

Summary Plots from ATLAS Searches for Pair-Produced Leptoquarks

The ATLAS Collaboration

This note collects four summary plots with exclusion contours derived for different pair-production scenarios of scalar leptoquarks. In all four scenarios, the decay products of the leptoquarks include only quarks from the third generation, whereas depending on the scenario they can either include third-generation leptons (neutral or charged) or first-/second-generation leptons. Several dedicated searches and two reinterpretations of searches for supersymmetric particles target these signal models. The full Run-2 dataset recorded with the ATLAS detector in proton–proton collisions at $\sqrt{s} = 13$ TeV is used, corresponding to an integrated luminosity of 139 fb^{-1} . The contours indicate the observed and expected exclusion limits as a function of the leptoquark mass and the branching ratio of the leptoquarks into a quark and a charged lepton.

1 Overview of LQ Models

In total, four different models with pair production of scalar leptoquarks are employed in the four summary plots in this note. The plots overlay contours obtained from different dedicated searches for leptoquarks and reinterpretations of two searches for supersymmetric particles, all of which are based on the full Run-2 dataset of 139 fb^{-1} . No statistical combination of the different analyses is done.

Third-Generation Model: Figures 1 and 2 present limits on the pair production of scalar leptoquarks, where all possible decays of the leptoquark into a quark of the third generation (t, b) and a lepton of the third generation (τ, ν) are considered. The limits are presented as a function of the leptoquark mass and the branching ratio into a charged lepton and a quark for up-type ($\text{LQ}_3^u \rightarrow t\nu/b\tau$) and down-type ($\text{LQ}_3^d \rightarrow b\nu/t\tau$) leptoquarks. The previous versions of these figures based on 36.1 fb^{-1} of data taken in 2015 and 2016 can be found in Ref. [1]. The contours from this earlier paper are shown in the new summary plots as grey contours.

Mixed-Generation Model: Figures 3 and 4 present limits on the pair production of scalar leptoquarks, where all possible decays of the leptoquark into a quark of the third generation (t, b) and a lepton of the first or second generation (ℓ, ν , with $\ell = e, \mu$) are considered. The limits are presented as a function of the leptoquark mass and the branching ratio into a charged lepton and a quark for up-type ($\text{LQ}_{\text{mix}}^u \rightarrow t\nu/b\ell$) and down-type ($\text{LQ}_{\text{mix}}^d \rightarrow b\nu/t\ell$) leptoquarks. These two models are new and thus no previous results based on a partial Run-2 dataset are available.

Signal sample generation: Signal samples for the third-generation model were generated at next-to-leading order (NLO) in QCD with `MadGraph5_aMC@NLO` 2.6.0 [2], using the LQ model of Ref. [3] that adds parton showers to previous fixed-order NLO QCD calculations [4, 5], and the NNPDF 3.0 NLO [6] parton distribution functions, interfaced with `Pythia` 8.230 [7] using the A14 set of tuned parameters [8] for the parton shower and hadronization. The mixed-generation model was produced in the same way but using an extended version of the LQ model of Ref. [3] that adds the possibility of decays to different generations. The LQ pair-production cross sections were obtained from the calculation of direct top-squark pair production, as this process has the same production modes, computed at approximate next-to-next-to-leading order (NNLO) in QCD with resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms [9–12]. The cross sections do not include lepton t-channel contributions, which are neglected in Ref. [3] and may lead to corrections at the percent level [13]. `Madspin` [14] was used for the decay of the LQ, where the couplings of the leptoquark to the quark–lepton pair are determined by two parameters: a model parameter β and the coupling parameter λ . The coupling to a charged lepton and a quark is given by $\sqrt{\beta}\lambda$, and the coupling to a neutrino and a quark by $\sqrt{1-\beta}\lambda$. Note that for equal couplings, i. e. $\beta = 0.5$, the branching ratio will not be 50 % due to the sizeable top-quark mass. The samples were produced for a model parameter of $\beta = 0.5$ or $\beta = 1$, and target branching ratios were obtained by reweighting the samples based on generator-level information. The parameter λ was set to 0.3, resulting in a LQ width of about 0.2 % of its mass [15, 16].

2 Input Analyses

All contours shown in the summary plots have previously been published in the conference notes or papers cited below unless otherwise stated.

