LU-TP 97-34
December 1997

LDCMC version 1.0

Hamid Kharraziha
Dept. of Theoretical Physics
Solvegatan 14a
S-223 62 Lund, Sweden
hamid@thep.lu.se

Leif Lonnblad
NORDITA
Blegdamsvej 17
DK-2100 Kgbenhavn @), Denmark
leif@nordita.dk

Abstract

We present the LDCMC program implementing the Linked Dipole Chain
model for deeply inelastic ep scattering within the framework of the ARIADNE
event generator.

1 Introduction

The large energies of the colliding positron and proton at the HERA accelerator
enables a detailed study of the proton structure. Data is available for a wide
kinematical region from very large virtualities Q? of the photon probe, to very
small values of the Bjorken x-variable. We will here present a Monte Carlo event
generator which covers the whole of this kinematical region and gives a theoretically
well founded description of both the proton structure and the hadronic final state
properties in the collision events.

Theoretical description of the proton structure has since long been available through
the DGLAP evolution equations [1], valid for large values of @2, and the BFKL
equations [2] which cover the very soft part of the proton structure (the x — 0
limit). A third theoretical approach has been suggested by Ciafaloni, Catani, Fio-
rani and Marchesini and is referred to as the CCEM model [3]. This approach covers
both the DGLAP and BFKL regions of validity and gives, unlike the DGLAP and
BFKL equations, also a description of the final states produced in the collision
process.

Recently, the CCFM model was reformulated into a new model, called the Linked
Dipole Chain (LDC) model [4]. This reformulation leads to a considerable simpli-
fication of the formalism and provides a recipe for a Monte Carlo simulation. One
assumes that some initial partons are produced with a weight distribution (given
by the CCEM model) which provides the contribution to the total cross-section.
These initial partons stretch up a chain of linked colour dipoles and more partons
are emitted through a final-state Bremsstrahlung process which was initially de-
veloped for the description of parton cascades in hadronic ete™ events. The event
generator presented here is based on the LDC model.

The CCFM model, and consequently also the LDC model, are approximate mod-
els valid to the leading log accuracy. One problem that was encountered in our
development of the LDCMC event generator was to consistently include some sub
leading effects into the formalism. Among these corrections are energy conserva-
tion and the description of quarks, both crucial for a realistic event generator. A
set, of assumptions has been made concerning these corrections, but the program
provides some options to our default strategy, making it possible for the user to
compare their effect on the results.

In section 2 we give a further description of the LDC model. The components of
the program are presented in section 3 and finally a sample program is found in
section 4.

You will find a more detailed description of the physics behind this event generator
and some results in ref. [5]. The LDC model is presented in ref. [4] and some
leading-log results and asymptotic solutions are described in refs. [6,7]. For a full

lepton proton

Figure 1: Fan diagram for a DIS event with n initial emissions. ¢q; denote the
emitted ISB partons, k; denote the propagators.

description of the CCFM model we refer to ref. [3], but a brief description of their
results and the connection to the LDC model can be found in ref. [4].

2 The LDC Model

The Linked Dipole Chain model is a reformulation of the CCFM model. Possible
parton emissions in DIS are separated into two sets which are denoted Initial State
Bremsstrahlung (ISB) and Final State Bremsstrahlung (FSB), respectively. The
total cross-section or the structure function is evaluated by providing a weight
distribution dw; for all possible ISB-chains:

F, = (Z de) ® fo, (1)

where f; denotes the input parton distribution. The requirement on the FSB is
that recoils on the initial chain is negligible and also that their contribution to
the cross-section is of Sudakov type, that is, these emissions can be added without
affecting the total cross-section.

