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Abstract: Making use of the well-known renormalization group (RG) scale dependences
of the gravitational couplings in the framework of the two-parameter Einstein–Hilbert
(EH) theory of gravity, the single scalar field-driven cosmological inflation is discussed in a
spatially homogeneous, isotropic, and flat model universe. The inflaton field is represented
by a one-component real, non-self-interacting, massive scalar field minimally coupled to
gravity. Cases without and with the incorporation of the RG scaling of the inflaton mass
are compared with each other and with the corresponding classical case. It is shown that
the quantum improvement drastically alters the timing of the slow-roll inflation with the
desirable number N, ≈ 60 e-foldings, as compared with the classical case. Furthermore,
accounting for the RG flow of the inflaton mass has an enormous effect on the timing of the
desirable slow roll, too. Although providing the desirable slow-roll inflation, none of the
versions of the investigated quantum-improved toy models provide a realistic value of the
amplitude of the scalar perturbations.

Keywords: asymptotic safety; renormalization; cosmological inflation

1. Introduction

Asymptotically safe cosmology [1–13] relies on the success of the asymptotic safety
scenario [14] in quantum gravity achieved in the last two decades (see the status reports
in [15–17] and the references therein). Based on the renormalization group (RG) studies
of the four-dimensional two-parameter EH gravity in the continuum, good evidence is
found on the existence of an ultraviolet (UV) fixed point, the so-called Reuter fixed point,
and that of the Gaussian fixed point [18–27]. Recently, it has been shown that the particle
physics Standard Model coupled to gravity also exhibits asymptotic safety. In general,
asymptotic safety sets an upper bound on the number of the various kinds of matter
fields, and the suggestion has been put forward that asymptotic safety may serve as a
requirement to select physically reliable field theories incorporating the dark constituents
of the universe [26,28–36].

In this paper, we discuss the possibility of a single real scalar field-driven slow-roll
inflation and its characteristic time scales in a quantum-improved toy model of the universe,
incorporating the inflaton field ϕ and the running cosmological constant Λ as the only
constituents. The main features of the RG flow of the gravitational couplings in pure gravity
are discussed in detail in [37] and appear to be rather independent of the fine details of the
RG scheme used. Moreover, the RG analyses of the Euclidean and Lorentzian theories yield
rather similar results in that respect [38–42], and the presence of matter is represented only
by a single inflaton field does not alter them significantly (see, e.g., Figure 4 in Ref. [26],
Figure 6 in Ref. [12], Figure 1 in Ref. [31]). Therefore, we consider the RG flow of the
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gravitational couplings, that of the Newton coupling G(k), and the running cosmological
constant Λ(k) to be given by the interpolation formulas proposed by us recently in Ref. [43].
It should be pointed out here that the RG flow reflected by our interpolation formulas
relies basically on functional RG studies in which the basic object is the effective average
action, and the IR regulator contains the four-dimensional Laplacian of spacetime. The
identification of the IR cut-off scale k is, however, not unique. Recently, it has been shown
that asymptotically safe gravity can be formulated in a consistent manner in the framework
of functional RG using the time-slicing corresponding to the ADM decomposition and
defining the IR regulator in terms of the spatial Laplacian [38]. As to the asymptotically
safe cosmological models, the manner of the identification of the IR cut-off k seems to be
crucial from the point of view of whether the initial singularity can be avoided or not. The
authors of Ref. [7] have found that bouncing solutions can be found using the functional
RG framework proposed in [38], while the universe does not violate the standard energy
conditions; even a spatially flat model is strongly favored by the recent observational data.
In contrast, in our present work, only solutions with the initial Big Bang singularity can
occur for the emerging universe.

Coming back to our interpolation formulas proposed in [43], those reflect the various
scaling regimes and the orders of magnitude of their boundaries along the RG energy scale
k. The RG flow of the gravitational couplings reveals three scaling regions [37]: the UV
regime governed by the Reuter fixed point (FP) for k ≥ kG ∼ O(mPl), the crossover regime
for kG ≥ k ≥ kΛ ∼ O(10−30kG) ended in the perturbative one close to the Gaussian FP, and
the infrared (IR) region for k ≤ kΛ where the gravitational couplings take their present-day
constant values G0 = m−2

Pl (with the Planck mass mPl =
√

h̄c/G0 in the units h̄ = c = 1)
measured at the laboratory scale kl ≈ 8.2 × 10−34mPl ≈ 10−3kΛ and Λ0 ≈ 2.7 × 10−122m2

Pl
observed at the Hubble scale kH ≈ 8.2 × 10−62mPl ≪ kΛ. (It should be noticed that there
may exist a deep IR regime for k ≲ kl ∼ O(10−3kΛ), where the gravitational couplings
G and Λ tend to zero in the limit k → 0 [6]; this scaling region can affect, however, the
evolution of the universe in the late future, which is out of the scope of our discussion in
the present paper.)

It is one of the key tasks in asymptotically safe gravity and cosmology, as well as the
physical interpretation of the running of the couplings with the RG scale k. There are good
arguments against identifying the k-dependent couplings G(k) and Λ(k) with the running
couplings G(p) and Λ(p) describing changes in physical amplitudes with the energy scale
p of the external momenta due to quantum corrections [44–47]. In this paper, we restrict
ourselves to the cosmology based on the homogeneous and isotropic sector of EH gravity.
The effective average action of EH gravity does not incorporate derivative terms with
scale-dependent form factors associated with the scalar curvature and the Weyl curvature,
i.e., momentum-dependent vertex functions [45–47]. Therefore, no dependence on the
physical momentum of the Newton coupling can occur explicitly. A more general ansatz for
the effective average action, incorporating momentum-dependent vertex functions, would
yield, e.g., a graviton propagator depending on the RG scale k as well as on the physical
momentum p below the running cut-off k and could provide a change in Newton’s law
of gravity with the RG scale k [45–47], a “krunning” of “prunning” (with the terminology
of [45]). In the framework of EH gravity-based cosmology, however, all couplings, those of
gravity and matter, figuring in the effective average action depend only on the RG scale k.
Moreover, quantum-improved cosmology, in the manner it is invented here, does not even
work with the effective average action explicitly, replacing instead the physically observable
coupling constants G0 and Λ0 by their counterparts in the Friedmann equations directly.
If one reconstructs the corresponding effective average action, one could determine the
graviton propagator at any scale k in a similar manner illustrated, e.g., in the example of the
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Green functions of the scalar fields in [48]. The determination of that kind of k-dependent
modification of Newton’s law of gravity is, however, out of the scope of the present paper.

For the emergent universe, one naturally expects that the decreasing energy scale k

should correspond to increasing cosmological time t, given by some t-to-k conversion rule,
k = k(t). The RG studies prove that the Newton coupling G(k) vanishes at the Reuter
FP, making it plausible that the evolution equations, the quantum-improved Friedmann
equations, should keep their classical form with the only modification that Newton’s gravi-
tational constant G0 and the cosmological constant Λ0 (the null index indicates the present-
day values) should be replaced by their time-dependent counterparts G(t) ≡ G(k(t)) and
Λ(t) ≡ Λ(k(t)), respectively. In Ref. [43], we applied the interpolation formulas to a rather
simple, analytically solvable model of the universe containing a single barotropic fluid.
Here, we apply the interpolation formulas to the model in which matter is represented by
a one-component real, massive, but non-self-interacting scalar field ϕ. Our main goal is
to discuss the influence of quantum improvement on slow-roll inflation. Moreover, we
intend to reveal separately how the RG flow of the gravitational couplings and that of the
inflaton mass affect the existence and the time scales of the slow-roll inflation. Therefore, we
investigate here two versions of the quantum-improved toy model (QIM): first neglecting
(QIM1) and later taking into account (QIM2) the run of the inflaton mass.

Now, the question arises: do we have an overall picture of the flow of the mass
parameter m2(k), which might include various scaling regimes from the UV scale to the
deep IR regime? Great efforts have been made recently to obtain such a picture of the
various couplings of matter in the framework of the particle physics Standard Model (and
its possible extensions) coupled to asymptotically safe gravity [9–12,30,31,34–36]. Pure
gravity theory seems to exhibit asymptotic safety, i.e., Reuter FP, reflecting the occurrence
of quantum scale symmetry in the UV regime: a finite number of dimensionless relevant
couplings tend to constant non-vanishing values in the limit k → ∞, while the other
couplings are irrelevant. This has the consequence that a UV scaling regime exists [28].
Asymptotic safety may or may not be destroyed by the presence of various numbers of
various types of fields. As a rule, quantum gravity effects are produced in the UV regime
anti-screening of the Newtonian coupling, while, for example, scalar fields, which we are
interested in here, produce a screening effect. For a sufficient number of scalar fields, the
screening effect may overcome the anti-screening effect, and asymptotic safety may be
destroyed [28].

For our present model, the earlier works are more relevant in which the functional RG
analysis has been performed for EH gravity (and its extension, including higher powers of
the scalar curvature) coupled to a single scalar field [49–51]. The discussion concentrated
basically on the existence of the Reuter FP in the framework of the Euclidean theory.
In [50], using the de Donder gauge, Litim’s optimized regulator, and the truncated Taylor
expansion of the potential and that of the coefficient of the R term in powers of ϕ2 at ϕ2 = 0,
it has been established that there exists only a single non-spurious and non-trivial UV FP,
the so-called Gaussian Matter FP (GMFP) for the number of dimensions d = 4 of spacetime.
At the GMFP, the gravitational couplings approach the Reuter FP (λ∗ = 0.1814, g∗ = 0.8375
in our notations; see Table I in Ref. [50]), while the matter couplings (including mass and
self-interaction) tend to zero in the limit k → ∞. Similar results have been obtained in
Ref. [12] for the matter content with a single scalar field (c.f. eq. (11) in Ref. [12]). The
RG flow equations are explicitly given in a general form (see App. A in Ref. [50]) and
are applicable to our model. Solving those for our particular case, we have established
that two non-Gaussian UV FPs exist: the one with vanishing dimensionless inflaton mass
is a hyperbolic one, and the one with non-vanishing dimensionless inflaton mass is UV
attractive and provides asymptotic safety. In Section 4.1, we obtain an overall picture of
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the global RG flow of the inflaton mass m(k) covering all scales from the high UV to the
IR ones, similar to that expressed by our interpolation Formulas (3) and (4) below for the
flow of the gravitational couplings found previously in Ref. [43]. We find that the RG flow
of the inflaton mass introduces a new energy scale km > kG: the dimensionless inflaton
mass is constant for k > km, the dimensionful inflaton mass takes the constant value at
k ≈ kG, and km > k > kG is a crossover regime for the RG flow of the inflaton mass. Here,
it should be noted that our interpolation Formulas (3) and (4) refer to pure EH gravity
without any matter. It has been shown that adding minimally coupled matter fields, either
screen (for scalars and fermions) or antiscreen (for gauge fields), the Newton coupling
(see [12] and the references therein). Nevertheless, if the numbers of these fields are treated
as continuous parameters, the UV FP values and their critical exponents vary continuously
in a rather wide range, including the cases with the numbers NS = 0 and 1 of the scalar
fields. Furthermore, the screening effect is rather small for a single scalar field [12,26,31].
Therefore, we shall use the same interpolation formulas in both cases, QIM1 and QIM2.

