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Abstract: [ examine the dynamics of noncommutative instantons of instanton
number 2 and commutative instantons of instanton number 3 in 5d Yang Mills theory.
I begin by detailing the construction of the instanton solutions, their moduli space,
and the moduli space potential using an explicit parametrisation of the moduli space
coordinates in terms of the biquaternions. I then go on to numerically analyse the

dynamics on the moduli spaces I have constructed.
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Chapter 1

Introduction

1.1 Topological Solitons

The aim of this thesis is to present new solutions for the moduli space dynamics
of certain Instanton solutions. Instantons are a specific example of Topological
Solitions, which are nonlinear solutions to certain PDEs. Because the properties of
these solutions are tied to topological invariants of the spaces they are defined upon,
they are very stable- no continuous transformation (including time evolution) of the
solutions can cause these properties to change.

Solitons were first observed in nature by John Scott Russel in 1834, however they
first began to play a role in particle physics in Yukawa theory, where they are known
as Skyrmions [61]. Shortly afterwards, Coleman and Mandelstam discovered the
existence of solitons in Sine-Gordon Theory [14][47]. Since then, solitonic solutions
have been discovered in many theories. Perhaps the most prominent are Kinks in
one spatial dimension, Vortices in two spatial dimensions, and monopoles in three
spatial dimensions. [52].

In this thesis, we are interested in Instanton solutions. These are four dimensional
solitonic solutions, found in Yang Mills theory. Originally discovered in [6], their
applicability was massively increased by the discovery of the ADHM method for

constructing them [2]. They have many applications, from deriving semiclassical
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corrections to the Yang Mills path integral [21], to the fact that they appear as the

low energy limits of certain brane configurations in String Theory [58].

1.2 Outline of Thesis

The thesis is divided into two parts. In the first, I present an overview of the theory
which I use in the second part to calculate the particular instanton solutions.

In the first chapter, I give an overview of the theory of Fibre bundles, which provides
the mathematical underpinning to the study of Instantons. This largely follows the
presentation in [53] and [16]. I begin by defining a bundle itself, then move on to
considering the notions of Connections and Curvature on a bundle. Next, I briefly
discuss Characteristic classes and the Topological Degree of a map, and show how
these objects are connected.

In the second chapter, I introduce Instantons themselves. In the remainder of the
thesis we will be studying instantons defined upon both commutative and non-
commutative spacetimes. Therefore the next thing to describe is the nature of
noncommutative spacetime. This includes a brief discussion of the biquaternions —
the algebra C x H. I then look at how to calculate instantons in practice- this uses
the ADHM construction first developed in [2]. T conclude the chapter by showing
how the construction can be extended to include Dyonic Instantons, where there is
a scalar field upon the instanton background, following the method first outlined in
[21].

In the third chapter I introduce the Instanton Moduli space [48]. Once again, I il-
lustrate how this construction can be extended to dyonic instantons via introducing
a potential on the Moduli space, following the presentation in [22]. After explaining
the theoretical basis, I present a practical method for calculating the moduli space
metric and potential for noncommutative U (V) instantons, which generalises that

presented for SU(2) commutative instantons in [1]. This concludes the first section
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of the thesis.

In the second part of the thesis I use the results in the first part to calculate some
particular solutions. First (in the fourth chapter), I rederive the single noncommut-
ative U(2) instanton presented in [3]. I then move to the case of two U(2) instantons.
First, I rederive the commutative solution in [1], but starting from biquaternion
rather than quaternion parameters. Then I look for a solution to the noncommut-
ative two instanton case. I show that the solution presented in [37] does not satisfy
the full ADHM equations, however I was unable to find a full solution myself. I
was, however, able to find a solution defined on a subspace of the full moduli space
spanned by the C x C subgroup of C x H. This is a geodesic submanifold of the full
moduli space. After finding this solution, I use it to derive the metric and potential
on this subspace. I check the answers correspond to the commutative solution and
the one-instanton solution in the appropriate limits. In the fifth chapter, I use these
results to numerically evaluate scattering in this subspace. I compare these results
to the results for the commutative two-instanton in [1].

Finally, in the sixth chapter I look at the commutative three Instanton case. Again,
I was unable to find a solution to the ADHM equations for the full moduli space,
however I was again able to find one for the complex subspace spanned by the C
subgroup of H (In this chapter I was working with the quaternions, and not the bi-
quaternions). I used this solution to calculate the moduli space metric and potential
for that subspace. Numerical scattering calculations proved to be very computation-
ally expensive, however I was able to plot scalar field and topological charge density
profiles, and to get a some examples of the instanton scattering, which allowed me

to make some comparison to the two instanton case in the appropriate limits.






Part 1

Background Material






Chapter 2

Fibre Bundles

In this chapter, I introduce some ideas from differential topology which are essential
for understanding Instantons. I begin by defining the notion of a Fibre Bundle, then
I introduce the idea of a Connection on the bundle. This leads into a discussion
of Curvature. After defining these things, I briefly discuss Homotopy Theory, and
then Characteristic classes. After explaining the relation between these concepts, I
am then ready to introduce Instantons themselves, which will be done in the next

chapter. This section mainly follows [16], with additions from [53] and [59].

2.1 Fibre Bundles

Now we introduce the notion fundamental to this section: The Fibre Bundle itself.
First, we will give the definition, then build up from the most familiar example — the
tangent bundle — to Principle bundles; and finally to associated vector bundles. We
conclude by defining sections of bundles.

A Fibre Bundle is a Manifold E, and triple {F, M, G}, where E is equipped with
an surjective map 7w : E — M. We call F' the Fibre, M the base space, and G
the structure group, which has a left action on F. We require that the following

conditions are satisfied

o 1. We require that 7~ !(z) X F Vze M
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« 2. We require an open covering {U;} of M, an associated set of maps ¢; :
U; x F — 77 1(U;) satisfying w0 ¢;(z, f) = x for x € U; and f € F. This is
not necessarily the same covering which is used to make M into a Manifold

[59]. These maps are called local trivialisations.

e 3. At each point x € M, we have that the map ¢;(z, f) is a diffcomorphism

mapping F — F}.

e 4. On the intersections U; N U; , we define g;; = gbz_xlqb]x We require g;; to be

an element of G

The maps g¢;; have a couple of properties worth noting. First, g; = gj;. Second,
on triple intersections U; N U; N Uy, we have g;;9;r = gix- By the definition of the
local trivialisations ¢; we have that F is locally a direct product U; x F. If we can
make all the transition functions identity maps, then it will also be true globally
that £ = M x F. In this case, we call F a Trivial Bundle (hence the name, ‘local
trivialisation’ for the ¢;.

Now, the ¢; can be seen as providing local coordinates for the bundle. The question
as to whether or not a bundle is trivial becomes the question of whether we can
assign coordinates consistently across the whole bundle. This problem is familiar
from general relativity, and it is also the root of gauge theory — we will later see that
the choice of transition functions g;; is linked to our choice of a gauge.

As well as changing coordinates between patches, we can also change coordinates
within patches. This corresponds to using a different trivialisation ¢;. We can define

a coordinate changing map f; = ¢; Lo ém, and it follows that g;; = it i -

2.1.1 Examples of Bundles

We now move into some examples

Example 2.1.1. The Mobius Strip and the Cylinder. A nice way to see how this

works is to consider these two spaces, as used in [53]. As manifolds F, the cylinder
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is definable as [0, 1] x S' and the Mobius strip is given via the quotient construction
[0,1] x [0,1]/ ~; where ~ is defined by [0,¢] = [1,1 — t]. Both spaces have base
space M = S! and fibre F' = [—1, 1], with a projection 7 from the total space E to
the central S* of each space given by (z,y) — x. We will see that we end up with
G = Z; (A rare example where the structure group is not also a Lie group). We now

check the conditions

1. Tt is clear that 7~ 1(x) = [-1,1]

2. For both the mobius strip and the cylinder, we can cover the S! via

two open sets, Uy = (0,27); Uy = (—m, 7). For w; € U; the corresponding
local trivialisations are given by ¢ (u1) = (61,1); ¢3'(uz) = (62,t) where

0, € (0,27), ,05 € (—m,m) and t € [—1,1]

3. This is clearly satisfied

4. The intersection U; N Uy has two components; I, = (0,7) and Ig = (7, 27).
As for the transition functions, ¢4 defined on I, is the identity map, whereas
there are two choices for tz, the map on I. For 05 € Ip, either ¢7' = ¢y ' =
(Op.t) or ¢1" = (0p,1); ¢3' = (0p, 1)

In the first case, tp is also the identity map, and we have the Cylinder, which
is a trivial bundle over S'. In the second case, we have tg : (0p,t) — (05, —t).
Since t% is the identity, tg € Z, and so this is the structure group of the

Mobius strip considered as a bundle over S*.

Example 2.1.2. Tangent Bundle. Probably the most well known example of a
Fibre Bundle is the Tangent Bundle. This is the collection of all the tangent spaces
of a manifold M.

TM = UpenyT,M (2.1.1)

The base space here is the manifold M, the fibres are the tangent bundles at each
point, and we can choose the structure group G to be GL(N), where N is the

dimension of the tangent space. The projection m maps from 7,M to the point
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p € M. Note that if we have coordinates x; on the manifold, then our tangent space

can be parameterised by {a‘z}. Then

i

1. This is by definition

o 2. We can use the open sets U,, used to define M as a manifold. Then we can
parameterise U, X F' by {xi, 681,_}, since the coordinates x; are defined on each

set Uy,. It is then clear that we can define ¢ : (U,,, x T, M) — Span{a%} ~ T,M

3. This also follows by definition

_ Oz

4. Coordinates on different tangent spaces {%}, {%} are related by g;; = 7.2
7 J 7

Hence the structure group is GL(n,R)

Example 2.1.3. Vector Bundle. This is a simple generalisation of the Tangent
Bundle, in which the fibre is a k- dimensional vector space V rather than the tangent

plane. The structure group is Gi(k).

Example 2.1.4. Principle Bundle. A principle bundle P has a fibre equal to the
structure group G. These are sometimes called G — bundles. The action of the
structure group on the bundle becomes left multiplication of GG on itself. If we define

the projection and local trivialisations by

¢i(p) = (x,9"'p) ; w(p) =x (2.1.2)

then we can also define a right multiplication of p € P by a € G by

pa = ¢(z, ga) (2.1.3)

Because multiplication in G is associative, the operations of left and right multiplic-
ation commute. In addition, the operation of right multiplication is independent of

the local coordinates, since

pa = ¢;(x, gja) = dj(z, gij(v)g:) = ¢i(x, 9:) (2.1.4)
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so we can simply write the right action as P x G — P : p X a — pa. It can be

shown [53] that this action is free and transitive on each fibre.

Example 2.1.5. Associated Bundles. The final example to discuss is the building
block for gauge theories, Associated Bundles. These combine the ideas of Vector
bundles and Principle bundles. We start with a principle bundle P whose structure
group G has a faithful representation p(g), which acts on the left of an n dimensional
vector space V. We take the product P x E, and then define the Associated Bundle
E, as

Px,V=PxV/~;~:(pv)=(g"p,p(g)v) (2.1.5)

To understand what this means, consider that we can get every element of g from
e by multiplication with elements in GG, with e the identity in G. If we rewrite the
equivalence relationship as (pg,v) ~ (p, p(g)v), we can see that this makes every
element ¢ in the fibre G at x congruent to its orbit in space V, via (pg,V) ~
(p, p(g)V). This effectively replaces G by V' as the fibre over M.

We can define new projections and local trivialisations on the equivalence classes.
First we define 7g([p, v]) = 7(p). This is well defined since 7(pg) = 7(p) under the

equivalence relation above. The new trivialisations are

¢ : E, = PxV : [puv] = (n(p), p(g)v) (2.1.6)

It can be shown (see [53]) that this definition is independent of the choice of repres-
entative of the equivalence classes, and that the transition functions are changed, as

we might expect, from g;; to p(g;;)

2.1.2 Sections and Triviality

A local section is a smooth map U; — E, satisfying 7o s(x) = x. The most common
example of a section is that of vector fields on the tangent bundle, which are maps
Ui — T,M. If we can extend the local section to a smooth map M — E, we call it

a Global Section. For vector fields, we have the following theorem
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Theorem 2.1.1. A vector bundle of rank n is trivial iff it admits n linearly inde-

pendent sections

Even nontrivial vector bundles have a trivial global section, which maps each point
to the origin in the fibre. For principle bundles, this is not possible, as we have to
have a well defined coordinate system on G to define what the zero element actually

is. This allows us to prove the following strong result (see [53])

Theorem 2.1.2. A Principle Bundle is Trivial iff it allows a global section

These two results together make Associated Bundles very useful, via

Theorem 2.1.3. A Vector Bundle is trivial iff its Associated Principle Bundle is

trivial

This means that we can use either of the two above theorems to verify the Triviality
of both a Vector bundle and its associated Principle bundle, as the triviality of one

implies the triviality of the other.

2.2 Connection

In this section, the structure group G will always be a Lie group. In the previous
section we defined a fibre bundle in terms of a large number of coordinate patches,
‘stitched together’ by the transition functions g;;. If we begin in one coordinate
patch, we want to know how to cross over to another. To do this, we need a curve,
which is defined [53] by it’s initial point and starting tangent vector. What does it
mean to stay on, ‘the same curve’ as we move between patches? This is one way to
see what is meant by the idea of ,‘Connection’. Another is to ask how, if we move on
a curve 7y in the base space, we move, if at all, in the fibre F'. There turn out to be
four notions of connection, which are all equivalent and all of which are necessary
for a full geometric picture of what is going on. I will present them in a particular

order, following [16], but this fact should be born in mind.
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We will start by wanting some notion of Parallel Transport, that is to say, given
a vector v € T,F, can I define a unique vector in 7, F which corresponds to v in
the sense that it is the tangent vector to a curve v beginning at p with tangent v.
The answer turns out to be, ‘Yes’, but to see this we need to construct some more
machinery.

We begin by looking at the action of Lie groups on themselves, in particular discussing
the Lie Algebra and its associated Maurer-Cartan forms. This allows us to define
the Horizontal and Vertical subspaces of a Principle bundle P, and in turn to define
the horizontal lift of a curve in the base space M. Finally, we combine these notions
to define the connection one form, or gauge field in physics language. This sets up

a discussion of the curvature in the next section.

2.2.1 Preliminaries

A Lie group has two actions on itself, a left and a right action, which I will denote,
as is standard, by

L(g)h = gh; R(g)h = hg (2:2.1)

respectively. These actions induce corresponding differentials on the tangent space

of the group, denoted by
Lg* : ThG — TghG; Rg* : ThG — Tth (222)

We say that a vector field X is left invariant if L, (X)) = Xy,. The space of all left
invariant vector fields on a Lie Group is called the Lie Algebra of G, and is denoted
g. A consequence of this definition is that the vector field at every point is defined
by its value A € T.G. It is therefore common to identify g with 7,G and define the
Lie algebra to be the tangent space at the origin. Another well known property of

Lie Algebras is that their generators T, satisfy

[Taa Tb] = ;ch (223)
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Where the f¢, are called the Structure Constants of the algebra. If we choose an
A € g, this generates a one parameter subgroup of GG via exponentiation- in geometric

terms, it gives a curve in G defined by

01(g9) = gexp(tA) = Rexp14)9 (2.2.4)

Using the fact that the vector field generated by A is left invariant, we can calculate

the tangent vector to the curve to be

doy (9)
dt

=gA = Ly A= Xy, (2.2.5)

This shows that, as we expect, the tangent vector at each point is the vector field
generated by A at that point. From here we can define a map from 7,G to g = T.G
by pulling the vector back along the curve. If we have the basis T}, in T.G, so that
A = AT, and a basis X, € T,G, so that X, = AbX,. then we can define the
Maurer — Cartan form

0=T,n" (2.2.6)

where n* is the dual basis to X,, i.e. n*X;, = ) To see that this has the desired

property, we calculate
O(Xa)ly = To @0 (A°X)) = TLop A" = T,A" = A (2.2.7)

as required. Note that the Maurer — Cartan form is not unique, and depends upon
our choice of A.

The final ingredient we need is the notion of the adjoint action
adg: G — G: h— ghg™! (2.2.8)
This induces a corresponding differential

adgy : ThF = Ty r G (2.2.9)
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Which, when applied to T.G gives the adjoint representation of g

Ady: g—g: V—gVg! (2.2.10)

2.2.2 The Connection

As it turns out, the specification of a Maurer-Cartan form is both necessary and
sufficient to define a connection on a principle bundle. However, it is easiest to
understand the meaning of a connection via the idea of horizontal and vertical
subspaces.

At every point in the principle bundle P, we can decompose T, P into two subspaces,

which we call the horizontal and vertical subspaces
T,P ~ H,P x V,P (2.2.11)

These are defined by specifying 7,V as those vectors tangent to G, and T),H as their

complement. We require this choice to satisfy the, ‘equivariance condition’
H,,P =Ry, H,PVgcG (2.2.12)

This means that the choice of the horizontal subspace at p determines all the choices
in the sum of the orbit of the elements of the group ¢g. Since we saw that we associated
a principle bundle to a vector bundle by using these orbits, this condition essentially
guarantees that the transformation applies consistently to that construction.

We can use this to define a Horizontal lift

Definition 2.2.1. Let P be a principle bundle over M, and let v be a curve in M.

We define the horizontal lift of v to be ~,, where

o () =7

« All tangent vectors to v, are horizontal; i.e. if X, is a tangent vector then

X, € H,,
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Further, we have

Theorem 2.2.1. Suppose we have a curve v € M with p € 7' (7(0)). There is a

unique horizontal lift such that v,(0) = p

Note that, whilst we have here defined the Horizontal subspaces first, then required
the horizontal lifts to lie in them, we could have defined the lifts first and defined
the subspaces to be the span of their tangent vectors at every point.

The above definition and theorem give us what we want— given a point p € P we
can define uniquely a parallel transport along the curves 7,. We can extend this
definition from a principle bundle to its associated vector bundle. Suppose E, is the
vector bundle associated to P via the representation p. Given a horizontal lift v,(t)

on P, we define the horizontal lift in F as

e (t) = [(3(t),v)] (2.2.13)

i.e., the elements of the equivalence class

(3(8),v) ~ (97 (1), plg)v) (2.2.14)

for g € G. If we choose a different lift in P, this definition will still work, we will
just get a different lift in F,. Because of the equivalence condition, any other lift in

P would be written as 75 (t) = 7,(t)a for some a € G. Then

Ye(t) = [(5(0),0)] = [ (1), o7 (@)0)] (2.2.15)

If we choose a local trivialisation ¢p' for P, we can write vp(t) = Qﬁp(t)(’yt,g(t)).
This induces a local trivialisation ¢' on E, in which yp(t) = ¢x(t) (w, p(g(t))). We
see that if the paralell transport in P is determined by g(¢), the transport in E, is

determined by p(g(t)).
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2.2.3 The Connection One form

So far we have encountered three of the four definitions of connection. These are
Parallel Transport, division into Horizontal and Vertical subspaces and Horizontal
lifts. The fourth, and final is the connection one form, which is the definition that
matches up most easily to the standard presentation of gauge theories. Once again
we will begin by working in a principle bundle P.

Previously we have dealt mainly with the horizontal subspace — now we consider
the vertical subspace. We saw in (2.2.4) that an element A € g generates a one
parameter subgroup (i.e. a curve) in G. We can modify this construction to generate
a one parameter subgroup in P, which will lie in the fibre at each point of the base

space M — recall that this fibre is isomorphic to G

0¢(p) = Rexpta)p = pexp(tA) (2.2.16)

Under this definition, 7(p) = m(0¢), since elements of 7(o;) arise from the right
action of G on p. This means that the tangent vectors to o;(p) are elements of the
vertical subspace V,P. This allows us to define a map g — V,P by mapping A € g
to %at (p)|t=o- In terms of the action of the tangent vector on an arbitrary function

f, we can write
Xa(f(p) = (o) (2.2.17)

where we call X4 the fundamental vector field associated with A. If we take the
set {1} of basis elements of g, these generate a basis { X7« } for V,P. We can now

define the connection one form a projection from 7T, P to V,P:

Definition 2.2.2. Let w be a Lie algebra valued one form— that is, w € AP ® g.