Contours from the following four dedicated analyses are included in the plots:

- $b\tau bv$: “Search for new phenomena in pp collisions in final states with tau leptons, b -jets, and missing transverse momentum with the ATLAS detector” [17].
- $t\tau t\tau$: “Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ -lepton in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector” [18].
- $b\ell b\ell$: “Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector” [19].
- $t\ell t\ell$: “Search for pair production of scalar leptoquarks decaying into first- or second-generation leptons and top quarks in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector” [20].

Contours from the following reinterpretations of searches for pair production of supersymmetric particles are included in the plots:

- stop-0 ℓ : “Search for a scalar partner of the top quark in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state at $\sqrt{s} = 13$ TeV with the ATLAS detector” [21].
- sbottom-0 ℓ : “Search for new phenomena in final states with b -jets and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector” [22].

3 Up-type Third-Generation Model (LQ_3^u)

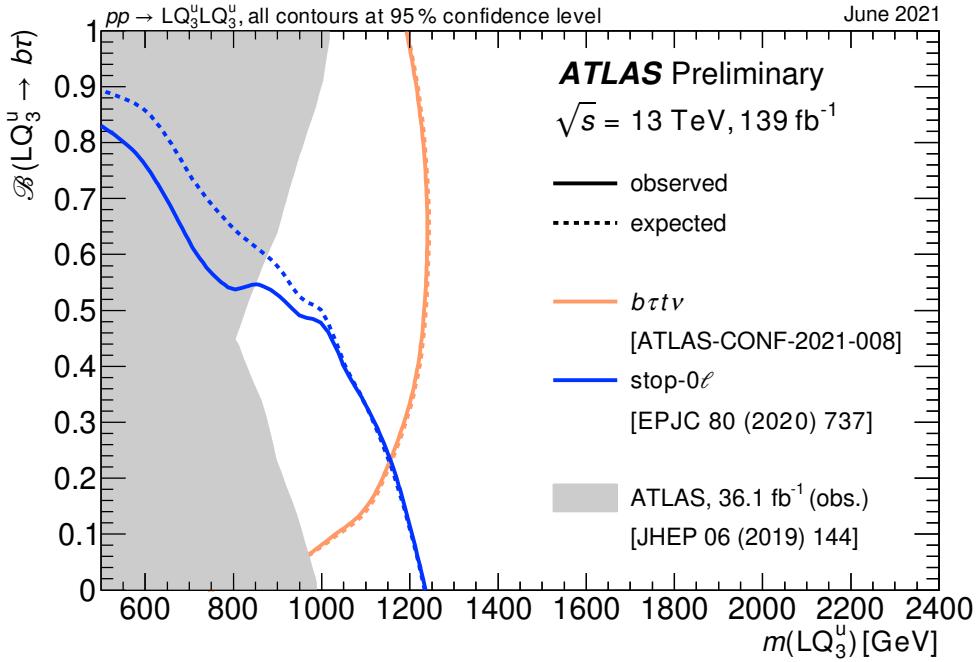


Figure 1: Expected and observed exclusion contours at the 95 % confidence level for pair-produced scalar third-generation up-type leptoquarks with decays $LQ_3^u \rightarrow \tau\nu/b\tau$, as a function of the leptoquark mass and the branching fraction $\mathcal{B}(LQ_3^u \rightarrow b\tau)$ into a charged lepton and a quark. The area shaded in gray corresponds to the observed exclusion contours from the previous ATLAS publication [1] based on 36.1 fb^{-1} of data taken in 2015 and 2016. In addition to the dedicated search for leptoquarks, the plot includes a reinterpretation of the search for pair production of supersymmetric top squarks with no leptons (stop-0 ℓ) in the final state.

