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French. Comment en effet remercier aussi bien les gens que dans leur langue maternelle ? Si
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ne se défait pas des traditions pour quelque chose d’aussi sérieux que des remerciements de
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les membres du groupe de théorie du DPhN (SPhN, comme on disait de mon temps !). Nous
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a son importance, bien qu’il aura la gentillesse de ne pas vous le faire remarquer. Si Thomas
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1J’invite les lectrices et lecteurs interloqués à aller lire le manuscrit du sieur Bally.
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Introduction

0.1. State of the art and challenges of nuclear physics
A common misconception about nuclear physics is that, more than forty years after the Nobel
Prize awarded to Bohr, Mottelson and Rainwater, the field now consists only of applied work.
The truth is that the detailed properties of nuclei are still not fully understood, and nuclear
physics has recently undergone major changes both from a theoretical and an experimental
point of view.

A first specificity of the nuclear system is that the internucleonic force driving the construction
of nuclei cannot be derived directly from Quantum Chromodynamics (QCD). Though attempts
at connecting the nuclear interaction to QCD through lattice calculations are being made [1

.

, 2

.

, 3

.

],
results of physical relevance are still to be obtained. Thus, more phenomenological or effective
methods are used to perform actual calculations. Additionally, the structure of the nuclear
interaction itself, i.e. central, spin-orbit, tensor, quadratic spin-orbit, etc., terms, is particularly
complex. Furthermore, there are two sources of non-perturbative character. The strong short-
range repulsion associated with interpenetration of nucleons generates an ultraviolet source of
non-perturbativeness. The large scattering lengths associated with the existence of a weakly
bound proton-neutron state (i.e. the deuteron) and of a virtual di-neutron state induces an
infrared source of non-perturbativeness. Additionally, the treatment of nucleons as point-like
particles require three-nucleon-, four-nucleon-, etc., forces to be consistently considered. Various
investigations over the past two decades came to reinforce this statement, as they focused on
differential nucleon-deuteron cross-sections [4

.

, 5

.

, 6

.

], triton and light-nuclei binding energies [7

.

],
the Tjon line [8

.

], the violation of the Koltun sum rule [9

.

] or the saturation of symmetric nuclear
matter [10

.

, 11

.

, 12

.

, 13

.

, 14

.

, 15

.

] related to the Coester line problem [16

.

, 17

.

, 18

.

].
Another problem is due to the atomic nucleus as a system. Ranging from few nucleons

to approximately 300 of them, most of the nuclei can be considered to be neither very-little–
nor very-many-body systems. Hence, exact methods available for few-body systems find their
theoretical and computational limits, while physical effects stemming from the finite size of
nuclei prevent the use of statistical methods. Furthermore, a unified description of the nuclear
system requires a description of close- and open-shell systems, small- and large-amplitude
collective motions, interfacing structure and reaction to access spontaneous and induced fission,
fusion, nucleon emission at the drip-line...

The atomic nucleus study aims at describing ground- (mass, radius, deformation, multipolar
moments...) and excited-states (single-particle, vibrational, shape and spin isomers, high-spin
and super-deformed rotational bands...) properties as well as their various decay modes (strong,
electromagnetic and electroweak) and reaction properties (elastic and inelastic scattering,
transfer and pickup, fusion...). This challenge is to be achieved over the whole nuclear chart,
i.e. for the roughly 3400 nuclei observed [19

.

] and the thousands still to be discovered. A

1
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common effort from experimental and theoretical groups is thus critical, as a new generation of
radioactive-ion-beam (RIB) facilities is being built to produce very short-lived systems, using
high-precision detectors designed for low-statistics and high-noise-to-signal-ratio measurements.
Such facilities, based on in-flight fragmentation, stopped and reaccelerated beams will extend the
limits of our knowledge towards the drip-lines, i.e. the limits of stability against nucleon emission.
Studies near the neutron drip-line especially should help understanding the conjectured r-
process responsible for half of the nucleosynthesis of elements heavier than iron. Recent studies
around the drip-lines have already observed a weakening of some magic numbers, and possible
apparitions of others [20

.

]. Other phenomena have been observed due to the proximity of the
Fermi energy with the continuum in this area, e.g. nuclear halos [21

.

, 22

.

, 23

.

, 24

.

, 25

.

] or di-proton
emitters [26

.

]. While experiments near the drip-lines are critical, investigations around the
valley of stability remain key to understanding some processes. For example, Penning traps [27

.

]
or Schottsky spectrometry [28

.

] precision mass measurements have refined and extended mass
difference formulae [29

.

], leading to a better understanding of pairing correlations. At the
same time, the study of the first 2+ state in even-even nuclei along with the associated
B(E2) transition to the ground state provide key information about the magic character of
nuclei [30

.

] while experiments dedicated to the study of rotational or vibrational bands [31

.

],
shape coexistence [32

.

, 33

.

], fission properties of actinides [34

.

] or collective modes [35

.

] remain of
primer interest even near the valley of stability. Finally, the quest for superheavy elements and
the island of stability beyond the Z = 82 magic number [36

.

] is another attempt at expanding
the limits of existence of the nuclear chart.

0.2. Recent progress of ab initio methods
0.2.1. On ab initio
While bulk properties of nuclei can be mainly described using macroscopic approaches like
the liquid drop model (LDM) [37

.

], microscopic methods are needed for a coherent description
of static and dynamical properties. This leads to defining ab initio methods that can be
characterized by a common set of properties, namely

1. They consider nucleons to be the elementary degrees of freedoms, i.e. quarks and gluons
are not explicitly accounted for, such that nucleons are treated as point-like objects. At
the same time, collective degrees of freedom (e.g. as done in the collective Hamiltonian
model) are meant to emerge from the description of interacting nucleons.

2. They use interactions rooted in the underlying theory, i.e. Quantum Chromodynamics, to
preserve the link with higher-energy physics. The current paradigm is to use interactions
derived from chiral Effective Field Theory (see Sec. 4.2.1

.

) and fitted only in the two-body
sector for two-body forces, three-body sector for three-body forces, etc.

3. They expand the solution of the Schrödinger equation in a systematic way, thus providing
control over the truncation of the result and an assessment of associated uncertainties.

4. The truncation mentioned before is then effected analytically at a given order, and
numerical calculations are performed.
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5. They eventually estimate the error on the result, coming both from the input Hamiltonian,
the analytical truncation and the numerical treatment of the calculations.

All those characteristics distinguish ab initio methods from other approaches relying on
phenomenological Hamiltonians or more collective degrees of freedom, in which the error
assesment is often complicated by the fact that the method is not systematically formulated.
Ab initio methods like Fadeev-Yakubovski [38

.

, 39

.

, 40

.

], Green’s function Monte Carlo [41

.

, 42

.

, 43

.

],
no-core shell model [44

.

, 45

.

, 46

.

, 47

.

, 48

.

] have been limited to light nuclei up to A ∼ 12 due to
their factorial scaling. Through the development of methods scaling polynomially, the past
fifteen years have witnessed a significant extension of ab initio methods both with respect to
accessible mass numbers and to the open-shell character of the targeted system.

0.2.2. Non-perturbative methods
Approaches applicable to closed-shell systems typically start from a single-determinantal, e.g.,
Hartree-Fock (HF), reference state and account for dynamic correlations via the inclusion
of particle-hole excitations on top of it. The simplest method in this context is many-
body perturbation theory (MBPT). However due to the hard-core character of the nuclear
Hamiltonian, it proved inefficient and was abandoned early on by the nuclear physics community.
In this context, a plethora of many-body frameworks resumming all order contributions

beyond MBPT have been developed to describe medium-mass systems, e.g., coupled-cluster
(CC) theory [49

.

, 50

.

, 51

.

, 52

.

, 53

.

], self-consistent Green’s functions theory (SCGF) [54

.

, 55

.

, 56

.

]
or the in-medium similarity renormalization group approach (IMSRG) [57

.

, 58

.

, 59

.

, 60

.

]. For
doubly closed-shell nuclei, all of these non-perturbative methods agree well with quasi-exact
no-core shell model (NCSM) calculations for ground-state energies of nuclei in the A ∼ 20
regime, and are considered to constitute the reference methods for mid-mass nuclei.

Coupled-cluster theory

Coupled-cluster (CC) theory [49

.

, 50

.

, 61

.

, 51

.

, 52

.

, 53

.

] is based on an expansion over the reference
state1

.

via the exponentiation on a connected cluster operator T

|Ψ〉 = eT |Φ〉 , (0.1)

where T is defined as a linear combination of n-particle n-hole excitations operators Tn

T ≡ T1 + T2 + T3 + . . . . (0.2)

The truncation scheme for CC consists of restricting the set of excitation operator to a certain
n-particle-n-hole rank, i.e. up to a certain Tn, thus resumming infinite set of terms whose
particle-hole degree is less than n. Initially formulated in nuclear physics [62

.

, 63

.

, 64

.

, 65

.

]
and developed in quantum chemistry [66

.

, 67

.

], the method has proven succesful to describe
medium-mass doubly-closed-shell nuclei, and was extended to neighboring nuclei as well as
excited states through the use of Equation of Motion (EOM) techniques [52

.

].
1For the sake of concision, the ingredients introduced here are only defined rigorously in the following chapter.
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The extension of the CC formalism to open-shell nuclei has been made in two different ways:
in a multi-reference approach with MR-CC in quantum chemistry [68

.

, 69

.

, 70

.

, 71

.

, 72

.

], as well as
using symmetry-adapted formalisms for quasi-degenerate systems [73

.

, 74

.

, 75

.

], or more recenty
in a symmetry-breaking-and-restoring approach with Bogoliubov CC, which breaks either the
symmetry associated to the angular momentum [76

.

] or to the particle number [77

.

]. The only
available calculations so far have been made in small model spaces and for two-body-only
interactions without symmetry projection, though [78

.

]. The spin-projected CC version of this
formalism [76

.

] has been transferred and implemented successfully on the Hubbard model and
on molecule dissociation [79

.

]. The particle-number-projected BCC method is currently been
(succesfully) tested on the schematic pairing, or BCS, Hamiltonian problem [80

.

].

In-medium Similarity Renormalization Group

As suggested by its name, In-Medium Similarity Renormalization (IMSRG) [57

.

, 58

.

, 59

.

, 60

.

]
is an approach based on the very idea behind the use of Similarity Renormalization Group
(SRG) [81

.

, 82

.

, 83

.

, 84

.

, 85

.

, 86

.

, 87

.

] in nuclear physics, i.e. the use of a continuous unitary
transformation

H(s) = U(s)H(0)U †(s) (0.3)

driving the Hamiltonian, or any other operator, towards a band-diagonal structure with respect
to a given basis as exemplified in Fig. 0.1

.

. Coupled to the use of normal-ordered operators
that recast higher-body forces at low level via density matrices, which explains the naming
In-Medium SRG. Eventually, the transformation decouples the reference state from its particle-
hole excitations, such that the flowing Slater determinant is mapped onto the exact eigenstate
of the original Hamiltonian at the end of the flow.

IMSRG was then extended to open-shell nuclei by the incorporation of multi-determinantal
reference states in the Multi-Reference IMSRG (MR-IMSRG) [88

.

]. The first MR-IMSRG
applications used particle-number-projected (PNP) HFB states [89

.

, 90

.

, 88

.

]. More recently,
solutions of no-core shell model (NCSM) calculations [48

.

, 85

.

, 91

.

] in a small model space
were employed, leading to the so-called in-medium no-core shell model (IM-NCSM) [92

.

], and
proof-of-principle calculations with angular-momentum projected HFB states were presented
in [93

.

].

Self-Consistent Green’s Function

Self-Consistent Green’s Function (SCGF) [54

.

, 55

.

, 56

.

, 94

.

] recast the information on the many-
body system into a set of k-body (k ≤ A) Green’s function. In particular, the one-body Green’s
function or propagator carries information regarding the total ground-state energy, one-body
observables, the spectroscopy of a A± 1 system as well as elastic nucleon-nucleus scattering.
In its symmetry-conserving Dyson formulation, many-body correlations are included by solving
iteratively the Dyson equation relating the unpertubed propagator and the dressed or correlated
propagator via the so-called one-nucleon self-energy. The Dyson equation is represented
diagrammatically in Fig. 0.2

.

. Part of the correlations are thus iteratively integrated into the
reference state. Solving this non-linear equation corresponds eventually to resumming an
infinite series of terms involving the self-energy, i.e. an infinite series of many-body perturbation
theory diagrams.
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Figure 0.1. Schematic view of IMSRG decoupling in a many-body Hilbert space spanned by a
Slater determinant reference |Φ〉 and its particle-hole excitations |Φp...

h...〉. Taken from Ref. [93

.

].

Figure 0.2. Diagrammatic representation of the Dyson equation. Single lines with an arrow
represent the unperturbed propagator, double lines are the fully dressed propagator and Σ∗ is
the self-energy. Adapted from Ref. [94

.

].

SCGF was the first ab initio method for middle-mass nuclei to be extended to open-shell nuclei
through its Gorkov implementation (GSCGF) based on the use of particle-number-breaking HFB
states [95

.

, 96

.

] and has become a standard method for semi-magic and neighboring nuclei [97

.

],
adressing radii [98

.

, 99

.

] as well as spectroscopic factors or nucleon separation energy [100

.

, 101

.

].
Despite the success of GSCGF, a proper particle-number projected formalism still remains
to be designed. Indeed, results do carry contaminations associated to the particle-number
breaking, whose importance depends on the nucleus and on the observable. A this point in
time the error of ab initio many-body calculations of mid-mass nuclei are anyway dominated
by the imperfections of currently available chiral EFT Hamiltonians.

0.2.3. Many-body methods and symmetry-breaking
Historically, many-body methods based on the expansion around an unperturbed product
state, or mean field, have been introduced to overcome the computational difficulties associated
with the computational cost of the Configuration Interaction (CI) approach [102

.

, 103

.

]. Such
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methods have been able, based on realistic chiral Hamiltonians, to extend their reach up
to A ∼ 130 in the past decade [53

.

], but remained for a long while limited to doubly-closed
shell (or neighboring) nuclei. Going away from nuclear shell closures, the single-determinantal
description becomes qualitatively wrong because several determinants contribute strongly to a
CI expansion, requiring a proper treatment of static correlations. In order to overcome this
drawback, more general reference states are required as already alluded to above.

A first option to overcome this difficulty is to rely on multi-reference (MR) methods,
accounting for the different product states contributing substantially to the wave function.
This idea has been followed to develop MR-IMSRG [89

.

, 60

.

, 88

.

] in nuclear physics or MR-CC in
quantum chemistry [68

.

, 69

.

, 72

.

]. More recently this idea was employed in the context of MBPT
by employing NCSM reference states [104

.

]. Hybrid approaches, deriving effective interactions
from IM-SRG, CC or MBPT and using them in CI numerical calculations have been proposed
as well[105

.

, 60

.

, 88

.

, 106

.

, 107

.

, 108

.

].

A second option of present interest is to exploit the concept of spontaneous symmetry
breaking, breaking e.g. U(1) symmetry associated to the particle number conservation in order
to capture the superfluid character of singly-open-shell nuclei. Doubly-open-shell nuclei can be
addressed as well via the breaking of SU(2) symmetry associated to the angular momentum
conservation, allowing for nuclei to deform. Breaking U(1) symmetry allows one to deal
with Cooper pair’s instability and capture the dominant effect of the infrared source of non-
perturbativeness already at the level of the unperturbed states. Doing so, the degeneracy of an
open-shell Slater determinant with respect to particle-hole excitations is lifted via the use of a
more general Bogoliubov vacuum and commuted into a degeneracy with respect to symmetry
transformations of the group. As a consequence, the ill-defined (i.e. singular) expansion of
exact quantities around a Slater determinant is replaced by a well-behaved one.

Symmetry breaking has been used for decades in the Energy Density Functional (EDF)
community [109

.

, 110

.

, 111

.

, 112

.

], i.e. at the mean field level. While pioneering work based on
symmetry-broken reference states was achieved within the GSCGF framework [95

.

, 113

.

, 96

.

],
such an idea has scarcely been employed in ab initio calculations. One reason is that symmetry
breaking cannot actually occur in finite quantum systems, hence the explicitly broken symmetry
must eventually be restored, which has been a long-standing challenge already on a formal
level. Still a similar formulation led to designing the Bogoliubov CC formalism, although only
proof-of-principle calculations limited to small model spaces and two-body forces have actually
been performed so far [77

.

, 78

.

].

Once the symmetry has been broken, a well-behaved expansion can be performed, and
quantities computed. Still results carry a contamination associated with the contributions to
the reference state of various particle numbers. The degeneracy with respect to transformations
of the U(1) group must thus be lifted by restoring the symmetry. While the design of a proper
symmetry-restoration protocol remains yet to be formulated within the GSCGF framework,
full-fledged symmetry-broken and -restored MBPT and CC formalisms have been recently
designed to consistently restore the symmetry at any truncation order [76

.

, 77

.

]. The spin-
projected CC version of this formalism [76

.

] has been transferred and implemented successfully
on the Hubbard model and on molecule dissociation [79

.

].
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0.2.4. Resurgence of many-body perturbation theory
Standard Many-Body Perturbation Theory (MBPT) [114

.

, 115

.

, 61

.

] is the simplest method able
to tackle medium-mass closed-shell nuclei2

.

. The idea behind MBPT is to split the Hamiltonian
in two parts as

H ≡ H0 +H1 , (0.4)
with H0 being simple enough for the Schrödinger equation for the reference state

H0|Φ〉 = E(0)
0 |Φ〉 (0.5)

to be solved exactly. Then, the exact ground-state solution of the Schrödinger equation

H|Ψ〉 = E0|Ψ〉 (0.6)

is obtained via an expansion around the solution for H0 in powers of the residual part of the
Hamiltonian H1. Though MBPT is simple and computationally costless compared to the
non-perturbative methods described in Sec. 0.2.2

.

, it is neither variational nor guaranteed to
converge. Especially, the hard-core character of the nuclear Hamiltonian made it impossible to
use in practical applications in low-energy nuclear physics.
Only recently with the development of softer Hamiltonians generated through SRG trans-

formations taming down the ultraviolet source of non-perturbativeness was it made possible
again to use it [116

.

, 117

.

, 104

.

]. Soon after, the concept of multi-determinantal reference states
inspired the development of a MBPT variant based on a NCSM reference state in a small model
space, yielding the perturbatively-improved no-core shell model (NCSM-PT). This method has
allowed the first description of medium-mass nuclei with even and odd mass numbers on an
equal footing [104

.

]. In parallel, effective interactions were derived from MBPT to be used in
shell model calculations [108

.

].
As mentioned in Sec. 0.2.3

.

, a symmetry-broken-and-restored many-body perturbation theory
was recently proposed [76

.

, 77

.

]. The present work focuses on its particle-number-broken version
which is coined as Bogoliubov many-body perturbation theory (BMBPT). The goal is to
provide a full-fledged development of the formalism and propose the first numerical application
dedicated to the systematic ab initio study of mid-mass nuclei. Though the symmetry is
restored for BMBPT in the limit of an all-order resummation, finite truncations employed
in a numerical calculations still carry such contaminations. The implementation of particle-
number projected BMBPT (PNP-BMBPT), which restores exactly the particle number at each
order [77

.

] is thus necessary in the long run. It will however not be discussed in the present
document.

0.3. On many-body diagrammatics
Diagrams have long been used in combination with formalisms, e.g., many-body perturbation
theory (MBPT), self-consistent Green’s function (SCGF) theory, coupled-cluster (CC) theory,

2Though standard MBPT is restricted to closed-shell systems in most cases, it is known from quantum
chemistry that symmetry-restricted or -unrestricted MBPT approaches can be applied to high-spin open-
shell systems using unrestricted Hartree-Fock (UHF) or restricted open-shell Hartree-Fock (ROHF) reference
states [61

.

].

7



Introduction

etc., designed to solve the many-body Schrödinger equation, be it in nuclear physics, quantum
chemistry, atomic physics or solid-state physics. Many-body diagrams belong to a series
of tools introduced to compute the expectation value of products of (many) operators in a
vacuum state in an incrementally faster, more flexible and less error-prone way. The first
step in this series relied on the introduction of the second quantization formalism that makes
algebraic manipulations much more efficient than within the first quantization formalism.
The next step consisted in the elaboration of Wick’s theorem [118

.

], which is nothing but a
procedure to capture the result in a condensed and systematic fashion. Still, the combinatorial
associated with the application of Wick’s theorem becomes quickly cumbersome whenever
a long string of creation and annihilation operators is involved. Furthermore, many terms
generated via the application of Wick’s theorem happen to give identical contributions to the
end results. Many-body diagrams were introduced next to provide a pictorial representation
of the various contributions and, even more importantly, to capture at once all identical
contributions generated via the straight application of Wick’s theorem, thus reducing the
combinatorial tremendously. The procedure results (i) in a set of topological rules to generate
all valid diagrams and (ii) in a set of algebraic rules to evaluate their expressions, including a
prefactor accounting for all identical contributions.

While diagrams have proven to be extremely useful, their number grows tremendously when
applying, e.g., MBPT beyond the lowest orders, thus leading to yet another combinatorial
challenge. This translates into the difficulty to both generate all allowed diagrams at a given
order without missing any and to evaluate their expression in a quick and error-safe way.
Consequently, yet another tool must be introduced to tackle this difficulty. As a matter
of fact, there have been several attempts to generate MBPT diagrams automatically, e.g.
see Refs. [119

.

, 120

.

, 121

.

, 122

.

, 123

.

, 124

.

]. However, it is of primer interest to also evaluate
their algebraic expressions automatically [122

.

, 123

.

] in view of performing their numerical
implementation. Such effort has already been made in the quantum chemistry community for
CC and CI [125

.

, 126

.

].
It happens that the past decade has witnessed the development and/or the application of new

formalisms to tackle the nuclear many-body problem [95

.

, 76

.

, 77

.

, 127

.

], some of which rely on
original, i.e., more general, diagrammatics [76

.

, 77

.

]. This profusion of methods, along with the
rapid progress of computational power allowing for high-order implementations, welcomes the
development of a versatile code capable of both generating and evaluating diagrams. A large
fraction of the present thesis is devoted to the development of such a tool within the context
of BMBPT. This relies on formal breakthrough related to the generation and evaluation of
diagrams that are eventually implemented numerically.

Many-body diagrams come in various forms and flavors. First, the diagrammatic framework
depends on the nature of the reference state at play in the formalism. Second, most many-body
methods can be designed within a time-dependent or a time-independent formalism, eventually
leading to the same result3

.

. While a time-independent formalism naturally translates into
time-ordered diagrams, a time-dependent formulation can be represented by a time-unordered
diagrammatic, i.e., by diagrams containing an explicit integration over time variables, thus,
capturing different time orderings of the vertices at once.

3Dealing with static properties of an isolated system, the end results are obviously independent of time.
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0.4. Outline
The present document is structured as follows: Chapter 1

.

discusses the necessary ingredients to
formulate Bogoliubov many-body perturbation theory. Chapter 2

.

then details the perturbation
theory formalism, provides diagrammatic and algebraic results at first and second order, and
establishes connections with both closed-shell many-body perturbation theory and Bogoliubov
coupled cluster theory. Chapter 3

.

presents the code ADG that automatically generates and
evaluates BMBPT diagrams at arbitrary orders and the formal objects necessary to do so.
Finally, first numerical results dedicated to the ab initio study of mid-mass nuclei are discussed
and compared with non-perturbative state-of-the-art ab initio methods in Chapter 4

.

. Useful
matrix elements, analytical expressions, mathematical definitions and software documentation
are provided in a set of appendices.
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1. Basic ingredients
Let us first introduce ingredients that are necessary to the comprehension of standard, or
diagonal Bogoliubov Many-Body Perturbation Theory. Although pedestrian, this chapter
displays definitions and identities that are crucial to the building of the formalism later on.

1.1. Hamiltonian and particle number operator
Let the Hamiltonian H = T + V of the system, with T being the kinetic energy and V the
potential, be of the form1

.

H ≡ 1
(1!)2

∑
pq

tpqc
†
pcq + 1

(2!)2

∑
pqrs

v̄pqrsc
†
pc
†
qcscr + 1

(3!)2

∑
pqrstu

w̄pqrstuc
†
pc
†
qc
†
rcuctcs , (1.1)

where antisymmetric matrix elements of the two- and three-body interaction are employed and
where {cp; c†p} denote particle annihilation and creation operators associated with an arbitrary
orthonormal basis of the one-body Hilbert space H1. The particle-number operator A = ∑A

n=1 1
takes the second-quantized form

A =
∑
p

c†pcp . (1.2)

We further introduce a generic operator O commuting with A and H and containing one-,
two- and three-body contributions2

.

O = 1
(1!)2

∑
pq

o11
pqc
†
pcq + 1

(2!)2

∑
pqrs

ō22
pqrsc

†
pc
†
qcscr + 1

(3!)2

∑
pqrstu

ō33
pqrstuc

†
pc
†
qc
†
rcuctcs , (1.3)

to be used to develop the formalism and afterwards replaced by the operator of interest.
Each term okk of the particle-number conserving operator O is obviously characterized by

the equal number k of particle-creation and annihilation operators. The class o[2k] is nothing
but the term okk of k-body character. Matrix elements are fully antisymmetric, i.e.

okkp1...pkpk+1...p2k
= (−1)σ(P )okkP (p1...pk|pk+1...p2k) (1.4)

where σ(P ) refers to the signature of the permutation P . The notation P (. . . | . . .) denotes a
separation into the k particle-creation operators and the k particle-annihilation operators such
that permutations are only considered between members of the same group.

1The formalism can be extended to a Hamiltonian containing four- and higher-body forces without running
into any fundamental problem. Also, one subtracts the center of mass kinetic energy to the Hamiltonian in
actual calculations of finite nuclei. As far as the present work is concerned, this simply leads to a redefinition
of one-, two- and three-body matrix elements tpq, v̄pqrs and w̄pqrstu in the Hamiltonian without changing
any aspect of the many-body formalism that follows.

2Higher-body operators can be employed as well. From the formal point of view, it poses no fundamental
difficulty but further increases the number of terms and complexifies the bookkeeping.
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The definition of matrix elements and their (anti-)symmetry properties can be given explicitly.
Direct-product matrix elements are defined through

o11
l1l2 ≡ 〈1 : l1|O11|1 : l2〉 , (1.5a)

o22
l1l2l3l4 ≡ 〈1 : l1; 2 : l2|O22|1 : l3; 2 : l4〉 , (1.5b)

o33
l1l2l3l4l5l6 ≡ 〈1 : l1; 2 : l2; 3 : l3|O33|1 : l4; 2 : l5; 3 : l6〉 , (1.5c)

where particles are explicitly labeled 1, 2, 3. Because the interaction is symmetric under the
renaming of any pair of particles, it follows that

o22
l1l2l3l4 = o22

l2l1l4l3 , (1.6a)
o33
l1l2l3l4l5l6 = o33

l2l1l3l5l4l6 = o33
l1l3l2l4l6l5 = o33

l3l2l1l6l5l4 = o33
l2l3l1l5l6l4 = o33

l3l1l2l6l4l5 . (1.6b)

From these direct-product matrix elements, matrix elements that are explicitly antisymmetrized
to the right are introduced

ō22
l1l2l3l4 ≡ o22

l1l2l3l4 − o
22
l1l2l4l3 , (1.7a)

ō33
l1l2l3l4l5l6 ≡ o33

l1l2l3l4l5l6 − o
33
l1l2l3l4l6l5 + o33

l1l2l3l6l4l5 − o
33
l1l2l3l6l5l4 + o33

l1l2l3l5l6l4 − o
33
l1l2l3l5l4l6 , (1.7b)

such that

ō22
l1l2l3l4 = −ō22

l1l2l4l3 , (1.8a)
ō33
l1l2l3l4l5l6 = −ō33

l1l2l3l4l6l5 = ō33
l1l2l3l6l4l5 = −ō33

l1l2l3l6l5l4 = ō33
l1l2l3l5l6l4 = −ō33

l1l2l3l5l4l6 . (1.8b)

Combining the symmetry property under the exchange of any pair of particles with the explicit
antisymmetrization with respect to right indices, antisymmetry is also obtained with respect
to left indices, i.e.

ō22
l1l2l3l4 = −ō22

l2l1l3l4 , (1.9a)
ō33
l1l2l3l4l5l6 = −ō33

l1l3l2l4l5l6 = ō33
l3l1l2l4l5l6 = −ō33

l3l2l1l4l5l6 = ō33
l2l3l1l4l5l6 = −ō33

l2l1l3l4l5l6 . (1.9b)

1.2. U(1) group
We consider the abelian compact Lie group U(1) ≡ {S(ϕ), ϕ ∈ [0, 2π]} associated with the
global rotation of an A-body fermion system in gauge space. As U(1) is considered to be a
symmetry group of H and O, commutation relations

[H,S(ϕ)] = [A, S(ϕ)] = [O, S(ϕ)] = 0 , (1.10)

hold for any ϕ ∈ [0, 2π].
We utilize the unitary representation of U(1) on Fock space F given by

S(ϕ) = eiAϕ . (1.11)

Irreducible representations (IRREPs) of U(1) are given by

〈ΨA
µ |S(ϕ)|ΨA′

µ′ 〉 ≡ eiAϕ δAA′ δµµ′ , (1.12)

12
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where |ΨA
µ 〉 is an eigenstate of A

A|ΨA
µ 〉 = A|ΨA

µ 〉 , (1.13)
and, as authorized by Eq. (1.10

.

), of the Hamiltonian at the same time

H|ΨA
µ 〉 = EA

µ |ΨA
µ 〉 , (1.14)

where EA
µ , with µ = 0, 1, 2 . . ., orders increasing eigenenergies for a fixed A. From the group

theory point of view, A ∈ Z on the right-hand side of Eq. (1.12

.

). Since A actually represents
the number of fermions in the system, its value is constrained from the physics point of view
to A ∈ N.
The volume of the group is

vU(1) ≡
∫ 2π

0
dϕ = 2π , (1.15)

and the orthogonality of IRREPs reads as
1

vU(1)

∫ 2π

0
dϕ e−iAϕ e+iA′ϕ = δAA′ . (1.16)

A tensor operator Q of rank3

.

A and a state |ΨA
µ 〉 transform under global gauge rotation

according to

S(ϕ)QS(ϕ)−1 = eiAϕQ , (1.17a)
S(ϕ) |ΨA

µ 〉 = eiAϕ |ΨA
µ 〉 . (1.17b)

A key feature for the following is that any integrable function f(ϕ) defined on [0, 2π] can
be expanded over the IRREPs of the U(1) group. This constitutes nothing but the Fourier
decomposition of the function

f(ϕ) ≡
∑
A∈Z

fA eiAϕ , (1.18)

which defines the set of expansion coefficients {fA}. Last but not least, the IRREPs fulfill the
first-order ordinary differential equation (ODE)

− i d
dϕ
eiAϕ = A eiAϕ . (1.19)

1.3. Bogoliubov algebra
The unitary and linear Bogoliubov transformation connects quasi-particle annihilation and
creation operators {βk; β†k} to particle ones through [109

.

]

βk =
∑
p

U∗pk cp + V ∗pk c
†
p , (1.20a)

β†k =
∑
p

Upk c
†
p + Vpk cp . (1.20b)

3A tensor operator of rank A with respect to the U(1) group is an operator that associates a state of the
(N+A)-body Hilbert space HN+A to a state of the N-body Hilbert space HN, i.e. which changes the number
of particles by A units.
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1. Basic ingredients

Both sets of fermionic operators obey anticommutation rules

{cp, cq} = 0 ; {βk1 , βk2} = 0 , (1.21a)
{c†p, c†q} = 0 ; {β†k1 , β

†
k2} = 0 , (1.21b)

{cp, c†q} = δpq ; {βk1 , β
†
k2} = δk1k2 . (1.21c)

The Bogoliubov transformation can be written in matrix form(
β
β†

)
= W †

(
c
c†

)
, (1.22)

where
W ≡

(
U V ∗

V U∗

)
. (1.23)

One can further define the skew-symmetric matrix

Z ≡ V ∗[U∗]−1 (1.24)

in terms of which |Φ〉 can be expressed by virtue of Thouless’ theorem [128

.

]. The anticommu-
tation rules obeyed by the quasi-particle operators relate to the unitarity of W that leads to
four relations

UU † + V ∗V T = 1 , (1.25a)
V U † + U∗V T = 0 , (1.25b)
U †U + V †V = 1 , (1.25c)
V TU + UTV = 0 , (1.25d)

originating from W †W = 1 and four relations

UV † + V ∗UT = 0 , (1.25e)
V V † + U∗UT = 1 , (1.25f)
U †V ∗ + V †U∗ = 0 , (1.25g)
V TV ∗ + UTU∗ = 1 , (1.25h)

originating from WW † = 1.
The Bogoliubov product state, which carries even number-parity as a quantum number, is

defined as
|Φ〉 ≡ C

∏
k

βk|0〉 , (1.26)

and is the vacuum of the quasiparticle operators, i.e. βk|Φ〉 = 0 for all k. In Eq. (1.26

.

), C is
a complex normalization ensuring that 〈Φ|Φ〉 = 1. As quasiparticle operators mix particle
creation and annihilation operators (see Eq. (1.20

.

)), the Bogoliubov vacuum breaks U(1)
symmetry associated with particle number conservation, i.e. |Φ〉 is not an eigenstate of the
particle-number operator A, except in the limit where it reduces to a Slater determinant.
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1.4. Time-dependent state

The Bogoliubov state |Φ〉 is fully characterized by the generalized density matrix [109

.

]

R ≡

 〈Φ|c
†
pcq |Φ〉
〈Φ|Φ〉

〈Φ|cpcq |Φ〉
〈Φ|Φ〉

〈Φ|c†
pc

†
q |Φ〉

〈Φ|Φ〉
〈Φ|cpc†

q |Φ〉
〈Φ|Φ〉

 (1.27a)

≡
(

+ρqp +κqp
−κ̄∗qp −σ∗qp

)
, (1.27b)

where ρ and κ denote the normal one-body density matrix and the anomalous density matrix
(or pairing tensor), respectively, with

ρ = +V ∗V T , (1.28a)
κ = +V ∗UT , (1.28b)
κ̄∗ = −U∗V T , (1.28c)
σ∗ = −U∗UT . (1.28d)

Using anticommutation rules of particle creation and annihilation operators (Eq. (1.21

.

)), one
demonstrates that

ρqp = +ρ∗pq , (1.29a)
κqp = −κpq , (1.29b)
σqp = +ρqp − δqp , (1.29c)
κ̄qp = +κqp , (1.29d)

meaning in particular that ρ is hermitian (i.e. ρ† = ρ) while κ is skew-symmetric (i.e. κT = −κ).
Transforming the generalized density matrix to the quasi-particle basis via R ≡ W †RW leads
to

R =

 〈Φ|β
†
pβq |Φ〉
〈Φ|Φ〉

〈Φ|βpβq |Φ〉
〈Φ|Φ〉

〈Φ|β†
pβ

†
q |Φ〉

〈Φ|Φ〉
〈Φ|βpβ†

q |Φ〉
〈Φ|Φ〉

 (1.30a)

≡
(
R+−
pq R−−pq

R++
pq R−+

pq

)
(1.30b)

=
(

0 0
0 1

)
, (1.30c)

where the result, trivially obtained by considering the action of quasi-particle operators on
the vacuum, can also be recovered starting from Eq. (1.27

.

) and making use of Eqs. (1.20

.

)
and (1.25

.

).

1.4. Time-dependent state
The Bogoliubov reference state is not an eigenstate of the particle number operator A. The same
is true of the perturbatively corrected state generated from it, unless the perturbative expansion

15



1. Basic ingredients

is resummed to all orders. Consequently, one must at least enforce that the expectation value
of A matches the actual number of particles A of the targeted system. Correspondingly, the
Hamiltonian H is to be replaced by the grand potential Ω ≡ H − λA in the set up of the
many-body formalism [77

.

, 127

.

], where λ denotes the chemical potential.
A Lagrange term is eventually required to constrain the particle number to the correct value

on average. This leads to using the grand potential Ω ≡ H−λA in place of H. Equations (1.13

.

)
and (1.14

.

) trivially lead to
Ω|ΨA

µ 〉 = ΩA
µ |ΨA

µ 〉 , (1.31)

where ΩA
µ ≡ EA

µ − λA.
The many-body formalism displayed below is conveniently formulated within an imaginary-

time framework. We thus introduce the evolution operator in imaginary time as4

.

U(τ) ≡ e−τΩ , (1.32)

with τ real. A key quantity throughout the present study is the time-evolved many-body state
defined as

|Ψ(τ)〉 ≡ U(τ)|Φ〉
=
∑
A∈N

∑
µ

e−τΩA
µ |ΨA

µ 〉 〈ΨA
µ |Φ〉 , (1.33)

where we have inserted a completeness relationship on Fock space under the form

1 =
∑
A∈N

∑
µ

|ΨA
µ 〉 〈ΨA

µ | . (1.34)

It is straightforward to demonstrate that |Ψ(τ)〉 satisfies the time-dependent Schrödinger
equation

Ω |Ψ(τ)〉 = −∂τ |Ψ(τ)〉 . (1.35)

1.5. Large and infinite time limits
Below, we will be interested in first looking at the large τ limit of various quantities before
eventually taking their infinite time limit. Although we utilize the same mathematical symbol
( lim
τ→∞

) in both cases for simplicity, the reader must not be confused by the fact that there
remains a residual τ dependence in the first case, which typically disappears by considering
ratios before actually promoting the time to infinity. The large τ limit is essentially defined as
τ � ∆E−1, where ∆E is the energy difference between the ground state and the first excited
state of Ω. Depending on the system, the latter can be the first excited state in the IRREP
(i.e. nucleus) of the ground state5

.

or the lowest state of another IRREP (i.e. of a neighboring
nucleus).

4The time is given in units of MeV−1.
5To be more precise, in this case the first excited state belongs to a duplicate of the IRREP of the ground
state labelled by other auxilliary quantum numbers.
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1.6. Ground state

1.6. Ground state
Taking the large τ limit provides the ground state of Ω under the form6

.

|ΨA0
0 〉 ≡ lim

τ→∞
|Ψ(τ)〉 (1.36a)

= e−τΩA0
0 |ΨA0

0 〉 〈ΨA0
0 |Φ〉 . (1.36b)

As will become clear below, the many-body scheme developed in the present work relies on
choosing the Bogoliubov product state |Φ〉 as the ground state of an unperturbed grand
potential Ω0 that breaks U(1) symmetry. As such, |Φ〉 mixes several IRREPs but is likely to
contain a component belonging to the nucleus of interest given that it is typically chosen to
have (close to) the number A0 of particles in average. Eventually, one recovers from Eq. (1.35

.

)
that

Ω|ΨA0
0 〉 = ΩA0

0 |ΨA0
0 〉 , (1.37)

in the large τ limit.

1.7. Time-dependent kernels
We now introduce the time-dependent kernel of an operator7

.

O through

O(τ) ≡ 〈Ψ(τ)|O|Φ〉 . (1.38)

Doing so for the identity, the Hamiltonian, the particle number and the grand potential
operators, defines the set of time-dependent kernels of interest

N(τ) ≡ 〈Ψ(τ)|1|Φ〉 , (1.39a)
H(τ) ≡ 〈Ψ(τ)|H|Φ〉 , (1.39b)
A(τ) ≡ 〈Ψ(τ)|A|Φ〉 , (1.39c)
Ω(τ) ≡ 〈Ψ(τ)|Ω|Φ〉 , (1.39d)

where the first one denotes the time-dependent norm kernel and where the latter three are
related through Ω(τ) = H(τ)− λA(τ).
Finally, use will often be made of the reduced kernel of an operator O defined through

O(τ) ≡ O(τ)
N(τ) , (1.40)

which leads, for O = 1, to working with intermediate normalization, i.e. to having a norm
kernel that satisfies N (τ) ≡ 1 for all τ .

6The chemical potential λ is fixed such that ΩA0
0 for the targeted particle number A0 is the lowest value of all

ΩA
µ over Fock space, i.e. it penalizes systems with larger number of particles such that ΩA0

0 < ΩA
µ for all

A > A0 while maintaining at the same time that ΩA0
0 < ΩA

µ for all A < A0. This is achievable only if EA
0 is

strictly convex in the neighborhood of A0, which is generally but not always true for atomic nuclei.
7We are currently interested in operators that commute with Ω and that are scalars under transformations of
the U(1) group, i.e. that are of rank A = 0. Dealing with operators of rank A 6= 0 and with amplitudes
between different many-body eigenstates of Ω requires an extension of the presently developed formalism.

17
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1.8. Expansion of the time-dependent kernels
Inserting Eq. (1.34

.