So far, the quantum fluctuations of the metric and those of the matter fields are
neglected, and the cosmological evolution of the homogeneous and isotropic universe is
described by the quantum-modified Friedmann equations and their consistency condition,
where the gravitational constants are replaced by their time-dependent counterparts. These
equations represent the symmetry-reduced sector of the quantum-improved version of
classical EH gravity when the gravitational constants G0 and Λ0 are replaced by their time-
dependent counterparts. Then, the Bianchi identity ∇µGµν = 0 (for the Einstein tensor Gµν)
implies the quantum-improved consistency condition ∇µ[G(t)Tµν] = 0 of the Einstein
equations with the stress-energy tensor of matter Tµν. Having performed the symmetry
reduction to the homogeneous and isotropic sector, one obtains the quantum-improved
consistency condition (c.f. Equation (10) below) of the quantum-improved Friedmann
equations, which is not identical now with the law of the local energy conservation of
matter, as it was in the classical case. In the discussed model, the cosmological evolution
of the homogeneous background can be formulated in terms of the Hubble parameter
H(t), the scalar field ϕ(t), and the function k(t). Then, one has only two independent
equations for the determination of 3 yet unknown functions. Regarding this problem,
various approaches have been worked out in the literature. The first attempts assumed
that one has to make some intuitive assumption on the function k(t), like k = ξ/t with
some constant ξ, require the local conservation of the energy of matter separately, like
in classical cosmology [52], and adjust the constant ξ in the UV and in the perturbative
regimes separately in order to achieve consistency among the four equations [53,54]. These
first efforts have made a hint on the scale- or time-dependence of ξ itself: different results
have been obtained for ξ in the UV and in the perturbative regimes. Here, we apply
the approach rather close to that proposed in Ref. [55] that determines the function k(t)

from the interplay between the Klein–Gordon (KG) equation of the inflaton field and the
quantum-improved consistency condition and results in the reduced consistency condition
(c.f. Equations (11) and (13) below). This method reproduces the approach of the authors
of Ref. [55] for QIM1 and enables one to account for the running inflaton mass for QIM2.
Another approach has been proposed in Ref. [1]: the authors discussed the cosmological
system in the framework of the dynamical system analysis in terms of the dimensionless
cosmological variables [56,57] when the first Friedmann equation turns out to be rather a
constraint and not a dynamical equation, and its differentiation with respect to the RG scale
k yields an additional constraint. In Section 2 we show that this RG-induced constraint is
identical to the reduced consistency condition, independently of whether QIM1 or QIM2 is
considered. Therefore, our approach to determining the t-to-k conversion rule is identical
to the one proposed in Ref. [1].
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In our toy model, we identify the presence of the running cosmological constant Λ(k)

with that of the dark energy and call the quantity

ρ(Λ) =
Λ

8πG
(1)

the density of the dark energy. It is rather giving a name to the constituent Λ of the model; to
go beyond the nature of the dark energy is out of the scope of the present paper. Motivated
by the interpretation used in [1], we take the point of view that ρ(Λ) can be considered as
the field-independent potential energy density of a condensed scalar field, which implies
the EoS p(Λ) = −ρ(Λ) implicitly with the pressure p(Λ) of the dark energy. Discussing the
description of the evolution of the model universe in terms of the dimensionless variables,
the definitions of the latter are chosen in a manner that treats the potential energy density
of the scalar field Vk(ϕ) as the sum Vk(ϕ) = ρ(Λ)(k) + Uk(ϕ), where Uk(ϕ) ≥ 0 is the
field-dependent piece having Uk(ϕm) = 0 at the local minimum of Uk(ϕ) at ϕ = ϕm, in
general. In our model, Uk(ϕ) represents the simple, generally scale-dependent mass term
Uk(ϕ) = m2(k)ϕ2/2 and ϕm = 0.

Below, we shall discuss the evolution of the model universe up to the end of the slow-
roll inflationary era. The only free parameter involved in our discussions is the IR value
of the dimensionful inflaton mass; the latter is kept constant at all scales in QIM1, while
QIM2 involves the running inflaton mass approximated by the interpolation Formula (56)
established in Section 4.1. We shall show that in both QIM1 and QIM2, the slow-roll
inflation occurs along a universal attractor in the phase space of the scalar field for properly
chosen IR values of the inflaton mass, quite similarly as in the classical case [58]. Moreover,
we shall argue that the universal attractor is negligibly affected by quantum effects, which
die out essentially at the onset of the slow roll. Here, we consider general relativity as well
as the quantum-improved theory of EH gravity coupled minimally to the scalar field, not
like effective theories, but extrapolate their validity back to the Big Bang. In the classical
model (GRM) based on Einstein’s general relativity minimally coupled to the massive,
self-interacting scalar field, there occurs an inflationary era characterized by an ultrahard
EoS of the scalar field followed by the slow-roll inflationary era itself [58]. In contrast, in
QIM1 and QIM2, the evolution scenario appears to be more structured:

• The Big Bang singularity is followed by the Reuter FP-driven era (RFPE). This covers
the Planck era ending at t = tG ∼ O(1) sPl for QIM1, while it ends at t = tm ∼ O(10−1)

sPl for QIM2. (Here sPl =
√

h̄G0/c5 stands for the Planck second, 1sPl = 1m−1
Pl in the

units h̄ = c = 1).
• For QIM2, there occurs the crossover era (COE1) lasting from t = tm to t = tG,

during which the dimensionless gravitational couplings keep their FP values, but
the dimensionless inflaton mass changes from its constant FP value to its ∼ 1/k2 IR
behavior. The duration of COE1 is rather short, so it ends at tG ∼ O(10−1) sPl.

• The crossover era (COE2) with constant dimensionful inflaton mass, but the crossover
scaling behaviors of the gravitational couplings show up in both QIM1 and QIM2
and are followed numerically from t = tG to the end of the slow-roll inflation at
t = t f ≪ tΛ settled by the value ε = 1 of the slow-roll parameter. COE2 starts
with a preinflationary era followed by the era of slow-roll inflation, which sets on at
t = ti ≫ tG. As it is shown below, during most of the preinflationary era, the kinetic
energy density ϕ̇2/2 of the scalar field dominates over the field-dependent piece Uk(ϕ)

of its potential energy density, and the latter takes over when the slow-roll inflation
sets on, preceded by the equality ϕ̇2/2 = Uk(ϕ).

• The discussion of the evolution in terms of the dimensionless quantities [1,56,57]
reveals that even the preinflationary era, both in QIM1 and QIM2, is divided into
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two suberas due to the scale dependence of the dark energy density, i.e., due to
quantum effects. Those suberas are separated by the equality of the dark energy
density ρ(Λ) to the potential energy density Uk(ϕ), i.e., ρ(Λ) = Uk(ϕ).

The times tm and tG are defined via the equalities k(tm) = km and k(tG) = kG, respectively,
and their orders of magnitude given above belong to the phase trajectories providing the
slow-roll inflation, called throughout this paper the desirable one, i.e., the one providing the
desirable number N, ≈ 60 of e-foldings. It is the main result of the present paper that the
orders of magnitude of the times ti and t f are strongly modified by the quantum improve-
ment as compared with the corresponding classical model. Moreover, incorporation of the
running inflaton mass may severely influence when the slow-roll inflation sets on.

Following the above-given introduction, we present in Section 2 the toy model of the
universe to be discussed. In Section 3, the equations governing the cosmological evolution
are specified for QIM1, and the main features of the evolution are discussed in detail in
terms of the dimensionful as well as the dimensionless cosmological variables. In Section 4,
first, an interpolation formula is derived for the running inflaton mass, exploiting the RG
analysis of EH gravity minimally coupled to the scalar field. Then, in Section 4.2, the
specification of the equations and the numerically obtained features of the cosmological
evolution in QIM2 are presented. Our results are summarized finally in Section 5. In
Appendix A, analytic estimates are given for the evolution of RFPE in QIM1. In Appendix B,
the quantum-improved universal attractor is discussed, while Appendix C reminds the
reader of the features of the universal attractor in GRM. In Appendix D, analytical estimates
are given on how the inflaton mass may affect the spectral features of the primordial
fluctuations. In Appendix E, analytic estimates are given for the evolution in RFPE in QIM2,
while in Appendix F, the elimination of the Hubble parameter from the evolution equations
for COE1 is given for QIM2.