4 Down-type Third-Generation Model (LQ_3^d)

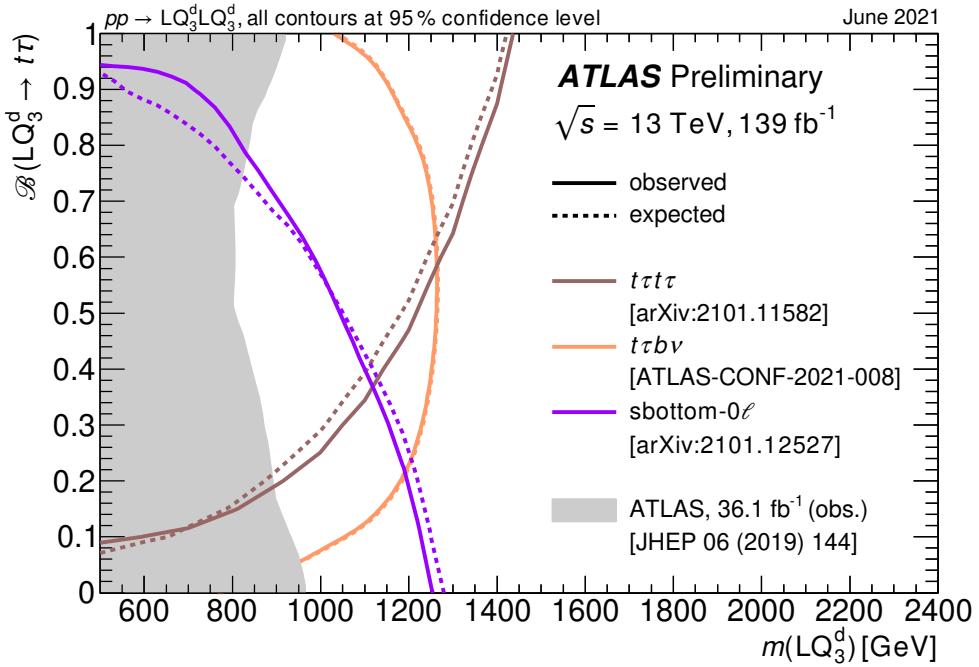


Figure 2: Expected and observed exclusion contours at the 95 % confidence level for pair-produced scalar third-generation down-type leptoquarks with decays $LQ_3^d \rightarrow b\nu/t\tau$, as a function of the leptoquark mass and the branching fraction $\mathcal{B}(LQ_3^d \rightarrow t\tau)$ into a charged lepton and a quark. The area shaded in gray corresponds to the observed exclusion contours from the previous ATLAS publication [1] based on 36.1 fb^{-1} of data taken in 2015 and 2016. In addition to the dedicated searches for leptoquarks, the plot includes a reinterpretation of the search for pair production of supersymmetric bottom squarks with no leptons (sbottom-0 ℓ) in the final state.

5 Up-type Mixed-Generation Model (LQ_{mix}^u)

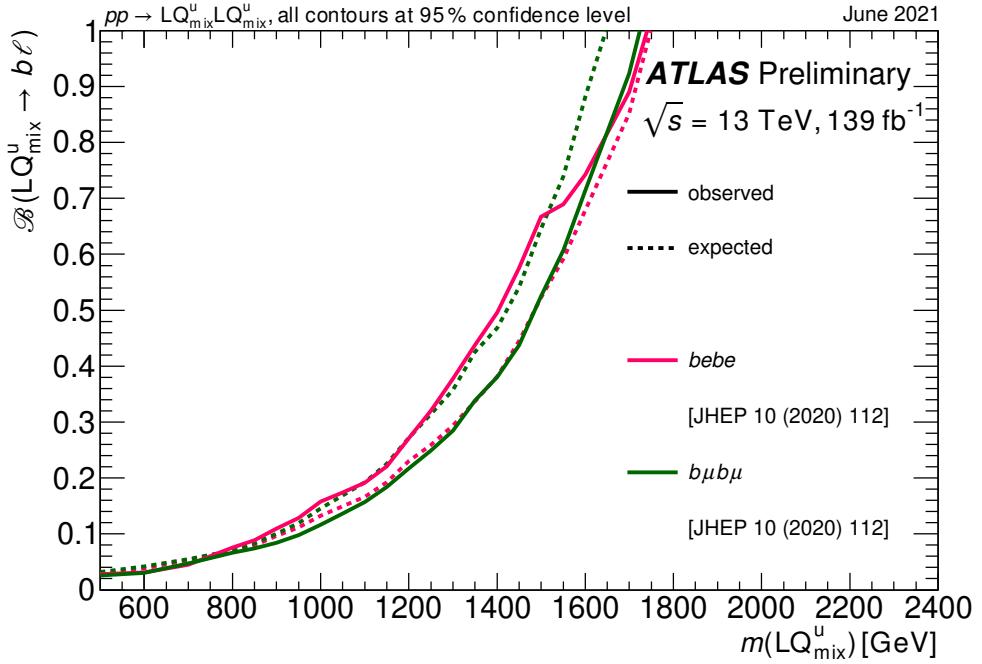


Figure 3: Expected and observed exclusion contours at the 95 % confidence level for pair-produced scalar up-type leptoquarks with mixed decays to third-generation quarks and leptons from the first or second generation $LQ_{\text{mix}}^u \rightarrow t\nu/b\ell$, as a function of the leptoquark mass and the branching fraction $\mathcal{B}(LQ_{\text{mix}}^u \rightarrow b\ell)$ into a charged lepton and a quark.