) into Eq. (1.39

.

) while making use of Eqs. (1.13

.

) and (1.14

.

), one obtains the
decomposition of the kernels

N(τ) =
∑
A∈N

∑
µ

e−τΩA
µ |〈Φ|ΨA

µ 〉|2 , (1.41a)

H(τ) =
∑
A∈N

∑
µ

EA
µ e−τΩA

µ |〈Φ|ΨA
µ 〉|2 , (1.41b)

A(τ) =
∑
A∈N

∑
µ

A e−τΩA
µ |〈Φ|ΨA

µ 〉|2 , (1.41c)

Ω(τ) =
∑
A∈N

∑
µ

ΩA
µ e−τΩA

µ |〈Φ|ΨA
µ 〉|2 , (1.41d)

where one trivially notices that contributions associated with A < 0 are zero.

1.9. Ground-state energy
Defining the large τ limit of a kernel via

O(∞) ≡ lim
τ→∞

O(τ) , (1.42)

one obtains

N(∞) = e−τΩA0
0 |〈Φ|ΨA0

0 〉|2 , (1.43a)

H(∞) = EA0
0 e−τΩA0

0 |〈Φ|ΨA0
0 〉|2 , (1.43b)

A(∞) = A0 e−τΩA0
0 |〈Φ|ΨA0

0 〉|2 , (1.43c)

Ω(∞) = ΩA0
0 e−τΩA0

0 |〈Φ|ΨA0
0 〉|2 , (1.43d)

where the residual time dependence typically disappears by eventually employing reduced
kernels as defined in Eq. (1.40

.

). Expressions (1.43

.

) relate in the large-time limit operator
kernels of interest to the norm kernel through eigenvalue-like equations

H(∞) = EA0
0 N(∞) , (1.44a)

A(∞) = A0N(∞) , (1.44b)
Ω(∞) = ΩA0

0 N(∞) , (1.44c)

leading for reduced kernels to

H(∞) = EA0
0 , (1.45a)

A(∞) = A0 , (1.45b)
Ω(∞) = ΩA0

0 . (1.45c)

In Eq. (1.43c

.

), the expansion coefficient in the particle-number operator kernel equates the
expected value A0, even though the kernel at finite time contains contributions associated with
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A 6= A0. While the latter property results from defining the kernels in terms of a Bogoliubov
vacuum spanning several IRREPs of U(1), the selection of the expected IRREP in the infinite
time limit testifies that the exact ground-state |ΨA0

0 〉 of Ω (and H) does carry good particle
number A0. Accordingly, Eqs. (1.44

.

-1.45

.

) demonstrate that the ratios of the various operator
kernels to the norm kernel access eigenvalues that are in one-to-one relationship with the
physical IRREP labelled by A0.
Let us now consider the case of actual interest where the kernels defined in terms of a

Bogoliubov vacuum breaking U(1) symmetry are approximated. In this situation, kernels in
the infinite time limit display the typical structure

Napp(∞) ≡
∑
A∈Z

NA
app , (1.46a)

Happ(∞) ≡
∑
A∈Z

EA
app NA

app , (1.46b)

Aapp(∞) ≡
∑
A∈Z

AA
app NA

app , (1.46c)

where the condition Napp(∞) = ∑
A∈Z NA

app = 1 characterizes intermediate normalization. In
Eq. (1.46

.

), the remaining sum over A signals the breaking of the symmetry induced by the
approximation. In the expansion, the sum over the IRREPS still runs over Z. If the many-body
approximation scheme is well behaved from the physics standpoint, coefficients corresponding
to A < 0 must be zero, which acts as a check that the formalism is sensible [129

.

, 112

.

].
Except for going back to an exact computation of the kernels, such that all the expansion co-

efficients but the physical one are zero in Eq. (1.46

.

), taking the straight ratio Happ(∞)/Napp(∞)
does not provide an approximate energy that is in one-to-one correspondence with the physical
IRREP A0. This materializes the contamination associated with the breaking of the symmetry.

1.10. Projective versus expectation value method
The formalism layed out in Secs. 1.7

.

to 1.9

.

has been designed in a projective way, as is
historically the common approach for MBPT and CC: Eqs. (1.39

.

) and following rely on a
right-hand state that is the uncorrelated state |Φ〉. Alternatively, one could have worked in
an expectation-value fashion as is traditionally done in SCGF or Λ-CC, using fully-correlated
states both on the right-hand and left-hand sides. Eq. (1.39

.

) would then translate into

N(τ) ≡ 〈Ψ(τ)|1|Ψ(τ)〉 , (1.47a)
H(τ) ≡ 〈Ψ(τ)|H|Ψ(τ)〉 , (1.47b)
A(τ) ≡ 〈Ψ(τ)|A|Ψ(τ)〉 , (1.47c)
Ω(τ) ≡ 〈Ψ(τ)|Ω|Ψ(τ)〉 . (1.47d)

Though the two approaches are equivalent in the exact limit, the truncation introduced in
the perturbative series have them lay out different results. Especially, the projective approach
needs additional consideration as its fundamentally asymmetric formulation introduces risks of
obtaining non-real values for the observables once truncations are made. One thus needs to
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consider both the projected form of the Schrödinger equation (Eq. (1.35

.

)) and its complex-
conjugated partner to obtain a real result, i.e. Eq. (1.45

.

), that can be rewritten as

EA0
0 = lim

τ→∞

〈Ψ(τ)|H|Φ〉
〈Ψ(τ)|Φ〉 , (1.48a)

A0 = lim
τ→∞

〈Ψ(τ)|A|Φ〉
〈Ψ(τ)|Φ〉 , (1.48b)

ΩA0
0 = lim

τ→∞

〈Ψ(τ)|Ω|Φ〉
〈Ψ(τ)|Φ〉 , (1.48c)

thus needs to be replaced by

EA0
0 ≡ lim

τ→∞

1
2

(
〈Ψ(τ)|H|Φ〉
〈Ψ(τ)|Φ〉 + 〈Φ|H|Ψ(τ)〉

〈Φ|Ψ(τ)〉

)
, (1.49a)

A0 ≡ lim
τ→∞

1
2

(
〈Ψ(τ)|A|Φ〉
〈Ψ(τ)|Φ〉 + 〈Φ|A|Ψ(τ)〉

〈Φ|Ψ(τ)〉

)
, (1.49b)

ΩA0
0 ≡ lim

τ→∞

1
2

(
〈Ψ(τ)|Ω|Φ〉
〈Ψ(τ)|Φ〉 + 〈Φ|Ω|Ψ(τ)〉

〈Φ|Ψ(τ)〉

)
. (1.49c)

Indeed, as will appear later on, while the asymmetric formulation of Eq. 1.48

.

does provide real
results for the grand potential ΩA0

0 , it is a priori not the case8

.

for the energy EA0
0 or for the

the particle number A0 that require the symmetric formulation of Eq. 1.49

.

. Eventually, the
practical approach consists of working with the first term of Eq. (1.49

.

) and taking eventually
the real part of the results, as will be done implicitly in the rest of the document. This choice
is somewhat unconventional, as practitioners traditionally work with the second. Both choices
are eventually equivalent, as they relate through a simple conjugation.

1.11. Normal ordering

The present formalism is best formulated in the quasiparticle basis introduced in Eq. (1.20

.

) by
normal ordering all operators at play with respect to |Φ〉 on the basis of Wick’s theorem [118

.

].
Taking O as an example, and as extensively discussed in Ref. [78

.

], its normal-ordered form
expressed in terms of fully antisymmetric matrix elements9

.

reads as

8The problem does not manifest in standard MBPT as will be discussed in Sec. 2.11

.

.
9Explicit expressions of Oijk1...kiki+1...ki+j

in terms of matrix elements o1N
pq , ō2N

pqrs and ō3N
pqrstu as well as matrix

elements of (U, V ) are provided in App. C.1

.

.
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1.11. Normal ordering

O ≡ O[0] +O[2] +O[4] +O[6] (1.50a)

≡ O00 +
[
O11 + {O20 +O02}

]
+
[
O22 + {O31 +O13}+ {O40 +O04}

]
(1.50b)

+
[
O33 + {O42 +O24}+ {O51 +O15}+ {O60 +O06}

]
(1.50c)

= O00 (1.50d)

+ 1
1!
∑
k1k2

O11
k1k2β

†
k1βk2 + 1

2!
∑
k1k2

{
O20
k1k2β

†
k1β
†
k2 +O02

k1k2βk2βk1

}
(1.50e)

+ 1
(2!)2

∑
k1k2k3k4

O22
k1k2k3k4β

†
k1β
†
k2βk4βk3 (1.50f)

+ 1
3!

∑
k1k2k3k4

{
O31
k1k2k3k4β

†
k1β
†
k2β
†
k3βk4 +O13

k1k2k3k4β
†
k1βk4βk3βk2

}
(1.50g)

+ 1
4!

∑
k1k2k3k4

{
O40
k1k2k3k4β

†
k1β
†
k2β
†
k3β
†
k4 +O04

k1k2k3k4βk4βk3βk2βk1

}
(1.50h)

+ 1
(3!)2

∑
k1k2k3k4k5k6

O33
k1k2k3k4k5k6β

†
k1β
†
k2β
†
k3βk6βk5βk4 (1.50i)

+ 1
2! 4!

∑
k1k2k3k4k5k6

{
O42
k1k2k3k4k5k6β

†
k1β
†
k2β
†
k3β
†
k4βk6βk5 +O24

k1k2k3k4k5k6β
†
k1β
†
k2βk6βk5βk4βk3

}
(1.50j)

+ 1
5!

∑
k1k2k3k4k5k6

{
O51
k1k2k3k4k5k6β

†
k1β
†
k2β
†
k3β
†
k4β
†
k5βk6 +O15

k1k2k3k4k5k6β
†
k1βk6βk5βk4βk3βk2

}
(1.50k)

+ 1
6!

∑
k1k2k3k4k5k6

{
O60
k1k2k3k4k5k6β

†
k1β
†
k2β
†
k3β
†
k4β
†
k5β
†
k6 +O06

k1k2k3k4k5k6βk6βk5βk4βk3βk2βk1

}
,

(1.50l)

where

1. Each term Oij is characterized by its number i (j) of quasiparticle creation (annihilation)
operators. Because O has been normal-ordered with respect to |Φ〉, all quasiparticle
creation operators (if any) are located to the left of all quasiparticle annihilation operators
(if any). The class O[2k] groups all the terms Oij of effective k-body character, i.e., with
i+ j = 2k. The first contribution

O[0] = O00 = 〈Φ|O|Φ〉
〈Φ|Φ〉 (1.51)

denotes the fully contracted part of O and is nothing but a (real) number.

2. The subscripts of the matrix elements Oij
k1...kiki+1...ki+j are ordered sequentially, indepen-

dently of the creation or annihilation character of the operators the indices refer to. While
quasiparticle creation operators themselves also follow sequential order, quasiparticle
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1. Basic ingredients

annihilation operators follow inverse sequential order. In Eq. (1.50f

.

), for example, the two
creation operators are ordered β†k1β

†
k2 while the two annihilation operators are ordered

βk4βk3 .

3. Matrix elements are fully antisymmetric, i.e.

Oij
k1...kiki+1...ki+j = (−1)σ(P )Oij

P (k1...ki|ki+1...ki+j) , (1.52)

where σ(P ) refers to the signature of the permutation P . The notation P (. . . | . . .)
denotes a separation into the i quasiparticle creation operators and the j quasiparticle
annihilation operators such that permutations are only considered between members of
the same group.

4. As each O[k] component is hermitian, matrix elements exhibit the following behavior
under hermitian conjugation

O11
k1k2 = O11∗

k2k1 , (1.53a)
O20
k1k2 = O02∗

k1k2 , (1.53b)
O22
k1k2k3k4 = O22∗

k3k4k1k2 , (1.53c)
O31
k1k2k3k4 = O13∗

k4k1k2k3 , (1.53d)
O40
k1k2k3k4 = O04∗

k1k2k3k4 , (1.53e)
O33
k1k2k3k4k5k6 = O33∗

k4k5k6k1k2k3 , (1.53f)
O42
k1k2k3k4k5k6 = O24∗

k5k6k1k2k3k4 , (1.53g)
O51
k1k2k3k4k5k6 = O15∗

k6k1k2k3k4k5 , (1.53h)
O60
k1k2k3k4k5k6 = O06∗

k1k2k3k4k5k6 . (1.53i)

The normal-ordered form of each operator of interest, i.e. H, Ω, A or A2, is obtained in this
way.10

.

The operator kernel can be split into various contributions associated with its normal-ordered
components, i.e.

O(τ) ≡ O00(τ) (1.54a)
+O20(τ) +O11(τ) +O02(τ) (1.54b)
+O40(τ) +O31(τ) +O22(τ) +O13(τ) +O04(τ) (1.54c)
+O60(τ) +O51(τ) +O42(τ) +O33(τ) +O24(τ) +O15(τ) +O06(τ) , (1.54d)

having trivially that O00(τ) = O00N(τ).

1.12. Diagrammatic representation of an operator
Normal-ordered operators in the Schrödinger representation can be displayed diagrammatically.
Taking a generic operator, the grand potential and the particle-number operators as typical
10Explicit expressions of the different operators are provided in App. C

.

.
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cases of interest, canonical diagrams representing their normal-ordered contributions Oij, Ωij

and Aij are shown in Figs. 1.1

.

, 1.2

.

and 1.3

.

, respectively. Such a representation based on fully-
antisymetrized vertices compacted into a point characterizes so-called Hugenholtz diagrams.
Focusing on O as an example, the various diagrams contributing to it must be understood in
the following way.

1. The factor Oij
k1...kiki+1...ki+j must be associated to the dot vertex, where i denotes the

number of lines traveling out of the vertex and representing quasiparticle creation
operators while j denotes the number of lines traveling into the vertex and representing
quasiparticle annihilation operators.

2. A factor 1/[i!j!] must multiply Oij
k1...kiki+1...ki+j given that the corresponding diagram

contains j equivalent ingoing lines and i equivalent outgoing lines.

3. In the canonical representation used in Figs. 1.1

.

, 1.2

.

and 1.3

.

, all oriented lines go up, i.e.
lines representing quasiparticle creation (annihilation) operators appear above (below)
the vertex. Accordingly, indices k1 . . . ki must be assigned consecutively from the leftmost
to the rightmost line above the vertex, while ki+1 . . . ki+j must be similarly assigned
consecutively for lines below the vertex.

4. In the diagrammatic representation at play in the many-body formalism designed below,
it is possible for a line to propagate downwards. This can be obtained unambiguously
starting from the canonical representation given in Figs. 1.1

.

, 1.2

.

and 1.3

.

at the price of
adding a specific rule. As illustrated in Fig. 1.4

.

for the diagram representing O22, lines
must only be rotated through the right of the diagram, i.e. going through the dashed
line, while it is forbidden to rotate them through the full line. Additionally, a minus sign
must be added to the amplitude Oij

k1...kiki+1...ki+j associated with the canonical diagram
each time two lines cross as illustrated in Fig. 1.4

.

.

Now that the necessary ingredients have been carefully introduced, one can derive the
specific formulation of the norm and energy kernel in the framework of Bogoliubov many-body
perturbation theory.
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1. Basic ingredients

O[0] =
O00

O[2] =

O11

+

O20

+

O02

O[4] =

O22

+

O31

+

O13

+

O40

+

O04

O[6] =

O33

+

O42

+

O24

+

O51

+

O15

+

O60

+

O06

Figure 1.1. Canonical diagrammatic representation of normal-ordered contributions to the
operator O in the Schrödinger representation.

Ω[0] =
Ω00

Ω[2] =

Ω11

+

Ω20

+

Ω02

Ω[4] =

Ω22

+

Ω31

+

Ω13

+

Ω40

+

Ω04

Ω[6] =

Ω33

+

Ω42

+

Ω24

+

Ω51

+

Ω15

+

Ω60

+

Ω06

Figure 1.2. Canonical diagrammatic representation of normal-ordered contributions to the
grand potential operator Ω in the Schrödinger representation.
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1.12. Diagrammatic representation of an operator

A[0] =
A00

A[2] =

A11

+

A20

+

A02

Figure 1.3. Canonical diagrammatic representation of the normal-ordered contributions to
the particle-number operator A in the Schrödinger representation.

k1 k2

k3 k4

+O22
k1k2k3k4 =

k3 k4 k2
k1

+O22
k1k2k3k4 =

k3 k2 k4
k1

−O22
k1k2k3k4 =

k2 k1 k3
k4

+O22
k1k2k3k4

Figure 1.4. Rules to apply when departing from the canonical diagrammatic representation
of a normal-ordered operator. Oriented lines can be rotated through the dashed line but not
through the full line.
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2. Perturbation theory
The necessary ingredients having been introduced in Chap. 1

.

, the present chapter presents
the Bogoliubov many-body perturbation theory formalism. Diagrammatic and algebraic
contributions are derived up to second order, and connections with closed-shell many-body
perturbation theory and Bogoliubov coupled cluster are discussed.

2.1. Unperturbed system
2.1.1. Splitting of the grand potential
The grand potential is split into an unperturbed part Ω0 and a residual part Ω1

Ω = Ω0 + Ω1 , (2.1)
such that

Ω0 ≡ Ω00 + Ω̄11 , (2.2a)
Ω1 ≡ Ω20 + Ω̆11 + Ω02

+ Ω40 + Ω31 + Ω22 + Ω13 + Ω04

+ Ω60 + Ω51 + Ω42 + Ω33 + Ω24 + Ω15 + Ω06 , (2.2b)

where Ω̆11 ≡ Ω11 − Ω̄11. The term Ω̄11 has the same formal structure as Ω11 and remains to be
specified.
We decided in the present chapter as well as in Chap. 4

.

to follow the typical procedure in
the nuclear physics community, that consists of truncating the normal-ordered Hamiltonian
by excluding Ω[6] such that the dominant effect of the three-nucleon interaction is taken into
account through its contribution to Ω[p] with p ≤ 4. Such a truncation is justified by the high
computational cost of treating the three-body interaction in full. This procedure is shown to
work well in mid-mass closed-shell nuclei, and the quality of the approximation has been the
topic of a few studies [130

.

, 131

.

].
For a given number of interacting fermions, the key is to choose Ω0 with a low-enough

symmetry for its ground state |Φ〉 to be non-degenerate with respect to elementary excitations.
For open-shell superfluid nuclei, this leads to choosing an operator Ω0 that breaks particle
number conservation, i.e. while Ω commutes with U(1) transformations, we are interested in
the case where Ω0, and thus Ω1, do not commute with S(ϕ), i.e.

[Ω0, S(ϕ)] 6= 0 , (2.3a)
[Ω1, S(ϕ)] 6= 0 . (2.3b)

In this context, the vacuum |Φ〉 is a Bogoliubov state; i.e. a deformed product state in gauge
space that is not an eigenstate of A and thus it spans several IRREPs of U(1).
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2. Perturbation theory

2.1.2. Eigenbasis of Ω0

The operator Ω0 is written in diagonal form in terms of its one quasi-particle eigenstates

Ω0 ≡ Ω00 +
∑
k

Ekβ
†
kβk , (2.4)

with Ek > 0 for all k. Introducing many-body states generated via all possible combinations of
quasi-particle excitations1

.

of the vacuum

|Φk1k2...〉 ≡ β†k1 β
†
k2 . . . |Φ〉 , (2.5)

the unperturbed system is fully characterized over Fock space by its complete set of eigenstates

Ω0 |Φ〉 = Ω00 |Φ〉 , (2.6a)
Ω0 |Φk1k2...〉 =

[
Ω00+Ek1 +Ek2 +. . .

]
|Φk1k2...〉 . (2.6b)

Equation (2.6

.

) is indeed obtained via

Ω0 |Φ〉 = Ω00 |Φ〉+
∑
k

Ekβ
†
kβk|Φ〉

= Ω00 |Φ〉

as βk annihilate the vacuum, and similarly via

Ω0|Φk1k2...〉 = Ω00|Φk1k2...〉+
∑
k

Ekβ
†
kβk|Φk1k2...〉

= Ω00|Φk1k2...〉+
∑
k

Ekβ
†
kβkβ

†
k1β
†
k2 . . . |Φ〉

= Ω00|Φk1k2...〉+
∑
k

Ek

∑
ki

δkki

 |Φk1k2...〉

=
[
Ω00+Ek1 +Ek2 +. . .

]
|Φk1k2...〉 .

As mentioned above, the Bogoliubov vacuum |Φ〉 necessarily possesses a closed-shell character
with respect to elementary (i.e. quasi-particle) excitations. This means that there exists a
finite energy gap between the vacuum state and the lowest two quasi-particle excitations,
i.e. Ek1 + Ek2 ≥ 2∆F > 0 for all (k1, k2), where ∆F ≡ mink1,k2 (Ek1 + Ek2) /2 is traditionally
characterized as the pairing gap. The strict positivity of unperturbed excitations Ek1k2... ≡
Ek1 + Ek2 + . . . characterizes the lifting of the particle-hole degeneracy authorized by the
spontaneous breaking of U(1) symmetry in open-shell nuclei at the mean-field level.

Although Bogoliubov states do not carry a definite particle number, it is still useful to discuss
the spectroscopic content associated with |Φ〉. Let us consider states with a given number

1The present many-body formalism only requires to consider Bogoliubov states with a given, i.e. odd or even,
number parity. As such, Bogoliubov states involved necessarily differ from one another by an even number
of quasi-particle excitations.
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2.1. Unperturbed system

of quasi-particles |Φk1k2...〉, and prove that only one-quasi-particle states can have non-zero
spectroscopic factors associated with one-nucleon addition or removal processes

F+
k1k2... =

∑
p

〈Φ|cp|Φk1k2...〉〈Φk1k2...|c†p|Φ〉

=
∑
p

〈Φ|cpβ†k1 β
†
k2 . . . |Φ〉〈Φ| . . . βk2 βk1c

†
p|Φ〉

=
∑
p

〈Φ|
∑
k

(
Upkβk + V ∗pkβ

†
k

)
β†k1 β

†
k2 . . . |Φ〉〈Φ| . . . βk2 βk1

∑
k′

(
Vpk′βk′ + U∗pk′β

†
k′

)
|Φ〉

=
∑
p

[∑
k

Upk〈Φ|βkβ†k1 β
†
k2 . . . |Φ〉

] [∑
k′
U∗pk′〈Φ| . . . βk2 βk1β

†
k′|Φ〉

]

=
∑
p

∑
k

Upk
∑
kj

δkkj〈Φ|
∏
ki 6=kj

β†ki |Φ〉
 ∑

k′
U∗pk′

∑
kj

δk′kj〈Φ|
∏
ki 6=kj

βki |Φ〉
 .

One notices that the previous expression vanishes, unless k, k′ ∈ {k1, k2, ...}. Furthermore, if
the set of quasi-particle excitations does not reduce to one-quasi-particle states, i.e. if the set of
ki 6= kj contains a least one element, the associated βi (respectively β†i ) annihilates the vacuum
to its right (respectively to its left). Hence the only non-zero spectroscopic factors correspond
to one-quasi-particle states, and the previous expression reduces to

F+
kj

=
∑
p

[∑
k

Upkδkkj〈Φ|Φ〉
] [∑

k′
U∗pk′δk′kj〈Φ|Φ〉

]

=
∑
p

∣∣∣Upkj ∣∣∣2 .

A similar result is obtained for F−k1k2.... Spectroscopic factors for the addition (removal) of a
nucleon are denoted by F+

k (F−k ) and thus read as [132

.

]

F+
k ≡

∑
p

〈Φ|cp|Φk〉〈Φk|c†p|Φ〉 =
∑
p

|Upk|2 , (2.7a)

F−k ≡
∑
p

〈Φ|c†p|Φk〉〈Φk|cp|Φ〉 =
∑
p

|Vpk|2 , (2.7b)

where the odd number-parity states |Φk〉 ≡ β†k|Φ〉 describe the A± 1 systems.
The total binding energy E0 is obtained through the normal ordering of Ω with respect to |Φ〉

given that Ω00 = H00 − λA00 = E0 − λA (see Eqs. (C.2a

.

) and (C.5

.

)). The energy can also be
computed from the Galitskii-Koltun sum rule at play in self-consistent Gorkov-Green’s function
theory [95

.

]. This alternative formulation provides a check for consistency and convergence in
the solution of the Bogoliubov equations, and can be written under the form of a trace over
the one-body Hilbert space H1, i.e.

Ω00 = + 1
4πi

∫
C

dω
∑
pq

{
G11(0)
qp (ω) [Tpq − λδpq + ωδpq]

}
− 1

6
∑
pq

{
Γ3N
qp ρpq + ∆3N

qp κ
∗
pq

}
, (2.8)

where G11(0)(ω) denotes the Bogoliubov approximation to the normal Gorkov propagator2

.

[95

.

],
while the second term represents the explicit correction to the standard Galitskii-Koltun sum

2This propagator must not be confused with the soon-to-be-introduced unperturbed propagator used in the
BMBPT formalism.
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2. Perturbation theory

rule due to the presence of three-nucleon forces [56

.

]. The explicit expressions of the Hartree-
Fock Γ3N and Bogoliubov ∆3N fields associated with the three-nucleon force contribution are
provided in App. C.2

.

. Writing G11(0)(ω) in its Lehmann representation

G11(0)
pq (ω) =

∑
k

UpkU
∗
qk

ω − Ek + iη
+

V ∗pkVqk

ω + Ek − iη
, (2.9)

where η is an infinitesimally small positive parameter, the contour integral in Eq. (2.8

.

) is
effected over the upper-half plan to obtain

E0 = +1
2
∑
pq

tpq ρqp −
1
2
∑
k

(Ek − λ) F−k −
1
6
∑
pq

[
Γ3N
pq ρqp + ∆3N

pq κ
∗
qp

]
. (2.10)

2.1.3. Hartree-Fock-Bogoliubov reference state
The expressions thus far have been formulated for an arbitrary Bogoliubov vacuum (Eq. (1.26

.

)).
In practical applications, one must specify how the quasi-particle operators {βk; β†k} and
energies {Ek} entering Eq. (2.4

.

) are determined. This corresponds to fixing the Bogoliubov
transformation W (Eq. (1.23

.

)), and thus |Φ〉, along with Ω̄11. Several choices are possible for
|Φ〉: a Brueckner reference state which maximizes the overlap with the true ground state [133

.

],
a simple BCS state, or the solution of the variational problem, i.e. the Bogoliubov vacuum
|ΦHFB〉 that solves self-consistent Hartree-Fock-Bogoliubov (HFB) equations [109

.

] under a set
of symmetry requirements so that |ΦHFB〉 minimizes Ω00. We focus here on the last option.
The HFB approach invokes Ritz’ variational principle to minimize the energy under the

constraint that 〈Φ|A|Φ〉 = A0 via

δ
〈Φ|Ω|Φ〉
〈Φ|Φ〉 = 0 , (2.11)

where small variations of the wavefunction |δΦ〉 are considered under the constraint that the
state remains a Bogoliubov product state. Since the chosen wavefunction |Φ′〉 = |Φ〉+ |δΦ〉 is
non-orthogonal to |Φ〉, Thouless’ theorem [128

.

] states that |Φ′〉 can be expressed under the
form

|Φ′〉 = 〈Φ|Φ′〉 exp
(1

2
∑
kk′
Zkk′β†kβ

†
k′

)
|Φ〉 , (2.12)

where Z is a skew-symmetric matrix whose independent matrix elements constitute the
variational parameters. Employing Eqs. (2.11

.

) and (2.12

.

) and truncating to second order in
the expansion leads to
〈Φ′|Ω|Φ′〉
〈Φ′|Φ′〉 = Ω00 + 1

2
∑
k1k2

(
Ω20
k1k2Z

∗
k1k2 + Ω02

k1k2Zk1k2

)
+ 1

8
∑

k1k2k3k4

(
Ω40
k1k2k3k4Z

∗
k1k2Z

∗
k3k4 + Ω04

k1k2k3k4Zk1k2Zk3k4 + 2Ω22
k1k2k3k4Z

∗
k1k2Zk3k4

)
.

(2.13)

The variation with respect to Z∗k1k2 yields, for all (k1, k2),

∂

∂Z∗k1k2

〈Φ′|Ω|Φ′〉
〈Φ′|Φ′〉

∣∣∣∣∣
Z=0

= Ω20
k1k2 = 0 , (2.14)
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2.2. Unperturbed propagator

with a complementary equation for the variation with respect to Zk1k2 to produce

Ω02
k1k2 = 0 . (2.15)

The requirements Ω20
k1k2 = Ω02

k1k2 = 0 do not constrain the form of Ω11
k1k2 . However, the additional

requirement to make Ω11 diagonal such that Ω11
k1k2 = δk1k2Ek1 allows one to find the variational

solution via the diagonalization of the matrix

Hqp ≡
(

Ω11 Ω20

−Ω02 −Ω11

)
. (2.16)

Transforming back to the single-particle basis of Eq. (1.20

.

) provides the usual form of the HFB
Hamiltonian matrix

HHFB =WHqpW† =
(
h− λ ∆
−∆∗ −(h− λ)∗

)
, (2.17)

where h and ∆ are defined in Eq. (C.5

.

), such that finding the variational minimum amounts
to solving the so-called HFB eigenvalue equation [109

.

](
h− λ ∆
−∆∗ −(h− λ)∗

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
, (2.18)

where columns (Uk, Vk) of the U and V matrices determine the quasiparticle operators {βk; β†k}
of Eq. (1.20

.

).
In practical applications, the HFB solution will be utilized as the Bogoliubov vacuum. This

corresponds to working within a Møller-Plesset scheme. While this choice conveniently leads to
canceling Ω20 and Ω02 in Ω while setting Ω̄11 = Ω11 so that Ω̆11 = 0, we do not impose this choice
a priori in order to design the formalism in its general Rayleigh-Schrödinger form. Therefore, a
general Bogoliubov vacuum is used to derive Bogoliubov MBPT equations. Eventually, the
Møller-Plesset scheme can be obtained by imposing the above choice for Ω20, Ω02, Ω̄11 and Ω̆11.
The careful reader of Eq. (2.18

.

) will have noticed that the HFB equation returns 2n
eigenvalues Ek, with n the dimension of the one-body Hilbert space H1. However, those
eigenvalues come in pairs, with n positive eigenvalues +Ek and their n negative counterparts
−Ek [134

.

]. The lowest HFB solution of even number parity is actually obtained by only
conserving positive eigenvalues +Ek and their associated (Uk, Vk) vector when building the
density matrices ρ and κ as well as the fields h and ∆.

2.2. Unperturbed propagator
Quasi-particle creation and annihilation operators read in the interaction representation as

βk (τ) ≡ e+τΩ0 βk e
−τΩ0 = e−τEk βk , (2.19a)

β†k (τ) ≡ e+τΩ0 β†k e
−τΩ0 = e+τEk β†k . (2.19b)

The generalized unperturbed one-body propagator is introduced as a 2 × 2 matrix in
Bogoliubov space

G0 ≡
(
G+−(0) G−−(0)

G++(0) G−+(0)

)
, (2.20)

31



2. Perturbation theory
k1 τ1

k2 τ2

k1 τ1

k2 τ2

k1 τ1

k2 τ2

k1 τ1

k2 τ2

G
+−(0)
k1k2 (τ1, τ2) G

−−(0)
k1k2 (τ1, τ2) G

++(0)
k1k2 (τ1, τ2) G

−+(0)
k1k2 (τ1, τ2)

Figure 2.1. Diagrammatic representation of the four unperturbed elementary one-body propa-
gators Ggg′(0). The association between the propagators and their diagrammatic representation
is presently obtained by reading the diagram from top to bottom.

whose four components are defined through their matrix elements in the quasi-particle basis
{βk; β†k} according to

G
+−(0)
k1k2 (τ1, τ2) ≡

〈Φ|T[β†k1(τ1)βk2(τ2)]|Φ〉
〈Φ|Φ〉 , (2.21a)

G
−−(0)
k1k2 (τ1, τ2) ≡ 〈Φ|T[βk1(τ1)βk2(τ2)]|Φ〉

〈Φ|Φ〉 , (2.21b)

G
++(0)
k1k2 (τ1, τ2) ≡

〈Φ|T[β†k1(τ1)β†k2(τ2)]|Φ〉
〈Φ|Φ〉 , (2.21c)

G
−+(0)
k1k2 (τ1, τ2) ≡

〈Φ|T[βk1(τ1)β†k2(τ2)]|Φ〉
〈Φ|Φ〉 , (2.21d)

where T denotes the time-ordering operator, i.e. it orders a product of operators depending
on their time labels in decreasing order (larger times to the left) and multiplies it with the
signature of the permutation used to achieve the corresponding reordering. For example,
considering two time-dependent operators A(t) and B(t), one has

T [A(t1)B(t2)] = θ(t1 − t2)A(t1)B(t2)− θ(t2 − t1)B(t2)A(t1) . (2.22)

The diagrammatic representation of the four elementary propagators Ggg′(0), with g ≡ ± and
g′ ≡ ±, is provided in Fig. 2.1

.

. The two propagators with g = g′ are said to be anomalous as
they involve two quasi-particle operators of the same kind, i.e. two creation or two annihilation
operators. Contrarily, the two propagators with g 6= g′ are said to be normal. The above
definition of propagators implies the relations

G
+−(0)
k1k2 (τ1, τ2) = −G−+(0)

k2k1 (τ2, τ1) , (2.23a)
G
−−(0)
k1k2 (τ1, τ2) = −G−−(0)

k2k1 (τ2, τ1) , (2.23b)
G

++(0)
k1k2 (τ1, τ2) = −G++(0)

k2k1 (τ2, τ1) . (2.23c)

It is to be noted that, as Eq. (2.23a

.

) translates an antisymmetry relation between G+−(0) and
G−+(0), it allows to eventually consider only one of the two normal propagators in diagrammatic
representations, once the reading direction has been fixed at the price of introducing minus
signs.
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2.3. Expansion of the evolution operator

Combining Eqs. (1.30

.

) and (2.19

.

), together with the vacuum character of |Φ〉, one obtains

G
+−(0)
k1k2 (τ1, τ2) =

〈Φ|T[β†k1(τ1)βk2(τ2)]|Φ〉
〈Φ|Φ〉

= +θ(τ1 − τ2)
〈Φ|β†k1(τ1)βk2(τ2)|Φ〉

〈Φ|Φ〉 − θ(τ2 − τ1)
〈Φ|βk2(τ2)β†k1(τ1)|Φ〉

〈Φ|Φ〉

= +θ(τ1 − τ2)eτ1Ek1e−τ2Ek2
〈Φ|β†k1βk2 |Φ〉
〈Φ|Φ〉 − θ(τ2 − τ1)eτ1Ek1e−τ2Ek2

〈Φ|βk2β
†
k1 |Φ〉

〈Φ|Φ〉
= +θ(τ1 − τ2)eτ1Ek1e−τ2Ek2R+−

k1k2 − θ(τ2 − τ1)eτ1Ek1e−τ2Ek2R−+
k2k1

= −θ(τ2 − τ1)eτ1Ek1e−τ2Ek2δk2k1

= −θ(τ2 − τ1)e−(τ2−τ1)Ek1δk1k2 .

Proceeding similarly for the other propagators, one finally obtains

G
+−(0)
k1k2 (τ1, τ2) = −e−(τ2−τ1)Ek1θ(τ2 − τ1)δk1k2 , (2.24a)

G
−−(0)
k1k2 (τ1, τ2) = 0 , (2.24b)

G
++(0)
k1k2 (τ1, τ2) = 0 , (2.24c)

G
−+(0)
k1k2 (τ1, τ2) = +e−(τ1−τ2)Ek1θ(τ1 − τ2)δk1k2 , (2.24d)

in agreement with Eq. (2.23a

.

). We observe the important fact that BMBPT worked out in the
quasi-particle basis does not involve anomalous propagators.

The equal-time unperturbed propagator deserves special attention. Equal-time propagators
will solely arise from contracting two quasi-particle operators belonging to the same normal-
ordered operator displaying creation operators to the left of annihilation ones. In both
G

+−(0)
k1k2 (τ, τ) and G−+(0)

k1k2 (τ, τ), this necessarily leads to selecting a contraction associated with
R+− that is identically zero. As a result, no equal-time contraction, and thus no contraction of
an interaction vertex onto itself, can occur.

2.3. Expansion of the evolution operator
The imaginary-time evolution operator U(τ) defined in Eq. (1.32

.

) can be expanded in powers
of Ω1. Taking τ real, one writes

U(τ) ≡ e−τΩ0 U1(τ) (2.25)

such that
U1(τ) = eτΩ0 e−τ(Ω0+Ω1) , (2.26)

and thus
∂τU1(τ) = −eτΩ0 Ω1 e

−τΩ0 U1(τ) . (2.27)

The formal solution to Eq. (2.27

.

) reads

U1(τ) = Te−
∫ τ

0 dtΩ1(t) , (2.28)
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2. Perturbation theory

with the initial condition that U1(0) = U(0) = 1 and where Ω1(τ) defines the perturbation in
the interaction representation3

.

Ω1(τ) ≡ eτΩ0 Ω1 e
−τΩ0 . (2.29)

Eventually, the full solution reads as

U(τ) = e−τΩ0 Te−
∫ τ

0 dτΩ1(τ) . (2.30)

2.4. Norm kernel

2.4.1. Perturbative expansion
Expressing Ω1 in the eigenbasis of Ω0 and expanding the exponential in Eq. (2.30

.

) in power
series, one obtains the perturbative expansion of the time-dependent norm kernel

N(τ) = 〈Φ|U(τ)|Φ〉
= 〈Φ|e−τΩ0U1(t)|Φ〉

= e−τΩ00〈Φ|Te−
∫ τ

0 dtΩ1(t)|Φ〉

= e−τΩ00〈Φ|
{

1−
∫ τ

0
dτ1Ω1 (τ1) + 1

2!

∫ τ

0
dτ1dτ2T [Ω1 (τ1) Ω1 (τ2)] + ...

}
|Φ〉

= e−τΩ00
{ ∞∑
p=0

(−1)p
p!

∑
i1+j1=2,4

...
ip+jp=2,4

∫ τ

0
dτ1 . . . dτp

∑
k1...ki1

ki1+1...ki1+j1...
l1...lip

lip+1...lip+jp

Ωi1j1
k1...ki1ki1+1...ki1+j1

(i1)!(j1)! . . .
Ωipjp
l1...lip lip+1...lip+jp

(ip)!(jp)!

× 〈Φ|T
[
β†k1 (τ1) . . . β†ki1 (τ1) βki1+j1

(τ1) . . . βki1+1 (τ1) . . .

. . . β†l1 (τp) . . . β†lip (τp) βlip+jp (τp) . . . βlip+1 (τp)
]
|Φ〉

}
, (2.31)

where Ω̆11 must be understood in place of Ω11 whenever necessary.
Thanks to time-dependent Wick’s theorem [118

.

], each matrix element of products of time-
dependent field operators appearing in Eq. (2.31

.

) can be expressed as the sum of all possible
systems of products of elementary contractions Ggg′(0)

k1k2 (τ1, τ2) (Eqs. (2.21

.

-2.24

.

)), eventually
multiplied by the unperturbed norm kernel 〈Φ|Φ〉. As discussed at length in the following,
the corresponding set of algebraic contributions can be put in full correspondence with a
diagrammatic representation.

3A time-dependent operator O(τ) = U−1
0 (τ)OU0(τ) in the interaction representation, with U(τ) = U0(τ)U1(τ),

should not be confused with the time-dependent kernel O(τ) = 〈Φ|U(τ)O|Φ〉 of that operator as defined in
Eq. (1.38

.

). In general, the situation is transparent enough to avoid the confusion.
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2.4. Norm kernel

2.4.2. Extraction of the diagrammatic rules

As discussed in the introduction, the pedestrian application of Wick’s theorem becomes quickly
cumbersome as the order p increases. Furthermore, it leads to computing independently many
contributions that are in fact identical. By identifying the corresponding pattern, one can
design a diagrammatic representation of the various contributions and evaluate their algebraic
expressions such that a single diagram captures all identical contributions at once. In order to
achieve this goal, one must first introduce the diagrammatic representation of the building
blocks.

Let us now derive simple contributions to the norm kernel (Eq. 2.31

.

) to infer some of the
diagrammatic rules that are eventually needed to determine all contributions systematically.

First order One first focuses on first-order contributions, i.e. terms characterized by p = 1
in Eq. ((2.31

.

)). Expanding Ω1 in terms of its normal-ordered contributions (Eq. (2.2b

.

)) and
applying Wick’s theorem leads to4

.