Then w is a connection if it satisfies

« w(X4)=A VAeg

. R;w: Adgw
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The first condition makes w into a Maurer— Cartan form, whereas the second ensures

the horizontal subspaces are equivariant. We can define the horizontal subspaces as
H,P ={X € T,Plw(X) =0} (2.2.18)

Suppose X € H,P. Equivariance requires RX € H,,P. But by the second

condition above, we have
w(RG*X> =RwX)= g 'w(X)g=0 (2.2.19)

Therefore Ry« X is horizontal, and by the action of g on p must lie in H,, as required.
This shows that the connection one form, which first determines the vertical sub-
spaces, is equivalent to the horizontal lift construction, which begins by determining
the horizontal ones. This is clearly also equivalent to choosing the horizontal and
vertical subspaces at each point, and we have seen that the Horizontal lift construc-
tion gives a notion of parallel transport. Therefore the four definitions of connection
are equivalent.

To make the connection to physics, we note that most of the time in physical applic-
ations we are working over a manifold. Therefore we can define a local connection

one form A; as

Definition 2.2.3. A, =sf € AU; ® g

where s; is a section. This differs from the above in that it is only defined on a

particular U;, not on the whole of P. We have

Theorem 2.2.2. If A; is a local connection one form, and s; is a local section
defined on the same open set U;, there is a unique connection one form w € = 1(U;)

so that A; = sfw

How does it transform if we choose a different section s;7 To see this we will need

to sketch a proof of the above theorem, following [16]

Proof. Given a section s; on U;, and a point p in the fibre 771(U;), we can always
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find a g; € G so p = s;(x)g;, for x € w(p). We can then define a local trivialisation
i N U) = Ui x G ip— (2,9) (2.2.20)

With this definition, the section itself is written as s;(z) = (z,e). On an overlap

U; N Uj, the sections transform as

si(z) = di(z,e) = d(x, gji(v)e) = ¢;(x, gji(x)) = ¢j(w,e)gi; = sj(x)g;ji(w)
(2.2.21)
With these preparations, we can prove the theorem. This requires both proving that
w exists, and that it is unique. I will give the outlines, and point the reader to [16]
or [53] for more details. First we must prove existence. To do this, one proposes the
definition

v, = g mAigi + 97 dpy; (2.2.22)

W

and shows that it satisfies two sets of conditions. First, it must actually satisfy

the condition sw

v; (X) = A;(X) from the theorem. Second, it must satisfy the
conditions 2.2.2 to actually be a connection one form. The details are straightforward
but not particularly illuminating and are given in the references above.

The second thing we need to check is the uniqueness of this definition. If we have
w|U; and w|y, then do these definitions agree on the intersection U; N U;. Using our

proposed definition for w we would require.
gi_lﬂ'*Aigi + gz_ldsz = g;lﬂ*Ajgj + gj_ldpgj (2223)

On the intersection we have g; = g;;0; and s; = s;g;;. We can therefore start by
calculating

T A; = gi}lW*Az’gz‘j + gi}ldpgij (2.2.24)

Noting that s;7* = Idj; and that s7 commutes with dp, we can pull this back using

either one of the sections to give

Aj= gi}lAz‘gij + gi}ldgij (2.2.25)
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This establishes the equivalence (2.2.23) that we were looking for. O

This result

Aj= gz‘glAigij + gi;ldPgij (2.2.26)

is actually a very interesting one from the point of view of theoretical physics. We

can write it in the form,
Al(z) = g(z) "' Az)g(x) + g(z) " dg() (2.2.27)

Then this should be very familiar as the expression for the gauge transformation of
the gauge potential from particle physics!

A final interesting consequence of the above theorem is that, if the same information
is contained in the globally defined w as in the locally defined A;, this means that
the global information about P is contained in the gauge transformations g;; — gauge

freedom plays a vital role in the integrity of the construction.

2.2.4 Field Strength

We now move to talking about the Curvature of the bundle. To do this we define
the curvature 2- form. In physics terms, this is the Field Strength tensor, the object
which actually appears in the Yang Mills action (see below).

The first step is to define an exterior covariant derivative, in terms of the usual

exterior derivative, as

Definition 2.2.4. Da(Xy, ..., Xpi1) = dp(X{', ..., X1 )

where X € H,P is the horizontal part of X;, and dpa = (d,a®) ® T,. Note that
because of the equivalence of the differing notions of connection, this construction is
equivalent to the usual definition of the covariant derivative in terms of A;, D;(X) =
dX + i[A;, X].

Now we can define the Curvature 2-form €2 of w on P as

Definition 2.2.5. Q = Dw € A’°P® g
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We now list, without proof, some properties of this object

Theorem 2.2.3. The following are true:
e DQ =0 (Bianchi’s Identity)
o Ry = Ady;Q= g Qg

e Q=dpw+wAw=dp+ iw,w] (Cartan Structure Equations)

Definition 2.2.6. As before, we define the object more familiar from particle physics

as the local pullback using a section s;

Fi=s50ecQU; g (2.2.28)
We have the well known formula

F, =sidpw + sf(w'w) = d(s}) + sfw A sfw (2.2.29)

and, induced by the second of (2.2.3), if two sections are related as s'(z) = s(x)g(z),

F'(x) = g(x)" F2)g(x) (2.2.31)

2.3 Some Algebraic Topology

We continue building up to the definition of an Instanton. First I will briefly overview
homotopy theory. This is essential for geometrically understanding how Instantons
work. I will then show the derivation of the Chern classes via De Rham Cohomology
along with certain results from the Theory of Invariant Polynomials. Finally T will

show how these notions coincide for the cases we are interested in.

2.3.1 Homotopy Theory

Homotopy is a useful topological invariant [33]. We will start by defining homotopies

of based loops, and use these to define the first homotopy group. We will state the
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definition of the higher homotopy groups, then move on to defining the Brouwer
map, or topological degree, which gives equivalent infomation for the spaces we are
interested in. Finally we will look at homotopy groups arising from the specific
examples of U(1) and SU(2) — the latter is the one we are interested in from the

point of view of Instantons.

Definition 2.3.1. Suppose « and /3 are both based loops on M —i.e. o : [0,1] — M,
with a(0) = a(1) = x € M. Then we say they are homotopic to one another if there

is a continuous map

H:IxI—M: (s;t)— H(s,t) (2.3.1)
with the properties
H(s,0) = a(s); H(s,1)=p(s), Vsel (2.3.2)
and
H(0,t)=H(1,t) ==z (2.3.3)

We can show that this is an equivalence relation, and denote the equivalence class

of a as [a]. If we define the product a0 3 of two loops to be tracing out first o then

B, and a~! to be tracing out « in reverse order, then we can define a group whose

elements are the homotopy classes [a]. The homotopy classes are neccesary as whilst
1

aoa~!is clearly not the same as the constant loop «(t) = z, they are homotopic

to it. With this in mind we have

Definition 2.3.2. The Fundamental group or First Homotopy group, I1;(M,x)
is the group formed by the homotopy classes of loops based at z. If M is path
connected, then this definition is independent of the point chosen, and so we denote

it I1,(M).

We can define higher homotopy groups II,, in an analogous manner, by looking at

maps « : I"™ — M, with the based condition that §M, the boundary of the manifold,
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maps to a single point X. In general calculating these groups is highly non- trivial;
however if the maps we are considering are between spaces of the same dimensions
(which is true in our case), we can get the same information by considering the

Brouwer degree of the map.

Definition 2.3.3. Let M and N be manifolds of dimension n, and let 2 be a
normalised volume form on N, so that [, €2 = 1. Then the Brouwer degree, or

topological degree of a map ¢ : M — N is defined as

deg(¢) = j;[¢*§z (2.3.4)

This definition is independent of our choice of volume form €2, and we can prove
that deg(¢) is both an integer and a topological invariant. To see how this works in
practice, we will look at II;(U(1)), which arises from considering U(1) bundles over
S?% in the context of Dirac Monopoles [16].

First, note that IT;(U(1)) = II;(S'), which is therefore composed of maps from a

circle to itself. These are given by
Gna: t — exp(i(nt + a) (2.3.5)

Two maps ¢, 4, and g, are homotopic, but g, , and g, , are not. So we need only
consider maps of the form

gn = exp(int) (2.3.6)

Therefore our homotopy classes are [g,|, meaning that
I, (U(1) =z (2.3.7)

We call n the winding number of the map. We can take the volume form

1
Q=—g'dg, g€ U(1) (2.3.8)

271

which gives

dog(6) = [ 90 = 217” / gn<t>1d~";ft)dt . (2.3.9)
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The topological degree is the winding number; and as expected it is an integer.
We now move on to the group we will be using throughout this document, 11 (SU(Z)).
Rather than calculating the group explicitly, we will use the fact that classes in the
group are classified by their Brouwer degree. We can take the following volume form
on SU(2)

Q=

o 2Tr(g’1dg A g tdg A g’ldg) (2.3.10)
T

where

g=coly+cm; o+l =1 (2.3.11)
where the 7; are the Pauli matrices. If we define g : S — SU(2) : z — g(x) we can
define the topological degree as

1
2472

* /—1 / /—1 / /—1 / _
SggQ /SSTr(g dg Ng~dg' Ng dg)—n (2.3.12)

Where dg = d,gda’. This tells us that II;(SU(2)) = Z.

2.3.2 Chern Classes

Let g be a Lie Algebra and X; € g;i € 1,...,n. A Polynomial P(X3,....X,,) is called

symmetric if
P(X1, o Xy oy Xy ooy X)) = P(X1, 0, X, Xiy o, X)) 5 Vi (2.3.13)
It is further called a symmetric invariant polynomial if
P(g7'X1g, 9 Xng) = P(X1, .., Xo1) (2.3.14)

where g € G, the Lie group corresponding to g. Finally, we can take the, ‘diagonal’
of a symmetric invariant polynomial by taking all the X; to be equal. This is simply

called an invariant polynomial (of degree n)

Pu(X) = P(X, ... X) (2.3.15)
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where it is understood that P has n arguments — this is what is meant by the
polynomial being of degree n.
We will want to extend this definition from polynomials in g to polynomials in

g-valued differential forms. We can write a g valued p-form as
a; = miX; (2.3.16)

where no sum over ¢ is implied, 7; is a standard p-form (valued in R) and X; € g as
before. Then we get an object with analogous properties to the above by defining

an invariant polynomial of g-forms as
Plag,...;a,) = P(X1, .., Xp)m A oo Ay (2.3.17)
We can then define an Invariant polynomial of degree n analogously as
P,(ay) = P(a")=P(X")nA...An (2.3.18)

We will be interested in polynomials in F', the field strength 2-form. These have the

following important properties. A proof can be found in [16].

Theorem 2.3.1. Let P,(F) be a an Invariant Polynomial in the Field Strength F.

Then:

e P,(F) is closed; i.e. dP,(F) =0

e If F and F' are two curvature 2-forms corresponding to different connections
on the same bundle, then the difference P, (F)— P,(F") is exact, i.e. P,(F)—
P.(F") = dQsn—1(A’, A), for some dQ, where A" and A are the connection one-

forms corresponding to F', F.

e Given A and A’ as above, we can define a homotopy between them, A; =

A+41t0; 0 = A" — A. This induces a field strength homotopy

Fi=dAi+ A NA = F+tDO+t0N0 (2.3.19)
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In terms of these, we can find an explicit expression for @)

Qan-1(A, A) =n /O Lt P(A' — A F) (2.3.20)

The third condition allows us to define the Chern-Simons Form. Suppose we are
working on one of the patches U; of the bundle. Then we can always define a trivial
connection A’. Using the third part of the above theorem we can define the Chern-

Simons form as

1
Qo 1(A) = Qon1(A,0) =n /0 dt P(A,Fp) (2.3.21)
where
Ay =tA F,=tdA+1PPANA= tF+(? —t)AN A (2.3.22)

Given a one- form connection we can always construct an associated Chern- Simons
Form using (2.3.21).

Invariant Polynomials are closed and non- trivial, therefore they represent a non-
trivial de Rham cohomology class {Pn(F )} € H*(M,R). We call this the charac-
teristic class. Since the difference of two polynomials from two connections is exact,

this does not depend upon the choice of connection.

Definition 2.3.4. The Total Chern class of a principle bundle P with G a lie group
is

det(l 4 ?;F> (2.3.23)
where F' is the field strength defined above. This is an invariant polynomial in F'.

Definition 2.3.5. Since F'is a two form, ¢(F") is a sum of forms of degree 2n
¢(F)=14c(F)+c(F)+ .. (2.3.24)

We call ¢, (F) € A>*M the nth Chern class

It is important to note that chern classes of higher dimension than the base space

M vanish — i.e. if M has dimension m then ¢, =0V 2n > m.
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In order to calculate this, it is usual to use a gauge transformation — in mathematical
terms a choice of section — to diagonalise F' to a matrix with 2-forms x; on the
diagonal. Then
det(1 + F) =det [diag(l + 1, ..., 1 + 2)| = ﬁ(l + ;) (2.3.25)
i=1

=14 (z1+ ... +z) + (v122 + ... + Tp_12) + ... + (T129...7)

~ 1 ~ ~ ~
=L+ TeF + 5 [(TrF)2 — TrFQ] + ... + detF

where F' = = F'. From this we can read off

2
¢ =TrF =~ TvF (2.3.26)
2T
| 11
e =3 [(TrF) — TrF } =53 [Tx(F A F) = TeF ATeF| (2.3.27)
~ 7 \F
¢ = detlF = () detF (2.3.28)
2T

We can use the fact that the Chern classes are independent of the connection to

define

Definition 2.3.6. The Chern numbers are defined by

¢ = ([ea(F)], M) :/ en(F) (2.3.29)
M
It can be shown that on a complex manifold, these are always integers [16]

We can further define

Definition 2.3.7. For a Lie group G, the Total Chern Character is defined as

ch(F) = Trexp (;ﬂF) =Y ;'Tr(;ﬁFyl (2.3.30)

n
Analagous to the case of the Chern classes, we can define

Definition 2.3.8. The Chern characters are defined as

1 /i A"
cho(F) = n!Tr<2Z7TF> (2.3.31)
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We can relate them to the Chern classes as

cho(F) =k (2.3.32)
chi(F) =c1(F) (2.3.33)
cheo(F) = —co(F) + ;cl(F) A ci(F) (2.3.34)

We now move on to some examples. Once more, we will start by looking at U(1) as
a test case, before moving to the SU(2) instantons we are interested in in the rest

of the thesis.

2.3.3 Examples

For a U(1) bundle over a two dimensional manifold, the only nonzero Chern class is

c1(F). Locally, F = dA and so we have
e (F) = d<A> (2.3.35)
This implies that
Q1(A)=—A (2.3.36)

Alternatively we could have calculated

_ [Patpa) = [ dte (4 dt—A——A (2.3.37)
J e = [

Now we move on to look at SU(2). Because, for SU(2), the trace vanishes, ¢;(F') = 0.
This means that cho(F) = —co(F'), so it is usual to use, ‘Chern class’ to refer to
both.

Instantons are usually defined in 4 dimensional Euclidean Space. We are interested
in solutions with finite Action. For this to be the case, we need the solution to

become pure gauge at infinity, which means

Algs =g 'dg — Flsz =0 (2.3.38)
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Where S3_ is the 3-sphere at infinity in R*. Therefore these solutions are classified
by maps g : S3. — SU(2). We saw the topological degree of this map in (2.3.12).
We now show that this is linked to the Chern classes of this set- up.

As stated above ¢; = 0, and so we need only look at ¢y. To calculate this, we use

the fact that co(F') = dQ3(A). This can be calculated from the definition (2.3.21) as

1 1 1
Qs =3 [ dtP(A,F) = ; [ dTr(AnF)
0 472 Jo
1

T dn?

1 2
T (A ANdA+ ZANAN A) (2.3.39)
872 3

1
/ ATe(EA N dA +12AN AN A)
0

Incidentally, this is the well known Chern Simons form. We can now use this to

calculate ¢y via

1 2
022/5462(17)2/53 QB(A):@/S3 Tr(AAdA+3AAAAA>
1

1 !
— [ m(FaA—tANANA) = /T(AAA)
87r2/sgo r</\ 37/ A) 2472 Jsy T\ANAN

1

T un? /S Tr(g~'dg A g 'dg g 'dg)  (2.3.40)

Up to a sign this is identical to the topological degree of the map, linking the
homotopy with the Chern classes. It is often convenient to add a point at infinity
to R* — though in fact to do this consistently we need to define instantons via the
bundle construction. In this case, we have two open sets covering the sphere; the

north and south hemispheres, Uy and Ug. On these sets we have
FN = dAN + AN A AN F5 = dAS + A5 N AS (2.3.41)
where
AN = g7YA%g + g 'dg; which implies FY = ¢g71F%¢ (2.3.42)

as we would expect for the transformations of these objects. Here the computation

of ¢y splits into a sum of contributions for each U;, but we eventually get

1
T 2472

-1 -1 -1
[920 Tr(g dgNg dgNg dg) (2.3.43)

Co
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This is precisely the degree of the map g, which is always an integer k. Therefore
the classification in terms of ¢, is equivalent to the homotopy group II3(SU(2)). The
reason we need to see both these formulations is that the Lagragian of the relevant
gauge theory is based around cy, but the geometric interpretation of instantons in
terms of transition functions between Uy and Ug is a much easier thing to visualise.
We now have all the machinery we need to define instantons, which we will do in

the next chapter.



Chapter 3

Instantons

In this chapter we define what instantons are, and discuss their construction via
the ADHM method. Many of the instantons we discuss in this thesis are defined
over noncommutative space, so we must first introduce this concept. We also look
at the notation I will be using to describe the quaternions, and introduce their

complexification, the biquaterions.