2. Model

The classical analog of the system considered here is described by the action

S[gµν, ϕ] =
∫

d4x
√

−g

(

1
16πG0

(R − 2Λ0)−
1
2

gµν∂µ ϕ∂ν ϕ − 1
2

m2 ϕ2
)

, (2)

where gµν and R are the spacetime metric and scalar curvature, respectively. Matter is
represented by the scalar field ϕ with the bare mass parameter m. The functional derivative
of the action with respect to the metric yields Einstein’s equations, while the functional
derivative with respect to the scalar field provides the Klein–Gordon (KG) equation in
the curved spacetime. In accordance with the cosmological principle, we consider a
model universe that has a spatially homogeneous and isotropic background configuration.
Furthermore, we restrict ourselves to the spatially flat case, similar to our present-day
universe, according to the observations. Reduction in Einstein’s equations and that of the
KG equation to the homogeneous and isotropic sector yields the Friedmann equations
and the KG equation for the scalar field in the homogeneous background. So far, no
quantum improvement is involved; the KG equation is the consequence of the consistency
condition of Einstein’s equations, ∇µ(T(ϕ)µν + T(Λ)µν) = 0 reduced to the homogeneous
and isotropic sector, where T(ϕ)µν and T(Λ)µν represent the stress-energy tensor of the
scalar field and that associated with the cosmological constant. The quantum improvement
of the classical evolution equations is achieved via the replacement of the gravitational
couplings G0 and Λ0 and the bare potential energy density U(ϕ) of the scalar field by their
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running counterparts G(k), Λ(k), and Uk(ϕ), respectively. The RG flow of the gravitational
couplings is approximated by the formulas given in [43],

G(k) =

{

g∗k−2 for kG ≤ k

G0 − b(k2 − k2
Λ) = b

(

−k2 + 1
2 E

)

for kΛ < k < kG

G0 for 0 < k ≤ kΛ

, (3)

Λ(k) =

{ λ∗k2 for kG ≤ k

Λ0 + c(k4 − k4
Λ) = c(k4 + F) for kΛ < k < kG

Λ0 for 0 < k ≤ kΛ

, (4)

where

kG =

(

3g∗
G0

)1/2

, b =
2G2

0
9g∗

, c =
λ∗G0

3g∗
, (5)

E = 3k2
G

(

1 +
2
3

k2
Λ

k2
G

)

, F ≈ −8.4 × 10−120k4
G, (6)

and g∗ ≈ 0.71, λ∗ ≈ 0.19, and kΛ = 8.2 × 10−31mPl. The interpolation formulas given
in [43] contain three free parameters that were determined from the continuity of G(k),
Λ(k), and that of the matter density ρ(m) at the dynamical scale kG, while the scale kΛ ≈
8.2 × 10−31mPl is taken from the RG analyses [37]. In the space of the dimensionless
couplings (g = Gk2, λ = Λ/k2), the physical RG trajectory relevant to our universe starts
at the Reuter FP (g∗ ≈ 0.707, λ∗ ≈ 0.193) (The position of the Reuter FP depends slightly
on the details of the RG analysis and can be influenced by the matter content of the early
universe, but our considerations make use of the existence of the Reuter FP rather than
its position); for k ≈ kΛ, it approaches the Gaussian FP at (gG = 0, λG = 0), and with the
further decrease of the RG scale k, it runs away from the Gaussian FP towards positive
values of λ, while the dimensionful couplings take their present-day observed constant
values. The scaling of the couplings slightly above the scale kΛ is the so-called perturbative
regime. The proposed interpolation formulas recover the UV scaling laws, the constant
values G0 and Λ0 below the scale kΛ, and in the crossover regime k ∈ [kΛ, kG] are motivated
by the scaling in the perturbative regime.

The Friedmann equations read as

H2 =
κ2

3

(

ρ(ϕ) + ρ(Λ)

)

, (7)

Ḣ = −1
2

κ2 ϕ̇2 (8)

with the energy densities

ρ(ϕ) =
1
2

ϕ̇2 + Uk(ϕ), ρ(Λ) =
Λ(k)

8πG(k)
, Uk(ϕ) =

1
2

m2(k)ϕ2 (9)

and κ2 = 8πG(k). The symmetry reduced form of the consistency condition

∇µ

[

G(T(ϕ)µν + T(Λ)µν)
]

= 0 of the quantum-improved Einstein’s equations yields the
consistency condition

ρ̇(ϕ) + 3H ϕ̇2 +
Ġ

G
ρ(ϕ) +

Λ̇

Λ
ρ(Λ) = 0 (10)
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of the Friedmann Equations (7) and (8). Here, the dot denotes the total time derivative,
i.e., ḟ = (∂ f /∂t) + (∂ f /∂ ln k)(d ln k/dt) for any quantity f (t; k). The KG equation with
the scale-dependent potential energy density Uk(ϕ),

ϕ̈ + 3H ϕ̇ + Uk,ϕ = 0 (11)

is equivalent with the continuity equation for the energy density of the scalar field

ρ̇(ϕ) + 3H ϕ̇2 = Uk(ϕ)νRG
d ln k

dt
. (12)

Equations (12) and (10) provide the reduced consistency condition

ρ(ϕ) = − Λ̇

8πĠ
− Uk(ϕ)

νRG

ηRG
= −ρ(Λ) λRG

ηRG
− Uk(ϕ)

νRG

ηRG
(13)

with the RG parameters

λRG =
d ln Λ

d ln k
=

{

2 for kG ≤ k
4k4

k4+F
for kΛ ≤ k ≤ kG

, ηRG =
d ln G

d ln k
=

{ −2 for kG ≤ k
−2k2

−k2+ 1
2 E

for kΛ ≤ k ≤ kG
,

νRG =
∂ ln Uk(ϕ)

∂ ln k
=

∂ ln m2

∂ ln k
≡ βm2 . (14)

Equation (13) is identical to the RG-induced constraint derived in [1] and reduces to the
relation found in [55] when the RG flow of the potential energy density of the scalar field is
neglected. Finally, for the determination of the three unknown fields H(t), ϕ(t), and k(t),
one obtains three independent equations: either the Friedmann Equations (7) and (8) and
the RG induced constraint (13) or Equations (7), (11) and (13). To perform the numerical
determination of the evolution of the discussed cosmological model, one has to work
out the explicit forms of these equations for the Planck and the crossover eras separately.
Looking for the presence of the slow-roll inflation and its typical features, we are interested
in the evolution only up to the end of the slow-roll inflation at t = t f < tΛ.

3. Neglection of the RG Flow of the Inflaton Mass: QIM1

3.1. Evolution in Terms of the Dimensionful Quantities

Making use of the interpolating Formulas (3) and (4), we have to work out the explicit
forms of Equations (7), (8) and (13) for QIM1 in RFPE and COE2. In RFPE Equations (7), (8)
and (13), they can be recast as

3H2 = 8πρ(ϕ)g∗k−2 + λ∗k2, (15)

Ḣ = −4πg∗ ϕ̇2k−2, (16)

ρ(ϕ) =
λ∗

8πg∗
k4. (17)

Expressing k2 from Equation (17) and inserting it into Equations (15) and (16), we find a set
of coupled first-order ODEs for the functions H(t) and ϕ(t),

3H2 − 2
√

8πg∗λ∗ρ(ϕ) = 0, (18)

2Ḣ

√

ρ(ϕ) +
√

8πg∗λ∗ ϕ̇2 = 0 (19)
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with the energy density of the scalar field

ρ(ϕ) = (ϕ̇2 + m2 ϕ2)/2. (20)

Furthermore, due to Equations (15) and (17), the Hubble parameter turns out to be propor-
tional to the RG scale k,

H(t) = hk(t) with h =

√

2λ∗
3

. (21)

The condition k(tG) = kG determines the end of RFPE at t = tG. For the initial conditions
of the set of Equations (18) and (19), we have chosen the analytically estimated values
H(est)(t1) and ϕ(est)(t1) at t = t1 ≪ tG obtained in Appendix A with the approximation
that the EoS of the inflaton field is ultrahard just after the Big Bang singularity at t = 0.

As to the next, let us discuss the evolution of COE2. Making use of the interpolation
Formulas (3) and (4), the reduced consistency condition (13) takes the form

ρ(ϕ) =
c

4πb
k2. (22)

Instead of solving the system of first-order ODEs (7), (8) and (22) for the three unknown
functions H(t), k(t), and ϕ(t), it turned out to be more advantageous for the numerics to
eliminate the Hubble parameter H(t) as shown in Appendix B and solve the system of first-
order ODEs (A8) and (A9) for the functions k(t) and ϕ(t) first and evaluate ϕ̇ from (22) and
H(t) from (7) afterward. The initial conditions for the system of Equations (A8) and (A9)
are the values k(tG) = kG and ϕ(tG) at the end t = tG of RFPE.

3.2. Numerical Results

Our numerical work has been started by simulating phase trajectories in classical cos-
mology, i.e., in the framework of GRM. The classical phase trajectories have been generated
by solving the KG Equation (A18) given in Appendix C. Throughout our numerical work,
we used the observed values G0 = 1m−2

Pl and Λ0 ≈ 10−122m2
Pl of the gravitational couplings

(with the Planck mass set to mPl = 1 numerically), and the time t is then measured in Planck
seconds, sPl. The initial conditions for ϕ and ϕ̇ have been settled at t′ = 0 of the shifted
time t′ = t − ∆; then Equation (A18) has also been solved backward in time to identify the
initial singularity at t′s, and with the choice ∆ = −t′s, the zero of the cosmological time t

has been set to the Big Bang. The phase trajectories leading to the slow-roll inflation can be
characterized by the number

N, =
∫ t f

ti

Hdt (23)

of e-foldings during the slow roll, starting at t = ti and ending at t = t f . It is well known
that the choice

mcl. = 10−6mPl ∼ 1013GeV, ϕ(t1) = 3.1mPl, ϕ̇(t1) = −2 × 10−7m2
Pl, (24)

of the inflaton mass and those of the initial conditions, respectively, which are close to those
used in [59], should provide the desired inflation in agreement with the WMAP data [60].
Here, t1 = ∆ = −t′s corresponds to t′ = 0, the time at which the initial conditions are settled.
As shown in the plot on the top of Figure 1, varying ϕ(t1), we recovered numerically the
typical phase space picture given, e.g., in Figure 5.3 in Ref. [58] with the universal attractor
characterized by Equation (A20) in Appendix C, ϕ̇cl.

attractor ≈ −1.6× 10−7m2
Pl for the inflaton

mass given in Equation (24). The start ti of the slow-roll inflation has been identified by the
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time when the phase trajectory on the plane (ϕ, ϕ̇) runs onto the universal attractor, and the
end t f of the slow-roll inflation has been defined by the condition ε(t f ) = 1. Throughout
this paper, the slow-roll parameters ε and η are defined via the Hubble parameter as
ε = −Ḣ/H2 and η = Ḧ/(ḢH). For the inflaton potential U = m2 ϕ2/2, it holds that
η = 2ε. For the classical case, i.e., for GRM, we obtained numerically the time scales

tcl.
i ≈ 1.3 × 105sPl, tcl.

f ≈ 1.8 × 107sPl (25)

characterizing the desirable slow-roll inflation and yielding

ε(tcl.
i ) = 0.0087, H(tcl.

i ) = 6.3 × 10−6mPl, (26)

ncl.
s = 1 − 2ε(tcl.

i ) = 0.983, rcl. = 16ε(tcl.
i ) ≈ 0.14, Acl.

s = H2(tcl.
i )

[

πε(tcl.
i )m2

Pl

]−1
≈ 1.4 × 10−9. (27)

Here, the scalar spectral index ncl.
s , the scalar–tensor ratio rcl., and the amplitude Acl.

s of the
scalar fluctuations are evaluated by making use of the solution of the Mukhanov–Sasaki
equation in the slow-roll approximation, and the formulas given in (27) are the well-known
ones [52], expressing the spectral characteristics via the values of the slow-roll parameter
ε(tq) and the Hubble parameter H(tq) at the horizon exit time tq of the fluctuation modes,
which is assumed here to be approximately identical with the onset time ti of the slow-roll
inflation. The timescales given in Equation (25) are needed for the comparison with the
time scales of the slow-roll inflation in the quantum-improved cases.

