective superpotential (2.7) is a purely classical expression
for type IIB string compactifications it describes a highly intricate sum of non-
perturbative instantons for the mirror type IIA string compactification (36). In
order to extract these non-trivial instanton contributions it is necessary to analyze
the structure of these relative periods. Analogously to the N = 2 special geometry,
which relates the holomorphic N = 2 prepotential to periods of Calabi-Yau mani-
folds, the relative periods entering the N =1 holomorphic superpotential (2.7) are
governed by the underlying N =1 special geometry, which has been introduced in
refs. (24; 25; 34).

However, before discussing the properties of relative periods there are a few
general comments in order. First of all since we are interested in effective superpo-
tentials arising from compact Calabi-Yau geometries the background three-form
fluxes and the space-time filling D5-branes introduce RR tadpoles rendering the
physical string theory inconsistent. These tadpoles arise from worldsheets at the
one-loop level and can be cancelled by introducing appropriate orientifold planes.
But these orientifold planes do not alter our computations because the effective su-
perpotential (2.7) appears at string tree level. Moreover, as a BPS protected quan-
tity the superpotential is also not further modified by flux- or brane-induced back-
reactions to the geometry. Finally we remark that due to the SL(2,Z) symmetry
of type IIB string theory the effective superpotential (2.7) can easily be extended
to describe NS three-form fluxes and NS5-branes (24; 25). This is achieved by re-
placing the RR sector charges, Na, by the complexified charge quanta, Na +τNNS

a .
Here τ denotes the complex dilaton and the integers, NNS

a , capture the NS sector
charges. However, in the following we set the NS charges again to zero and restrict
ourselves to the RR sector.

2.2 Relative periods

As relative periods are crucial for the effective superpotentials of interest we study
now their structure in some more detail. These relative periods are adequately de-
scribed in terms of relative homology and relative cohomology (24; 25). Therefore
we give a brief mathematical interlude to these matters. For more details see, for
instance, ref. (37).
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For the submanifold, S, embedded by the map, i : S ↪→ Y , in the ambient
Calabi-Yau manifold, Y , the space of relative forms, Ω ∗(Y,S), is the subspace
of forms, Ω ∗(Y ), defined as the kernel of the pullback, i∗ : Ω ∗(Y ) → Ω ∗(S). In
other words the relative forms fit in the exact sequence

0−→Ω
∗(Y,S) ↪→Ω

∗(Y ) i∗−→Ω
∗(S)−→ 0. (2.9)

Then the relative cohomology groups, H∗(Y,S), arise from the space of closed
modulo exact relative forms with respect to the de Rham differential, d. Since the
de Rham differential commutes with the maps in the short exact sequence (2.9), we
deduce a long exact sequence on the level of cohomology in the usual manner. In
particular the long exact sequence implies for the three-form cohomology group,
H3(Y,S),

H3(Y,S) ∼= ker
(
H3(Y )→ H3(S)

)
⊕ coker

(
H2(Y )→ H2(S)

)
. (2.10)

For Calabi-Yau threefolds the first summand equals H3(Y ) on dimensional grounds.
The second contribution is the variable cohomology group, H2

var(S), with respect
to the embedding space, Y , i.e.these are cohomology elements of the submanifold
not induced form the ambient space. Consequently the decomposition (2.10) al-
lows us to represent a relative three form, Ξ , as a pair of a closed three form, Ξ ,
and a closed two form, ξ ,

Ξ = (Ξ ,ξ ) ∈ H3(Y,S), (2.11)

such that the relative form, Ξ , obeys the equivalence relation

Ξ ∼ Ξ +(dα, i∗α−dβ ) . (2.12)

Here α is a two form on the Calabi-Yau, Y , whereas β is a one form on the sub-
space, S.

Let us turn to the homology group, H3(Y,S,Z), of relative three cycles. As
mentioned previously a relative three cycle, Γ , is a three chain whose boundary,
∂Γ , lies in the submanifold, S. The duality pairing between relative three-form
cohomology elements and relative three cycles is given by∫

Γ

Ξ ≡
∫

Γ

Ξ −
∫

∂Γ

ξ . (2.13)

This topological pairing is compatible with the equivalence relation (2.12), and
hence it is well-defined.

After this brief introduction to relative (co-)homology we can write the relative
periods (2.8) in terms of the relative three form, Ω(z,u), integrated over a relative
homology basis, Γ

a,

Π
a(z,u) =

∫
Γ a

Ω(z,u), Γ
a ∈ H3(Y,S,Z). (2.14)

At a given reference point in the open-/closed-string moduli space the relative
three form, Ω , can be viewed as the pair, (Ω ,0). However, as we move in the mod-
uli space the relative three form changes and generically acquires also non-zero
two-form contributions. The moduli dependence of the relative periods, Π

a(z,u),
is now entirely captured by the variation of the relative form, Ω(z,u).
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2.3 Variation of mixed Hodge structure

The suitable formalism to get a handle on the moduli dependence of the relative
periods (2.14) is the variation of mixed Hodge structure (24; 25). It is a general-
ization of the variation of Hodge structure used to compute the complex structure
moduli dependence of the closed-string period vector.

For the mathematical definition of a mixed Hodge structure we refer the reader
to refs. (38; 39). In our context, relative three forms realize a mixed Hodge struc-
ture as follows (24; 25): The Z-module of a mixed Hodge structure is given by
the relative integer cohomology group, H3(Y,S,Z). The second ingredient is a
finite decreasing filtration, F p, of the complexified group, H3(Y,S,C) ≡ C⊗Z
H3(Y,S,Z). This filtration becomes

F3 = H3,0(Y,S),

F2 = H3,0(Y,S)⊕H2,1(Y,S),
(2.15)

F1 = H3,0(Y,S)⊕H2,1(Y,S)⊕H1,2(Y,S),

F0 = H3,0(Y,S)⊕H2,1(Y,S)⊕H1,2(Y,S)⊕H0,3(Y,S).

In terms of the decomposition (2.10) the groups, H p,q(Y,S), split into the co-
homology groups, H p,q(Y ) and H p,q−1

var (S). Thus in particular the holomorphic
three form, Ω , spans the filtration, F3. Finally a mixed Hodge structure has a fi-
nite increasing weight filtration, Wp, on the rational relative cohomology group,
H3(Y,S,Q) ≡ Q⊗Z H3(Y,S,Z). The weight filtration is again induced from the
decomposition (2.10), and it reads

W3 ∼= H3(Y,Q), W4 ∼= H3(Y,Q)⊕H2
var(S,Q) ∼= H3(Y,S,Q). (2.16)

Note that the finite decreasing filtration, F̃ p ≡W3 ∩F p, gives rise to the Hodge
structure,

F̃ p =
3−p⊕
k=0

H3−k,k(Y ), p = 0,1,2,3, (2.17)

associated to the closed-string complex structure moduli space.
In order to analyze the moduli-dependent relative period vector (2.14), we dis-

cuss the behavior of relative three forms under infinitesimal deformations. It is
well-known that an infinitesimal closed-string complex structure deformation, ∂z,
changes the Hodge type of a (p,q)-form. On the other hand an infinitesimal open-
string deformation, ∂u, does not modify the closed-string periods because it gives
rise to an infinitesimal deformation of the normal bundle of the submanifold, S,
which only affects the two-form sector, H2

var(Y ). Thus, as has been shown rig-
orously in ref. (25), the infinitesimal deformations, ∂z and ∂u, viewed as tangent
vectors in the open-/closed string moduli space, schematically act on the defined
mixed Hodge structure as:

F3∩W3
∂z //

∂u

%%JJJJJJJJJ F2∩W3
∂z //

∂u

%%JJJJJJJJJ F1∩W3
∂z //

∂u

%%JJJJJJJJJ F0∩W3

∂u
��

F2∩W4
∂z,∂u // F1∩W4

∂z,∂u // F0∩W4

.

(2.18)



Effective Superpotentials for Compact D5-Brane Calabi-Yau Geometries 9

Note that the two-form sector, H2
var(Y )∼= W4/W3, constitutes a sub-system,

F2∩ (W4/W3)
∂z,∂u−→F1∩ (W4/W3)

∂z,∂u−→F0∩ (W4/W3), (2.19)

which is closed with respect to the variations, ∂z and ∂u, and which will play an
important role in deriving and solving the Picard-Fuchs differential equations of
the relative periods (2.14).

The variation of mixed Hodge structure exhibits the N =1 special geometry of
the open-/closed-string moduli space. As has been pointed out in ref. (24; 25), we
should view the emerging structures as a distinguished feature of N =1 supergrav-
ity theories arising from N =1 string compactifications and not as a property of a
generic N =1 supergravity theory.

3 Picard-Fuchs Equations for D5-Branes in Compact Calabi-Yau
Geometries

In this section we develop the machinery to compute effective superpotentials of
D5-branes in compact Calabi-Yau threefolds. We focus on D5-brane geometries
whose moduli spaces are describable by studying certain divisors of the embed-
ding Calabi-Yau spaces. Furthermore these Calabi-Yau threefolds are realized
as hypersurfaces in four-dimensional complex (weighted) projective spaces. The
main idea is to express the relative three forms associated to the D5-brane geom-
etry in terms of residue integrals. Since both open- and closed-string moduli enter
in the definition of these residue integrals, we get a direct handle on the moduli
dependence of relative three forms. Hence we are able to explicitly analyze the
corresponding variation of mixed Hodge structure, which then allows us to derive
the Picard-Fuchs equations of the relative period vector governing the effective
superpotential.

3.1 Residue integrals for three forms in Calabi-Yau threefolds

Before we construct the mixed Hodge filtration for relative forms we first recall
how to describe three forms of a Calabi-Yau threefold by means of residue inte-
grals (40; 41; 42). In the following the Calabi-Yau hypersurface, Y , is given as
the zero locus, P ≡ 0, of a (quasi-) homogeneous polynomial, P, in the complex
(weighted) projective space WP4

(a1,a2,a3,a4,a5). In order for the hypersurface, Y , to
be Calabi-Yau the defining polynomial, P, must be (quasi-)homogeneous of de-
gree d = a1 + · · ·+a5.

By integrating over a tubular neighborhood, γ , of the zero locus of the polyno-
mial, P, the residue integral,

Ξ
k =

∫
γ

p(x)
Pk+1 ∆ , (3.1)

yields a three form, Ξ k, on the Calabi-Yau threefold, Y . Here p(x) is a (quasi-
)homogeneous polynomial of degree d k of the projective coordinates [x1 : x2 : x3 :
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x4 : x5], whereas the differential, ∆ , is given by (40)

∆ =
5

∑
m=1

(−1)m am xm dx1∧ . . . d̂xm . . .∧dx5. (3.2)

In this sum the differentials, d̂xm, are omitted as indicated by the hat, and the
residue integral (3.1) is well-defined as it is invariant under quasi-homogeneous
rescaling. Note that by acting with the de Rham differential, d, it is easy to see
that the three form, Ξ k, is closed.

Next we turn our attention to exact forms. First we observe that we can repre-
sent two forms with residue integrals

α =
∫

γ
∑

m<n

an xn qm(x)−am xm qn(x)
Pk (−1)m+ndx1∧ . . . d̂xm . . . d̂xn . . .∧dx5.

(3.3)
The polynomials, qn(x), have degree d(k−1)+an. Acting with the differential, d,
on the residue integral (3.7) we obtain the exact three form

dα =
∫

γ
∑
m

[
k

qm∂mP
Pk+1 − ∂mqm

Pk

]
∆ . (3.4)

Thus we have assembled all the ingredients to represent the de Rham three-
form cohomology elements. As shown in ref. (40) and as suggested by the struc-
ture of the exact forms (3.4) each non-trivial element of the polynomial ring,
C[x]/(∂nP), of degree d k corresponds to a distinct non-trivial element, Ξ k, in the
cohomology group, H3(Y,C).2

A refined analysis reveals that a three form, Ξ k, of grade k, arising from a
polynomial of degree d k, lies in the Hodge filtration module, F̃3−k, defined in
Eq. (2.17) (40). In particular the unique holomorphic three form, Ω , of the Calabi-
Yau hypersurface, Y , which spans the filtration, F̃3, is given by

Ω =
∫

γ

1
P

∆ . (3.5)

This expression allows us to investigate the complex structure dependence of the
holomorphic three form, Ω , by considering a family of hypersurface polynomials,
P(z), parametrized by the moduli, z. Moreover by taking kth order derivatives with
respect to the parameters, z, we realize infinitesimal deformations of order k and
obtain three forms at grade k. Thus we are able to explicitly study the variation of
Hodge structure,

F̃3 ∂z−→ F̃2 ∂z−→ F̃1 ∂z−→ F̃0, (3.6)

of the closed-string complex structure moduli space.

2 For weighted projective spaces the residue integrals (3.1) do not always span the whole
cohomology group, H3(Y,C). With residue integrals we can only describe those three-form
cohomology elements that correspond to toric divisors in the mirror geometry.
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So far we have argued that a three form, Ξ k, lies in the filtration module, F̃3−k.
If, however, the associated polynomial, p(x), of degree dk, is trivial in the polyno-
mial ring, C[x]/(∂nP), i.e.p(x) ≡ ∑m qm(x)∂mP(x) for some polynomials, qm(x),
then according to Eq. (3.4) we can add an appropriate exact form, dα , such that
the three form is reduced to a three form at grade k− 1. Hence we have shown
that the three form, Ξ k, is even an element of the filtration module, F̃4−k. Re-
cursively repeating this process eventually we either arrive at some non-trivial
three-form cohomology element at lower grade or the final defining polynomial
becomes zero. In the latter situation we have established that the original three
form, Ξ k, is exact and thus trivial in cohomology. This reduction method is some-
times called the Griffiths-Dwork algorithm. Later we will use a generalization of
this algorithm to derive the Picard-Fuchs equations for the relative periods.