3.1 Instantons

We can now finally define what an instanton is. Let F' be the field strength of an
SU(2) bundle over R*. Writing F' = $F;; dz' A da?, with the further understanding

that Fj; = F;T,, we have the following Yang Mills Lagrangian:

Sy = d4xFaF” - —; / d'aTy(FyF) = - / daTe(FASF)  (3.11)

it a

Here xF' is the Hodge dual of F', which is defined in flat space as

1

* F, §eijlek’ (3.1.2)

ij =
Noting that we can write

4/ (F& £ +F2)(FiI 4 %FY) /Tr F++F) Ax(F £ +F) (3.1.3)
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:-2/T4FA*F)¢2/T4FAF)
We can get a lower bound on the action as
A%M:—é/fﬂFiﬁﬂA%Fiﬂﬂi/ﬁ%FAF)z&ﬂMQ (3.1.4)
where in this context, we call k the Instanton number and define it as
k= —co(F) = chy(F) (3.1.5)

We can see that this in achieved when F' = + % F'. We call such solutions selfdual
(SD) and anti selfdual (ASD) instantons respectively. In this thesis, we will be
calculating anti selfdual instantons, which correspond to positive k. Since instantons
are minima of the action, they are a solution of the equations of motion. This is
a specific example of a Bogomolny bound. These are named for the paper [8] for
Monopoles, but actually were first shown for instantons in [6]. Bogomolny bounds
are arguments, like the one above, which involve showing (usually by some kind of
completing the square) that the energy of a system is bounded from below. This can
also be understood in supersymmetric terms [60]. Supersymmetry considerations
imply that the Hamiltonian H acting on the supersymmetric vacuum |0) must be
zero, however it is sometimes possible to add an integer to the Hamiltonian to get
the equation. This integer comes from the central charge of the supersymmetric

algebra, and is a topological invariant.
(H+2)]0)=0 (3.1.6)

This then allows solutions where H = FZ. Such solutions are called BPS states.
Instantons are a particular example of these states, where the central charge Z is
the Instanton number k. They break some amount of the supersymmetries of the
underlying theory. In particular, pure instantons break half, and so are known
as %—BPS states, whereas dyonic instanons break another half, preserving only a

quarter of the original supersymmetries, and so are known as %—BPS states. The
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final thing to consider is Derrick’s Theorem [20]. This is a non — existence theory
which gives a straightforward condition to check if solitons exist in a particular
theory [52]. Derrick’s theorem is valid for finite energy solutions in flat space. The
general idea is that a soliton solution, being a local minima of the energy, must be
invariant under any variation of the energy — this includes spatial rescalings. If there
are no fixed points of the transformation of the energy under spatial rescaling, then
there can be no stationary points of the energy as a whole, and therefore no solitions.
More specifically, if x € R?, then a spatial rescaling is a map x — ux, were /1 € Ry.
The energy of the system will be a function of the fields in the system, F(v;). Under

the spatial rescaling, there will be a one parameter family of these fields under that

(1

rescaling. We label these ¥, ). We can define the variation of the energy under these

rescalings as

e(u) = B(™) (3.1.7)

Derrick’s theorem then states

Theorem 3.1.1. If, for a set of finite energy fields V;(x), the function e(p) has no
stationary point (excluding the vacuum), then the theory has no static, finite energy

solutions (other than the vacuum)

It is necessary to explain what is meant by a static field. We can always make a
gauge choice so that Ay = 0. In this case, static means that there is no electric field
Fy. Now, applied to Yang Mills theory in d + 1 dimensions (where d > 4 ), the

general form of the energy functional will be
E=/<|F|2+|D¢’I2+U(¢))dd:cEE4+E2+EO (3.1.8)

Where ¢ is a scalar field, and U is a gauge potential. Looking at the mass dimensions

of the constituent parts under the rescaling we get

e(u) = p* By + p* By + nE, (3.1.9)
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If d = 4, then this becomes

1 1
E,+ —Ey, + —E, (3.1.10)
p? pt

This has no stationary point apart from the vacuum Ey; = E; = Ey = 0, and
therefore there are no static solutions in 4d Yang Mills with a scalar field. However
in pure Yang Mills, we only have e(u) = E4. This is completely independent of the
scale, and therefore solitionic solutions are possible — i.e. Instantons as described
above. This limits Instantons to appear in pure Yang Mills in 4d, however the
presence of an additional length scale in noncommutative theories means that they
are not defined in flat Euclidean space, and therefore they are not subject to these
constraints.
In dimensions greater than 4 we can find a solution as follows. First, we multiply
both sides by u* to get

pEy+ p*Ey+ Ey = 0 (3.1.11)

This is a quadratic equation in p2, and so we can solve for it as

, —(Q2—d)Byx\/(2—d)*E} — 4(4 — d)EsEy
p = ) (3.1.12)

Therefore we can have Solitonic solutions in Yang Mills with d > 5

3.2 Noncommutativity

It is convenient to introduce the study of noncommutative spacetimes into the study
of Instantons. It is convenient because it allows us to resolve singularities on the
Instanton moduli space (see the next chapter). It was first show in [54] that this
was possible, and since then many examples have been constructed (see [12] for a
selection).

To construct a noncommutative version of R*, we simply impose an anti- commuta-

tion relation on the spacetime coordinates

", ™| = o (3.2.1)
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Here m,n are the Euclidean Lorentz indicies, and ™" is a real, antisymmetric,

constant matrix. We can always rotate it into the form

0 602 0 0

-2 0 0 0
g = (3.2.2)
0o 0 0 64

0 0 —6* 0

There are several interesting subcases of this matrix [12]; but for the purposes of this
Thesis, I will consider the so called selfdual (SD) case, where 612 = §3* = 2(. This
does not involve any loss of generality however. This is becuase when one follows the
ADHM construction of Instantons (see section 3.3) however it turns out both that
anti selfdual (ASD) instantons on anti selfdual noncommutative R* are equivalent to
commutative instantons (as are selfdual instantons on selfdual spacetime) and that
ASD instantons on SD spacetime are equivalent to SD instantons on ASD spacetime.
It turns out the noncommutativity of the spacetime coordinates forces us to modify
our notion of the multiplication of functions. Rather than the usual multiplication,
we use the Moyal Star Product. This was developed in 1947, long before the idea of
noncommutative spacetimes were thought up, to give a well defined notion of phase

space measure for noncommuting positions and momenta [49]. This is defined as

() gle) = exp (5090:0] ) F ()90 oms (3.2.3)

This gives the following expansion on powers of 6%

f(@) % g(x) = f()g(x) + ;9ij8if($)3jg(x) +0(0%) (3.2.4)

This becomes important when calculating the gauge potential and field strength to

be

1

A =g % Aixg+g tx0g (3.2.5)

This modifies the definition of the Field Strength to be

Fij = OuA; — i[Ai,Aj]* (3.2.6)
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Where
[Ai) A]}* = Az * Aj — Aj * Az (327)

as one might expect. This has two effects on our Instanton solutions. First of all,
it allows us to find solutions with no commutative equivalent, since the additional
length scale [¢] = [length]? and the fact we are not in Euclidean flat space means
Derrick’s theorem does not apply.

Secondly, and less positively, in theory it implies we have an infinite number of
terms to calculate. However we can avoid this thanks to an isomorphism between
the algebra of functions with the *- product, and certain operators over Hilbert
space. This is more fully discussed in [25], however I will give a brief overview of
the argument here.

For simplicity, following [37] we consider the case where only z; and x5 have a
nonzero commutation relation. Given a function f(xy,z2) defined on these variables,
we have an associated operator on the Hilbert Space of Z, Zo, where these are the

quantised variables associated with x; and x5. This operator is given by

A

IR 1 L Y
Of(21,22) = i /an exp ( —i(onZy + agch))f(al, as) (3.2.8)

Where f (a1, as) is the Fourier transform of f(x1,25). Given two such functions, f, g,
changing variables, and using the Baker- Campbell- Hausdorff formula, we can now

calculate
P 1 o CN——
00, = A2 /dQ’V exp ( —i(n@ + 72362))f * g(ay, as) (3.2.9)

This shows the algebra of functions on noncommutative space spanned by (xy, z2) is

isomorphic to the algebra of operators on the Hilbert space spanned by z; and 2.

3.2.1 Quaternions and Biquaternions

There is one final ingredient we must look at before moving on to defining the ADHM
construction. This construction turns out to be describable in terms of either the

Quaternions, or their complexification, the biquaterions, and therefore I discuss these
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groups and the conventions which I am using here.

The group Cx H, known as Complex Quaternions, Biquaternions and even Tessarions
has a long history [35]. To avoid confusion I will refer to the group as Biquaternions
in the rest of the thesis. As discussed in [51], the algebra is equipped with three

notions of conjugation. We write a general element of the group as

q = qr +1qr = qro + dp + i(qro + iqy) (3.2.10)

Where qg, q; € H, and correspondingly qro, ¢10 € R and qp,q; € SU(2) considered
as the quaternion imaginary part of H. Then we have a Complex conjugation ¢*,
which takes

qr + 191 = qr —iqr (3.2.11)

We also have a quaternion conjugation g

qr +iqr — QE + (iq))" = Gr + G = qro — ap + (g0 — q;) (3.2.12)

Finally we have a total conjugation ¢ which applies both these operations simultan-
eously

qr +iqr — qr — iqr = qro — dp — i(gio — q;) (3.2.13)
This group has several very interesting properties, which are sadly beyond the scope
of this thesis. First of all, they are isomorphic to CI(3) [51], which itself is a repres-
entation of the Dirac algebra [26]. Second, we can describe Lorentz Transformations
in terms of the actions of biquaternions on themselves (these facts seem to be re-
discovered every few decades. A particularly interesting comparison can be drawn
between [42] and the line of thought reviewed in [34], which both use biquaternions
to rederive Dirac Theory, independently and via different methods). Finally, it has
been shown in [24] that the biquaternions contain all the representations of the
Lorentz group in the form of algebraic ideals.
These are indications that the Biquaterions have a more fundamental role in physics

than is usually recognised. Another arguement for this is provided in [9]. In this
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book, Bohm argues that the most appropiate mathematical object to describe reality
is the Algebra. This is because Algebras have both a notion of the action of one part
of reality on another, via their multiplication, and a notion of relative proportion,
via their addition. Bohm additionally argues that we should not want nilpotent
elements in the algebra we choose, since interactions corresponding to these elements
would not be observable on a macro level. Such algebras are called division algebras,
and over the real numbers, the only such algebras are R, C, and H, whereas over C
the only division algebra is C itself. So the group C x H= C x C¢ is a very natural

object under this line of reasoning.

We conclude this section with some comments on notation. We use the basis o, for
the quaternions, with o, = (1,,77;), where the 7; are the standard Pauli matrics.

We also define 7, = (15, —i7;). Further, we define the selfdual object

1
Omn = 1 (Um(_fn — (Tn(_fm) (3.2.14)
and the anti- selfdual
_ 1/_ _
Omn = 1 (aman — anam) (3.2.15)
With these definitions, we have
10 0 —1 0 2 1 0
oy — , 01 = 09 = O3 = (3216)
0 1 1 0 7 0 0 —i

Finally, the fact that the biquaternions have multiple notions of conjugation means
that there are multiple notions of the imaginary part. I will use Imy to denote the
quaternion imaginary part, defined for ¢ = ¢ + q € H, with ¢y € R and q € SU(2)
as

Imp(q) =q (3.2.17)

We also have the complex imaginary part, defined for z € C, z = x + iy as

Ime(z) =y (3.2.18)



3.3. ADHM 39

Note that Im¢ doesn’t include the factor ¢ which we must add in by hand where it is
required- this is done to match with the usual definition of Im in the complex case,
however it does mean some care has to be taken when restricting from H to C, as ¢
then corresponds to the imaginary quaternion basis vector, which is included in Imp
but not in Imc.

In the case of a biquaternion ¢ = qr + 7q; we have

Imc(q) = g1 ; Tmu(q) = qg + iq; (3.2.19)

where qi and q; are the quaternion imaginary parts of gr and ¢; respectively. We

similarly define Rey and Rec.

3.3 ADHM

To actually calculate an Instanton solution, we can use the ADHM construction.
This was first devloped in [2] following a suggestion in [46]. There is a strong link
between the ADHM construction and Twistors, and this is dicussed in [59]. The
Twistor implications of noncommutative instantons are discussed in [39]. Another
mathematical motivation comes via the topic of Hyper- Kahler quotients, and this
is the approach taken by [22]. These treatments are beyond the scope of this thesis.
Instead I will first of all give a simple outline of the ADHM construction. I will
then go into more detail, presenting the ADHM solution as an Ansatz for the self
dual field strength, and showing how this motivates the construction, following
the presentation in [21]. T will finish by explaining in detail how to carry out the
construction in both the commutative and noncommutative cases, following [12].

The main ingredient in the ADHM construction is the ADHM Data A. This is an
(N + 2k) x 2k matrix, where N is the degree of the gauge group SU(N) or U(N),
and k is the Instanton number, or topological degree. In the commutative case the
entries are usually taken to be real, whereas in the noncommutative case they are

taken as being complex. However, as I will show we can take them to be complex
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in the commutative case too, and use the additional symmetry this gives to recover
the usual real solution. Therefore I will treat the entries as being complex in the

remainder of this thesis unless otherwise stated. With this in mind, we have
A
A= (3.3.1)

where A is an N x 2k complex matrix and 2 is a 2k x 2k complex matrix. It is
often useful for the purpose of performing calculations to treat these as being instead
biquaternion-valued matrices (or quaternion-valued, for real matrices). The matrix
2 can always be treated as a k X k matrix of biquaterions. A is a bit tricker. For
some values of N and k there is a straightforward identification — for example, for
the U(2) instatons we will be considering in this Thesis, we can always write A as
a row of N quaternions. In general this might not be so obvious, however we will
always end up considering ATA in any practical calculation, and as we shall see
below, this can always be written in quaternion form. The reason we consider this

is that the commutative ADHM method involves solving the equation
ATA =1, (3.3.2)

where f is an invertible k x k matrix, and we can think of 1, as the quaternion

identity. This also means we can look at the ADHM equation above as

Imy(AFA) =0 (3.3.3)

]
where Imy takes the quaternion imaginary part. In terms of A and 2, the matrix

ATA will look like
ATA = ATA +QTQ (3.3.4)

This is always a 2k x 2k complex valued matrix, so we can always think of it as a
k x k biquaternion matrix.
To calculate instantons over noncommutative space, we again use (3.3.2); however

the presence of the noncommutativity must be taken into account. Here I give the
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form we will be using in the rest of the paper, where the nonzero elements of 6,,,
are all chosen to be 2(. I will discuss the case of a more general 6,,, in a later
section. I will sketch the derivation of the noncommutative ADHM equation here,
and comment upon it more fully in the more detailed derivation in section 3.3.2.

To start with, we can always write the matrix A as a+bx, where a and b are matrices
of the same dimension as A and z are the space-time coordinates. This means that

the matrix ATA can be written as
ata + (b + b)) + 22bTb (3.3.5)

The linear part can be shown to be proportional to the identity and hence can be
neglected. In the commutative case this is also true for the quadratic part. However
in the noncommutative case there is an ambiguity in the definition of 2? because
the spacetime coordinates do not commute. This turns out to mean that this term
contributes a factor of 4iC o3 to each of the diagonal components of ATA. This means

we must modify the ADHM equation (3.3.2) to be
(ATA); = 1 ® ;' — 4Co3d (3.3.6)

Once we have solved equation (3.3.2),or its noncommutative analogue, we can use it
to calculate the gauge potential and field strength in the following way.

We need to find zero eigenvectors U of Af, normalised so that UTU = 1, satisfying
U'A=ATUT=0 (3.3.7)

This implies that U has dimension N + 2k as a complex vector. Once we have this

U we can use it to define the gauge potential as
A, =U'S,U (3.3.8)

and the field strength as
E,, = —4U'bfo,,b'U (3.3.9)
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where b is a (N + 2k) x 2k matrix whose top N x 2k part is 0 and whose bottom
2k x 2k part is the identity, and o, is as given in (3.2.15). This procedure works
for both the commutative and the noncommutative cases. We might worry whether
the presence of the Moyal product (see section 3.2) might make the above procedure
invalid for the noncommuative case, since the Field Strength is defined in terms
of the Moyal product rather than the usual wedge product (see equation (3.2.6)).
However, in that section we argued that the algebra of functions on noncommutative
space (including A, and F,,) was isomorphic to the algebra of operators on the
Hilbert Space generated by the noncommutative position operations z;. If we think
of A and F as operators on this space in the non commutative case then, provided
there are no terms in [#;, Z;] appearing, they will have the same structure as in the
commutative case , where we have the commutative versions of the operators A
and F' on the Hilbert Space spanned by the commutative position operators. As
mentioned, the only changes would be if we had terms in [#;, Z;] appearing in the
definition of A or F. However, it will be seen in the more detailed derivation that

we do not, and therefore can use the same definitions.

3.3.1 Motivating the Constuction

Now we have the outline of the construction, it makes sense to try and give an idea
where it comes from. To do this we will follow the presentation given in [21], to
motivate it as an ansatz. As in that paper, we will not consider the general U(N)
case, but will look at the SU(2) case where the motivation for the construction is
easier to see. After doing this, we will derive the construction rigorously using a
general U(N) gauge group.

In this section, the the index n refers to the spacetime coordinate (which can also be
thought of as labelling the SO(3,1) representation), whilst the indices a, § and &, 3
are the usual dotted and undotted indices for representations of SU(2) or U(2). The
index corresponding to the instanton number k is given by the roman letters ¢, 7, k or

[ . The greek index A or x indicates the, "ADH M index’, which goes in general from
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which here goes from 0 to k. This notation is possible because, as discussed above,
for N = 2, we can write all the tensors involved as quaternion valued matrices. This
is not possible for general U(N), so we will have to modify our notation for that
case; however initially looking at the U(2) case makes the principles involved much
clearer.

We start with a zero instanton solution of Yang Mills theory, which is pure gauge
by definition

ASB = UdaanUaB; UdaUa[; = 525 (3.3.10)

In the usual commutative presentation, U € SU(n) — we can take U € U(n), however
the additional U(1) turns out to decouple. In the noncommutative case, however,
we must consider the U(n) case, since SU(n) is not closed under the Moyal product
(32].

The motivation for the ADHM construction comes from spotting that the single

instanton solution also has the very similar form

Any = UR%0uUsass US"Usas = 03 (3.3.11)

where X is summed over 0 and 1, and, for the gauge choice called, ‘singular gauge’

(because it leads to a coordinate singularity at the centre of the Instanton [63])

x? p x?

. - —af .
m " 00ass Ulaﬂ - _ﬁ mxadu 0088 (3312)

UOaB -
It is natural therefore to assume an ansatz for the n instanton solution to be
Agﬁ - UfaanUAaE UféaU,\aB = 525 (3.3.13)

where A is now summed from 0 to n. In this notation, the Field strength is defined

as

mn n]

y FeeTe B
= OmUR (000" = Paa”)OmUp (33.14)

with

Prse’ = UnaaUS? (3.3.15)
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with this definition, P (and therefore 1 — P) is a projection operator, and satisfies

0=(1-PU=U(1-P), P=P (3.3.16)
The second part of the ADHM ansatz is to assume that we can factorize
1= P = 008s” — Para” = Ayaafie s D02 (3.3.17)

For some matrices A and f, this second condition is called the, 'Completeness
relation’. It is trivial in the commutative case, however there are some complications
in the noncommutative case. The issue is that, wheras the normalisation of U(x)
is trivial in the commutative case, there is an ambiguity in the case where z is
itself an operator. We must therefore be careful to pick a good definition for this
normalisation. These issues were first discussed in [12]. They begin with the fact
that in the noncommutative case, 1 — P = P’ = §f6', a Hermitian projection
operator, is a [NV 4+ 2k] x [N + 2k| dimensional matrix of operators on some Foch
space H — that is

P HNTEE o PNt o N2k (3.3.18)

They then consider the eigenvalues of this operator. Because it is a projection
operator, its eigenvalues are either 0 or 1. Following [12], we denote the zero-mode

eigenstates by [¢P) and the non zero-mode eigenstates as |¢)". This means we have
P Ig), [07) € HYH Pty = v (33.19)
and

P'lor), |¢7) € HNTH, (¢7]¢7) = o™ (3.3.20)

The set of the eigenstates of a Hermitian operator is automatically complete — i.e.

we have

Lingorxneoe] = D [UP) (WP + D |¢P) (6" (3.3.21)
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Since the eigenvalues associated to the |¢") are all 1 we have

Z [P) (PP + AN 2k x [k x (21T 1] < (11 D 2] x (k] x [N+2k] = L[N2k] x [N+24] (3.3.22)

p

Therefore the ADHM completeness relation (3.3.17) will hold iff

> [P) (pr| = UUt (3.3.23)

This requires
{ [?) } — {UWHW[N] s) } (3.3.24)

where the |s,) are some arbitrary normalised states in H
This condition is not automatic, however. Any state of the form U |s) is automatically
a zero mode eigenstate of P’, however in general it is not true that all zero mode
eigenstates have this form. In fact, we must carefully determine the precise form
of U in each case that will make the completeness relation true. This is rather non
trivial, however as it only affects the value of U, and not the validity of the remainder
of the solution, it is only necessary if one is constructing an explicit expression for
the gauge potential, which we are not. The only point we use U is in section 4.4,
and here we take it in a limit in which any noncommutative effects (which must be
proportional to {) are automatically neglected. Having taken note of this, we also
solve the conditions in (3.3.16) by assuming

0= A Ussa = U5 Asjoss [ = f (3.3.25)
In terms of these new variables, and following an integration by parts, the field
strength becomes

mn

F% = U 0m Aoy f s 0 AU, 55 (3.3.26)

Now we can see from this that if A is proportional to o,,, and if ¢, commutes with
f, then the RHS of (3.3.26) is proportional to 0,,,, and therefore is automatically

self- dual, just as we want. Therefore we have the third and final part of the ADHM
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ansatz, which assumes first that A is linear in x
Axiaa = Qxiaa + bMaﬁIﬂa (3.3.27)

where a and b are constant complex- quaternion valued matrices. Second, we assume

flkdg = flk5dﬂ' (3.3.28)
This gives us the following self- dual expression for the field strength

F, . % =408y, 005 Fiebro Ui (3.3.29)

mn S K

Comparing the dimensions of the null spaces of UU and 1 — AfA, we find that A,
and hence a and b, are matrixes of dimension (N + 2k) x 2k as complex matrices.
If N is divisible by two, then we can think of these as are matrices of dimension
(N/2 + k) x k biquaternion matrices. However even if N is not divisible by two, the
matrix ATA is always a 2k x 2k complex matrix, and so can always be thought of
as a k x k biquaternion matrix. This will be important in the next section. Having

determined the form of the Ansatz, we must now look to solving it.