N (1)(τ) = −
∫ τ

0
dτ1〈Φ|Ω1(τ1)|Φ〉

= −
∫ τ

0
dτ1

∑
k1k2

Ω̆11
k1k2

1! 1! 〈Φ|T
[
β†k1(τ1)βk2(τ1)

]
|Φ〉

+
∑
k1k2

Ω20
k1k2

2! 0! 〈Φ|T
[
β†k1(τ1)β†k2(τ1)

]
|Φ〉+

∑
k1k2

Ω02
k1k2

0! 2! 〈Φ|T
[
βk2(τ1)βk1(τ1)

]
|Φ〉

+
∑

k1k2k3k4

Ω22
k1k2k3k4

2! 2! 〈Φ|T
[
β†k1(τ1)β†k2(τ1)βk4(τ1)βk3(τ1)

]
|Φ〉

+
∑

k1k2k3k4

Ω31
k1k2k3k4

3! 1! 〈Φ|T
[
β†k1(τ1)β†k2(τ1)β†k3(τ1)βk4(τ1)

]
|Φ〉

+
∑

k1k2k3k4

Ω13
k1k2k3k4

1! 3! 〈Φ|T
[
β†k1(τ1)βk4(τ1)βk3(τ1)βk2(τ1)

]
|Φ〉

+
∑

k1k2k3k4

Ω40
k1k2k3k4

4! 0! 〈Φ|T
[
β†k1(τ1)β†k2(τ1)β†k3(τ1)β†k4(τ1)

]
|Φ〉

+
∑

k1k2k3k4

Ω04
k1k2k3k4

0! 4! 〈Φ|T
[
βk4(τ1)βk3(τ1)βk2(τ1)βk1(τ1)

]
|Φ〉



4We omit here and in similar developments the factor e−τΩ00 (see Eq. (2.31

.

)), which will be brought back
later.
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2. Perturbation theory

= −
∫ τ

0
dτ1

∑
k1k2

Ω̆11
k1k2G

+−(0)
k1k2 (τ1, τ1)

+ 1
2
∑
k1k2

Ω20
k1k2G

++(0)
k1k2 (τ1, τ1) + 1

2
∑
k1k2

Ω02
k1k2G

−−(0)
k2k1 (τ1, τ1)

+ 1
4

∑
k1k2k3k4

Ω22
k1k2k3k4

(
G

++(0)
k1k2 (τ1, τ1)G−−(0)

k4k3 (τ1, τ1)

−G+−(0)
k1k4 (τ1, τ1)G+−(0)

k2k3 (τ1, τ1)
+G+−(0)

k1k3 (τ1, τ1)G+−(0)
k2k4 (τ1, τ1)

)
+ 1

3!
∑

k1k2k3k4

Ω31
k1k2k3k4

(
G

++(0)
k1k2 (τ1, τ1)G+−(0)

k3k4 (τ1, τ1)

−G++(0)
k1k3 (τ1, τ1)G+−(0)

k2k4 (τ1, τ1)
+G+−(0)

k1k4 (τ1, τ1)G++(0)
k2k3 (τ1, τ1)

)
+ 1

3!
∑

k1k2k3k4

Ω13
k1k2k3k4

(
G

+−(0)
k1k4 (τ1, τ1)G−−(0)

k3k2 (τ1, τ1)

−G+−(0)
k1k3 (τ1, τ1)G−−(0)

k4k2 (τ1, τ1)
+G+−(0)

k1k2 (τ1, τ1)G−−(0)
k4k3 (τ1, τ1)

)
+ 1

4!
∑

k1k2k3k4

Ω40
k1k2k3k4

(
G

++(0)
k1k2 (τ1, τ1)G++(0)

k3k4 (τ1, τ1)

−G++(0)
k1k3 (τ1, τ1)G++(0)

k2k4 (τ1, τ1)
+G++(0)

k1k4 (τ1, τ1)G++(0)
k2k3 (τ1, τ1)

)
+ 1

4!
∑

k1k2k3k4

Ω04
k1k2k3k4

(
G

++(0)
k4k3 (τ1, τ1)G++(0)

k2k1 (τ1, τ1)

−G++(0)
k4k2 (τ1, τ1)G++(0)

k3k1 (τ1, τ1)

+G++(0)
k4k1 (τ1, τ1)G++(0)

k3k2 (τ1, τ1)
)

= 0 , (2.32)

as equal-time propagators are identically zero. One recovers the results of Eq. (2.24

.

), i.e.
normal-ordered operator vertices cannot form contractions with themselves, and thus, the
first-order contribution to the norm kernel is zero.
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2.4. Norm kernel

Second order Let us now consider the second-order contribution to the norm kernel, i.e.
p = 1, 2 in Eq. (2.31

.

). Applying Wick’s theorem leads to

N (2)(τ) = N (1)(τ) + 1
2!

∫ τ

0
dτ1dτ2〈Φ|T [Ω1(τ1)Ω1(τ2)] |Φ〉

= 1
2!

∫ τ

0
dτ1dτ2

 ∑
k1k2l1l2

Ω̆11
k1k2

1! 1!
Ω̆11
l1l2

1! 1! 〈Φ|T
[
β†k1(τ1)βk2(τ1)β†l1(τ2)βl2(τ2)

]
|Φ〉

+
∑

k1k2l1l2

Ω02
k1k2

0! 2!
Ω20
l1l2

2! 0! 〈Φ|T
[
βk2(τ1)βk1(τ1)β†l1(τ2)β†l2(τ2)

]
|Φ〉

+
∑

k1k2l1l2

Ω20
k1k2

2! 0!
Ω02
l1l2

0! 2! 〈Φ|T
[
β†k1(τ1)β†k2(τ1)βl2(τ2)βl1(τ2)

]
|Φ〉

+
∑

k1k2l1l2

Ω̆11
k1k2

1! 1!
Ω02
l1l2

0! 2! 〈Φ|T
[
β†k1(τ1)βk2(τ1)βl2(τ2)βl1(τ2)

]
|Φ〉

+
∑

k1k2l1l2

Ω̆11
k1k2

1! 1!
Ω20
l1l2

2! 0! 〈Φ|T
[
β†k1(τ1)βk2(τ1)β†l1(τ2)β†l2(τ2)

]
|Φ〉

+
∑

k1k2l1l2

Ω20
k1k2

2! 0!
Ω̆11
l1l2

1! 1! 〈Φ|T
[
β†k1(τ1)β†k2(τ1)β†l1(τ2)βl2(τ2)

]
|Φ〉

+
∑

k1k2l1l2

Ω02
k1k2

0! 2!
Ω̆11
l1l2

1! 1! 〈Φ|T
[
βk2(τ1)βk1(τ1)β†l1(τ2)βl2(τ2)

]
|Φ〉

+
∑

k1k2l1l2

Ω02
k1k2

0! 2!
Ω02
l1l2

0! 2! 〈Φ|T
[
βk2(τ1)βk1(τ1)βl2(τ2)βl1(τ2)

]
|Φ〉

+
∑

k1k2l1l2

Ω20
k1k2

2! 0!
Ω20
l1l2

2! 0! 〈Φ|T
[
β†k1(τ1)β†k2(τ1)β†l1(τ2)β†l2(τ2)

]
|Φ〉

+ . . .

 , (2.33)

where dots indicate remaining terms originating from the expansion of both Ω1(τ1) and Ω1(τ2)
according to Eq. (2.2b

.

).

We only wish to calculate few of the second-order contributions, and extrapolate diagrammatic
rules out of them. Let us first calculate the Ω02Ω20 term. We have to consider all contractions
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2. Perturbation theory

allowed by Wick’s theorem

N
(2)
02.20(τ) ≡ 1

2!

∫ τ

0
dτ1dτ2

∑
k1k2l1l2

Ω02
k1k2

0! 2!
Ω20
l1l2

2! 0! 〈Φ|T
[
βk2(τ1)βk1(τ1)β†l1(τ2)β†l2(τ2)

]
|Φ〉

= 1
8

∫ τ

0
dτ1dτ2

∑
k1k2l1l2

Ω02
k1k2Ω20

l1l2

{
G
−−(0)
k2k1 (τ1, τ1)G++(0)

l1l2 (τ2, τ2)

−G−+(0)
k2l1 (τ1, τ2)G−+(0)

k1l2 (τ1, τ2) +G
−+(0)
k2l2 (τ1, τ2)G−+(0)

k1l1 (τ1, τ2)
}

= 1
8

∫ τ

0
dτ1dτ2

∑
k1k2l1l2

Ω02
k1k2Ω20

l1l2

{
−G−+(0)

k2l1 (τ1, τ2)G−+(0)
k1l2 (τ1, τ2)

+G−+(0)
k2l2 (τ1, τ2)G−+(0)

k1l1 (τ1, τ2)
}

= 1
8

∑
k1k2l1l2

Ω02
k1k2Ω20

l1l2

∫ τ

0
dτ1dτ2

{
−θ(τ1 − τ2)δk2l1δk1l2e

−(τ1−τ2)(Ek1+Ek2 )

+θ(τ1 − τ2)δk2l2δk1l1e
−(τ1−τ2)(Ek1+Ek2 )

}
= 1

8
∑

k1k2l1l2

Ω02
k1k2Ω20

l1l2 (−δk2l1δk1l2 + δk2l2δk1l1)
∫ τ

0
dτ1dτ2θ(τ1 − τ2)e−(τ1−τ2)(Ek1+Ek2 )

= 1
8
∑
k1k2

(
−Ω02

k1k2Ω20
k2k1 + Ω02

k1k2Ω20
k1k2

) [ τ

Ek1 + Ek2

+ e−τ(Ek1+Ek2 ) − 1
(Ek1 + Ek2)2

]

= 1
4
∑
k1k2

Ω02
k1k2Ω20

k1k2

Ek1 + Ek2

[
τ − 1− e−τ(Ek1+Ek2 )

Ek1 + Ek2

]
, (2.34)

where Eqs. (2.24d

.

) and (A.1b

.

) have been used along with the antisymmetry of Ω20
k1k2 .

The Ω20Ω02 term reads similarly as

N
(2)
20.02(τ) ≡ 1

2!

∫ τ

0
dτ1dτ2

∑
k1k2l1l2

Ω20
k1k2

2! 0!
Ω02
l1l2

0! 2! 〈Φ|T
[
β†k1(τ1)β†k2(τ1)βl2(τ2)βl1(τ2)

]
|Φ〉

= 1
8

∫ τ

0
dτ1dτ2

∑
k1k2l1l2

Ω20
k1k2Ω02

l1l2

{
G

++(0)
k1k2 (τ1, τ1)G−−(0)

l2l1 (τ2, τ2)

−G+−(0)
k1l2 (τ1, τ2)G+−(0)

k2l1 (τ1, τ2) +G
+−(0)
k1l1 (τ1, τ2)G+−(0)

k2l2 (τ1, τ2)
}

= 1
8

∑
k1k2l1l2

Ω20
k1k2Ω02

l1l2 (−δk2l1δk1l2 + δk2l2δk1l1)
∫ τ

0
dτ1dτ2θ(τ2 − τ1)e−(τ2−τ1)(Ek1+Ek2 )

= 1
4
∑
k1k2

Ω20
k1k2Ω02

k1k2

Ek1 + Ek2

[
τ − 1− e−τ(Ek1+Ek2 )

Ek1 + Ek2

]
. (2.35)

One notices that the two previous contributions are strictly equal. Actually, trying to repre-
sent both of them diagrammatically would produce two time-unlabelled diagrams that are
topologically identical. Such a so-called faithful diagrammatic representation, associating
each contribution with one diagram, brings however no real simplification. Diagrams must
resum identical algebraic contributions in one unique diagram. Thus, contributions derived in
Eqs. (2.34

.

) and (2.35

.

) are summarized as one diagram in the diagrammatic representation of
the norm kernel in Fig. 2.4

.

, labelled PN2.1. The factor associated with so-called equivalent
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2.4. Norm kernel

lines and with the symmetry under the exchange of time labels in the diagrammatic rules
provided below is designed to produce the appropriate net coefficient (i.e. 1/2) obtained when
summing both algebraic contributions.
Focusing on the Ω̆11Ω02 term, one obtains

N
(2)
11.02(τ) ≡ 1

2!

∫ τ

0
dτ1dτ2

∑
k1k2l1l2

Ω̆11
k1k2

1! 1!
Ω02
l1l2

0! 2! 〈Φ|T
[
β†k1(τ1)βk2(τ1)βl2(τ2)βl1(τ2)

]
|Φ〉

= 1
4

∫ τ

0
dτ1dτ2

∑
k1k2l1l2

Ω̆11
k1k2Ω02

l1l2

{
G

+−(0)
k1k2 (τ1, τ1)G−−(0)

l1l2 (τ2, τ2)

−G+−(0)
k1l2 (τ1, τ2)G−−(0)

k2l1 (τ1, τ2) +G
+−(0)
k1l1 (τ1, τ2)G−−(0)

k2l2 (τ1, τ2)
}

= 0 , (2.36)

as G−−(0) is identically zero. In fact, a diagram is identically zero anytime a contraction
between two creation or two annihilation operators is considered. Therefore, one can exclude
from the start every contribution associated with a combination of operators that bring in total
a different number of creation and annihilation operators, as it necessary leads to anomalous
contractions.
We now derive the Ω̆11Ω̆11 term

N
(2)
11.11(τ) ≡ 1

2!

∫ τ

0
dτ1dτ2

∑
k1k2l1l2

Ω̆11
k1k2

1! 1!
Ω̆11
l1l2

1! 1! 〈Φ|T
[
β†k1(τ1)βk2(τ1)β†l1(τ2)βl2(τ2)

]
|Φ〉

= 1
2!

∫ τ

0
dτ1dτ2

∑
k1k2l1l2

Ω̆11
k1k2Ω̆11

l1l2

{
G

+−(0)
k1k2 (τ1, τ1)G+−(0)

l1l2 (τ2, τ2)

−G++(0)
k1l1 (τ1, τ2)G−−(0)

k2l2 (τ1, τ2) +G
+−(0)
k1l2 (τ1, τ2)G−+(0)

k2l1 (τ1, τ2)
}

= − 1
2!

∑
k1k2l1l2

Ω̆11
k1k2Ω̆11

l1l2δk1l2δk2l2

∫ τ

0
dτ1dτ2θ(τ2 − τ1)θ(τ1 − τ2)e−(τ2−τ1)(Ek1−Ek2 )

= 0 , (2.37)
as θ(τ2 − τ1)θ(τ1 − τ2) = 0. Hence, normal propagators linking two vertices with different time
labels must propagate in the same direction, as could have been inferred from Eqs. (2.24a

.

)
and (2.24d

.

), i.e. to be non-zero a contribution must only involve normal propagators of the
same type (either G+−(0) or G−+(0)) when the latter connect the same two vertices.

Such a rule can be generalized to larger sets of vertices, as a set of propagators running between
them in a circular way would introduce a step function loop of the type θ(τα− τβ) . . . θ(τω− τα),
hence constraining all the time labels to be equal and resulting in a set of time-equal propagators.
Hence, no oriented loop between a set of two or more vertices is possible.

2.4.3. Diagram generation
Equation (2.31

.

) for N(τ) can be translated into an infinite set of vacuum-to-vacuum diagrams.
The topological Feynman rules to build those diagrams are now detailed.

1. A vacuum-to-vacuum, i.e. closed, Feynman diagram of order p consists of p vertices
Ωij(τk) connected by fermionic quasi-particle lines, i.e. elementary propagators Ggg′(0),
forming a set of closed loops.
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2. Perturbation theory

2. Each vertex is labeled by a time variable while each line is labeled by two quasi-particle
indices and two time labels at its ends, the latter being associated with the two vertices
the line is attached to. Each vertex contributes a factor Ωij

k1...kiki+1...ki+j with the sign
convention detailed in Sec. 1.12

.

. Each line contributes a factor Ggg′(0)
k1k2 (τk, τk′), where

g = ± and g′ = ± characterize the type of elementary propagator the line corresponds to.

3. The contributions to N(τ) arising at order p are generated by drawing all possible
vacuum-to-vacuum diagrams involving p operators Ω1(τk). This is done by contracting
the quasi-particle lines attached to the vertices in all possible ways. Eventually, the set
of diagrams must be limited to topologically distinct time-unlabelled diagrams, i.e. time-
unlabelled diagrams that cannot be obtained from one another via a mere displacement,
i.e. translation, of the vertices. This rule is illustrated in Fig. 2.2

.

.

As each operator Ω1(τ) actually contains eight normal-ordered operators Ωij(τ), with
i+ j = 2 or 4, one may be worried about the proliferation of diagrams. Several "selection rules"
can be identified by virtue of Eq. (2.24

.

), and as examplified in Sec. 2.4.2

.

, that limit drastically
the number of non-zero diagrams. Let us detail those additional rules.

1. Anomalous propagators are zero and thus do not need to be considered. Whenever a string
of operators contains different numbers of creation and annihilation operators, the result is
necessarily zero, i.e. for an arbitrary matrix element 〈Φ|Ωi1j1(τ1)Ωi2j2(τ2) . . .Ωipjp(τp)|Φ〉
to give non-zero contributions (diagrams), it is mandatory that na ≡

∑p
k=1(jk − ik) = 0.

2. Normal lines linking a set of vertices must not form an oriented loop. For a set of two
given vertices Ωikjk(τk) and Ωik′jk′ (τk′), it means that normal lines must propagate in the
same direction.

3. As stipulated after Eq. (2.24

.

), propagators starting and ending at the same vertex
correspond to equal-time propagators and are thus zero. Hence, no contraction of a
vertex on itself is to be considered.

Finally, it is to be noted that Ω1 has the same diagrammatic representation as Ω except
that Ω00 must be omitted and Ω11 replaced by Ω̆11, which requires to use a different symbol
for that particular vertex5

.

.

2.4.4. Diagram evaluation
Once the diagrams have been generated using the topological rules listed in Sec. 2.4.3

.

, the
algebraic rules to express the diagrams analytically are now detailed.

1. Each vertex is labeled by a time variable while each line is labeled by two quasi-particle
indices and two time labels at its ends, the latter being associated with the two vertices
the line is attached to. Each vertex contributes a factor Ωij

k1...kiki+1...ki+j with the sign

5We omit to use a different symbol for Ω̆11 in the following although it must be clear that the vertex with one
line coming in and one line coming out does represent Ω̆11 whenever it originates from the perturbative
expansion of the evolution operator. This may be confusing whenever O = Ω since in this case there can
also be a vertex Ω11 at fixed time t = 0.
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2.4. Norm kernel

(a) (b) (c)
Figure 2.2. Examples of time-unlabelled diagrams: (a) and (b) are topologically identical,
whereas (c) is topologically distinct from (a) and (b).

convention detailed in Sec. 1.12

.

. Each line contributes a factor Ggg′(0)
k1k2 (τk, τk′), where

g = ± and g′ = ± characterize the type of elementary propagator the line corresponds to.

2. A normal line can be interpreted as G−+(0) or G+−(0) depending on the ascendant or
descendant reading of the diagram. Similarly, the ordering of quasi-particle and time
labels of a propagator depends on the ascendant or descendant reading of the diagram.
All the lines involved in a given diagram must be interpreted in the same way, i.e. sticking
to an ascendant or descendant way of reading the diagram all throughout. By default
the diagrams are intended to be read in a descendant fashion6

.

.

3. All quasi-particle labels must be summed over while all time variables must be integrated
over from 0 to τ .

4. A sign factor (−1)p+nc , where p denotes the order of the diagram and nc denotes the
number of crossing lines in the diagram, must be considered. The overall sign results
from multiplying this factor with the sign associated with each factor Ωij

k1...kiki+1...ki+j and
the sign factor associated with the direction in which the diagram is read as discussed in
rule 3 above.

5. Each diagram comes with a numerical prefactor obtained from the following combination
• A factor 1/(ne)! must be considered for each group of ne equivalent lines. Equivalent

lines must all begin and end at the same vertices, and must correspond to the same
type of contractions, i.e. they must all correspond to propagators characterized by
the same superscripts g and g′ in addition to having identical time labels.
• A symmetry factor 1/ns must be considered in connection with exchanging the
time labels of the vertices in all possible ways, counting the identity as one. The
factor ns corresponds to the number of ways exchanging the time labels provides a
time-labelled diagram that is topologically equivalent to the original one. This rule
is illustrated in Fig. 2.3

.

.

2.4.5. Exponentiation of connected diagrams
Diagrams representing the time-dependent norm kernel N(τ) are vacuum-to-vacuum diagrams,
i.e. diagrams with no incoming or outgoing external lines. In general, a diagram consists of

6Reading them in an ascendant one is possible but requires an additional factor (−1)np , with np the number
of propagators in the diagram.
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τ2

τ1

Figure 2.3. Determination of the ns symmetry factor: here ns = 2 as exchanging the time
labels leads to a topologically equivalent diagram.

disconnected parts which are joined neither by vertices nor by propagators. Consider a diagram
Γ(τ) contributing to Eq. (2.31

.

) and consisting of n1 identical connected parts Γc1(τ), of n2
identical connected parts Γc2(τ), and so on.
For a given diagram, the times corresponding to the different vertices are ordered in a

specific way. As a diagram contains various connected parts, one is able to form a family of
similar diagrams, only differing by the time-ordering of the different connected parts’ vertices.
Summing the contributions of all diagrams belonging to this family, only the vertices inside a
given connected part remain time-ordered. Hence, the sum of the contributions writes as the
product

Γ(τ) ∝ Γc1(τ)n1Γc2(τ)n2 . . . . (2.38)
Let us further process such a family of diagrams for which several connected parts are identical.
In fact, members of the family are not all different from each other. When exchanging two
of those identical parts, no new diagram is created. Thus, if a family contains n times a
connected part, n! identical diagrams are produced by permuting the time labels of the identical
connected parts in all possible ways. Including the corresponding symmetry factor, the overall
contribution eventually reads as

Γ(τ) = Γc1(τ)n1

n1!
Γc2(τ)n2

n2! . . . . (2.39)

It follows that the sum of all vacuum-to-vacuum diagrams is equal to the exponential of the
sum of connected vacuum-to-vacuum diagrams [135

.

], i.e.

〈Φ|U1(τ)|Φ〉 =
∑
Γ

Γ(τ)

=
∑

n1n2...

Γc1(τ)n1

n1!
Γc2(τ)n2

n2! . . .

= eΓc1(τ)+Γc2(τ)+ ... . (2.40)

Let us note that the diagram containing only one vertex and no propagator, and corresponding
to Ω00, is conventionnally not a connected diagram. The norm can thus be written, prior to
proceeding to any truncation, as

N(τ) = e−τΩ00+n(τ) 〈Φ|Φ〉 , (2.41)

where n(τ) ≡ ∑∞
n=1 n

(n)(τ), with n(n)(τ) the sum of all time-dependent connected Feynman
vacuum-to-vacuum diagrams of order n. By virtue of Eqs. (2.40

.

-2.41

.

), only connected diagrams
have to be eventually considered in practice.
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Ω20

Ω02τ2

τ1 Ω40

Ω04τ2

τ1

PN2.1 PN2.2
Figure 2.4. Second-order connected Feynman diagrams contributing to n(τ).

2.4.6. Dependence on τ
Matching Eq. (1.43a

.

) with Eq. (2.41

.

) in the large τ limit allows one to write

lim
τ→∞

n (τ) ≡ −τ∆ΩA0
0 + ln |〈Φ|ΨA0

0 〉|2 . (2.42)

Equation (2.42

.

) relates to the known result applicable to the logarithm of the norm kernel
whose part proportional to τ provides the correction to the unperturbed ground-state eigenvalue
of Ω

∆ΩA0
0 ≡ ΩA0

0 − Ω00

= 〈Φ|Ω1

∞∑
k=1

( 1
Ω00 − Ω0

Ω1

)k−1
|Φ〉c , (2.43)

given under the form of Goldstone’s formula [114

.

], which is here computed relative to the
superfluid (i.e. Bogoliubov) reference state |Φ〉 breaking global gauge symmetry. Relation (2.42

.

)
recalls that, in the large τ limit, n (τ) gathers a term independent of τ and a term linear in τ .
This characteristic behavior at large imaginary time can be proven for any arbitrary order by
trivially adapting the proof given in App. B.7 of Ref. [76

.

].
In Eq. (2.42

.

), the contribution that does not depend on τ provides the overlap between
the unperturbed state and the correlated ground-state. This overlap is not equal to 1, which
underlines that the expansion of N(τ) does not rely on intermediate normalization.

2.4.7. Second-order BMBPT diagrams
We recall, in agreement with Eq. (2.32

.

), that first-order contributions are zero. Following the
topological rules listed in Sec. 2.4.3

.

, the only two non-zero second-order connected vacuum-to-
vacuum diagrams contributing to n(τ) are displayed in Fig. 2.4

.

. When applying Møller-Plesset
BMBPT, i.e. using a vacuum that is solution of the HFB equations, PN2.1 vanishes and only
PN2.2 is left as non-zero second-order contribution.

While the analytic expression of both diagrams is provided in App. D.1

.

, we presently detail
the calculation of one of them for illustration. The second-order diagram labeled as PN 2.2 in
Fig. 2.4

.

is displayed in full details in Fig. 2.5

.

. It contains one Ω40 vertex and one Ω04 vertex.
The diagram contains two vertices and no crossing lines ((−1)p+nc = +1), four equivalent lines
of normal type propagating in the same direction (ne = 4), and a symmetry factor ns = 1
as exchanging the time labels of the two vertices gives topologically distinct time-labelled
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k1

k2 k3
k4

k5
k6 k7

k8

+Ω40
k1k2k3k4

+Ω04
k5k6k7k8τ2

τ1

Figure 2.5. Example of a fully-labelled BMBPT diagram contributing to n(τ), i.e. the
second-order diagram labelled PN2.2 in Fig. 2.4

.

.

diagrams. Last but not least, the sign convention for the vertices requires to associate the
factors +Ω40

k1k2k3k4 and +Ω04
k5k6k7k8 to the vertices as they appear on the diagram drawn in

Fig. 2.5

.

. Eventually, diagram PN2.2 reads as

PN2.2 = + 1
4!

∑
k1k2k3k4
k5k6k7k8

Ω40
k1k2k3k4Ω04

k5k6k7k8

×
τ∫

0

dτ1dτ2G
−+(0)
k5k1 (τ2, τ1)G−+(0)

k6k2 (τ2, τ1)G−+(0)
k7k3 (τ2, τ1)G−+(0)

k8k4 (τ2, τ1)

= + 1
4!

∑
k1k2k3k4
k5k6k7k8

Ω40
k1k2k3k4Ω04

k5k6k7k8δk1k5δk2k6δk3k7δk4k8

×
τ∫

0

dτ1dτ2 θ(τ2 − τ1)e−(τ2−τ1)(Ek1+Ek2+Ek3+Ek4 )

= + 1
4!

∑
k1k2k3k4

Ω40
k1k2k3k4Ω04

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

[
τ − 1− e−τ(Ek1+Ek2+Ek3+Ek4 )

Ek1 + Ek2 + Ek3 + Ek4

]
, (2.44)

where use was made of the identities provided in App. A

.

. In the large τ limit, the result
reduces to

PN2.2 = + 1
4!

∑
k1k2k3k4

Ω40
k1k2k3k4Ω04

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

[
τ − 1

Ek1 + Ek2 + Ek3 + Ek4

]
. (2.45)

2.5. Generic operator kernel

2.5.1. Perturbative expansion
One develops here the perturbative expansion of a generic operator kernel, with the sole
restriction that it must commute with H and A. Having developed the complete formalism,
one can eventually substitute operator O with any operator of actual interest, e.g. Ω, H or A.
Proceeding similarly to N(τ), one obtains the perturbative expansion of an operator kernel
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according to

O(τ) = 〈Φ|e−τΩ0 Te−
∫ τ

0 dtΩ1(t)O|Φ〉 (2.46a)

= e−τΩ00〈Φ|
{
O(0)−

∫ τ

0
dτ1T [Ω1 (τ1)O(0)]

+ 1
2!

∫ τ

0
dτ1dτ2T [Ω1 (τ1) Ω1 (τ2)O(0)] + ...

}
|Φ〉 , (2.46b)

where each term in the matrix element can be fully expanded as done for the norm kernel in
Eq. (2.31

.

). The one key difference with the norm kernel relates to the presence of the extra
time-independent operator O to which the fixed time t = 0 is attributed in order to insert it
inside the time ordering at no cost.
As for N(τ), O(τ) can be expressed diagrammatically according to

O(τ) ≡ e−τΩ00 ∑
i+j=0,2,4

∞∑
n=0

Oij (n)(τ)〈Φ|Φ〉 , (2.47)

where Oij (n)(τ) denotes the sum of all vacuum-to-vacuum diagrams of order n including the
operator Oij at fixed time t = 0. The convention is that the zero-order diagram Oij (0)(τ) solely
contains the fixed-time operator Oij(0), i.e. the latter must not be considered when counting
the order of the diagram to apply the diagrammatic rules listed in Sec. 2.4.3

.

.7

.

2.5.2. Factorization of linked/connected diagrams
Any diagram Oij (n)(τ) consists of a part that is linked to the operator Oij at time 0, i.e. that
results from contractions involving the creation and annihilation operators of Oij, and parts
that are disconnected. In the infinite series of diagrams obtained via the BMBPT expansion of
Oij(τ), each vacuum-to-vacuum diagram linked to Oij effectively multiplies the complete set
of vacuum-to-vacuum diagrams making up N(τ). Gathering those infinite sets of diagrams
accordingly leads to the remarkable factorization

Oij(τ) ≡ oij(τ)N(τ) , (2.48)

such that
Oij(τ) = oij(τ) , (2.49)

where
oij(τ) ≡

∞∑
n=0

oij (n)(τ) (2.50)

sums all connected vacuum-to-vacuum diagrams of order n linked to Oij.
The fact that the (reduced) kernel O(τ) (O(τ)) of any operator O factorizes into its

linked/connected part o(τ) times the (reduced) norm kernel N(τ) (N (τ)) is a fundamental
result of BMBPT that is now exploited to access the actual ground state observables of interest.

7As explained earlier, this corresponds to shifting by one unit the definition of the order of a diagram compared
to the commonly accepted definition. This is a price to pay to have diagrammatic rules that are consistent
with the ones introduced for the norm kernel.
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2. Perturbation theory

2.6. Expansion of the observable

2.6.1. Perturbative expansion
According to Eq. (1.48

.

) and to Eq. (2.48

.

), the ground-state observable of interest is eventually
accessed through [77

.

, 127

.

]

OA
0 ≡ lim

τ→∞

〈Φ|U(τ)O|Φ〉
〈Φ|U(τ)|Φ〉

= lim
τ→∞
〈Φ|Te−

∫ τ
0 dtΩ1(t)O|Φ〉c

= 〈Φ|O|Φ〉

− 1
1!

∫ +∞

0
dτ1〈Φ|T [Ω1 (τ1)O(0)] |Φ〉c

+ 1
2!

∫ +∞

0
dτ1dτ2〈Φ|T [Ω1 (τ1) Ω1 (τ2)O(0)] |Φ〉c

− ... , (2.51)

where the lower index c refers to the restriction to connected diagrams, thus, yielding a
size-extensive many-body framework that properly scales with system size.
Gathering all terms up to order p in perturbation theory, the observable OA

0 sums matrix
elements of products of up to p+ 1 time-dependent operators. The running time variables are
integrated over from 0 to τ → +∞ whereas the time label attributed to the operator O itself
remains fixed at t = 0, i.e., contributions of order p contain a p-tuple time integral that needs
to be performed to generate the end result under the required form.

2.6.2. Diagram generation
Using the building blocks introduced in Secs. 1.12

.

and 2.2

.

, BMBPT Feynman diagrams
representing the contributions to OA

0 are generated by assembling them according to the
following set of topological rules [77

.

, 127

.

]

1. A Feynman diagram of order p consists of p vertices Ωikjk(τk), ik + jk = 2 or 4, along
with one vertex Omn(0), m+n = 0, 2 or 4, that are connected by fermionic quasi-particle
lines, i.e., via non-zero propagators G+−(0) or G−+(0).

2. Each vertex is labelled by a time variable while each line is labelled by two quasi-particle
indices and two time labels at its ends, the latter being associated with the two vertices
the line is attached to.

3. Generating all contributions to Eq. (2.51

.

) requires to form all possible diagrams, i.e.,
contract quasi-particle lines attached to the vertices in all possible ways while fulfilling
the following restrictions.
a) Forbid equal-time propagators starting and ending at the same vertex as they are

zero, i.e., no contraction of a vertex onto itself is to be considered.
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2.6. Expansion of the observable

b) Restrict the set to connected diagrams, i.e., omit diagrams containing parts that
are not connected to each other by either propagators or vertices. This implies in
particular that the vertex O00 with no line can only appear at order p = 08

.

.
c) The generic operator O at fixed time 0 is necessarily at the bottom of the diagram.

Its contributing vertices Omn(0) can only have propagators going out. Indeed, a
line going in would necessarily be associated with a propagator G+−(0) carrying
a step function contradicting the fact that all the running times are positive (see
Eq. 2.24a

.

). Consequently, contributing vertices are restricted to Om0(0), m = 0, 2
or 4.

d) Because of the time-ordering relations carried by the propagators (see Eq. 2.24

.

),
lines linking any set of vertices may not form an oriented loop, has it would lead to
equal-time propagators.

e) Restrict the set to vacuum-to-vacuum diagrams forming a set of closed undirected
loops with no external, i.e., unpaired, lines. This condition strongly constrains
which normal-ordered parts Ωikjk(τk) and Om0(0) of the p + 1 involved operators
can be combined, i.e., the condition

na ≡
p∑

k=1
(jk − ik)−m = 0 ,

must be fulfilled.
f) Restrict the set to topologically distinct time-unlabelled diagrams, i.e., time-unlabelled

diagrams that cannot be obtained from one another via a mere displacement, i.e.,
translation, of the vertices.

2.6.3. Diagram evaluation
The way to translate BMBPT diagrams into their mathematical expressions follows the set of
algebraic rules

1. Each of the p+1 vertices contributes a factor, e.g., Ωij
k1...kiki+1...ki+j with the sign convention

detailed in Sec. 1.12

.

.

2. Each of the
nb ≡

1
2

( p∑
k=1

(jk + ik) +m

)
,

lines contributes a factor Ggg′(0)
k1k2 (τk, τk′), where g = ± = −g′ characterize the type of

elementary propagator the line corresponds to in agreement with the convention of
Fig. 2.1

.

. According to Eq. (2.24

.

), each of the nb propagators carries an exponential
function and a step function of the time labels associated with the two vertices it connects.

8It is the only vertex appearing at order 0 given that the vacuum expectation value of all the other terms is
zero by virtue of their normal-ordered character. This is a particular occurrence of the rule stipulating that
no contraction of a vertex onto itself is to be considered.
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2. Perturbation theory

3. All quasi-particle labels must be summed over while all running time variables must be
integrated over from 0 to τ → +∞.

4. A sign factor (−1)p+nc , where p denotes the order of the diagram and nc denotes the
number of crossing lines in the diagram, must be considered. The overall sign results
from multiplying this factor with the sign associated with each matrix element.

5. Each diagram comes with a numerical prefactor obtained from the following combination
a) A factor 1/(ne)! must be considered for each group of ne equivalent lines. Equivalent

lines begin and end at the same vertices.
b) A symmetry factor 1/ns must be considered in connection with exchanging the

time labels of the vertices in all possible ways, counting the identity as one. The
factor ns corresponds to the number of ways exchanging the time labels provides a
time-labelled diagram that is topologically equivalent to the original one.

2.6.4. Zero- and first-order BMBPT diagrams
Applying the diagrammatic rules detailed in Sec. 2.6.2

.

, the three connected/linked zero- and
first-order diagrams contributing to OA

0 obtained are displayed on the top and middle lines of
Fig. 2.6

.

. When working with Møller-Plesset BMBPT, i.e. with a reference state that solves the
HFB equation, PO1.1 vanishes and only two diagrams remain. Given that first-order diagrams
involve Ω1(τ1) and O(0) with the constraint that τ1 > 0, normal lines not only propagate in
the same direction but are also limited to propagating upward.
While the analytic expression of the three diagrams is provided in App. D.2

.

, we presently
detail the calculation of one of them for illustration by applying the diagrammatic rules
detailed in Sec. 2.6.3

.

. The first-order connected/linked diagram labeled as PO1.2 in Fig. 2.6

.

and displayed in full details in Fig. 2.7

.

contains one Ω04 vertex at running time τ1 coming
from the perturbative expansion of the evolution operator and one vertex O40 at fixed time
0. The diagram contains one vertex and no crossing line ((−1)p+nc = −1), four equivalent
lines (ne = 4), and a symmetry factor ns = 1 as only one vertex carries a running time and
thus cannot be exchanged with any other. Last but not least, the sign convention requires
to associate the factors +Ω04

k5k6k7k8 and +O40
k1k2k3k4 to the vertices as they appear in Fig 2.7

.

.
Eventually, diagram PO1.2 reads as

PO1.2 = lim
τ→∞

(−1)1 1
4!

∑
k1k2k3k4
k5k6k7k8

O40
k1k2k3k4Ω04

k5k6k7k8

×
τ∫

0

dτ1G
−+(0)
k5k1 (τ1, 0)G−+(0)

k6k2 (τ1, 0)G−+(0)
k7k3 (τ1, 0)G−+(0)

k8k4 (τ1, 0)

= lim
τ→∞
− 1

4!
∑

k1k2k3k4
k5k6k7k8

O40
k1k2k3k4Ω04

k5k6k7k8δk5k1δk6k2δk7k3δk8k4

τ∫
0

dτ1θ(τ1)e−τ1(Ek1+Ek2+Ek3+Ek4 )

= lim
τ→∞
− 1

4!
∑

k1k2k3k4

O40
k1k2k3k4Ω04

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

[
1− e−τ(Ek1+Ek2+Ek3+Ek4 )

]
, (2.52)
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Figure 2.6. Zero-, first- and second-order Feynman BMBPT diagrams contributing to OA
0

generated from operator vertices of two-body character at most, i.e. Ω = Ω[0] + Ω[2] + Ω[4] and
O = O[0] +O[2] +O[4] .

where use was made of the identities provided in App. A

.

. Performing the infinite τ limit,
Eq. (2.52

.

) provides the contribution to OA0
0 under the form

PO1.2 = − 1
4!

∑
k1k2k3k4

O40
k1k2k3k4Ω04

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

. (2.53)

2.6.5. Second-order BMBPT diagrams
Applying the rules described in Sec. 2.6.2

.

, one obtains eight connected/linked second-order
diagrams contributing to OA

0 , displayed in the bottom line of Fig. 2.6

.

. When employing
Møller-Plesset BMBPT, six of them vanish and only PO2.7 and PO2.8 remain. Furthermore,
if the operator of interest is the grand-canonical potential, PΩ2.7 vanishes as well. Hence, the
only second-order grand potential diagram is PΩ2.8 in this case.
While the analytic expression of the eight diagrams is provided in App. D.2

.

, we presently
detail the calculation of one of them for illustration by applying the diagrammatic rules detailed
in Sec. 2.6.3

.

. The second-order connected/linked diagram labeled as PO2.6 in Fig. 2.6

.

and
displayed in full details in Fig. 2.8

.

contains one Ω04 vertex at running time τ1 and one Ω11

vertex at running time τ2 coming from the perturbative expansion of the evolution operator
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k1

k2 k3
k4
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k6 k7

k8

+O40
k1k2k3k4

+Ω04
k5k6k7k8τ1

0
Figure 2.7. Example of first-order fully-labelled Feynman BMBPT diagram contributing to
OA

0 , i.e. the diagram labelled PO1.2 in Fig. 2.6

.

.

k1

k2 k3 k4

k5 k6 k7

k8

k9 k10

+O40
k1k2k3k4

+Ω04
k5k6k7k8

−Ω̆11
k9k10τ2

0

τ1

Figure 2.8. Example of second-order fully-labelled Feynman BMBPT diagram contributing
to OA

0 , i.e. the diagram labelled PO2.6 in Fig. 2.6

.

.

along with one vertex O40 at fixed time 0. The diagram contains two Ω vertices and no crossing
line ((−1)p+nc = 1), three equivalent lines (ne = 3), and a symmetry factor ns = 1 as the two
vertices carrying time labels are different and thus cannot be exchanged. Last but not least,
the sign convention requires to associate the factors +Ω04

k5k6k7k8 , −Ω11
k9k10 and +O40

k1k2k3k4 to the
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vertices as they appear in Fig 2.8

.