3.2 Residue integrals for relative three forms in Calabi-Yau threefolds

In order to apply the concepts of N =1 special geometry to D5-branes in com-
pact Calabi-Yau threefolds the next task is to establish residue integral representa-
tions for relative three forms. These integrals are derived by exploiting the relative
three-form decomposition (2.10) into a two-form/three-form pair. After having
thoroughly explored the three form piece in Sect. 3.1 we first focus now on the
variable two-form cohomology, H2

var(S), which captures the open-string moduli
dependence of the embedded D5-brane.

Since we want to study D5-brane effective superpotentials the two cycle wrapped
by the D5-brane is generically not holomorphic. In fact it is only holomorphic if
the moduli coincide with a critical point of the superpotential. To avoid the compli-
cation of dealing with non-holomorphic submanifolds we employ the arguments
of refs. (24; 25) and replace the submanifold, S, by a holomorphic hypersurface,
V , of the Calabi-Yau manifold, Y , such that this four-dimensional space embeds
the wrapped cycles. One might be worried that the replacement introduces addi-
tional structure not related to the D5-brane geometry. However, we will see that
for the examples discussed in this work, this substitution process does not give rise
to fake additional moduli for the computed relative periods. Therefore we assume
in the following that it is possible to use the simpler cohomology group, H3(Y,V ),
instead of its complicated ancestor, H3(Y,S). In particular the two-form part of the
relative three forms are now captured by the variable cohomology, H2

var(V ).
In practice the holomorphic four-dimensional subspace, V , is associated to

a divisor of the Calabi-Yau space, Y , i.e.the manifold, V , arises as the zero lo-
cus, Q ≡ 0, of the (quasi-)homogeneous polynomial, Q, of degree f . Hence we
can view the subspace, V , as the complete intersection of the Calabi-Yau poly-
nomial, P, and the D5-brane polynomial, Q, in the (weighted) projective space,
WP4

(a1,a2,a3,a4,a5). Therefore the residue integral,

ξ
k+l =

∫
γ̂

p(x)
Pk+1Q`

∆ , (3.7)

represents a closed two form, ξ k+l , of the manifold, V (43). Here the differential,
∆ , is given by Eq. (3.2), and we integrate over the tubular neighborhood, γ̂ , of
the intersection, {P ≡ 0} ∩ {Q ≡ 0}. The polynomial, p(x), must have degree,
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k d + ` f , so as to render the residue integral invariant under (quasi-)homogeneous
rescaling as required for consistency reasons. The resulting form, ξ k+l , can only
be non-zero for k ≥ 0 and ` > 0.

Analogously to Eq. (3.7) the (quasi-)homogeneous polynomials, qm(x), of de-
gree (k−1)d + ` f +am give rise to the residue integral,

β =
∫

γ̂
∑

m<n

an xn qm(x)−am xm qn(x)
PkQ`

(−1)m+ndx1∧ . . . d̂xm . . . d̂xn . . .∧dx5,

(3.8)
representing a one form on the submanifold, V . Acting with the de Rham differ-
ential, d, on the one form, β , we arrive after a few steps of algebra at the exact two
form

dβ =
∫

γ̂
∑
m

[
k

qm(x)∂mP
Pk+1Q`

+ `
qm(x)∂mQ

PkQ`+1 − ∂mqm(x)
PkQ`

]
∆ . (3.9)

The exact and the closed two forms enable us to study the cohomology result-
ing from the residue integrals. As shown in ref. (44) the residue integrals (3.7) cap-
ture non-trivial cohomology elements in the variable cohomology, H2

var(V ), which
is precisely the cohomology group relevant in the decomposition (2.10) of the rel-
ative cohomology group, H3(Y,V ).3 Moreover, the grades of the two forms (3.7)
are compatible with the Hodge filtration of the variable two-form cohomology,
i.e.the two form, ξ k, lies in the filtration module, F3−k ∩ (W4/W3), of the mixed
Hodge structure introduced in Sect. 2.3. Altogether the two-form residue integrals
provide for a suitable tool to investigate the variation of Hodge structure (2.19) of
the variable cohomology, H2

var(V ).
So far we have separately discussed the three- and two-form part in the decom-

position (2.16) of relative cohomology elements. However, in order to capture the
variation of mixed Hodge structure (2.18) we need to take adequately into account
the interplay of these two components. First we must incorporate the equivalence
relation (2.12). Therefore we are required to derive for two forms the pullback, i∗,
induced from the embedding, i : V ↪→ Y , on the level of residue integrals. This is
achieved by writing the pullback of the two form (3.7) in terms of an additional
residue with respect to the zero locus of the divisor, V . A few steps of algebra
reveal for the pullback two form (3.7),4

i∗α = −
∫

γ̂
∑
m

qm(x)∂mQ
PkQ

∆ . (3.10)

Second we observe that if we introduce open-string moduli, u, by considering a
family of divisors, Q(u), this moduli dependence never enters the residue integral
representation of the three forms (3.1). However, looking at the variation of mixed
Hodge structure (2.18) for relative three forms we notice that the moduli, u, must
enter the three-form component of relative cohomology elements. This becomes
apparent by taking a derivative, ∂u, of a pure three-form piece appearing in the
upper row of the variational diagram (2.18). It yields a two-form contribution in
the lower row of the diagram. We readily implement this moduli dependence by

3 This is a consequence of the Hard Lefschetz theorem.
4 We have dropped an unimportant factor of 2πi.
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representing a closed relative three form, Ξ , which arises from a pure closed three
form, Ξ , as

Ξ = (Ξ ,0) =
∫ p(x) logQ

Pk ∆ . (3.11)

This definition is now in agreement with the variation of mixed Hodge struc-
ture (2.18). Analogously we enhance the two forms (3.7) to relative two forms,
α = (α,0),

α =
∫

∑
m<n

(an xn qm(x)−am xm qn(x)) logQ
Pk (−1)m+ndx1∧ . . . d̂xm . . . d̂xn . . .∧dx5,

(3.12)
and by acting with the de Rham differential, d, we arrive at

dα =
∫

∑
m

[
k

qm(x)∂mP logQ
Pk+1 − ∂mqm(x) logQ

Pk − qm(x)∂mQ
PkQ

]
∆ . (3.13)

Note that due to the introduced logQ-term the relative three form, dα , is indeed
a relative exact form because it also contains the pullback term (3.10), which is
required by the relative cohomology equivalence relation (2.12).

Although the definitions of relative forms (3.11) and (3.12) yield the correct
equivalence relation (2.12) and agrees with the variation of mixed Hodge struc-
ture (2.18), the introduction of the logQ-term may seem a little ad hoc. There
is, however, another reason, which suggests the appearance of the logQ-term.
The mixed Hodge structure of relative forms, H3(Y,V ), can also be defined as
the filtration arising from the hypercohomology of the complexes, Ω ∗

Y (logQ),
i.e.the spectral sequence of the hypercohomology degenerates at the term, E p,q

1 =
Hq(Y,Ω p

Y (logQ)), and abuts to the relative cohomology group, H p+q(Y,V ) (45;
39). The forms, Ω ∗

Y (logQ)≡Λ ∗ΩY (logQ), are locally generated by the one forms,
Ω 1(Y ), and the logarithmic differential, dQ/Q ≡ d(logQ). Therefore in the de-
composition (2.10) the logQ-term comes about naturally for the three-form com-
ponent, corresponding to p = 0 and q = 3, as it generates the logarithmic differ-
ential, d(logQ), of the two-form components.

3.3 Open/closed Picard-Fuchs differential equations and flat coordinates

Having
developed the techniques to render relative three forms as residue integrals we
are now ready to make the connection to the advertised Picard-Fuchs equations.
Their solutions are the relative three-form periods (2.14), which in turn determine
flat coordinates of the open-/closed-string moduli space.

Let us first discuss the system of linear Gauss-Manin differential equations,
which controls the mixed Hodge filtration of the relative cohomology, H3(Y,V ),
fibered over the open-/closed-string moduli space. We introduce a basis vector,
π(z,u), of the relative three-form cohomology elements compatible with the mixed
Hodge filtrations (2.15) and (2.16). In practice such a basis is constructed from the
unique relative three form, Ω(z,u), which spans the filtration module, F3,

Ω(z,u) = (Ω ,0) =
∫ logQ(u)

P(z)
∆ . (3.14)



14 H. Jockers, M. Soroush

Recall that the dependence on the bulk moduli, z, arises in the polynomial, P(z),
whereas the open-string moduli, u, appear in the family of divisors, Q(u). Due to
Griffiths transversality we now generate a basis vector, π(z,u), by taking consecu-
tive derivatives of the relative three form, Ω(z,u). Furthermore subsets of this ba-
sis span the various filtration modules according to the variational diagram (2.18).

The Gauss-Manin system is the system of the linear differential equations,
which expresses infinitesimal variations of the basis vector, π(z,u), with respect
to the moduli in terms of a linear combination of the basis elements, π(z,u). Hence
it reads:

0 '
(
∂zk −Mk(z,u)

)
π(z,u) ≡ ∇zk π(z,u),

0 '
(

∂uk̂
−Mk̂(z,u)

)
π(z,u) ≡ ∇uk̂

π(z,u).
(3.15)

Here ‘' ’ indicates equality on the level of cohomology classes, i.e.equality mod-
ulo exact relative forms (2.12). This reflects the fact that in varying the basis vec-
tors, π , we also modify the representatives of the relative cohomology classes. The
indices, k and k̂, label the closed- and open-string moduli respectively. In the next
sections we discuss in detail how to employ the residue integrals techniques so as
to compute the matrices, Mk and Mk̂, explicitly.

The linear Gauss-Manin system (3.15) gives also rise to the Gauss-Manin con-
nection, ∇zk and ∇uk̂

, for the relative three-form mixed Hodge bundle over the
open-/closed-string moduli space. The Gauss-Manin connection is actually flat
(24; 25)

[∇zk ,∇z` ] = [∇uk̂
,∇u ˆ̀] = [∇zk ,∇uk̂

] = 0. (3.16)

Analogously to the flat Gauss-Manin connection in the context of N = 2 special
geometry (6; 46; 47), the flatness of the connection is not a coincidence but a
non-trivial and necessary property of the N =1 special geometry governing the
open/closed chiral ring (24; 25).

Since the whole relative basis vector, π(z,u), is induced from derivatives of the
relative three form, Ω(z,u), we can readily construct from the linear Gauss-Manin
system the differential Picard-Fuchs equations for the relative three form, Ω(z,u),

LAΩ(z,u) ' 0. (3.17)

According to the mixed Hodge variation (2.18) the linear Gauss-Manin system
translates into Picard-Fuchs operators, LA, that are partial differential operators
up to fourth order. As before the differential equations (3.17) hold on the level of
relative cohomology classes. As a consequence the Picard-Fuchs operators also
annihilate the relative periods (2.14)

LAΠ
a(z,u) = 0. (3.18)

We should stress that this set of Picard-Fuchs equations is only integrable due to
the flatness of the Gauss-Manin connection (3.16).

The solutions of the open/closed Picard-Fuchs equations (3.18) are the rela-
tive periods governing the effective superpotential (2.7). In particular, as argued
in Sect. 2.1, this superpotential comprises both the pure closed-string periods for
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the RR three form fluxes and the true relative periods for the brane induced super-
potential terms. Thus the bulk periods, Π α(z), are also annihilated by the open-
/closed-string Picard-Fuchs operators, LA. As a consequence they exhibit the fol-
lowing general structure:

LA = L bulk
A (z,∂z)+L bdry

A (z,u,∂z,∂u). (3.19)

The operators, L bulk
A , are the Picard-Fuchs operators of the closed-string bulk

theory, whereas the operators, L bdry
A , communicate the connection to the open-

string boundary sector. Moreover the latter operators must annihilate the closed-
string periods, Π α(z), to ensure that they are indeed solutions to the open-/closed-
string Picard-Fuchs equations.