Figure 1. Typical phase trajectories in the plane (ϕ, ϕ̇) in GRM (on the top) and QIM1 (on the bottom)
for the inflaton mass m = 10−6mPl and 10−10mPl, respectively. The bottom plot to the left shows
the global phase trajectories. On the bottom plot to the right, the neighborhood of the attractor is
enlarged; the turning points of ϕ belonging to ϕ̇ = 0 lie on the vertical pieces of the phase trajectories.
(Phase trajectories with initial conditions ϕ(t1) > 0 are only depicted, those belonging to ϕ(t1) < 0
can be obtained by reflection about the origin).
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Now, let us turn to the numerical study of the evolution in QIM1. We determined the
numerical solution of Equations (18) and (19) in RFPE for the initial conditions H(est)(t1)

and ϕ(est)(t1) given by Equations (A4) and (A5), respectively, at t = t1 = 5 × 10−11 sPl.
It has been checked that the numerical results for RFPE are stable against the further
decrease of t1. Then Equation (21) was used to obtain the function k(t) in RFPE and the
time tG has been determined from the condition k(tG) = kG. As to the next, the set of
Equations (A8) and (A9) for COE2 has been solved for the functions k(t) and ϕ(t) with the
initial conditions k(tG) = kG and ϕ̇(tG). The beginning ti and the end t f of the slow roll
have been determined in the same manner as in the classical case. The numerics revealed
the following results.

• For the wide range 10−13mPl ≤ m ≤ 10−6mPl of the inflaton mass, there occurs the
slow-roll inflation for ti ≤ t ≤ t f preceded by the preinflationary era for tG ≤ t ≤ ti,
subdividing COE2 into three suberas. The last one, the postinflationary era for t f ≤
t ≤ tΛ has not been followed by us numerically since our model does not incorporate
the physics yielding the graceful exit from the slow-roll inflation. In particular, the
desirable slow-roll inflation has been achieved for the choice mQIM1 = 10−10mPl ∼
109GeV, and it is characterized by the time scales

tQIM1
i ≈ 2.3 × 109sPl, tQIM1

f ≈ 1.84 × 1011sPl, (28)

the parameters

ε(tQIM1
i ) = 0.0018 and H(tQIM1

i ) ≈ 6.3 × 10−10mPl, (29)

and the spectral observables

nQIM1
s = 1 − 2ε(tQIM1

i ) ≈ 0.996, rQIM1 = 16ε(tQIM1
i ) ≈ 0.029, AQIM1

s =
H2(tQIM1

i )

πε(tQIM1
i )m2

Pl

≈ 7 × 10−17. (30)

The formulas used here (and below in connection with QIM2) for the evaluation of
the spectral parameters of the fluctuations are just the same as those used for GRM.
Although quantum improvement modifies the cosmological background and the
Mukhanov–Sasaki equation is modified, too, we have shown in Appendix B that when
the slow roll sets on, the quantum effects are already dead. This justifies evaluating the
spectral parameters by the usage of the same formulas for the models GRM, QIM1, and
QIM2. The inflaton mass mQIM1 providing the desirable inflation turned out to be four
orders of magnitude smaller than mcl. in the corresponding classical model. Except
for the tensor fraction, the results given in Equation (30) are in disagreement with the
recent Planck2018 data [61,62]; the amplitude As of the scalar perturbations turns out
to be eight orders of magnitude smaller than its value deduced from the observations.
Due to the time delay in the onset of the slow roll, the value of the Hubble parameter
is, by cca, four orders of magnitude less in QIM1 than in the corresponding GRM. The
time delay occurs due to the four orders of magnitude smaller inflaton mass. The
rough estimate given in Equation (A28) also shows that the amplitude AQIM1

s should
be underestimated in QIM1 by the ratio (mQIM1/mcl.)2 ∼ O(10−8).

• The evolution in RFPE, i.e., for 0 ≤ t ≤ tG, is rather close to the one described by
the analytic estimates given in Appendix A. For example, for mQIM1 = 10−10mPl, the

relative discrepancy (tG − t
(est)
G )/t

(est)
G between the numerically determined endpoint

tG ≈ 1.27 sPl and its analytic estimate t
(est)
G given by Equation (A6) remains less than

0.3 percent when the time t1 is varied from 10−15 sPl to 10−10 sPl, justifying that we
have chosen sufficiently early time t1 in order to settle the initial conditions via the
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analytic formulas given in Appendix A. Furthermore, one can conclude that the piece
of the phase trajectory belonging to RFPE is essentially independent of the inflaton
mass and the inverse proportionality of the Hubble parameter and the RG scale k

with the cosmological time t, given by Equations (A4) and (A3), is a rather good
approximation. Therefore, the time tG does not depend on the inflaton mass.

• As shown in Figure 1 (the bottom plot to the right), the phase trajectories run onto

the universal attractor (with ϕ̇QIM1
attractor ≈ 1.6 × 10−11m2

Pl for mQIM1 = 10−10mPl) even in
the quantum-improved case. In QIM1, the desirable slow-roll inflation sets on at the
scale ki ∼ 10−9kG. Therefore, as we argued in Appendix B, the quantum-improved
attractor given by Equation (A14) is practically the same as the classical attractor
given by Equation (A20), except for the big difference in the numerical values of
the inflaton masses in QIM1 and GRM. Nevertheless, there is a difference in the
evolution of the system in the classical GRM and in QIM1 that can be explained by the
time dependence of the field ϕ in both cases, shown in Figure 2. Along the classical
trajectory, the magnitude of the inflaton field |ϕ| decreases strictly monotonically up
to the end of the slow-roll era and ϕ starts to oscillate around zero afterward for t > t f .
On the plot to the left in Figure 2, it is well distinguishable the preinflationary era
with a rather steep fall off of |ϕ(t)| followed by the slow-roll era, with an almost linear
decrease of |ϕ(t)| with increasing time t (c.f. Equation (A20)), both well known [58].
The plot to the right in Figure 2 shows the time dependence of ϕ(t) in QIM1. In RFPE
(with ϕ(t) > 0) for t ≤ tG ≈ 1.27 sPl the evolution of the system can be estimated
as given in Appendix A; the gravitational couplings evolve according to the scaling
laws dictated by the Reuter FP, and the scalar field exhibits an ultrahard EoS. Just
after the end of RFPE, ϕ(t) crosses zero at t = t× (t× ≈ 6.3 sPl on the plot). With
the start of COE2, the scaling laws of the gravitational couplings alter: according to
Equations (3) and (4), G(k) ≈ G0 raises slightly, keeping its order of magnitude, while
Λ(k) falls off proportionally with k4. This implies that the yet huge kinetic energy
density of the scalar field increases further at the cost of the dark energy density falling
off proportionally to k4 (see the plot to the left on Figure 3). Therefore, the field
ϕ(t) continues to decrease through negative values and runs up the potential U(ϕ)

on the other side, where it reaches the turning point at ϕt.p. ≈ −3.1mPl at the time
t = tt.p. ≈ 2 × 109 sPl, where |ϕ| takes its maximum value and the inflaton field loses
its kinetic energy density, terminating the preinflationary era. Reaching the turning
point of ϕ is preceded by getting equal the fraction of the kinetic energy density ϕ̇2/2
and that of the potential energy density U(ϕ) to the critical energy density (the point
of the equality x2 = y

¯
2 lies at txy ≈ 4.8 × 108 sPl on the plot to the left in Figure 3).

Rather soon after the turning point, the slow roll sets on, i.e., tt.p. ≲ ti. Then an almost
linear decrease of |ϕ(t)| takes place (c.f. Equation (A20)), followed by the damped
oscillations of the field ϕ(t) for t > t f , like in the classical case.

• The plots on the top of Figure 4 show that the Hubble parameter H and the energy scale
k exhibit quite similar time dependences: both of them suffer a fall off of roughly eight
orders of magnitude during the preinflationary era followed by a rather slow (less
than an order of magnitude) decrease during the slow roll era. In the preinflationary
era, except for its very beginning and very end, the potential energy density Uk(ϕ)

and the dark energy density ρ(Λ) are negligible as compared with the kinetic energy
density ϕ̇2/2 (see the plot to the left in Figure 3), and it holds G(k) ≈ G0. Therefore,
the Friedmann equations reduce to the ones

3H2 ≈ 4πG0 ϕ̇2, Ḣ ≈ −4πG0 ϕ̇2 (31)
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providing the ODE Ḣ = −3H2 with the solution

H(t) ≈ H×
1 + 3H×(t − t×)

, (32)

where H× = H(t×). This estimate fits the numerical results with better than a relative
accuracy of 0.001. Then one obtains

ϕ̇ ≈ −
√

3
4π

H(t)mPl (33)

and

ϕ(t) ≈ ϕ(t×)−
∫ t

t×
dt

¯
ϕ̇(t

¯
) = ϕ(t×) +

√

3
4π

mPl ln
H(t)

H×
, (34)

which states that the field amplitude decreases roughly proportionally with the loga-
rithm of the time 0 ≲ t − t× ≲ ti − t× the system spent in the preinflationary era (as
shown on the plot to the right in Figure 2). Approaching the end of the preinflationary
era, the increasing fraction y

¯
2 = Uk(ϕ)/ρc of the potential energy density becomes

equal to the decreasing fraction x2 = (ϕ̇2/2)/ρc of the kinetic energy density of the
inflaton field at times txy ≈ 4.8 × 108 sPl, and this precedes the onset of the slow roll
energetically with some delay at t = tQIM1

i (see the plot to the left in Figure 3).
It is argued in Appendix D that in the slow-roll inflationary era, the Hubble parameter
should show a rather slight linear decrease with increasing cosmological time t. It has
been found that the numerically evaluated value of the Hubble parameter H is in a few
percentage agreement with the value Hsl.r. obtained from the analytical Formula (A21),
except at the very end of the slow-roll era.
As it is shown on the plot on the bottom of Figure 4, the ratio H/k is constant for
t× ≲ t ≤ t f except for the rather short time interval tG ≤ t ≲ t× lasting from the
beginning of the preinflationary era to the zero-crossing time of ϕ. Except for the
latter time interval, it holds the relation H =