. Eventually, diagram PO2.6 reads as

PO2.6 = lim
τ→∞
−(−1)2 1

3!
∑

k1k2k3k4k5
k6k7k8k9k10

O40
k1k2k3k4Ω04

k5k6k7k8Ω̆11
k9k10

×
τ∫

0

dτ1dτ2G
−+
k5k1(τ1, 0)G−+

k6k2(τ1, 0)G−+
k7k3(τ1, 0)G−+

k10k4(τ2, 0)G+−
k9k8(τ2, τ1)

= lim
τ→∞
−1

6
∑

k1k2k3k4k5
k6k7k8k9k10

O40
k1k2k3k4Ω04

k5k6k7k8Ω̆11
k9k10δk5k1δk6k2δk7k3δk10k4δk9k8

×
τ∫

0

dτ1dτ2θ(τ1 − τ2)e−τ1(Ek1+Ek2+Ek3)e−τ2Ek4e−(τ1−τ2)Ek8

= lim
τ→∞
−1

6
∑

k1k2k3k4k8

O40
k1k2k3k4Ω04

k1k2k3k8Ω̆11
k8k4

×
τ∫

0

dτ1dτ2θ(τ1 − τ2)e−τ1(Ek1+Ek2+Ek3+Ek8)eτ2(Ek8−Ek4)

= lim
τ→∞
−1

6
∑

k1k2k3k4k5

O40
k1k2k3k4Ω04

k1k2k3k5Ω̆11
k5k4

Ek5 − Ek4

×

1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

− 1− e−τ(Ek1+Ek2+Ek3+Ek5)
Ek1 + Ek2 + Ek3 + Ek5

 , (2.54)

where use was made of the identities provided in App. A

.

, and label k8 was renamed k5 in the
last line. Performing the infinite τ limit, Eq. (2.54

.

) provides the contribution to OA0
0 under the

form

PO2.6 = −1
6

∑
k1k2k3k4k5

O40
k1k2k3k4Ω04

k1k2k3k5Ω̆11
k5k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek1 + Ek2 + Ek3 + Ek5) . (2.55)

2.6.6. Towards higher orders
In order to illustrate the typical expression of a higher-order BMBPT diagram and confronting
arising difficulties, let us write it for the third-order diagram displayed in Fig. 2.9

.

, i.e.,

D = lim
τ→∞

(−1)3

2(2!)4

∑
ki

O40
k1k2k3k4Ω40

k5k6k7k8Ω04
k5k6k1k2Ω04

k7k8k3k4

×
∫ τ

0
dτ1dτ2dτ3 θ(τ2 − τ1)θ(τ3 − τ1)e−τ1εk5k6k7k8e

−τ2εk1k2k5k6e
−τ3εk3k4k7k8

(2.56)

where the notation
εkakb...kikj ...

≡ Eki + Ekj + . . .− Eka − Ekb − . . . , (2.57)
was introduced. The sign, the combinatorial factors and the four matrix elements directly
reflect Feynman’s algebraic rules listed above and are easy to interpret. The final form of the
integrand originates from expliciting the nb = 8 propagators G−+(0) and displays a typical
structure that needs to be scrutinized for the following.
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k1 k2

k3 k4k5

k6

k7 k8

O40

Ω40

Ω04

Ω04τ3

0

τ1

τ2

Figure 2.9. A third-order BMBPT diagram.

• While the vertex O40 is at fixed time 0, the Ω40 vertex is at running time τ1 and the
two Ω04 vertices are at running times τ2 and τ3. The two step functions characterize the
time ordering between Ω40 and each of the two Ω04 vertices it is directly connected to
via propagators. Contrarily, the two Ω04 vertices are not connected via propagators and
do not belong to a linear sequence of connected vertices such that their time labels are
not ordered with respect to one another. Eventually, the fact that the three running
variables are positive is directly encoded into the boundary of the triple integral.

• Grouping appropriately the exponential functions coming from the 8 propagators, the
integrand displays one exponential factor per running time, i.e., per Ωikjk(τk) vertex.
The relevant energy factor εkakb...kikj ...

multiplying the variable τk in this exponential function
denotes nothing but the sum/difference of quasi-particle energies associated with the
lines entering/leaving the corresponding vertex.

The two above points characterizing (a) the steps functions associated with the links between
the vertices and (b) the exponential function associated with each vertex can be viewed as an
optimal rephrasing of the algebraic rule 2 stipulated above.
Eventually, the complexity of the BMBPT diagrams expressions grows significantly with

the perturbative order. Especially, more complex topologies with respect to the time labels
associated to vertices may appear. As such, being able to generate and even more evaluate
BMBPT diagrams becomes more and more challenging. The design and application of
automated tools to generate and evaluate BMBPT diagrams at higher order is discussed
extensively in Chap. 3

.

.

2.7. Complex versus real character of the diagrams
An important check to perform once the diagrams have been derived is that at each order, the
sum of diagrams contributing to a given observable produces a real result. Indeed, the ground
state energy or the particle number of the nucleus are real quantities. In standard MBPT, each
of the Goldstone diagrams either have a complex conjugate partner or is self-conjugate [61

.

],
such that the sum of diagrams indeed produces a real energy.

In the case of BMBPT, and as previously alluded to in Sec. 1.10

.

, the complex or real status
of the diagrams depend on the actual observable of interest, knowing that one is bound from
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2.7. Complex versus real character of the diagrams

Self-conjugate
diagrams

PΩ0.1 PΩ1.1 PΩ1.2 PΩ2.1 PΩ2.2 PΩ2.6 PΩ2.8

Diagrams with
conjugate part-
ners PΩ2.3

⇔

PΩ2.4 PΩ2.5

⇔

PΩ2.7

Table 2.1. Grand potential BMBPT Feynman diagrams up to second order and their real
(top) or complex (bottom) character.

the outset to compute the grand potential, the energy and the particle number to actually
implement the formalism. In the case of a general operator O, it appears clearly from diagrams
expressions in App. D.2

.

or from their diagrammatic representation in Fig. 2.6

.

that the diagrams
cannot be either self-conjugate or complex-conjugate-partners, and thus it is necessary to
consider only the real part of the diagrams’ contribution9

.

. Contrarily, if the observable of
interest is the grand potential ΩA0

0 , O is replaced by Ω and the corresponding expressions in
this particular case are displayed in App. D.3

.

. Using Eq. 1.53

.

, one can show that diagrams are
indeed self-conjugate or have a complex-conjugate partner, as is represented diagrammatically
in Tab. 2.1

.

.
Let us illustrate this by taking the Hermitian conjugate of the diagram labelled as PΩ1.2 in

Tab. 2.1

.

PΩ1.2∗ = − 1
4!

∑
k1k2k3k4

Ω40∗
k1k2k3k4Ω04∗

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

= − 1
4!

∑
k1k2k3k4

Ω04
k1k2k3k4Ω40

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

, (2.58)

which is nothing but PΩ1.2 itself. PΩ1.2 is thus self-conjugate. Let us contrarily focus on the
diagram labelled as PΩ2.5 in Tab. 2.1

.

. Its Hermitian conjugate reads as

PΩ2.5∗ = +1
6

∑
k1k2k3k4k5

Ω40∗
k1k2k3k4Ω13∗

k5k1k2k3Ω02∗
k5k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek4 + Ek5)

= +1
6

∑
k1k2k3k4k5

Ω40
k1k2k3k4Ω31

k1k2k3k5Ω20
k5k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek4 + Ek5)

= +1
6

∑
k1k2k3k4k5

Ω40
k1k2k3k4Ω31

k1k2k3k5Ω20
k1k2

(Ek2 + Ek3 + Ek4 + Ek5) (Ek1 + Ek2) (2.59)

9Actually, in the particular case where the Hamiltonian used for numerical applications is real, the contribution
associated with each and every diagram is real.
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2. Perturbation theory

where k4 and k2 as well as k5 and k1 labels have been exchanged and some permutations
effected at the last line. The result corresponds to the diagram labelled as PΩ2.7. Diagrams
PΩ2.5 and PΩ2.7 are thus conjugate partners. If the bottom vertex is anything but Ω, i.e. H
or A, the above derivations do not hold, such that th result at a given order is indeed complex
and its real part must eventually be taken.

2.8. Perturbative Bogoliubov coupled-cluster theory
One observes that the number of BMBPT diagrams grows significantly as the perturbative
order increases, i.e. there are three diagrams up to first order, and already eleven up to second
order. It is interesting to recast all contributions using Bogoliubov coupled cluster (BCC)
amplitudes. While coupled-cluster (CC) theory is out of the scope of this work (a better
introduction can be found in Ref. [61

.

], and in Ref. [77

.

] for its open-shell counterpart), such an
operation reduces drastically the number of diagrams by introducing intermediate quantities
and allows a connection with BCC theory. Furthermore, such a rewriting could prove handy
when extending the present work to PNP-BMBPT [77

.

] in the future.

2.8.1. Definitions
We introduce the n-tuple (i.e. 2n-quasiparticle) Bogoliubov cluster operator through

T †n (τ) = 1
(2n)!

∑
k1...k2n

τ∫
0

dτ1 . . . dτ2nT †k1...k2n(τ1 . . . τ2n)T
[
βk2n(τ2n) . . . βk1(τ1)

]
, (2.60)

where the Feynman amplitude T †k1...k2n(τ1 . . . τ2n) is antisymmetric under the exchange of (ki, τi)
and (kj, τj) for any (i, j) ∈ {1, . . . 2n}2. Because we unconventionally proceed through the first
term of Eq. (1.49

.

) rather than through the second, the operator introduced in Eq. (2.60

.

) is the
hermitian conjugate of the cluster operator entering in BCC theory [78

.

] that is most naturally
developed from the second term in Eq. (1.49

.

).
By definition, the time-dependent (i.e. Feynman) single cluster amplitude T †k1k2(τ1τ2) denotes

the complete sum of connected BMBPT diagrams with one line entering at an arbitrary
time τ1 and another line entering at an arbitrary time τ2. The double cluster amplitude
T †k1k2k3k4(τ1τ2τ3τ4) represents the complete sum of connected BMBPT diagrams with four lines
entering at arbitrary times τ1, τ2, τ3 and τ4. This definition can be extended to any n-tuple
Bogoliubov cluster amplitude.
The time-integrated (i.e. Goldstone) single cluster amplitude is defined through

T †k1k2(τ) ≡
τ∫

0

dτ1dτ2T †k1k2(τ1τ2)e−Ek1τ1e−Ek2τ2 , (2.61)

such that
T †1 (τ) = 1

2!
∑
k1k2

T †k1k2(τ) βk2 βk1 . (2.62)
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2.8. Perturbative Bogoliubov coupled-cluster theory

Similarly, the time-integrated double cluster amplitude reads as

T †k1k2k3k4(τ) ≡
τ∫

0

dτ1dτ2dτ3dτ4T †k1k2k3k4(τ1τ2τ3τ4)e−Ek1τ1e−Ek2τ2e−Ek3τ3e−Ek4τ4 , (2.63)

such that
T †2 (τ) = 1

4!
∑

k1k2k3k4

T †k1k2k3k4(τ) βk4 βk3 βk2 βk1 . (2.64)

2.8.2. Operator kernel
The topology of the complete set of BMBPT diagrams is such that, in the exact limit, the
connected/linked operator kernel is fully captured by four distinct terms according to

o(τ) = O00 (2.65a)

+ 1
2
∑
k1k2

T †k1k2(τ)O20
k1k2 (2.65b)

+ 1
8

∑
k1k2k3k4

T †k1k2(τ)T †k3k4(τ)O40
k1k2k3k4 (2.65c)

+ 1
4!

∑
k1k2k3k4

T †k1k2k3k4(τ)O40
k1k2k3k4 . (2.65d)

Equation (2.65

.

) is valid when resumming all contributions and in standard approximations of
BCC theory. It can also be exploited at each finite order in perturbation theory, at the price
of paying attention to the counting of perturbative orders. Topological and algebraic rules to
do so are detailed in the following.

In the perturbative account of BCC theory, the amplitude equations cannot be solved given
that the cluster amplitudes are computed in perturbation theory. Consequently, only single
and double cluster amplitudes are required for the computation of the operator kernel.
Feynman topological rules to generate all perturbative contributions to single and double

cluster amplitudes are given by

1. For contributions arising at order p, consider all sets of p vertices Ωij with ∑p
k=1(ik−jk) =

−2 for the single cluster amplitude, and ∑p
k=1(ik − jk) = −4 for the double cluster

amplitude.

2. For a given set of vertices, draw all possible sets of propagators, knowing that no oriented
loop is allowed among a set of vertices. One must be left with two entering external
legs for contributions to the single amplitude, and with four entering external legs for
contributions to the double amplitude.

3. Exclude disconnected diagrams.

4. Check for possible topologically equivalent diagrams. External legs are equivalent if and
only if they connect to the same vertex.
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2. Perturbation theory

τ1 k1 τ2 k2

T †(1)
k1k2 (τ1τ2)

= τ

τ1 k1 τ2 k2

Ω02
k1k2

τ1 k1 τ2 k2 τ3 k3
τ4 k4

T †(1)
k1k2k3k4(τ1τ2τ3τ4)

= τ

τ1 k1 τ2 k2 τ3 k3
τ4 k4

Ω04
k1k2k3k4

Figure 2.10. Feynman single (left) and double (right) cluster amplitudes at first order in
BMBPT.

2.8.3. Diagram evaluation

The algebraic diagrammatic rules needed to translate Feynman diagrams into analytical
expressions of the cluster amplitudes are given below.

1. To derive Feynman cluster amplitudes

a) Label external legs ki, τi from left to right.

b) Label internal lines (follow BMBPT rules for kernels detailed in Sec. 2.6.3

.

).

c) Associate time labels to all vertices.

d) Associate propagator expression to each internal line.

e) Associate to each vertex connected to an external leg a delta function over their
time labels.

f) Antisymmetrize the diagram under the exchange of external legs by adding the
appropriate permutation operator, acting on labels of inequivalent external lines, i.e.
external lines that connect different vertices. Take note that external legs connected
to the same vertex are equivalent lines. As such, they are already antisymmetrized
with respect to one another.

g) Sum over all internal lines.

h) Integrate over all internal time labels from 0 to τ .

2. To derive Goldstone amplitudes

a) Start from the Feynman amplitude.

b) Associate a factor e−Ekiτi to each external leg.

c) Integrate over all external time labels from 0 to τ .
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2.8. Perturbative Bogoliubov coupled-cluster theory

2.8.4. First- and second-order Bogoliubov cluster amplitudes
The topological rules detailed in Sec. 2.8.2

.

applied at first-order generate the diagram contribut-
ing to the single Feynman amplitude and the diagram contributing to the double Feynman
amplitude displayed in Fig. 2.10

.

. Their expressions are detailed in App. E

.

, along with the
expressions of the needed permutation operators.
Focusing on the diagram for the single amplitude displayed in Fig. 2.10

.

and applying the
algebraic rules detailed in Sec. 2.8.3

.

, one obtains th Feynman amplitude

T †(1)
k1k2 (τ1τ2) = −Ω02

k1k2

τ∫
0

dτ ′δ(τ ′ − τ1)δ(τ ′ − τ2)

= −Ω02
k1k2δ(τ1 − τ2) , (2.66)

and its Goldstone counterpart

T †(1)
k1k2 (τ) = −Ω02

k1k2

τ∫
0

dτ1dτ2δ(τ1 − τ2)e−Ek1τ1e−Ek2τ2

= −Ω02
k1k2

τ∫
0

dτ1e
−τ1(Ek1+Ek2)

= −
Ω02
k1k2

Ek1 + Ek2

[
1− e−τ(Ek1+Ek2)

]
. (2.67)

Performing the infinite time limit, the Goldstone amplitude reduces to

T †(1)
k1k2 (∞) = −

Ω02
k1k2

Ek1 + Ek2

. (2.68)

The topological rules detailed in Sec. 2.8.2

.

applied at second order generate the four (three)
additional diagrams contributing to the single (double) Feynman amplitude displayed in
Fig. 2.11

.

. Their expressions are detailed in App. E

.

, along with the expressions of the needed
permutation operators.

Focusing on the contribution to the second-order double cluster amplitude associated to the
first corresponding diagram appearing in Fig. 2.11

.

and displayed in details in Fig. 2.12

.

, the
algebraic rules detailed in Sec. 2.8.3

.

can be applied to obtain the associated expression. Let us
first note that the Ω13 vertex is linked to three external lines associated with times τ1, τ2 and τ3.
We thus associate the vertex with the time label τ and the external lines with corresponding
delta functions. The Ω02 vertex is associated with one external line with the time label τ4, and
is thus itself straightforwardly associated with τ4. There is no crossing line and two vertices,
hence (−1)p+nc = 1, no equivalent internal lines (ne = 1), and a symmetry factor ns = 1 as the
two vertices carrying time labels are different and thus cannot be exchanged. Last but not
least, the sign convention requires to associate the factors +Ω13

k5k1k2k3 and +O20
k6k4 to the vertices

as they appear in Fig 2.12

.

. Finally, the lines associated with k1, k2 and k3 are equivalent to
one another, but the one associated with k4 is inequivalent to any other line, i.e. one needs to
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τ1 k1 τ2 k2

T †(2)
k1k2 (τ1τ2)

= T †(1)
k1k2 (τ1τ2) +

τ

τ ′
Ω02

τ1 k1
τ2 k2

Ω̆11
+

τ

τ ′
Ω02

τ1 k1 τ2 k2

Ω22
+

τ

τ ′
Ω20

τ1 k1 τ2 k2

Ω04
+

τ

τ ′
Ω04

τ1 k1
τ2 k2

Ω31

τ1 k1 τ2 k2 τ3 k3
τ4 k4

T †(2)
k1k2k3k4(τ1τ2τ3τ4)

= T †(1)
k1k2k3k4(τ1τ2τ3τ4) +

τ

τ ′
Ω02

τ1 k1 τ2 k2 τ3 k3
τ4 k4

Ω13
+

τ

τ ′
Ω̆11

τ1 k1 τ2 k2 τ3 k3
τ4 k4

Ω04
+

τ

τ ′
Ω04

τ1 k1τ2 k2τ3 k3
τ4 k4

Ω22

Figure 2.11. Feynman single (first line) and double (second line) cluster amplitudes at second
order in BMBPT.

τ

τ ′

k5

k6

+Ω02
k6k4

τ1 k1 τ2 k2τ3 k3
τ4 k4

+Ω13
k5k1k2k3

Figure 2.12. Feynman coupled-cluster-like diagram for the T †(2).1
k1k2k3k4(τ) component of the

cluster amplitude T †(2)
2 (τ) contributing to o(2)(τ).

apply the permutation operator P (k1k2k3/k4). Eventually, the Feynman amplitude reads as

T †(2).1
k1k2k3k4(τ1τ2τ3τ4) = (−1)2P (k1k2k3/k4)

∑
k5k6

Ω13
k5k1k2k3Ω02

k6k4

τ∫
0

dτ ′dτ ′′G−+
k6k5(τ ′′, τ ′)

× δ(τ ′ − τ1)δ(τ ′ − τ2)δ(τ ′ − τ3)δ(τ ′′ − τ4)
= +P (k1k2k3/k4)

∑
k5k6

Ω13
k5k1k2k3Ω02

k6k4G
−+
k6k5(τ4, τ1)δ(τ1 − τ2)δ(τ1 − τ3) ,

(2.69)
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2.8. Perturbative Bogoliubov coupled-cluster theory

from which the Goldstone amplitude is obtained through

T †(2).1
k1k2k3k4(τ) = +P (k1k2k3/k4)

∑
k5k6

Ω13
k5k1k2k3Ω02

k6k4

τ∫
0

dτ1dτ2dτ3dτ4G
−+
k6k5(τ4, τ1)

× δ(τ1 − τ2)δ(τ1 − τ3)e−Ek1τ1e−Ek2τ2e−Ek3τ3e−Ek4τ4

= +P (k1k2k3/k4)
∑
k5k6

Ω13
k5k1k2k3Ω02

k6k4

τ∫
0

dτ1dτ4δk5k6θ(τ4 − τ1)

× e−(τ1−τ4)Ek5e−τ1(Ek1+Ek2+Ek3)e−Ek4τ4

= +P (k1k2k3/k4)
∑
k5

Ω13
k5k1k2k3Ω02

k5k4

Ek5 − Ek1 − Ek2 − Ek3

×

1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

− 1− e−τ(Ek5−Ek4)
Ek4 + Ek5

 . (2.70)

Performing the infinite time limit, the Goldstone amplitude eventually reduces to

T †(2).1
k1k2k3k4(∞) = +P (k1k2k3/k4)

∑
k5

Ω13
k5k1k2k3Ω02

k5k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek4 + Ek5) . (2.71)

2.8.5. Contributions to the observables
Eventually, all first-order contributions to o(τ) provided in App. D.2

.

are captured through

o(1)(τ) = O00 (2.72a)

+ 1
2
∑
k1k2

T †(1)
k1k2 (τ)O20

k1k2 (2.72b)

+ 1
4!

∑
k1k2k3k4

T †(1)
k1k2k3k4(τ)O40

k1k2k3k4 , (2.72c)

where T †(1)
k1k2 (τ) denotes the first-order approximation to T †k1k2(τ) while T †(1)

k1k2k3k4(τ) represents the
first-order approximation to T †k1k2k3k4(τ). The Goldstone Bogoliubov coupled-cluster amplitudes
used to build the three diagrams contributing to o(1)(τ) are displayed in Fig. 2.13

.

.
Similarly, all contributions to o(τ) up to second order given in App. D.2

.

are captured through

o(2)(τ) = O00 (2.73a)

+ 1
2
∑
k1k2

T †(2)
k1k2 (τ)O20

k1k2 (2.73b)

+ 1
8

∑
k1k2k3k4

T †(1)
k1k2 (τ)T †(1)

k3k4 (τ)O40
k1k2k3k4 (2.73c)

+ 1
4!

∑
k1k2k3k4

T †(2)
k1k2k3k4(τ)O40

k1k2k3k4 , (2.73d)
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O00

T †(1)
1 (τ)

O20

T †(1)
2 (τ)

O40

Figure 2.13. Goldstone Bogoliubov coupled cluster diagrams contributing to o(1)(τ).

O00

T †(2)
1 (τ)

O20

T †(2)
2 (τ)

O40

T †(1)
1 (τ)

O40

T †(1)
1 (τ)

Figure 2.14. Goldstone Bogoliubov coupled cluster diagrams contributing to o(2)(τ).

A00

T †(2)
1 (τ)

A20

Figure 2.15. Goldstone Bogoliubov coupled cluster diagrams contributing to a(2)(τ).

where T †(2)
k1k2 (τ) denotes the second-order approximation to T †k1k2(τ) while T †(2)

k1k2k3k4(τ) represents
the second-order approximation to T †k1k2k3k4(τ). Their Goldstone Bogoliubov coupled cluster
amplitudes used to build the four diagrams contributing to o(2)(τ) are displayed in Fig. 2.14

.

.

2.9. Constraint on particle number
As discussed in Sec. 1.4

.

, the extraction of the binding energy at a given order n requires the
subtraction of the Lagrange term computed at the same order. Computing A(n)

0 using Eq. 2.51

.

and the matrix elements in App. C.4

.

is done straightforwardly using the diagrams expressions
in App. D.4

.

. Such diagrams are displayed in the coupled-cluster amplitude fashion in Fig. 2.15

.

.
In practice, of course, this must be done separately for both the neutron number N and the
proton number Z. In this formal presentation, A stands for either of them. As the reference
state is constrained to have the correct particle number on average, it implies that A(0)

0 = A0.
The constraint is nevertheless not carried over to the perturbed state, and thus to particle
number computed beyond zeroth-order. Eventually, the expectation value of A in the reference
state must be constrained to a value Aaux 6= A0 in order for the constraint to be satisfied for
A0 at the order one is working.

Working with a HFB reference state, it can be shown that A(1)
0 = 0 due to the fact that

Ω20 = Ω02 = 0 (cf. Sec. 2.1.3

.

). Consequently, the first correction to the average particle number
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O2.1 PO1.1 PO2.1 PO2.2 PO2.3 PO2.7

O2.2 PO1.2 PO2.5 PO2.6 PO2.8

O2.3 PO2.4

Table 2.2. Observable BCC diagrams versus Feynman BMBPT diagrams contributing to
them up to second-order.

appears at second order such that it becomes A0 + A(2)
0 6= A0. This feature requires an iterative

BMBPT scheme in order for the particle number to be correct at order n ≥ 2. To do so, one
needs to rerun the HFB calculation with a shifted chemical potential such that, through a
series of iterations, one eventually obtains, e.g., A(0)

0 + A(2)
0 = A0.

2.10. Particle number variance

In addition to constraining the average particle number, it is of interest to monitor the breaking
of U(1) symmetry by computing the variance associated with the operator A. From operators
A and A2, the particle-number variance ∆A2 is obtained via

∆A2 ≡ a2(∞)− a(∞)2 . (2.74)
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To proceed, one needs to write opertator A2 carefully. By definition, one has

A2 =
(∑
pq

δpqc
†
pcq

)(∑
rs

δrsc
†
rcs

)
=
∑
pqrs

δpqδrsc
†
pcqc

†
rcs

=
∑
pqrs

δpqδrs
(
−c†pc†rcqcs + δqrc

†
pcs
)

=
∑
ps

δpsc
†
pcs +

∑
pqrs

δprδqsc
†
pc
†
qcscr

=
∑
pq

δpqc
†
pcq + 1

2
∑
pqrs

(2δprδqs) c†pc†qcscr

≡
∑
pq

a(1)
pq c
†
pcq + 1

2
∑
pqrs

a(2)
pqrsc

†
pc
†
qcscr (2.75)

where multiple indices substitution were used, along with the anti-commutation relations of
creation and annihilation operators (Eq. (1.21

.

)). One notices that A2 has the structure of a
two-body operator, with its one-body component being equal to A itself.
One now introduces the fully antisymmetrized matrix elements of the two-body part of A2

ā(2)
pqrs ≡ a(2)

pqrs − a(2)
pqsr

= 2δprδqs − 2δpsδqr
= 2(δprδqs − δpsδqr) , (2.76)

such that
A2 =

∑
pq

a(1)
pq c
†
pcq + 1

4
∑
pqrs

ā(2)
pqrsc

†
pc
†
qcscr . (2.77)

With this at hand, one can apply the results of Sec. 2.5

.

on general two-body operators with
the matrix elements displayed in App. C.5

.

.

2.11. Connection to closed-shell MBPT
Having derived all BMBPT diagrams up to second order, it is of interest to perform their Slater
determinant limit that correspond to working with a symmetry-conserving reference state, i.e.
to recover standard MBPT. Especially, it provides a stringent test of our derivations, as the
MBPT diagrams should match at each order those computed within the frame of closed-shell
MBPT [61

.

].

2.11.1. Slater determinant limit
Starting from the diagrams previously derived and represented in Fig. 2.6

.

, significantly simpler
expressions are obtained when the Bogoliubov vacuum defined in Eq. (1.26

.

) and satisfying
Eq. (2.6a

.

) reduces to a Slater determinant

|Φ〉 =
A0∏
i=1

c†i |0〉, (2.78)
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2.11. Connection to closed-shell MBPT

where indices i, j, k . . . denote occupied (hole) single-particle states while indices a, b, c . . .
characterize unoccupied (particle) ones. Such a reference vacuum is typically appropriate for
doubly closed-(sub)shell nuclei.
With a Slater determinant as the vacuum, the Bogoliubov transformation (Eq. (1.20

.

))
simplifies to10

.

a > A0 : βa = ca, β†a= c†a, (2.79a)
i ≤ A0 : β†i = ci, βi = c†i . (2.79b)

In connection to Eq. (1.20

.

), Eq. (2.79

.

) is equivalent to saying that matrix elements of W are
either 0 or 1, i.e. U and V matrix elements are

a > A0 : Vak = 0, Uak= δak, (2.80a)
i ≤ A0 : Vik = δik, Uik = 0. (2.80b)

From Eq. (1.28

.

), Eq. (2.80

.

) leads to

a > A0 : ρap = 0, κap= 0, (2.81a)
i ≤ A0 : ρip = δip, κip= 0, (2.81b)

while Eq. (C.5e

.

) further provides that ∆ = 0.
In order to obtain the appropriate form of Ω0, let us now express β†kβk in the Slater

determinant limit

β†kβk =
(
c†aδka + ciδki

) (
caδka + c†iδki

)
=

c†aca if k = a ,

cic
†
i if k = i .

(2.82)

One obtains two different contributions starting from one quasiparticle term. This will actually
be the case for most matrix elements, which is one of the reasons why BMBPT encapsulates
the results of standard MBPT while using much fewer diagrams as is shown below.
Generally speaking, quasi-particle energies Ek associated with quasi-particle eigenstates

defined in Eq. (2.6

.

) and entering the definition of Ω0 are arbitrary, with the restriction that
Ek > 0. In the present context, it is useful to reparametrize them as

Ek ≡ |εk − λ| , (2.83)

where the ordering of εk and λ depends on the hole or particle nature of the single-particle
state associated to the quasi-particle state, i.e.

Ek =

εa − λ if k = a > A0 ,

λ− εi if k = i < A0 ,
(2.84)

10In practice the single-particle basis can be different from the one initially introduced to represent the operator,
as the Slater determinant can be built from creation operators associated with the HF basis. However, one
can go from one basis to the other with the help of a trivial unitary transformation, that we spare here for
the sake of concision.
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2. Perturbation theory

hence maintaining Ek > 0.
As a result, Ω0 reads as11

.

Ω0 = Ω00 +
∑
a

(εa − λ) c+
a ca +

∑
i

(λ− εi) cic+
i , (2.85)

where Eqs. (2.82

.

) and (2.84

.

) were applied to Eq. (2.4

.

). Excited eigenstates of Ω0 become
nothing but particle-hole excitations of |Φ〉

|Φab...
ij... 〉 = c†acic

†
bcj . . . |Φ〉 , (2.86)

with the eigenenergies

Ω0|Φ〉 = ε0|Φ〉 , (2.87a)
Ω0|Φab...

ij... 〉 =
[
ε0 + εab...ij...

]
|Φab...

ij... 〉 , (2.87b)

where

ε0 ≡ Ω00 , (2.88a)
εab...ij... ≡ εa + εb + · · · − εi − εj − . . . . (2.88b)

In the particular case where |Φ〉 is the Hartree-Fock Slater determinant, the one-body states
defining Ω0 are obtained as solutions of the Hartree-Fock equations, i.e. they are solution of
Eq. (2.18

.

) in the Slater determinant limit that reads as(
h− λ 0

0 −(h− λ)∗
)(

Uk
Vk

)
= Ek

(
Uk
Vk

)
. (2.89)

Inserting Eq. (2.84

.

), the first (second) line of Eq. (2.89

.

) provides the HF eigenvalue equation
for particle (hole) states

hUa = εaUa , (2.90a)
hV ∗i = εiV

∗
i , (2.90b)

such that εa (εi) are the eigenvalues of the HF equation and Ua (V ∗i ) are the corresponding
eigenfunctions.

2.11.2. Limit of BMBPT diagrams
The expressions of all BMBPT diagrams for a generic operator in the Slater determinant limit
up to second order are provided in App. F

.

. The corresponding relation between BMBPT grand
potential diagrams and MBPT energy diagrams is displayed in Tab. 2.3

.

. This relation can be
established starting either from the BMBPT grand potential or energy diagrams, except for the
diagrams labelled as PΩ0.1 and PH0.1. Indeed all Aij matrix elements are zero in the Slater
determinant limit except for A00 and A11, such that the particle number diatgrams contributing
above zeroth order and displayed in App. D.4

.

for first and second order vanish, as expected in
11The limit associated with Eq. (2.79

.

) has to be applied to Ω00 in the following.
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2.11. Connection to closed-shell MBPT

a symmetry-conserving formalism. Consequently, the particle number contributions associated
to the grand potential diagrams vanish and the contributions associated to the energy diagrams
are recovered eventually.
For illustration, let us derive below the Slater determinant limit of the diagram labelled

as PO2.1 in Fig. 2.6

.

, where the considered operator is the grand canonical potential Ω, thus
giving the grand potential diagram PΩ2.1. The Slater determinant limit of each matrix
element is computed by applying relations (2.80

.

) to its expression as displayed in App. C

.

, with
Ω̆11 = Ω11 − Ω̄11 . Note that Eq. (2.81

.

) further implies that Υ and Ξ matrices are identically
zero, and that matrix Λ displays a far simpler form. One obtains

PΩ2.1 = −
∑

k1k2k3

Ω20
k1k2Ω̆11

k3k1Ω02
k3k2

(Ek1 + Ek2) (Ek2 + Ek3)

= −
∑

k1k2k3

1
(Ek1 + Ek2) (Ek2 + Ek3)

(
Λk1k2δk1aδk2i − ΛT

k1k2δk1iδk2a

)
×
(
Λk3k1δk3bδk1a − ΛT

k3k1δk3jδk1i − (εa − λ)δk1aδk3bδab + (λ− εi)δk1iδk3jδij
)

×
(
−Λk3k2δk3jδk2a + ΛT

k3k2δk3bδk2i

)
=
∑
aij

hai (hij − εiδij)hja
(εa − λ− εi + λ) (εa − λ− εj + λ) −

∑
abi

hai (hba − εaδab)hib
(εa − λ− εi + λ) (εb − λ− εi + λ)

=
∑
aij

h′aih
′
ijh
′
ja

εai ε
a
j

−
∑
abi

h′aih
′
bah
′
ib

εai ε
b
i

, (2.91)

where h′pq ≡ hpq − εpδpq. Two terms are thus recovered, i.e. two MBPT diagrams, starting from
one BMBPT diagram. The diagram denoted as PΩ2.1 actually recasts diagrams 13 and 14
displayed on page 133 of Ref. [61

.

], where operator f ′ correponds to h′ here.

2.11.3. Discussion
Taking the Slater determinant limit, which corresponds to dealing with closed-shell systems,
the eleven Feynman BMBPT diagrams contributing to EA0

0 strictly reduce to the corresponding
14 standard Goldstone MBPT diagrams generated from two-body forces [61

.

] as displayed in
Tab. 2.3

.

. Their exact expressions are detailed in App. F

.

. Some BMBPT diagrams encompasses
several MBPT diagrams, e.g. PΩ2.1, PΩ2.5, PΩ2.6, PΩ2.7 and PΩ2.8. The reduction of the
number of diagrams at any given order n when going from MBPT to BMBPT is a consequence
of working in a quasi-particle representation that does not distinguish particle and hole states.
Conversely, all summations over quasi-particle labels run over the entire dimension of the
one-body Hilbert space.
In the specific case where the reference state |Φ〉 is solution of the Hartree-Fock equation,

i.e. when working within a Møller-Plesset scheme, all MBPT diagrams but those labelled
as 1, 2 and 3 in Tab. 2.3

.

and displayed in Fig. 2.16

.

vanish, such that canonical HF-MBPT
diagrams are recovered. They correspond to BMBPT diagrams PΩ0.1, PΩ1.2 and PΩ2.8, that
respectively match Eq. (5.7) of p.131 and Eq. (5.8) of p.132 in Ref. [61

.

]. It is equivalent to
working with an HFB vacuum in the BMBPT framework.
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2. Perturbation theory

PΩ2.1 13 14

PΩ2.2 11

PΩ2.3 12

PΩ2.4 10

PΩ2.5 4 5

PΩ2.6 6 7

PΩ2.7 8 9

PΩ2.8 1 2 3

Table 2.3. BMBPT Feynman diagrams appearing at second order and their associated MBPT
Goldstone diagrams. The numbering of the MBPT diagrams is the one used on page 133 of
Ref. [61

.

].
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2.12. Implementation algorithm

1 2 3

Figure 2.16. Canonical MBPT diagrams, as displayed and numbered on page 133 of Ref. [61

.

]
and obtained from the BMBPT diagram PO2.8 in Fig. 2.6

.

.

2.12. Implementation algorithm
Let us eventually synthesize the steps that must be followed to implement the Bogoliubov
MBPT formalism. In order to facilitate back-and-forth reading with the rest of the document,
the equation numbers displayed here are the original ones.

1. Solve, e.g., Hartree-Fock-Bogoliubov equations in the single-particle basis of interest,(
h− λ ∆
−∆∗ −(h− λ)∗

)(
Uk
Vk

)
= Ek

(
Uk
Vk

)
, (2.18

.

)

where the h and ∆ fields are defined in Eq. (C.5

.

). This fixes the reference state |Φ〉 and
Ω0, i.e. it delivers the set of {Uk, Vk, Ek ≥ 0}. One proceeds to the computation under
the constraint 〈Φ|A|Φ〉 = A00 = Aaux. Starting by imposing Aaux = A0 produces a first
guess for the Lagrange parameter λ.
From there, one can compute ρ, κ, κ∗ and σ matrices according to

ρ = +V ∗V T , (1.28a

.

)
κ = +V ∗UT , (1.28b

.

)
κ̄∗ = −U∗V T , (1.28c

.

)
σ∗ = −U∗UT , (1.28d

.

)

using solutions (U, V )k of Eq. (2.18

.

) corresponding to positive quasi-particle energies
Ek ≥ 0.

2. Build matrix elements Ωij
k1...kiki+1 , A

ij
k1...kiki+1 , H

ij
k1...kiki+1 , A

2.ij
k1...kiki+1 according to App. C

.

.

3. Observables of interest must be computed on the basis of

OA0
0 = o(∞) ,

at order n in BMBPT according to

o(n)(∞) =
∑

i,j=0,2,4

n∑
l=0

oij (l)(∞) .
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2. Perturbation theory

With zero-, first-, and second-order diagrams taken from App. D.2

.

and displayed in
Fig. 2.6

.

, one has

o(2) = O00

+ 1
2
∑
k1k2

O20
k1k2T

†(2)
k1k2 (∞)

+ 1
8

∑
k1k2k3k4

O40
k1k2k3k4T

†(1)
k1k2 (∞)T †(1)

k3k4 (∞)

+ 1
4!

∑
k1k2k3k4

O40
k1k2k3k4T

†(2)
k1k2k3k4(∞) ,

where the definition of the amplitudes in terms of the matrix elements of App. C

.

is given
in Eq. (E.1

.

). ω(∞), a(∞), a2(∞) and h(∞) = ω(∞) + λa(∞) can be computed using
the previous expressions and replacing matrix elements of O by those of the appropriate
operator (see App. C

.

).
Be reminded that choosing the reference state |Φ〉 to be the solution of HFB equations
amounts to setting Ω̆11 = Ω20 = Ω02 = 0 such that diagrams PN2.1, PO1.1, PO2.1,
PO2.2, PO2.3, PO2.4, PO2.5 and PO2.6 are zero in the Møller-Plesset scheme, i.e. the
set reduces from two non-zero diagrams to one non-zero diagram for the norm at second
order, and from eleven to four non-zero diagrams for other operators at second order.
For the coupled-cluster-like amplitudes, it corresponds to T †1 being zero at first order,
and having only one contribution arising at second order. The number of contributions
to T †2 arising at second order reduces coincidently from three to one. For kernels of
one-body operators like the particle number A, it implies that corrections first appear
only at second order in perturbation theory. For two- and many-body operators like the
grand canonical potential Ω, only T †2 contributes at first order, and the expression of the
contributions at second-order are somewhat simplified.

4. Compute the expectation value a(∞) of the particle number operator A with the goal
that

A0 = a(∞) . (1.45b

.

)

If a(∞) 6= A0, adjust λ by going back to step 1. If a(∞) > A0 (a(∞) < A0), solve step
1 such that 〈Φ|A|Φ〉 = A00 = Aaux < A0 (Aaux > A0). This will deliver a new set of
{Uk, Vk, Ek > 0}. Repeat until Eq. (1.45b

.

) is satisfied.

5. At convergence, compute observables ω(∞), a(∞), a2(∞) and h(∞), and determine the
particle-number variance through

∆A2 = a2(∞)− a(∞)2 . (2.74

.

)
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3. Systematic generation and evaluation
of BMBPT diagrams

3.1. Introduction

Having carefully detailed Bogoliubov many-body perturbation theory in Chapter 2

.

, and having
genereated and derived its diagrams at first and second order, the next step is to do so
at higher orders. The problem is however to do it in a safe and efficient way, as both the
number of diagrams and their topological complexity rises rapidly in many-body perturbation
theory. Different attempts have been made in the past to generate automatically MBPT
diagrams [119

.

, 120

.

, 121

.

, 122

.

, 123

.

, 124

.

], and even to evaluate their expressions [122

.

, 123

.

]. A
similar effort has been made in the quantum chemistry community for CC and CI [125

.

, 126

.

].
Recently, Monte Carlo methods have been used to generate and compute diagrammatic
contributions for the Fermi gas [136

.

, 137

.

].
In the present chapter, the focus is on the automated generation and evaluation of BMBPT

diagrams. Related formal difficulties are detailed and a method to overcome them is introduced,
leading to the identification of a novel diagrammatic rule generalizing the standard resolvent
rule. The numerical code ADG that relies on this breakthrough is eventually introduced.