A complete set of relative periods, Π
a, which solves the integrable Picard-

Fuchs system (3.18), provides for a tool to compute flat coordinates of the open-
/closed-string moduli space. By choosing a symplectic basis for the homology
group, H3(Y,Z), of three cycles, the closed string periods split into A- and B-
periods. Then the flat coordinates, t, of the bulk sector are defined by

tk(z) =
Π

k(z)
Π

0(z)
. (3.20)

Here the periods, Π
0(z) and Π

k(z), constitute the A-periods with respect to the
chosen symplectic basis of three cycles. Analogously the open flat coordinates, t̂,
arise from an appropriate subset of semi-periods and are defined by

t̂k̂(z,u) =
Π

k̂(z,u)
Π

0(z)
. (3.21)

As a consequence of N =1 special geometry the relative period vector, ex-
pressed in terms of flat coordinates, t and t̂, becomes (24; 25)

Π
a(t, t̂) =

(
1 , tk , ∂tkF (t) , 2F (t)−∑

k
tk ∂tkF (t) ; t̂k̂ , W`(t, t̂) , ∗

)
. (3.22)

The first two entries are the closed-string A-periods encoding the flat coordi-
nates (3.20). The next two entries correspond to the symplectic dual closed-string
B-periods, which, as a consequence of the underlying N = 2 special geometry,
are induced from the closed-string holomorphic N = 2 prepotential, F (t) (48).
The other periods arise from open-string semi-periods governed by N =1 special
geometry (24; 25). Here the first entry gives rise to the open-string flat coordi-
nates (3.21), whereas the second entry yields the holomorphic D5-brane superpo-
tential components, W`(t, t̂), associated to the various two cycles labelled by index
`. In general these superpotential components are not integrable to a generating
function. This reflects the fact that N =1 special geometry is not as constrain-
ing as its N = 2 relative. The remaining semi-periods, which do not allow for
an interpretation as flat coordinates or superpotentials, are denoted by ‘∗ ’. These
semi-periods do not appear in refs. (24; 25) because of the non-compactness of the
considered local Calabi-Yau geometries. However, it would be interesting to find a
physics interpretation for these semi-periods in the context of compact geometries.
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Computing flat coordinates, t and t̂, involves a choice of basis, Γ
a, of the ho-

mology group, H3(Y,V,Z). However, at special points in the open-/closed-string
moduli space the choice of basis is further restricted such that we can derive an
open-/closed-string mirror map. Most prominent is the mirror map at the large
complex structure point as it allows to compute instanton corrections to the clas-
sical mirror geometry in the topological A-model. Recently, however, it has been
demonstrated in local Calabi-Yau geometries that under certain circumstances a
mirror map can also be computed at orbifold points in the moduli space (16; 17;
18; 49), which then allows to determine equivariant invariants in the topological
A-model (19; 20; 21). For our examples discussed in the next sections we explic-
itly extract also the latter type of enumerative disk invariants in the context of
D5-branes in compact Calabi-Yau manifolds.

4 D5-Branes in the Degree Eight Hypersurface in WP4
(1,1,1,1,4)/(Z8)2×Z2

In this section we apply the developed tools to our first example. We consider the
Calabi-Yau threefold, which arises as the mirror of the family of degree eight hy-
persurfaces in the weighted projective space, WP4

(1,1,1,1,4). The analyzed D-brane
geometry in this Calabi-Yau space allows us to derive open/closed Picard-Fuchs
equations. Their solutions yield the effective superpotential in flat coordinates.
From this superpotential we extract a certain domain wall tension, which, for this
example, is calculated by different means in ref. (29; 30) in agreement with our
results.

4.1 The Calabi-Yau and D-brane geometry

The first task is to specify the bulk
Calabi-Yau geometry. The degree eight hypersurfaces in the weighted projective
space, WP4

(1,1,1,1,4), give rise to a family of Calabi-Yau threefolds with one Kähler
modulus and 149 complex structure moduli (50). Here we are mainly interested in
its mirror family of Calabi-Yau threefolds, Y , depending on one complex structure
modulus and 149 Kähler moduli. Applying the standard Greene-Plesser construc-
tion (51), we realize the mirror (in its singular limit) as the degree eight hypersur-
face

P(ψ) = x8
1 + x8

2 + x8
3 + x8

4 + x2
5−8ψ x1x2x3x4x5, (4.1)

in the (Z8)2×Z2-orbifold of the weighted projective space, WP4
(1,1,1,1,4). The pa-

rameter, ψ , is the algebraic complex structure modulus of the Calabi-Yau three-
fold, Y . The orbifold group is generated by5

g1 = (1,0,0,7,0), g2 = (0,1,0,7,0), g3 = (0,0,1,7,0), (4.2)

acting on the weighted projective coordinates, e.g.for the generator, g1, we get

g1 : [x1 : x2 : x3 : x4 : x5 ] 7→ [η x1 : x2 : x3 : η
7x4 : x5 ], η ≡ e2πi/8. (4.3)

5 Naively these generators give rise to the group, (Z8)3. However, a Z4-subgroup acts trivially
due to quasi-homogeneous identifications of the projective coordinates (50).
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Resolving the orbifold singularities by standard toric techniques one obtains a
smooth family of Calabi-Yau threefolds depending on 149 Kähler moduli.

The next step is to introduce the divisor, V , which determines the D5-brane
contents in our example. The divisor, V , is defined by the polynomial

Q(φ) = x5−φ x1x2x3x4. (4.4)

Here φ is the algebraic open-string modulus. Note that this constitutes the most
general polynomial of degree four invariant with respect to the (Z8)2×Z2-orbifold
group.

The family of branes defined by the divisor, Q, is directly related to the D5-
branes in the Calabi-Yau, Y , discussed in refs. (29; 30). There the relevant D5-
branes wrap the holomorphic two cycles, C±, which are respectively given in the
ambient weighted projective space by6

C+ =
{

x5 = 0 ,x1 + µ x2 = 0 ,x3 +ν x4 = 0 ,µ
8 = ν

8 =−1
}
⊂ Y,

C− =
{

x5−8ψ x1x2x3x4 = 0 ,x1 + µ x2 = 0 ,x3 +ν x4 = 0 ,µ
8 = ν

8 =−1
}
⊂ Y.

(4.5)

We make the important observation that the curves, C±, lie in the divisors given in
terms of the polynomial, Q(φ), evaluated at the two critical points,

φ+ = 0, φ− = 8ψ. (4.6)

Therefore we claim that the family of divisors, V , gives rise to the relative period
integrals, which at the critical points describe the D5-branes, C±. This claim is
supported by the fact that the spectrum of the two D5-branes, C±, consists of one
(obstructed) open-string modulus. Moreover, this modulus enters a cubic superpo-
tential, and the two brane configurations, C±, emerge at the two critical points of
this superpotential (29). As we go along and compute the effective superpotential
in flat coordinates we further substantiate this picture and make this correspon-
dence more precise.

Before we conclude this section we establish that the open/closed moduli
space parametrized by the algebraic moduli, ψ and φ , exhibits a Z8×Z2-symmetry.
The generator of the Z8-group acts on the algebraic moduli as(

ψ

φ

)
7→ η

(
ψ

φ

)
, η ≡ e2πi/8. (4.7)

This is indeed a symmetry as its action on the polynomials, P(ψ) and Q(φ), is
readily compensated by the projective coordinate transformation, x1 → η−1x1.
The Z2-symmetry is generated by(

ψ

φ

)
7→
(

ψ

8ψ−φ

)
, (4.8)

6 In ref. (29) the Calabi-Yau threefold, Y , is given by the degree eight hypersurface poly-
nomial, P̃(ψ̃) = x8

1 + x8
2 + x8

3 + x8
4 + x2

5 − 4ψ̃ x2
1x2

2x2
3x2

4, and the holomorphic two cycles, C±,
are defined as C± = {x5 ± 2

√
ψ̃ x1x2x3x4 = 0 ,x1 + µ x2 = 0 ,x3 + ν x4 = 0 ,µ8 = ν8 = −1}.

These definitions translate to our conventions if we identify the algebraic closed string moduli
as ψ̃ ≡ 4ψ2 and change the weighted projective coordinates according to x5 → x5−4ψx1x2x3x4.
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and its action on the polynomials, P(ψ) and Q(φ), is balanced by the projec-
tive coordinate transformation, [x1 : x2 : x3 : x4 : x5] → [−x1 : x2 : x3 : x4 : x5 −
8ψ x1x2x3x4]. Note that the Z2 symmetry exchanges the two critical points, φ±,
and hence maps a D5-brane wrapped on the holomorphic two cycle, C+, to a D5-
brane wrapped on the holomorphic two cycle, C−, and vice versa. Thus altogether
the genuine open/closed moduli space is really a Z8×Z2-orbifold of the covering
space parametrized by the algebraic variables, ψ and φ . The corresponding orb-
ifold singularities emerge at the fixed point loci, ψ = 0 and φ = 4ψ , of the Z8-
and Z2-group action (4.7) and (4.8).

4.2 The linear Gauss-Manin system of differntial equations

In this section we explicitly construct the linear Gauss-Manin system of differen-
tial equations for the D5-brane
geometry alluded to in the previous section. By taking derivatives of the relative
holomorphic three form,

Ω(ψ,φ) =
∫ logQ(φ)

P(ψ)
∆ , (4.9)

defined in terms of the polynomials (4.1) and (4.4), we generate due to Griffiths
transversality and according to the variational diagram (2.18) a basis for the rela-
tive cohomology group, H3(Y,V ). A convenient basis turns out to be

π ≡ (π3,3,π2,3,π1,3,π0,3,π2,4,π1,4,π0,4)

=
(
Ω ,∂ψ Ω ,∂ 2

ψ Ω ,∂ 3
ψ Ω ,∂φ Ω ,∂ψ ∂φ Ω ,∂ 2

ψ ∂φ Ω
)
. (4.10)

All these basis elements are represented by relative three-form residue integrals

π3−k,3 = k!8k
∫ (x1x2x3x4x5)k

P(ψ)k+1 logQ(φ)∆ , k = 0,1,2,3,

(4.11)

π2−k,4 = −k!8k
∫ (x1x2x3x4)k+1xk

5
P(ψ)1+kQ(φ)

∆ , k = 0,1,2.

Note that the structure of the chosen basis is in accord with the mixed Hodge
filtration defined in Sect. 2.3. In particular the bases for the decreasing filtration
modules, F p, for p = 3,2,1,0 are given by π3,3, . . . ,πp,3,π2,4, . . . ,πp,4, whereas the
increasing weight filtration modules, W3 and W4, are spanned by the basis vectors,
(π`,3)`=3,...,0 and π , respectively.

The next task is to determine the linear Gauss-Manin system of differential
equations (3.15) in terms of the above defined basis. Therefore we expand the vec-
tors, ∂ψ π and ∂φ π , into the defined basis elements, πk,l . This procedure is trivial
for some of the differentiated basis elements, namely directly from the definition
of the basis vector (4.10) we can read off the following relations:

∂ψ πk,4 = πk+1,4 for k = 2,1,

∂ψ πk,3 = πk+1,3 for k = 3,2,1,

∂φ πk,3 = πk+1,4 for k = 3,2,1.

(4.12)
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However, in order to find the expansions for the derivatives of the remaining basis
elements we are required to employ the whole machinery of relative three-form
residue integrals developed in Sect. 3.2. That is to say we need to add in a sys-
tematic manner appropriate exact relative three forms (3.9) and (3.13) so as to
establish the correct expansions. The performed reduction procedure constitutes
a generalization of the Griffiths-Dwork algorithm in the context of relative form
residue integrals. While the technical details of these long and tedious calculations
are relegated to Appendix A, we simply collect the results here. For the remaining
derivatives acting on the basis elements, πk,4, we find

∂φ π2,4 '
4ψ−φ

4φ
π1,4,

∂φ π1,4 '
4ψ−φ

4φ
π0,4 +

1
φ

π1,4,

∂φ π0,4 '
R1

D2
π2,4 +

R2

D2
π1,4 +

R3

φD2
π0,4.

(4.13)

As before ‘' ’ indicates that these equations hold on the level of cohomology
classes. The polynomials, R1, R2, and R3, are given by

R1 = −128φ
3(φ −8ψ)(φ −4ψ),

R2 = 112φ
3(φ −8ψ)2(φ −4ψ), (4.14)

R3 = −2
(

5φ
8−136ψφ

7 +1344ψ
2
φ

6−5632ψ
3
φ

5 +8192ψ
4
φ

4 +256
)

,

and we further introduce the two discriminants

D1 = 1− (2ψ)8, D2 =
4

∏
`=1

(
φ(φ −8ψ)−4e

πi`
2

)
. (4.15)

As the basis elements (4.10) arise from the variation of the relative three form, Ω ,
it implies ∂ψ π0,4 = ∂φ π0,3, and we find

∂ψ π0,4 = ∂φ π0,3 '
S1

D2
π2,4 +

S2

D2
π1,4 +

S3

D2
π0,4. (4.16)

Here the polynomials, S1, S2, and S3, are given by

S1 = 512φ
4(φ −8ψ), S2 = −448φ

4(φ −8ψ)2, S3 = 48φ
4(φ −8ψ)3.

(4.17)
We observe that the expansions of the derivatives acting on the elements, πk,4, do
not involve the basis elements, πk,3. This manifests in this example the existence
of the variational sub-system (2.19) within the variation of mixed Hodge struc-
ture (2.18). Finally it remains to expand the element, ∂ψ π0,3, for which we obtain

∂ψ π0,3 '
256ψ4

D1
π3,3 +

15(1+(2ψ)8)
ψ3D1

π2,3−
5(3−1280ψ8)

ψ2D1
π1,3

+
2(3+1280ψ8)

ψD1
π0,3 +

T1

ψ3D1D2
π2,4 +

T2

φψ2D1D2
π1,4+

T3

φ 2ψD1D2
π0,4,

(4.18)
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in terms of the polynomials7

T1 =
4

φ −4ψ

((
256φψ

8 +448φ
2
ψ

7−60ψ +15φ
)

D2−ψ
3
φ S1D1

)
,

T2 =
4

φ −4ψ

((
1792φ

2
ψ

8 +1792φ
3
ψ

7−112φ
4
ψ

6 +48ψ
2 +48φψ−15φ

2
)

D2

− ψ
2
φ

2S2D1
)
,

T3 =
4

φ −4ψ

(
2
(

768φ
3
ψ

8 +352φ
4
ψ

7−48φ
5
ψ

6 +2φ
6
ψ

5−32ψ
3

−16φψ
2−6φ

2
ψ +3φ

3)D2−ψ φ
3S3D1

)
.