In the fan-diagram in fig. 1, describing a DIS-event with n emissions, the ISB
partons are denoted {¢;} and the propagators are denoted {k;}. Let further z;
be the fraction of the positive/negative light-cone momentum (positive is defined
in the proton direction) carried by the continuing propagator in each emission,
Ziv = ki /K4 and 2 = ki [k
In the CCFM model, the ISB set is defined by requiring that the emissions are
ordered in rapidity (angular ordering) and energy. A further requirement is in-
troduced in the LDC model by a constraint on the transverse momenta in each
emission

g > min(k;, kii_q) (2)

This means a redefinition of the ISB-FSB sets by moving ISB emissions which
violates this constraint into the FSB set.

The ISB kinematical regions is then determined by the constraint in eq. (2) plus
ordering in positive and negative light-cone momenta

G- > Q> > Gy < <qy <Py (3)

with the outer limits set by the proton (P) and photon (¢) momenta. The weight
distribution for the ISB-chains factorizes into one factor for each emission and is
given by

dwr = dwidwy - -+ dwy,
d?>q i dz;i
dw; = Gt (4)
qai; Zi+

with the effective coupling @ = 3a, /7.

This formalism is made symmetric with respect to the photon and proton directions
and leads to evolution equations which work as a simultaneous evolution of the
proton and the photon parton distributions. Consequently, it is within the LDC
model, possible to, also describe resolved photon events in addition to normal DIS
events where the probing photon is supposed to have the largest virtuality.

A further advantage with the reformulation of the ISB-FSB sets is that the FSB
kinematical region, in the LDC model, is consistent with the colour Dipole model [§]
for parton cascades. This means that, following the production of the ISB chain,
the FSB partons can be emitted in a similar way as in e.g. hadronic eTe™ events.

The emission phase space in the dipole model is usually plotted in a (In p? , rapidity)
plane and is given by a characteristic triangular area (see fig. 2a). In the LDC model
one assumes that the initial ISB partons form a chain of linked colour dipoles
which can radiate partons independently. For each dipole, the maximum possible
transverse momentum is set by the virtuality of the corresponding propagator. The
F'SB kinematical region is then given by the shaded area in fig. 2b.

The CCFM model is correct only to leading log accuracy so some sub-leading
corrections has been included in the event generator to be able to make more
realistic predictions:

e Energy and momentum is conserved at every vertex.

e Quarks are introduced and some sub-leading terms are included by using
standard Altarelli-Parisi splitting functions and full 2 — 2 matrix elements
when appropriate.

rapidity

log(W)

log(W)

Figure 2: (a) The dipole phase space for gluon emission from a q — q pair with
central mass energy W. (b) The dipole phase space in a DIS event. The shaded
are is the kinematical region for FSB.

e The ISB emission closest to the electro-weak vertex is corrected with O(ay)
matrix elements.

The momenta of the ISB partons {¢;} are determined by generating the values of
the positive {k;; } and negative {k; } light-cone momenta for the propagators and
the azimuthal angles {¢;} of the emitted ISB partons. All other momentum com-
ponents in the ISB chain are then determined by energy momentum conservation
at each vertex.

The second correction is obtained by introducing generalised splitting functions

k2 k2 k2) .
7 (2). These are defined for every propagator link k; and are determined

by the flavours (f) and the ordering of the virtualities of the three successive
propagators, k; 1, k; and k; ;. The function variable is either z = z;, or z = z;_.

In cases when the virtualities are uniformly ordered, —k7 | < —k? < —kZ,, or
—k? | > —k? > —kZ,,, the generalised splitting functions are given by standard
Altarelli- Parisi splitting functions with z = z;; () in the first (second) case. When
the intermediate virtuality is larger than the others (—k7?, < —k? > —k7,,), the
process is viewed as a local sub-collision and the generalised splitting function
is determined by the corresponding first order matrix element. Finally, if the
intermediate virtuality is the smallest (—k? ; > —k7 < —k7_,), only the leading
1/z term of the standard Altarelli-Parisi splitting functions is used with z = z; if
k? | < —k?,, and z = z;_ otherwise.

The colour factors are removed from the splitting functions. Instead, the colour

4

factor for the whole ISB ladder is calculated separately, since it is (to leading order)
independent of the kinematics.