6 Down-type Mixed-Generation Model (LQ_{mix}^d)

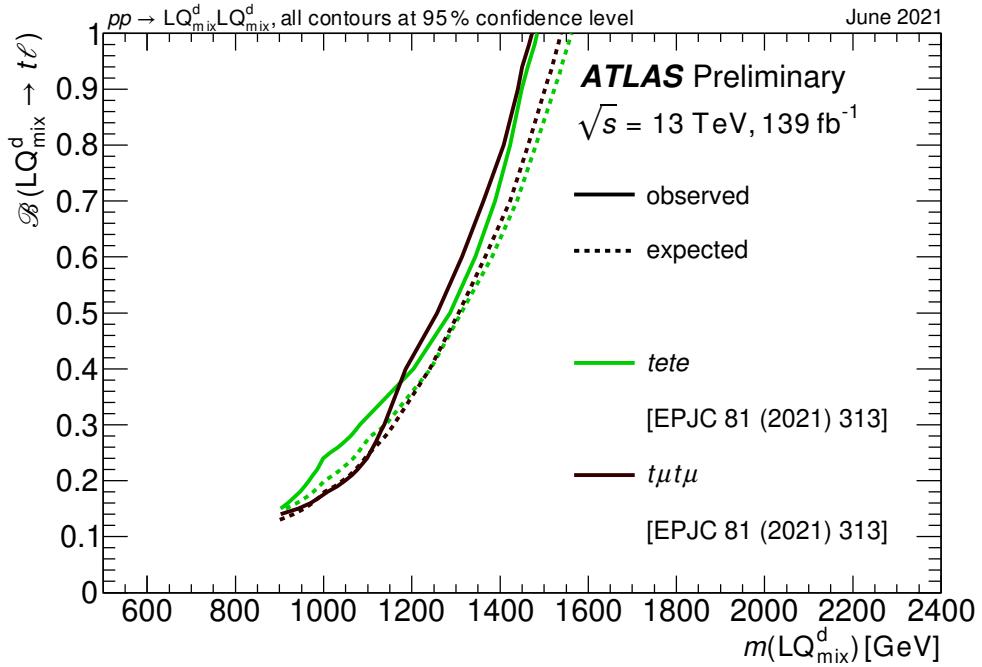


Figure 4: Expected and observed exclusion contours at the 95 % confidence level for pair-produced scalar down-type leptoquarks with mixed decays to third-generation quarks and leptons from the first or second generation $LQ_{\text{mix}}^d \rightarrow b\nu/t\ell$, as a function of the leptoquark mass and the branching fraction $\mathcal{B}(LQ_{\text{mix}}^d \rightarrow t\ell)$ into a charged lepton and a quark. The search shown here selects final states with boosted hadronically decaying top quarks and thus probes high leptoquark masses above 900 GeV.