(4.19)
All the relations (4.12) to (4.18) are now summarized in the connection matrices,
Mφ and Mψ , of the linear Gauss-Manin system (3.15). They read

Mψ =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

256ψ4

D1

3840ψ8+15
ψ3D1

− 15−6400ψ8

ψ2D1

2560ψ8+6
ψD1

T1
ψ3D1D2

T2
φψ2D1D2

T3
φ2ψD1D2

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 S1

D2

S2
D2

S3
D2


,

(4.20)
and

Mφ =



0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 S1

D2

S2
D2

S3
D2

0 0 0 0 0 ψ

φ
− 1

4 0
0 0 0 0 0 1

φ

ψ

φ
− 1

4
0 0 0 0 R1

D2

R2
D2

R3
φD2


. (4.21)

The discriminant, D1, corresponds to the (mirror) conifold locus appearing already
in the pure bulk geometry. At the zero locus of the discriminant, D2, in the mod-
uli space, the intersection of the two polynomials, P and Q, fails to be transversal
at some points in the embedding space, WP4

(1,1,1,1,4), and as a consequence at these
points the
D5-brane divisor, V , becomes singular. Let us also remark that the matrices (4.21)
reveal a block diagonal structure. As indicated before this demonstrates for this
example that the variation of mixed Hodge structure (2.18) contains the sub-
system (2.19).

Let us now focus on the Gauss-Manin connection, ∇φ ≡ ∂φ −Mφ and ∇ψ ≡
∂ψ−Mψ , of the open-/closed-string moduli space. As discussed in detail in Sect. 3.3
the underlying N =1 special geometry requires the Gauss-Manin connection to

7 Note that the polynomials, T1 to T3, are actually finite for φ → 4ψ .
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be flat. For our example, which involves only two moduli, ψ and φ , the condi-
tions (3.16) reduce to a single equation

∂φ Mψ −∂ψ Mφ +[Mψ ,Mφ ] = 0, (4.22)

which is indeed satisfied for the constructed connection matrices (4.20) and (4.21).
We should stress again that the flatness of this connection is a non-trivial condition
imposed on the linear Gauss-Manin system. It insures that the associated system
of Picard-Fuchs equations, which we examine in the next sections, are integrable.
Furthermore the fulfilled integrability condition (4.22) serves also as a non-trivial
check on our method of realizing the variation of mixed Hodge structure in terms
of relative three-form residue integrals.

4.3 Relative periods in the vicinity of the orbifold point

First we want to solve the linear Gauss-Manin system parametrized by the alge-
braic moduli, ψ and φ , in the vicinity of the fixed point locus of the symmetry
transformations (4.7) and (4.8), i.e.in the vicinity of the Z8×Z2 orbifold singular-
ity of the open/closed string moduli space located at ψ = 0 and φ = 4ψ = 0. From
the linear Gauss-Manin system characterized by the two 7×7 matrices (4.21) and
(4.20) we extract the following Picard-Fuchs operators (3.17):
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L1 = L̃1 ∂φ , L2 = L̃2 ∂φ , L3 = L bulk +L bdry. (4.23)

The differential operators, L̃1 and L̃2, read

L̃1 = (4ψ−φ)θψ −4ψ θφ ,

L̃2 = ∂
2
ψ ∂φ −

48
D2

φ
4(φ −8ψ)3

∂
2
ψ +

448
D2

φ
4(φ −8ψ)2

∂ψ −
512
D2

φ
4(φ −8ψ),

(4.24)

and the operators, L bulk and L bdry, are

L bulk = θψ(θψ −2)(θψ −4)(θψ −6)− (2ψ)8(θψ +1)4,

L bdry = −ψ3 T3

φ 2D2
∂

2
ψ ∂φ −

ψ2 T2

φD2
∂ψ ∂φ −

ψ T1

D2
∂φ

(4.25)

in terms of the logarithmic derivatives, θψ ≡ ψ∂ψ and θφ ≡ φ∂φ . Note that the
linear Gauss-Manin system is equivalent to two independent partial differential
operators of up to degree four. Thus one of the operators, L1 or L2, is redundant.
However, in order to find solutions to the partial differential equations associated
to these rather complicated operators we take advantage of the variational sub-
system (2.19) governed by the two Picard-Fuchs operators, L̃1 and L̃2.

Before we investigate the sub-system (2.19) we observe that the Picard-Fuchs
operators (4.23) exhibit indeed the structure advocated in Eq. (3.19). Namely,
as discussed in Sect. 3.3 the bulk periods, Π α(ψ), determined by the hyperge-
ometric differential equation, L bulkΠ α(ψ) = 0, form a subset of solutions to the
open/closed Picard-Fuchs equations. Hence these periods are given in terms of
hypergeometric functions (52),

Π
0(ψ)≡Π

0(ψ) = [1]F3

(
1
8
,

1
8
,

1
8
,

1
8

;
1
4
,

2
4
,

3
4

;(2ψ)8
)

,

Π
1(ψ)≡Π

1(ψ) = (2ψ)2
[1]F3

(
3
8
,

3
8
,

3
8
,

3
8

;
2
4
,

3
4
,

5
4

;(2ψ)8
)

,

Π
2(ψ)≡Π

2(ψ) =
(2ψ)4

2! [1]F3

(
5
8
,

5
8
,

5
8
,

5
8

;
3
4
,

5
4
,

6
4

;(2ψ)8
)

,

Π
3(ψ)≡Π

3(ψ) = −(2ψ)6

3! [1]F3

(
7
8
,

7
8
,

7
8
,

7
8

;
5
4
,

6
4
,

7
4

;(2ψ)8
)

,

(4.26)

which enjoy for |ψ|< 1
2 the convergent expansion

Π
α(ψ) =

cα

α!22α Γ
( 2α+1

8

)4

∞

∑
k=0

Γ 4
(
k + 2α+1

8

)
Γ (4k +2α +1)

(4ψ)2(4n+α), α = 0,1,2,3,

(4.27)
where the constants, cα , are all one except for c3 =−1.

The next task is to determine the solutions of the sub-system described by the
two differential operators, L̃1 and L̃2. We proceed in two steps. First we notice
that a general solution to the differential operator, L̃1, is given by

χ(ψ,φ) ≡ χ(u) with u≡ φ(φ −8ψ). (4.28)
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Second we act with the differential operator, L̃2, on the ansatz (4.28) and obtain
an ordinary differential equation for the function, χ(u),
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[
θu(θu−1)(θu−2)−

(u
4

)4
(θu +1)3

]
χ(u) = 0. (4.29)

This is another hypergeometric differential equation with the three linearly inde-
pendent solutions

χ
4(u) = [1]F2

(
1
4
,

1
4
,

1
4

;
2
4
,

3
4

;
(u

4

)4
)

,

χ
5(u) =

(u
4

)
[1]F2

(
2
4
,

2
4
,

2
4

;
3
4
,

5
4

;
(u

4

)4
)

,

χ
6(u) =

(u
4

)2
[1]F2

(
3
4
,

3
4
,

3
4

;
5
4
,

6
4

;
(u

4

)4
)

.

(4.30)

The power series of these hypergeometric functions read

χ
4+`(u) =

1

4` Γ
( 1+`

4

)4

∞

∑
k=0

Γ 4
(
k + 1+`

4

)
Γ (4k + `+1)

u4k+`, ` = 0,1,2, (4.31)

with radius of convergence |u|< 4.
From the solutions (4.30) of the sub-system we construct three additional rela-

tive periods, Π
α̂(ψ,φ), which according to the structure of the operators, L1 and

L2, in Eq. (4.23) are integrals of the relation

∂φ Π
α̂(ψ,φ) = χ

α̂ (φ(φ −8ψ)) . (4.32)

The integrals of this equation allow for integration constants, Cα̂(ψ), which have
to be chosen such that the integrals are annihilated by the third Picard-Fuchs oper-
ator, L3. Instead of solving yet another differential equation for Cα̂(ψ), we use the
Z2 symmetry (4.8) so as to determine the integration constants. Due to the symme-
try the relative periods split into symmetric and anti-symmetric solutions with re-
spect to the Z2
action (4.8). The functions (4.28) are symmetric and, therefore, up to a symmetric
bulk period (4.26), the integrals must be anti-symmetric in order to be solutions to
the whole Picard-Fuchs system, i.e.the relative periods, Π

α̂(ψ,φ), vanish at the
Z2-fixed point locus, (ψ,φ) = (ψ,4ψ). Hence altogether we arrive at the relative
periods

Π
α̂(ψ,φ) =

∫
φ

4ψ

χ
α̂ (ζ (ζ −8ψ)) dζ , (4.33)

which are indeed annihilated by the Picard-Fuchs operator, L3. They give rise to
the power series

Π
4(ψ,φ) =

+∞

∑
k=0

4k

∑
n=0

Γ (1/4+ k)4

Γ (1/4)4(4k−n)!n!(2n+1)
(−1)n (φ −4ψ)2n+1(4ψ)8k−2n,

Π
5(ψ,φ) =

+∞

∑
k=0

4k+1

∑
n=0

Γ (1/2+ k)4

π2(4k +1−n)!n!(2n+1)
(−1)n+1 (φ −4ψ)2n+1(4ψ)8k+2−2n,

Π
6(ψ,φ) =

+∞

∑
k=0

4k+2

∑
n=0

2Γ (3/4+ k)4

Γ (3/4)4(4k +2−n)!n!(2n+1)
(−1)n (φ−4ψ)2n+1(4ψ)8k+4−2n,

(4.34)
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convergent for |φ(φ −8ψ)|< 4.
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In summary the relative periods, Π
a(ψ,φ), a = 0, . . . ,6, of Eqs. (4.26) and

(4.34) constitute a complete set of solutions to the open/closed Picard-Fuchs equa-
tions in the vicinity of the Z8×Z2 orbifold point.

4.4 Effective superpotential and domain wall tension

The next step is to investigate the three-form relative periods computed in the
previous section. The reason for analyzing the periods in the vicinity of the Z8×
Z2 orbifold point is twofold. First of all we work in a regime containing the two
critical points (4.6) simultaneously. Therefore we can directly extract the domain
wall tension between two D5-branes wrapping the cycles, C±, and compare to the
results obtained in refs. (29; 30). Second we are able to extract equivariant orbifold
invariants along the lines of refs. (16; 18).

First we want to determine the flat coordinate, t, and the holomorphic prepo-
tential, F , of the closed-string sector, that is to say we first focus on the first four
entries of the relative period vector (3.22). In order to define a symplectic basis
for the homology group, H3(Y,Z), which singles out an unambiguous choice of
flat closed-string periods, we impose the following two criteria. We demand that
the flat periods are not singular at the orbifold locus, ψ = 0, and we require that
the flat periods form one-dimensional irreducible representations with respect to
the Z8-monodromy group action (4.7), i.e.the transformation, ψ → η ψ , induces
on flat periods a phase rotation, ηm, for some integer m.

The physics motivation for the former requirement reflects the fact that, al-
though there is a Z8-orbifold singularity in the complex structure moduli space
at ψ = 0, the Calabi-Yau, Y , itself is smooth. Therefore the flat periods should
also be regular at the orbifold locus. The second criterion comes about as fol-
lows. The closed-string conformal field theory of the Calabi-Yau, Y , at the orb-
ifold point is captured by a Landau-Ginzburg Z8-orbifold theory (53), whose chi-
ral multiplets fall into Z8 representations (54). Since the holomorphic prepotential
together with the flat coordinates encode the chiral ring of this conformal field the-
ory (47; 48; 55), it is natural to also arrange the flat periods and hence the resulting
chiral ring structure constants into Z8 representations.

For our example the discussed two requirements pin down uniquely (up to two
numerical constants) the closed-string flat periods (3.22), and for the calculated
periods (4.26) we derive up to an overall numerical constant the closed-string flat
coordinate

t(ψ) =
Π

1(ψ)
Π

0(ψ)
, (4.35)

which yields the closed-string mirror map at the Z8-orbifold locus. The first few
terms in the expansion explicitly read8

ψ
2(t) =

1
4

t− 19
1920

t5− 541
516096

t9− 2177327
7084965888

t13 + · · · . (4.36)

8 Note that the flat coordinate is a function of ψ2. Thus it is convenient to also state the mirror
map as a function, ψ2(t).
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From the remaining periods we deduce the holomorphic prepotential, F , which
by applying the stated criteria is only ambiguous up to a second numerical factor,
and it becomes in terms of the flat coordinate, t,

F (t) =
1
2

Π
3(ψ)

Π
0(ψ)

∣∣∣∣
ψ=ψ(t)

+
t
2

Π
2(ψ)

Π
0(ψ)

∣∣∣∣
ψ=ψ(t)

. (4.37)

The explicit expansion yields

F (t)=
1
3!

t3 +
77

7! ·8
t7+

161071
11! ·16

t11+
20606066649

15! ·256
t15+

626507087510997
19! ·256

t19+· · · .
(4.38)

Note that, up to the two undetermined overall numerical scales, this expansion
contains the genus zero orbifold invariants of the compact hypersurface, Y . It
would be interesting to directly establish these invariants by a localization com-
putation in the topological A-model. Such a computation fixes also the mentioned
normalization ambiguities.