3.3.2 Solving the ADHM equations

In this section I will give the details of the method to solve the ADHM equations.
In this section I shall largely follow [12]. Here we move from the specific case of U(2)
instantons in the previous paper, to general U(N) instantons — this requires a slight

change in notation. Following [12], our indices are given by

Instanton number indices 7, j 1<4,7<k
Colour Indices u, v 1<u,v, <N
ADHM indices A, i 1<\ pu<N+2k

Weyl/ Quaterionic indices o, B¢, =1,2

Lorentz indices m,n,=0,1,2,3
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In the commutative case the three parts of the Ansatz considered above are equivalent
to solving the equation. In the noncommutative case, as discussed above, there are
subtleties with the completeness relation. Checking the completeness relation is
rather non- trivial, so I will assume that the completeness relation holds in what
follows.

Aﬁ”AW = 5% (f 1)y (3.3.30)

Essentially this constraint means that the part of ATA proportional to the identity
is allowed to be arbitrary — the constraints only affect the imaginary quaternion
parts, which end up forced to be zero in the commutative case, and proportional to
some noncommutative deformation otherwise.

The matrix A has dimension (N + 2k) x 2k, where N is the order of the gauge group
U(N), and k is the instanton number. We assume it has the form a + bz, for the
spacetime parameter z, with a and b matrices of the same dimensions as A. We can
see (following [21]) that we can multiply A on the right by a unitary matrix without
changing the value of ATA, and hence without changing the solutions to the ADHM

equation (3.3.2). This corresponds to the transformation

Ayja = MuDsja, [ = f Uy MUy, AA=1

Since the matrix f is arbitrary, we can conjugate both sides of the equation by
an arbitrary matrix in GL(k) to get a physically equivalent set of solutions. This

corresponds to the transformation

A)\jd — A)\dekZ7 f— T-1. f . (T_1>T, U—U

There is also an SU(N) gauge transformation we can apply to the vector U, but
this will be dealt with at a later stage in the proceedings. At this stage we use the

above transformations to put a and b into the following canonical forms:

VN x2k On ok
a= b=

QQkak 12k><2k
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where the subscripts are dimensions of the submatrices over the real numbers. Using

the indices given above in (3.3.2), we write this as
Axja = rja + 0V Zag (3.3.31)

Where Z,4 = 2,00, We can see how much of the symmetries represented by T and
A are left by looking at which matrices preserve the canonical forms of a and b given

above. Noting that we apply both these transformations simultaneously, as
= Mip™ D o Thi (3.3.32)

it isn’t too hard to see that preserving the form of b requires that this transformation

takes the following form

%
qg O
ﬁ it AR (3.3.33)

Here, R belongs to SU(k) if we allow complex parameters, or SO(k) if we restrict
to real ones. The element g belongs to U(1) and so the whole thing represents an
action of U(k) on the matrix A. This fits with derivations from string theory (see

[63] and [39]). Defining

—
qg O

Q= | (3.3.34)
0 RT

and looking at the total transformations given above, we can see that the residual

symmetry we need to mod out is given by

%
0

A |1 AR, feRT-f-R, Uws RU
T RT

Following [12] once more, we can further decompose a + bz as

Wuja
Arjo = O(utia)jo = ’ (3.3.35)

(afm) ji

ghé = glutio)e _ [@a, (C;,aa)ﬁ] (3.3.36)
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0
B _ 1B _
0= Vi = (3.3.37)
525
A Tutia o
By, = bt = [0 %%} (3.3.38)
Using these we can write AA = 5§(f_1)ij as
@ axje + 1Bz + @V T aa + 2005 Tas (3.3.39)

We can now solve the constraints. To do this, we split this expression into three
parts, the first term not containing x, the next two terms linear in  and the third
term quadratic in z.

With the first term, following [12] we simply write this as

(&Bad)zj (3340)
Next, the linear part. This is best dealt with by using the definition P8 = $m0m55,
where the 0™7? are the quaternion basis for SU(2). Then we can factorise the terms

as
T (0P (s )ig + (@755 (3.3.41)

The ADHM constraints force the imaginary part of this expression to vanish. This

can only occur if we set a}; = aj;. Then the linear part becomes
T (077 (@}34)s; + hermitian comugate) (3.3.42)

Which is proportional to 55, and so is proportional to the quaternion identity, and
does not enter into the constraints.
We now come to the third term, 33555’\1-63\“]-92&@. Using the splitting of bS; given above,

this becomes

P Tpa0;i Efﬂ%nxn(aﬁfﬁnﬁa)5g (3.3.43)

T

We can expand the term in the brackets as

1 . . . .

B85 85 B85 85
—| 0, 0npa + 0, 0,55+ 0L Onpa — O 056 3.3.44
2 ( m Ynp nBB B nﬁﬂ) ( )



50 Chapter 3. Instantons

The first two terms are proportional to the quaternion identity and so can be

disregarded. The second two terms are equal by definition to in%,,7%, where the n

are the 't Hooft symbols introduced in [62]

0 0 01 0 0 -1 0 0 1 0 0
0O 0 10 0 0 0 1 -1 0 0 0
Muw = y Mpy = y My =
0 -1 00 1 0 0 0 0 0 0 1
-1 0 00 0O -1 0 O 0 0 -1 0
) ] ) ] (3.3.45)

and the 7 are the Pauli matrices 7; = 0,7 = 1,2,3. The n?, are antisymmetric in
m and n so we can replace x,,x, by %[xm, z,]. In the commutative case this vanishes;

here it is equal to half the matrix 26,,, defined above. Therefore the third term is

equal to
= Ol 0 (3.3.46)
Putting this all together we find that the ADHM constraints are given by
(C_lﬁ%) = fijlg + §0mnn2m7255ij (3.3.47)
ij
and
ay; = (3.3.48)

Equation (3.3.47) is in fact three equations, one for each of the imaginary quaternion
generators (we do not care about the arbitrary fourth component, proportional to
the identity). We can rewrite it by contracting with each of these generators. The
contraction with the identity element by definition gives the term proportional to

5;:“, and the three imaginary generators give

(@ as) . = Ol (3.3.49)

Going back to our choice of 6,,,, with the nonzero entries equal to 2¢ (in fact, we

have 6,,, = 2(Nmy) this equation becomes

i (@ay) = ~8Chud, (3.3.50)
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It is convenient to re-express this in terms of the quaternion basis we are using. It

is also clearer to drop the explicit dotted quaternion indices.

0o (@Pag) = —8iC6430; (3.3.51)
(a%aa)

v

i.e., the component of ATA proportional to the quaternion identity is arbitrary,
whilst the components proportional to the imaginary quaternions are equal to the
corresponding component of the non commutative deformation, and the only com-
ponent which is there in our case is the o3 component. We can finally rewrite this
as

Im((aTa)ij) = —4iC035ij (3352)

Note that here we have used biquaterion components for both the commutative
and the noncommutative cases. Using these in principle adds three extra degrees
of freedom to each of the components of the matrix ATA (we don’t care about the
component proportional to the complex unit). However the symmetric nature of
the matrix means that in fact there are only %n(n + 1) additional degree of freedom.
This is counterbalanced by the fact that the matrix R in (3.3.2) is promoted from
SO(n) in the real quaternion case to SU(n) in the biquaternion case. Now, SU(n)
has n* — 1 components, whereas SO(n) has in(n — 1) components. This means that
there are an additional %n(n + 1) components in the symmetry group which cancel

out the apparent additional degrees of freedom in the constraints.

3.4 Dyonic Instantons

In this Thesis we will be looking not only at pure Instantons but at Dyonic instantons.
Here, following the presentation in [1] we modify the action introduced in (3.1.1) by

introducing a scalar field, so that it becomes

1 1
Sya = / & FGF + 5 DugD" (3.4.1)

iJha 2
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This solution has Energy, Topological Charge, and Electrical Charge given respect-

ively by

1 1 1 1
E = / d43;TI‘<*FiOFiO + —FijFij + §D0¢Do¢ + §Di¢Dz¢)>

2 4
k=— 1617'('2 /d4-r€ijler(Eijl)’
Qi = [ d'aTr(DioFo) = [ d'aTx(Dyo)’ (3.4.2)

We use a Bogamolyni argument of the type discussed in section 3.1 to give us a

bound on the energy.

1 1 | !
fo / d4xTr(2FigFZ-0 + 7 FiFi + 3DodDod + 2Di¢Di¢> (3.4.3)

Completing the square gives us

1 1 2 1 2 1
B= [ xTr(8(FU tsesulin) + 5 (Fot Do) +5Di6Dio (344)
1
geijleiijl + FioDi¢>
So we get
E > 27% k| + Qx| (3.4.5)
where
1 4
k= / d'e e Te(Fy Fay), (3.4.6)

Q= / 42 Tr(D, Fyg) = / &'z Tr(Dio)?

The conditions for this bound to be satisfied are

1
Fi; = §€ijlekl (3.4.7)

Fiy=D;¢
Dyp =0
With the boundary condition on ¢ that it goes to the vev ¢y = iq at infinity

[43]. The second and third of these are satisfied provided the fields are static and

Ag = ¢. This means that when ¢ = 0, the solution reduces to precisely that of a
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pure instanton, and such solutions are in one-to-one correspondence with the pure
instanton solutions discussed above. Therefore, we can use the ADHM method just

as before, and additionally try and solve the equation
D*¢ =0 (3.4.8)

We might wonder why this does not fall foul of Derrick’s Theorem, which we stated
forbade stable static solutions to the Yang Mills equations with a scalar field. The
answer is that this solution is only valid as the approximation to a non-static solution,
which would not fall under the conditions for Derrick’s theorem. As explained in,
e.g. [57], these are not exact solutions but are approximate solutions valid for small

values of the scalar field vev. The full equations equations of motion are

D;F" = [®, D' ®] (3.4.9)

D*¢ =0 (3.4.10)

The first of which is not the equation of motion for an Instanton. However to first

order in the vev, that equation becomes
D;F"7 =0 (3.4.11)

which is the Instanton equation of motion. The solutions to these non-static equations
to first order in the vev are the same as the above, expect with Ay = 0 (this will
be essentialy true anyway if the vev is small). Clearly these are in one-to-one
correspondence with the static solutions. We can therefore use these stable non-
static solutions to approximate the static solutions provided the vev is small. This

will be discussed further in section 4.2.

3.4.1 Solving the Scalar Field

The method outlined here is mainly based on Appendix 1 in [1], generalised to the

case of arbitrary non commutative instantons. The method used is based on that in
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[21]. It begins with the Ansatz

qg 0
¢ =iUTAU; A= (3.4.12)

0 P

where ¢ is the scalar field we are trying to calculate and U is an element of the null
space of the ADHM Matrix A. Further, ¢ € u(N), where N is the degree of the
instaton gauge group, and P € u(k), where k is the Chern- Simons number/ number
of instantons we are considering. In fact, iq is the vev of the scalar field. For the real
ADHM construction, we can use o(k) rather than w(k). In the biquaternion case in
theory there is an additional u(1), promoting the symmetry group to u(2, however
as we can choose the vev we will always choose this to lie in su(2) so this additional
u(1) will not in fact contribute.
Note that the equation for ¢ has the form of a rotation of A by U. We can think of this
as follows. The matrix 4 belongs in u(n) X u(k). We can imagine it being defined on
a u(n) x u(k) bundle over R*. However we know the ADHM construction breaks the,
‘gauge group’ u(n) x u(k) down to u(n). We can therefore see the rotation as rotating
A into the u(n) subspace picked out by the ADHM constraints. This interpretation
can be confirmed by the straightforward observation that UT(1 — UUT)AU = 0. A
long and algebraic justification for the ansatz is given in [21]. Regardless of the
justification for the Ansatz, once we have it, the problem of solving for ¢ becomes
the problem of solving for P above. It is shown in [21] that the equation of motion
for ¢

D?¢ =0 (3.4.13)

expands as
D¢ = —4iUM{bfb', AYU + 4iUTb f Try(ATAA) fOTU = 0 (3.4.14)

Here, Try refers to the quaternion trace on each element of a matrix, not to the
trace of the matrix itself, which is written Tr. Hence, applied to a (complex/ real)

quaternion valued matrix, Try will give a complex/ real valued matrix, whereas Tr
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will give a (complex/real) quaternion.
With A written as above, the first term is —4iU'{f, p}U. For the second term, we

recall that A can be written as

A= (3.4.15)

Writing Q' = Q — 1z, and using the ADHM constraint ATA = ATA + QTQ = f~! we

can see

Try(ATAA) = Try(ATgA) + Try(QTAQ)
= Try(ATgA) + ;Tm([Q'T, PIQY = Q' P+ {P,/10})
= Try(ATgA) + ;([Q’T, PIQY — QN Q Pl +{P, f '}~ {P, ATA})

= Try(ATgA) + ;(m”m' — {1, P} + {P, £} — {P,ATA})
(3.4.16)
Now, note that z in the above expression is always the coefficient of 1. Therefore
the terms involving x in the above expression cancel, and we can everywhere replace

Y by  (this is most easily seen from the third line above).

We can use these to rewrite (3.4.14) as

D26 — —4i (UT{ f. P—;Trz(P)}UJrUTb f (TrQ(ATqAH; (20 PY {1V, P} —{(P. AM})))
(3.4.17)
Since P has complex components, not quaternion- valued ones, Try(P) = P and the

first term vanishes. Hence the e.o.m. D?¢ = 0 is equivalent to

Tra(AfgA) + ;(QQ/TPQ’ — {1, P} — {P,ATA}) =0 (3.4.18)

This gives one equation for each component of P, allowing us to solve for P and

hence, by extension, for ¢.






Chapter 4

The Moduli Space

4.1 The Moduli Space

This section follows [22] and [1]. Essentially, the Moduli Space of instanton solutions
is the space of inequivalent solutions to the self dual Yang Mills equations, (3.3.2).
Here, equivalent solutions mean those which differ by local gauge transformations —
solutions which can be transformed into each other by global gauge transformations
are considered inequivalent — the reasoning behind this is discussed in [15]. The gen-
eral idea is that we want to consider as equivalent any solutions which differ only by
a local gauge transformation, since we usually think of local gauge transformations
as describing mathematical redundancies rather than physically distinct solutions.
However fixing the local gauge so as to determine a specific form of the potential A
or the Field Strength F' doesn’t fix any of the global symmetries, and so solutions
differing by a global gauge symmetry are seen as being inequivalent. The principle
of the construction turns out to be the same for commutative and noncommutat-
ive instantons, however the explicit construction of the moduli space and potential
requires modification in the noncommutative case, which will be discussed at the
appropriate points.

There are two particular properties these spaces have. The first comes from the

fact that Instanton solutions are classified by the instanton number k. This is a
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topological invariant and therefore the moduli space 2t splits into disconnected
components describing the solutions of charge k, 9. The second property, which is
less obvious, is that 91 is in fact a manifold. Though here there is the subtlety that
M has conical singularities in the commutative case, formed when the instantons
shrink to zero size. In the noncommutative case the fact of noncommutativity means
that the instantons cannot shrink to zero size, and so the singularities are resolved
to 2-spheres. This is in fact a major motivation for studying noncommutative in-
stantons.

The moduli space is actually a special class of manifold called a HyperKahler Man-
ifold, and the proof that it is a manifold involves showing it satisfies these more
special conditions. This is beyond the scope of the thesis, however details are given
in [22]

Since the moduli space is a manifold, we can give it coordinates. These are called
Collective Coordinates. They have a complicated relationship to the symmetries
of the theory, which are discussed in [22]. In particular, there are 4 coordinates
denoting the position of the centre of mass of the instanton solution which arise out
of the fact that the instanton breaks the translational invariance of the theory. This

means that the moduli space is a direct product
My, = R x My, (4.1.1)

where 9 is the moduli space with the centre of mass component factored out,
known as the centred moduli space. We usually ignore the centre of mass part, and
work directly with M. The remaining coordinates on the moduli space can be taken
to be the ADHM parameters. There are 4kN — 4 of these, where k is the instanton
number and N is the dimension of the gauge group (the full moduli space with the
centre of mass left in has 4k N coordinates). In the noncommutative case there is an
extra parameter, the noncommutative parameter ¢, however we do not treat this as
a collective coordinate.

As first described in [48], we can introduce a time dependence into the collective
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coordinates on the moduli space. If we label these coordinates as z., then we
can write any instanton solution as A;(z,z), where z is the vector of the moduli
space coordinates, and x is the usual spacetime coordinate. We can then introduce
dynamics by introducing a time dependence z(t). The instanton solutions then
become A;(z(t),x). This allows us to approximate individual solutions involving
small velocities as slow motion between different instanton solutions on the moduli
space. For sufficiently small velocities, these dynamics can be described by geodesic
motion on the moduli space. This procedure was first developed for monopoles — a
review of which is given in [64]. To fully describe it we first have to develop the idea
of zero modes.

Each point on the moduli space is a solution to the self dual Yang Mills equations,
A;(z). Now consider a fluctuation A;(z) + JA;(z). If it is also to be a solution to
the equations (and hence lie in the moduli space), it must satisfy the linearised self
duality equation

As well as this, we also want it not to be related to A,(z) by a local gauge trans-
formation. We do this by requiring them to be orthogonal to gauge transformations.

We use the natural metric on the space of all solutions
9(54i(x),54}(x)) = / T (5A,(2)5 Al () (4.1.3)

and then use this to induce a metric on the moduli space after quotienting out the
gauge-equivalent solutions. We then require that under this metric, zero modes

dA;(x) are orthogonal to all gauge transformations D;A
9(5A,(x), DiA(2)) = — / d*oTr(Di(5A)A) (4.1.4)

This is equivalent to satisfying

D;i6A; =0 (4.1.5)
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We get an interesting result if we write each of these conditions in a quaternion basis.

Firstly, (4.1.2), like the ADHM equations, is really three equations
P 5 A,, = 0 (4.1.6)
B ad — L

Where the %‘j‘ﬂ- are the usual Pauli matrices (the dotted indices are the usual Weyl

SU(2) indicies, as discussed in section 3.2.1 and we have
D =0,D,; D=05,Dy; (4.1.7)
The gauge orthogonality condition, equation (4.1.4), can also be written as
P A5 =0 (4.1.8)

we can then combine these equations to get

D 6A,5=0 (4.1.9)
This is the Dirac equation in the instanton background, for a spinor ¢, = 0A 4.
Note that because of the free § index, this equation gives two Weyl spinors, or a
single Dirac spinor.
Now we have introduced the zero modes, we can go on to discuss the dynamics on
the moduli space, following [1]. Because our fields now have a time dependence, they
will no longer automatically satisfy the Yang Mills equations. In particular, Gauss’
law is modified to

D;Fyo = Di(DiAg — 76, A;) = 0 (4.1.10)

where 7 is a spacetime index, and r labels the moduli space coordinates. Therefore
0, A; refers to a zero mode on the quotient moduli space in the r direction. This is
distinct from 0, A;. Following [1] this refers to the tangent vector in the r direction
on the unquotiented moduli space.

With this in mind, equation (4.1.10) is now solved by

Ay = e, (4.1.11)
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for a small perturbation ¢, satisfying
Dy(Die — 0,A;) = 0 (4.1.12)
This implies that, for the electrical components of the field strength
Fyg = 2", A; (4.1.13)

In terms of the zero modes

For slow moving instantons, this will be the only part of the Field Strength which
contributes. Substituting this into the Yang Mills action, we get the following

effective action on the moduli space

/d xTr(FyFy) = /dtgmz z° (4.1.15)

where

- / d'2Tr(6, A0, A;) (4.1.16)

is the induced metric on the (quotiented) moduli space. We will discuss below how

to calculate this using the ADHM solution.