The results of the CCFM model, as formulated in the LDC model, is intuitively
quite easily comprehensible.

As we move in rapidity along the initial chain, the virtuality of the propagators
can alternatively increase or decrease. In the DGLAP evolution formalism, the
contribution to the total cross-section, or the structure function, is calculated with
the assumption that the virtualities increase all the way to the photon end and that
the photon has the largest virtuality. Unordered chains are shown to be suppressed.
However, for events with very small z-values and moderately large Q?, they are
expected to have a significant contribution.

Generally one can subdivide the initial chain into regions with monotonically in-
creasing or decreasing virtualities (see fig. 3). In ref. [7] it is shown that the struc-
ture function factorizes into one weight for each such region and that these weight
factors are in principle given by the (leading order) DGLAP structure function. Re-
gions with increasing virtuality, can be treated as an ordered (DGLAP) evolution
of the proton parton distribution, while the regions with decreasing virtuality can
be treated as ordered evolution of the photon parton distribution. These regions
with ordered virtualities are then connected with propagators which have a virtu-
ality which is either a local maximum, and can be treated as a local sub-collision,
or a local minimum.

It then follows naturally that some sub-leading corrections can be included by using
the Altarelli-Parisi splitting functions in the ordered regions and by using 2 — 2
matrix element for the local sub-collisions.

3 Program Components

The LDCMC program is logically divided into three parts. The first part generates
chains to leading log accuracy given an x, Q?, flavour of the struck quark and
input parton density functions. The second part generates the exact kinematics
taking into account quark masses and exact energy-momentum conservation in
each branching. Finally, the third part handles the colour connections between
partons and prepares the chains for subsequent final-state gluon emissions and
hadronization. The detailed formulas used in the different parts are described in
ref. [5], here we only describe some technical aspects of the implementation.

The first leading log part selects the flavour and x, of an input parton according

|
|
|
|
|
: local
|

\SUb' I

d‘:ollisi(‘bn

Virtuality

virtuality
propagator

Proton

Rapidity

Figure 3: A general DIS-event can be separated into regions with ordered virtuali-
ties. These regions are connected either with a local sub-collision or a propagator
with low virtuality. The weight factor for the regions A (B) is given by a DGLAP
evolution of the proton (photon) parton distribution.

to a approximate upper limit of the evolved parton density

@) = [G G@)

Si(Q?, k) dij(Inx — In2o)] wo foj (o, k),
with
G(Q*/k% g, x/x0) = \/%11(2\/%) (6)
=Va(lnQ?/k?, +Inzy/z), b=+alnz/z.

This is done numerically, and for speed considerations the actual integration is
done only once per struck flavour and per bin in and Q2. Then the number of
emissions and the z, and z_ of each splitting is generated according to

\[11 Wapy =30 (7)

n=1 n'(n - 1

and

a™b"! ney Q254 dzji_
MICET = /a IT; e o d(In xg +§j:lnzj+ —Inx). (8)

6

After this, the flavour combination in all splittings is done according to simplified
splitting functions.

In the second part, the exact kinematics of each splitting is performed, generating
the azimuth angle in each splitting according to a flat distribution and taking into
account quark masses and ensuring that the condition in eq. (2) is satisfied. Then
it is checked that all virtualities and transverse momenta are above the cutoff and
a number of corrections are calculated to obtain a running ay, correct splitting
functions, the relevant Sudakov form factors and a correct matching to the full
O(aas) matrix elements.

The produced chain has now a weight, which normally is below one, and a veto
algorithm is used to obtain unweighted events. Sometimes, however, the weight
may be above one, and in that case the chain is saved and may be reused the
next time an event with the same flavour, is requested in the same z and Q? bin.
Alternatively the weights can be rescaled with a common factor to avoid such
situations. Finally the partons along the chain is colour connected and limits for
the subsequent FSB is determined and passed together with the chain back to the
calling Fortran routine in ARIADNE.