Next we turn to the open-string sector. Analogously to the closed-string sector
we demand that the open-string semi-periods come also in one-dimensional rep-
resentations of the Z8-orbifold group action (4.7). Since this condition is already
fulfilled for the semi-periods, Π

α , stated in Eq. (4.34), the remaining task is to
identify semi-periods for the flat coordinates and the superpotential respectively.

In order to yield a good coordinate system in the vicinity of the orbifold locus
the open-string flat coordinate, t̂, must not vanish identically along the Z8-orbifold
locus, ψ = 0. This latter requirement, however, is only fulfilled by the semi-period,
Π

4(ψ,φ). Therefore, up to a numerical factor, the open-string flat coordinate has
to be

t̂(ψ,φ) =
Π

4(ψ,φ)
Π

0(ψ)
. (4.39)

From the flat coordinate, t̂, we compute recursively the expansion of the open-
mirror map, whose first few terms are given by

φ(t, t̂) = 4ψ(t)+ t̂− 5
128

t4 t̂ +
1

72
t3 t̂3− 1

320
t2 t̂5 +

1
2688

t t̂7− 1
55296

t̂ 9

− 72799
10321920

t8 t̂ +
6269

967680
t7 t̂3− 21337

5529600
t6 t̂5

+
2509

1720320
t5 t̂7− 10001

27525120
t4 t̂9 +

30707
510935040

t3 t̂11

− 10291
1610219520

t2 t̂13 +
59

148635648
t t̂15 +

1
339738624

t̂17 + · · · .
(4.40)

Here we have also inserted the closed-string mirror map (4.36) so as to eliminate
the algebraic variable, ψ .

Finally we need to identify the relative period encoding the superpotential, W .
Looking again at the extracted prepotential, F , we notice that it transforms under
the Z8 transformation, ψ → η ψ , as F → η6F . On the other hand we know
that the closed-string moduli space is equipped with a line bundle, L , whose
first Chern class equals the Kähler form on the moduli space. Furthermore the
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holomorphic prepotential is a section of the line bundle, L 2 (48; 6), whereas the
holomorphic superpotential, which arises from semi-periods and thus encodes the
orbifold disk amplitudes, constitutes a section of the line bundle, L (6). Therefore
we expect the D5-brane superpotential to transform as W → η3W with respect to
the mentioned Z8 transformation.9 Hence up to an undetermined overall numerical
normalization the D-brane effective superpotential in flat coordinates is given in
terms of the semi-period, Π

5, by

W (t, t̂ ) =
Π

5(ψ,φ)
Π

0(ψ)

∣∣∣∣
ψ=ψ(t),φ=φ(t,t̂ )

. (4.41)

It enjoys the expansion in flat coordinates

W (t, t̂ ) =−4 tt̂ +
1
3

t̂3− 5
24

t5t̂ +
73
576

t4 t̂3

− 29
720

t3t̂5 +
7

960
t2t̂7− 23

32256
tt̂9 +

89
3041280

t̂11 + · · · .
(4.42)

Let us now analyze and discuss our calculated results in detail. First of all
we observe that the leading two terms of the effective superpotential (4.42) pre-
cisely agree with the effective cubic superpotential calculated in ref. (29). The
latter superpotential is derived by analyzing obstructions to deformations of ma-
trix factorizations, which model the considered D5-brane geometry. However, by
construction the obtained deformation superpotential is not given in terms of flat
coordinates, and hence the sub-leading terms of the flat superpotential, W (t, t̂ ), are
not visible. The critical points of the effective superpotential (4.41) with respect
to the open-string flat coordinate, t̂, are determined by

0 = ∂t̂W (t, t̂) =
χ5 (φ(ψ−8φ))

Π
0(ψ)

∂φ(t, t̂ )
∂ t̂

, (4.43)

where we used Eq. (4.32). Thus due to Eq. (4.30) the critical points of the flat
superpotential with respect to the flat coordinate, t̂, are located at φ+(t, t̂ ) = 0
and φ−(t, t̂ ) = 8ψ(t). Hence the computed effective superpotential, W (t, t̂), re-
produces the correct critical loci (4.6), at which the D5-brane becomes supersym-
metric and wraps one of the holomorphic two cycles, C±. We should emphasize
that the agreement with the cubic deformation superpotential and the replication of
the critical loci, φ±, are non-trivial confirmations of our computational methods.

With the critical loci, φ±, of the effective superpotential, W (t, t̂ ), at hand it is
straight-forward to compute the domain wall tension between the supersymmetric
D5-brane wrapping the two cycle, C+, and the supersymmetric D5-brane wrap-
ping the two cycle, C−. Since the only dependence of the effective superpoten-
tial, W (t, t̂ ), on the open-string modulus is encoded in the relative period, Π

5,
the relevant information about the domain wall tension is captured in the domain
wall period, τ(ψ), which is the difference of the relative period, Π

5, evaluated
at the critical points, φ±. Note that, in order to extract the domain wall period, it
is necessary that the critical points, φ±, are in the radius of convergence of the

9 This is in contrast to the local geometries discussed in refs. (16; 18). There the superpotential
is required to be invariant with respect to the monodromy group.
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stated relative period, Π
5. As the two critical points, φ±, approach each other at

the Z8-orbifold point, its vicinity is suitable for this calculation. Starting from the
expansion (4.34) we arrive after a few steps of algebra at the domain wall period

τ(ψ) = Π
5(ψ,φ+)−Π

5(ψ,φ−) =
+∞

∑
k=0

2Γ (1/2+ k)4

π3/2 Γ (5/2+4k)
(4ψ)8k+3. (4.44)

Alternatively, using the gamma function identities, Γ (z)Γ (1− z) = π

sin(πz) and

Γ (z)Γ (z+ 1
2 ) =

√
π 21−2z Γ (2z), the domain wall period, τ(ψ), can also be writ-

ten as

τ(ψ) =
4π2

ψ

∞

∑
k=1

Γ (−8k +5)
Γ (−4k +3)Γ (−k +3/2)4

(
1

(8ψ)8

)−k+ 1
2
, (4.45)

which is a solution of the inhomogeneous Picard-Fuchs equation

L bulk
τ(ψ) =

3
8ψ

√
(8ψ)8. (4.46)

Let us pause to compare this result with the literature. In ref. (29) (cf. also
ref. (30)) the domain wall tension period is computed in the vicinity of the large
complex structure point of the closed string modulus, ψ . This result is then analyt-
ically continued to the Z8-orbifold point, where the domain wall period splits into
a contribution arising from closed string periods and into a contribution, τ(ψ),
intrinsic to the domain wall tension at the orbifold locus. The latter part, τ(ψ),
however, agrees precisely with the domain wall tension period (4.45).10 The agree-
ment can also be seen by comparing the inhomogeneous Picard-Fuchs equations.
Namely by rewriting the inhomogeneous Picard-Fuchs equation (4.46) in terms of
the large complex structure coordinate, z = (8ψ)−8, we find the inhomogeneous
Picard-Fuchs equations for domain wall tensions in the large complex structure
regime stated in refs. (30).11 We should stress the significance of this result. From
the variation of mixed Hodge structure of relative three-form periods we have ob-
tained an effective superpotential in flat coordinates. This superpotential encodes
disk instanton corrected domain wall tensions of the mirror geometry, which are
computed by different means in refs. (27; 28; 29; 30). Thus extracting the quan-
tum corrected domain wall period is a highly non-trivial consistency check on the
flat effective superpotential, W (t, t̂ ), and in particular on its sub-leading terms.

Since we have managed to extract a uniquely distinguished set of flat rela-
tive periods in the vicinity of the Z8×Z2-orbifold singularity we are also able to
extract orbifold invariants, namely the expansions of the prepotential (4.37) and
the effective superpotential (4.42) in terms of flat coordinates yield closed- and
open-string orbifold invariants respectively. In particular the flat effective super-
potential (4.42) encodes the orbifold disk amplitudes, N(0,1)

k,n , which are defined by

10 Compared to ref. (29) the expression has an additional factor of ψ−1. This factor is traced
back to fact that the normalizing period, Π

0(ψ), differs also by the same factor, ψ−1.
11 Compared to ref. (30) we again need to take into account an additional factor of ψ−1 arising

from the normalization of the period, Π
0(ψ).
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Table 1 The table lists some orbifold disk invariants, N(0,1)
k,n , for the analyzed D5-brane geom-

etry in the degree eight Calabi-Yau hypersurface in WP4
(1,1,1,1,4)/(Z8)2×Z2. These invariants

are normalized such that N(0,1)
1,1 = 1, and, furthermore, are ambiguous up to the numerical nor-

malizations of the open- and closed-string flat coordiantes, t and t̂

N(0,1)
k,n k = 1 2 3 4 5 6 7 8 9

n = 0 0 0 − 1
2 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 1035
16

2 0 0 0 0 0 0 − 147
16 0 0

3 0 0 0 0 29
24 0 0 0 0

4 0 0 − 73
384 0 0 0 0 0 0

5 5
96 0 0 0 0 0 0 0 315647

512
6 0 0 0 0 0 0 − 1308259

46080 0 0
7 0 0 0 0 91

60 0 0 0 0
8 0 0 − 94379

860160 0 0 0 0 0 0

(16; 17; 18)

W (t, t̂ ) = ∑
k,n

1
k!

N(0,1)
k,n tn t̂k. (4.47)

We have collected some of these orbifold disk invariants in Table 1. Note that for
the invariants in the table the effective superpotential, W (t, t̂ ), is rescaled such that
the disk amplitude, N(0,1)

1,1 , is normalized to one, and furthermore the listed invari-
ants are only defined up to the undetermined overall numerical normalization of
the flat coordinates, t and t̂. As explained before the normalization of the closed
flat coordinate, t, is established by explicitly extracting a closed-string genus zero
orbifold Gromov-Witten invariant in the mirror topological A-model, whereas the
normalization of the open flat coordinate, t̂, and the normalization of the superpo-
tential, W , is obtained by matching the stated orbifold disk invariants with the open
orbifold Gromov-Witten invariants in the topological A-model of the mirror con-
figuration. Thus it would be interesting to pin down the normalization ambiguities
and to check our results by performing an appropriate localization computation
directly in the mirror topological A-model.

4.5 Large complex structure vicinity

An obvious task is to analyze the open/closed
Picard-Fuchs equations in the vicinity of the large complex structure point. The
effective superpotential in this regime potentially encodes disk instantons of the
mirror D6-brane configuration. Instanton generated superpotentials appear in the
mirror type IIA theory for chiral multiplets of the open-string sector that are mass-
less and give rise to flat directions at the large volume point (12; 13). For the ex-
ample at hand we do not expect any open/closed disk instantons associated to the
(obstructed) open-string modulus, φ , because it interpolates between the two crit-
ical points, φ±, separated by a domain wall. The domain wall tension, however,
remains finite at the large complex structure point (29; 30), and therefore the ob-
structed modulus, φ , does not give rise to a flat direction, which would indicate
the appearance of disk instantons.
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Nevertheless let us briefly discuss the singularity structure of the connection
matrices (4.21) and (4.20) of the linear Gauss-Manin system in the vicinity of the
large complex structure point. First we observe that the large complex structure lo-
cus, ψ = ∞, intersects the discriminant locus, D2 = 0, at the point, (ψ,φ) = (∞,∞),
in the open/closed moduli space. By analyzing the connection matrices in the
vicinity of this intersection point we observe that the locus, φ = ∞, is singular for
any value of ψ . Thus actually three boundary divisors of the moduli space meet at
the point, (ψ,φ) = (∞,∞). This intricate singularity structure becomes also appar-
ent by looking at the degeneration of the D5-brane divisor, V , itself. The defining
polynomial of the Calabi-Yau degenerates at the large complex structure point
to the monomial, P(∞) = x1x2x3x4x5. On the other hand in the limit, |φ | → +∞,
the D5-brane divisor turns into Q(∞) = x1x2x3x4. Hence the intersection locus of
the two polynomials, P and Q, which is complex two-dimensional at a generic
point in the moduli space, obtains at the point, (ψ,φ) = (∞,∞) complex three-
dimensional components, which are given by the three-dimensional weighted pro-
jective spaces, WP3

(1,1,1,4), embedded into the ambient space, WP4
(1,1,1,1,4).

A detailed discussion of the large complex structure regime presumably re-
quires to resolve the intersection point of the three boundary divisors in the open/closed
moduli space along the lines ref. (56; 57). This analysis, however, is beyond the
scope of this work, but we hope to come back to this issue elsewhere.

5 D5-branes in the Mirror Quintic Threefold

Now we investigate a certain class of D5-branes in the mirror quintic threefold
in the projective space, CP4. Analogously to the example in the previous section
we derive the open/closed Picard-Fuchs equations, and we compute the effective
superpotential in flat coordinates. From the effective superpotential we also extract
a domain wall tension, which agrees with the result obtained in ref. (27; 28). In the
analysis we proceed analogously to the previous example. Therefore we mainly
emphasis the differences in this section, defer the calculations to Appendix B, and
refer for further explanation to Sect. 4.