3.1.1. Time-integrated expression

Let us first remind the expression associated to the third-order BMBPT diagram displayed in
Fig. 2.9

.

as already stated in Eq. (2.56

.

),

D = lim
τ→∞

(−1)3

2(2!)4

∑
ki

O40
k1k2k3k4Ω40

k5k6k7k8Ω04
k5k6k1k2Ω04

k7k8k3k4

×
∫ τ

0
dτ1dτ2dτ3 θ(τ2 − τ1)θ(τ3 − τ1)e−τ1εk5k6k7k8e

−τ2εk1k2k5k6e
−τ3εk3k4k7k8 .

The expression obtained via the application of Feynman’s algebraic rules does not yet constitute
the form needed for the numerical implementation of the formalism. While the sign, the
combinatorial factor and the matrix elements will remain untouched, the p-tuple time integral
must be performed in order to obtain the needed expression. Generically denoting the energy
factor multiplying the time label τk in the integrand as ak, the integral associated with our
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3. Systematic generation and evaluation of BMBPT diagrams

example of Fig. 2.9

.

can be worked out in the following fashion

T = lim
τ→∞

∫ τ

0
dτ1dτ2dτ3θ(τ2 − τ1)θ(τ3 − τ1)e−a1τ1−a2τ2−a3τ3

= lim
τ→∞

∫ τ

0
dτ1 e

−a1τ1
∫ τ

τ1
dτ2 e

−a2τ2
∫ τ

τ1
dτ3 e

−a3τ3

= lim
τ→∞

∫ τ

0
dτ1 e

−a1τ1
e−a2τ − e−a2τ1

a2

e−a3τ − e−a3τ1

a3

= 1
(a1 + a2 + a3)a2a3

. (3.1)

Two important lessons can be learned from this particular example.

• Exploiting the time-ordering relations imposed by the step functions, one performs the p
integrals following a specific sequence, i.e., one starts with the greatest time label whose
corresponding integral is written in the right-most position before proceeding to integrals
over smaller times, i.e., moving in steps towards the leftmost integral. In doing so, we
see that the integrals over τ2 and τ3 are in fact independent as the two time variables are
not ordered with respect to each other and only entertain a causal relation with respect
to a common variable, i.e., τ1, corresponding to an earlier time. The integral over τ1
does depend on the result of the integrals over τ2 and τ3 and is thus performed last.

• While the energy variables entering the time integrand are a1, a2 and a3, the end result
takes the form of a fraction whose non-trivial factors appear in the denominator and are
specific combinations of these original energy variables. Expressing a1, a2 and a3 back in
terms of quasi-particle energies, these combinations read as

a1 + a2 + a3 = εk1k2k3k4 ,

a2 = εk1k2k5k6 , (3.2)
a3 = εk3k4k7k8 ,

and thus correspond to positive sums of quasi-particle energies. We will identify later on
what these specific combinations of quasi-particle energies actually correspond to.

Combining Eqs. (3.1

.

) and (3.2

.

) and inserting the result back into Eq. (2.56

.

) provides the
time-integrated expression of the diagram under the needed form

D = (−1)3

2(2!)4

∑
ki

O40
k1k2k3k4Ω40

k5k6k7k8Ω04
k5k6k1k2Ω04

k7k8k3k4

εk1k2k3k4 εk1k2k5k6 εk3k4k7k8

.

3.1.2. Towards higher orders
BMBPT diagrams of order p = 0, 1, and 2 have been generated and evaluated manually within
the NO2B approximation, i.e., excluding operators O[k] with k > 4. The eleven corresponding
diagrams have been displayed in Fig. 2.6

.

. They have been recently implemented numerically to
perform ab initio nuclear structure calculations of mid- and heavy-mass open-shell nuclei [138

.

].
Results will be discussed in Chap. 4

.

.
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3.2. Automatic generation of BMBPT diagrams

Figure 3.1. Lower-part of a possible arbitrary-order BMBPT diagram.

When going to higher orders and/or using vertices with more legs, the number of vertices
and propagators grows out of proportion, as schematically illustrated in Fig. 3.1

.

, with diagrams
potentially displaying very involved topologies. The associated combinatorial makes generating
all diagrams more difficult, cumbersome and prone to omissions. Algebraically, while the
high order directly translates into the rise of the dimensionality of the time integral, the
potentially complex topology of the diagram translates into the intricate structure of the time
integrand dictated by the many step functions at play. The development of automated tools to
produce and evaluate high-order diagrams generated from vertices containing more, e.g., six,
legs becomes thus essential.

Eventually, the expression of a generic diagram of order p obtained from the application of
Feynman’s algebraic rules typically reads as

D = lim
τ→∞

(−1)a
2b3c4d5e6f

∑
ki

Ωi1j1
k...k . . .Ω

ipjp
k...kO

m0
k...k

∫ τ

0
dτ1 . . . dτp θ(τq−τr) . . . θ(τu−τv)e−a1τ1 . . . e−apτp ,

(3.3)
where (a, b, c, . . . ) are integer numbers characterizing the topology of the diagram, (q, r, . . . u, v)
are integers between 1 and p and (a1, . . . , ap) denote the sum/difference of quasi-particle
energies associated with the lines entering/leaving each of the p Ωij(τk) vertices. Quasiparticle
indices ki have been stripped of their labels in the matrix elements for the sake of concision.

In the following, we detail the strategy, the algorithm and the code to automatically generate
and evaluate all BMBPT diagrams appearing at an arbitrary order p.

3.2. Automatic generation of BMBPT diagrams

The automated generation of BMBPT Feynman diagrams is based on the use of graph theory,
which is the domain of mathematics that focuses on studying graphs. Definitions and properties
of quantities of interest, i.e., graph, walk and path on a graph, cycle, tree graph, adjacency
matrix etc. are detailed in App. B

.

. Here, we limit ourselves to a brief and qualitative description
of these notions and refer to the appendix for a more rigourous account.
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3. Systematic generation and evaluation of BMBPT diagrams

⇔


0 0 2 2
0 0 2 2
0 0 0 0
0 0 0 0



Figure 3.2. A BMBPT diagram and its associated adjacency matrix.

3.2.1. Basic elements
The main notions of interest are

• A graph G denotes a set of nodes and a set of edges, each edge being attached to a node
or a pair of nodes.

• A walk on a graph is an alternating sequence of nodes and edges connecting them. A
walk is closed (open) if the first and last nodes are (not) the same. The length of a walk
corresponds to its number of edges.

• A path is a walk whose nodes are all distinct.

• A cycle is a closed walk where the initial/final node and the internal nodes are distinct.

• A graph is connex if, for any pair of nodes, there exists a path connecting them.

• A tree graph is a connex graph without cycle.

• The oriented adjacency matrix Ã(G) associated to a graph G with labelled nodes v1...vn
is the matrix whose elements ãij indicate the number of edges going from node vi to node
vj.

3.2.2. Oriented adjacency matrix and BMBPT diagram
A BMBPT diagram being a connected graph with oriented edges, one can extract its oriented
adjacency matrix, as exemplified in Fig. 3.2

.

. Feynman’s topological rules characterizing valid
BMBPT diagrams constrain the form of their oriented adjacency matrices.

1. A BMBPT diagram of order p, i.e., containing p+1 vertices, is associated to a (p+1)×(p+1)
adjacency matrix.

2. As a BMBPT diagram is connected, its associated adjacency matrix cannot be recast
into block-diagonal form through permutation of its rows and columns.

3. As each vertex Ωij involved has either an effective one-, two- or three-body character,
thus exhibiting i+ j = 2, 4 or 6, each matrix index k fulfils the identity∑

l

(ãkl + ãlk) = 2, 4 or 6 . (3.4)
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3.2. Automatic generation of BMBPT diagrams

4. As only Om0(0) vertices with propagators going out contribute to BMBPT diagrams, the
corresponding, e.g. first, column of a valid adjacency matrix is necessarily zero.

5. As no contraction of a vertex onto itself is possible, all diagonal elements ãii of a valid
adjacency matrix are zero.

6. As no loop between two vertices is possible, matrix elements ãij and ãji of a valid
adjacency matrix cannot be non-zero simultaneously.

Producing the complete set of (p+ 1)× (p+ 1) matrices satisfying the above rules, one is
sure to generate all possible BMBPT diagrams of order p. One must, however, further discard
topologically equivalent diagrams. This can be done by performing simultaneous permutations
of rows and columns and by comparing the result with other matrices in the set. However,
as the generic operator O is at fixed time 0, it must not be considered in the process, i.e., its
column and row must not be permuted with any other.

3.2.3. Pedestrian generation of adjacency matrices

A simple way to generate all (p+ 1)× (p+ 1) adjacency matrices for a maximal vertex degree
equal to deg_max1

.

(i.e., 4 or 6 depending on the two- or three-body character of the operators)
is to start with a set of matrices containing only one matrix fully initialized to zero and proceed
as follows

1. Consider a matrix element,

a) Consider a matrix in the set,

i. Save the matrix,

ii. Save copies of the matrix with the matrix element changed to every possible
value from 1 to deg_max,

b) Go back to (a) until all matrices in the set are exhausted,

2. Go back to 1. until all matrix elements are exhausted.

With this method, detailed in a pseudocode fashion in Alg. 1

.

, all possible BMBPT adjacency
matrices are necessarily produced2

.

. One must, however, apply the set of tests necessary to
only retain adjacency matrices that conform with the rules listed in Sec. 3.2.2

.

.

1Though the code allows to distinguish between deg_max for the observable and deg_max for the Hamiltonian,
for the sake of clarity the same deg_max is used for both in the following.

2In particular, the rule regarding na = 0 is respected by construction, as the matrices are generated on a
propagator-by-propagator basis, with no external leg. The burden is thus transferred on making sure only
vertices with the appropriate one-, two- or three-body character are produced. A generalization of the
process authorizing na ≥ 0 thus has to be considered for off-diagonal BMBPT.
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3. Systematic generation and evaluation of BMBPT diagrams

Algorithm 1 Generation of adjacency matrices
1: function GenAdjMat
2: MatList = {}
3: set_zero(A)
4: d ∈ {0, 2, ..., deg_max}
5: for i = 0, ..., p+ 1 do
6: for j = 0, ..., p+ 1 do
7: aij = d

8: if (CheckProperties(A) = True) then
9: append A to MatList

0

τ1

τ2

Ω̆11

O40

Ω04 ⇔

0

τ2

τ1
Ω04

O40

Ω̆11

Figure 3.3. A BMBPT diagram drawn with some propagators going downwards (left) can be
turned into an equivalent diagram with all its propagators going upwards (right) by moving
the second vertex above the third one.

3.2.4. Optimized generation of adjacency matrices

The pedestrian method detailed in Sec. 3.2.3

.

is time and memory consuming from a numerical
viewpoint. It is thus beneficial to integrate as many of the selection rules as possible into the
very production process of the matrices. Doing so, time and memory are saved as less matrices
are actually produced while the tests enforcing the selection rules become superfluous. This
is particularly beneficial regarding the restriction to topologically distinct diagrams as the
corresponding test scales factorially with the number of matrices in the set.
The first obvious improvement is to avoid producing any matrix with a non-zero diagonal

element. Second, the fact that BMBPT diagrams do not display oriented loops between any
given number of vertices makes always possible, by moving vertices within the plane of the
graph, to recast any BMBPT diagram as an equivalent diagram with all propagators moving
upwards, as is exemplified in Fig. 3.3

.

. Accordingly, one limits the generation to upper-triangular
matrices, thus reducing their number drastically and discarding at the same time a whole set
of topologically equivalent diagrams.

The number of considered matrices can be further reduced by checking the k-body character
of the vertices on-the-fly. As the matrix elements are updated row by row, and thus vertex by
vertex given that only upper-triangular matrices are considered, one can check directly after
filling a row that the corresponding vertex has indeed a one-, two- or three-body character, i.e.,
that it satisfies Eq. (3.4

.

). If it is not the case, the matrix is rejected on-the-fly along with all

74



3.2. Automatic generation of BMBPT diagrams

matrices that would have spawn from it. For example, the adjacency matrix


0 2 2 1
0 0 0 0
0 0 0 0
0 0 0 0

 (3.5)

can be discarded right after filling the first row given that the sum of its matrix elements differ
from 2, 4 or 6.
A similar reasoning applies to the disconnected character of the diagrams. For matrices

associated to diagrams of order p > 0, it is possible to test after the second (or any further)
row is filled if the matrix is bound to span a disconnected diagram in the end. For example,
the adjacency matrix 

0 2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (3.6)

if already filled on its two first rows, would result in vertices 1 and 2 being disconnected from
vertices 3 and 4. One can thus eliminate the matrix on the fly, along with all matrices that
would have spawn from it.

3.2.5. Drawing associated BMBPT diagrams

Once all allowed (p+ 1)× (p+ 1) adjacency matrices have been produced, the corresponding
BMBPT diagrams can be drawn by simply reading the matrices, as each matrix element encodes
the number of propagators going from one vertex to another. As the number of generated
diagrams quickly increases with p, it is of interest to design a program to do it automatically.
The program reads the content of the matrix and writes in a text file the appropriate drawing
instructions for FeynMF [139

.

], a LATEX package designed to draw Feynman diagrams.
Although adjacency matrices are sufficient to draw the diagrams, one may want to perform

operations on the diagrams. We thus chose to make use of a graph theory package for Python
called NetworkX [140

.

]. The package takes adjacency matrices as input and produces graph
objects on which different operations can be performed. For example, the check for topologically
equivalent diagrams is performed using the built-in NetworkX function is_isomorphic and its
related interfaces. Combining the MultiDiGraph object from NetworkX and object-oriented
programming, it was possible to implement this test in a time-savy way, first checking that
two graphs share basic structures properties (degree of the different nodes, two-body only or
three-body operators character, etc.) before performing the costly permutations eventually
needed to check if they are indeed topologically equivalent.
With topologically distinct NetworkX BMBPT diagrams at hand, we could adapt the

program running through adjacency matrices to make it iterate through the nodes of the graph
and obtain the FeynMP instructions accordingly. As an example, the output displaying the
drawing instructions of the BMBPT diagram displayed in Fig. 2.9

.

is given in Fig. 3.4

.

.
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\begin{fmffile}{diag10}
\begin{fmfgraph*}(80,80)
\fmfcmd{style_def prop_pm expr p =
draw_plain p;
shrink(.7);
cfill (marrow (p, .25));
cfill (marrow (p, .75))
endshrink;
enddef;}
\fmftop{v3}\fmfbottom{v0}
\fmf{phantom}{v0,v1}
\fmfv{d.shape=square,d.filled=full,d.size=3thick}{v0}
\fmf{phantom}{v1,v2}
\fmfv{d.shape=circle,d.filled=full,d.size=3thick}{v1}
\fmf{phantom}{v2,v3}
\fmfv{d.shape=circle,d.filled=full,d.size=3thick}{v2}
\fmfv{d.shape=circle,d.filled=full,d.size=3thick}{v3}
\fmffreeze
\fmf{prop_pm,left=0.6}{v0,v2}
\fmf{prop_pm,right=0.6}{v0,v2}
\fmf{prop_pm,left=0.6}{v0,v3}
\fmf{prop_pm,right=0.6}{v0,v3}
\fmf{prop_pm,left=0.5}{v1,v2}
\fmf{prop_pm,right=0.5}{v1,v2}
\fmf{prop_pm,left=0.6}{v1,v3}
\fmf{prop_pm,right=0.6}{v1,v3}
\end{fmfgraph*}
\end{fmffile}

Figure 3.4. FeynMF instructions to draw the BMBPT diagram displayed in Fig. 2.9

.

.

3.3. Automatic evaluation of BMBPT diagrams
Having the capacity to generate all BMBPT Feynman diagrams of order p, the next challenge
is to systematically derive their expression. Doing so on the basis of Feynman’s algebraic rules
is rather straightforward. However, it leaves the p-tuple time integral to perform in order to
obtain the time-integrated expression of interest. Finding an algorithm to do so without prior
knowledge of the perturbative order or of the topology of the diagram constitutes an unsolved
challenge to our knowledge. In the present section, we introduce a method to achieve this goal,
eventually leading to the identification of a novel diagrammatic rule.

3.3.1. Time-structure diagram
In a BMBPT Feynman diagram, a time label is attached to each vertex. Given any two vertices,
their time labels are ordered with respect to each other as soon as a propagator connects
the vertices directly by virtue of the step function it carries (see Eq. 2.24

.

). The time labels
may also be ordered in a less obvious way if the two vertices are connected through a set of
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3.3. Automatic evaluation of BMBPT diagrams

intermediate vertices and propagators.
Eventually, a BMBPT Feynman diagram exhibits an underlying time structure that translates

into the specific form of the integrand of the p-tuple integral to be performed. This specific
form is characterized by a string of step functions ordering a subset of the time variables that
must be integrated over. In order to characterize the typical structure of the integrand and
compute the corresponding integral, we choose to represent it diagrammatically by introducing
the so-called time-structure diagram (TSD) of a given BMBPT diagram. As we shall see below,
the algorithm to perform the time-integral strongly depends on the topology of the TSD that
happens to play a fundamental role. Consequently, we now introduce and characterize TSDs.

1. The TSD associated to a BMBPT diagram of order p is made out of the following building
blocks
a) p+ 1 vertices representing operators in the interaction representation. While their

positive time labels (0, τ1, . . . , τp) are left implicit, vertices but the bottom one carry
explicit energy factors (a1, . . . , ap).

b) oriented links representing ordering relations, i.e., step functions, between pairs of
vertices. A link is oriented from the vertex carrying the smaller time to the vertex
carrying the larger time. Only the minimal set of links necessary to describe the
time structure of the diagram is to be drawn, i.e. if several paths exist, only the
ones comprising at least two links are to be represented3

.

.
c) BMBPT diagrams being connected, TSDs are necessarily connex.

2. The expression of a TSD of order p is extracted in the following way
a) each vertex aq, q = 1, . . . , p, contributes a factor e−aqτq ,
b) each link4

.

oriented from vertex au to vertex av contributes the step function θ(τv−τu),
c) the p time labels τ1, . . . , τp are integrated over from 0 to τ → +∞,

and thus typically reads as

T = lim
τ→∞

∫ τ

0
dτ1 . . . dτp θ(τq − τr) . . . θ(τu − τv)e−a1τ1 . . . e−apτp , (3.7)

where (q, r, . . . u, v) are integers between 1 and p.

3. The TSD associated to a BMBPT diagram can be obtained from the latter through the
following steps
a) copy the BMBPT diagram,
b) replace propagators by links,
c) add a link between the bottom vertex at time 0 and every other vertex if such a

link does not exist5

.

,
3This corresponds to omitting a step function θ(τi−τj) whenever a string of step functions θ(τi−τα) . . . θ(τω−τj)
carrying the same information already appears.

4Links originating from the bottom vertex do not contribute an explicit step function given that the positivity
of the running time labels is encoded into the boundary of the integral; see rule 2.(c).

5The operator vertex O at time 0 entertains an ordering relation with every other vertex.
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→ → →

a3

a1

a2

Figure 3.5. Production of the TSD associated with the third-order BMBPT diagram displayed
in Fig. 2.9

.

.

d) for each pair of vertices, consider all possible pathes linking them and discard the
ones comprising only one link if longer paths exist,

e) match aq to the sum/difference of quasi-particle energies associated with the lines
entering/leaving the corresponding vertex in the BMBPT diagram.

The procedure is illustrated in Fig. 3.5

.

for the BMBPT diagram originally displayed
in Fig. 2.9

.

. Cleared of other informations, the TSD transparently characterizes the
time-ordering structure underlying the BMBPT diagram, i.e., the three Ωij vertices are
at higher times than O40 such that the two Ω04 vertices are at higher times than Ω40

without being ordered with respect to one another. From the graph theory viewpoint,
the corresponding TSD is a tree, i.e., it contains no cycle, with two branches such that
the vertices on the two branches are not ordered with respect to one another.

3.3.2. Discussion

It is mandatory to generate the TSDs from the underlying BMBPT diagrams. Indeed, only in
the latter can the maximum degree deg_max of the operators at play be employed to constrain
the topology of the diagrams, eventually dictating the topology of allowed TSDs. With this in
mind and following the above rules, the 1/1/2/5/15 TSDs of order 0/1/2/3/4 corresponding
to BMBPT diagrams generated from operators with deg_max = 6, i.e., containing effective
three-body terms, have been produced and systematically displayed in Figs. 3.6

.

and 3.7

.

. One
notices that the first TSD containing a cycle is the third-order TSD labelled as T3.5 in Fig. 3.6

.

,
i.e., all TSDs up to order 2 (3) are trees (but one). At order 4, seven out of fourteen TSDs
contain cycles. Obviously, the higher the order, the more complex the topology can be.
In the end, different BMBPT diagrams of order p can have the same TSD, i.e., the same

underlying time structure. For instance, the eleven BMBPT diagrams of orders 0, 1 and 2
displayed in Fig. 2.6

.

translate into only four TSDs in Fig. 3.6

.

. However, the time integral
eventually turns into a different result for each associated BMBPT diagram given that the
energy labels in terms of which the result is expressed have a different meaning in each case.
Back to our example of Fig. 3.5

.

, the full labelling of the BMBPT diagram provided in Fig. 3.8

.
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T0.1

a1

T1.1
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T2.2
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T3.2
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a3

T3.3

a1

a2

a3

T3.4

a1

a2

a3

T3.5

a1

a2

Figure 3.6. Zero-, first-, second- and third-order TSDs corresponding to BMBPT diagrams
generated from operators containing six legs at most, i.e., with deg_max = 6.

allows us to identify the actual expression of the vertex labels

a1 = εk5k6k7k8 ,

a2 = εk1k2k5k6 ,

a3 = εk3k4k7k8 ,

to be used in the final outcome of the TSD. Another fourth-order diagram with the same TSD
would associate other combinations of quasi-particle energies to the energy labels a1, a2 and a3.

3.3.3. Calculation of tree TSDs
Tree TSDs happen to play an instrumental role in the present context. Indeed, they constitute
the category for which a direct algorithm can be found to evaluate the corresponding p-tuple
time integral. Building on it, non-tree TSDs (i.e., starting with order p = 3) will be treated by
re-expressing them as a sum of tree TSDs.
The identification of the rule to compute a tree TSD relies on a recursive procedure, i.e.,

starting from a tree TSD of order p, whose expression is considered to be known, a vertex Ω
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Figure 3.7. Fourth-order TSDs corresponding to BMBPT diagrams generated from operators
containing six legs at most, i.e., with deg_max = 6.

k1 k2

k3 k4k5

k6

k7 k8

τ3
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τ1

τ2

a3

a1

a2

Figure 3.8. Fully-labelled third-order BMBPT diagram displayed in Fig. 2.9

.

and its associated
TSD.

carrying label ap+1 is added by connecting it to one of the vertices of the original TSD. Having
generated a new TSD of order p+ 1, its expression is obtained.

Minimal tree TSD

One starts with the minimal tree TSD, i.e., the single TSD of order 0 denoted as T0.1 in
Fig. 3.6

.

. It is built from the sole vertex representing the operator O and does not carry any
running time label. It looks like
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and its expression is nothing but

T0.1 = 1 .

First-order TSD

The single first-order TSD, denoted as T1.1 in Fig. 3.6

.

, is generated from the minimal tree
graph by connecting one Ω vertex carrying label a1 to the vertex O

a1

The expression of this TSD is given by the single integral

T1.1 = lim
τ→∞

∫ τ

0
dτ1 e

−a1τ1

= 1
a1

,

such that the end denominator is simply equal to the energy factor a1
6

.

. One trivially observes
that the end result could have been obtained directly by adding the factor a1 associated to the
new vertex to the denominator of the minimal tree TSD.

Second-order TSDs

As is visible in Fig. 3.6

.

, two second-order TSDs denoted as T2.1 and T2.2 can be built from
the first-order TSD. The first one is obtained by connecting the new vertex to the one labelled
by a1. It provides the linear tree TSD

a2

a1

in which all vertices belong to the same branch and are thus sequentially ordered in time. As
a result, the double time integral displays two nested integrals, the one over the earlier time

6The finiteness of the result relies on the fact that the energy factor a1 is taken to be positive. In the following,
all prefactors contributing to a given integral will be assumed to be positive, which will eventually be
justified for BMBPT diagrams in Sec. 3.3.3

.

.
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depending on the result of the one over the later time that is thus performed first, i.e.

T2.1 = lim
τ→∞

∫ τ

0
dτ1dτ2 θ(τ2 − τ1)e−a1τ1e−a2τ2

= lim
τ→∞

∫ τ

0
dτ1e

−a1τ1
∫ τ

τ1
dτ2e

−a2τ2

= lim
τ→∞
− 1
a2

∫ τ

0
dτ1e

−a1τ1
(
e−a2τ − e−a2τ1

)
= lim

τ→∞

1
a2

(∫ τ

0
dτ1e

−(a1+a2)τ1 − e−a2τ
∫ τ

0
dτ1e

−a1τ1

)
= 1
a2(a1 + a2) .

One observes that the end result could have been obtained directly by adding the factor a2
associated to the new vertex to the denominator of T1.1 and by further replacing a1 by a1 + a2.
This is because the first integration over τ2 trivially brings the factor a2 to the denominator
and makes at the same time the variable a1 + a2 become the factor in front of τ1 in the part of
the subsequent integration that eventually remains in the limit τ → +∞.
The alternative way to generate a second-order TSD from the first-order one is to connect

the new vertex to the bottom vertex. This gives a tree TSD with two branches

a2

a1

such that the vertices in the two branches are not time ordered with respect to each other.
Consequently, the double time integral reduces to the product of two independent single
integrals, i.e.

T2.2 = lim
τ→∞

∫ τ

0
dτ1dτ2 e

−a1τ1e−a2τ2

= lim
τ→∞

(∫ τ

0
dτ1e

−a1τ1

)(∫ τ

0
dτ2e

−a2τ2

)
= lim

τ→∞

1
a1a2

(
e−a1τ − 1

) (
e−a2τ − 1

)
= 1
a1a2

.

One observes that the end result could have been obtained directly by adding the factor a2
associated to the new vertex to the denominator of T1.1, leaving a1 unaffected. Indeed, while
the first integration over τ2 trivially brings the factor a2 to the denominator, it leaves the
second integration unaffected as the two are independent.
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Order-p TSDs

The procedure described above can be extended to compute any tree TSD of order p > 0
in terms of a reference TSD of order p − 1. Indeed, any tree TSD of order p > 0 can be
obtained via the addition of a vertex ap to a reference TSD of order p − 1. The only three
options to do so are to add vertex ap (i) through a link originating from a pre-existing vertex
aq, q = 1, . . . p− 1, such that aq (i1) continues an existing branch or (i2) initiates a new branch
containing a single vertex (i.e., itself), or (ii) through a link originating from the bottom vertex
at fixed time 0. In all three cases, the integral over τp trivially brings the factor ap to the final
denominator. In cases (i1) and (i2), the prefactor aq in the integration over τq in the reference
TSD is replaced by the factor aq + ap in the part of the integral that eventually remains in
the limit τ → +∞. Contrarily, all factors aq, q = 1, . . . , p − 1, involved in the subsequent
integrations are left unaffected in case (ii). As a result, the denominator of the TSD of interest
can be calculated through the following steps

1. start from the denominator expression of the reference TSD of order p− 1,

2. add the factor ap,

3. replace every occurrence of aq by aq + ap except if the new vertex is linked to the bottom
vertex.

Algorithm

Given a general tree TSD of order p, the above procedure can be used iteratively to calculate
its expression, i.e., the end denominator. Starting from the vertices located at the very end of
each branch of the tree, one can indeed iterate the above algorithm to remove them one by
one back to the minimal tree TSD. In doing so, the merging of branches is naturally handled.
Each step of the way, the most external vertex of a branch is treated as if it had been added to
a tree TSD of one order less. Applying the above algorithm, one elementary step results into
(i) chopping off the treated vertex, (ii) storing a contribution to the end denominator equal
to the effective label carried by the removed vertex and (iii) adding the effective label of the
removed vertex to the label of the vertex it was linked to, except if the latter is the bottom
vertex, in which case the procedure associated to that branch stops. The end expression of the
denominator contains p factors resulting from the p steps necessary to iterate through all the
vertices. Eventually, the iterative procedure induces the rule to be employed to generate the
denominator of any tree TSD of order p, i.e.

1. Consider a vertex aq, q = 1, . . . , p, in the TSD,
a) find all its descendants, i.e., all the vertices that are reachable from aq by following

links upward,
b) sum label aq to the labels of all its descendants,
c) add the corresponding factor to the denominator expression,

2. Go back to 1. until all vertices have been exhausted.
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Let us illustrate the diagrammatic rule for tree TSDs by computing the denominator associated
with the third-order TSD displayed in Fig. 3.8

.

1. Starting with vertex a1, vertices a2 and a3 are reached by following two different sets
of links upward7

.

corresponding to the two branches of the tree TSD. Consequently, the
factor a1 + a2 + a3 is associated to vertex a1.

2. Moving to vertex a2, no other vertex is reachable from it. Thus, the plain factor a2 is
associated to it.

3. Similarly, the plain factor a3 must be associated to vertex a3.

4. Eventually, the denominator is formed by the product of the factors associated with
vertices a1, a2 and a3; i.e., it is equal to (a1 + a2 + a3)a2a3. One correctly recovers the
result derived in Sec. 3.1.1

.

via the explicit integration of the corresponding triple time
integral.

We, thus, have a rule at hand to compute the time-integrated expression of any tree TSD,
independently of its perturbative order and of its topology. Although TSDs including at least
one cycle are excluded at this point, a tree TSD of arbitrary order p may already correspond to
a complex BMBPT diagram displaying any number of branches and sub-branches of arbitrary
lengths.

Output of the ADG program

A typical output for a tree TSD looks like

Time-structure diagram T1:

T1 = 1
(a1 + a2)a2

Related Feynman diagrams: 8, 6, 5, 4, 3, 2, 1.

The TSD is displayed along with its associated expression and the labels of all the BMBPT
diagrams it corresponds to.

7In the present example, each path followed contains only one link.
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From a tree TSD back to BMBPT diagrams

Once the expression of a tree TSD of order p has been obtained, the goal is to generate the
actual time-integrated expression of the BMBPT diagrams associated to it. One obvious
way consists of replacing the factors aq, q = 1, . . . , p, by their expressions for each BMBPT
diagram. However, while these factors constitute the natural variables to write the integrand
associated with the Feynman diagram, the time-integrated expression rather depends on specific
combinations of them that eventually lead to remarkable cancellations between the terms. It
is, thus, more satisfactory to identify what these combinations actually correspond to and
formulate the final rule directly in terms of them.
To do so, we introduce the notion of subdiagram, or subgraph, of a diagram as a diagram

composed by a subset of vertices plus the propagators that are exchanged between them. As
each vertex label aq in a TSD eventually stands for the sum/difference of quasi-particle energies
associated with the lines entering/leaving the vertex in the associated BMBPT diagram, a
combination of these labels denotes the sum/difference of quasi-particle energies associated
with the lines entering/leaving the subdiagram grouping the corresponding vertices.

Let us illustrate this notion by coming back to the BMBPT diagram displayed in Fig. 3.8

.

.
The expression of the associated TSD denominator includes a factor a1 + a2 + a3 = εk1k2k3k4 .
Considering the subdiagram grouping vertices a1, a2 and a3, one observes that this factor
indeed corresponds to the sum/difference of quasi-particle energies associated with the lines
entering/leaving it, which in the present case reduces to the sum of Ek1 , Ek2 , Ek3 and Ek4

corresponding to the four entering lines, i.e., there is no line leaving the subdiagram.
The above example underlines a fundamental point. Because each effective factor entering

the end denominator sums the label of a given vertex with the labels of all its descendants, the
corresponding BMBPT subdiagram only displays entering lines. This results into the effective
factors being positive sums of quasi-particle energies. This key feature is responsible for the
finiteness of all the encountered time integrals in the limit τ → +∞, as alluded to in footnote
13.

Eventually, the energy denominator of a BMBPT diagram associated with a tree TSD is
obtained in the following way

1. Consider a vertex but the lowest one in the BMBPT diagram,
a) determine all its descendants using the TSD,
b) form a subdiagram using the vertex and its descendants,
c) sum the quasi-particle energies corresponding to the lines entering the subdiagram,
d) add the corresponding factor to the denominator expression,

2. Go back to 1. until all vertices have been exhausted.

Let us illustrate the final diagrammatic rule by coming back to the BMBPT diagram
displayed in Fig. 3.8

.

.

1. The vertex at time τ1 in the BMBPT diagram corresponds to vertex a1 in the TSD. Its
descendants are vertices a2 and a3 corresponding to BMBPT vertices at times τ2 and
τ3, respectively. The sum of quasi-particle energies associated to the lines entering the
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subgraph grouping the three vertices is εk1k2k3k4 , thus, providing the first factor entering
the denominator.

2. The vertex at time τ2 in the BMBPT diagram correspond to vertex a2 in the TSD. It
has no descendant such that the corresponding subgraph reduces to itself. The sum
of quasi-particle energies associated to the lines entering the subgraph is εk1k2k5k6 , thus.
providing the second factor entering the denominator.

3. The vertex at time τ3 in the BMBPT diagram correspond to vertex a3 in the TSD. It
has no descendant such that the corresponding subgraph reduces to itself. The sum of
quasi-particle energies associated to the lines entering the subgraph is εk3k4k7k8 , thus,
providing the last factor entering the denominator.

4. Eventually, the complete denominator reads as

εk1k2k3k4 εk1k2k5k6 εk3k4k7k8 ,

where each factor corresponds to a positive sum of quasi-particle energies.

The result does indeed match the one obtained in Sec. 3.1.1

.

.

3.3.4. Calculation of non-tree TSDs
Having a direct method at hand to compute the time-integrated form of any BMBPT diagram
associated with a tree TSD, one is left with the important task to find an algorithm to tackle
diagrams corresponding to non-tree TSDs, i.e., to TSDs containing at least one cycle. As no
direct rule applies to them, the strategy consists of commuting any non-tree TSD into a sum
of tree TSDs to which the above diagrammatic rule applies.

Minimal non-tree TSD

To familiarize ourselves with non-tree TSDs, let us focus on the simplest of them, the third-order
TSD denoted as T3.5 in Fig. 3.6

.

a3

a1

a2

One first notices that vertices a1 and a2 are not time ordered with respect to each other. While
this could be dealt with if the two vertices were situated on different branches of a tree TSD,
the fact that they are time ordered with respect to a3, i.e., that their time labels run from 0
to τ3 and not from 0 to τ → +∞, prevents a direct treatment. In the following, we use the
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3.3. Automatic evaluation of BMBPT diagrams

term cycle8

.

to describe structures where some vertices are not time ordered with respect to
one another while being time ordered with respect to a vertex or a set of vertices at higher
times. Calculating the triple time integral associated to the TSD leads to

T3.5 = lim
τ→∞

∫ τ

0
dτ1dτ2dτ3 θ(τ3 − τ1) θ(τ3 − τ2)e−a1τ1e−a2τ2e−a3τ3

= 1
(a1 + a3)(a2 + a3)

[ 1
a3

+ 1
a1 + a2 + a3

]
= 1
a3(a1 + a2 + a3)

[ 1
a1 + a3

+ 1
a2 + a3

]
. (3.8)

Because the lines inside a cycle do not constitute separate branches, the corresponding time
integrals are not independent from one another. It implies that the vertices inside a cycle
need to be ordered explicitly in all possible ways. It is what is actually behind the two terms
appearing in Eq. 3.8

.

that were generated via the time partitioning 1 = θ(τ1 − τ2) + θ(τ2 − τ1)
in the integrals over τ1 and τ2 thus producing the two ways of ordering a1 and a2.

Diagrammatically, employing such a partitioning for two vertices inside a cycle corresponds
to generating the sum of two TSDs through the following steps

1. Select the two internal vertices that are not connected by a link.

2. Connect them via an oriented link and only keep the maximal length paths between each
pair of vertices in the graph. This generates a first new graph.

3. Proceeding similarly but with the added link pointing in the opposite direction generates
a second new graph.

In the minimal non-tree graph, the two vertices to be ordered are a1 and a2. Applying the
ordering procedure leads to

a3

a1

a2

=

a3

a1

a2
+

a3

a1

a2

such that the non-tree graph T3.5 is nothing but the sum of twice the linear tree graph T3.1
with the order of a1 and a2 exchanged9

.

.
Applying the algorithm detailed in Sec. 3.3.3

.

to each of the two resulting tree TSDs provides

T3.5 = 1
a3(a2 + a3)(a1 + a2 + a3) + 1

a3(a1 + a3)(a1 + a2 + a3)

= 1
a3(a1 + a2 + a3)

[ 1
a1 + a3

+ 1
a2 + a3

]
, (3.9)

which is indeed the result of Eq. 3.8

.

.
8It actually corresponds to an undirected cycle as defined in B

.

.
9It is obviously necessary to move a1 above a2 into the second tree graph to realize that it also displays the
topology of T3.1.
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Figure 3.9. A fifth-order non-tree TSD

Cycles identification

In order to treat non-tree TSDs, one must first identify all the cycles, i.e., the end nodes of
the cycles, possibly contained in a given TSD. Exploiting the NetworkX graph, it is done by
applying the following algorithm

1. Consider node_a with out_degree ≥ 2,
a) Consider node_b different from node_a,

• Check for paths going from node_a to node_b,
• If in_degree(node_b) ≥ 2 and nb_paths ≥ 2, node_a and node_b are end

nodes of a cycle,
• Check that the two paths share only their end nodes,

b) Go back to (a) until all nodes are exhausted,

2. Go back to 1. until all nodes are exhausted,

where the in_degree (out_degree) of a node, or vertex, denotes the number of incoming
(outgoing) lines.

Let us illustrate the algorithm by applying it to the fifth-order non-tree TSD displayed in
Fig. 3.9

.

.

1. node_0 has out_degree ≥ 2.
• node_1, node_2 and node_3 have in_degree = 1.
• node_4 has in_degree = 3 and nb_paths = 3, so node_0 and node_4 are end nodes

of a cycle, since the paths do not share other nodes.
• node_5 has in_degree = 2 and nb_paths = 2, so node_0 and node_5 are end nodes

of a cycle, since the paths do not share other nodes.

2. node_1 has out_degree = 1.

3. node_2 has out_degree ≥ 2.
• node_4 has only one path coming from node_2.
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4
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Figure 3.10. A fourth order non-tree TSD.

• node_5 has only one path coming from node_2.

4. node_3 has out_degree ≥ 2.
• node_4 has only one path coming from node_3.
• node_5 has only one path coming from node_3.

Eventually, the TSD comprises two cycles, one with end nodes node_0 and node_4, and one
with end nodes node_0 and node_5.

Cycles treatment

Once the cycles of a TSD have been identified, they must be traded for a sum of tree TSDs
via the systematic ordering of their internal vertices. Starting from the NetworkX diagram,
the two end nodes of the cycle, and the two paths connecting the end nodes, one applies the
following algorithm

1. Set node_to_insert as the first node of path_1 after start node.

2. For each daughter_node in path_2 but the starting node
a) Make a copy of the graph,
b) Add a link from node_to_insert to daughter_node,
c) Set mother_node as the node preceding daughter_node in path_2,
d) Add a link from mother_node to daughter_node,
e) Remove the links carrying unnecessary information.

Let us illustrate the previous algorithm by applying it to the fourth-order TSD displayed in
Fig. 3.10

.

. One chooses here to set path_1 as {0, 3, 4} and path_2 as {0, 1, 2, 4}.

1. Set node_to_insert to node_3,

2. Set daughter_node to node_1

a) Copy the graph,
b) Add a link from node_3 to node_1,
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3. Systematic generation and evaluation of BMBPT diagrams

c) Set mother_node to node_0,
d) Add a link from node_0 to node_3,
e) Remove the links from node_0 to node_1 and from node_3 to node_4,

3. Set daughter_node to node_2

a) Copy the graph,
b) Add a link from node_3 to node_2,
c) Set mother_node to node_1,
d) Add a link from node_1 to node_3,
e) Remove the links from node_1 to node_2 and from node_3 to node_4,

4. Set daughter_node to node_4

a) Copy the graph,
b) Add a link from node_3 to node_4,
c) Set mother_node to node_2,
d) Add a link from node_2 to node_3,
e) Remove the links from node_0 to node_3 and one of the links from node_3 to

node_4.

The tree TSDs thus generated are displayed in Fig. 3.11

.

. In the present case, they all correspond
to the linear tree TSD of order 4, denoted as T4.1 in Fig. 3.7

.

, with different orderings of
vertices a1, a2 and a3.