4.2 Moduli Space of Dyonic Instantons

We now move on to discussing the moduli space of dyonic instantons. This section
follows the relevant section in [1] very closely, as well as the discussion in [57]. As
discussed in section 3.4, each dyonic instanton has a unique underlying pure instanton.
We can therefore identify the moduli spaces pointwise. However, the fact that dyonic
instantons have an electric charge means that the moduli space structure is modified,
and the dynamics are altered by the addition of a potential. This method was first

used for monopoles in [4] and [5], and was extended to Instantons in [43].
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To recap: The action for dyonic instantons is
5 1 % 1 o
S = —/d o({T(Fw ) + 5 Tr(Dus Do) (4.2.1)
This leads to the equations of motion

D;F7" + [Ag, D' Ag) — [¢,D'¢] = 0
D,F" — (¢, D°] = 0

D;D'¢ =0 (4.2.2)

These are solved by taking Fj; to be self dual, with Ay = ¢; where ¢ is solved for
using it’s eom. In principle, to analyse their dynamics, we could explicitly construct
the moduli space and it dynamics. This would be rather difficult, so it is usual to
take advantage of the fact that these solutions, with non- zero ¢ are in one- to- one
correspondence to pure instanton solutions, where ¢=0. This link allows us to use
the moduli space techniques developed for pure instantons and apply them to the

dyonic cases. We start with the equations of motion for 4d instantons with a scalar

field

D;F" = [¢, D ¢] (4.2.3)

D?¢ =0 (4.2.4)

with ¢ going to the vev on the boundary. As discussed in section 3.4, Derrick’s
theorem means that there are no actual instanton solutions to these equations.
However, to first order, we can solve these equations in the same way as 4.2.2, just
with Ag = 0. These approximate solutions are instantons, and lift in a one- to-one
correspondence to solutions of 4.2.2. We call these, 'constrained instanton solutions’.
As in the pure instanton case, we are interested in solutions modulo gauge invariance.
Because of the one to one correspondence between the two sets of solutions, the
cosets also lift to the dyonic case.

We now need to consider to consider how the zero modes are affected by this process.

Just as in the pure instanton case, we can introduce time dependence to the Instanton
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solutions via the collective coordinates. The same trick also works for the scalar
field, which we label as ¢(z(t);x), corresponding to the gauge potential A;(z(t);x),
where z(t) are the time-dependent moduli space coordinates, and x are the spacetime

coordinates. The presence of the scalar field modifies Gauss’ law to
Dy Fio + [Dog, ] =0 (4.2.5)

which is no longer solved on the moduli space. However, we can approximately solve
it. This allows us to use the same methods as in the pure Instanton case to analyse
the moduli space motion. However because our solution is only approximate, there
is a restricted regime in which this analysis is valid. The approximate solution, as

before, is constructed by taking the static solution and perturbing it by some e,
Ag=0o+ e, (4.2.6)

This gives us

Fo = —(2"6,4; — D;0) (4.2.7)

Why is this solution only an approximation? The first part of Gauss’ law poses no
problem, since the fact that D? = 0 means that D;F;, = 0. However the second
term in Gauss’ law, [Dy, ¢], is not zero, and hence the law is not satisfied. However,
this second term is of order "|q|?, where ¢ is the VEV of ¢. This implies that there
might be some limit of small |g| and 2" in which this approximation is valid.

To confirm this, recalling that the zero modes 9, A; form a basis of the space of all
zero modes, we note that D;¢ satisfies the linear self-duality equations (4.1.2) and
is also orthogonal to gauge elements, since D?¢ = 0. This means that it is a zero

mode, and therefore we can write
D¢ = |q|K"0,4; (4.2.8)

for some vectors K,.
It turns out that these vectors are not arbitrary, but are Killing vectors of the

metric. This is because, at infinity, D;¢ must be pure gauge — it is a global U (V)
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transformation by ¢. Because this is a symmetry of the full Yang-Mills solution, it
induces a symmetry on the moduli space, and the associated vectors K" are therefore

Killing vectors. In this notation, the electric component of the field strength becomes
Fio = —(2" = |q|K")6,A; = 6, A (4.2.9)

for
y'=2"—lq|K"t (4.2.10)

The effective action on the moduli space is now
1
S=3 / 2 Tx(FoFig — DiéDié + Dod Do) (4.2.11)
If we neglect terms of order 7?|q|?, we get the rather nice form

1
S = 5/dzs (grsyrgf - |q|2gT5KTKS) (4.2.12)

This is the same as the pure instanton equation (4.1.15) but with the addition of a

potential

1 2
V=3 / d°xTr(D;pD;¢) = |(]2| / dtg, K" K* (4.2.13)

As stated above, this analysis is only valid in certain limits, in fact in the limit
22 g < 1; (4.2.14)

where we can ignore terms of order 2|q|? and higher. The geometric interpretation
of this is both that the kinetic energy of the Instanton solution is sufficiently small,
and that the potential evaluated on the Instanton solutions, which lie on the moduli
space, is shallow compared to the potential on non-Instanton solutions evaluated off
the moduli space. This allows us to imagine our approximate solution as lying in a
steep valley given by the locally small potential around the moduli space solutions,
where the small kinetic energy prevents our dynamics from, ‘climbing away’ from

the moduli space.
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4.2.1 The Complex Subspace

There is one final technical point to discuss. The Moduli space has several subspaces,
which are preserved under the geodesic motion — i.e. a geodesic beginning in one of
these subspaces will remain in it throughout its motion.

The subspace we are interested in is as follows. The moduli space is a manifold
over the collective coordinates z. However, as we saw in section 3.3 these collective
coordinates are parametrised by the (bi)quaternions. That algebra can be thought
of as C x C x H = C x C¢, where the last expression is to be understood via the
Cayley- Hamilton construction of the quaternions. The quaternions therefore contain
a complex subspace C, preserved under the action of the other C making up the
quaternions. Correspondingly the biquaternions have the subspace C x C. We can
therefore restrict from the full moduli space where the collective coordinates are
biquaternions, to a submanifold where they lie in C x C.

This corresponds to conjugating all the moduli space coordinates by a unit qua-
ternion ¢, e.g. 7 — ¢7q¢. This corresponds geometrically to a rotation about some
axis represented by ¢, and therefore imposing invariance under such rotations corres-
ponds to choosing a two dimensional plane within the four dimensional quaternions.
Because gq = 1, if we multiply two (bi)quaternions together and apply this rotation

to each of them then the result is that the entire product is rotated- e.g.
ATA = gATggAG = gATAG (4.2.15)

We can therefore think of all our equations and objects (for example the scalar field
and potential) as being rotated in the same overall way. In the commutative space,
for pure instantons we can see the invariance of this subspace automatically, since
the elements of C € H automatically commute with all other elements, meaning that
they form an ideal within that group [24]. For Dyonic Instantons, we must choose
the imaginary direction to be the same as the vev in SU(2). In the noncommutat-
ive case, the presence of the noncommutative parameter means that the spacetime

coordinates do not automatically commute. The only complex subspace which is
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preserved in this case is the complex subspace spanned by {1, 03}, as, since o3 is the
direction associated with the non commutativity, it is preserved under rotations of
the space, and 1 commutes with everything. We must then align the plane within
H that we are preserving with this direction. Hence we see, as would be expected,
the presence of a noncommutative parameter reduces the symmetries of the theory.
It is necessary to define what is meant by a geodesic submanifold, particularly in
the presence of a potential. A geodesic submanifold is a submanifold which has the
property that any geodesic beginning in that submanifold, with motion tangent to
the submanifold, will remain in it. If there is a potential present then we require
that this potential is invariant under the symmetries defining the submanifold. We
then require that this submanifold has the property defined by the solutions of the
equations of motion with the potential which begin in the submanifold, with tangent
parallel to it, remain in that submanifold; in an analogous way to the concept of a
geodesic submanifold above.

Calculations on the full quaternionic moduli space are very computationally expens-
ive, and this subspace is often much easier to run simulations on. In addition, the
commutativity of this subspace makes solving the ADHM equations on this restricted

part of the theory much easier.

4.3 Constructing the Moduli Space Metric

Now we have outlined the theory behind the moduli space, we move on to practical
calculations. We start with the metric on the space. This section is based on
appendix 2 in [1], which is itself based on the method of [56] for calculating the
metric determinant. This technique was adapted in [57] for the moduli space metric
of two instantons, which they calculated to order |7|~2. In [1] this is extended to the
full metric for 2 commutative U(2) instantons. I present the argument for arbitrary

gauge group and topological charge.
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As above, the metric on the moduli space is defined as

gos = [ d'a T (5.4:0,4,) (43.1)
where
5,«141' = &AZ - Dier (432)
and
Tr*(q) = Tra(Ti(g)) (4.3.3)

There is one mode for each of the 8& moduli space coordinates, labelled here by
the indices r and s. The index 7 refers to spacetime coordinates. Recall these zero

modes are orthogonal to gauge transformations by definition

We can use this fact to find an explicit expression for the metric. First, we need
an expression for 0, 4;|.—,, in terms of the ADHM data. To do this, we recall that
A; = UT9;U, and use the identity U = PU with U the projection operator 1 — A fAf
to derive

0,.U = —Af0,.A'U + PO,U (4.3.5)

This allows us to get the necessary result
Op Ailimzy = —iUTOAfE;b'U 4 iU be; fO.ATU + D;(iU0,U) (4.3.6)

around an arbitrary point of the moduli space zy. The zero mode is then this
expression with the gauge dependent part removed. The third term above is explicitly
a gauge transformation, however we also need to ensure that there is no gauge part
implicit in the first two terms. To do this, we use the residual transformations

described in equation (3.3.2) to transform the ADHM data as

A = gAR, U — QU, Q(z0) =1, R(z)=1 (4.3.7)
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It can be seen that this transformation leaves A; invariant, and that
OpAilmy = —iUTC, fE;b'U 4 iUVbe; fCIU + D(iUT0,(Q'U)) (4.3.8)

with

C, = 0,A + 0,QA + AR (4.3.9)

It turns out we can choose C,. so that the first two terms of d,A; have no gauge part

—i.e. they are a zero mode. To do so we must prove the following

Lemma 4.3.1. If we choose C,. to be independent of z with
AlC, = (ATC)™ (4.3.10)

the expression

O, A; = —iUTC, feb' U + iUbe; fCITU (4.3.11)

will be a zero mode

To do this, we first note that this condition is equivalent to the two conditions
a'C, = (a'C)™; biC, = (b C) "™ (4.3.12)
and then consider the expression (forming part of 4, 4; above)
a; == U'bfe, (4.3.13)
We can then calculate
Dia; = ia; —iAja; = Ule;bf ATbfe; + UTbf(eb" A + Albe;) (4.3.14)

We then write Ab in terms of its quaternion components as c;é;, where the ¢, are
complex valued matrices. It is important to note that since ATb = Q, the bottom
2k x 2k part of the ADHM data, the ¢, are hermitian, since {2 is hermitian by

construction. Keeping this fact in mind, we can write (4.3.14) as

Diaj = Ubeckf(eiékej + éiekej + ékeiej) (4315)
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Now, we use the identity e;e; = —eje; + 20;; to get
DiCLj = —UbeCk<€iéj6k - 26jk€i - 25ik€j) (4316)

Then we can see a; satisfies both the linear self- dual field equation

1
D[Z-aj] = §€ijkl (4317)

and the zero mode condition D;a; = 0. What does this say about the full mode
0,A;7 We calculate
= —iUTbf (e:ATChe; — ;CAE) fOIU — iU CLDjal + iD0;CIU
—iU'C, Dial + iD;a;CIU (4.3.18)
Here we have used the fact that

DUV — i AU = UlebfAT (4.3.19)

The discussion above of D;a; shows that the last two terms of (4.3.18) are a zero-
mode. We must therefore check the first two terms. The only parts of these which

depend on the moduli space coordinates are
eiATC’réj — ejCiAéi = Kij (4320)

So the first two terms being a zero mode are equivalent to

1
Kiij) = §€ijszij ; I =0 (4.3.21)

and these are satisfied iff ATC, = (ATC,)T*. This proves the above lemma. To use
this result, we must see what this condition says about the form of C. First we

recall the definitions

C, = 0,A + 8,QA + A, R (4.3.22)
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qg O
Q= (4.3.23)
0 Rt
Note that we can write C, as
O,a + 0,Qa + ad, R+ (@b 1+ 0,Qb+ b&,R)x (4.3.24)

Next we set ¢ = 1. This means it does not contribute to the variation of (), which

means

9,Q = —b0, Rb' (4.3.25)

Then we see that the part of C, proportional to x is zero, since 0,.b is zero as b is a

constant matrix and the other two terms cancel. This leaves us with
C, =0.a+ 0,Qa+ a0, R (4.3.26)

With this form, and the fact that RT* = —R, since R is unitary, it is straightforward

that b'C,. = (b'C,)T*. The second condition, a'C, = (a'C,)T*, is satisfied iff
aT&«a—(aT&na)T*—aTb&ﬂRbTa—(aTbaerTa)T*—l—aTaarR—(aTbaerTa)T* =0 (4.3.27)

We have therefore reduced the problem of finding the zero modes to solving the
above equation.
The metric is then derived from the inner product of two zero modes. To find this,

we use the following result from ([56])
1
T (6, Aid,A)) = —50°Tr* (ctpe.f + fcic,) (4.3.28)
Where P =1 — AfAT. We can then use Stoke’s Theorem to find the metric

Grs = —; / d'z O*Tr*(CIPC.f + CIC.)
_ / d's T (CIP.C, + CICL)

= 20 Tr* (Cf PoCi + CIC.)

ij

= o’ Tr* <8raT(1 + Py)0sa — (aTara — (aTara)T) , OSR> (4.3.29)
ij
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Here
Poo = lzmx—mop = 1n+2k><n+2k - bbT
1. /2xn 0
_ | (4.3.30)
0 O xk
Remembering
A 0
A(z) = -z (4.3.31)
Q+ plpxk Lixk

(Note — the term in p gives the center of mass, and is usually absorbed into the
x component by a suitable choice of coordinates, but it is there, and therefore we

consider it here — albeit briefly). The first term above then gives
27 Tr* (dat(1+ Pu)da) = 27 Tr (2ATA + Q10 + 2dptdp) (4.3.32)

The dp'dp directions are flat (by which I mean isomorphic to R4) and so we ignore

them. This gives the first part of the metric
ds? = 27Tr* (da' (1 + P )da) = 27°Tr* (2ATA + Q1Q) (4.3.33)
Now for the second part of the metric
ds; = 27r2Tr*<(aTda — (aTda)T*> dR) (4.3.34)

To find an explicit expression here, we write dR in terms of its components considered
as a U(k) matrix, and solve for them using (4.3.27). We get one equation for each
component, and solving them gives dR in terms of the ADHM parameters in a. We
will see this explicitly in the specific cases below. Once we have done this, we can

put all these parts together to get the full metric
ds* = ds} + ds; = 27° (Tr* (daT(l + Poo)da)
p <Tr* (2dAtdA + d0tdQ) + Tr* ((aTda _ (a*da)T*)dR>>

(4.3.35)
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4.4 Constructing the Potential

Now we have the metric, we look at how to calculate the potential for the dyonic
instanton moduli space. This makes use of the solution for the scalar field in section

3.4.1. Recall the definition of the potential
y— / d'z Tr(D;$ Do) (4.4.1)

Integrating by parts and using the fact that D?¢ = 0 via its equation of motion we
get
V = limpe / 533, Tr(¢ Di) (4.4.2)
lz|=R

Using the facts that ¢ = UTAU, D; = 0; — iA; and A; = UT9;U, a moderately long
calculation gives

Di¢p = iUTe;bf ATVAU +iUTAAfeb'U (4.4.3)

To fully evaluate this integral, we need an expression for U. In general this would
be rather complicated, however we only need the value of U on the boundary, in the

limit R — oo. For a general ADHM matrix

(%1 (%) V3 Ce Vi
Tn—x o7 oy ... Op
o1 Te—X OF ... Oy_j (4.4.4)
Ok—1 O2k—3 O03k—4 ... Tp— X

the condition ATU = 0 gives k + N equations
0] U + (1] — 2)Upyy + > olU; + > ol*U; (4.4.5)
ijeA i,jeB
for some index sets A and B. These are solved to leading order in |z| by

T

U1 U —ol | i#1 (4.4.6)

2



4.4. Constructing the Potential 73

We might worry here about the issue discussed in section 3.3, where U may or may
not satisfy the completeness relation (3.3.17). In general we would need to worry
about this, however if we expand in powers of (, any terms including a correction of

|72 and are therefore

order (™ would, by dimensional analysis, also have to go as |z
neglected in this limit. We also need these two results for the behaviour of other

quantities in this limit

A
A —
—$1k
1
[ Wlk (4.4.7)

We can use these to expand equation (4.4.3), and then multiplying by Z; we get, to

leading order
D=1, ‘3<qAAT APAT> +(9<’ ‘4> (4.4.8)

Remembering that ¢ = iq on the boundary, we can then write, to leading order

— liMpe / S33, Tr(¢D; )
— 9limy, / 4551 ((2AAT — gAPAT) + 0(1)
> |z [3 |z |*
= — 47Ty <q2AAT — gAPAT ) (4.4.9)

Now we have these general expressions and methods for the ADHM solutions, moduli
space metric, and potential, we can give specific solutions for different instanton
configurations. We will be interesting in U(2) Yang Mills, and the 2 and 3 Instanton

sectors in particular.
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Chapter 5

One and Two Instantons

In this chapter, I derive one of the main results of the thesis- a solution of the
noncommutative U(2) 2 instanton theory. First, I review the single U(2) instanton
as presented in [3]. This is necessary to test the two instanton solution in the appro-
priate limits.

Next I derive the ADHM equations for the two Instanton case, using biquaterion co-
ordinates. I briefly look at the commutative biquaternion equations, and investigate
how their solution can be rotated into the quaternion solution found in [1] using the
increased symmetry in this case. I explicitly show that this is possible.

Then I move on to the noncommuative biquaternion equations. I begin by showing
that the solution derived in [37] is incorrect, and then explore alternate strategies to
solve the equations. I was unable to find a solution for the full moduli space, however
I was able to find a solution for the geodesic submanifold discussed in section 4.2.1.
After finding this solution I use it to derive the metric and potential for the rel-
evant moduli space. I show that the metric and potential behave suitably in the

commutative limit and in the limit of the instantons being far separated.
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5.1 The Single U(2) Instanton

First, we derive the solution for a single U(2) instanton in noncommutative space. I
then use this solution to derive the moduli space metric and potential. This is useful
as it allows us to check the two instanton solution behaves correctly in various limits.
We will follow the presentation of the solution in [3], however for their purposes they
use a very different notation to the one developed here, and even a different method
of calculating the metric, which I will discuss below. I rederive their solution in the
notation I have used elsewhere. Other discussions of the solution can be found in
[12] and [17]. First, for the single noncommutative U(2) instanton, the ADHM data

has the form

v
v, X, 2’ eH (5.1.1)
X —a
We can define X — 2/ = —x, and write
v
A= (5.1.2)
—x

Then, using the method outlined in section 3.3.2, in particular equation (3.3.52), the

noncommutative ADHM equation is
viv = Al — 4iCoy (5.1.3)

where v = v 4 2v;. We can solve this by

QCURU:«:_
lugl*

vy = vp € H (514)

The solution in [3] (in the form from Appendix E) is

VEFIT 0
pog [V (5.1.5)

0 JF—20
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where § is a unit quaternion and the relation between their ¢’ and our ( is ' = 2(.

After some calculation it turns out that this is
=——" vgp€H (5.1.6)

Now we have this, we can try and calculate the metric and potential using our

method developed in sections 3.4.1 and 4.4

5.1.1 The Potential

The first step is to calculate the scalar field. We use the ansatz (3.4.12), which in

this case is
qg O
¢ = (5.1.7)
0 ¢
Where ¢ € U(2), and ¢ € U(1). Then we find the equation of motion for ¢, (3.4.18),

reduces to

2Try (ATgA) = Tro({2p, ATAY) (5.1.8)
In our case, A = v, and ¥ commutes with everything, so we have
Try(viqu) = ¢ Try(viv) (5.1.9)
This is solved by

iqo(|vr|® + |vi|?) 4+ 2iRe(vrquy)
|vg|? + |vg|?