5.1 The Calabi-Yau and D-brane geometry

In this section the bulk geometry of interest is given by the mirror of the quintic
threefolds, Y , in the projective space, CP4. The family of quintics depends on 101
complex structure moduli and one Kähler modulus, whence the family of mirror
quintics, Y , have one complex structure and 101 Kähler moduli, as explained in
detail in ref. (58). It is defined by the homogeneous degree five polynomial,

P(ψ) = x5
1 + x5

2 + x5
3 + x5

4 + x5
5−5ψ x1x2x3x4x5, (5.1)

in the Z3
5 orbifold of the projective space, CP4 (51; 58), and the algebraic mod-

ulus, ψ , parametrizes the one-dimensional complex structure moduli space. Fur-
thermore the Z3

5 orbifold is generated by

g1 = (1,0,0,0,4), g2 = (0,1,0,0,4), g3 = (0,0,1,0,4), g4 = (0,0,0,1,4),
(5.2)
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where, for instance, the generator, g1, acts on the homogeneous projective coordi-
nates as12

g1 : [x1 : x2 : x3 : x4 : x5 ] 7→ [ρ x1 : x2 : x3 : x4 : ρ
4x5 ], ρ ≡ e2πi/5. (5.3)

Resolving the resulting orbifold singularities gives rise to the smooth family of
mirror quintics depending on 101 Kähler moduli.

The divisor, V , for the D5-brane geometry is specified by the homogeneous
degree-four polynomial, Q. As there are only two monomials of degree four with
definite (Z5)3 charges we arrive at

Q(φ) = x4
5−φ x1x2x3x4, (5.4)

where the parameter, φ , is the algebraic open-string modulus.
The geometry specified by the homogeneous polynomials, P(ψ) and Q(φ), is

invariant with respect to the discrete Z5 symmetry, which acts on the open/closed
algebraic moduli as (

ψ

φ

)
7→ ρ

(
ψ

φ

)
, ρ ≡ e2πi/5. (5.5)

The projective coordinate transformation, x1 7→ ρ−1x1, compensates the gener-
ator (5.5) and hence establishes this Z5 symmetry on the level of the algebraic
variables, ψ and φ . As a consequence the open/closed string moduli space arises
really as the Z5 orbifold of the covering space parametrized by the variables, ψ

and φ .
The next step is to relate the divisor, Q, to the two supersymmetric D5-branes

appearing in refs. (27; 28). The geometric embedding, C±, into the Calabi-Yau
threefold, Y , are specified by (28)

C± =
{

x1 + x2 = 0 ,x3 + x4 = 0 ,x2
5±
√

5ψ x1x3 = 0
}
⊂ Y, (5.6)

together with their images under the (Z5)3-orbifold group. By inserting the first
two conditions, x1 +x2 = 0 and x3 +x4, into the divisior, Q(φ), we observe that the
holomorphic two cycles, C±, are simultaneously contained in the divisor, Q(φ), at
the critical point,

φ0 = 5ψ. (5.7)

As a consequence we expect that the divisor, V , specified by the polynomial, Q(φ),
describes a configuration of D5-branes, which at the critical locus, φ0, wraps both
holomorphic two cycles, C±. The fact that the polynomial, Q(φ0), does not dis-
criminate between the cycles, C+ and C−, gives us less control over the open-
string moduli dependence of the described D5-brane configuration compared to
the examples studied in Sect. 4. In particular by moving away from the critical
locus the open-string modulus, φ , interlocks the deformations of both D5-brane
cycles. Despite these subtleties we are still able to extract the correct domain wall
tension by evaluating the derived effective superpotential at the critical points,
(φ 1/2)± =±

√
5ψ .

12 Since the transformation, g1g2g3g4, induces a homogeneous rescaling of the projective co-
ordinates there are really only three independent generators (5.2).
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5.2 Solutions to the open/closed Picard-Fuchs equations

In this section we derive the open/closed Picard-Fuchs system of partial differen-
tial equations and solve them in the vicinity of the Z5-orbifold locus, i.e.in the
vicinity of ψ = 0 and φ = 0. We perform our analysis along the lines of Sect. 4.

Starting from the relative holomorphic three form, Ω(ψ,φ), we construct by
Griffiths transversality a basis for the relative cohomology group, H3(Y,V ). This
basis is given by

π ≡ (π3,3,π2,3,π1,3,π0,3,π2,4,π1,4,π0,4)

=
(
Ω ,∂ψ Ω ,∂ 2

ψ Ω ,∂ 3
ψ Ω ,∂φ Ω ,∂ψ ∂φ Ω ,∂ 2

ψ ∂φ Ω
)
, (5.8)

where the indices are again labelled in accord with the variation of mixed Hodge
structrure depicted in the diagram (2.18). We explicitly represent the basis ele-
ments (5.8) in terms of relative three-form residue integrals, which allow us to
calculate the associated linear Gauss-Manin system

(
∂ψ −Mψ

)
π ' 0,

(
∂φ −Mφ

)
π ' 0. (5.9)

The derivation of the connection matrices, Mψ and Mφ , is deferred to Appendix B.
The result of this tedious analysis yields
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Mψ =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
ψ

D1

15ψ2

D1

25ψ3

D1

10ψ4

D1

−φT1
16D1D2

−φT2
16D1D2

−φT3
16D1D2

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 125φ(φ−5ψ)

D2

−175φ(φ−5ψ)2

D2

30φ(φ−5ψ)3

D2


, (5.10)

and

Mφ =



0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 125φ(φ−5ψ)

D2

−175φ(φ−5ψ)2

D2

30φ(φ−5ψ)3

D2

0 0 0 0 − 3
4φ

− φ−ψ

4φ
0

0 0 0 0 0 − 1
2φ

− φ−ψ

4φ

0 0 0 0 − 125(φ−ψ)(φ−5ψ)
4D2

175(φ−ψ)(φ−5ψ)2

4D2
− 1

4φ
− 15(φ−ψ)(φ−5ψ)3

2D2


,

(5.11)
in terms of the polynomials

T1 = φ
(
8000−φ(φ −5ψ)ψ

(
61φ

2−790ψφ +2825ψ
2))−16384ψ,

T2 = 57375φ
2
ψ

5−34000φ
3
ψ

4 +7190φ
4
ψ

3−8
(

79φ
5 +14336

)
ψ

2

+φ

(
19φ

5 +95936
)

ψ−11200φ
2,

T3 = 22625φ
2
ψ

6−16325φ
3
ψ

5 +4490φ
4
ψ

4−2
(

293φ
5 +49152

)
ψ

3

+φ

(
37φ

5 +112768
)

ψ
2−φ

2
(

φ
5 +26624

)
ψ +1920φ

3,

(5.12)

and the discriminants

D1 = 1−ψ
5, D2 = φ(φ −5ψ)4−256. (5.13)

The discriminant locus, D1 = 0, corresponds to the familiar conifold point of the
bulk geometry, whereas the locus, D2 = 0, describes again a singularity in the
open sector. Namely the intersection locus of the two polynomials, P and Q, fails
to be transversal at some points in the ambient projective space, CP4.

It is straightforward to check that the Gauss-Manin connection, ∇φ ≡ ∂φ −
Mφ and ∇ψ ≡ ∂ψ −Mψ , is integrable, i.e.the Gauss-Manin connection is flat,
[∇φ ,∇ψ ] ≡ 0. Integrability ensures that the associated open/closed Picard-Fuchs
system of differential equations (3.18) for the relative periods is solvable. From
the Gauss-Manin system (5.9) we extract three partial differential Picard-Fuchs
operators of the form

L1 = L̃1 ∂φ , L2 = L̃2 ∂φ , L3 = L bulk +L bdry. (5.14)
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Here the operators, L̃1 and L̃2, read

L̃1 = (ψ−φ)θψ −4ψ θφ −3ψ,

L̃2 = ∂
2
ψ ∂φ +

(
1

4φ
+

15
2D2

(φ −ψ)(φ −5ψ)3
)

∂
2
ψ −

175
4D2

(φ −ψ)(φ −5ψ)2
∂ψ

+
125
4D2

(φ −ψ)(φ −5ψ), (5.15)

and the operators, L bulk and L bdry, are

L bulk = θψ(θψ −1)(θψ −2)(θψ −3)−ψ
5(θψ +1)4,

L bdry =
ψ4φ

16D2

(
T3 ∂

2
ψ ∂φ +T2 ∂ψ ∂φ +T1 ∂φ

)
.

(5.16)

The solutions to the bulk Picard-Fuchs operator, L bulk, in the vicinity of the
orbifold point, ψ = 0, are determined by the hypergeometric functions

Π
0(ψ) = [1]F3

(
1
5
,

1
5
,

1
5
,

1
5

;
2
5
,

3
5
,

4
5

;ψ
5
)

,

Π
1(ψ) = ψ [1]F3

(
2
5
,

2
5
,

2
5
,

2
5

;
3
5
,

4
5
,

6
5

;ψ
5
)

,

Π
2(ψ) =

ψ2

2! [1]F3

(
3
5
,

3
5
,

3
5
,

3
5

;
4
5
,

6
5
,

7
5

;ψ
5
)

,

Π
3(ψ) = −ψ3

3! [1]F3

(
4
5
,

4
5
,

4
5
,

4
5

;
6
5
,

7
5
,

8
5

;ψ
5
)

,

(5.17)

or in terms of the power series

Π
α(ψ) =

cα

α!5α Γ
(

α+1
5

)5

∞

∑
k=0

Γ
(
k + α+1

5

)5

Γ (5k +α +1)
(5ψ)5k+α , α = 0,1,2,3,

(5.18)
with radius of convergence |ψ|< 1. As in the previous example all the constants,
cα , are one except for c3 =−1.

In order to calculate the relative periods resulting from semi-periods we pro-
ceed analogously to Sect. 4. That is to say we first solve the variational sub-
system (2.19) governed by the two differential operators, L̃1 and L̃2. The op-
erator, L̃1, constrains a solution of the sub-system to have the form

χ(ψ,φ) ≡ φ
− 1

4 (5ψ−φ)2
λ (u) with u ≡ φ(5ψ−φ)4, (5.19)

whereas the second operator, L̃2, applied to this ansatz yields for the function,
λ (u), the ordinary differential equation[

θu

(
θu +

1
2

)(
θu +

1
4

)
− u

256

(
θu +

3
4

)3
]

λ (u) = 0. (5.20)
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A complete set of solutions to this differential equation of hypergeometric type
reads

λ
4(u) = u−1/2

[1]F2

(
1
4
,

1
4
,

1
4

;
2
4
,

3
4

;
u

256

)
,

λ
5(u) = u−1/4

[1]F2

(
1
2
,

1
2
,

1
2

;
3
4
,

5
4

;
u

256

)
,

λ
6(u) = [1]F2

(
3
4
,

3
4
,

3
4

;
5
4
,

6
4

;
u

256

)
.

(5.21)

The power series of these solutions are convergent for |u|< 256 and are given by

λ
4+`(u) =

1

Γ
( 1+`

4

)4

∞

∑
k=0

Γ 4
(
k + 1+`

4

)
Γ (4k + `+1)

uk+ `−2
4 , ` = 0,1,2. (5.22)

Due to the integrability of the open/closed Picard-Fuchs system (5.14) we are
able to derive the three relative periods, Π

α̂ , by integrating the relations, ∂φ Π
α̂ =

χ α̂(ψ,φ) = φ−
1
4 (5ψ−φ)2 λ α̂

(
φ(5ψ−φ)4

)
. In this integration process we must

not forget to take into account the possibility of non-trivial integration constants,
Cα̂(ψ). A detailed analysis, however, reveals that the periods

Π
α̂(ψ,φ) =

∫
φ

0
φ
− 1

4 (5ψ−ζ )2
λ

α̂
(
ζ (5ψ−ζ )4) dζ , (5.23)

furnish indeed the three linearly independent solutions to the whole open/closed
Picard-Fuchs system (5.14). The power series of these solutions in the vicinity of
the orbifold locus become

Π
4(ψ,φ) =

4
Γ 4(1/4)

∞

∑
k=0

5k

∑
n=k

(−1)n−k Γ 4(k +1/4)
(4n+1)(5k−n)!(n− k)!

φ
n+1/4 (5ψ)5k−n,

Π
5(ψ,φ) =

2
π2

∞

∑
k=0

5k+1

∑
n=k

(−1)n−k+1 Γ 4(k +1/2)
(2n+1)(5k−n+1)!(n− k)!

φ
n+1/2 (5ψ)5k−n+1, (5.24)

Π
6(ψ,φ) =

8
Γ 4(3/4)

∞

∑
k=0

5k+2

∑
n=k

(−1)n−k Γ 4(k +3/4)
(4n+3)(5k−n+2)!(n− k)!

φ
n+3/4 (5ψ)5k−n+2.

These expansions are convergent for |φ(5ψ−φ)4|< 256.

5.3 Effective superpotential and domain wall tension

With the relative three-form periods (5.17) and (5.24) at hand we are now ready to
extract distinguished flat open and closed coordinates so as to formulate the flat ef-
fective superpotential. The analysis is performed in the vicinity of the Z5-orbifold
point and therefore parallels our investigations in Sect. 4. Hence for additional
explanations we again refer the reader to the previous section.