Though applying once the algorithm exemplified above does not guarantee to obtain only
tree TSDs, the three diagrams obtained presently are indeed tree TSDs. Whenever it is not
the case, one must repeatedly apply the cycle (identification and treatment) algorithms to the
TSDs generated at each step until only tree TSDs are obtained. In the above example, initially
inverting path_1 and path_2 would have required more than one step.
All tree TSDs corresponding to an initial non-tree TSD being generated, the algorithm

detailed in Sec. 3.3.3

.

can be applied to each of them. The expression of the non-tree TSD is
nothing but the sum of the individual contributions thus obtained.

Output of the ADG program

A typical output of ADG for a non-tree TSD looks like

Time-structure diagram T4:
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Figure 3.11. Tree TSDs generated by applying the cycle treatment algorithm to the non-tree
TSD displayed in Fig. 3.10

.

with the choice of setting daughter_node to 1, 2 and 4, drawn
with the original vertex ordering (top) or after reordering the vertices ascendantly (bottom).

T4 = 1
(a1 + a3)(a2 + a1 + a3)a3

+ 1
(a1 + a2 + a3)(a2 + a3)a3

Equivalent tree diagrams: T1, T1.

Related Feynman diagrams: 6, 9, 20, 27, 31, 39, 40, 43, 48, 50.

The TSD is displayed along with its expression and a graphical representation of the tree
TSDs obtained by disentangling its cycles. The list of associated BMBPT Feynman diagrams
is also provided.

3.3.5. Final ouput of the ADG program
Exploiting the findings detailed in the previous sections, we are now in position to provide the
typical output of the ADG program. For a BMBPT diagram associated with a tree TSD, the
output looks like
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3. Systematic generation and evaluation of BMBPT diagrams

Diagram 1:

PO3.1 = lim
τ→∞

(−1)2

(2!)3

∑
ki

O40
k1k2k3k4Ω22

k5k6k1k2Ω04
k5k6k3k4

∫ τ

0
dτ1dτ2θ(τ2 − τ1)e−τ1ε

k5k6
k1k2e

−τ2εk3k4k5k6

= (−1)2

(2!)3

∑
ki

O40
k1k2k3k4Ω22

k5k6k1k2Ω04
k5k6k3k4

εk1k2k3k4 εk3k4k5k6

→ T1:

T1 = 1
(a1 + a2)a2

a1 = εk5k6
k1k2

a2 = εk3k4k5k6

whereas for a BMBPT diagram associated with a non-tree TSD, it looks like

Diagram 6:

PO4.6 = lim
τ→∞

−(−1)3

(3!)2

∑
ki

O40
k1k2k3k4Ω31

k5k6k7k1Ω13
k8k2k3k4Ω04

k8k5k6k7

×
∫ τ

0
dτ1dτ2dτ3θ(τ3 − τ1)θ(τ3 − τ2)e−τ1ε

k5k6k7
k1 e

−τ2ε
k8
k2k3k4e

−τ3εk5k6k7k8

= −(−1)3

(3!)2

∑
ki

O40
k1k2k3k4Ω31

k5k6k7k1Ω13
k8k2k3k4Ω04

k8k5k6k7

×
[

1
εk1k8 εk1k2k3k4 εk5k6k7k8

+ 1
εk1k2k3k4 εk2k3k4k5k6k7 εk5k6k7k8

]

→ T4:

T4 = 1
(a1 + a3)(a2 + a1 + a3)a3

+ 1
(a1 + a2 + a3)(a2 + a3)a3

a1 = εk5k6k7
k1

a2 = εk8
k2k3k4

a3 = εk5k6k7k8

92



3.4. Connection to time-ordered diagrammatics

The BMBPT diagram and its associated TSD are displayed. The original Feynman expression,
its time-integrated expression and the expression of the TSD it derives from are added before
listing the correspondence between the vertex labels in the TSD and the sum of quasiparticle
energies in the BMBPT diagram.

3.4. Connection to time-ordered diagrammatics
The formal and numerical developments presented in this work rely on the time-dependent
formulation of (B)MBPT. It is, however, more customary to design MBPT on the basis of a
time-independent formalism [61

.

]. While the end result is necessarily the same, the partitioning10

.

of the complete order-p contribution to the observable OA
0 differs in both approaches.

3.4.1. Combinatorics
The main characteristic of the time-dependent formalism is to authorize each diagram to
capture as many different time orderings of the vertices as possible. While the contractions
linking the vertices explicitly order a subset of the vertices, some vertices are left unordered in
the integrand such that the diagram eventually seizes, i.e., sums, all remaining orderings at
once. The combinatorics of these remaining orderings depends on the diagram and relates to
the topology of the associated TSD.

1. Vertices belonging to the linear tree TSD of order p are fully ordered in time such that
no further reordering is possible.

2. A non-linear tree TSD contains several branches. The vertices on a given branch are fully
ordered with respect to each other and with respect to the vertices located on the trunk
the branch emerges from. However, the vertices on a branch are not ordered with respect
to those belonging to another branch. Correspondingly, one can define the combinatorics
"nbranches" as the total number of ways to order the vertices on the various branches. This
corresponds to the number of fully time-ordered diagrams (i.e. linear tree TSDs) the
Feynman diagram captures.

3. A non-tree TSD further contains cycles. The vertices on a branch inside a cycle are fully
ordered with respect to each other and with respect to the vertices located below (above)
the starting (end) node of the cycle. However, the vertices on the various branches of
the cycle are not ordered with respect to each others. The combinatorics "ncycle" relates
to ordering the vertices on the various branches of the cycle in all possible ways. The
corresponding algorithm was discussed at length in Sec. 3.3.4

.

. Performing this ordering
for all cycles in a given non-tree TSD generates a set of tree TSDs.

Contrarily, the main characteristic of the time-independent formalism is to operate with fully
time-ordered diagrams from the outset, i.e., to associate one diagram per possible time ordering
10A valid partitioning relates to splitting the complete order p in a sum of terms that are individually

proportional to a fraction of the form 1/(εki...kj . . . εku...kv ) with p energy factors in the denominator. Any
other form does not constitute a valid partioning in the present context.
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3. Systematic generation and evaluation of BMBPT diagrams

Order 0 1 2 3 4
deg_max = 4 TSD 1 1 2 4 14

BMBPT 1 2 8 59 568
deg_max = 6 TSD 1 1 2 5 15

BMBPT 1 3 23 396 10 716

Table 3.1. Number of time-unordered diagrams generated from operators containing at most
four (deg_max = 4) or six (deg_max = 6) legs.

Order 0 1 2 3 4
deg_max = 4 TSD 1 1 1 1 1

BMBPT 1 2 9 87 1 377
deg_max = 6 TSD 1 1 1 1 1

BMBPT 1 3 25 551 21 814

Table 3.2. Number of time-ordered diagrams generated from operators containing at most
four (deg_max = 4) or six (deg_max = 6) legs.

of all the vertices. Correspondingly, there is no point invoking TSDs in this diagrammatics
given that each time-ordered diagram of order p trivially relates to the linear tree TSD of order
p.

Obviously, the main difference between both diagrammatics relates to the number of diagrams
partitioning the complete order p. The number of time-unordered11

.

(time-ordered) BMBPT
diagrams and associated TSDs generated from operators containing at most four or six legs
are provided in Tab. 3.1

.

(Tab. 3.2

.

) for perturbative orders p = 0, 1, 2, 3 and 4. While the
difference is not significant at low-order and/or for low deg_max, it obviously increases with p
and deg_max.
A key interest of the present work is to demonstrate that (i) a direct and systematic

calculation of any Feynman BMBPT diagram associated with a tree TSD is possible and that
(ii) the treatment of diagrams associated with non-tree TSD does require an explicit reordering
of the vertices inside a given cycle. On the one hand, point (ii) underlines that the smaller
number of time-unordered diagrams is partially illusory given that some explicit ordering (with
combinatorial factor "ncycle") of the vertices is actually mandatory to compute the diagrams. On
the other, point (i) stresses that the large combinatorics of the fully-time-ordered diagrammatic
is an overkill that can be avoided given that explicitly ordering the vertices on the various
branches of tree diagrams (with combinatorial factor "nbranches") is superfluous.
As a result of the above, the optimal, i.e., minimal, number of BMBPT diagrams and

associated TSDs one must eventually handle after ordering the vertices inside cycles is given in
Tab. 3.3

.

. This corresponds to what can be denoted as the partially-time-ordered diagrammatic
whose combinatorics is obviously in between those appearing in Tabs. 3.1

.

and 3.2

.

. The number
11As explained above, time-unordered diagrams do contain a certain degree of time ordering among a subset of

vertices but this degree is minimal. One could thus better refer to the minimally-ordered diagrammatic.
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Order 0 1 2 3 4
deg_max = 4 TSD 1 1 2 3 7

BMBPT 1 2 8 69 866
deg_max = 6 TSD 1 1 2 4 8

BMBPT 1 3 23 449 15 250

Table 3.3. Number of partially-time-ordered diagrams generated from operators containing at
most four (deg_max = 4) or six (deg_max = 6) legs.

Order 0 1 2 3 4
TSD BMBPT TSD BMBPT TSD BMBPT TSD BMBPT TSD BMBPT

Linear tree 1 1 1 2 1 7 1 35 1 205
Non-linear tree 0 0 0 0 1 1 2 14 6 147
Non-tree 0 0 0 0 0 0 1 10 7 216

Table 3.4. Number of TSDs and BMBPT diagrams per topological category generated from
operators containing at most four legs (deg_max = 4).

Order 0 1 2 3 4
TSD BMBPT TSD BMBPT TSD BMBPT TSD BMBPT TSD BMBPT

Linear tree 1 1 1 3 1 21 1 267 1 4970
Non-linear tree 0 0 0 0 1 2 3 76 7 2311
Non-tree 0 0 0 0 0 0 1 53 7 3435

Table 3.5. Number of TSDs and BMBPT diagrams per topological category generated from
operators containing at most six legs (deg_max = 6).
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Figure 3.12. Resummation efficiency expressed as the number of time-unordered BMBPT
diagrams with respect to fully-ordered BMBPT diagrams. Red dots (blue squares) correspond
to using vertices with four (six) legs at most. Empty symbols correspond to canonical diagrams
only.
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Figure 3.13. A third-order BMBPT diagram and its associated linear tree TSD.

of diagrams typically is comprised between 40% and 90% of those at play in the fully-time-
ordered diagrammatic as illustrated in Fig. 3.12

.

, and reduces with growing perturbative order.
This minimal number of diagrams that must effectively be dealt with is of course dictated by
how many of the original time-unordered diagrams relates to (i) a linear tree, (ii) a non-linear
tree or (iii) a non-tree TSD. Indeed, how many of the original diagrams are in fact already
fully time-ordered limits how much one can take advantage of not fully ordering the other ones.
For orientation, this partitioning of the diagrams is given in Tabs. 3.4

.

and 3.5

.

for perturbative
orders p = 0, 1, 2, 3 and 4. Beyond the lowest orders, the number of BMBPT Feynman diagrams
that are not fully time-ordered to begin with grows radiply with both p and deg_max.

3.4.2. Resolvent rule
In the time-independent formulation of MBPT, the expression of each time-ordered diagram is
derived via the application of the so-called resolvent rule [61

.

]. It is of interest to realize that the
diagrammatic rule presently identified to compute any generic tree TSD in the time-unordered
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diagrammatic reduces to the resolvent rule for linear trees, i.e., for TSDs corresponding to
BMBPT diagrams that are in fact fully time ordered.
Let us illustrate this feature on the basis of the third-order BMBPT diagram and its

associated linear tree TSD displayed in Fig. 3.13

.

. The expression of the diagram reads, via the
application of our diagrammatic rule based on the identification of the subdiagram associated
to each vertex and its descendants, as

D = (−1)3

(3!)2

∑
ki

O40
k1k2k3k4Ω13

k5k1k2k3Ω31
k6k7k8k5Ω04

k6k7k8k4

εk1k2k3k4 εk4k5 εk4k6k7k8

. (3.10)

While keeping all other elements unchanged, let us work out the denominator via the resolvent
rule

1. drawing a line between the two lowest vertices, four lines carrying quasi-particle indices
k1, k2, k3 and k4 are crossed. As a result, the resolvent rule contributes a factor εk1k2k3k4

to the denominator.

2. Repeating the procedure for the resolvent located between second and third (third and
fourth) vertices, a factor εk4k5 (εk4k6k7k8) is found to contribute to the denominator.

The overall denominator is thus the same as in Eq. 3.10

.

. This result is easily understandable
given that the lines between any two successive vertices of a linear tree are nothing but those
entering the subdiagram formed by the second vertex and all its descendants.

3.4.3. Diagrammatic resummation
As mentioned in Sec. 3.4.1

.

, the minimally-ordered BMBPT diagrammatics allows for a certain
resummation of linear tree TSDs into a more general tree TSD associated to a combinatorial
factor nbranches. Indeed the diagrammatic rule identified in Sec. 3.3.3

.

permits to sum at once,
i.e., from a single BMBPT Feynman diagram associated to a tree TSD, the whole class of
fully-time-ordered diagrams that derive from it, leading to a significant compactification of the
computation. The number of fully-time-ordered diagrams generated from a tree TSD of order
p denoted as Tp.k is

nbranches(Tp.k) = p!∏p
i=1 pi

, (3.11)

where pi denotes the effective order of the subdiagram associated with vertex i, i.e. the number
of vertices in the subgraph made out of vertex i and all its descendants. The product in the
denominator accounts for all the combinations that are not summed into the tree TSD due to the
vertices being partially ordered to begin with. The degree of resummation is maximal for a tree
TSD in which all perturbative vertices are unordered with respect to each other, i.e. for a TSD
containing p independent branches associated with p vertices directly connected to the bottom
vertex. Indeed, pi = 1 for i = 1, . . . , p in this case such that nbranches(Tp.k) = p!. Contrarily, all
vertices belonging to the same branch in a linear tree, the successive pi coefficients are equal to
1, 2, . . . , p as one runs through the branch from top to bottom such that nbranches(Tp.k) = 1 as
expected.
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Figure 3.14. Decomposition of T3.4 into a sum of linear tree TSDs.

Order 0 1 2 3 4 5 6 7
deg_max = 4 1 1 2 3 8 30 90 420
deg_max = 6 1 1 2 6 12 40 180 1 008
p! 1 1 2 6 24 120 720 5 040

Table 3.6. Maximal degree of resummation of tree TSDs associated with BMBPT diagrams
generated from operators containing at most four (deg_max = 4) or six (deg_max = 6) legs.
Factorial values are also provided for comparison.

Let us illustrate the above for the two third-order tree TSDs denoted as T3.3 and T3.4 in
Fig. 3.6

.

. Their decomposition into fully-time-ordered linear trees is displayed in Figs. 3.14

.

and 3.15

.

, respectively. The number of fully-time-ordered diagrams resummed into T3.4 is
nbranches(T3.4) = 3!. It corresponds to a maximal degree of resummation as T3.4 is made out
of three independent vertices directly connected to the bottom vertex. Proceeding similarly
with T3.3, the number of resummed fully-time-ordered diagrams is not maximal and equal to
nbranches(T3.3) = 3!/2 = 3 in this case. This relates to the fact that two vertices are ordered
with respect to each other to begin with.

The maximal degree of resummation of tree TSDs of order p generated from vertices
containing at most four (deg_max = 4) or six (deg_max = 6) legs is given in Tab. 3.6

.

. It
is compared to the hypothetical maximal value of p!. The reason why the maximal degree
becomes systematically smaller than the ideal value p! as p increases is that the number of
independent branches authorized at a given order p is drastically constrained by the value of
deg_max.
The capacity of tree TSDs to resum large classes of fully-time-ordered diagrams translates

algebraically into the remarkable fact that the sum of associated fractions factorizes into
a single fraction whose factors in the denominator are obtained by invoking a specific set
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Figure 3.15. Decomposition of T3.3 into a sum of linear tree TSDs.

of subdiagrams. Starting with T3.4, and following12

.

the diagrammatic process displayed in
Fig. 3.14

.

, its expression is decomposed by steps into a sum of fractions corresponding to
partially- and eventually fully-time-ordered, i.e. linear, trees

T3.4 = 1
a1a2a3

= 1
a1 + a2 + a3

[ 1
a2a3

+ 1
a1a3

+ 1
a1a2

]
= 1
a1 + a2 + a3

[ 1
a2 + a3

( 1
a3

+ 1
a2

)
+ 1
a1 + a3

( 1
a3

+ 1
a1

)
+ 1
a1 + a2

( 1
a2

+ 1
a1

)]
= 1

(a1 + a2 + a3)(a2 + a3)a3
+ 1

(a1 + a2 + a3)(a2 + a3)a2
+ 1

(a1 + a2 + a3)(a1 + a3)a3

+ 1
(a1 + a2 + a3)(a1 + a3)a1

+ 1
(a1 + a2 + a3)(a1 + a2)a2

+ 1
(a1 + a2 + a3)(a1 + a2)a1

.

Proceeding similarly with T3.3, the decomposition of the fraction operates as

T3.3 = 1
a1(a2 + a3)a3

= 1
(a1 + a2 + a3)a3

[ 1
a2 + a3

+ 1
a1

]

= 1
a1 + a2 + a3

[
1

(a2 + a3)a3
+ 1
a1 + a3

( 1
a3

+ 1
a1

)]

= 1
(a1 + a2 + a3)(a2 + a3)a3

+ 1
(a1 + a2 + a3)(a1 + a3)a3

+ 1
(a1 + a2 + a3)(a1 + a3)a1

.

12The second equality provides an extra intermediate step to better visualize how the decomposition (factoriza-
tion) operates between the first and last step.
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a3

a1

a2

=

a3

a1

a2
+

a3

a2

a1

Figure 3.16. Decomposition of T3.5 into a sum of linear tree TSDs.

In order to illustrate why a given set of fractions associated with linear trees may or may not
be resummed into a single fraction, we now compare T3.3 with T3.5 whose decomposition
into linear tree TSDs is displayed in Fig. 3.16

.

and whose expression was already given in
Eq. 3.9

.

. The non-tree TSD T3.5 sums one less linear tree than T3.3 whose associated fraction
is necessary to factorize and cancel the longest factor (a1 + a2 + a3) appearing in all third-order
linear trees to eventually obtain a single term. The linear tree in question corresponds to a1
being at higher times than both a2 and a3. It is missing from T3.5 because a1 and a2 belong
to a cycle and are thus unordered with respect to each other while being both ordered with
respect to a3 that is at a higher time. This situation corresponding to non-tree TSDs typically
lead to missing terms that are necessary for the complete factorization to occur.
Eventually, the resummation of nbranches(Tp.k) fully-time-ordered TSDs (fractions) into a

single time-unordered TSD (fraction) can be generically written as

nbranches(Tp.k)∑
i=1

1
(ai1 . . . aip)(ai2 . . . aip) . . . aip

= 1
p∏
j=1

(aj1 + · · ·+ ajpj)
, (3.12)

where ai1, . . . , aip label the p vertices from bottom to top in each of the i = 1, . . . , nbranches(Tp.k)
summed linear tree TSDs, whereas aj1, . . . , ajpj label the pj vertices in the subgraph of Tp.k
made out of vertex j and all its descendants.

3.5. Use of the ADG program

3.5.1. System requirements

ADG has been designed to work on any computer with a Python2.7 distribution, and successfully
tested on recent GNU/Linux distributions and on MacOS. Additionally to Python, setuptools
and distutils packages must already be installed, which is the case on most standard recent
distributions. Having pip installed eases the process but is not technically required. The
NumPy, NetworkX and SciPy libraries are automatically downloaded during the install process.
Additionally, one needs a LATEX distribution installed with the PDFLATEX compiler for ADG
to produce the pdf file associated to the output if desired.

100



3.5. Use of the ADG program

3.5.2. Installation
From the Python Package Index

The easiest way to install ADG is to obtain it from the Python Package Index13

.

by entering
the following command

pip2 install adg

Provided setuptools is already installed, pip takes care of downloading and installing ADG as
well as NumPy and NetworkX. Once a new version of ADG is released, one can install it by
entering the command

pip2 install --upgrade adg

From the source files

Once the ADG source files are downloaded from the GitHub repository14

.

, one must enter the
project folder and either run

pip2 install .

or

python2 setup.py install

With this method, pip15

.

also takes care of downloading and installing ADG, NumPy, NetworkX
and SciPy.

3.5.3. Run the program
Batch mode

The most convenient way to use ADG is to run it in batch mode with the appropriate flags.
For example, to run the program and generate BMBPT diagrams at order 4 for example, one
can use

adg -o 4 -t BMBPT -d -c

where the -o flag is for the order, -t for the type of theory, -d indicates that the diagrams
must be drawn and -c that ADG must compile the LaTeX output. A complete list of the
program’s options can be obtained via the program’s documentation (see Sec. 3.5.5

.

) or through

adg -h

13https://pypi.org/project/adg/

.

14https://github.com/adgproject/adg

.

15Depending on the system, it might be necessary either to use the "–user" flag to install it only for a specific
user or to run the previous command with "sudo -H" to install it system-wide.

101

https://pypi.org/project/adg/
https://github.com/adgproject/adg


3. Systematic generation and evaluation of BMBPT diagrams

Currently, ADG can be run either in relation to MBPT by using -t MBPT or to BMBPT
by using -t BMBPT. Though the algorithms described in the previous sections can be used
regardless of the diagrams’ orders, ADG has been arbitrarily restricted to order 10 or lower
to avoid major overloads of the system. Future users are nevertheless advised to first launch
calculations at low orders (2, 3 or 4 typically) as the time and memory needed for computations
rise rapidly with the perturbative order.

Interactive mode

As an alternative to the batch mode, ADG can be run on a terminal by entering the command

adg -i

A set of questions must be answered using the keyboard to configure and launch the calculation.
The interactive mode then proceeds identically to the batch mode.

3.5.4. Steps of a program run
Let us briefly recapitulate the different steps of a typical ADG run

• Run options are set either by using the command-line flags entered by the user or during
the interactive session via keyboard input.

• ADG creates a list of adjacency matrices for the appropriate theory and perturbative
order, and via NumPy, feeds them to NetworkX that creates MultiDiGraph objects.

• Checks are performed on the list of graphs to remove topologically equivalent or anomalous
graphs.

• The list of topologically unique graphs is used to produce Diagram objects that store the
graph as well as some of its associated properties depending on the theory (HF status,
excitation level, etc.). The expression associated to the graphs are extracted.

• The program then prints on the terminal the number of diagrams per category and writes
the LATEX output file, the details of which depend on the options selected by the user, as
well as a list of adjacency matrices associated to the diagrams. Other output files may
be produced, depending on the theory and the user’s input.

• If asked by the user, the program performs the PDFLATEX compilation.

• Unnecessary temporary files are removed and the programs exits.

3.5.5. Documentation
Local documentation

Once the source files have been downloaded, a quick start guide is available in the README.md
file. Once ADG is installed, it is possible to read its manpages through
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3.5. Use of the ADG program

man adg

or a brief description of the program and its options through

adg -h

A more detailed HTML documentation can be generated directly from the source files by going
into the docs directory and run

make html

The documentation is then stored in docs/build/html, with the main file being index.html.
A list of other possible types of documentation format is available by running

make help

Online documentation

The full HTML documentation is available online under https://adg.readthedocs.io/

.

, and
help with eventual bugs of the program can be obtained by opening issues on the GitHub
repository at https://github.com/adgproject/adg

.

.
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4. Numerical implementation and results

4.1. Introduction
Having derived BMBPT diagrams manually in Chap. 2

.

and being now able to generate and
evaluate all diagrams at an arbitrary order as detailed in Chap. 3

.

, the next step consists in
implementing it numerically and compare the obtained results with both experimental values
and other ab initio methods1

.

. Eventually, predictions can be performed on large sets of nuclei,
and can be used to test newly produced families of chiral Hamiltonians in the future.

The first full-fledged implementation of BMBPT in large model spaces with an approximate
inclusion of three-body forces via normal-ordering techniques is presented2

.

in this chapter.
Ground-state energies are investigated along complete medium-mass isotopic chains with
further emphasis on two-neutron separation energies to monitor footprints of nuclear shell
closures. Whenever possible, BMBPT calculations are benchmarked against well-established
non-perturbative IT-NCSM, GSCGF, and MR-IMSRG results for the same input Hamiltonian.

4.2. Hamiltonian
Though the formalism exposed in the previous chapters is agnostic with respect to the employed
Hamiltonian, the first calculations detailed below are focusing on an ab initio perspective, i.e.
calculations are done using a realistic Hamiltonian derived from chiral Effective Field Theory
(EFT) and evolved via Similarity Renormalization Group (SRG) technique.

4.2.1. Chiral Effective Field Theory
Chiral EFT [141

.

, 142

.

, 143

.

, 144

.

, 145

.

] has been developed over the past few decades and is partly
responsible for the rapid development of ab initio methods in nuclear physics lately. Introduced
as a way to circumvent the impossibility to assess a theoretical error to phenomenological
potentials, chiral EFT relies on the separation of scale between the typical momentum q of
processes involved in the description of nuclear structure, ranging from a few MeV to roughly
100 MeV, and a large momentum scale Λ characterized by the chiral symmetry breaking scale
as well as the nucleon mass, all close to 1 GeV. Such a separation allows for a description

1The work detailed in this chapter was led by A. Tichai. The author contribution consisted in coding all
non-canonical diagrams that are however not contributing to the present results given that the calculations
are based on an HFB reference state.

2These results being also presented in Ref. [138

.

], the reader is advised that the perturbative orders listed
there correspond to the historical MBPT convention, i.e. are shifted up by one compared to the present
document.
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4. Numerical implementation and results

of the internucleonic Lagrangian as a power series in q/Λ respecting the symmetries of the
underlying Field Theory, i.e. QCD [146

.

].
A power counting has to be assessed based on, e.g., dimensional analysis, to attribute

to each operator the order at which it enters the power series. The lowest order is called
Leading Order (LO), each subsequent order being denoted as Next-to-Leading Order (NLO),
Next-to-Next-to-Leading Order (N2LO), etc. Such a construction allows for a systematic and
consistent incorporation of the three- and higher-body forces [147

.

].
These characteristics have established Hamiltonians [148

.

, 147

.

] derived from chiral EFT
as the standard choice for ab initio applications, with the past years showing both further
developments [149

.

, 150

.

, 151

.

, 152

.

] and a diversification of approaches [153

.

, 154

.

, 155

.

, 156

.

].

4.2.2. Similarity Renormalization group
Though now the golden standard of ab initio methods, chiral EFT Hamiltonians are not
perturbative enough for MBPT methods because of their hard-core character, and are thus
reserved to more involved methods resumming infinite classes of diagrams such as CC or SCGF.
To circumvent the difficulties associated with the strong low-to-high momentum coupling,
various methods were developed [157

.

, 158

.

], the most prominent of them being the Similarity
Renormalization Group (SRG) [81

.

, 82

.

, 83

.

, 84

.

, 85

.

, 86

.

, 87

.

]. Especially, SRG-evolved Hamiltonian
were proved to be soft enough to be used in MBPT for closed-shell nuclei [159

.

, 116

.

].
The idea behind SRG is to use the renormalization flow equation

dHα

dα = [ηα , Hα] , (4.1)

where α is the flow parameter and Hα the evolved Hamiltonian with H0 = H to pre-diagonalize
the Hamiltonian through a continuous, unitary transformation. Low- and high-momentum
components are thus decoupled and the convergence of many-body calculations is accelerated
while observables remains unchanged. The SRG-transformation however produces higher-body
forces, which are eventually discarded. The transformation must therefore remain under control
to avoid producing sizable higher-body forces, which, once omitted, compromise the unitarity
of the transformation in the A-body Hilbert space.

4.2.3. Hamiltonian used for the calculations
The chiral EFT Hamiltonian used in this work combines a chiral two-nucleon (2N) interaction at
next-to-next-to-next-to leading order with a cutoff of Λ2N = 500MeV [148

.

] with a three-nucleon
(3N) interaction3

.

at next-to-next-to leading order with a local regulator based on a cutoff of
Λ3N = 400MeV [147

.

, 130

.

].
The Hamiltonian is further softened using a SRG transformation with a flow parameter

α = 0.08 fm4. This transformation induces many-nucleon forces that are included consistently
up to the 3N level, i.e. chiral and induced many-body forces beyond that level are neglected.
Working in the normal-ordered two-body approximation (NO2B) [160

.

, 130

.

, 131

.

, 161

.

] in the
3We still use the original value of cD, although it was recently found that this does not reproduce the
triton half-life. This interaction still provides a valuable starting point for the comparison of many-body
approaches.
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4.3. Low-order results in mid-mass nuclei

quasi-particle representation4

.

, the residual three-body part Ω[6] is presently discarded. Details
on the normal-ordering procedure as well as expressions of the matrix elements of each operator
Ωij in terms of the original matrix elements of the Hamiltonian and of the (U, V ) matrices can
be found in App. C

.

.
All calculations are performed using the eigenbasis of a spherical harmonic oscillator with

frequency ~Ω = 20 MeV5

.

. One- and two-body operators are represented using all states up to
emax = (2n+ l)max = 12. Three-body matrix elements on the other hand only use a subset of
the triplets built from the truncated basis such that their corresponding excitations are limited
to E3max = 14. For the Hamiltonian employed here, this has proven sufficient up to heavy
nickel isotopes [53

.

].
Calculations are presently restricted to even-even semi-magic nuclear ground states char-

acterized by JΠ = 0+. This enables the use of angular-momentum coupling techniques to
solve the HFB equations and compute the perturbative corrections. Furthermore, perturbative
corrections displayed above are recast into traces over matrix products that can be evaluated
economically using BLAS routines. This allows a very efficient evaluation of low-order BMBPT
corrections. More details, including the J-scheme expressions for the normal-ordered grand
potential and of the perturbative corrections will be presented in a future publication [127

.

].
As discussed in Sec. 2.9

.

, the extraction of the binding energy requires an iterative BMBPT
scheme with a shifted chemical potential in order for the particle number to be correct at
order n ≥ 2, e.g., at second order, A(0)

0 + A(2)
0 = A0. Such an iterative procedure has not been

implemented yet in the second-order results shown below, hence they contain an associated
contamination ∆E(2)

0 .

4.3. Low-order results in mid-mass nuclei

4.3.1. Isotopic chains calculations
Figure 4.1

.

provides systematic results of zeroth- (HFB), first- and (preliminary) second-order
BMBPT calculations along O, Ca, and Ni isotopic chains. The top panel displaying absolute
binding energies demonstrates that the bulk of dynamic correlations is obtained at first
order [116

.

, 104

.

]. In closed-shell, sub-closed or slightly paired open-shell nuclei, the second-order
contribution is consistently suppressed compared to first order and indicates a gentle behavior
of low-order BMBPT corrections. The computation of third-order contributions will help
us to further assess the convergence behavior of low-order BMBPT contributions based on
SRG-transformed Hamiltonians in the future.

While being informative, our preliminary second-order calculations are clearly contaminated
in open-shell nuclei for which the correction to the particle number is significant, e.g., in
42−46Ca and 50−54Ni. We observe that the spurious arches in the binding energy directly reflect
the behavior of A(2)

0 displayed in panel (d) of Fig. 4.1

.

. It is consistent with the fact that the

4We emphasize that the NO2B approximation does not break particle number itself, i.e., the truncated grand
potential does commute with A.

5The chosen value was confirmed to be close to the variational minimum from IMSRG calculations. A
systematic study of variations of the oscillator frequency in the BMBPT framework is postponed to a future
publication [127

.

].
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Figure 4.1. Systematics along O, Ca and Ni isotopic chains: (a) absolute binding energy, (b)
two-neutron separation energy, (c) neutron-number dispersion, (d) perturbative correction to
the average neutron number. Plot markers correspond to HFB (l), first-order BMBPT (�)
and second-order BMBPT ( �). Experimental values are shown as black bars [162

.

].

contaminating term is nothing but ∆E(2)
0 ≡ λA(3)

0 , leading to an overbinding whenever A(2)
0

leads to an excess of particles as it is systematically the case here. The contamination ∆E(2)
0 is

exaggerated by the fact that the employed Hamiltonian overbinds mid-mass nuclei [53

.

], thus
making the neutron chemical potential artificially large and negative. In any case, the iterative
readjustment of the average particle number at the working order n will eventually eliminate
the spurious arches in the binding energy.

Panel (b) of Fig. 4.1

.

displays two-neutron separation energies. While results are already
qualitatively correct at zeroth order, first-order corrections are non-negligible and tend to shrink
magic gaps. The behaviour is overall very satisfactory. Panel (c) shows the neutron-number
dispersion σ ≡

√
〈A2〉 − 〈A〉2 , which overall grows with the nuclear mass. While the dispersion

is bound to go to zero in the limit of an all-order resummation, the first-order contribution
does not decrease it compared to HFB. This indicates the merit of exactly restoring U(1)
symmetry to complement low-order dynamic correlations with non-perturbative static ones,
as in projected Bogoliubov CC [77

.

] or MR-IMSRG [88

.

, 93

.

]. Because the dispersion changes
abruptly at (sub-)shell closures, restoring good particle number will mostly affect differential
quantities, e.g., two-neutron separation energies, around (sub-)shell closures.
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4.3.2. Comparisons with state-of-the-art ab initio methods
Figure 4.2

.

benchmarks first-order BMPBT results against well-established many-body ap-
proaches that are partially or fully non-perturbative. The Hamiltonian is the same in all
calculations and numerical details associated with the basis size and the treatment of three-body
forces are identical whenever possible or at least consistent. The most advanced reference, only
available for O isotopes, is the importance-truncated no-core shell model (IT-NCSM) using
a natural-orbital single-particle basis [163

.

]. Results from the NCSM-PT to second order are
also available along the O isotopic chain [104

.

]. Covering the same range of mid-mass nuclei as
BMBPT, MR-IMSRG and GSCGF calculations are systematically displayed. While the IMSRG
flow is truncated at the two-body level, i.e., yielding the IMSRG(2) approximation [57

.

, 60

.

, 88

.

],
GSCGF includes self-energy diagrams up to second order, i.e., yielding the so-called ADC(2)
approximation [164

.

, 95

.

]. Finally, closed-shell CC calculations performed at the CR-CC(2,3)
level [165

.

, 53

.

] are added whenever available. Each of these many-body methods systematically
incorporates large classes of perturbation theory diagrams beyond first-order BMBPT.

We find that first-order BMBPT ground-state energies are in very good agreement with the
more sophisticated methods for all systems under consideration, i.e., the relative deviation
does not exceed 2%. In particular all methods are similar and in good agreement with IT-
NCSM in O isotopes. MR-IMSRG(2) and NCSM-PT (when available) do provide a stronger
binding compared to first-order BMBPT. On the other hand, GSCGF-ADC(2) results are
very comparable to first-order BMBPT while being often slightly less bound. Of course, it
will be of great interest to perform this comparison again once proper second-order and/or
particle-number-restored BMBPT are systematically available. The consistency of the absolute
binding energies and two-neutron separation energies provided by all the many-body methods
further confirms that discrepancies with experimental data, e.g., the systematic overbinding in
Ca and Ni isotopes or the incorrect behavior of S2N around 56Ni, reflect the shortcomings of the
employed chiral Hamiltonian. CR-CC(2,3) calculations further incorporates the effect of triple
excitations that are absent from MR-IMSRG(2), GSCGF-ADC(2) or first- and second-order
BMBPT. Corresponding results demonstrate that a highly-accurate description of mid-mass
systems requires the incorporation of triples, i.e., six-quasi-particle excitations in the language
of BMBPT. The leading contributions of this type appear at the third order of the BMBPT
expansion. In addition, one should consider the explicit inclusion of the 3N interaction without
resorting to the NO2B approximation, as demonstrated in the CC context [131

.

, 161

.

].

4.3.3. Numerical scaling
Figure 4.3

.

provides the computational runtime in CPU hours of first- and second-order BMBPT
calculations for several isotopic chains. The tin isotopic chain is included here for the record
even though the corresponding results were not displayed in Figs. 4.1

.

and 4.2

.

due to the poor
performance of the chiral Hamiltonian and to the lack of convergence of the calculation with
respect to the E3max truncation in this mass region at E3max = 14. BMBPT calculations were
performed on an Intel Xeon X5650 computing node with 12 cores at 2.67 GHz. The runtime is
essentially independent of the mass number of the system for fixed values of emax and E3max.
A typical run requires only up to 15CPUh for open-shell nuclei and as little as 6CPUh in
closed-shell nuclei. The reduction in the closed-shell case is achieved by exploiting that the
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Figure 4.2. Absolute ground-state binding energies (top) and two-neutron separation energies
(bottom) along O, Ca and Ni isotopic chains. Results are displayed for first-order BMBPT (�),
second-order NCSM-PT (l), large-scale IT-NCSM (F), GSCGF-ADC(2) ( H), MR-IMSRG(2) ( )
and CR-CC(2,3) ( �). Experimental value are shown as black bars [162

.

].

Bogoliubov matrix V (U) becomes zero for particle (hole) states when the grand potential is
normal ordered, i.e., one recovers the benefit of an explicit partition between particle and hole
states. In principle, we could also take advantage of the block structure of the Hamiltonian
matrix with respect to isospin that disappears when normal ordering the grand potential with
respect to a Bogoliubov state [78

.

]. This would lead to an additional reduction by a factor of
about 5, thus, making BMBPT calculations of open-shell nuclei about 10 times more expensive
than genuine MBPT calculations of closed-shell systems.
Of course, BMBPT does strictly reduce to standard MBPT in a closed-shell system. Con-

versely, all summations over quasi-particle labels run over the entire dimension of the one-body
Hilbert space, which significantly increases the computational scaling compared to standard
MBPT. In any case, low-order BMBPT corrections only induce low polynomial cost with
respect to quasi-particle summation and do not suffer from the storage of large tensors as more
sophisticated all-order many-body approaches such as CC or IMSRG.
Most importantly, Fig. 4.3

.

demonstrates that second-order BMBPT calculations generate
results similar to state-of-the-art medium-mass approaches at a computational cost that is
about two orders of magnitude smaller, e.g., MR-IMSRG(2) requires roughly 2000CPUh
per run when applied to a open-shell system. The computational advantage of low-order
BMBPT calculations over non-perturbative approaches could make BMBPT a particularly
useful tool in the future to provide relatively cheap systematic tests of newly generated chiral
EFT Hamiltonians over a wide range of nuclei.
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Conclusion
Ab initio many-body methods [116

.

, 49

.

, 50

.

, 51

.

, 52

.

, 54

.

, 56

.

, 57

.

, 58

.

, 60

.

] have been established
in the past decades as a prominent and fastly-evolving domain of nuclear structure theory.
The simultaneous development of chiral EFT Hamiltonians [141

.

, 142

.

, 143

.

, 144

.

, 145

.

] rooted
in Quantum Chromodynamics and of many-body methods, both formally and numerically,
supported by a rapid growth in computing power, have extended the reach of ab initio
calculations to the mid-mass region of the nuclear chart up to A ∼ 130 [53

.

].
The diagrammatic translation of certain of those methods, e.g. many-body perturbation

theory [114

.

, 115

.

, 61

.

, 116

.

, 117

.

, 104

.

], self-consistent Green’s function theory [54

.

, 55

.

, 56

.

, 95

.

, 96

.

],
coupled cluster theory [49

.

, 50

.

, 51

.

, 52

.

, 53

.

, 78

.

] etc, is used to build an intuition about the
systematic contributions to a physical observable and to derive the corresponding algebraic
expressions at minimal cost. However, (1) the need in nuclear physics to tackle three-nucleon
interactions, i.e., six-leg vertices, (2) the development of novel many-body methods based on
generalized diagrammatics [76

.

, 77

.

] and (3) the implementation of high-order contributions
authorized by the rapid progress of computational power, welcome the development of a
versatile code capable of both generating and evaluating many-body diagrams automatically.

The present work has focused on the recently formulated Bogoliubov many-body perturbation
theory (BMBPT) [77

.

, 127

.

] to tackle (near) degenerate Fermi systems, e.g. open-shell nuclei
displaying a superfluid character. This many-body method perturbatively expands the exact
solution of the Schrödinger equation around a so-called Bogoliubov reference state, i.e., a
general product state breaking U(1) global-gauge symmetry associated with the conservation
of good particle-number in the system. Chap. 1

.

presented the necessary ingredients to develop
the perturbation theory. Chap. 2

.

detailed the perturbative expansion of the norm kernel
and of the observable from an analytical and a diagrammatic point of view, the results at
first and second order in BMBPT, and established connections with closed-shell many-body
perturbation theory as well as perturbative Bogoliubov coupled-cluster.
The first version (v1.00) of the code ADG that generates all valid BMBPT diagrams and

evaluates their algebraic expression to be implemented in a numerical application has been
extensively described in Chap. 3

.