The whole procedure for generating a complete event is then as follows:

e Generate x, Q? and the flavour of the struck quark using the electro-weak
matrix element and evolved structure functions in the LEPTO [9] program.
The LDC distribution contains a replacement for the PYSTFU routine of
PyTHIA [10] which is called from LEPTO to enable the usage of structure
functions evolved with the LDC model.

e This information is passed to the ARIADNE [11] program which internally
calls the LDCMC code to generate the the initial-state chains.

e ARIADNE then performs the final-state dipole cascade and optionally calls
JETSET [10] to perform the subsequent hadronization.

There are a number of different options and parameters influencing the generation
which are accessible to the user via Fortran common blocks. Most of these are in
the LDCDAT common block defined as follows:

COMMON /LDCDAT/ MSTLDC(100) ,PARLDC(100)

MSTLDC(1) (Default = -1) Maximum number of flavours used in the generation.
If negative, the corresponding ARIADNE number from MSTA(15) in common
block ARDAT1 is used.

MSTLDC(2) (D =-1) If positive, use running o (k7) = 5@/ log(k? /A% cp) otherwise
use constant a; = . @ and Aqcp are given by PARLDC(1) and PARLDC(3)
below. If negative, the corresponding ARIADNE switch MSTA(12) in common
block ARDAT1 is used.

MSTLDC(3) (D = 1) If positive, use full O(aa;) matrix elements from [12] for the
splitting closest to the virtual photon.

MSTLDC(4) (D = 0) If positive, only allow chains with monotonically increasing
virtualities from the proton side.

MSTLDC(5) (D = 0) If positive, only allow chains with monotonically increasing
virtualities from the proton side, except the link closest to the virtual photon
may have a virtuality larger than Q2.

MSTLDC(6) (D = 0) If positive, do not allow any links with virtuality above Q2.

MSTLDC(8) (D = 5) Number of bins per unit in log'’(Q?).

()

MSTLDC(7) (D = 5) Number of bins per unit in log'’(x).
()
(D=1)

MSTLDC(9) (D = 1) If zero, do not allow ¢ — ¢ or g — ¢ splittings (except g — ¢
closest to the photon) in the initial chain.

MSTLDC(11) (D = 0) If positive, allow some links with virtuality below cutoff, as
long as both neighbouring links are above.

MSTLDC(12) (D = 1) Choice of Sudakov form factor. If zero, no form factor is
used. If non-zero, use a form factor of the form

ms=— [/‘W‘S Progl2) (9)

for quarks and

Zcut dq? CYS dg? as
InS = —/05 qJ_ Pyl / / i g%q(z) (10)

2m

for gluons. If negative, the lower limit in the ¢? integration is just the
virtuality of the parton, while if MSTLDC(12) is positive, this virtuality is
multiplied by a factor exp(0.4) to approximate the phase space constraint in
eq. (2). In both cases the upper limit is given by the highest virtuality in an
emission step.

MSTLDC(13) (D = 0) If positive, do not allow gluon emission with z > 0.5 if the
virtuality is increasing also in next step, even if PARLDC(8) is larger than 0.5.

PARLDC(1) (D = -1.0) a. If negative, the value used is 36/23.

PARLDC(2) (D = -1.0) Cutoff in k,. If negative, the value is taken from the
corresponding ARIADNE parameter (PARA(3) in ARDAT1).

PARLDC(3) (D = -1.0) Aqcp. If negative, the corresponding ARIADNE number
from PARA(1) in common block ARDAT1 is used.

PARLDC(4) (D = 1.0) The factor dividing the generated weights to ensure that all
weights are below one (to allow for unweighted events).

PARLDC(6) (D = 0.2) Effective @ used in the leading-log part of the generation for
speed considerations. The actual & used is the one in PARLDC(1).

PARLDC(8) (D = 0.5) The upper cut in z used in the ¢ — ¢ and g — ¢ splitting
functions to avoid divergences as z — 1.

The following switches in the ARIADNE common block ARDAT1 are relevant also
for the LDCMC:

MSTA(12) (D = 1) If positive, use running a;. Cf. MSTLDC(2).