√
λ∗k (shown by the dashed line on the

plot) with good accuracy. Let us insert the expression of ρ(ϕ) given by the reduced
consistency condition (22) and ρ(Λ) as given in Equation (9) into the first Friedmann
Equation (7), make the approximation G(k) ≈ G0, and neglect the term F ≪ k4 in
Equation (4); then we find that

H2 ≈ λ∗k2
(

1 − k2

3k2
G

)

, (35)

which yields the estimate H ≈ √
λ∗k for k ≪ kG with good accuracy, in agreement

with the result of numerics. The ratio H/k ≈ H(est)/k(est) =
√

2λ∗/3 is somewhat
smaller in RFPE than its value in the preinflationary and inflationary eras; its increase
happens during the short time interval tG ≤ t ≲ t×.
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Figure 2. Typical time-dependences of the scalar field ϕ in GRM (to the left) and QIM1 (to the right)
with the inflaton mass m = 10−6mPl and 10−10mPl, respectively, along the phase trajectory yielding
the desirable slow-roll inflation.

x2=

1

2
φ
. 2

ρc

y2=

1

2
m2 φ2

ρc

u2=
ρΛ

ρc

y2=

1

2

m2 φ2

ρc

u2=
ρΛ

ρc

Figure 3. To the left: the energy density ratios x2 = (ϕ̇2/2)/ρc (full line), y
¯

2 = (m2 ϕ2/2)/ρc (dashed

line), and u2 = ρ(Λ)/ρc (dotted line) are plotted vs. the cosmological time t in COE2 for QIM1 along
the phase trajectory providing the desirable slow-roll inflation. To the right: y

¯
2(t) and u2(t) are

plotted in the time interval 103 sPl ≤ t ≤ 105 sPl. In our case the critical density equals to the total
energy density ρc = (ϕ̇2/2) + (m2 ϕ2/2) + ρ(Λ) implying x2 + y

¯
2 + u2 = 1 and in RFPE it holds the

estimate ρ(Λ) ≈ ϕ̇2/2, i.e., x2 ≈ u2 ≈ 1/2.

• The various time dependences H = 2/(3t) (see Equation (A4) in Appendix A),

H = H×
1+3H×(t−t×)

(see Equation (32)), and H = H(t f ) +
m2

3 (t f − t) (see Equation (A21)
in Appendix D) of the Hubble parameter in RFPE, the preinflationary, and slow-roll
inflationary eras, respectively, inform one on the time dependence of the scale factor,

a(t) ∝

{

t2/3 RFPE
(

1 + H×(t − t×)
)1/3

preinflationary era

exp
[(

H(t f ) +
m2

3 t f

)

t − m2

6 t2
]

inflationary era

(36)

and on that of the deceleration parameter

q(t) = − aä

ȧ2 = −1 − Ḣ

H2 =

{ 1/2 RFPE
2 preinflationary era

−1 + ε(t) inflationary era
. (37)

Thus, one finds that the quantum gravitational effects, being strong in the Reuter FP
driven and the preinflationary eras, do not result in the accelerating expansion of the
universe; the latter occurs due to the presence of the inflaton field in the slow-roll era,
with the characteristic value of the deceleration parameter q(tQIM1

i ) ≈ −1+ ε(tQIM1
i ) =
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−0.998, which corresponds to an almost exponential increase of the scale factor a(t). It
is worthwhile mentioning that in RFPE the scalar field behaves like dust so far as the
time dependence of the scale factor a ∝ t2/3 is considered, which is the consequence
of the interplay between the ultrahard EoS and the Reuter FP governed scaling laws
of the gravitational couplings (see Appendix A).
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Figure 4. Typical time dependences of the Hubble parameter H (on the top to the left), the energy
scale k (on the top to the right), and the ratio H/k (bottom) in COE2 for QIM1 along the phase
trajectory providing the desirable slow roll. The dashed line on the plot on the bottom corresponds to
the ratio H/k =

√
λ∗.

• It has been shown that the slow-roll inflationary era occurs inside COE2 for a wide
range of the inflaton mass m. In Table 1, one can see that the onset time ti of the slow
roll is shifted to later times, and the duration of the slow-roll era becomes longer by a
few orders of magnitude when the inflaton mass decreases from 10−6mPl to 10−13mPl

while the number N, of e-foldings rises within an order of magnitude.

Table 1. Beginning ti and end t f of the slow-roll era, and the number N, of e-foldings for various
inflaton masses m in QIM1.

m/mPl ti(sPl) t f (sPl) N

10−13 1.72 × 1012 2.47 × 1014 110

10−12 2 × 1011 2.25 × 1013 92

10−11 2.26 × 1010 2.04 × 1012 75

10−10 2.3 × 109 1.84 × 1011 60

10−9 2.25 × 108 1.6 × 1010 47

10−8 2.55 × 107 1.38 × 109 36

10−7 3.3 × 106 1.17 × 108 26

10−6 3.3 × 105 9.7 × 106 18
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• Comparing the time scales of the desirable slow-roll inflation given in Equation (28)
for QIM1 with those for the classical model, GRM, given in Equation (25), one sees
that there are (i) four orders of magnitude time delay in the start and (ii) also four
orders of magnitude increase of the duration of the desirable slow-roll inflation due
to the quantum gravitational effects. At around the scale kG (at the time tG), the
running Newton coupling G(k) rather suddenly reaches its classical value G0, while
the running cosmological constant is yet huge (of the order of k4

G) at that scale and
decreases only slowly with decreasing scale k. This circumstance hinders the inflaton
field from losing its kinetic energy density as fast as in the classical case. Furthermore,
as it is seen in the plots in Figure 2, the desirable slow roll starts roughly at the same
value of |ϕ(ti)| in the classical and the quantum-improved cases, but the corresponding
potential energy density in the quantum-improved case is eight orders of magnitude
less than in the classical case due to the change in the required value of m2. This is
another reason that much more time is needed for the potential energy density to
take over the kinetic energy density of the inflaton field in the quantum-improved
case. In spite of the different timing of the slow roll in GRM and QIM1, the main
qualitative features of the slow-roll inflation are negligibly affected by the quantum
effects, except for the amplitude As for the scalar perturbations, as discussed in
Appendix D on the level of analytic estimates. A comparison of our numerical results,
obtained for the desirable slow roll, given in Equations (26) and (27) for GRM and
in Equations (29) and (30) for QIM1, completely supports the expectation that only
the amplitude of the scalar perturbations is affected significantly by the quantum
improvement. The reason is the rather small inflaton mass mQIM1 ∼ O(10−10mPl)

required to achieve the desirable number N, ≈ 60 of e-foldings. Maybe accidentally,
GRM yields better, an order-of-magnitude agreement of As with the observational
data given in Refs. [61,62], than QIM1. Therefore, one has to conclude that the simple
inflaton potential U = m2 ϕ2/2 with scale-independent inflaton mass works much
worse in the quantum-improved case than in the classical one.

3.3. Evolution in Terms of the Dimensionless Quantities

3.3.1. General Considerations

In the present section we reexpress our numerical results in terms of the dimensionless
cosmological variables [1,56,57]. This enables us to identify the cosmological fixed point
(CFP) corresponding to RFPE, identify in another way the section of the phase trajectory
along which the slow-roll inflation takes place, and get more insight into the changes in the
energetic relations during the evolution. Instead of depicting the phase trajectories on the
plane (ϕ, ϕ̇) one can follow them up on the plane (x, z) by making use of the dimensionless
quantities defined in the same manner as in Ref. [1]:

x = ±
√

ϕ̇2/2
ρc

, y = +

√

ρ(Λ) + Uk(ϕ)

ρc
, z =

Uk,ϕ(ϕ)

κ[ρ(Λ) + Uk(ϕ)]
, (38)

where the critical density is given as ρc = 3H2/κ2. Then, it holds the equality y2 = y
¯

2 + u2.
For flat spatial geometry, the critical density is equal to the total energy density, i.e., it holds
ρc = (ϕ̇2/2) + Uk(ϕ) + ρ(Λ), implying the constraint x2 + y2 = 1. The idea behind the
definitions (38) is that the dark energy density ρ(Λ) is considered to be the field-independent
piece of the potential energy density of the scalar field.

In the classical case, in GRM, the dark energy density ρ
(Λ)
0 = Λ0/(8πG0) and the

potential energy density U(ϕ) are negligible as compared with the kinetic energy density
of the inflaton field in the limit t → 0, so that it holds y2 ≪ x2 and the variable x should
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tend to one of the values xcl.∗ = ±1. Since |ϕ| → ∞ in the limit t → 0, the dark energy
density is negligible as compared with the potential energy density U(ϕ), and the variable
z ≈ 2/(κϕ) should vanish, i.e., zcl.∗ = 0 according to the definitions (38). The physically
relevant phase trajectory starts indeed from the CFP (x∗ = −1, z∗ = 0) on the top left plot
in Figure 5. As to QIM1, we have shown above, in terms of the dimensionful variables,
that the evolution in RFPE can be very accurately estimated analytically. Making use of the
estimates derived in Appendix A, one obtains the following estimates for the dimensionless
variables (38):

• The variable x(t) keeps strictly one of the constant values

x(est)(t) =
κϕ̇√
6H

∣

∣

∣

∣

(est)

= ± 1√
2
≡ x∗ (39)

in RFPE. Since H ∝ k (see Appendix A), it holds

d ln k

dN
=

d ln H

dN
= 3x2

∗, (40)

implying that k ∝ e3N/2 in RFPE. (Here, we made use of eq. (27) in Ref. [1] applied to
our case.) This means that k → ∞ in the limit N → ∞, i.e., in the limit a → 0 (t → 0).
Therefore, the CFP corresponding to the Big Bang continues to evolve with the scale
factor a.

• In RFPE, U(ϕ) is negligible as compared with ρ(Λ), 0 < U(ϕ) ≪ ρ(Λ), so that one finds

z(est) ≈ m2 ϕ

κρ(Λ)

∣

∣

∣

∣

(est)
N→∞∼ m2√8πg∗

λ∗
ϕ

k3

∣

∣

∣

∣

(est)

∼ ∓
√

3m2t2 → 0∓. (41)

The variable z shows up time dependence (N-dependence) in RFPE, but it tends to
zero in the limit t → 0.