. This is realized at an arbitrary order p for a Hamiltonian
containing both two-body (four-legs) and three-body (six-legs) interactions (vertices). The
automated generation of BMBPT diagrams of order p is achieved by producing all oriented
adjacency matrices of size (p + 1) × (p + 1) satisfying topological Feynman’s rules. The
automated evaluation of all BMBPT diagrams of order p relies both on the application of
algebraic Feynman’s rules and on the design of a systematic method to perform the remaining
p-tuple time integral. This method provides a novel diagrammatic rule allowing for the straight
summation of large classes of time-ordered diagrams at play in the time-independent formulation
of BMBPT. The standard resolvent rule employed to compute time-ordered diagrams one by one
happens to be a particular case of the general rule presently identified. The code ADG is written
in Python2.7 and uses the graph manipulation package NetworkX. A publication containing
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all formal and numerical developments associated with ADG has been submitted [166

.

]. It is
made flexible enough to be expanded throughout the years to tackle the diagrammatics at play
in various many-body formalisms that either already exist or are yet to be formulated.

The first full-fledged ab initio application of Bogoliubov many-body perturbation theory to
finite nuclei has been presented in Chap. 4

.

. A corresponding publication has been published [138

.

].
Expanding the exact solution around a particle-number-broken Hartree-Fock-Bogoliubov
reference state, this single-reference many-body perturbation theory is systematically applicable
to genuine mid- and heavy-mass open-shell nuclei. As a first proof-of-principle investigation,
systematic ground-state energies along complete isotopic chains from oxygen up to tin have been
computed using a standard chiral effective field theory Hamiltonian. Low-order BMBPT with
a soft interaction was found to agree at the level of 2% with state-of-the-art non-perturbative
many-body methods at a small fraction of the computational cost. As a matter of fact, the
approach is applicable beyond the tin region without becoming computationally infeasible.
For now, it is the (in)accuracy of modern Hamiltonians in heavy systems and the handling of
three-body matrix elements necessary to reach model-space convergence that prevent us from
performing meaningful studies on nuclei far above mass number A ≈ 100. Furthermore, the
onset of nuclear deformations for A > 100 requires the additional breaking of SU(2) symmetry.
Incidently, the low computational cost exhibited by BMBPT establish it as a test-method of
interest for newly produced chiral EFT Hamiltonians in the future.
Our goal is to expand BMBPT in several directions in the future. The immediate next

step consists of implementing the consistent adjustment of particle-number corrections at
second order, which requires an iterative evaluation of the HFB equations, of the quasi-particle
normal-ordering and of the perturbative corrections. A detailed investigation of this, together
with a sensitivity analysis of BMBPT results with respect to model space parameters and the
similarity renormalization group transformation of the Hamiltonian, will be the content of an
upcoming publication. Next, the third-order correction will be evaluated for high-accuracy
calculations and to further probe the convergence pattern of the BMBPT expansion. In that
respect, it is also of interest to test Bogoliubov reference states that are not optimized by
solving the HFB equations, which involves so-called non-canonical diagrams. While the first
application was limited to ground-state energies, the underlying formalism is currently being
extended to other observables, e.g., charge radii, as well as to low-lying excitation energies and
electromagnetic transitions. Given our capacity to automatically generate and evaluate all
diagrams appearing at an arbitrary order n on the basis of 2N and 3N interactions using ADG,
it is also of interest to test the validity of the normal-ordered two-body approximation to the
full 3N interaction.
As a mid-term goal, we plan to implement the particle-number-restored BMBPT [77

.

]. It
requires both a full developmentof the formalism and an explicit extension of the ADG code.
PNP-BMBPT will be applied to investigate the impact of the symmetry contaminations on
various systems/observables. In parallel, the non-perturbative Bogoliubov CC extension of
BMBPT will be implemented along the line of Ref. [77

.

] in order to achieve realistic applications.
ADG will prove to be a critical tool for this extension as well. On the longer term, it is of
interest to implement a many-body perturbation theory that consistently breaks (and restores)
both SU(2) and U(1) symmetries to tackle doubly open-shell nuclei [76

.

, 77

.

]. Along with its
extension to PNP-BMBPT, the ADG code will be extended as well to develop GSCGF at the
ADC(3) level [167

.

].
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A. Useful identities
∫ τ

0
dτ1 e

aτ1 = 1
a

(
eτa − 1

)
, (A.1a)∫ τ

0
dτ1dτ2 θ (τ1 − τ2) ea(τ1−τ2) =

∫ τ

0
dτ1 e

aτ1
∫ τ1

0
dτ2 e

−aτ2

= −τ
a

+ 1
a2

(
eτa − 1

)
, (A.1b)∫ τ

0
dτ1dτ2 θ (τ1 − τ2) eaτ1+bτ2 =

∫ τ

0
dτ1 e

aτ1
∫ τ1

0
dτ2 e

bτ2

= 1
b (a+ b)

(
eτ(a+b) − 1

)
− 1
ab

(
eτa − 1

)
. (A.1c)

Given that such integrals only appear in the theory with a < 0 and a+ b < 0, one obtains

lim
τ→∞

∫ τ

0
dτ eaτ = −1

a
, (A.2a)

lim
τ→∞

∫ τ

0
dτ1dτ2 θ (τ1 − τ2) ea(τ1−τ2) = −τ

a
− 1
a2 , (A.2b)

lim
τ→∞

∫ τ

0
dτ1dτ2 θ (τ1 − τ2) eaτ1+bτ2 = 1

a(a+ b) , (A.2c)

where the first and third results are necessarily positive.
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B. Basic elements of graph theory
Graph theory is a domain of discrete mathematics focusing on the study of graphs and
their properties. In this section one introduces basic notation and terminology required for
reformulating aspects of many-body theory in terms of graph-theory language. For an extensive
discussion see, e.g., the classical textbook [168

.

].

Definition A graph is a triplet G = (V,E, ψ) consisting of a set V whose elements are called
vertices and a set E whose elements are called edges together with an incidence relation ψ. Let
further E ′ ⊂ E, V ′ ⊂ V and ψ|E′ be the restriction of ψ to E ′ then the triplet G′ = (E ′, V ′, ψ|E′)
is called a subgraph of G. We call a graph oriented if every edge has a fixed direction.

Note that the finiteness of either V or E is not assumed. In applications for BMBPT diagrams,
however, both sets will always be finite for any perturbative order. Two nodes v1, v2 are further
called adjacent if there exists an edge e connecting v1 with v2. An edge that starts and end at
the same vertex is called a loop. If an edge e ∈ E starts or ends at a vertex v ∈ V then e is
called incident to e. The number of incident edges of a vertex is called degree and denoted as
deg(v).

Definition Let G = (V,E, ψ) be a graph with vi ∈ V and ei ∈ E. The sequence

v0e1v1e1....envn (B.1)

is called a walk. The walk is closed if v0 = vn. Furthermore, the length of a walk is the number
of edges |{e0, ..., en}|.

The first node v0 and last node vn are called initial and terminal nodes, respectively. If all
nodes in a walk are distinct, it is a path. Of particular importance is the case where the initial
and terminal node coincide, which is called a cycle.

Definition A graph G = (V,E, ψ) is connected if for any pair of nodes there is a path
connecting them.

The definition of connectedness of graphs is crucial since it directly relates to physical properties
of the many-body expansion. A connected graph without a cycle is called tree.
For now, graphs have been treated as abstract objects. For computational purposes it is

convenient to have a representation of graphs.

Definition Let G = (V,E, ψ) be a graph. The incidence matrix M(g) is the |V | × |E| matrix
with entries

mij =

1, if ej is incident to vi
0, otherwise

. (B.2)
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B. Basic elements of graph theory

The notation of incidence matrices is an edge-based representation of the graph. However, for
our applications the use of a vertex-based description is more useful.

Definition Let G = (V,E, ψ) be a graph. The adjacency matrix A(g) is the |V | × |V | matrix
with entries

aij =
∣∣∣{ek ∈ E : ek connects vi, vj}

∣∣∣ . (B.3)

For oriented graphs the definition night to be slightly extended:

Definition Let G = (V,E, ψ) be an oriented graph. The oriented adjacency matrix Ã(g) is
the |V | × |V | matrix with entries

ãij =
∣∣∣{ek ∈ E : ek goes from vito vj}

∣∣∣ . (B.4)

We emphasize that the (oriented) adjacency matrix of a graph G encodes all relevant structural
information.

Proposition. Let G = (V,E, ψ) be a graph with |V | = n |E| = m then the following are
equivalent

(i) G is connected and contains no cycle.

(ii) G has no cycle and m = n− 1.

(iii) G is connected and m = n− 1.

(iv) G is connected but would not be if any of its edges were suppressed.1

.

(v) G contains no cycle and adding a new edge to it creates a unique cycle.

(vi) For any pair of nodes vi and vj, there exists a single path from vi to vj.

1This notion corresponds to one-line irreducible diagrams in physics.
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C. Normal-ordered matrix elements

C.1. Generic operator O

As the O[6] terms are not considered for practical applications at this point, the matrix elements
Oij
k1k2k3k4k5k6 , with i+ j = 6, are excluded for brevity. The generic operator O of Eq. (1.3

.

), up
to and including O[4]

O ≡ O[0] +O[2] +O[4] (C.1a)

≡ O00 +
[
O11 + {O20 +O02}

]
+
[
O22 + {O31 +O13}+ {O40 +O04}

]
, (C.1b)

displays fully antisymmetrized matrix elements, whose explicit expressions in terms of antisym-
metrized matrix elements of O1N , O2N and O3N , as well as of U and V matrices defining the
reference Bogoliubov state, are

O00 =
∑
l1l2

[
Λ1N
l1l2ρl2l1 + 1

2Λ2N
l1l2ρl2l1 + 1

3Λ3N
l1l2ρl2l1 −

1
2Υ2N

l1l2κ
∗
l2l1 + 1

3Υ3N
l1l2κ

∗
l2l1

]
, (C.2a)

O11
k1k2 =

∑
l1l2

[
U †k1l1Λl1l2Ul2k2 − V

†
k1l1ΛT

l1l2Vl2k2 + U †k1l1Υl1l2Vl2k2 − V
†
k1l1Υ∗l1l2Ul2k2

]
, (C.2b)

O20
k1k2 =

∑
l1l2

[
U †k1l1Λl1l2V

∗
l2k2 − V

†
k1l1ΛT

l1l2U
∗
l2k2 + U †k1l1Υl1l2U

∗
l2k2 − V

†
k1l1Υ∗l1l2V

∗
l2k2

]
, (C.2c)

O02
k1k2 =

∑
l1l2

[
− V T

k1l1Λl1l2Ul2k2 + UT
k1l1ΛT

l1l2Vl2k2 − V T
k1l1Υl1l2Vl2k2 + UT

k1l1Υ∗l1l2Ul2k2

]
, (C.2d)

O22
k1k2k3k4 =

∑
l1l2l3l4

[
Θl1l2l3l4

(
U∗l1k1U

∗
l2k2Ul3k3Ul4k4 + V ∗l3k1V

∗
l4k2Vl1k3Vl2k4 + U∗l1k1V

∗
l4k2Vl2k3Ul3k4

− V ∗l4k1U
∗
l1k2Vl2k3Ul3k4 − U∗l1k1V

∗
l4k2Ul3k3Vl2k4 + V ∗l4k1U

∗
l1k2Ul3k3Vl2k4

)
+ Ξl1l2l3l4

(
U∗l1k1U

∗
l2k2Ul4k3Vl3k4 + U∗l1k1V

∗
l4k2Vl3k3Vl2k4

− U∗l1k1U
∗
l2k2Vl3k3Ul4k4 − V ∗l4k1U

∗
l1k2Vl3k3Vl2k4

)
− Ξ∗l1l2l3l4

(
V ∗l3k1U

∗
l4k2Ul1k3Ul2k4 + V ∗l3k1V

∗
l2k2Vl4k3Ul1k4

− U∗l4k1V
∗
l3k2Ul1k3Ul2k4 − V ∗l3k1V

∗
l2k2Vl4k4Ul1k3

)]
, (C.2e)
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C. Normal-ordered matrix elements

O31
k1k2k3k4 =

∑
l1l2l3l4

[
Θl1l2l3l4

(
U∗l1k1V

∗
l4k2V

∗
l3k3Vl2k4 − V ∗l4k1U

∗
l1k2V

∗
l3k3Vl2k4 − V ∗l3k1V

∗
l4k2U

∗
l1k3Vl2k4

+ V ∗l3k1U
∗
l2k2U

∗
l1k3Ul4k4 − U∗l2k1V

∗
l3k2U

∗
l1k3Ul4k4 − U∗l1k1U

∗
l2k2V

∗
l3k3Ul4k4

)
+ Ξl1l2l3l4

(
U∗l1k1U

∗
l2k2U

∗
l3k3Ul4k4 + V ∗l4k1U

∗
l2k2U

∗
l1k3Vl3k4

− U∗l2k1V
∗
l4k2U

∗
l1k3Vl3k4 + U∗l2k1U

∗
l1k2V

∗
l4k3Vl3k4

)
+ Ξ∗l1l2l3l4

(
U∗l4k1V

∗
l3k2V

∗
l2k3Ul1k4 − V ∗l3k1U

∗
l4k2V

∗
l2k3Ul1k4

+ V ∗l3k1V
∗
l2k2U

∗
l4k3Ul1k4 − V ∗l3k1V

∗
l2k2V

∗
l1k3Vl4k4

)]
, (C.2f)

O13
k1k2k3k4 =

∑
l1l2l3l4

[
Θl1l2l3l4

(
V ∗l4k1Ul3k2Vl2k3Vl1k4 − V ∗l4k1Vl2k2Ul3k3Vl1k4 − V ∗l4k1Vl1k2Vl2k3Ul3k4

+ U∗l1k1Vl2k2Ul3k3Ul4k4 − U∗l1k1Ul3k2Vl2k3Ul4k4 + U∗l1k1Ul3k2Ul4k3Vl2k4

)
+ Ξl1l2l3l4

(
U∗l1k1Vl2k2Vl3k3Ul4k4 − V ∗l4k1Vl1k2Vl2k3Vl3k4

+ U∗l1k1Ul4k2Vl2k3Vl3k4 − U∗l1k1Vl2k2Ul4k3Vl3k4

)
+ Ξ∗l1l2l3l4

(
V ∗l3k1Vl4k2Ul1k3Ul2k4 − V ∗l3k1Ul1k2Vl4k3Ul2k4

+ V ∗l3k1Ul1k2Ul2k3Vl4k4 − U∗l4k1Ul1k2Ul2k3Ul3k4

)]
, (C.2g)

O40
k1k2k3k4 =

∑
l1l2l3l4

[
Θl1l2l3l4

(
U∗l1k1U

∗
l2k2V

∗
l4k3V

∗
l3k4 − U

∗
l1k1V

∗
l4k2U

∗
l2k3V

∗
l3k4 − V

∗
l4k1U

∗
l2k2U

∗
l1k3V

∗
l3k4

+ U∗l1k1V
∗
l4k2V

∗
l3k3U

∗
l2k4 + V ∗l4k1U

∗
l2k2V

∗
l3k3U

∗
l1k4 + V ∗l4k1V

∗
l3k2U

∗
l1k3U

∗
l2k4

)
+ Ξl1l2l3l4

(
U∗l1k1U

∗
l2k2U

∗
l3k3V

∗
l4k4 − U

∗
l1k1U

∗
l2k2V

∗
l4k3U

∗
l3k4

+ U∗l1k1V
∗
l4k2U

∗
l2k3U

∗
l3k4 − V

∗
l4k1U

∗
l1k2U

∗
l2k3U

∗
l3k4

)
+ Ξ∗l1l2l3l4

(
V ∗l1k1V

∗
l2k2V

∗
l3k3U

∗
l4k4 − V

∗
l1k1V

∗
l2k2U

∗
l4k3V

∗
l3k4

+ V ∗l1k1U
∗
l4k2V

∗
l2k3V

∗
l3k4 − U

∗
l4k1V

∗
l1k2V

∗
l2k3U

∗
l3k4

)]
, (C.2h)

O04
k1k2k3k4 =

∑
l1l2l3l4

[
Θl1l2l3l4

(
Ul3k1Ul4k2Vl2k3Vl1k4 − Ul3k1Vl2k2Ul4k3Vl1k4 + Ul3k1Vl2k2Vl1k3Ul4k4

− Vl2k1Ul3k2Vl1k3Ul4k4 + Vl2k1Vl1k2Ul3k3Ul4k4 + Vl2k1Ul3k2Ul4k3Vl1k4

)
+ Ξl1l2l3l4

(
Vl1k1Vl2k2Vl3k3Ul4k4 − Vl1k1Vl2k2Ul4k3Vl3k4

+ Vl1k1Ul4k2Vl2k3Vl3k4 − Ul4k1Vl1k2Vl2k3Vl3k4

)
+ Ξ∗l1l2l3l4

(
Vl4k1Ul3k2Ul2k3Ul1k4 − Ul3k1Vl4k2Ul2k3Ul1k4

+ Ul3k1Ul2k2Vl4k3Ul1k4 − Ul3k1Ul2k2Ul1k3Vl4k4

)]
. (C.2i)
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C.2. Grand canonical potential Ω

The above expressions make use of four one- and two-body operators whose matrix elements
are given in an arbitrary single-particle basis by

Λpq ≡ Λ1N
pq + Λ2N

pq + Λ3N
pq (C.3a)

= o1N
pq +

∑
rs

ō2N
psqrρrs + 1

2
∑
rstu

ō3N
prsqtu

(
ρusρtr + 1

2κ
∗
rsκtu

)
, (C.3b)

Υpq ≡ Υ2N
pq + Υ3N

pq (C.3c)

= 1
2
∑
rs

ō2N
pqrsκrs + 1

2
∑
rstu

ō3N
rpqstuρsrκtu , (C.3d)

Θpqrs ≡ ō2N
pqrs +

∑
tu

ō3N
pqtrsuρut , (C.3e)

Ξpqrs ≡
1
2
∑
tu

ō3N
pqrstuκtu . (C.3f)

It is easy to verify the following properties

Λ2N
pq = Λ2N∗

qp , (C.4a)
Λ3N
pq = Λ3N∗

qp , (C.4b)
Υ2N
pq = −Υ2N

qp , (C.4c)
Υ3N
pq = −Υ3N

qp , (C.4d)
Θpqrs = −Θpqsr = Θqpsr = −Θqprs , (C.4e)
Θpqrs = Θ∗rspq , (C.4f)
Ξpqrs = −Ξqprs = Ξqrps = −Ξprqs = Ξrpqs = −Ξrqps , (C.4g)

as will be the case for the other operators to follow.

C.2. Grand canonical potential Ω
One can derive the normal-ordered matrix elements of Ω using the expressions above and four
one- and two-body operators whose matrix elements are given in an arbitrary single-particle
basis by

Λpq ≡ hpq − λδpq (C.5a)
≡ tpq − λ δpq + Γ2N

pq + Γ3N
pq (C.5b)

= tpq − λ δpq +
∑
rs

v̄psqrρrs + 1
2
∑
rstu

w̄prsqtu

(
ρusρtr + 1

2κ
∗
rsκtu

)
, (C.5c)

Υpq ≡ ∆2N
pq + ∆3N

pq (C.5d)

= 1
2
∑
rs

v̄pqrsκrs + 1
2
∑
rstu

w̄rpqstuρsrκtu , (C.5e)

Θpqrs ≡ v̄pqrs +
∑
tu

w̄pqtrsuρut , (C.5f)

Ξpqrs ≡
1
2
∑
tu

w̄pqrstuκtu . (C.5g)
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C. Normal-ordered matrix elements

C.3. Hamiltonian operator H

Similarly to the grand potential case, one uses, along with the expressions in App. C.1

.

, four
one- and two-body operators whose matrix elements are given in an arbitrary single-particle
basis by

Λpq ≡ hpq (C.6a)
≡ tpq + Γ2N

pq + Γ3N
pq (C.6b)

= tpq +
∑
rs

v̄psqrρrs + 1
2
∑
rstu

w̄prsqtu

(
ρusρtr + 1

2κ
∗
rsκtu

)
, (C.6c)

Υpq ≡ ∆2N
pq + ∆3N

pq (C.6d)

= 1
2
∑
rs

v̄pqrsκrs + 1
2
∑
rstu

w̄rpqstuρsrκtu , (C.6e)

Θpqrs ≡ v̄pqrs +
∑
tu

w̄pqtrsuρut , (C.6f)

Ξpqrs ≡
1
2
∑
tu

w̄pqrstuκtu . (C.6g)

C.4. Particle number operator A

The particle number operator A can be written using the work accomplished for a generic
operator in App. C.1

.

, making use of one-body operators whose matrix elements are given in
an arbitrary single-particle basis by

Λpq ≡ apq (C.7a)
= δpq , (C.7b)

Υpq ≡ 0 , (C.7c)
Θpqrs ≡ 0 , (C.7d)
Ξpqrs ≡ 0 . (C.7e)

C.5. A2 operator

The A2 operator defined in Eq. (2.75

.

) can be written using the work accomplished for a generic
operator in App. C.1

.

, making use of one- and two-body operators whose matrix elements are

122



C.5. A2 operator

given in an arbitrary single-particle basis by

Λpq ≡ a(1)
pq +

∑
rs

ā(2)
psqrρrs (C.8a)

= δpq +
∑
rs

2(δprδqs − δpsδqr)ρrs , (C.8b)

Υpq ≡
1
2
∑
rs

ā(2)
pqrsκrs (C.8c)

=
∑
rs

(δprδqs − δpsδqr)κrs , (C.8d)

Θpqrs ≡ ā(2)
pqrs (C.8e)

= 2(δprδqs − δpsδqr) , (C.8f)
Ξpqrs ≡ 0 . (C.8g)
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D. Diagrammatic contributions at
BMBPT(2)

D.1. n(τ ) at BMBPT(2)
Applying the diagrammatic rules explicated in Sec. 2.4.3

.

to the two second-order BMBPT
diagrams contributing to n(τ) and displayed in Fig. 2.4

.

gives

PN2.1 = lim
τ→∞

+1
2
∑
k1k2

Ω20
k1k2Ω02

k1k2

Ek1 + Ek2

[
τ − 1− e−τ(Ek1+Ek2 )

Ek1 + Ek2

]
,

PN2.2 = lim
τ→∞

+ 1
4!

∑
k1k2k3k4

Ω40
k1k2k3k4Ω04

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

[
τ − 1− e−τ(Ek1+Ek2+Ek3+Ek4 )

Ek1 + Ek2 + Ek3 + Ek4

]
,

which reduce in the large τ limit to

PN2.1 = lim
τ→∞

+1
2
∑
k1k2

Ω20
k1k2Ω02

k1k2

Ek1 + Ek2

[
τ − 1

Ek1 + Ek2

]
,

PN2.2 = lim
τ→∞

+ 1
4!

∑
k1k2k3k4

Ω40
k1k2k3k4Ω04

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

[
τ − 1

Ek1 + Ek2 + Ek3 + Ek4

]
.
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D. Diagrammatic contributions at BMBPT(2)

D.2. o(τ ) at BMBPT(2)
Applying diagrammatic rules to the eleven zero-, first- and second-order BMBPT connected/linked
diagrams contributing to o(τ) and displayed in Fig. 2.6

.

gives

PO0.1 = +O00 ,

PO1.1 = lim
τ→∞
−1

2
∑
k1k2

O20
k1k2Ω02

k1k2

Ek1 + Ek2

[
1− e−τ(Ek1+Ek2 )

]
,

PO1.2 = lim
τ→∞
− 1

4!
∑

k1k2k3k4

O40
k1k2k3k4Ω04

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

[
1− e−τ(Ek1+Ek2+Ek3+Ek4 )

]
,

PO2.1 = lim
τ→∞

+
∑

k1k2k3

O20
k1k2Ω̆11

k3k1Ω02
k3k2

Ek3 − Ek1

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

− 1− e−τ(Ek2+Ek3)
Ek2 + Ek3

 ,

PO2.2 = lim
τ→∞

+1
4

∑
k1k2k3k4

O20
k1k2Ω22

k3k4k1k2Ω02
k3k4

Ek3 + Ek4 − Ek1 − Ek2

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

− 1− e−τ(Ek3+Ek4)
Ek3 + Ek4

 ,

PO2.3 = lim
τ→∞

+1
4

∑
k1k2k3k4

O20
k1k2Ω04

k1k2k3k4Ω20
k3k4

Ek3 + Ek4

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

−1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

 ,

PO2.4 = lim
τ→∞

+1
8

∑
k1k2k3k4

O40
k1k2k3k4Ω02

k1k4Ω02
k2k3

(Ek1 + Ek4) (Ek2 + Ek3)

(
1− e−τ(Ek2+Ek3)

)(
1− e−τ(Ek1+Ek4)

)
,

PO2.5 = lim
τ→∞

+1
6

∑
k1k2k3k4k5

O40
k1k2k3k4Ω13

k5k1k2k3Ω02
k5k4

Ek5 − Ek1 − Ek2 − Ek3

1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

−1− e−τ(Ek4+Ek5)
Ek4 + Ek5

 ,

PO2.6 = lim
τ→∞

+1
6

∑
k1k2k3k4k5

O40
k1k2k3k4Ω04

k1k2k3k5Ω̆11
k5k4

Ek5 − Ek4

1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

−1− e−τ(Ek1+Ek2+Ek3+Ek5)
Ek1 + Ek2 + Ek3 + Ek5

 ,

PO2.7 = lim
τ→∞

+1
6

∑
k1k2k3k4k5

O20
k1k2Ω31

k3k4k5k1Ω04
k3k4k5k2

Ek3 + Ek4 + Ek5 − Ek1

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

−1− e−τ(Ek2+Ek3+Ek4+Ek5)
Ek2 + Ek3 + Ek4 + Ek5

 ,

PO2.8 = lim
τ→∞

+1
8

∑
k1k2k3k4k5k6

O40
k1k2k3k4Ω22

k5k6k2k3Ω04
k1k5k6k4

Ek5 + Ek6 − Ek2 − Ek3

1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

−1− e−τ(Ek1+Ek4+Ek5+Ek6)
Ek1 + Ek4 + Ek5 + Ek6

 ,
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D.2. o(τ) at BMBPT(2)

which reduce in the large τ limit to

PO0.1 = +O00 ,

PO1.1 = −1
2
∑
k1k2

O20
k1k2Ω02

k1k2

Ek1 + Ek2

,

PO1.2 = − 1
4!

∑
k1k2k3k4

O40
k1k2k3k4Ω04

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

,

PO2.1 = +
∑

k1k2k3

O20
k1k2Ω̆11

k3k1Ω02
k3k2

(Ek1 + Ek2) (Ek2 + Ek3) ,

PO2.2 = +1
4

∑
k1k2k3k4

O20
k1k2Ω22

k3k4k1k2Ω02
k3k4

(Ek1 + Ek2) (Ek3 + Ek4) ,

PO2.3 = +1
4

∑
k1k2k3k4

O20
k1k2Ω04

k1k2k3k4Ω20
k3k4

(Ek1 + Ek2) (Ek1 + Ek2 + Ek3 + Ek4) ,

PO2.4 = +1
8

∑
k1k2k3k4

O40
k1k2k3k4Ω02

k1k4Ω02
k2k3

(Ek1 + Ek4) (Ek2 + Ek3) ,

PO2.5 = +1
6

∑
k1k2k3k4k5

O40
k1k2k3k4Ω13

k5k1k2k3Ω02
k5k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek4 + Ek5) ,

PO2.6 = +1
6

∑
k1k2k3k4k5

O40
k1k2k3k4Ω04

k1k2k3k5Ω̆11
k5k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek1 + Ek2 + Ek3 + Ek5) ,

PO2.7 = +1
6

∑
k1k2k3k4k5

O20
k1k2Ω31

k3k4k5k1Ω04
k3k4k5k2

(Ek1 + Ek2) (Ek2 + Ek3 + Ek4 + Ek5) ,

PO2.8 = +1
8

∑
k1k2k3k4k5k6

O40
k1k2k3k4Ω22

k5k6k2k3Ω04
k1k5k6k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek1 + Ek4 + Ek5 + Ek6) .
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D. Diagrammatic contributions at BMBPT(2)

D.3. ω(τ ) at BMBPT(2)
Using the results of D.2

.

and replacing O with Ω, one obtains, for the diagrams contributing to
ω(τ),

PΩ0.1 = +Ω00 ,

PΩ1.1 = lim
τ→∞
−1

2
∑
k1k2

Ω20
k1k2Ω02

k1k2

Ek1 + Ek2

[
1− e−τ(Ek1+Ek2 )

]
,

PΩ1.2 = lim
τ→∞
− 1

4!
∑

k1k2k3k4

Ω40
k1k2k3k4Ω04

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

[
1− e−τ(Ek1+Ek2+Ek3+Ek4 )

]
,

PΩ2.1 = lim
τ→∞

+
∑

k1k2k3

Ω20
k1k2Ω̆11

k3k1Ω02
k3k2

Ek3 − Ek1

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

− 1− e−τ(Ek2+Ek3)
Ek2 + Ek3

 ,

PΩ2.2 = lim
τ→∞

+1
4

∑
k1k2k3k4

Ω20
k1k2Ω22

k3k4k1k2Ω02
k3k4

Ek3 + Ek4 − Ek1 − Ek2

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

− 1− e−τ(Ek3+Ek4)
Ek3 + Ek4

 ,

PΩ2.3 = lim
τ→∞

+1
4

∑
k1k2k3k4

Ω20
k1k2Ω04

k1k2k3k4Ω20
k3k4

Ek3 + Ek4

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

−1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

 ,

PΩ2.4 = lim
τ→∞

+1
8

∑
k1k2k3k4

Ω40
k1k2k3k4Ω02

k1k4Ω02
k2k3

(Ek1 + Ek4) (Ek2 + Ek3)

(
1− e−τ(Ek2+Ek3)

)(
1− e−τ(Ek1+Ek4)

)
,

PΩ2.5 = lim
τ→∞

+1
6

∑
k1k2k3k4k5

Ω40
k1k2k3k4Ω13

k5k1k2k3Ω02
k5k4

Ek5 − Ek1 − Ek2 − Ek3

1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

−1− e−τ(Ek4+Ek5)
Ek4 + Ek5

 ,

PΩ2.6 = lim
τ→∞

+1
6

∑
k1k2k3k4k5

Ω40
k1k2k3k4Ω04

k1k2k3k5Ω̆11
k5k4

Ek5 − Ek4

1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

−1− e−τ(Ek1+Ek2+Ek3+Ek5)
Ek1 + Ek2 + Ek3 + Ek5

 ,

PΩ2.7 = lim
τ→∞

+1
6

∑
k1k2k3k4k5

Ω20
k1k2Ω31

k3k4k5k1Ω04
k3k4k5k2

Ek3 + Ek4 + Ek5 − Ek1

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

−1− e−τ(Ek2+Ek3+Ek4+Ek5)
Ek2 + Ek3 + Ek4 + Ek5

 ,

PΩ2.8 = lim
τ→∞

+1
8

∑
k1k2k3k4k5k6

Ω40
k1k2k3k4Ω22

k5k6k2k3Ω04
k1k5k6k4

Ek5 + Ek6 − Ek2 − Ek3

1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

−1− e−τ(Ek1+Ek4+Ek5+Ek6)
Ek1 + Ek4 + Ek5 + Ek6

 ,
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D.3. ω(τ) at BMBPT(2)

which reduce in the large τ limit to

PΩ0.1 = +Ω00 ,

PΩ1.1 = −1
2
∑
k1k2

Ω20
k1k2Ω02

k1k2

Ek1 + Ek2

,

PΩ1.2 = − 1
4!

∑
k1k2k3k4

Ω40
k1k2k3k4Ω04

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

,

PΩ2.1 = +
∑

k1k2k3

Ω20
k1k2Ω̆11

k3k1Ω02
k3k2

(Ek1 + Ek2) (Ek2 + Ek3) ,

PΩ2.2 = +1
4

∑
k1k2k3k4

Ω20
k1k2Ω22

k3k4k1k2Ω02
k3k4

(Ek1 + Ek2) (Ek3 + Ek4) ,

PΩ2.3 = +1
4

∑
k1k2k3k4

Ω20
k1k2Ω04

k1k2k3k4Ω20
k3k4

(Ek1 + Ek2) (Ek1 + Ek2 + Ek3 + Ek4) ,

PΩ2.4 = +1
8

∑
k1k2k3k4

Ω40
k1k2k3k4Ω02

k1k4Ω02
k2k3

(Ek1 + Ek4) (Ek2 + Ek3) ,

PΩ2.5 = +1
6

∑
k1k2k3k4k5

Ω40
k1k2k3k4Ω13

k5k1k2k3Ω02
k5k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek4 + Ek5) ,

PΩ2.6 = +1
6

∑
k1k2k3k4k5

Ω40
k1k2k3k4Ω04

k1k2k3k5Ω̆11
k5k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek1 + Ek2 + Ek3 + Ek5) ,

PΩ2.7 = +1
6

∑
k1k2k3k4k5

Ω20
k1k2Ω31

k3k4k5k1Ω04
k3k4k5k2

(Ek1 + Ek2) (Ek2 + Ek3 + Ek4 + Ek5) ,

PΩ2.8 = +1
8

∑
k1k2k3k4k5k6

Ω40
k1k2k3k4Ω22

k5k6k2k3Ω04
k1k5k6k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek1 + Ek4 + Ek5 + Ek6) .
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D. Diagrammatic contributions at BMBPT(2)

D.4. a(τ ) at BMBPT(2)

Using the results of D.2

.

and replacing O with A, one obtains, for the diagrams contributing to
a(τ),

PA0.1 = +A00 ,

PA1.1 = lim
τ→∞
−1

2
∑
k1k2

A20
k1k2Ω02

k1k2

Ek1 + Ek2

[
1− e−τ(Ek1+Ek2 )

]
,

PA1.2 = 0 ,

PA2.1 = lim
τ→∞

+
∑

k1k2k3

A20
k1k2Ω̆11

k3k1Ω02
k3k2

Ek3 − Ek1

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

− 1− e−τ(Ek2+Ek3)
Ek2 + Ek3

 ,

PA2.2 = lim
τ→∞

+1
4

∑
k1k2k3k4

A20
k1k2Ω22

k3k4k1k2Ω02
k3k4

Ek3 + Ek4 − Ek1 − Ek2

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

− 1− e−τ(Ek3+Ek4)
Ek3 + Ek4

 ,

PA2.3 = lim
τ→∞

+1
4

∑
k1k2k3k4

A20
k1k2Ω04

k1k2k3k4Ω20
k3k4

Ek3 + Ek4

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

−1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

 ,

PA2.4 = 0 ,
PA2.5 = 0 ,
PA2.6 = 0 ,

PA2.7 = lim
τ→∞

+1
6

∑
k1k2k3k4k5

A20
k1k2Ω31

k3k4k5k1Ω04
k3k4k5k2

Ek3 + Ek4 + Ek5 − Ek1

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

−1− e−τ(Ek2+Ek3+Ek4+Ek5)
Ek2 + Ek3 + Ek4 + Ek5

 ,

PA2.8 = 0 ,

which reduce in the large τ limit to
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D.4. a(τ) at BMBPT(2)

PA0.1 = +A00 ,

PA1.1 = −1
2
∑
k1k2

A20
k1k2Ω02

k1k2

Ek1 + Ek2

,

PA1.2 = 0 ,

PA2.1 = +
∑

k1k2k3

A20
k1k2Ω̆11

k3k1Ω02
k3k2

(Ek1 + Ek2) (Ek2 + Ek3) ,

PA2.2 = +1
4

∑
k1k2k3k4

A20
k1k2Ω22

k3k4k1k2Ω02
k3k4

(Ek1 + Ek2) (Ek3 + Ek4) ,

PA2.3 = +1
4

∑
k1k2k3k4

A20
k1k2Ω04

k1k2k3k4Ω20
k3k4

(Ek1 + Ek2) (Ek1 + Ek2 + Ek3 + Ek4) ,

PA2.4 = 0 ,
PA2.5 = 0 ,
PA2.6 = 0 ,

PA2.7 = +1
6

∑
k1k2k3k4k5

A20
k1k2Ω31

k3k4k5k1Ω04
k3k4k5k2

(Ek1 + Ek2) (Ek2 + Ek3 + Ek4 + Ek5) ,

PA2.8 = 0 .
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D. Diagrammatic contributions at BMBPT(2)

D.5. a2(τ ) at BMBPT(2)
Using the results of D.2

.

and replacing O with A2, one obtains, for the diagrams contributing
to a2(τ),

PA2 0.1 = +A2.00 ,

PA2 1.1 = lim
τ→∞
−1

2
∑
k1k2

A2.20
k1k2Ω02

k1k2

Ek1 + Ek2

[
1− e−τ(Ek1+Ek2 )

]
,

PA2 1.2 = lim
τ→∞
− 1

4!
∑

k1k2k3k4

A2.40
k1k2k3k4Ω04

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

[
1− e−τ(Ek1+Ek2+Ek3+Ek4 )

]
,

PA2 2.1 = lim
τ→∞

+
∑

k1k2k3

A2.20
k1k2Ω̆11

k3k1Ω02
k3k2

Ek3 − Ek1

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

− 1− e−τ(Ek2+Ek3)
Ek2 + Ek3

 ,

PA2 2.2 = lim
τ→∞

+1
4

∑
k1k2k3k4

A2.20
k1k2Ω22

k3k4k1k2Ω02
k3k4

Ek3 + Ek4 − Ek1 − Ek2

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

− 1− e−τ(Ek3+Ek4)
Ek3 + Ek4

 ,

PA2 2.3 = lim
τ→∞

+1
4

∑
k1k2k3k4

A2.20
k1k2Ω04

k1k2k3k4Ω20
k3k4

Ek3 + Ek4

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

−1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

 ,

PA2 2.4 = lim
τ→∞

+1
8

∑
k1k2k3k4

A2.40
k1k2k3k4Ω02

k1k4Ω02
k2k3

(Ek1 + Ek4) (Ek2 + Ek3)

(
1− e−τ(Ek2+Ek3)

)(
1− e−τ(Ek1+Ek4)

)
,

PA2 2.5 = lim
τ→∞

+1
6

∑
k1k2k3k4k5

A2.40
k1k2k3k4Ω13

k5k1k2k3Ω02
k5k4

Ek5 − Ek1 − Ek2 − Ek3

1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

−1− e−τ(Ek4+Ek5)
Ek4 + Ek5

 ,

PA2 2.6 = lim
τ→∞

+1
6

∑
k1k2k3k4k5

A2.40
k1k2k3k4Ω04

k1k2k3k5Ω̆11
k5k4

Ek5 − Ek4

1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

−1− e−τ(Ek1+Ek2+Ek3+Ek5)
Ek1 + Ek2 + Ek3 + Ek5

 ,

PA2 2.7 = lim
τ→∞

+1
6

∑
k1k2k3k4k5

A2.20
k1k2Ω31

k3k4k5k1Ω04
k3k4k5k2

Ek3 + Ek4 + Ek5 − Ek1

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

−1− e−τ(Ek2+Ek3+Ek4+Ek5)
Ek2 + Ek3 + Ek4 + Ek5

 ,

PA2 2.8 = lim
τ→∞

+1
8

∑
k1k2k3k4k5k6

A2.40
k1k2k3k4Ω22

k5k6k2k3Ω04
k1k5k6k4

Ek5 + Ek6 − Ek2 − Ek3

1− e−τ(Ek1+Ek2+Ek3+Ek4)
Ek1 + Ek2 + Ek3 + Ek4

−1− e−τ(Ek1+Ek4+Ek5+Ek6)
Ek1 + Ek4 + Ek5 + Ek6

 ,
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D.5. a2(τ) at BMBPT(2)

which reduce in the large τ limit to

PA2 0.1 = +A2.00 ,

PA2 1.1 = −1
2
∑
k1k2

A2.20
k1k2Ω02

k1k2

Ek1 + Ek2

,

PA2 1.2 = − 1
4!