MSTA(15) (D = 1) Maximum number of flavours used in the generation. Cf.
MSTLDC(1).

MSTA(32) (D = 2) Handling of DIS events in ARIADNE when run with LEpTO. If
set to -32, LDCMC is used.

PARA(1) (D = 0.22 GeV) The Aqcp used in the running of a,. Cf. PARLDC(3).

PARA(3) (D = 0.6 GeV) The cutoff in k,. Cf. PARLDC(2).

4 Sample Program

The main part of the LDCMC is written in C++ and therefore special care has
to be taken when installing the program to ensure that the interface between the
C++ and Fortran code is working properly. In the distribution there are detailed
instructions on how to install the program in the README file and here we will only
discuss the main points.

The C++ code relies heavily on the Standard Template Library so the installa-
tion requires a C++ compiler which supports this. The C+-+/Fortran interface
assumes that the Fortran compiler appends an underscore to all external symbols
and converts them to lower-case characters, ie. a Fortran subroutine declared as

9

SUBROUTINE HERA will be declared as void hera_() in the C++ code. The file
f77hack.h contains typedefs for Fint, Fdouble and Ffloat and the user must
ensure that these types corresponds to the Fortran equivalents INTEGER, DOUBLE
PRECISION and REAL respectively.

The distribution includes a sample program to check that the installation was
successful, and to serve as a template for user customized runs. It consists of
a C++ main program which must be linked together with the Fortran steering
routines and the LDCMC, LEPTO, PYTHIA, ARIADNE and JETSET libraries (in
that order) as well as with the Fortran runtime libraries.

The C++ main program looks like this:

#include <fstream.h>
#include "Evolved.h"

// Declare the F77 subroutine as extern.
extern "C" {
void hera_();

}
int main() {

// First read in structure function parametrization from file.
ifstream evolved("xf-LDC-97.A");

EvolvedDensities: :readInputFrom(evolved);
EvolvedDensities::readFrom(evolved) ;

evolved.close();

// Call F77 subroutine.
hera_();

// Done.
return 0;

and the corresponding Fortran steering routines looks like this:

SUBROUTINE HERA

C...Initialize parameters in Ariadne and Jetset
CALL ARTUNE(’4.10°)

C...Call a user supplied routine setting
C...the parameters and switches in LEPTO
CALL LEPSET

C...Call a user supplied routine setting
C...the parameters and switches in Ariadne

CALL ARISET

C...Initialize Ariadne to run with LEPTO
CALL ARINIT(’LEPTO’)

C...Initialize LEPT0 for HERA
CALL LINIT(O0,11,-26.5,820.0,4)

10

aQaaQaaaQ

C..

C..

..Loop over a number of events

DO 100 IEVE=1,10

..Generate an event with LEPTO

CALL LEPTO

..Apply the Dipole Cascade

CALL AREXEC

..Call a user supplied analysis routine

CALL HERANA

100 CONTINUE

END
SUBROUTINE LEPSET

COMMON /LEPTOU/ CUT(14),LST(40),PARL(30),X,Y,W2,XQ2,U
SAVE /LEPTOU/

COMMON /PYPARS/ MSTP(200),PARP(200),MSTI(200),PARI(200)
SAVE /PYPARS/

..Use structure functions from Pythia

LST(15)=0

..0r rather use the LDC version of pystfu giving the structure
..functions evolved with LDC as read from the file in the C++

..main program (Make a dummy call to pystfu to ensure correct

..version of pystfu is linked.)