Therefore, we conclude that the pair of the CFPs corresponding to the various signs of the
scalar field amplitude ϕ at the Big Bang singularity are at

xQIM1
∗ = ± 1√

2
, zQIM1

∗ = 0. (42)

The CFPs appear to belong to the limit k → ∞. On the top right plot in Figure 5, the phase
trajectory runs out from such a CFP, indeed, and RFPE is represented by the straightline
section x = −1/

√
2 and 0 ≤ z(t) ≲

√
3m2t2

G ≈ 3 × 10−20 being compressed to the single
point of the CFP on the plot.

In order to find the characteristics of the section of the phase trajectory in the slow-roll
era for QIM1, let us neglect the kinetic energy density term on the right-hand side of the
first Friedmann Equation (7) and the term ϕ̈ on the left-hand side of the Klein–Gordon
Equation (11), multiply both sides of Equation (11) by ϕ̇, and divide both sides of both
equations by ρc, then one obtains

1 ≈ y2, (43)

x(
√

6x + y2z) ≈ 0, (44)

where we have used the definition of the variable z in (44). Supposing that x ̸≡ 0 in the
slow-roll era, one finds

√
6x + z ≈ 0. (45)
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This determines the straightline section on the (x, z) plane along which the system evolves
during the slow-roll inflation both in the classical and quantum-improved cases [1].

3.3.2. Numerical Results

The numerically obtained phase trajectories providing the desirable slow-roll inflation
are shown on the (x, z) plane in Figure 5 for GRM and QIM1.

Figure 5. The phase trajectories (full lines) providing the desirable slow-roll inflation in GRM (on
the top to the left) and in QIM1 (on the top to the right) are plotted for t ≤ t f . The slow-roll line
z = −

√
6x is depicted by dashed line on each plots. For GRM the phase trajectory (full line) runs out

of the CFP at (xcl.∗ = −1, zcl.∗ = 0) and runs towards the slow-roll line; for QIM1 it starts from the CFP
at (xQIM1

∗ = −1/
√

2, zQIM1
∗ = 0), first runs with nearly constant z towards the straightline x = −1,

then along that straighline while z changes sign, running away afterward with nearly constant z

towards the slow-roll line. Finally the phase trajectory runs along the slow-roll line slowly departing
from it when the slow-roll approaches its end for both GRM and QIM1.

As shown on the top left plot in Figure 5, in the classical case, i.e., for GRM, the phase
trajectory providing the desirable slow-roll inflation runs out of the CFP at (xcl.∗ = −1,
zcl.∗ = 0). Just after the Big Bang. the ultrahard EoS of the inflaton field implies the time
dependences ϕ̇2/2 ∝ t−2, |ϕ| ∝ −| ln t| [58]; furthermore, the kinetic energy density of the
inflaton field dominates completely over its potential energy density U(ϕ) and the dark

energy density ρ
(Λ)
0 . Therefore, it holds x(t) ≈ −1, while z(t) ≈ 2

κ0 ϕ increases slowly with
the logarithmic fall off of |ϕ|. The era characterized by the ultrahard EoS is represented on
the plot by the vertical section of the phase trajectory running out of the CFP. At its end,
the potential energy density m2 ϕ2/2 becomes comparable to the kinetic energy density,
and the phase trajectory starts to run towards the slow-roll line with a sudden fall off of |x|
while |z| (|ϕ|) increases (decreases) negligibly (the horizontal piece of the phase trajectory
on the plot). The dominance having taken by the potential energy density m2 ϕ2/2 over the
kinetic energy density ϕ̇2/2, the slow roll sets on and the phase trajectory runs tangentially
to the slow-roll line, deviating from it finally at the end of the slow-roll era. Up to the end

of the slow-roll era, the dark energy density ρ
(Λ)
0 does not play any role in the classical case

due to the extremely small value of the cosmological constant Λ0. The (x, z) plot stretches
out the piece of the phase trajectory between the end of the ultrahard EoS-driven evolution
and the onset of the slow-roll separated in cosmological time by much less than an order of
magnitude change.

The top right plot in Figure 5 shows the phase trajectory providing the desirable slow-
roll inflation in QIM1. Here the vertical section (reduced to the CFP on the plot) at xQIM1

∗ =

−1/
√

2 with rather small values of z(t) ≥ 0 suppressed by m2 (see Equation (41)) represents
in a compressed manner the whole evolution in RFPE when the potential energy density
m2 ϕ2/2 is negligible and the density of the dark energy and that of the kinetic energy of the
scalar field are equal and both falling off proportionally to k4, ρ(Λ) = 1

2 ϕ̇2 ∝ k4 due to the
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constraint (17). Till the end of the slow roll, the phase trajectory has several turning points
on the (x, z) plane: due to the zero-crossing of ϕ at t = t× ≈ 6.3 sPl, at t = tz ≈ 5 × 104 sPl

when |z| takes its maximum value (see Figure 6), at t = tt.p. ≈ 2.0 × 109 sPl when |ϕ| takes
its maximum value, and at t = ti ≈ 2.3 × 109 sPl due to the onset of the slow roll. Just after
the end of RFPE for tG ≲ t ≲ t×, the fraction of the kinetic energy density of the inflaton
field and that of the dark energy density in ρc behave approximately as

x2 =
ϕ̇2/2

ρc
≈ ϕ̇2/2

ϕ̇2/2 + ρ(Λ)
≈ 1

1 + ξ(k)
and u2 =

ρ(Λ)

ρc
≈ ρ(Λ)

ϕ̇2/2 + ρ(Λ)
≈ ξ(k)

1 + ξ(k)
with ξ(k) =

k2

−2k2 + 3k2
G

, (46)

respectively, since ȳ2 = Uk(ϕ)/ρc is negligible, being much less than x2 and u2. The
denominator of ξ(k) in Equation (46) keeps its order of magnitude O(k2

G) during the whole
COE2 so that ξ(k) falls off roughly proportionally to k2. Then u2 starts to fall off, x tends to
the boundary value −1 (see also the plot to the left on Figure 3), while z slowly goes to
zero through positive values. The corresponding piece of the phase trajectory is depicted
by the upper left going horizontal linear section on the top right plot in Figure 5.

Figure 6. The variable z vs. the cosmological time t in the time interval starting at the zero-crossing
of the variable ϕ at t = t× ≈ 6.3 sPl and covering the local minimum of z(t) at t = tz ≈ 5 × 104 sPl

along the phase trajectory providing the desirable slow-roll inflation for QIM1.

The evolution between the zero-crossing of ϕ at t = t× and reaching by |z| its maxi-
mum value at t = tz is illustrated by the vertical down-going linear section on the top right
plot on Figure 5. For t× ≪ t ≲ tz, the fraction of the dark energy density is already much
less than that of the kinetic energy density of the inflaton field, u2 ≪ x2, but the falling
off dark energy density becomes comparable with the increasing potential energy density
m2 ϕ2/2 at t = tyu ≈ 2 × 104 sPl, although the latter is yet much less than the kinetic energy
density ϕ̇2/2 (see the plots in Figure 3). Since there hold the estimates G ≈ G0 and Λ ≈ ck4

in that time interval, one obtains ρ(Λ) ≈ ck4/(8πG0) ≈ λ∗k4/(24πg∗) and

z ≈ m2 ϕ

κ0(
λ∗

24πg∗ k4 + 1
2 m2 ϕ2)

. (47)

In the discussed time interval, k decreases closely inversely proportionally with t, while
|ϕ| increases linearly with ln t (c.f. Equation (34)). Therefore, so long ρ(Λ) dominates the
denominator of z in Equation (47), its magnitude |z| increases, but when the potential energy
density becomes dominating, the variable z starts to approach the expression 2/(κ0 ϕ) and
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|z| begins to decrease with increasing |ϕ|. Therefore, the time t = tz ≈ 5 × 104 sPl, at which
|z| takes its maximum value, is preceded by the time t = tyu. It is one of the advantages
of plotting the phase trajectory on the (x, z) plane that one becomes aware of the fact that
the preinflationary era consists of 2 suberas: the one with u2

> y
¯

2 followed by another one
with y

¯
2
> u2. These suberas are separated essentially by the maximum of the magnitude

of the variable z.
In the time interval tz ≲ t ≲ tt.p. still hold the relations (46), the kinetic energy density

of the scalar field still dominates over the potential energy density m2 ϕ2/2, i.e., x2 ≫ ȳ2,
but the potential energy density m2 ϕ2/2 dominates already over the dark energy density,
m2 ϕ2/2 ≫ ρ(Λ). Therefore, the variable z begins to behave like in the classical case,
z ≈ 2/(κ0 ϕ), i.e., |z| takes slowly decreasing values with logarithmically increasing |ϕ|,
while the variable x still takes values rather close to −1. This is illustrated by a vertically
upgoing linear section of the phase trajectory on the top right plot in Figure 5. Then,
approaching the turning point of ϕ, i.e., for t approaching tt.p., the continuously rising
potential energy density m2 ϕ2/2 becomes equal to the gradually decreasing kinetic energy
density of the scalar field, x2 = y2 at t = txy = 5 × 108 sPl (see the plot to the left on
Figure 3). The field ϕ moving uphill in the potential U(ϕ) slows down, and x2 goes
suddenly to zero, depicted by the bottom right going horizontal line on the top right plot
in Figure 5. At t = ti the slow-roll sets on, and the phase point moves further along the
slow-roll line running away from it when the end of the slow roll at t = t f is approached.

4. Scale-Dependent Inflaton Mass

4.1. Interpolation Formula for the Running Inflaton Mass

In the discussion above, the inflaton mass has been treated as a time-independent
constant. The RG analysis of the EH gravity minimally coupled to the scalar field would
yield, however, an RG flow of the inflaton mass. As it is mentioned in the Introduction,
the authors of Ref. [50] thoroughly investigated the UV behavior of EH gravity coupled to
a single real scalar field and established asymptotic safety of the model for the numbers
of dimensions d = 3, 4, 5, 6. It has been shown that the Reuter FP exists for the number of
dimensions d = 4.