References

- [1] ATLAS Collaboration, *Searches for third-generation scalar leptoquarks in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector*, **JHEP** **06** (2019) 144, arXiv: [1902.08103 \[hep-ex\]](#) (cit. on pp. 2, 4, 5).
- [2] J. Alwall et al., *The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations*, **JHEP** **07** (2014) 079, arXiv: [1405.0301 \[hep-ph\]](#) (cit. on p. 2).
- [3] T. Mandal, S. Mitra and S. Seth, *Pair production of scalar leptoquarks at the LHC to NLO parton shower accuracy*, **Phys. Rev. D** **93** (2016) 035018, arXiv: [1506.07369 \[hep-ph\]](#) (cit. on p. 2).
- [4] M. Kramer, T. Plehn, M. Spira and P. Zerwas, *Pair Production of Scalar Leptoquarks at the Tevatron*, **Phys. Rev. Lett.** **79** (1997) 341, arXiv: [hep-ph/9704322](#) (cit. on p. 2).
- [5] M. Kramer, T. Plehn, M. Spira and P. M. Zerwas, *Pair production of scalar leptoquarks at the CERN LHC*, **Phys. Rev. D** **71** (2005) 057503, arXiv: [hep-ph/0411038 \[hep-ph\]](#) (cit. on p. 2).
- [6] R. D. Ball et al., *Parton distributions for the LHC Run II*, **JHEP** **04** (2015) 040, arXiv: [1410.8849 \[hep-ph\]](#) (cit. on p. 2).
- [7] T. Sjöstrand et al., *An introduction to PYTHIA 8.2*, **Comput. Phys. Commun.** **191** (2015) 159, arXiv: [1410.3012 \[hep-ph\]](#) (cit. on p. 2).
- [8] ATLAS Collaboration, *ATLAS Pythia 8 tunes to 7 TeV data*, ATL-PHYS-PUB-2014-021, 2014, URL: <https://cds.cern.ch/record/1966419> (cit. on p. 2).
- [9] W. Beenakker, C. Borschensky, M. Krämer, A. Kulesza and E. Laenen, *NNLL-fast: predictions for coloured supersymmetric particle production at the LHC with threshold and Coulomb resummation*, **JHEP** **12** (2016) 133, arXiv: [1607.07741 \[hep-ph\]](#) (cit. on p. 2).
- [10] W. Beenakker, M. Kramer, T. Plehn, M. Spira and P. Zerwas, *Stop production at hadron colliders*, **Nucl. Phys. B** **515** (1998) 3, arXiv: [hep-ph/9710451](#) (cit. on p. 2).
- [11] W. Beenakker et al., *Supersymmetric top and bottom squark production at hadron colliders*, **JHEP** **08** (2010) 098, arXiv: [1006.4771 \[hep-ph\]](#) (cit. on p. 2).
- [12] W. Beenakker et al., *NNLL resummation for stop pair-production at the LHC*, **JHEP** **05** (2016) 153, arXiv: [1601.02954 \[hep-ph\]](#) (cit. on p. 2).
- [13] C. Borschensky, B. Fuks, A. Kulesza and D. Schwartländer, *Scalar leptoquark pair production at hadron colliders*, **Phys. Rev. D** **101** (2020) 115017, arXiv: [2002.08971 \[hep-ph\]](#) (cit. on p. 2).
- [14] P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, *Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations*, **JHEP** **03** (2013) 015, arXiv: [1212.3460 \[hep-ph\]](#) (cit. on p. 2).
- [15] W. Buchmüller, R. Rückl and D. Wyler, *Leptoquarks in lepton - quark collisions*, **Phys. Lett. B** **191** (1987) 442 (cit. on p. 2), Erratum: **Phys. Lett. B** **448** (1999) 320.
- [16] A. Belyaev, C. Leroy, R. Mehdiyev and A. Pukhov, *Leptoquark single and pair production at LHC with CalcHEP/CompHEP in the complete model*, **JHEP** **09** (2005) 005, arXiv: [hep-ph/0502067 \[hep-ph\]](#) (cit. on p. 2).

- [17] ATLAS Collaboration, *Search for new phenomena in pp collisions in final states with tau leptons, b -jets, and missing transverse momentum with the ATLAS detector*, ATLAS-CONF-2021-008, 2021, URL: <http://cds.cern.ch/record/2759282> (cit. on p. 3).
- [18] ATLAS Collaboration, *Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ -lepton in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector*, (2021), arXiv: [2101.11582 \[hep-ex\]](https://arxiv.org/abs/2101.11582) (cit. on p. 3).
- [19] ATLAS Collaboration, *Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector*, *JHEP* **10** (2020) 112, arXiv: [2006.05872 \[hep-ex\]](https://arxiv.org/abs/2006.05872) (cit. on p. 3).
- [20] ATLAS Collaboration, *Search for pair production of scalar leptoquarks decaying into first- or second-generation leptons and top quarks in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector*, *Eur. Phys. J. C* **81** (2021) 313, arXiv: [2010.02098 \[hep-ex\]](https://arxiv.org/abs/2010.02098) (cit. on p. 3).
- [21] ATLAS Collaboration, *Search for a scalar partner of the top quark in the all-hadronic $t\bar{t}$ plus missing transverse momentum final state at $\sqrt{s} = 13$ TeV with the ATLAS detector*, *Eur. Phys. J. C* **80** (2020) 737, arXiv: [2004.14060 \[hep-ex\]](https://arxiv.org/abs/2004.14060) (cit. on p. 3).
- [22] ATLAS Collaboration, *Search for new phenomena in final states with b -jets and missing transverse momentum in $\sqrt{s} = 13$ TeV pp collisions with the ATLAS detector*, (2021), arXiv: [2101.12527 \[hep-ex\]](https://arxiv.org/abs/2101.12527) (cit. on p. 3).