IF (MSTP(51).EQ.940801) CALL PYSTFU
MSTP(51)=0

..Switch off hadronization

LST(7)=0

. .Suppress printouts from LEPTO

LST(3)=0

..Set x, Q2 and W2 ranges in Lepto

CUT(1) = 0.00008
CUT(2) = 0.5
CUT(5) = 5.0
CUT(8) = 1280.0
CUT(7) = 1000.0
RETURN

END

SUBROUTINE ARISET

COMMON /ARDAT1/ PARA(40),MSTA(40)

SAVE /ARDAT1/

COMMON /ARHIDE/ PHAR(400),MHAR(400)
SAVE /ARHIDE/

COMMON /LDCDAT/ MSTLDC(100),PARLDC(100)

.Master switch for using LDC in Ariadne

MSTA(32)=-32

.Some parameters in LDCMC

PARLDC(4)=1.0
PARLDC(6)=0.2

11

RETURN
END

SUBROUTINE HERANA

C...Trivial analysis - print the event

CALL LULIST(1)

RETURN
END

If the installation was successful, running this program should print ten reasonable
HERA events on the parton level (rather than producing a core dump).

The

distribution also contains a selection of sample parton density function files

containing input parton density parametrizations and tabulated densities evolved

with

the LDC model. The files are named xf-LDC-97.A to xf-LDC-97.H, where

the last letter indicates the strategy used in the fitting in [5]:

A

LDC default.

B DGLAP: As for A but only allow chains with monotonically increasing vir-

tualities of the links from the proton side. MSTLDC (4)=1.

DGLAP’: As for B, but chains where the virtuality of the link closest to the
virtual photon is larger than Q? are permitted. MSTLDC (4)=0, MSTLDC(5)=1.

As for A but k9 =1 GeV. PARLDC(2)=1.

E As for A but without the Sudakov form factors. Instead P,,(z) is set

to zero and P,,,(z) nonzero only in the splitting closest to the photon.
MSTLDC(9) =0, MSTLDC(12)=0.

F As for A but 3, = 83 = 5 in the input density parametrization.

G As for A but only fitted to F5 data with x < 0.1.

H As for A but allow the virtuality of some links to be below k¢ as long as the

The

largest virtuality of two consecutive links always is above k. MSTLDC(11)=1.

LDCMC program is available as a part of the ARIADNE program from the

ARIADNE web pages http://www.nordita.dk/~1leif/ariadne/.

12

References

1]

2]

9]

[10]
[11]
[12]

V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15 (1972) 438 and 675;
G. Altarelli, G. Parisi, Nucl. Phys. B126 (1977) 298;
Yu.L. Dokshitzer, Sov. Phys. JETP 46 (1977) 641.

E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Zh. Eksp. Teor. Fiz. 72 (1977)
373, Sov. Phys. JETP 45 (1977) 199;

Ya.Ya. Balitsky and L.N. Lipatov, Yad. Fiz. 28 (1978) 1597,
Sov. J. Nucl. Phys. 28 (1978) 822.

M. Ciafaloni, Nucl. Phys. B269 (1988) 49;

S. Catani, F. Fiorani, G. Machesini, Phys. Lett. B234 (1990) 339, Nucl. Phys.
B336 (1990) 18.

B. Andersson, G. Gustafson, J. Samuelsson, Nucl. Phys. B463 (1996) 217.
H. Kharraziha, L. Lonnblad, LU-TP 97-21, NORDITA-97/54 P, hep-
ph /9709424,

B. Andersson et al., Z. Phys. C71 (1996) 613.

B. Andersson, G. Gustafson and H. Kharraziha,

LU-TP 97-29, aps1997nov19.001, hep-ph/9711403.

G. Gustafson, Phys. Lett. B175 (1986) 453;
G. Gustafson, U. Petterson, Nucl. Phys. B306 (1988) 746;
B. Andersson, G. Gustafson, L. Lonnblad, Nucl. Phys. B339 (1990) 393.

G. Ingelman, A. Edin and J. Rathsman, Comput. Phys. Comm. 101 (1997)
108, hep-ph/9605286.

T. Sjéstrand, Comput. Phys. Comm. 82 (1994) 74

L. Lonnblad, Comput. Phys. Comm. 71 (1992) 15.

R.D. Peccei, R. Riickl, Nucl. Phys. B162 (1980) 125.

13