Γk[g, ϕ] =
∫

ddx
√

g

(

V(ϕ2)− F(ϕ2)R +
1
2

gµν∂ϕµ∂ϕν

)

+ SGF + Sgh (48)

for the Euclidean effective action, where V and F are polynomials of ϕ2, SGF and Sgh stand
for the gauge fixing and ghost terms, respectively, and

√
g is the square root of the Euclidean

metric gµν. The DeDonder gauge has been chosen. The functional RG analysis has been
performed by making use of the optimized cut-off [63,64] and solving Wetterich’s functional
RG equation [65]. The explicit forms of the flow equations for the functions V and F are
given in [50] and can be applied to our simple model with the massive, non-self-interacting
scalar field minimally coupled to gravity. Our purpose is to find an overall picture of
various scaling regimes of the mass parameter m2(k). Restricting ourselves to the case with
d = 4 and introducing the dimensionless quantities ϕ̃ = k−1 ϕ, Ṽ(ϕ̃2) = k−4V(ϕ2), and
F̃(ϕ̃2) = k−2F(ϕ2) and the truncated Taylor expansions Ṽ(ϕ̃2) = ∑

1
n=0 λ̃2n ϕ̃2n and F̃ = ξ̃0,

we can apply the flow Equations (A1)–(A4) given in Appendix A in [50]. In terms of the
dimensionless gravitational couplings g̃ = k2G(k), λ̃ = k−2Λ(k) and the dimensionless
mass parameter m̃ = k−1m, they hold the correspondences

λ̃0 ⇒ λ̃

8πg̃
, λ̃2 ⇒ 1

2
m̃2, ξ̃0 ⇒ 1

16πg̃
, (49)

which can be inverted as
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m̃2 = 2λ̃2, g̃ =
1

16πξ̃0
, λ̃ =

λ̃0

2ξ̃0
. (50)

In the present section, we denote by tilde all dimensionless quantities, while in the other
parts of the present paper, we use the notations g and λ for the dimensionless gravitational
couplings but keep the notation m̃ of the dimensionless inflaton mass. Moreover, in the
present section, we use t to notate the "RG time” t = ln(k/kG). The flow Equations (A1),
(A2), and (A3) taken from Ref. [50] (with ξ̃2 = λ̃4 = 0) are given as

∂tλ̃0 = −4λ̃0 +
1

32π2

[

2 +
1

1 + 2λ̃2
+

6λ̃0

ξ̃0 − λ̃0

]

+
η

96π2
5ξ̃0 − 2λ̃0

ξ̃0 − λ̃0
, (51)

∂t ξ̃0 = −2ξ̃0 +
1

384π2

[

25 − 4
1 + 2λ̃2

+
8ξ̃0(7ξ̃0 − 2λ̃0)

(ξ̃0 − λ̃0)2

]

+
η

1152π2

17ξ̃2
0 + 18ξ̃0λ̃0 − 15λ̃2

0

(ξ̃0 − λ̃0)2
, (52)

∂tλ̃2 = −2λ̃2 +
1

48π2

[

9λ̃0

2(ξ̃0 − λ̃0)2
− 9(2λ̃0 − ξ̃0)

2(1 + 2λ̃2)(ξ̃0 − λ̃0)2
− 9

2(1 + 2λ̃2)2(ξ̃0 − λ̃0)

]

+
η

96π2

[

3ξ̃0

2(ξ̃0 − λ̃0)2
− 3ξ̃0

2(1 + 2λ̃2)(ξ̃0 − λ̃0)2

]

, (53)

where η = 2 + ∂t ξ̃0
ξ̃0

. On the right-hand sides, singularity can occur for vanishing 1 + 2λ̃2 =

1 + m̃2 = 0 and ξ̃0 − λ̃0 = ξ̃0(1 − 2λ̃) = 0, i.e., for λ̃ = 1/2. The latter is the usual
singularity when Litim’s cut-off is used.

It is straightforward to show, on the one hand, that there exists a class of solutions
of the RG flow Equations (51)–(53) for which the mass parameter λ̃2 vanishes identically.
Namely, the flow Equation (53) is identically satisfied for identically vanishing λ̃2(k) ≡ 0
for any solutions λ̃0(k) and ξ̃0(k) of Equations (51) and (52) (actually for any choice of
the functions λ̃0(k) and ξ̃0(k)). This means that the RG flow of pure EH gravity is a
solution of the set of the flow Equations (51)–(53). Numerical investigation of the system
of Equations (51)–(53) has revealed, on the other hand, that the RG flow has 3 FPs: the
Gaussian FP at g̃∗ = λ̃∗ = m̃2∗ = 0, and the non-Gaussian FPs NGFP1 and NGFP2 given
in Table 2. The study of the linearized RG equations at the non-Gaussian FPs yielded the
critical exponents listed in Table 2. Thus, we have to conclude that NGFP1 is the Reuter FP
of the gravity–matter system being UV attractive and providing asymptotic safety, while
NGFP2 is the Reuter FP of the theory without matter (without the scalar field, i.e., the
Reuter FP of pure EH gravity) representing a hyperbolic FP of the gravity-matter system,
which is UV repulsive in the mass direction. The FP discussed by the authors of Ref. [50]
and given in Table I of [50] for d = 4 at λ̃∗

0 = 8.620 × 10−3, ξ̃∗0 = 2.375 × 10−2 corresponds
in our notations to g̃∗ = 0, 8376 and λ̃∗ = 0.1815 and is identical with NGFP2.

Table 2. The non-Gaussian FPs in the space of the dimensionless couplings (g̃∗, λ̃∗, m̃2∗) and their
critical exponents si (i = 1, 2, 3).

g̃∗ λ̃∗ m̃2
∗ s1,2 s3

NGFP1 0.846 0.176 0.2 −2.119 ± i2.878 −0.486

NGFP2 0.837 0.181 0 −2.143 ± i2.879 0.627

We chose NGFP1 in our investigation since it, as opposed to NGFP2, can make the
model asymptotically safe. We also note that NGFP2 provides an irrelevant direction in the
evolution; therefore, it is not possible to reverse the direction of the numerical calculations
for the trajectories. This implies that the trajectories should start in the close vicinity of the
FP. However, the existing irrelevant direction and the elliptic nature of the FP disable one
from fine-tuning the initial values of the couplings. Therefore, the trajectories starting from
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close to NGFP2 cannot map out the vicinity of the Gaussian FP and cannot help us find the
correct asymptotic behavior there. This issue does not appear in the case of NGFP1, where
we can start the evolution close to the Gaussian FP because the direction of the evolution
can be reversed. By approaching the separatrix between the Gaussian FP and the Reuter FP,
we can get the asymptotic scalings.

Restricting ourselves to the RG trajectories spiraling into NGFP1 for k → ∞, we
have determined the dimensionless product C(k) ≡ G(k)m2(k) = g̃(k)m̃2(k) depicted in
Figure 7. It has been established that the product C(k) takes constant values C∗ = g̃∗m̃2∗
and C0 ≡ G0m2

0 < C∗ in the UV and IR regimes, respectively. In the far UV regime, the
dimensionful mass squared is proportional to k2, m̃2(k) = m̃2∗k2, and C∗ = g̃∗k−2m̃2∗k2 =

g̃∗m̃2∗. The constant IR value C0 occurs roughly at the RG scale k ≈ kG when Newton’s
coupling becomes constant, i.e., C(kG) ≈ C0.

0 5 10 15 20
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-✽

10
-✻

10
-✹

0.01

t

g
m
2

Figure 7. The dimensionless product C = g̃m̃2 = Gm2 vs. the RG scale t = ln(k/kG) for various IR
values m2

0/m2
Pl = 10−2 (dotted line), 10−5 (dashed line), and 10−8 (solid line).

As shown in Figure 8, the RG flow of the mass squared m̃2 reveals three scaling regions:
(i) in the far UV m̃2 tends to the constant value m̃2∗ determined by the Reuter FP NGFP1,
(ii) for k ≲ kG the IR scaling m̃2 ∝ k−2 yields the constant value m2

0 of the dimensionful
mass squared, and (iii) there occurs a crossover scaling region for kG ≲ k ≲ km, where the
power-law scaling m2(k) ∝ kαm of the dimensionful mass squared holds. The numerical
fits (see the tilted dashed lines in Figure 8) yield the power αm ≈ 2.6, independently of
the value of m2

0. The RG flow-generated scale km has been determined numerically: we
extrapolated the crossover scaling to the scale k = km where it matches the constant UV
value m̃2∗ (see Figure 8). The result is shown in Figure 9 and has been fitted by

lg10(km/kG) ≈ lg10 Am − βmlg10(m
2
0/m2

Pl), (54)

so that we obtained

km(m0) = kG Am(m0/mPl)
−2βm (55)

with Am = 6.7970 × 10−2 and βm = 0.694437.
In order to reflect these properties of the function m̃2(k) in a qualitative manner, we

treat C0 = G0m2
0, i.e., the IR value m2

0 of the mass squared as a free parameter, and choose
the interpolation formula

m2(k) =

{ m̃2∗k2 for km ≤ k

Akαm + B for kG ≤ k ≤ km

m2
0 for k ≤ kG

(56)
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where the constants A and B are determined by requiring continuity of m2(k) at k = km

and k = kG,

A =
m̃2∗k2

m − m2
0

kαm
m − kαm

G

= m̃2
∗k2−αm

m

(

1 − m2
0

m̃2∗k2
m

)(

1 − kαm
G

kαm
m

)−1

, (57)

B = m̃2
∗k2

m − Akαm
m = m̃2

∗k2
m

(

m2
0

m̃2∗k2
m
− kαm

G

kαm
m

)(

1 − kαm
G

kαm
m

)−1

(58)

This provides the RG parameter

νRG = βm2 =

{

2 for km ≤ k

αm

(

1 + B
Akαm

)−1

for kG ≤ k ≤ km

0 for kΛ ≤ k ≤ kG

(59)

which has finite jumps at the scales km and kG because the interpolation Formula (56) is not
continuously differentiable with respect to k. Nevertheless, the interpolation Formula (56)
together with the Formulas (3) and (4) reflect the global scale dependences of the couplings
and are suitable for the discussion of the influence of the RG scaling on the cosmologi-
cal evolution.
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Figure 8. The dimensionless inflaton mass squared m̃2 vs. the RG scale t = ln(k/kG) for various IR
values m2

0/m2
Pl (solid lines). The tilted dashed lines and the horizontal one illustrate the power-law

fits m̃(k) ∝ kαm−2 and the asymptotic NGFP1 value, respectively.
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Figure 9. The scale tm = ln(km/kG) generated by the RG flow of the mass squared m̃2 for various IR
values m2

0/m2
Pl (full dots). The fit by Equation (54) is illustrated by the dashed line.
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4.2. Cosmological Evolution in QIM2