∑
k1k2k3k4

A2.40
k1k2k3k4Ω04

k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

,

PA2 2.1 = +
∑

k1k2k3

A2.20
k1k2Ω̆11

k3k1Ω02
k3k2

(Ek1 + Ek2) (Ek2 + Ek3) ,

PA2 2.2 = +1
4

∑
k1k2k3k4

A2.20
k1k2Ω22

k3k4k1k2Ω02
k3k4

(Ek1 + Ek2) (Ek3 + Ek4) ,

PA2 2.3 = +1
4

∑
k1k2k3k4

A2.20
k1k2Ω04

k1k2k3k4Ω20
k3k4

(Ek1 + Ek2) (Ek1 + Ek2 + Ek3 + Ek4) ,

PA2 2.4 = +1
8

∑
k1k2k3k4

A2.40
k1k2k3k4Ω02

k1k4Ω02
k2k3

(Ek1 + Ek4) (Ek2 + Ek3) ,

PA2 2.5 = +1
6

∑
k1k2k3k4k5

A2.40
k1k2k3k4Ω13

k5k1k2k3Ω02
k5k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek4 + Ek5) ,

PA2 2.6 = +1
6

∑
k1k2k3k4k5

A2.40
k1k2k3k4Ω04

k1k2k3k5Ω̆11
k5k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek1 + Ek2 + Ek3 + Ek5) ,

PA2 2.7 = +1
6

∑
k1k2k3k4k5

A2.20
k1k2Ω31

k3k4k5k1Ω04
k3k4k5k2

(Ek1 + Ek2) (Ek2 + Ek3 + Ek4 + Ek5) ,

PA2 2.8 = +1
8

∑
k1k2k3k4k5k6
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k1k2k3k4Ω22

k5k6k2k3Ω04
k1k5k6k4

(Ek1 + Ek2 + Ek3 + Ek4) (Ek1 + Ek4 + Ek5 + Ek6) .
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E. Coupled-cluster-like amplitudes at
BMBPT(2)

The algebraic expressions of coupled-cluster-like Goldstone amplitudes defined in Eq. (2.65

.

)
and computed up to second order in BMBPT using rules detailed in Sec. 2.8

.

are

T †(1)
k1k2 (τ) ≡ −

Ω02
k1k2

Ek1 + Ek2

[
1− e−τ(Ek1+Ek2)

]
, (E.1a)

T †(1)
k1k2k3k4(τ) ≡ −

Ω04
k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

[
1− e−τ(Ek1+Ek2+Ek3+Ek4)

]
, (E.1b)

T †(2)
k1k2 (τ) ≡ T †(1)

k1k2 (τ)

+ P (k1/k2)
∑
k3

Ω̆11
k3k1Ω02

k3k2

Ek3 − Ek1

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

− 1− e−τ(Ek2+Ek3)
Ek2 + Ek3


+ 1

2
∑
k3k4

Ω22
k3k4k1k2Ω02

k3k4

Ek3 + Ek4 − Ek1 − Ek2

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

− 1− e−τ(Ek3+Ek4)
Ek3 + Ek4


+ 1

2
∑
k3k4

Ω04
k1k2k3k4Ω20

k3k4

Ek3 + Ek4

1− e−τ(Ek1+Ek2)
Ek1 + Ek2

− 1− e−τ(Ek1+Ek2+Ek3+Ek4)
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
+ 1

3!P (k1/k2)
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k3k4k5
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k3k4k5k2
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1− e−τ(Ek1+Ek2)
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−1− e−τ(Ek2+Ek3+Ek4+Ek5)
Ek2 + Ek3 + Ek4 + Ek5

 ,

(E.1c)
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T †(2)
k1k2k3k4(τ) ≡ T †(1)

k1k2k3k4(τ)

+ P (k1k2k3/k4)
∑
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k5k4

Ek5 − Ek1 − Ek2 − Ek3
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−1− e−τ(Ek4+Ek5)
Ek4 + Ek5


+ P (k1k2k3/k4)

∑
k5

Ω04
k1k2k3k5Ω̆11

k5k4

Ek5 − Ek4
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2P (k1k4/k2k3)
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 ,

(E.1d)

introducing permutation operators P (αβ/γδ/ . . .) where the notation denotes that α, β and
γ, δ are equivalent pairs, but are distinct from each other and from the remaining indices.
As a result, all possible permutations among labels, except for those involving labels in the
same group, are implied. The ordering of the groups within the parentheses is irrelevant, e.g.
P (αβ/γδ/ . . .) = P (γδ/αβ/ . . .). The permutation operators needed in Eq. (E.1

.

) are

P (α/β) ≡ 1− Pαβ , (E.2a)
P (αβγ/δ) ≡ 1− Pαδ − Pβδ − Pγδ , (E.2b)
P (αβ/γδ) ≡ 1− Pαγ − Pαδ − Pβγ − Pβδ + PαγPβδ . (E.2c)

136



These amplitudes reduce in the infinite time limit to

T †(1)
k1k2 (∞) ≡ −

Ω02
k1k2

Ek1 + Ek2

, (E.3a)

T †(1)
k1k2k3k4(∞) ≡ −

Ω04
k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

, (E.3b)

T †(2)
k1k2 (∞) ≡ T †(1)

k1k2 (∞)

+ P (k1/k2)
∑
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+ 1
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∑
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(Ek1 + Ek2) (Ek2 + Ek3 + Ek4 + Ek5) , (E.3c)
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∑
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∑
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(E.3d)
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F. Slater determinant limit of the
contributions at BMBPT(2)

Applying the relations of Sec. 2.11

.

to the diagrams in App. D.2

.

, one obtains for an operator O

PO0.1 = +
∑
i

[
ΛO,1N
ii + 1

2ΛO,2N
ii + 1

3ΛO,3N
ii

]
,
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,

where matrix elements with upper index O have to be adapted to the operator of interest,
while those with upper index Ω can be taken from App. C.2

.

. Let it be noticed that in the
Slater determinant limit, every BMBPT diagram conserves the number of particles.
For instance, one obtains for the grand potential diagrams, i.e. when replacing O with the
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F. Slater determinant limit of the contributions at BMBPT(2)

potential Ω without pairing, and with one- and two-body forces only

PΩ0.1 = +
∑
i

tii − λ+ 1
2
∑
j

v̄ijij

 ,

PΩ1.1 = −
∑
ai

h′aih
′
ia

εai
,

PΩ1.2 = −1
4
∑
abij

v̄abjiv̄jiab
εabij

,

PΩ2.1 = +
∑
aij

h′aih
′
ijh
′
ja

εai ε
a
j

−
∑
abi

h′aih
′
bah
′
ib

εai ε
b
i

,

PΩ2.2 = −
∑
abij

h′aiv̄biajh
′
jb

εai ε
b
j

,

PΩ2.3 = −
∑
abij

h′aiv̄jiabh
′
bj

εai ε
ab
ij

,

PΩ2.4 = +1
2
∑
abij

v̄abijh
′
iah
′
jb

εai ε
b
j

= +
∑
abij

v̄abijh
′
iah
′
jb

εai ε
ab
ij

,

PΩ2.5 = +1
2

∑
abijk

v̄bajiv̄jiakh
′
kb

εabij ε
b
k

+
∑
abcij

v̄abjiv̄ciabh
′
jc

εabij ε
c
j

 ,

PΩ2.6 = +1
2

∑
abcij

v̄abjiv̄jiach
′
cb

εabij ε
ac
ij

−
∑
abijk

v̄abjiv̄kiabh
′
jk

εabij ε
ab
ik

 ,

PΩ2.7 = −1
2

∑
abijk

h′aiv̄bikj v̄kjba
εai ε

ab
jk

−
∑
abcij

h′aiv̄cbjav̄ijbc
εai ε

bc
ij

 ,

PΩ2.8 = +1
8
∑
abcdij

v̄abjiv̄cdabv̄jicd
εabij ε

cd
ij

+ 1
8
∑
abijkl

v̄abjiv̄ijklv̄lkab
εabij ε

ab
kl

+
∑
abcijk

v̄abjiv̄cjbkv̄ikac
εabij ε

ac
ik

,

where h′pq ≡ hpq − εpδpq. For the BMBPT diagram labelled PΩ2.4, recovering the MBPT
expression actually necessitates the use of relation

1
εai ε

ab
ij

+ 1
εbjε

ab
ij

= 1
εai ε

b
j

, (F.1)

and relabelling of the indices, thus linking the symmetric structure of the BMBPT Feynman
diagram with the non-symmetric one of the MBPT Goldstone diagram and explaining the
change in the symmetry factor.
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G. Structure of the ADG program
The previously described methodology has been implemented to build a Python 2.7 program
called ADG for Automatic Diagram Generator. This program uses the external Python pack-
ages NumPy for matrix-related operations and NetworkX for producing and manipulating
diagrams. Python allows us to develop an easy-to-use, low-maintenance program without
having to tamper directly with low-level concepts such as memory allocation. The wide
ecosystem of open-source packages available helps focus on physics-related parts of the code.
Furthermore, the possibility to use object-oriented programming has proven useful to design a
program that could easily be extended to a various range of many-body diagrammatic theories.
For readability and maintainability purposes, the program has been separated into different
modules, the functions of which are detailed below.

G.1. Main script
The main function, contained in file main.py, organizes the whole program and makes use of
the other modules when needed. The function first parses the command-line options enterred
by the user, asking them for keyboard input if needed. The calling options comprises the
theory being used, the two- or three-body operator character of the operators as well as other
features regarding output formatting.

The function is designed to be as theory-agnostic as possible, calling for wrapper functions
defined in the run module to generate the appropriate adjacency matrices, which are then
recasted as NumPy matrices and fed to NetworkX to produce graphs that are then used to
initialize the actual Diagram objects that the program uses. A few tests are applied to make
sure only appropriate matrices are kept (corresponding to connected graphs, etc.) before
MBPT or BMBPT diagrams are produced, which encapsulate the NetworkX graph as well
as other related properties stored as attributes (two- or three-body character, various tags,
degrees of the vertices,...).

Checks for topologically identical diagrams are then performed. As this part of the program
scales factorially with the number of diagrams considered, it constitutes the more time-
costly part of the program when going to higher orders. Especially, the is_isomorphic
interface of NetworkX is itself time-costly as it performs permutations between the graph
nodes. Consequently, the algorithm has been optimize to call it as rarely as possible. Diagrams
are therefore first selected based on their two- or three-body character and Hartree-Fock or
non-Hartree-Fock status, such that comparisons are done within a smaller set of diagrams.
Additionally, checks on the set of in- and out-degrees of the vertices of the two graphs are
made, leaving the need for a call to is_isomorphic to the fewest possible cases.
Once only topologically distinct diagrams are kept, the program extracts the expressions

associated to the diagrams depending of the formalism involved, and stores them as attributes
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of the diagram objects.
Finally, output LATEX files are produced, the exact content and formatting of which depend

on user’s input. Computer-readable files are available as well for MBPT diagrams. Compilation
of the main LATEX file is then proposed to the user, and useless files produced by the program
and the LATEX compilation are deleted before exiting.

G.2. Run management module
The run.py file contains routines related to run management, command-line interface and
managing the code output.

G.2.1. Routines
The routines of the module are:

• parse_command_line sets up the calculation depending on the used command-line flags.

• interactive_interface sets up the calculation using keyboard input when ADG has
been called with the flag -i.

• attribute_directory creates the appropriate folder for the output of the program,
depending of the theory, order and other options.

• generate_diagrams is used as a wrapper for the different class-dependent diagram
creation routines.

• order_diagrams is used as a wrapper for the different class-dependent diagram ordering
routines.

• print_diags_numbers prints out information about the produced diagram on the termi-
nal.

• prepare_drawing_instructions launches the production of graph-related drawing in-
structions.

• create_feynmanmp_files then stores the instructions in an appropriately-labelled text
file.

• write_file_header takes care of writing the beginning of the LATEX output file with
the appropriate formatting options.

• compile_manager takes care of compiling the LATEX file with PDFLATEX.

• clean_folders then deletes the auxiliary files that are no longer needed.
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G.3. Generic diagram module

G.3. Generic diagram module
The diag.py file contains various routines for diagrams that can be used regardless of the theory
of interest, i.e., tests on the degree of vertices in a matrix, tests for topologically identical
diagrams, or routines used to label the vertices and propagators of a diagram. It also contains
the routines that are used to produce the FeynMP instructions starting from a NetworkX graph
and various routines used for the production of the LATEX output files. Finally, it contains the
definition of a Diagram abstract class that is inherited by the classes associated to MBPT and
BMBPT diagrams.

G.3.1. Routines
Let us now describe briefly the different routines of the module:

• no_trace takes as input a list of matrices and returns it without any matrix with a
non-zero diagonal matrix element.

• check_vertex_degree checks the degree of a specific vertex. It is used during the matrix
generation to remove ill-defined matrices.

• topologically_distinct_diagrams checks a list of Diagram objects and removes the
topologically equivalent ones.

• label_vertices is used to attribute labels to the nodes in a NetworkX graph depending
on their general operator or grand canonical potential character.

• feynmf_generator is the routine used to generate the FeynMP drawing instructions
starting from a NetworkX graph.

• propagator_style selects the appropriate drawing instructions for propagators.

• draw_diagram recovers the drawing instructions of a given diagram and copies them in
the LATEX file.

• to_skeleton returns only the non-redundant links in a diagram, i.e., only the minimal
set of edges to infer the time relations. It is mostly used for time-structure diagrams,
though its scope could be more general.

• extract_denom returns the appropriate denominator for a diagram using the subgraph
rule.

• print_adj_matrices prints a computer-readable file with the adjacency matrices of the
diagrams.
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G.3.2. Diagram class
The Diagram class is used to describe a general diagram and comprises the following attributes:

• graph, the NetworkX graph associated to the diagram.

• unsort_degrees, a tuple with the graph vertex degrees.

• degrees, a sorted tuple with the degrees of the graph’s vertices.

• unsort_io_degrees, a tuple with the in- and out-degrees of the vertices.

• io_degrees, that correspond to a sorted version of unsort_io_degrees.

• max_degree, the highest vertex degree in the graph.

• tags, a list of integers associated with the graph to keep track of topologically identical
diagrams.

• adjacency_mat, a NumPy array with the adjacency matrix of the graph.

The Diagram class has two methods described below:

• __init__ takes as input a NetworkX graph that it stores in graph and uses to initialize
the other attributes.

• write_graph, an abstract method for drawing the graph using FeynMP instructions.

G.4. MBPT module
This mbpt.py file contains the routines that are related to MBPT diagrams, be it the generation
of the adjacency matrices associated to them or the treatment of the MBPT expressions, as
well as producing a computer-readable output suitable for automated calculation frameworks
[169

.

]. It also contains the MbptDiagram class that inherits from the Diagram class defined in
the diag module.

G.4.1. Routines
Let us now describe briefly the different routines of the module:

• diagrams_generation produces all the adjacency matrices associated to MBPT diagrams
of a given order.

• write_diag_exp writes the expression associated to a diagram in the LATEX file.

• write_header writes the appropriate header for the LATEX output file.

• print_cd_output prints a computer-readable output file.

• order_diagrams order the diagrams depending on their excitation level.
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• attribute_conjugate searches for the conjugate partner of a diagram in the list of all
diagrams.

• extract_cd_denom extracts the denominator of the graph and writes it in a computer-
readable format.

G.4.2. MbptDiagram class
Additionnally to the attributes defined in the class Diagram, the class MbptDiagram possesses
the following attributes:
• incidence, a NumPy array with the incidence matrix of the graph.

• excitation_level, an integer coding for the single, double, etc., character of the
diagram.

• complex_conjugate, the tag of the conjugate partner of the diagram.

• expr a string that stores the expression associated to a diagram.

• cd_expr, the expression associated to the graph in a computer-readable format.
The methods of the MbptDiagram class are described below:
• Its constructor __init__ calls the Diagram class constructor and additionnaly inializes

the diagram tags before calling attribute_expressions.

• attribute_expression is used to generate the expression associated with the MBPT
diagram and stores it in its attribute expr.

• calc_excitation returns the integer associated with the excitation level of the diagram.

• count_hole_lines returns the number of hole lines in the graph.

• is_complex_conjug_of returns True if a diagram is the complex conjugate diagram of
the object.

• attribute_ph_labels attributes the appropriate particle or hole label to the lines of
the diagram.

• extract_denominator returns a string with the denominator associated to the diagram.

• cd_denominator returns a string with the denominator associated to the graph in a
computer-readable format.

• extract_numerator returns the numerator associated to the diagram.

• cd_numerator returns the numerator associated to the diagram in a computer-readable
format.

• loops_number returns the number of loops in the diagram, using a specific convention
for reading its representation.

• write_section writes the information associated to the graph in the LATEX output file.
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G.5. BMBPT module
The bmbpt.py file contains the routines related to BMBPT diagrams: generation of the
associated adjacency matrices, some on-the-fly tests for this generation, tests used to characterize
the BMBPT diagrams with respect to their two- or three-body operator or Hartree-Fock
character, different routines for the extraction of the associated numerators, denominators and
different symmetry factors, and finally routines used to format the output files. This module
also defines a BmbptFeynmanDiagram class, similar to the MbptDiagram one.

G.5.1. Routines
Let us now describe briefly the different routines of the module:

• diagrams_generation generates all the adjacency matrices associated to BMBPT dia-
grams of a given order.

• check_unconnected_spawn is used by BMBPT_generation to avoid producing matrices
that would in the end correspond to unconnected diagrams.

• write_header takes care of the appropriate formatting of the output LATEX file in the
case ADG has been called for BMBPT.

• produce_expressions produces and stores the expressions associated to the BMBPT
diagrams.

• order_diagrams order the diagrams depending on their use of two- or three-body forces
and their Hartree-Fock character, and discard topologically equivalent diagrams.

G.5.2. BmbptFeynmanDiagram class
Additionnally to the attributes defined in the class Diagram, the class BmbptFeynmanDiagram
possesses the following attributes:

• two_or_three_body that stores as an integer the two-body-only or three-body character
of the operators comprised in the diagram.

• time_tag is an integer that keep track of the associated time-structure diagram.

• tsd_is_tree is set to True if the associated TSD has a tree structure, False if it has not.

• feynman_exp, a string that stores the time-dependent expression associated to a diagram.

• diag_exp, a string that stores the time-independent expression associated to a diagram.

• vert_exp, a list of strings that stores the expressions associated to each vertex.

• hf_type, a string that says if a diagram is of Hartree-Fock character, Hartree-Fock if the
generic operator is replaced by the grand canonical potential, or non-Hartree-Fock.

The BmbptFeynmanDiagram class has fifteen methods described below:
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• Its constructor __init__ calls the Diagram class constructor and initializes the other
attributes.

• attribute_expressions is used to generate the time-dependent and time-independent
expressions associated with the BMBPT diagram and stores it in its attributes feynman_exp
and diag_exp.

• vertex_expression returns the expression associated to a given vertex of the BMBPT
diagram.

• write_graph writes the graph and its associated TSD to the LATEX file.

• write_tsd_info writes information relative to the TSD associated to the diagram in
the output file.

• write_section writes sections and subsections in the output file.

• write_vertices_values writes the quasiparticle energies associated to each vertex of
the graph in the output file.

• write_diag_exps writes the expressions associated to a diagram in the LATEX file.

• vertex_exchange_sym_factor returns the symmetry factor associated with vertex ex-
change.

• extract_integral returns as a string the integral part of the Feynman expression of
the graph.

• attribute_qp_labels is used to attribute the appropriate quasiparticle label to the
edges of the NetworkX graph.

• extract_numerator returns as a string the numerator associated to the graph.

• has_crossing_sign returns True if there is a minus sign associated with crossing propa-
gators in the graph.

• multiplicity_symmetry_factor returns the symmetry factor associated with propaga-
tors multiplicity.

• time_tree_denominator returns as a string the time-integrated denominator associated
to a BMBPT graph that has a tree time-structure.

G.6. TSD module
Finally, the tsd.py file contains routines related to time-structure diagrams (TSDs). Though
designed specifically for TSDs related to BMBPT diagrams, it could be extended to encompass
other types of TSDs. The various routines this module contains deal with the production of
a TSD diagram out of a BMBPT diagram, different tests on BMBPT diagrams with respect
to their associated TSD, extraction of the denominator resulting from the time integration
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associated with the TSD, and production of the corresponding section of the output file,
including the drawing of the TSD. Finally, it contains a TimeStructureDiagram class that
inherits from the Diagram class, with its constructor that generates a TSD starting from a
BMBPT diagram.

G.6.1. Routines
Let us now describe briefly the different routines of the module:

• time_structure_graph returns the time-structure graph associated to a BMBPT graph.

• tree_time_structure_den returns the denominator associated to a tree time-structure
graph.

• equivalent_labelled_TSDs returns the list of labelled TSDs corresponding to the
equivalent tree TSDs of a previously given non-tree TSD.

• write_section takes care of the proper formatting of the section devoted to TSDs in
the output LATEX file.

• disentangle_cycle is used by treat_cycle to separate a cycle in a sum of trees.

• find_cycle returns the start and end nodes of an elementary cycle and is called by
disentangle_cycle.

• treat_tsds orders the TSDs, produces their expressions and returns the number of tree
TSDs.

G.6.2. TimeStructureDiagram class
Additionnally to the attributes defined in the class Diagram, the class TimeStructureDiagram
possesses the following attributes:

• perms, a dictionnary of permutations necessary for the treatment of expressions for
topologically equivalent TSDs.

• equivalent_trees, a list of integers to keep track of the topologically equivalent TSDs.

• is_tree, set to True if the TSD is a tree, False if it not.

• expr, a string to store the denominator associated with the TSD.

• resum, the resummation power of the tree TSD stored has an integer.

The TimeStructureDiagram class has four methods described below:

• Its constructor __init__ calls the Diagram class constructor and then initializes the
other attributes.

• treat_cycles finds and treat the cycles in a non-tree TSD.
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• draw_equivalent_tree_tsds draws the equivalent tree TSDs of a given non-tree TSD.

• resummation_power returns the resummation power associated to a tree TSD.
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Plus de quarante ans après la remise du prix Nobel à Bohr, Mottelson et Rainwater, la physique
nucléaire reste à bien des égards un champ de recherche actif au sein duquel de nombreux
changements se sont opérés ces quinze dernières années. Du fait de la complexité du noyau
atomique, depuis la description des propriétés liées à son état fondamental (masse, rayon...)
jusqu’à son comportement lors de réactions (diffusion, fission...), de son caractère mésoscopique
interdisant à la fois traitement statistique et méthode exacte dans la plupart des cas, et d’une
interaction nucléaire encore appréhendée avec difficulté, aucun modèle n’a su s’ériger en modèle
standard de la physique nucléaire. Si le modèle de la goutte liquide se montre suffisant pour
la plupart des applications civiles comme militaires, une description fine de l’ensemble des
propriétés du noyau reste hors d’atteinte dans ce cadre. Diverses approches théoriques ont
donc été développées pour parer à cet inconvénient. Si le modèle en couche et les fonctionnelles
énergie de la densité se sont imposés par leur capacité à reproduire les résultats expérimentaux,
l’impossibilité de les améliorer de manière systématique conduit à une approche de type
essai-erreur et à une multiplication des modèles. A l’opposé, les méthodes de type ab initio
ont été conçues avec l’idée d’améliorabilité systématique au cœur de leur approche, mais ont
longtemps été limitées au secteur A∼ 12 en raison de temps de calcul factoriels ou exponentiels.

Les années 2000 ont toutefois bouleversé cet état de fait, avec le développement concomitants
d’hamiltoniens issus de la théorie effective des champs chirale, de méthodes ab initio dont le
temps de calcul croît polynomialement avec le nombre de particules ainsi que la possibilité
d’effectuer un pré-traitement de l’hamiltonien pour réduire le temps de calcul final, via notam-
ment le groupe de renormalisation de similarité. Ces progrès simultanés dans la modélisation
de l’hamiltonien, les méthodes à N corps et les méthodes de calculs ont permis l’extension
rapide du domaine des méthodes ab initio aux noyaux de masse moyenne jusqu’à A∼ 100.
En particulier, des extensions de ces méthodes polynomiales ont permis l’accès aux noyaux à
simple couche ouverte.
Une des particularités des méthodes polynomiales précédemment citées est qu’elles sont

non-perturbatives, au sens où elles resomment des classes infinies de diagrammes obtenus par
l’emploi de la théorie de perturbation. L’usage de la théorie de perturbation à N corps (MBPT)
avait été abandonné plusieurs décennies plus tôt pour son incapacité à traiter convenablement
l’hamiltonien nucléaire. Or, le développement des méthodes de pré-traitement de l’hamiltonien
a rendu à nouveau possible l’emploi de MBPT pour les noyaux à couche fermée, obtenant
des résultats similaires à ceux des méthodes non perturbatives pour une fraction du temps
de calcul. Pour pouvoir étendre cette approche aux noyaux à couche ouverte en conservant la
simplicité d’une approche à simple référence comme MBPT, il était nécessaire de développer
une théorie de perturbation à N corps brisant des symétries, en particulier la symétrie associée
au nombre de particules dans le cas des noyaux à simple couche ouverte. Ce sont ce travail de
développement et son application ultérieure qui sont détaillés dans le présent document.
Le Chapitre 1 détaille les ingrédients nécessaires à l’établissement du formalisme de la
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théorie de perturbation à N corps de Bogolioubov (BMBPT), à commencer par l’hamiltonien
à trois corps dont les éléments de matrice ont été antisymétrisés. Le formalisme repose sur
l’usage de la notion de brisure de symétrie afin d’incorporer les corrélations traditionnellement
associées au phénomène de superfluidité au sein du noyau. La brisure de la symétrie U(1),
associée à la conservation du nombre de particule, est discutée en détail. On introduit ensuite
les opérateurs associés à l’algèbre de Bogolioubov, en particulier les opérateurs de création
et d’annihilation de quasiparticules, obtenus par transformation unitaire des opérateurs de
création et d’annihilation de particules. L’opérateur d’évolution, qui permet d’obtenir les
états évolués en temps imaginaire est ensuite introduit, ainsi que les étapes permettant de
développer les kernels d’opérateurs. Enfin, les différents opérateurs d’intérêt sont réexprimés
dans la base des opérateurs de création et d’annihilation de quasiparticules, en ordre normal
vis-à-vis de l’état de référence, permettant une écriture plus compacte du formalisme par la
suite. La représentation diagrammatique d’un opérateur exprimé en ordre normal dans la base
des opérateurs de quasiparticule est introduite pour clore ce chapitre.

Le Chapitre 2 introduit le formalisme de la théorie de perturbation à N corps de Bogolioubov
à proprement parler. Le potentiel grand-canonique Ω, qui permet de résoudre l’équation de
Schrödinger en exerçant une contrainte sur le nombre de particule du système, est partitionné
en une partie non perturbée Ω0 et une partie résiduelle Ω1, de telle sorte que ces deux parties de
l’opérateur ne commutent pas avec l’opérateur A associé au nombre de particules. La résolution
de l’équation de Schrödinger à N corps pour Ω0 et l’état de référence |Φ〉 permet d’obtenir les
énergies associées aux différents états de la base de quasiparticule. Le cas particulier où l’état
de référence est solution des équations Hartree-Fock-Bogolioubov est ensuite discuté en détails.
Un tel choix de vide de référence conduit naturellement à l’annulation de certaines composantes
du potentiel grand-canonique et à une simplification du formalisme. Les propagateurs de
quasiparticules sont ensuite présentés, et l’opérateur d’évolution est ensuite réexprimé en
fonction des parties non-perturbative et résiduelle du potentiel grand-canonique.
Tous les éléments nécessaires étant désormais disponibles, les kernels d’opérateur peuvent

être développés en perturbation. Les corrections en perturbation au premier et au second
ordre sont dérivées pour le kernel de norme comme pour un kernel d’opérateur générique. La
possibilité de refactoriser les diagrammes et obtenir directement l’expression d’une observable
associée à un opérateur à partir du développement de son kernel réduit connecté est établie. En
particulier, l’étude détaillée des contributions analytiques obtenues en appliquant le théorème
de Wick conduit à la formulation des règles nécessaires à la génération et à l’évaluation des
diagrammes BMBPT.
Différents sujets sont ensuite développés. Le caractère réel ou complexe des diagrammes

obtenus est discuté en détails ainsi que la méthode pour obtenir l’observable, réelle par nature, à
partir des diagrammes BMBPT. Le lien entre théorie de perturbation à N corps de Bogolioubov
et théorie du cluster couplé de Bogolioubov est ensuite abordé, et les approximations des
amplitudes de cluster au premier et au deuxième ordre en perturbation sont obtenues. La
contrainte à exercer pour maintenir le nombre de particules moyen du système ainsi que la
mesure de la variance du nombre de particules sont ensuite discutées. Pour finir, il est vérifié
que les résultats de la théorie de perturbation à N corps de Bogolioubov correspondent aux
résultats de la théorie de perturbation à N corps standard dans le cas d’un système à couche
fermée, ce qui est une propriété du formalisme par construction.
Une fois le formalisme de la théorie de perturbation à N corps de Bogolioubov établi et
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appliqué au premier et au second ordre, reste la question de son application à des ordres plus
élevés. Par nature, les méthodes à N corps dites ab initio sont construites pour se rapprocher
ordre par ordre de la solution exacte, et donc être applicables à l’ordre le plus élevé possible.
Le cas des théories de perturbation est particulier parmi elles, car aucun théorème n’assure la
convergence de la série vers la solution exacte de l’équation de Schrödinger à N corps. Il est donc
nécessaire de vérifier a posteriori cette convergence en effectuant des calculs ordre par ordre.
Par ailleurs, l’obtention de résultats BMBPT à des ordres supérieurs permettrait également
l’incorporation d’effets physiques liés aux excitations triples et quadruples de quasiparticules.
Or, l’utilisation à des ordres plus élevés de BMBPT se heurte à une double difficulté. La

première est celle de la génération de l’ensemble des diagrammes BMBPT à un ordre donné,
liée à la difficulté à capturer l’ensemble des topologies de diagrammes possibles. La seconde est
celle de l’évaluation de ces diagrammes. A chaque diagramme d’ordre p est en effet associé une
intégrale en temps p-tuple, et la difficulté associée à la résolution de cette intégrale va donc
croissante avec l’ordre de perturbation.

Le chapitre 3 est consacré à la mise en place d’outils automatisés permettant de résoudre cette
double difficulté. La première partie est consacrée à l’usage des matrices d’adjacence, objets
issus de la théorie des graphes, pour générer l’ensemble des diagrammes BMBPT possibles à
un certain ordre. Les règles diagrammatiques discutées au sein du chapitre 2 sont traduites en
termes de contraintes à exercer sur la forme des matrices d’adjacence, et les grands principes
des algorithmes de génération des matrices sont discutés en détails, ainsi que la traduction des
matrices en instructions de dessin des diagrammes.

La seconde partie est consacrée à la formulation et à l’étude des propriétés des diagrammes
de structure en temps (TSD). Ces objets sont introduits comme représentation graphique
de l’intégrale p-tuple en temps associée à un diagramme BMBPT d’ordre p, c’est-à-dire une
représentation graphique des liens d’ordonnancement en temps entre les différents vertex.
Une étude approfondie des propriétés de ces TSD permet de démontrer récursivement les
règles diagrammatiques permettant l’extraction de l’expression intégrée en temps associée à
un diagramme BMBPT. En particulier, la règle diagrammatique utilisée pour les diagrammes
BMBPT dépendants du temps apparaît comme la généralisation de la règle diagrammatique
de Goldstone utilisée pour les diagrammatiques indépendantes du temps.

La partie suivante est consacrée à mettre en perspective formalismes dépendant et indépendant
du temps et leur diagrammatique associée. Il apparaît que la théorie de perturbation à N corps
de Bogolioubov présente un cas particulièrement favorable, l’usage combiné d’un formalisme
exprimé en termes de quasiparticules et d’une diagrammatique dépendante du temps conduisant
à une réduction importante du nombre de diagrammes apparaissant à chaque ordre de la
théorie et donc du nombre de diagrammes à implémenter dans un code de calcul numérique. La
capacité d’un diagramme BMBPT dépendant du temps à resommer les contributions associées
à plusieurs diagrammes BMBPT indépendants du temps est en particulier étudiée en détails.
Les deux innovations permettant la génération et l’évaluation des diagrammes BMBPT à

un ordre quelconque ont été implémentées au sein d’un programme informatique appelé ADG
pour Automated Diagram Generator, rédigé en Python 2 et rendu disponible sous licence libre
GPLv3. La présentation de ce programme, de son installation et de son utilisation constituent
la dernière section du chapitre 3.

Le chapitre 4 présente ensuite les premiers résultats numériques obtenus pour BMBPT après
un travail collectif d’implémentation des diagrammes BMBPT du premier et du deuxième
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ordre et appliqué aux chaînes isotopiques de l’oxygène, du calcium et du nickel. L’étude de
l’évolution ordre par ordre de l’énergie de l’état fondamental et de l’énergie de séparation à
deux neutrons obtenus par BMBPT montre que la plupart des corrélations sont capturées par
BMBPT dès le premier ordre, les corrections au deuxième ordre étant plus faibles d’un ordre
de grandeur pour l’énergie de l’état fondamental. Des telles signes de convergence de la série
perturbative devront être confirmées par des calculs BMBPT menés à des ordres plus élevés.
Les résultats au premier ordre sont ensuite comparés à ceux obtenus pour un ensemble de

méthodes ab initio non perturbatives, correspondant à l’état de l’art pour les noyaux de masse
moyenne. Les résultats obtenus pour BMBPT sont très proches de ceux obtenus pour les autres
méthodes, en particulier pour le modèle en couche sans cœur avec troncature en importance,
méthode quasi-exacte, pour les isotopes de l’oxygène. Ce constat reste vrai pour les isotopes
du calcium et du nickel, où l’écart aux résultats expérimentaux est lié à l’Hamiltonien. De
tels résultats font de BMPBT la méthode ab initio qui présente le meilleur ratio exactitude /
temps de calcul.

Enfin, les temps de calcul pour BMBPT sont comparés à ceux de méthodes non-perturbatives
pour les chaînes de l’oxygène, du calcium, du nickel et de l’étain. L’indépendance du temps de
calcul par rapport au nombre de masse du système est vérifié, celui-ci étant fixé par la taille de
la base de quasiparticules. Par ailleurs, les temps de calculs pour BMBPT au premier ordre
sont deux ordres de magnitude inférieurs à ceux des autres méthodes pour l’ensemble de ces
systèmes. Une réduction du temps de calcul est constatée pour les systèmes à double couche
fermée, liée à l’annulation de certaines composantes des équations sans utilisation de méthode
d’optimisation dédiée.
Cette combinaison de résultats en accord avec des méthodes ab initio non perturbatives et

de temps de calculs deux ordres de magnitudes inférieurs établit BMBPT comme une méthode
de choix pour des études des noyaux à couche ouverte à grande échelle, qu’il s’agisse de
prédire ou post-dire des propriétés expérimentales de ces noyaux ou bien de tester de nouveaux
Hamiltoniens nucléaires, issus par exemple de théorie effective des champs chirale.
Les annexes rassemblent ensuite divers document utiles à la compréhension du manuscrit :

identités employées pour la résolution des intégrales en temps, définitions de théorie des graphes,
éléments de matrice d’opérateurs en produit normal, contributions BMBPT au premier et
au deuxième ordre, amplitudes de cluster pour la théorie du cluster couplé de Bogolioubov,
contributions BMBPT dans le cas d’un état de référence déterminant de Slater, et enfin
description détaillée des routines composant le programme ADG.
Le formalisme de la théorie de perturbation à N corps de Bogolioubov étant maintenant

solidement établi, et son implémentation numérique ayant été couronnée de succès, l’objectif
est d’étendre BMBPT dans plusieurs directions dans un futur proche. La première étape est
de mettre en place la contrainte sur le nombre de particules, non implémentée pour le moment,
ce qui nécessite une évaluation itérative des équations Hartree-Fock-Bogolioubov, de la mise
en ordre normal des opérateurs ainsi que des corrections perturbatives. Une étude détaillée
sur ce sujet, ainsi qu’une analyse de la sensibilité des résultats numériques à des changements
de paramètres de l’espace de modélisation ainsi que de la transformation de l’Hamiltonien
sous le groupe de remormalisation de similarité seront au coeur d’une prochaine publication.
L’étape suivante consistera en la réalisation de calcul haute précision au troisième ordre des
perturbations, ce qui permettra également de vérifier les propriétés de convergence de BMBPT.
Il sera également intéressant de tester des états de référence de Bogolioubov qui ne sont pas
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optimisés pour la résolution des équations HFB, ce qui impliquera la résolution des diagrammes
dits non-canoniques. Alors que la première application était limitée aux propriétés de l’état
fondamental, le formalisme est actuellement en cours d’extension vers de nouvelles observables,
telles que les rayons de charge, les énergies d’excitations basses ainsi que les transitions
électromagnétiques. Étant donnée notre capacité à générer et évaluer automatiquement des
diagrammes BMBPT pour des opérateurs à trois corps, il sera également intéressant de vérifier
la validité de l’approximation à deux corps en ordre normal de l’interaction nucléaire à trois
corps.

Au-delà, notre objectif à moyen terme est d’implémenter la théorie de perturbation à N corps
de Bogolioubov avec restauration du nombre de particules (PNP-BMBPT), ce qui nécessitera
un développement complet du formalisme ainsi qu’une extension conséquente du programme
ADG. PNP-BMBPT pourra être employée pour l’étude des contaminations liées à la brisure
de symétrie pour différents systèmes et observables. En parallèle, l’extension non-perturbative
de BMBPT sous la forme de la théorie du cluster connecté de Bogolioubov sera implémentée
afin de pouvoir obtenir des résultats réalistes. Là encore, ADG devrait s’avérer être un outil
particulièrement important. Sur le long terme, il sera important d’implémenter une théorie
de perturbation à N corps qui brise et restaure à la fois les symétries U(1) et SU(2) afin de
pouvoir étudier les noyaux à double couche ouverte. Par ailleurs, en parallèle de son extension
à PNP-BMBPT, ADG devrait être étendu pour développer les fonctions auto-cohérentes de
Green-Gorkov au niveau de troncature ADC(3).
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Titre : Théorie de perturbation à N corps de Bogolioubov pour les noyaux:
Génération et évaluation automatique des diagrammes et premiers calculs ab initio

Mots-clés : ab initio, théorie à N corps, théorie de perturbation, brisure de symétrie, outils automatisés

Résumé : Les dernières décennies ont donné lieu
à un développement rapide des théories ab initio
visant à décrire les propriétés des noyaux à partir
de l’interaction nucléonique. Un tel développement
a été rendu possible à la fois par la très importante
croissance de la puissance de calcul et de nouveaux
développements formels.
Le présent travail se consacre au développement de
la théorie de perturbation à N corps de Bogoliubov
récemment proposée, qui repose sur l’usage d’un état
de référence brisant la symétrie associée au nombre
de particules pour permettre une description des
noyaux à simple couche ouverte. Le formalisme est
tout d’abord décrit en détails, son lien avec la théo-
rie de perturbation à N corps standard est établi,
tout comme sa connexion avec la théorie de cluster

couplés de Bogolioubov.
L’extension du formalisme à des ordres plus élevés à
partir de méthodes de théorie des graphes est ensuite
présentée ainsi que le programme ADG qui génère
et évalue les diagrammes BMBPT à un ordre quel-
conque. Les implications de ce développement formel
dépassent le cadre du présent travail, les techniques
développées pouvant être appliquées à d’autres mé-
thodes à N corps.
Pour terminer, de premiers résultats numériques
pour les isotopes de l’oxygène, du calcium et du
nickel sont présentés. Ces résultats établissent la
théorie de perturbation à N corps de Bogolioubov
comme une méthode de premier intérêt pour des
calculs à grande échelle sur les chaînes isotopiques
et isotoniques de masse moyenne.

Title: Bogoliubov Many-Body Perturbation Theory for Nuclei:
Systematic Generation and Evaluation of Diagrams and First ab initio Calculations

Keywords: ab initio, many-body theory, perturbation theory, symmetry breaking, automated tools

Abstract: The last few decades in nuclear structure
theory have seen a rapid expansion of ab initio the-
ories, aiming at describing the properties of nuclei
starting from the inter-nucleonic interaction. Such
an expansion relied both on the tremendous growth
of computing power and novel formal developments.
This work focuses on the development of the recently
proposed Bogoliubov Many-Body Perturbation The-
ory that relies on a particle-number-breaking refer-
ence state to tackle singly open-shell nuclei. The
formalism is first described in details, and diagram-
matic and algebraic contributions are derived up
to second order. Its link to standard Many-Body
Perturbation Theory is made explicit, as well as its

connexion to Bogoliubov Coupled-Cluster theory.
An automated extension to higher orders based on
graph theory methods is then detailed, and the
ADG numerical program generating and evaluating
BMBPT diagrams at arbitrary order is introduced.
Such a formal development carries implications that
are not restricted to the present work, as the devel-
oped techniques can be applied to other many-body
methods.
Finally, first numerical results obtained for oxygen,
calcium and nickel isotopes are presented. They
establish BMBPT as a method of interest for large-
scale computations of isotopic or isotonic chains in
the mid-mass sector of the nuclear chart.
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