Y = (5.1.10)

We now use this to calculate the potential. Note that, as |z| tends to infinity,
AU =0 (5.1.11)

is solved by
Uy 1 Uy —of (5.1.12)
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Note that, specifically in the U(1) case, this is true not just in the infinite limit, but

for all z. As outlined in section 4.4, we can use this solution for U to calculate

D;p = H?’(w g+ quut — 2uyw ) (5.1.13)

which can be expanded into real and imaginary parts as

B <2q(|UR|2 + |vr|?) 4 2igIm(v;oR) + 2ilm(v;vR)q — 29 (|vg|* + |vr|* + 2iIm(vﬂR)>
(5.1.14)
So

- —hmRHoo/ —Tr (26%(fogl? + lorf?) (5.1.15)
+ 2ig*Tm(v;oR) + 2igIm(vivR)q — 2¢q(Jvg|* + v + 21’Im(vﬂ7R)>
evaluating the integral, this becomes

V = —81°Tr (q2(|vR|2+|v1]2)—i—tiIm(vlvR)—l—inm(v]vR)q—wq(|UR|2+|UI\2+2iIm(v1vR)))
(5.1.16)

Using the properties of the trace, this becomes

V = 87 Tx (| +68) (Jvrl” + [vr[*) +4goatm(vr0r) +iv (qo([orl*+ o)+ 2aIm(vrvg))
(5.1.17)

which we can rearrange as

_ vr|? + [vr|?) + 2Re(vrquy))?
V:877'2((Q§+|q|2)(|UR|2+|U[|2)+4QORG(URC1U[)—(qO(‘ R| ‘ I| ) ( R4 I)) >

[vr|? + |vi|
(5.1.18)
Now, note that the parts proportional to gy cancel and so we are left with
4R€2(63q1}[>
V:87T2( 2(lv 2—|—v2—> 5.1.19
|q‘ (| R| | 1| ) |UR|2+|UI| ( )

Putting in the expression for v; and taking q = |q|os we get

A¢2 ~ R
V = 87?|q|? <p2 — pgReQ(vRangagD (5.1.20)
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where
2 2 2 o | 4¢
p” = |vrl” + [vr]* = [vr]* + 5 (5.1.21)
|vR|
and Op is the unit vector in the vg direction. Now, q € SU(2) and so q = —q.
Therefore qirq = —q¥rq, and the latter expression is a rotation of v by q. If we

set @ = |q|os, we can therefore express this rotation as Og (cos(@) + isin(@)), where

0 is the rotation around the o3 axis. Then the potential is equal to

V= 87r2|q|2(p2 — 1p§ 0032(9)> (5.1.22)

which is exactly the potential in [3] with 16¢* = 4¢".

5.1.2 The Metric

We start by splitting A into

a=||;b= (5.1.23)

with v = vg + iv;, we find that a'b = 0 and so we have to solve

T*

a'da — (aTda>T* = —a'a(dR) + (aTa(dR)) (5.1.24)

In this case, dR € U(1), as we have a single instanton, and if we write dR = id¢, we

can solve for it as
’URdU[ —@]dUR
[vg|? + |vr[?

dé =

(5.1.25)

We use the method in section 4.3. It is worth pointing out here that the method
used is an alternative to that in [3]. When considering the residual symmetries
3.3.33, recall we set the rotation ¢ to be locally constant (note that this ¢ is a
residual symmetry and is not to be confused with q the scalar field vev!). I have
used a slightly different method — that considered in section (4.3). This method is

mentioned in [3] and they confirm it gives the same answer as the one they calculate.
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Regardless, if we use our formula

ds* = ds} + ds3 = 27 (Tr* (ZdATdA + dQTdQ) + Tr* ((aTda - (aTda)T*) dR))
(5.1.26)

We get the final result, noting that the i from dR cancels the i from a'da — (a'da)™*

(URdUI — @IdURf) (5.1.27)

ds? = 872 | dv? + dv? —
< f ! [vr|* + |vr|?

5.2 Two U(2) Instantons

We now move on to the case of two U(2) instantons. In the commutative case, a
solution was found for the real quaternions (and with gauge group SU(2)) in [1].
I begin by showing that a solution can also be found for the commutative case
with gauge group U(2) beginning with the Biquaternions and then enforcing reality
conditions via the symmetries. This provides a specific example of the equivalence
of these two approaches, discussed in the abstract in section 3.3.2. Next I move on
to the noncommutative U(2) case. Here a solution was put forward in [37], however
I will show that this solution is not in fact correct.

I was unable to find the solution for the full moduli space, however I was able to find
a solution for the geodesic submanifold discussed in section 4. After outlining this
solution, I will go on to derive the scalar field, moduli space metric and potential as

discussed above.

5.3 ADHM Constaints

We begin with solving the ADHM equations. For the case of two U(2) instantons,
the ADHM data has the form

A
A=a—br; a= = |r o|l.b=11 0 (5.3.1)
Q



5.3. ADHM Constaints 83

Note that here 2 is constrained to be hermitian (under complex conjugation) rather
than symmetric, as in the real ADHM construction. v, w and o lie in the biqua-
ternions, however due to the requirement that €2 be hermitian, 7 remains a member
of H. Proceeding as in section (3.3.2), equation (3.3.2) gives the following. We begin

by looking at the commutative equations, so ¢ = 0. First, the diagonal equations

viv+ |t +olo = fi'1

whw + |72 + (olo)* = f;'1 (5.3.2)
Next, the off diagonal constraints are given by

viw + 70" — ol = f5'1
wiv + (611 — 70 = f* (5.3.3)
This information can be put into a more convenient form — we shall look at the

off-diagonal equations first. Again, we expand into quaternion real and imaginary

parts

ERQUR—FI_)[U}]—I—’L. (ﬁRwI—ﬂwa) +7_'0'R—5'RT+Z' (5’]7'—7_'0']> :f1_211

’LDRUR—FTI)[U[—i‘i (IDRU[ —QD]UR) — (7:0'3— 5'37') +1 (5’]7’ —%U[) = ffgl*l

We can add these two equations together to get

VRWRFHWRVR+HUW+Wrvr+1 (@wa—wIURﬂLwRUI—@IwR) +2u (517—7'01) = 2Rec(f13')1
(5.3.4)

This is equivalent to
ReH(vaR) + ReH(’JJﬂ)]) + 1 ImH(QIJR?)[ + @Rw[) + 21 Il’IlH(a'[T) = 2f1311 (535)

Since f is arbitrary we don’t care about the real quaternion part of the constraints,

so this gives us the equation

IHIH (U_)RU[ + ’l_}RU}[)
2

(5.3.6)

ImH (7_'0'[) =
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As before we can also take the two equations away to get

VRWR—WRVR+VwWr—Wrvr+1 (ﬁsz—szvR—@]wR—val) +2(%0R_6RT) = fie—fis
(5.3.7)
This is

Imy(wrvg) + Imy (wrvr) + 4 (ReH(u_)Rv] - ReH(@DIUR)) — 2Imy(oRrT) = 2Imc(f)
(5.3.8)
Where I'm¢(f) is the complex imaginary part of f, which is a complex function. We
can therefore again ignore the real quaternion part of this equation, which is a purely
imaginary number. This leaves us with the following equation for the quaternion

imaginary part:
ImH (@DRUR + U_Jﬂ}[)
2

(5.3.9)

ImH(7—'O'R) =

We now look at the diagonal equations. Expanding the biquaternions into their real

and imaginary parts, we can rewrite them as

[or|* + o + i (Brvr — 0rom) + |7al* + ogl® + |o1|* +i (Gros — G10R) = fal

jwal® + [wi* + i (@gw; — wpwr) + 78] + orl* + |01 =i (Fror — G108) = ful

(5.3.10)

Since f is arbitrary we don’t care about the real quaternion parts of these equations.

Adding them and taking the quaternion imaginary part we get
Imy(wrwy) + Imy(vgvy) =0 (5.3.11)
Taking them away and again taking the quaternion imaginary part we have
2Imy(oror) — Imp(wrwy) + Imp (vgvr) = 0 (5.3.12)

This gives a total of four equations for the complex ADHM constraints. For com-

pleteness we list them here

QIIHH(C}RO'I) — ImH(waI) + IHIH (631)[) =0
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ImH(’LZ)Rw[) + ImH(ﬁRU[) =0
| 0 v T
Tmy(7oy) = — (“’R”; +orwr) _ 5
Imy (w D A
Imy(Tog) = mH(vag + o) =3 (5.3.13)

Note that these are complex equations for the commutative ADHM solutions, not
the noncommutative ones. In the noncommutative case, only one of these equations

changes — the second one, which becomes
ImH(TI)RUJ]) + ImH(T)RU]) = —4(o3 (5314)

As a check, if we assume that our solutions to the ADHM equations are entirely real,
we have the complex imaginary parts of all our variables being 0, and we have only

the one equation which is not trivially satisfied (just as in [1])

ImH(IZ)RUR)

5 (5.3.15)

ImH (7:0'R) =

It should be noted, as discussed in section 3.3.2, that no new degrees of freedom
are introduced compared to the real ADHM equations. Complexifying v, w and o
adds twelve degrees of freedom. However, each of the 3 new equations affecting the
imaginary part of an expression adds 3 constraints, giving 9. Recall that we have a
residual O(2) symmetry on our solutions to the ADHM equation in the quaternion
case, which is promoted to a U(2) symmetry in the biquaternion case allows us to
remove a further three degrees of freedom. This gives a total of 12 degrees of freedom
removed, cancelling the number of new parameters and showing that there are no

new solutions.

5.3.1 Finding biquaternion solutions

That being said, any quaternion solution should be able to be turned into a biqua-

ternion solution by a different choice of the U(2) symmetry, implemented by an
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SU(2) rotation as in equation (3.3.34) with R € SU(2). The rotation is SU(2) rather
than U(2) as the standard solutions in the real case have already have O(2) (= U(1))
fixed. That is what I shall proceed to show explicitly. I begin by giving a general
form of the transformation under R. I then show how a particular solution to the
biquaternion equations can by rotated to a pure quaternion form, exactly corres-
ponding with [1].

The reason this is worth doing is that the non-commutative ADHM equations only
have complex solutions, and having the commutative solutions in a complex form
might make it easier to spot a generalisation, or to construct a solution via deform-
ation.

We start with the standard real solution to the commutative ADHM equations [1],

where A is put in the canonical form, a + bz, with b as in equation (3.3.2) and

v w
A%
Q2><2 A
iz 7

where the entries are all quaternions. To get the form of the complex solutions
we undo our specification of the real line by rotating with an arbitrary element so

SU(2), given by either

|, abeClaP+ P =1 (5.3.17)
b a

or

Yo +iys Y1 +y
T er Y= (5.3.18)

—y1 +iy2 Yo — Y3

The first of these is easier to work with, as there are less symbols, however the second
seems to me more illuminating since we are thinking of the (complex) quaternions
as modules over R rather than C. I will therefore give the general solution in terms

of both parametrisations of SU(2). Applying
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1 0
A ‘AR, f—RT-f-R Uws RU
T RT

with R as given above, we find the general complex solution is given by

av — bw bv + aw
(Ial? = b — (b + ab) s ) 2abr + (@ — b) 7 (5.3.19)
2bar + (a? — 52) 78 —<ya|2 P (ab+al_))|TA2)T

We can see that this has the correct form

vow
T o* (5320)
o -7

which we would expect for a complex solution to the ADHM equations. Using the
real representation for SU(2) the solutions cannot be usefully put into matrix form

as they are too long, but are given by

v = [(yo +iyz)v — (1 —iy2)w (Y1 +iy2)v + (yo — iyg)w}
T = <(’y§ + 93 —yi —u3) +2(yoys — yoyl)TAIQ>T

o' = (2 <yoy1 + Ysy2 — i(Yoy2 — y3y1)> + (y% + 93— v3 — 3 + 2i(yoys + y1y2)> ﬂ?)f

5.3.2 Using the Symmetries

The above expressions are not particularly illuminating, not least because they are
in terms of the old parameters, not the new ones. Ideally, we want ¢’ in terms of o.
However I was unable to use the above expressions to do this. I next tried directly
solving the equations (5.3.13). Again, I could not find a full solution. Solving the

last two equations we get

o = T(a + A) (5.3.21)
and

or = 2(7 + ) (5.3.22)
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For arbitrary real functions o and . We can then use the second equation to get
Wrwy; = [+ Vrvr (5323)

which can then be used to define

_ Pwr + wrURY;

[wg|?

For some arbitrary real function . However trying to use these to solve the first
equation has not met with success thus far, and therefore we adopt the method of
finding the infinitesimal forms of the transformation, and using these to show we
can set the functions a and 7 to be zero. We will then use an expansion in # to
solve the remaining equations, before using the remaining 2 degrees of freedom to
arrive back at the real solution we are familiar with. This ensures the consistency of
our equations with the existing real ADHM equations, and enables us to extend the
solutions of those real commutative equation to the complex noncommutative case.
To start with, we consider the infinitesimal form of our transformation (3.3.2). To do
this, we first note that R € SU(2) can be written as exp(tt), v € su(2), and similarly

for u(1).We write an element of u(1) as a phase i, and an element of su(2) as

ai b+ci
(5.3.25)
—b+ci  —ia
Then the transformation, to linear order is given by
1—140 ﬁ v
A | . ~(1+v) (5.3.26)
0 1+ §)
Then to linear order
60U = —i07 + U (5.3.27)

and

60 =t + Qr (5.3.28)
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First of all, we look at 5. Expanding into components, we find that this is equal

to
{z’(a —0)v+w(=b+ci) (b+ci)v— z'(a—i—@)w} (5.3.29)

We now write v = vg + ivy, and the same for w, and group the (complex) real and

imaginary parts to get (separately now for v and w)
<(9 —a)vy — bwg — cwl) + i<(a —O)vr — bw; + cwR> = dvp + 0V (5.3.30)
and
<w1(a +0) + bug — cv;) + z< —(a+ Q) wg + bur + cvR> = dwg + idwr  (5.3.31)

Now we look at 0€2. Componentwise, this turns out as

—b(o + 0*) +ic(o* — o) —2iac* + 27(b+ ci)

(5.3.32)
2iac + 27(b — ci) b(o + %) —ic(o* — o)
As a consistency check we can note that this matrix has the form
7_/ 0_/ *
() (5.3.33)
g —
Using 0 = o + i07, we can immediately read off that
0T = —2bog + 2co; (5.3.34)

Note that this is a real quaternion, as expected. As for do, expanding and collecting

(complex) real and imaginary parts, we get
2(()7’ — aa;) + 2i (aaR - CT) = dop +idoy (5.3.35)

We want to show that we can always make the symmetry choice « = v = 0. Therefore
we want expressions for da and d+y, as these are the quantities we want to set to zero.

We can combine finding them with a check of consistency. Looking first at da, if we
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write
T A
Then we get
AN
d(Tor) = 0o+ 5 (5.3.37)

We can then compare this to d(7og) calculated directly from 0f2 as
(0T)or + TéoR (5.3.38)

There is one unknown between the two equations, d«, and by comparing the two we
can determine what this is (in fact, as A is imaginary quaternionic, the real part of
equation will be da). The consistency check comes in comparing 2Imgy (6 (%03)) to
0A, as these should be identical. That is what we will now proceed to do. We start
with

oA = ImH ((571)3)1}3 + wRdvR + ((5@])1)[ + 117[(51)[)) (5339)

Looking at each individual part we find

(&I)R)UR = (CL + 9)@]1)1:5 + b|UR|2 — C@[UR
QDR(SUR = (9 - a)val - b|U)R|2 - Cwa[
(510])1}[ = —(CL + Q)IDRU] + b|U[|2 + C@RU]

wrovy = (a — 0)wrvr — blwy|* + cwrwg (5.3.40)
Putting this all together we get
oA = ZCLImH(TI)[UR - me) + QCIIIIH({JRU[ — QDRU)[) (5341)

Note that the terms depending on 6, which only acts on v and not €2, cancel. This is
a good sign that the two forms might be consistent. Using the equations in (5.3.13),
we can rewrite this as

0N = —2aT + 4clmy(vgvr) (5.3.42)
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Now we compare this to 6(7og) calculated directly. We find

67or = 2b(|7|* — |og|?) — 2a7o; + 2ca10R (5.3.43)
and the part we are interested in for the comparison

Imy(07og) = —2clmy(oror) — 2almy (7o) (5.3.44)

Now, note that by the constraints (5.3.13), Imy(7o;) = I and Imy(dro;) =

—Imy(vgvr). Therefore
2lmp(670r) = —2aY + 4clmy(vgvr) (5.3.45)

in perfect agreement with the result for A in (5.3.42). Therefore this part of the

transformation is consistent, and we can define
Sa = Imy(670R) = 2b(|7|* — |og|?) — 2ay — 2cRen(aroy) (5.3.46)

where I have used the fact that Ren(7or) = . The next stage is to derive a similar

result for dy. This is, in fact, not too hard. In a similar way we calculate

0T = 2a + 4blmy (vRvr) (5.3.47)

and
5(7_771) = 2¢(|of|* — |7?) + 2ac + aA — 2b5Ro; (5.3.48)
Again using Imy(drol) = —Imy(vRvr) we can see that the imaginary parts of these

equations are consistent, and so we can define
67 = 2¢(|o; > = |7]?) + 2aa — 2bRep(Groy) (5.3.49)

The final check at this stage is to make sure that dav and ¢y are linearly independent,
so that we can set both 7 and a simultaneously to zero. Considering the combination

Ada + Bdévy and finding the coefficients of a,b and ¢, we find that the only way the
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combination can be zero is if we have everywhere that

Loyl = jm\? (2 + j) —0 (5.3.50)
But o and o7 depend on v and w, and 7 is independent from them. Hence this
expression cannot be identically zero and so the variations are linearly independent.
Alternative, looking at the expression for da, (5.3.46), we see that we can tune it
using a in order to set a to be zero. Then we have ,‘used up’ the variable a, so it
does not contribute to the variation of +. Instead we can use one of b or ¢ to tune ~
to be zero too.
Therefore we can set v and 0y to be anything we want, using the parameters b and c.
In particular we can set a and v themselves to zero using successive transformations.

For completeness we list all the useful transformations here

dvg = (0 — a)v; — bwg — cwy
dvr = (a — O)vg — bwy + cwg
dwr = wr(a+0) + bug — cur
dwr = —(a+ 0)wg + buy + cvg
1 = —2(bog + coy)
Sa = 2b(|7|* — |or|?) — 2ay — 2cRe(Groy)
0N = —2a7Y + 4clm(vgoy)
6y = 2¢(|o;|* — |7?) + 2aa — 2bRe(GRoy)

We now attempt to solve the second of equations (5.3.13) using an expansion in #

We do this because if we expand the left hand side in terms of our solutions for oy

and o; we get

ImH(a'RO'[) :ImH<—’T‘2 2‘7‘|2
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The right hand side must also depend on # and so we expand

A

A

|7-|2i

vr = Agvp + Y (5.3.53)

i=1
where the /Alz are quaternions, but Ay is a real function. Note that the Ag term does
not depend on |7|?, however this does not matter since Im(vpAgvr) = 0 and so it
does not appear explicitly in the RHS of the equation. The fact that the LHS is one
power of # higher than the RHS does mean that we can try and solve the equation
iteratively, as when we match the terms in # we find that the LHS depends on
ITP(%” whenever the RHS depends on ﬁ First of all, we substitute v; = Avg into
the LHS to find Imy(0gA;).

A somewhat long and not very illuminating calculation tells us in this case Imy(AY) =
0. Then we have Imy (aT — vA) = —2Imy (ER/L). Expanding using the definitions

of A and Y, and equation (5.3.24), we get that

Ai = (a(Ag = K) = 7(1 4+ K Ao))wp = mwp; K = (5.3.54)

Repeating the process by plugging Ay = mwp into the LHS, we find that again

Imy(AY) = 0. But this time, there is not such a simple form for Ay:
Ay = (m — 1)ywr — am WRVRWR (5.3.55)

I decided that continuing the series expansion would not be particularly illuminating.