So as to determine the flat coordinates, the prepotential and the effective su-
perpotential, we apply the same criteria discussed thoroughly in the context of the
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previous example. Namely we require that the flat periods must not be singular at
the orbifold point, ψ = φ = 0, and furthermore the flat periods should furnish one-
dimensional representations with respect to the Z5-monodromy group at the orb-
ifold locus. These requirements yield, up to numerical constants, the open/closed
flat coordinates

t(ψ) =
Π

1(ψ)
Π

0(ψ)
, t̂(ψ,φ) =

Π
4(ψ,φ)

Π
0(ψ)

, (5.25)

the prepotential, F (t), and the effective superpotential, W (t, t̂),

F (t) =
1
2

Π
3(ψ)

Π
0(ψ)

∣∣∣∣
ψ=ψ(t)

+
t
2

Π
2(ψ)

Π
0(ψ)

∣∣∣∣
ψ=ψ(t)

, W (t, t̂ )=
Π

5(ψ,φ)
Π

0(ψ)

∣∣∣∣
ψ=ψ(t),φ=φ(t,t̂ )

,

(5.26)
in terms of the open/closed mirror maps. The first few terms in the expansion of
the closed string mirror map read

ψ(t) = t− 13
360

t6− 31991
9979200

t11− 294146129
326918592000

t16 + · · · . (5.27)

For the leading terms of the open mirror map we arrive at

φ
1
4 (t, t̂) =

1
4

t̂ +
1

480
t5t̂− 125

221 ·3
t4t̂5 +

125
227 ·27

t3t̂9− 25
236 ·13

t2t̂13

+
5

243 ·51
t t̂17− 1

253 ·63
t̂21 + · · · .

(5.28)

These expansions are obtained by inverting the flat coordinates (5.25).
Finally the holomorphic prepotential, F (t), expressed in flat coordinates en-

joys the expansion

F (t)=
1
6

t3+
1

1008
t8+

1195
10378368

t13+
6904357

266765571072
t18+

43753160719
5523935200616448

t23+. . . ,

(5.29)
whereas the effective superpotential, W (t, t̂), yields

W (t, t̂) = − 5
8

t t̂2 +
1

6144
t̂6 +

5
288

t6t̂2− 333
2097152

t5t̂6 +
5375

14495514624
t4t̂10

− 70625
168843754340352

t3t̂14 +
26875

104972574127030272
t2t̂18

− 8725
106113814420103626752

t t̂22 +
103

9442427122730076733440
t̂26 + · · · .
(5.30)

First we observe that only the square, t̂2, of the open flat coordinate, t̂, en-
ters the flat superpotential. This indicates that we really capture the product of
deformations associated to the two individual branes, which at the critical locus
wrap the D5-brane cycles, C±, in Eq. (5.6) respectively. In order to compare with
a single D5-brane component we introduce the superpotential, W̃ , which is given
by

W̃ (t, t̃) = W (t, t̂2). (5.31)
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Table 2 The table lists some orbifold disk invariants, N(0,1)
k,n , for the analyzed D5-brane geometry

in the mirror quintic, which are extracted from the superpotential, W̃ (t, t̃). These invariants are
normalized such that N(0,1)

1,1 = 1, and are ambiguous up to the normalizations of the open- and
closed-string coordinates, t and t̃

N(0,1)
k,n k = 1 2 3 4 5 6 7 8 9

n = 0 0 0 − 1
640 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 564375

234·221
3 0 0 0 0 0 0 70625

229·39 0 0
4 0 0 0 0 − 5375

213·9 0 0 0 0
5 0 0 999

217·5 0 0 0 0 0 0
6 − 1

36 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 55·7011679

242·1989
8 0 0 0 0 0 0 − 57·55819

240·273 0 0

The leading terms of the superpotential, W̃ , coincide with the deformation super-
potential computed in ref. (59). Furthermore the modified superpotential yields
the expected critical points, φ

1/2
± (t, t̃) =±

√
5ψ(t), with respect to the open-string

coordinate, t̃.
Analogously to the previous example we extract the domain wall tension pe-

riod, τ(ψ), in the vicinity of the orbifold locus by evaluating the superpotential
period, Π

5, at the critical points

τ(ψ) = Π
5(ψ,φ)

∣∣∣
φ1/2 =+

√
5ψ

− Π
5(ψ,φ)

∣∣∣
φ1/2 =−

√
5ψ

=− 2
5ψπ2

∞

∑
k=0

Γ (k +1/2)5

Γ (5k +5/2)

[
(5ψ)5

]k+1/2
.

(5.32)

Using the identity, Γ (z)Γ (1− z) = π

sin(πz) , we arrive at the expression

τ(ψ) = −2π2

5ψ

∞

∑
k=0

Γ (−5k−3/2)
Γ (−k +1/2)5

(
1

(5ψ)5

)−k−1/2

, (5.33)

which is a solution of the inhomogeneous Picard-Fuchs equation

L bulk
τ(ψ) =− 3π4

10ψ

√
(5ψ)5. (5.34)

Thus we find again agreement with the domain wall period computed in refs. (27),
which can be seen by either comparing the inhomogeneous Picard-Fuchs equa-
tions or by directly matching the domain wall periods at the orbifold point.

Finally we have collected the orbifold disk invariants of the superpotential,
W̃ (t, t̃), in Table 2. As before these invariants are defined up to numerical nor-
malizations of the flat coordinates and the effective superpotential. Since these in-
variants are extracted from the superpotential, W̃ (t, t̃), in terms of the open-string
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variable, t̃, it is tempting to identify them with the obstruction disk invariants as-
sociated to a single D5-brane components. However, in order to substantiate this
claim a better understanding of the relationship of the D5-brane divisor, V , to its
individual D5-brane components is necessary.

We should also remark that the open/closed Picard-Fuchs equations in the
vicinity of the large complex structure point exhibit similar features as the open/closed
Picard-Fuchs equations of the previous example as discussed in Sect. 4.5.

6 Conclusions

In this paper we have provided new techniques to calculate effective superpoten-
tials for the N =1 low energy effective theory of type IIB Calabi-Yau compactifi-
cations with
D5-branes and fluxes. These superpotentials depend on both open- and closed-
string chiral fields associated to D5-brane deformations and complex structure
deformations of the internal Calabi-Yau manifold respectively. For supersymmet-
ric configurations, i.e. at the critical points of the superpotentials, these neutral
chiral fields become massless and correspond to obstructed moduli fields. Thus
geometrically the effective superpotentials capture the obstructions in the open-
/closed-string moduli space.

Analogously to D5-branes in local Calabi-Yau spaces discussed in refs. (24;
25), we have expressed the superpotentials in terms of relative periods of D5-brane
boundary divisors in compact Calabi-Yau threefolds. We have demonstrated that
in the context of compact Calabi-Yau spaces these relative periods are attainable
from a particular type of residue integrals. As for non-compact geometries these
relative periods are governed by the underlying N =1 special geometry (34). This
structure allowed us to parametrize the open/closed moduli space in terms of flat
coordinates, which we also used to express the effective superpotential.

The effective superpotentials in flat coordinates are interesting for several rea-
sons. First of all we have analyzed the effective superpotential in the framework
of the topological B-model, and therefore the flat superpotential becomes the disk
partition function of the topological A-model of the mirror D6-brane configura-
tion in the mirror Calabi-Yau geometry (14; 15). Thus at special points in the
open/closed moduli space, namely at points where a distinguished set of flat coor-
dinates can be determined, the flat
superpotential encodes enumerative disk invariants of the A-model quantum ge-
ometry. So far most computational techniques, which are used to extract disk
invariants, are mainly limited to D-branes in local Calabi-Yau configurations,
whereas our approach is in particular suitable for D-branes in compact geome-
tries.

On the other hand our methods are potentially useful in the context of string
phenomenology. The interplay of the bulk geometry with D-branes and back-
ground fluxes is a crucial ingredient in constructing phenomenological viable
models. Therefore by providing a handle on the effective superpotential beyond
the qualitative level we possibly get new insights into the vacuum structure of
type II string compactifications with branes and background fluxes. Moreover the
ability to reliably compute non-perturbative D-brane superpotentials might also
shed light on aspects of dynamical supersymmetry breaking.
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In this work we have also applied our methods to two examples explicitly. Our
first example constituted a certain D5-brane configuration embedded in the mirror
of the degree-eight hypersurface in the weighted projective space, WP4

(1,1,1,1,4).
This setup provides for one closed-string complex structure modulus and one
open-string brane modulus, and it is directly related to the geometries discussed
in refs. (29; 30). We derived the associated open/closed Picard-Fuchs partial dif-
ferential equations and showed their integrability. Then we solved this system of
differential equations in the vicinity of the orbifold point of the open/closed string
moduli space. From the solutions we extracted a uniquely distinguished set of flat
open-/closed-string coordinates together with their effective superpotential. As for
local Calabi-Yau geometries in refs. (16; 17; 18), we determined (up to overall
normalizations) from this superpotential a tower of disk orbifold invariants of the
corresponding mirror geometry in the topological A-model.

The resulting superpotential reproduces the correct critical locus in agree-
ment with the leading order behavior of the superpotential computed by matrix-
factorization
techniques in ref. (29). With our methods, however, we were able to obtain the
subleading corrections encoded in the flat coordinates. Finally by evaluating the
superpotential at its two critical points we have calculated in the vicinity of the
orbifold point the domain wall tension between the two supersymmetric D-brane
configurations, which remarkably matches with the results calculated by differ-
ent means in refs. (29; 30). Namely, there the domain wall tension emerges as a
solution of an inhomogeneous Picard-Fuchs equation. The inhomogeneous term
comes from a three-chain integral, which needs to be computed analytically, whereas
in our approach the domain wall tension is determined purely algebraically.

As our second example we have examined a particular family of D5-branes in
the mirror quintic threefold. This setup depends on one complex structure and one
D5-brane modulus and is very similar to the first example. We again computed the
effective
superpotential in flat coordinates in the vicinity of the orbifold point, we extracted
the corresponding orbifold disk invariants for the corresponding mirror configura-
tion, and we determined the domain wall tension between two distinct supersym-
metric D5-brane configurations in agreement with the results of refs. (27; 28).

There are many open questions, which we have not addressed in this work.
First of all the presented derivations of the open/closed Picard-Fuchs equations are
rather
tedious. However, the (quasi-)homogeneity of the defining polynomials of the
Calabi-Yau space and of the D-brane divisor suggests that toric techniques might
help to obtain the open/closed Picard-Fuchs equations more economically.

For the two presented examples the open-string moduli are obstructed in the
vicinity of the large complex structure locus. However, for configurations with
open-string moduli that become unobstructed at the large complex structure point,
the effective
superpotential encodes large volume disk instantons of the topological A-model
mirror geometry (12; 13; 14). We expect that our methods are also applicable to
such situations and therefore allow us to determine these integer invariants for
D5-branes in suitable compact Calabi-Yau geometries.
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From the effective superpotential, which we have computed in the B-model,
we have extracted orbifold disk invariants. It would be interesting to directly ex-
tract these equivariant invariants on the mirror A-model side by adequate local-
ization techniques. Then the comparison with the topological A-model would also
fix the overall normalization ambiguity of our B-model computation.
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Appendix A. The Degree-Eight Hypersurface Example in WP4
(1,1,1,1,4)/(Z8)2×Z2

In this appendix we give some further details that lead to the expressions for the
connection matrices (4.20) and (4.21) for our first example. The basic idea is to ex-
tend the Griffiths-Dwork algorithm to the residue integrals of relative three forms.
For ease of notation let us first introduce the abbreviations, u ≡ x1x2x3x4x5 and
v = x1x2x3x4. Then together with Eqs. (4.1) and (4.4) we arrive at the simple rela-
tion

v =
Q

4ψ−φ
− ∂5P

2(4ψ−φ)
. (A.1)

In order to approach the problem systematically we need to find relations among
all derivatives of the relative holomorphic three form (4.9) in the filtration (2.18).

Let us first focus on the equations governing the sub-system (2.19). If we con-
sider polynomial, Q, as another constraint besides the defining polynomial equa-
tion, P, then this defines a complete intersection manifold, and as a result the
system of equations for the sub-system has to close by itself. Using the relation
(A.1) and integrating by parts, which corresponds to adding an appropriate exact
form (3.9), we find the following relations:

∂ψ ∂φ Ω ' 4φ

4ψ−φ
∂

2
φ Ω ,

∂ψ ∂
2
φ Ω ' 4φ

4ψ−φ
∂

3
φ Ω +

16ψ

(4ψ−φ)2 ∂
2
φ Ω ,

∂
2
ψ ∂φ Ω ' 16φ 2

(4ψ−φ)2 ∂
3
φ Ω +

16φ 2

(4ψ−φ)3 ∂
2
φ Ω .