Instead notice that if a and v are zero, then we have
Imy(0pA) =0 = A; = Ayug (5.3.56)

Where A; is again a real function. But by iteration, this tells us that A; = Avg, Vi €

Z and therefore
Uy = VR Z W = A'UR (5357)

1=0

where we are assuming that the sum converges to a real function A. So

v =wvg(l+iA) (5.3.58)
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Using (5.3.24), we find also that

_ B — A|UR|2

= 1+4B),B
w = wgr(1+iB), e

(5.3.59)

Now the goal is to use the remaining parameters a and 6 to set A and B to zero,
whilst keeping « and v zero. If this is the case, we will have recovered the solution
to the real AHDM equations in [1] as a solution to the complex equations when the
U(2) symmetry is modded out, as expected. To see if this is possible, first we write

the intermediate solution:

v =vg(l +iA)

w=wg(l +iB)

T=T
A
OR = ’T|2, A= (1 + AB) ImH(U_JRUR)
T
T _
o;r = W’ T = (A - B)ImH(vaR) (5360)

We also give the relevant transformations

dvr = A0 — a)vg — (b+ cB)wg
d(Avg) = (a — 0)vg — (bB — c)wg
dwr = wrB(a+0) + (b— cA)vg
d(Bwg) = —(a + 0)wr + (Ab+ c)vg
o1 = =2(bog + coy)
Sa = 2b(|7|* — |or|*) — 2AcRe(ogoy)
0N = —2a7
6y = 2¢(|of)? — |7]?) — 2bARe(GRro;)

5T = 2al (5.3.61)

Where we can simply insert our solutions into the transformation formulae as we

showed above that the transformations were consistent with our constraint equations.
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At first sight there seems to be an issue with consistency, as

5A = ﬁ;(é(AvR) ~ Adug)) (5.3.62)
This gives
0A = (a—0)(1+ A%) + Dpwr (b(B — A) — c(1+ AB)) (5.3.63)

The problem is that A is a real function, and therefore 6 A should be real. But here

0A is a quaternion. In fact, we have
Imy(0A) =0T + cA (5.3.64)

The solution to this difficulty is that the validity of this intermediate solution depends
on « and 7 remaining zero. However we can only make their variations vanish
everywhere by setting b and ¢ equal to zero. This follows from the linear independence

of v and 6. Then we have
§A = (a—0)(1+ A?) (5.3.65)
which is real, as required. If b and c are zero, the remaining transformations become

5’UR = A(G — (I)’UR
d(Avg) = (a — O)vg
5wR = UJRB<CL + Q)

(5(BIUR) = —(CL + Q)UJR

0T =0

da =0

0N = —2a7
oy =—0

5T = 2aA (5.3.66)
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Then we can also see that

QIJR((S(BU)R) — B(SUJR)

lwg|?

0B =

= (a+0)(1+ B?) (5.3.67)

There are two more consistency checks we must perform. First of all, are 6 A and
0~ independent? Second, is 0B to linear order the same as we’d get by varying
the definition of B in equation (5.3.59)7 It is not too difficult to see the first of
these is true — one simply multiplies out the expression C9A + DJB and looks at
the coefficients of a and #. The second condition is also guaranteed because we can

simply define
68 = 6(|wg*B) + 6(Alvg|*) = Bo|wg|* + (0B)|wg|* + Ad|vg|* + (§A)|vg|* (5.3.68)

The only thing we require of 4 is that it be real, but this is guaranteed as all the
quantities on the RHS, and hence their variations, are real. Therefore we can use

the two parameters a and 6 to set A and B equal to zero. This gives us the solution

TA

PP

A = Imy(wo) (5.3.69)

v, W, T,0 =

This is the same as the solution in [1]. We now move on to trying to solve the

noncommutative equations.

5.4 The Noncommutative solution

In this section I explore the solution to the noncommutative deformation of the
above ADHM equations. The first step is to review the solution suggested in [37]. I
show that this solution is incorrect, and outline several strategies I used to try and
find a full solution. I was unable to find such a full solution, however I was able
to find a solution on a subspace of the full moduli space. Once I have this partial
solution, I use it to calculate the metric and potential for this subspace of the moduli
space, as well as the scalar field.

To begin with , consider the noncommutative ADHM equations. As stated above,
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they are very similar to the commutative ones and are given by
21111H (5’30’[) — ImH (IDRU)[)IHIH (@RU[) =0
ImH(lDRUJ]> + IIHH(T}RU]) = —4<0'3
I 0 v T
Imy(Toy) = mu (v + Upr) = —
2 2
I U U A
Imy(FoR) = mH(wR’U; +wrvr) _ : (5.4.1)

Where the second equation is the one which has changed, and o3 is the quaternion

basis element

0 —

(5.4.2)

We can try to solve this using the same method we used for the complex commutative

equations. The initial steps are the same. We can solve the third and fourth equations

as

and

T T
“f:mz@*z)

just as before. We can use the second equation to deduce that
lZJRUJ] = 6 — @RU[ — 4’iC03
and so

. wRﬁ — wR@RU[ — 42{11)30'3
|wrl?

wry =

Getting any further than this, however, is rather non trivial.

5.4.1 Checking the previous solution

(5.4.3)

(5.4.4)

(5.4.5)

(5.4.6)

A good starting point is checking the solution given in [37]. There the solution

for the biquaternionic noncommutative parameters w’ & v’ is given in terms of the
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quaternions w and v as

w|? + « 0
AU E (5.4.7)

bl o wlP —ac

and the obvious equivalent for v" in terms of v. In the notation we’ve been using

this is
v =v(A+iCo3)
w' = w(B +iDo3) (5.4.8)
where
VP —ac+ ol +ac
N 2|v]
o Il —al— o +ad
N 2]
5 VIwlP —al+ lwP +ag
- 2|w
wl? —al — /|w]? + «
b VI —al— ylw +ad 5.49)
2Jw
This gives
v = Av
vy = Cvos
wp = Bw
wy = Dwos (5.4.10)

The claim in [37] is that propagating these definitions through o solves the noncom-
mutative ADHM equations. However I want to check if this is true, using the more
rigorous method of splitting into complex real and imaginary parts defined above.
First of all, we need to work out what A and T are. We can solve equations 3 and 4

of (5.4.1) to get

A = Tmy(wihvy + wivh) = ABImy(wv) + CDImy(c3wvos)
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T = Imy(w' g0} + v'gw}) = BOTmy (wvos) + ADImy (vwos) (5.4.11)
What about the other equations? First we look at the second one. Then
— 4Cos = Imy(w' gw}) + Imy (V' gv}h) = (BD|w|2 + AC|U|2)O'3 (5.4.12)

We can see that
ag

BD|w|* = AC|v|* = — >

(5.4.13)

and so we have

a=4 (5.4.14)

Now for the final equation. Assuming that, as in [37], we have used the symmetries

T

3 this equation becomes

to set op = ﬁ and o; =

1

—74|7_|21m|_| (AY) = Imp (v'gv}) — Imp (W' gw}) (5.4.15)

ImH (C_TRO'[) =
But this left hand side is equal to
(AC|o]* = BD[w[*) o3 = (—2¢ + 2¢)o5 = 0 (5.4.16)

So we are trying to solve
Imy(AYT) = 0 (5.4.17)
Using (5.4.11), we can expand AY as
AC B*Imy (wv)Im(wvos)
+BD A*Imy (wv)Im (dwos)
+BDC*Imy(G3wvos)Imy (wvos)

+AC D*Imy(53wvos) Imy (twos) (5.4.18)
For convenience of notation, we write this as

ACB?X + BDA*Y + BDC*W + ACD*Z (5.4.19)
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and look at each term, one at a time. In general, we'll use (5.4.13), as well as the

facts that
PO s
2 2|v|?
02 . 1 . |U|4 - OéQCQ
2 2|v|?
1 wlt — a2c2
o1, Il ok
2 2|w|?
1 w|* — a2(?2
Then
1wt =\ a¢ N
ACB*X = — (2 + ST ) 2|1)C|2 (U)UU)UO'g — v} |w|*os — wuasow + vwang)
1 [o[* = a2¢?\ ol o o
BDAYY = — (2 + IR ) CE (|w|2|v|203 — VWYWO3 — WUTZWY + vwang)
1 |t — a2C?
BDC?*W = — (2 — | |2|v|2 ) 2|(iu|2 (6311)1)0311)1)03 — F3vwoswvos — os|wl?|v|* + 6317w17w)
1 w|* — a2
ACD*Z = — (2 - | |2|w|2 ) 2|O;<’2 (5311_)1)0—3171003 — 030WO3VW0o3 — T3WVWY + 63]11)]2\11]2)

(5.4.21)

We can group these terms as

o o o¢ ol — a2 oC ol = a2?
“a T T YW e AT e (W)

(5.4.22)

We can Taylor expand

@2C2
\/ |’U|4 _ Q/QCQ ~ |’U|2 + ‘0’2 =+ ... (5423)
and similarly for /|w|? — a?¢%. Then

. aC/X Y 33 X-7Z Y-W
~—— — — - 5.4.24
RO T (wv'*|ww) znvﬁhm2( wE P )+ (5.4.24)
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Now, to show that the solution doesn’t work, we need only show that the term linear

in ¢ is non- zero, that is, we need to show that it cannot be the case that

X Y
I — 4+ — 1] =0 5.4.25
(5 + o) (5:4.25)
Now,
X Y _ wvos VWos3
— 4+ — =1 I I 5.4.26
op = ) (i) + I 5) (54.26)

Now, (5.4.25) being satisfied implies that either (5.4.26) is identically zero, or that
it is always a real number. We look at the former case first. Since the quaternions

are a field, there are no zero divisors, so (5.4.25) being satisfied implies either that

Imy (wv) =0 (5.4.27)
or
WU0o3 VWOo3
I — )+ Im(——) = 4.2

The first of these clearly cannot be true in general, so we look at the second. We

WU vw
g ( (o 2 5.4.29
o (i o)) 42

The above expression can only vanish if @i@ + 3—7; o o3 which will not be true for

can rewrite it as

general v and w. Therefore (5.4.26) cannot be identically zero.

We now have to check the case where (5.4.26) is real. This requires that

WU VW _
W + W X wWvos (5430)
so that
wv VW _
Im<(|w|2 + |v|2)a3> o« Imy(wv) (5.4.31)
and
X Y
of + e Imj,(wv) € R (5.4.32)

multiplying both sides of (5.4.30) by vw and rearranging, we find this would imply
that

vwiw = —v|*L + k|w|*|v| o (5.4.33)
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For some real function . Again, this will not be true for arbitrary v and w. So we
see that the solution given in [37] is not a solution to the noncommutative ADHM

equations

5.4.2 The Noncommutative Case

If this is not the solution, then what is? I tried many methods, but was unable to
find a solution for the full quaternion moduli space. However I was able to find a
solution on a complex subspace, which I present here. This subspace comes from
restricting the the quaternions to the subspace consisting of elements z € C written

as x + yos, for z,y € R and o3 the usual Pauli matrix

1 0
0 —¢
Note that ¢ = —1y, and therefore o3 can play the role of the imaginary unit. We

start with the second ADHM equation, now for complex variables
Imc<@RU[) + Imc(ﬂ)Rw]) = —4(o3 (5435)

Recall that we are using the notation Imy to mean the imaginary quaternion part

of an element of H; e.g. for ¢ = ¢y + q € H,
Imy(q) =q (5.4.36)

On the other hand, Im¢ takes the imaginary component of an element of C. If
2€C; z=a+1b
Imc(z) =0 (5.4.37)

With these definitions in mind, we can solve this for w; and v; in terms of the other
variables by finding a particular solution, then by adding the null space, found by
solving

Imc(?_}RUI) + Imc(’U_)Rw]) =0 (5438)
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It isn’t too hard to see that a particular solution is given by

—2 —2
&;‘3. wi, = —2Cwros (5.4.39)
|vR|

U[p =

We already know the solution to the null equation; it is

= & (ﬁ—waI) (5.4.40)

TR

For arbitrary real § and arbitrary quaternion w;. Therefore we have the general

solution
—2CvRo3 UR < _ N)
= — 5.4.41
vy onl? +|UR’2 B — wrwy ( )
—2Cw303
wy = ———1— +w;
[wr|

To complete this general solution we need to solve for @w;. This is done by solving

the first ADHM equation
Imc((}Ra]) = Imc(i_}R’U[) — Imc(’U_JRU)[) (5442)

We can use two of the symmetries to set Re(7o) = 0, by analogy to [1]. This
corresponds to removing any component proportional to 7 from o. If we do this,

then the equation becomes

_ ImC (AT)

B = Imc(vpvr) — Imc(wrwy) (5.4.43)

In general I have been unable to find a solution, however if we restrict to the
complex plane spanned by 1 and o3 the LHS becomes zero, since A and T are both
proportional to o3, and hence their product is real and Imc(AY) = 0. Putting the

solutions in (5.4.41) into the RHS we get
Ime(@pi;) = 0 (5.4.44)

This leads to the solution

—QCURO'g

ot Bog (5.4.45)
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Following the discussion in section 5.3.2, we can use the remaining two symmetries

to set A and B above to zero, we get the full solution for the complex subspace

—QCURa'g
Vr = BETRTEE
|vR|
—2Qwgo3
Wy = ———5—
[wg|
on — TIHI(U_)R’UR—F@TJ[U[) _ (’UR‘2”LUR‘2+4C2)TIIH (w v )0‘
) 2I7]? 27 PlorPlwg? O
TImC(wRU] + @Rw]) C(|wR|2 + |UR|2) _
— = — I 5.4.46
or GE EEESEE TImc(wrvRo3)03 ( )

We can check our assumption about the symmetries by checking both that our solu-
tion really does solve the ADHM equations, and that there are no residual symmetries
remaining. By this I mean that there should be no symmetry transformations of the
solution which also solve the ADHM equations, since this would imply that there
were degrees of freedom which our solution had not accounted for. It is straightfor-
ward to check the first part. To show there are no residual symmetries remaining,

we consider a general linear order U(2) transformation, as discussed earlier

1 0 a b
A AR; R=| s a,beC, la*+b* =1 (5.4.47)
0 Rf b a

This generates the transformation

voow av — bw bv + aw
7 o | = |(|la* = |b|*)T — abo — abo* 2abt — b*c + a*c* (5.4.48)
o -7 2abt + a’c — b*o* —(|af* = [b]*)T 4 abo + abo*

Now, to preserve the symmetry we require two things. First, we require that
Rec(7o) = 0 has no component proportional to 7. We also require that wrw; = vgv;.

The first of these conditions requires that

(laf* = [b*)ab =0

a’b —ab® =0 (5.4.49)
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If we write

a = cosx (0059 + ’isin@)

b = siny (cosgb + zsmd)) (5.4.50)
Then the first of the conditions in equation 5.4.49 gives the equation

;cos(zx) sin(2x)(cos(9 _ ) +isin(6— ¢)) —0 (5.4.51)

nm

This requires that x = “F. We can now look at the second equation of (5.4.49),

which gives

sin(y) cos®(x) ( cos(30+¢)+1 sin(39+¢)) —sin®(x) cos(x) ( cos(0+3¢)+1 sin(6’+3gz5))
(5.4.52)

When x = “F with n even then this will vanish automatically, however when n is

odd we have
(cos(39+¢) —cos(0+3¢) +i(sin(39+¢) +Sin(9+3¢))> — (cos(9+3¢) +i) (5.4.53)

For this to vanish we require § = —¢. Thus satisfying the condition on Rec(70)

gives the constraints

X=—; 0=—¢ (5.4.54)

for n from 1 to 7. The condition on y gives the dihedral group of order 16 as a group
of discrete rotations. The implications of this are discussed in [1]. Now, we look at

the second part of our symmetry. After the transformation,

’u_}ij = |b|2’l_)RU[ + ’a‘QU_)R'LU[ + Bc_l U_R’LU] + ab U_)R’UI

wrw; = (|a|® — |b]*)wrw; + ba vpw; + ab WrY;

Keeping wrw; = —vgv; requires

2abiwgw; = 0 (5.4.55)
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This requires ab = 0, which is satisfied if cos(26) + isin(26) = 0. This leads to

3

m
0=0,—-,m, — .4.56
07 277T7 2 (5 )

¢ = " multiplies a,b by 1 and so does not change the symmetries in [1]. If we set
0 = 0,7 we multiply a and b by £i and Fi respectively. This doesn’t change 7, but
sends 0 — —o. It also interchanges the complex real and imaginary parts of v' and

w'.

5.5 The Scalar Field

Once we have the solution to the constraints, the next step is to calculate the scalar
field. Insofar as we do not substitute in the solutions in the above section, 5.4.2,
this solution for the scalar field is valid for the whole quaternion subspace, albeit
with vy, wy, og, o7 as unspecified functions of the moduli space coordinates vg, vy
and 7, as well as the parameter (. If we substitute in the solutions from section 5.4.2
then the scalar field derived would only be valid for the complex subspace. This also
applies to the Potential and Metric derived below.

With these comments in mind, our anzatz is

0
o—UtAU; A= | (5.5.1)

0 P
Here ¢ is in the odd graded part of C x H; i.e. ¢ = iqy + q, where ¢y € R and

q € ImyH. This is isomorphic to U(2). The matrix P is given by

at ci—b
(5.5.2)
ct+b di

Following the method in section 3.4.1 we arrive at the equation of motion for the

scalar field:

2Try (ATgA) + Tro([QF, PIQ — QF[Q, P]) — Try({P,ATA}) = 0 (5.5.3)
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Solving the equation is a lengthy calculation, which I have therefore relegated to

appendix A. The solution is

a=- é<A<3> (¢°Nar — f*Nag) + AQR)w(4gP — fNag) + A(L)w(4fP — gNaj)

~ ((16P* = NarNaj) (A(B)(2s +w) + wA(4)>>

b :216 (A(l) (fQ(v +w) — 2N 7 (sv + sw + VW)) + A(2)(fg(v +w) 4+ 8P(sv + sw + vw))
+AfP+ gNan) (AB)w = w) — AW (v + w)))

c :21@ (A(l) (fg(v +w) — 8P (sv + sw + UU))) + A(2) <g2(v + w) + 2Nag(sv + sw + vw))
(N +40) (A0 = ) + AW+ )

d=— é(A(?’) (fZNAR - QQNAI) + A(2)v(4gP — fNar) + A(L)o(4f P — gNar)
+ (A(3)(2s +v) — A(4)v)(16P? — XY)> (5.5.4)

where

A(1) = 4goRen(vrwr — vywr) — 4Ren(vrqug + vrquy)
A(2) = 4qoRen(vgwpr + vywr) + 4Req(vrqwr — v1qwpg)
A@3) = qo(Jorl + Jur* = |wgl? = wi]?) + 2Ren(vrqus — wrqwr)
A4) = qo(]vR\2 + vr]? + [wgr|* + \w1]2) + 2Ren(Vrvr + wWrqwy)
f = Ren(wrvg + wrvy)
g = Ren(wrvg — vrwr)
v = |ogf
y = o/
P = Ren(oroy)
v = |ogl* + |vr|?
w = wg|* + [w;[?

Nag = [vg)* + |vi* + [wg]* + |wi|* + 4(|7|* + |or]?)
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Nar = |vgl* + [vr]* + |wgl* + [wi] + 4(7]* + |o1]?)

O = (v+w)(f*Nar — g*Nar) +2(16P* = NapNas)(sv +sw+vw)  (5.5.5)

In the commutative limit from [1], that is, ¢ = 0 and the imaginary quaternion parts

qr set to zero, this becomes

—2Ren(vqu)

a,b,d=0 5.5.6
= S 4P + o), (5:5.6)

which is precisely the result in that paper.

Another useful limit is that in which |7| — oo. In this case

qo(|vr|* + [vr]?) + 2Re(vrqur)
a [vg|? + |or]?
qo(|wrl* + [wi]?) + 2Re(wrquy)
[wr[? + [wy]?

d= (5.5.7)

With b, ¢ = 0. This corresponds to the two instantons being far seperated. In this
case we would expect them to look like two single U(2) instantons, and we see from

comparison with (5.1.10) that this is precisely the case.

5.6 The Potential

The next step is to use this to explicitly calculate the potential. Recall from section

4.4 that the potential is given by
V= / d*2 T (D¢ Di) (5.6.1)
Integrating by parts, and using the equation of motion for ¢
D?¢ =0 (5.6.2)

We get

— limpso / d5°2,Tx(¢D;0) (5.6.3)
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We know that the vector U, being a null vector of A, must solve

iU 4 (11 — 2N Uy + 01U = 0

w'Uy + 0'Uy — (71 + 2 Us = 0 (5.6.4)

This is solved on the boundary by

U1 — 1

X
UQ — |:L’|2UT
Lot

The full calculation is in the appendix B. The result is
87 (!qu(lvR\Q + [or 2 + Jwal? + [wr|?)

+ 4qoRen(Vpqur + WrGwy) — a(qo(|vR|2 + |vr* + QReH(EquI)>

- d(q0(|wR]2 + |wr]?) + 2ReH(@TJRg7w1)) + 2bRen(Vrqur + Urqwy)

— 2bgoRen(wivr — wrvr) — 2cqoRen(wrvg + wivr) — 2cRen(vrquy — qu_’wR))
(5.6.6)

Since we can choose the gy to be zero by requiring the vev to lie in SU(2) (as

discussed in section 4), we can make this choice and simplify to
87 (\q\2(va|2 + [vr? + |wrl* + |wil?) — a(2Re(Drqur)) — d(2Re(wrduwr))
+ QbRe(ﬁRcwa + @[(j)w]) - QCRG(@RCTUJI — ﬂjlij)) (567)

Where a, b, ¢, d are given above.
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5.6.1 The Large 7 limit
If we go back to the large 7 limit, using (5.5.7)

V = 8r’ (|Q\2(’UR|2 + [or|* + Jwr|* + |w1|2) + 4qoRe(vrqur + wrqwr)

2 . 2
(qo(lval? + Jur? + 2Re(vrqur))”  (qo(Jwrl? + |wil?) + 2Re(wrgwr) ) )

|orl? + |vs]? |wal? + |wi?

(5.6.8)

In this case, the gy parts cancel explicitly, and we get

4Re?* (R4 4Re* (g4
v=872101\2(Q(\vRPHm%inPHwIF)— < lndey)_2e (w’*‘“””) (5.6.9)

[orl? + vrl>  wal? + w?
We would expect this is the potential for two copies of the single U(1) instanton, and

if we compare to the result in section 5.1.1 we can easily see that this is the case.

5.7 The Metric

As in section 4.3, we begin by calculating, a'dC,., and impose the condition
Tx
a'éC, = (aTéCr) (5.7.1)

Once again, we carefully note that 1" involves taking the transpose considered as a
2 x 2 matrix of complex quaternions. It does not affect the quaternions themselves.
The operation % takes the complex conjugate of each element, which again does not
affect the quaternions but only their complex coefficients.

This should give us one equation for each component. We can expand dR in the u(2)

basis as

ide  idy — df
id+do idy

(5.7.2)

this should give 3 simultaneous equations for the derivations in the different gauge
directions. We can then solve these to find 0 R in full. The details of the calculation

are in appendix C, however the result is
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do = ! ( —2B(1)(2s + w)(4fP — gNay) + 2B(2)((2s + w)(49P — fNar)
(

— (B(3)(2s + w) + B(4)w) (16P* = NapNas) — 2B(4) (f*Nar — 8fgP + g*Na;) )

—_

dd =—(2B(1) <f2(4s+v—|—w) —NAI(sv+sw+vw)>

2B(2)(fg(4s + v+ w) — 4P(sv + sw + vw))

+ (B(3)(4s + v +w) — B(4)(v — w))(4f P — gNAI)>
diy :;) ( —2B(1)(fg(4s + v +w) — 4P (sv + sw + vw))

—2B(2) (92(43 + v+ w) — 2Nag(sv + sw + vw))

+ (B(3)(4s +v+w) — B(4)(v — w))(4gP — fNAR)>

dy = ( —2B(1)(2s +v)(4fP — gNa;1) + 2B(2)(2s + v)(4gP — fNag)

1
®
— (16P? — NapNar) (B(3)(2s +v) — B(4)v) + 2B(4) (f*Nar — 8fgP + g*Nas) )

(5.7.3)

Where the terms are defined in (5.5.5) with the addition of

B(1) =vgpdwg + vydw; — wrdvg — widvy + 2(7dog — oRdT)
B(2) =vrdw; — vjdwg + wrdv; — widvg + 2(6;dT — Tdoy)
B(3) =vrdv; — v;dvg + wrdw; — widwg
B(4) =vgrdv; — vydvg — wrdw; + widwg + 2(6rdo; — a1dorg)
® =4 ((4s+v+w) (f2X =8fgP+gY) + (16P* = XY) (sv + sw + vw))
(5.7.4)



112 Chapter 5. One and Two Instantons

5.7.1 The metric itself

Once again we have our formula
ds® = ds?+ds? = 27° (Tr* (2dATdA+dQ1d) +Tr*<(aTda—<aTda)T*)dR>> (5.7.5)

First we have that a'da — (aTda)™™ is

0 vpdwgr + vrdwy — Wrdvg — wrdvr + 2(Tdog — G rdT)
7(6RdwR+{;1dw17'LDRdvR7w1dv1+2(7"d037&Rd7)) 0
) 2(17Rdv[717)]dvR+5'Rd0'175’](10’3) ’ldewI717)[dwR+’lI}RdU[7’LDIdUR+2(5'[dT777'dO'])
+1
vrdwy; — vydwr + wrdvy — Wrdvg +2(5’1d7‘ - Fdaj) Q(U_)Rd’w[ — wrdwr — oRrdog +5’1do’R)
(5.7.6)

Once we have this it is fairly straightforward to calculate the metric as

872 (dzvR + d?v; + dPwp + d*wp + &P+ dPog + oy
- ReH ((URdU[ - @[dUR + 5’Rd0'] — 5'[dO'R)ng5 + (@Rdw[ - QI)]d’LUR — 5’Rd0'[ + 5'[dO'R)dX

+ (z?RdwR + vrydw; — wrdvg — wrdvy + 2(7:dO'R - 6Rd7->>)d9

+ (Prdw; — Brdwg + @rdvy — Brdog +2(51dT - Tdaj))diﬂ) (5.7.7)

5.7.2 Checking the Solution

We can check the behaviour of this solution in various limits. First of all, the
commutative real limit, where the various imaginary quaternion parts ¢; and the

noncommutative parameter ¢ are set to zero. In this limit we have

TdewR — U_}RdUR — QI)Rd’UR + 2(7_'d0'R — 5'Rd7')

dp =diyp =dyxy =0;df = 5.7.8
0= dv=dx ol + [l + 4([7 + o5 (578)
This allows us to calculate the metric to be
dk?
87 (d%R v dPwp + P+ Pog — N) (5.7.9)
A

with

Ny = |vgl]* + |wgr|* +4(]7] + |or]?) (5.7.10)
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dk = T)RdwR — ZDRdUR — IDRdUR + 2(’7_'dO'R — (_TRdT)

exactly as in [1]. The second limit we can check is the limit in which |7] — oo.
Since this corresponds to the two instantons becoming far separated, in this limit,
we would expect to get two copies of the solution for a single U(2) instanton. We in

fact get
d¢ URd’U] — 1_}[d’UR ’U}Rde — U_J[d'wR
lvrl* + |vr]? jwr|? + [wr]?

(5.7.11)

This gives the metric

(URd’U] — 1_1[d'UR)2 (wRdwl — U_)]dU)R>2>

d52:87r2<d2v + d?v; + dPwp + dPw; — —
f ! f ! [vR|* + |vg|? [wgr|? + [wr|?

(5.7.12)

This is precisely the sum of two copies of the form in section 5.1.2 above, equation

(5.1.27).

5.8 Conclusion

I shall end the chapter by reviewing the main results. I have explicitly derived
biquaterion valued ADHM equations for the commutative and non-commutative
U(2) 2 instanton case. I have shown that a solution to the commutative biquaternion
valued equations can always be rotated to a purely quaternion valued form.

I have then moved on to the noncommutative case. I showed that the existing
solution in [37] was incorrect. I then derived a partial solution for the complex
valued subspace of the whole Instanton moduli space. I used this to calculate the
metric, scalar field and potential for this subspace, and checked that in the correct
limits my solutions matched up with the solutions in [1] and [3]. Now I will go on

to investigate the dynamics on the moduli space via numerical methods.






Chapter 6

Two Instanton Dynamics

In this section we discuss the dynamics of the instantons on the noncommutative
two Instanton moduli space we have constructed. The graphs in this section were
produced using the same basic code as [1], but modified for the non commutative

metric and potential we derived.

6.1 The Setup

I will now give a general overview of the method we used to scatter two Instantons.
The parametrisation is as shown in figure 6.1. As stated in section 4.2.1, we are
working on the subspace of the total moduli space with the collective coordinates
in C x C rather than C x H. Therefore the coordinates shown in the diagram are

complex numbers. In the noncommutative case, the instanton size p; is defined as

P
pi = p?+? (6.1.1)

Where the index ¢ in p; is either 1 or 2, referring to the magnitude of v or w
respectively. Calculating the scattering with general p; and p,, and with general
gauge embedding is very computationally expensive for the noncommutative case.
Therefore we did a lot of the simulations in the, ‘Orthogonal’ case where p; = p; and

the relative gauge angle between the two instantons is 7/2. The relation between
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W

P2

Figure 6.1: The setup of the Instantons. The instantons are located
at £(z,b) = (wcos(x),wsin(x)). They have size p; =

4¢2

P%‘ﬁ
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the new coordinates p;, 0;,w, x and v, w, 7 is given by

- pl(cos (61) + 281n(91))
— pQ(cos (62) + Zsm(QQ))

T = w(cos(x) —|—isin(x)) (6.1.2)
The relation between the coordinates b, x and w, x is

x = wcos(x)

b = wsin(x)
= VETE
X = arctan(b/x) (6.1.3)

There are several technical issues which emerged. First of all, around the point of
collision there is a discontinuous jump between the different, ‘paths’ the instantons
can take — there is no a priori reason why any two of the paths should be connected
rather than the alternative option. This can be seen on several of the graphs around
the origin.

The second issue is with the parameterisation of the Instanton position in terms of

7. The position of the Instanton is given by the eigenvalues of the submatrix

T O
(6.1.4)
o —T
of the ADHM data [1]. Recall that
Im(wrvr + wrvr) — (|vrl?|wel* + 4¢%) _
= = I
7 ; Sl PloalTun? P
Im(wRU[—i-ﬁij) <(|U)R|2+ ’UR|2> _
— —— I 6.1.5
or 2 |7—|2|'UR‘2|U)R|2 T m(vaR03) ( )

In the subspace under discussion, and in the coordinates we are using, this becomes

i(p%p% + 4{2) (cos(x) + isin(x)) sin(f; — 6,)
2p1 paw

OR —
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- —iC (pf + p%) (coS(X) + isin(x)) cos(th — 0») (6.1.6)
P1pP2W

At large 7, the matrix is effectively diagonal, and so the positions of the two Instan-
tons can be approximated by 7 and —7 respectively. At small values of 7, however,
o becomes very large and therefore 47 is no longer a good description. A better
approximation is to diagonalise the full matrix which gives the parametrisation
V72 + o2 for the position (note that this is in general a complex number), though
this can give a discontinuity at the origin to the presence of the square root, with
both positive and negative values. In practice, different plottings are clearly better
for different cases — usually for the noncommutative case it made more sense to use
the more complicated parametrisation, as the presence of { in ¢ means that this

becomes more important (as shown in figure 6.2).

6.1.1 Numerical Checks

We performed several checks on the numerical accuracy of our results. There were
two basic programmes used. The first was developed from the code used for [1], and
was used for the orthogonal instantons. The second was used for the 6-parameter
case, and was written by Mr. Joseph Farrow. In both cases, I made sure that I
could reproduce the results from [1] when I set ¢ = 0. I also made sure that the
second code reproduced the results of the first when I set the six parameters to
the same values as individual graphs in the four parameter case. Additionally, I
checked that, e.g. there was no interaction when the instantons were far seperated.
Finally, I checked that for small values of ( there was no observable change from the
commutative case.

I also looked at how changing the numerical precision of the method affected the
results. For the first code, I implemented this by changing the precision of the
NDSolve algorithm in Mathematica. Here it turned out that the standard precision
was enough — there was no appreciable change from increasing the precision beyond

this. For the second code, I checked this by manually changing the step size and
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Figure 6.2: Scattering of Dyonic instantons with b = 0.5 and ¢ =
1.15. The upper plot shows the |7| parametrisation, the

lower shows

/|72 + |o|?. The radii of the instantons are

not shown. In this case the ¢ behaviour dominates and
after the interaction the position of the instantons goes
as # — the 7 case had to be run for many more time
steps (50000 as opposed to 2400). This is presumably
because the size of the instantons becomes very large
and so ¢ continues to dominate 7 in the definition of

the instanton position
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number of steps. I increased it until further changes no longer seemed to have any

effect on the graphs produced.

6.2 Pure Instantons

We start with the four parameter orthogonal instantons. The first thing we could
do is look at the scalar field profiles for the instantons. This will give us an idea
whether the interpretation of the parameters for the noncommutative instantons
makes sense in terms of the interpretation for the commutative instantons. This
is made more difficult by the fact that the calculation of the scalar field involves
the Moyal product. We used a first order expansion in the Moyal product, which
ought to be valid for small (. We found that for small zeta (up to about 0.025) there
was no observable difference with the commutative case (See figures 6.3 and 6.4)
However, if we increased ( even as far as 0.1, some differences emerged. The first is
the presence of a discontinuity in the left hand graph. This is almost certainly an
error due to only going to first order in the Moyal product. The second difference
is the presence of a ring structure in the separate peaks in figure 6.5. This can
be seen more clearly if we plot a two dimensional plot as in figure 6.6. Increasing
( increases the size of the rings, as in figure 6.7. I think that this is less likely
to be numerical error and may be a genuinely new feature of the noncommutative
case, however future work caluculating the Moyal product to higher orders in the
scalar field would be required. =~ Now we move to look at the scattering. We will
first compare some particular scattering cases for different values of (, then I will
conduct a more systematic analysis and search for interesting behaviour. Choosing
a value for the noncommutative parameter ( sets an overall scale, so we can, ‘scan’
the parameter space by changing one of the other parameters at a time to look for
abrupt changes in the scattering angle. We can then focus on these areas to look
at the scattering behaviour around these points on the moduli space. It should be

noted that this scanning process is not in itself sensitive to periodic ambiguities
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Figure 6.3: The scalar field profile for the Commutative instantons.
The left graph is when they are nearly coincident, the
right when they are seperated. The solid line shows the
profile along the imaginary direction of the complex sub-
space; the dotted line shows the profile off the complex
subspace we are elsewhere considering.
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Figure 6.4: The scalar field profile for the Noncommutative instan-
tons with (=0.025. The left graph is when they are
nearly coincident, the right when they are seperated.
The solid line shows the profile along the imaginary dir-
ection of the complex subspace; the dotted line shows
the profile off the complex subspace we are elsewhere
considering.
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Figure 6.5: The scalar field profiles for coincident (left) and seper-
ated (right) Instantons with ¢ = 0.1. The dotted and
solid lines have the same meaning as before. As dis-
cussed in the main text these graphs are probably not
reliable due to being calculated only to first order in the
Moyal product
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Figure 6.6: A top down 2D contour plot of the noncommutative
part of figure 6.5. The brighter circles in the dark spots
show that the splitting of the two peaks really does
indicate a ring structure
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Figure 6.7: The scalar field profiles in 1D and 2D for the case in
figure 6.5, but with (=0.15. Note that increasing ¢ has
increased the size of the rings.
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in the scattering angles — e.g. instantons moving parallel and not interacting and
instantons reflecting directly off each other would both register a scattering angle of
zero. Therefore we must supplement this scanning by looking at individual plots to
check the interpretation of the scattering angles we have found.

To begin with, I will look at how a typical example of scattering in the com-
mutative case changes as we turn the noncommutativity on. In this case, the
parameters {p, 0, b, x} take the values {1,0,0.5,50} and their initial derivatives are
{0,0,0,—0.03}. The change in scattering angle as we change the value of ¢ from 0
to 5 is show in figure 6.8. The presence of the peak itself is notable and bears further
examination.

The first thing to note is that the peak is quite hard to resolve numerically — there
seems to be a discontinuity. To analyse this we can zoom in on that section of the
graph (figure 6.9). Then there seem to be two parts to the discontinuity. The first
moves between +7/4 faster than the scanning programme can pick up. The second
seems to jump between +7/2. This second one seems to be an artificial discontinuity
since the code is not always able to consistently identify the instantons in the same
way before and after the solution. This would cause just such a jump of 7 radians to
be observed. The first discontinuity seems to be a genuine feature of the scattering
behaviour, where the angle changes too fast to be resolved correctly by the graph.
This interpretation is borne out by looking at individual scattering graphs. In figure
6.10 we can look at the behaviour to the left of the peak and around the peak in
figure 6.8. At the peak itself the 7 description of the position breaks down and it is
essential to use the combined o and 7 definition for the position. The behaviour at
the peak itself is shown in figure 6.11 We analyse the behaviour to the right of the
peak in figure 6.12.

The overall effect of the noncommutativity is to increase the repulsion between the
instantons; however this is done in a non- linear way. Initially, the instanton scat-
tering angle seems to rotate anticlockwise, going from glancing off each other, to

moving parallel, to crossing over. This first change occurs rapidly as ¢ changes from
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0.85 until about 0.88 (figure 6.10).

At the first apparent discontinuity, the instantons change from moving across each
others paths, to repelling and turning back on themselves, so that their paths form
a loop near the interaction point. This change happens between ( = 0.8818695 and
¢ = 0.88187 however I have been unable to capture any intermediate behaviour. The
beginnings of the looping behaviour can be seen in the first graph in figure 6.11,
however as can be seen in the second graph there seems to be some kind of numerical
difficulty in assigning the trajectories to different instantons. I think on examination,
one can discern the two instantons looping and deflecting however.

The second part of the discontinuity seems to be artificial due to inconsistently
identifying the instantons, as can be seen from the bottom two graphs in figure 6.11,
where the loops are joined in two different ways. Comparison to the behaviour on
the right of the peak, and in the first graph in figure 6.11 leads me to conclude
that the correct behaviour is shown in the final graph — the particles loop back on
themselves — and therefore the discontinuities in the scattering angle graph 6.9 are
based on a breakdown (at least numerically) of the notion of the instanton positions.
Increasing the numerical precision does not seem to affect these results.

After the peak (figure 6.12), the scattering angle appears to rotate clockwise — the
loop at the interaction point is, ‘unwound’ This leads to them then repelling entirely
before the angle widens to about /4, with the instantons repelling rather than

glancing off each other as they did at the start.

Another thing we can do is to start off with a commutative case where there is no
interaction, and see what happens when we turn on the noncommutative parameter.
The overall plot is given in figure 6.13, and the scattering is shown in more detail
for particular cases in 6.15. The behaviour is similar to the previous case. As zeta is
increased the force between the instantons increases, until they begin to cross over.
Then, at the peak, there is a rapid change in behaviour where the instantons loop
back on themselves. As ( is further increased, the loop unwinds until the instantons

are now fully repelled by one another. A new feature is the apparent presence of
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Figure 6.8: Change of scattering angle (left) with noncommutative
parameter ¢ for b = 0.5, with the other parameters as
discussed in the main body of the text. On the right is
the commutative case, with ( = 0. Increasing either b
or the parameter p moves the peak to higher values of (.
In the case of b this is because we need a larger size, and
hence larger ¢ to compensate for the same seperation.
It is less clear what the explanation is in the case of p,
though the nonlinear dependence of the instanton size
on both p and ¢ almost certainly plays a role.
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Figure 6.9: Zooming in on the disconti