(A.2)

If we differentiate the relative three form, Ω , once more, then according to the
variational diagram (2.18), these derivatives cannot be independent anymore, but
instead must be expressible in terms of the lower derivatives up to exact forms.
Therefore, using again Eqs. (A.1) and (3.9), we find the following three relation
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among fourth-order derivatives:

∂ψ ∂
3
φ Ω ' 4φ

4ψ−φ
∂

4
φ Ω +

32ψ

(4ψ−φ)2 ∂
3
φ Ω +

32ψ

(4ψ−φ)3 ∂
2
φ Ω ,

∂
2
ψ ∂

2
φ Ω ' 4φ

4ψ−φ
∂ψ ∂

3
φ Ω +

16ψ

(4ψ−φ)2 ∂ψ ∂
2
φ Ω − 16φ

(4ψ−φ)2 ∂
3
φ Ω − 16(4ψ +φ)

(4ψ−φ)3 ∂
2
φ Ω ,

∂
3
ψ ∂φ Ω ' 4φ

4ψ−φ
∂

2
ψ ∂

2
φ Ω − 32φ

(4ψ−φ)2 ∂ψ ∂
2
φ Ω +

128φ

(4ψ−φ)3 ∂
2
φ Ω . (A.3)

However, in order to eventually close the sub-system we need one more non-trivial
relation involving the fourth-order derivatives of the relative form, Ω . To get this
last equation we first observe the following algebraic equation holds:(

1− (2ψ)8)u3v = I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8, (A.4)

where polynomials, I j, are given by

I1 =
1
2

v4x2
5 ∂5P, I2 = 2ψ v5x5∂5P,

I3 = 8ψ
2 v6

∂5P, I4 = 8ψ
3 (x1x2x3)7

∂4P,

I5 = 8ψ
4 (x1x2)8x3x5∂3P, I6 = 8ψ

5 x9
1x2

2x3x4x2
5 ∂2P,

I7 = 8ψ
6 x3

1(x2x3x4)2x3
5 ∂1P, I8 = 32ψ

7 u3
∂5P.

(A.5)

If we now use Eq. (3.9) repeatedly, after a long and tedious computation we obtain(
1− (2ψ)8)

∂
3
ψ ∂φ Ω '−128φ(φ −8ψ)ψ3

∂φ Ω

−16
(

192ψ2

(4ψ−φ)4 −
48ψ

(4ψ−φ)3 +
8

(4ψ−φ)2 +19φ
3
ψ

3−228φ
2
ψ

4
)

∂
2
φ Ω

−16ψ

(
192ψ

(4ψ−φ)3 −
32

(4ψ−φ)2 +9φ
4
ψ

2−144φ
3
ψ

3
)

∂
3
φ Ω

+1600φψ
5
∂ψ ∂φ Ω −32

(
2ψ

(4ψ−φ)2 −
1

(4ψ−φ)
−60φ

2
ψ

5
)

∂ψ ∂
2
φ Ω

+128ψ
6(5φ +4ψ)∂ 2

ψ ∂φ Ω −16ψ
2
(

64
(4ψ−φ)2 +φ

5
ψ−20φ

4
ψ

2
)

∂
4
φ Ω

−64ψ

(
1

4ψ−φ
−6φ

3
ψ

4
)

∂ψ ∂
3
φ Ω −4

(
64φψ

6(ψ−φ)+1
)

∂
2
ψ ∂

2
φ Ω . (A.6)

Taking Eqs. (A.3) and (A.6), we can now express all fourth (and all higher order)
derivatives of the holomorphic relative three form, Ω , in terms of the lower order
derivatives. In particular, if we choose the basis (4.10) and express all derivatives
in terms of this basis, then we exactly arrive at Eq. (4.13). We can then proceed
and compute in terms of the chosen basis (4.10) the connection matrix, Mφ , given
in Eq. (4.21).

So far, we have closed the system of linear differential equations with respect
to the open-string modulus, φ . We also need to close the system with respect
to the closed-string modulus, ψ . As in Eqs. (A.3) and (A.6) this is achieved by
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expressing ∂ 4
ψ Ω in terms of lower order derivatives. Note that ∂ 4

ψ Ω is the only
additional three form we need to consider, as all the other fourth order derivatives
appear in Eqs. (A.3) and (A.6).

If we multiply Eq. (A.4) by x5, then we find

u4 =
1

(1− (2ψ)8)

8

∑
j=1

x5I j. (A.7)

Similarly to treatment of the variational sub-system, if we apply the relations (3.9)
and (3.13) repeatedly in order to reduce the right-hand side of Eq (A.7) to lower
degree, we find

(
1− (2ψ)8)

∂
4
ψ Ω ' 256ψ

4
Ω +

15
ψ3 (1+256ψ

8)∂ψ Ω − 5
ψ2 (3−1280ψ

8)∂ 2
ψ Ω

+
2
ψ

(3+1280ψ
8)∂ 3

ψ Ω +
1

ψ3

(
256φ(2φ −ψ)ψ6 +60

)
∂φ Ω +1216φ

3
ψ

3
∂

2
φ Ω

+576φ
4
ψ

3
∂

3
φ Ω +

4
ψ2φ

(
φ(64φ(8φ −7ψ)ψ6−15)−12ψ

)
∂ψ ∂φ Ω

+1664φ
3
ψ

4
∂ψ ∂

2
φ Ω +8

(
8ψ

φ 2 +
6
φ

+
3
ψ
−192φψ

5(ψ−φ)
)

∂
2
ψ ∂φ Ω

+64φ
5
ψ

3
∂

4
φ Ω +256φ

4
ψ

4
∂ψ ∂

3
φ Ω +384φ

3
ψ

5
∂

2
ψ ∂

2
φ Ω

− 4
φ 2

(
φ

2 +4φ ψ +16ψ
2 +64φ

3
ψ

6(ψ−φ)
)

∂
3
ψ ∂φ Ω .

(A.8)
Note that if we set the open-string modulus, φ , and its derivatives, ∂φ , to zero,
then we exactly recover the relevant equation for closed-string variation (3.6) of
the holomorphic three form, Ω . Again, if we choose the basis (4.10) and rewrite
everything in terms of this basis, then we arrive at the relation (4.18). Further-
more with Eq. (A.8) we can also compute the connection matrix, Mψ , presented
in Eq. (4.20).
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Appendix B. The Mirror Quintic Example

In this appendix we provide some additional computational detail for the extended
Griffiths-Dwork algorithm applied to our second example, i.e.D5-branes in the
mirror of the quintic threefold. Let us first introduce the relevant residue integrals
for the basis elements (5.8). They are given by

π3−k,3 = k!5k
∫ uk

P(ψ)1+k logQ(φ)∆ , k = 0,1,2,3,

π2−l,4 =−l!5l
∫ ulv

P(ψ)1+lQ(φ)
∆ , l = 0,1,2,

(B.1)

in terms of the polynomials, P(ψ) and Q(φ), defined in Eqs. (5.1) and (5.4). Anal-
ogously to the previous example the monomials, x1x2x3x4x5 and x1x2x3x4, are ab-
breviated by u and v respectively. In order to obtain the Gauss-Manin connection,
we need to find the derivatives of the above basis elements with respect to both
closed-string and open-string moduli. As in the other example, some of the deriva-
tives are trivial and, in particular, the relations (4.12) are obviously also valid here.
To find the other relations, we first realize that

v =
Q

ψ−φ
− ∂5P

5(ψ−φ)
, (B.2)

and together with Eq. (3.9), we arrive at

∂ψ ∂φ Ω ' 4φ

ψ−φ
∂

2
φ Ω +

3
ψ−φ

∂φ Ω ,

∂ψ ∂
2
φ Ω ' 4φ

ψ−φ
∂

3
φ Ω +

7ψ−3φ

(ψ−φ)2 ∂
2
φ Ω +

3
(ψ−φ)2 ∂φ Ω ,

∂
2
ψ ∂φ Ω ' 16φ 2

(ψ−φ)2 ∂
3
φ Ω +

4φ(9ψ−5φ)
(ψ−φ)3 ∂

2
φ Ω +

6(ψ +φ)
(ψ−φ)3 ∂φ Ω .

(B.3)

With these relations we express on the level of cohomology all two forms in terms
of the chosen basis elements {π2,4,π1,4,π0,4}. That is to say, if we now differen-
tiate any two form cohomology element one more time with respect to either one
of the two moduli the result is entirely expressible in terms of the mentioned basis
elements. Similarly to the previous example, with Eqs. (B.2) and (3.9) we obtain
the following relations:

∂ψ ∂
3
φ Ω ' 4φ

ψ−φ
∂

4
φ Ω +

11
ψ−φ

∂
3
φ Ω +

2
ψ−φ

∂ψ ∂
2
φ Ω ,

∂
2
ψ ∂

2
φ Ω ' 4φ

ψ−φ
∂ψ ∂

3
φ Ω +

1
ψ−φ

∂
2
ψ ∂φ Ω +

6
ψ−φ

∂ψ ∂
2
φ Ω ,

∂
3
ψ ∂φ Ω ' 4φ

ψ−φ
∂

2
ψ ∂

2
φ Ω +

1
ψ−φ

∂
2
ψ ∂φ Ω .

(B.4)

To close the system of linear differential equations with respect to the open-string
modulus, φ , we need one more equation. The last non-trivial equation is obtained
by observing that

(1−ψ
5)u3 v = I1 + I2 + I3 + I4 + I5, (B.5)
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where the polynomials, I j, are given by

I1 =
1
5

(x2x3x4)4x3
5 ∂1P,

I2 =
1
5

ψ x2(x3x4)5x4
5 ∂2P,

I3 =
1
5

ψ
2 x1x2x2

3x6
4x5

5 ∂3P,

I4 =
1
5

ψ
3 (x1x2x3)2x3

4x6
5 ∂4P,

I5 =
1
5

ψ
4 u3

∂5P.

(B.6)

Thus with Eq. (B.5) we find for the derivative, ∂ 3
ψ ∂φ Ω ,

(1−ψ
5)∂

3
ψ ∂φ Ω '−2φ (φ −5ψ)∂φ Ω − 19

4
φ

2(φ −5ψ)∂ 2
φ Ω − 9

4
φ

3(φ −5ψ)∂ 3
φ Ω

− 19
4

ψφ(φ−5ψ)∂ψ ∂φ Ω−9
2

ψφ
2(φ−5ψ)∂ψ ∂

2
φ Ω−1

4
ψ

2 (9φ(φ−5ψ)+4ψ
2)

∂
2
ψ ∂φ Ω

− 1
4

φ
4(φ−5ψ)∂ 4

φ Ω−3
4

ψφ
3(φ−5ψ)∂ψ ∂

3
φ Ω−1

4
ψ

2
φ
(
3φ(φ−5ψ)+16ψ

2)
∂

2
ψ ∂

2
φ Ω

− 1
4

ψ
3
φ(φ −ψ)∂ 3

ψ ∂φ Ω .

(B.7)
We should also need to close the linear system with respect to the closed-string
modulus, ψ . To determine this last relevant equation, we first note that the follow-
ing algebraic relation holds:(

1− 1
ψ5

)
u4 = − 1

5ψ
u3x1∂1P− 1

5ψ
u2x5

1x2∂2P− 1
5ψ

u(x1x2)5x3∂3P

− 1
5ψ

(x1x2x3)5x4∂4P− 1
5ψ

v4
∂5P. (B.8)

We now use Eqs. (3.9) and (3.13) to express all the residue integrals resulting from
the right-hand side of Eq. (B.8) in terms of derivatives of the holomorphic relative
three form, Ω . After a long computation we obtain

∂
4
ψ Ω ' ψ5

1−ψ5

(
ψ Ω+15ψ

2
∂ψ Ω+25ψ

3
∂

2
ψ Ω+10ψ

4
∂

3
ψ Ω +15ψφ ∂φ Ω +25ψφ

2
∂

2
φ Ω

+10ψφ
3
∂

3
φ Ω +50φψ

2
∂ψ ∂φ Ω +30φ

2
ψ

2
∂ψ ∂

2
φ Ω +30φψ

3
∂

2
ψ ∂φ Ω

+ φ
4
ψ∂

4
φ Ω +4φ

3
ψ

2
∂ψ ∂

3
φ Ω +6φ

2
ψ

3
∂

2
ψ ∂

2
φ Ω +4(φψ

4−1)∂ 3
ψ ∂φ Ω

)
.

(B.9)
Now we have a complete system of linear differential equations at hand, which
allows us to determine the needed linear combinations of differentiated basis ele-
ments with respect to both open- and closed-string moduli. The non-trivial deriva-
tives of the two-form basis elements are given by
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∂φ π2,4 '
ψ−φ

4φ
π1,4−

3
4φ

π2,4,

∂φ π1,4 '
ψ−φ

4φ
π0,4−

1
2φ

π1,4,

∂φ π0,4 ' −125(φ −ψ)(φ −5ψ)
4D2

π2,4 +
175(φ −ψ)(φ −5ψ)2

4D2
π1,4

−
(

1
4φ

+
15(φ −ψ)(φ −5ψ)3

2D2

)
π0,4,

∂ψ π0,4 '
125φ(φ −5ψ)

D2
π2,4−

175φ(φ −5ψ)2

D2
π1,4 +

30φ(φ −5ψ)3

D2
π0,4.

(B.10)

There are also two non-trivial derivative relations in the three-form sector, namely
the derivatives of the basis element, π0,3, with respect to both the open- and closed-
string moduli. After going through another long calculation, we find the relations

∂φ π0,3 '
125φ(φ −5ψ)

D2
π2,4−

175φ(φ −5ψ)2

D2
π1,4 +

30φ(φ −5ψ)3

D2
π0,4,

(B.11)
and

∂ψ π0,3 '
ψ

D1
π3,3 +

15ψ2

D1
π2,3 +

25ψ3

D1
π1,3 +

10ψ4

D1
π0,3

− φ T1

16D1 D2
π2,4−

φ T2

16D1 D2
π1,4−

φ T3

16D1 D2
π0,4. (B.12)

Here the polynomials T1, T2, T3, and the discriminants, D1 and D2, are respectively
defined in Eqs. (5.12) and (5.13).

With Eqs. (B.10), (B.11), and (B.12), we can now easily extract the connection
matrices, Mφ and Mψ , which were presented in (5.10) and (5.11).
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