4.2.1. Evolution Equations

Here, we discuss QIM2, in which quantum improvement incorporates not only the RG
flow of the gravitational couplings but also that of the inflaton mass. The RG flow of these cou-
plings dictates one to distinguish roughly three eras of the cosmological evolution: the NGFP1

driven era (RFPE) for k ≥ km (0 ≤ t ≤ tm), the first crossover era (COE1) for km ≥ k ≥ kG

(tm ≤ t ≤ tG), and the second crossover era (COE2) for kG ≥ k ≥ kΛ (tG ≤ t ≤ tΛ). As shown
in Section 2, the evolution of the universe is described by three independent equations: the
Friedmann Equations (7) and (8) and either the KG Equation (11) or the reduced consistency
condition (13). In COE2, the dimensionful mass squared m2

0 is constant so that the evolution
Equations (7), (22) and (A7) can be used for QIM2 as well as for QIM1. The RG flow of the
inflaton mass (56) occurs in the UV scaling regions k > km, i.e., in RFPE, and km ≥ k ≥ kG,
i.e., in COE1. Then, Equations (7), (8) and (13) can be rewritten as

H2 =
8πG(k)

3

[(

1 − λRG

ηRG

)

ρ(Λ) − Uk(ϕ)
νRG

ηRG

]

, (60)

Ḣ = 8πG(k)

[

λRG

ηRG
ρ(Λ) +

(

1 +
νRG

ηRG

)

Uk(ϕ)

]

, (61)

ϕ̇2 + 2
(

1 +
νRG

ηRG

)

Uk(ϕ) = −2
λRG

ηRG
ρ(Λ) (62)

in terms of the variables H(t), ϕ(t), and k(t). The terms with the factor νRG/ηRG occur
due to the running mass in the inflaton potential. Making use of the scaling rules (3), (4)
and (56), we obtain

H2 =
2λ∗k2

3
+

4πC∗
3

ϕ2, (63)

Ḣ = −λ∗k2, (64)

ϕ̇2 =
λ∗

4πg∗
k4 (65)

for RFPE and

H2 =
2λ∗k2

3
+

2πg∗
3

Aαmkαm−2 ϕ2, (66)

Ḣ = −λ∗k2 + 2πg∗

[

2(Akα
m + B)

k2 − Aαmkαm−2
]

ϕ2, (67)

ϕ̇2 +

[(

1 − αm

2

)

Akαm + B

]

ϕ2 =
λ∗

4πg∗
k4 (68)

for the COE1.
It is a drawback that the interpolation Formula (56) for the running inflaton mass is

not differentiable at the scales km and kG, causing artificial jumps in the RG parameter
νRG figuring in the cosmological evolution equations. The numerical results for the scale
dependences of the product C(k) = G(k)m2(k) (see Figure 7) and the dimensionless inflaton
mass m̃2(k) (see Figure 8) indicate that the change of their derivatives with respect to the
RG scale k is very abrupt at k = km, but it is rather smooth at k = kG. Therefore, our
interpolation formula (56) is a much better approximation at the scale k = km than at
k = kG. Nevertheless, even the smooth change in a short interval at around the scale k = kG

is preceded by a scaling region covering several orders of magnitude in k. Therefore, we
expect that the artificial discontinuities introduced by our interpolation Formula (56) do
not destroy the order-of-magnitude features of the cosmological evolution and the timing
of the slow-roll inflation.
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4.2.2. Numerical Results

The numerical solution should be found by solving first the system of the independent
first-order ODEs (63)–(65) for 0 ≤ t ≤ tm with the initial conditions properly chosen at
t1 ≪ tm and afterward solving the systems of Equations (66)–(68) and Equations (7), (22)
and (A7), respectively, for tm ≤ t ≤ tG and tG ≤ t, and finally sewing the solutions
at t = tm and t = tG continuously, where the matching points are determined via the
conditions k(tm) = km and k(tG) = kG. The only free parameter is the IR inflaton mass
m0. The scale km (see Equation (54)) and the parameters A and B (see Equation (57)),
entering into the interpolation Formula (56) for the running inflaton mass, depending on
the choice of m0. Here, it should be mentioned that both parameters A and B show a

singularity at m
(s)
0 = 0.144mPl. We accepted the interval 0 < m0 < m

(s)
0 as the physically

relevant one because for larger m0 values, the conversion rule k = k(t) ceased to be a
strictly monotonically decreasing function. As shown in Table 3, numerics has revealed
that for appropriate choices of the IR value m0 of the dimensionful inflaton mass, there
occurs slow-roll inflation with reasonable numbers of e-foldings. As depicted on Figure 10,
the phase trajectories for various initial conditions run again on the universal attractor
characterized by slow-roll inflation. The desirable inflation with N, ≈ 60.7, has been
obtained for mQIM2

0 = 4.15 × 10−2mPl, being nearly four orders of magnitude larger than
the value mcl ∼ O(10−6)mPl obtained in GRM, and nearly eight orders of magnitude larger
than mQIM1 ∼ O(10−7)mPl obtained in QIM1, where the inflaton mass does not run. The
desirable slow-roll inflation in QIM2 is characterized by the time scales

tQIM2
i = 13.8sPl, tQIM2

f = 448sPl, (69)

the parameters

ε(tQIM2
i ) = 0.0079, H(tQIM2

i ) = 0.259mPl, (70)

and the spectral parameters

nQIM2
s ≈ 0.984, rQIM2 ≈ 0.1276, AQIM2

s ≈ 2.67. (71)

Table 3. Matching points at t = tm and tG, the energy scale km introduced by the running inflaton
mass, the onset ti and the end t f of the slow-roll inflation, and the number of e-foldings N, for various
IR values m0 of the inflaton mass in QIM2.

m0/mPl tm(sPl) km(mPl) tG(sPl) ti(sPl) t f (sPl) N

0.030 0.190 12.92 0.193 17.1 960 141.9

0.032 0.200 11.82 0.212 14.5 820 119.2

0.034 0.220 10.86 0.230 13.1 714 102.7

0.036 0.240 10.03 0.249 15.5 622 87.04

0.038 0.260 9.31 0.269 16.3 551 75.62

0.040 0.280 8.67 0.289 15.8 488 66.12

0.042 0.300 8.10 0.309 14.3 436 58.73

0.044 0.320 7.59 0.330 14.5 391 51.82

0.046 0.340 7.14 0.351 13.9 353 46.33

0.048 0.360 6.73 0.372 13.5 320 41.76

0.050 0.380 6.36 0.394 13.7 290 37.42
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Figure 10. Typical phase trajectories for various initial conditions ϕin providing the desirable inflation
in QIM2.

Let us turn now to the details of the numerics and that of the evolution of the model
universe in the various eras. For the emergent universe, the analytic estimate of the solution
of the system of Equations (63)–(65) for RFPE is given in Appendix E. In order to solve
numerically the system of Equations (63)–(65), we took the initial conditions at some very
early time t1 obtained by the analytic estimates given in Equations (A37)–(A40). It was
found that for t1 ≲ 10−11sPl, the numerical solution remains stable against the choice of t1

and is in excellent agreement with the analytic estimates given in Appendix E for t ≤ tm.
The analytic solution shows that the EoS of the inflaton field is not ultrahard anymore
in RFPE for QIM2 because the dimensionful inflaton mass increases like m2 ∝ k2 in the
limit k → ∞. During RFPE all cosmological variables characterizing the evolution of the
homogeneous background evolve inversely proportionally to the cosmological time, i.e.,
H(t), ϕ(t), k(t) ∝ 1/t. In RFPE both the kinetic and potential energy densities of the scalar
field are of the same orders of magnitude, O(k4). Indeed, the fraction y

¯
2 of the potential

energy density in the critical energy density is somewhat larger than the fractions x2 and
u2 of the kinetic energy density and that of the dark energy density (see the estimates given
in Equations (A43)–(A45)), while it holds x2 = u2. The end t = tm of RFPE is defined via
the condition km = k(tm) = K/tm with K given by (A37) as

tm =

√

2
3λ∗

1
km

(

1 − C∗
3g∗λ∗

)−1/2

. (72)

Since the RG scale km given by Equation (55) implicitly depends on the IR value m0 of
the inflaton mass, the end of RFPE depends on it too. Its typical values are of the order
km ∼ O(101)mPl yielding tm ∼ O(10−1)sPl, but slightly depending on the value of m0

(see Table 3 and Equation (55)). As opposed to that, in QIM1 the end tG of the RFPE does
not depend on the inflaton mass. As discussed in Appendix E, the analytic estimate of
the solution for RFPE exists iff C∗ < Ccr = 3g∗λ∗ ≈ 0.4. In our case, C∗ = g̃∗m̃2∗ ≈ 0.17,
which lies in the interval Ccr/3 < C∗ < Ccr. It holds that H(t)/k(t) = h ≈ 0.47 (see
Equation (A41)), and H(t) = X/t with the constant X given by Equation (A39) implies
the power-law time dependence a ∝ tX ≈ t1.15 and the accelerating expansion with
q = −1 − (Ḣ/H2) ≈ −1 − (1/X) ≈ −1.9, i.e., a kind of superinflation in RFPE. For QIM2,
the evolution in RFPE depends on the FP value of the dimensionless inflaton mass, but
not on the IR value of the dimensionful inflaton mass. Therefore, the Reuter FP dictated
scaling laws make the evolution of QIM2 universal in the RFPE. The values H(tm), ϕ(tm),
and k(tm) obtained from the analytic solution represent the right initial conditions for the
solution for COE1 with tm ≤ t ≤ tG.
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For the numerical study of the evolution in COE1, it turned out to be more practical
to eliminate the function H(t) from the set of Equations (66)–(68), as it is conducted in
Appendix F. Then, the coupled set of the first-order ODEs

(λ∗k2 + ν2kαm−2 ϕ2)1/2g(k, ϕ)−
√

2
3

f (k, k̇, ϕ, ϕ̇) = 0 (73)

and (68) has been obtained, where the explicit forms of the functions f (k, k̇, ϕ, ϕ̇) and g(k, ϕ)

are given by the Equations (A47) and (A49), respectively, and ν2 = Aπg∗αm. The system of
Equations (68) and (73) having been solved numerically with the initial conditions given at
t = tm, the evaluation of H(t), Ḣ(t), and ϕ̇(t) is straightforward from Equations (66)–(68),
respectively. The matching point t = tG can then be determined numerically from the
condition k(tG) = kG and the values H(tG), ϕ(tG) provide the initial conditions for the
evaluation of the evolution in COE2. The duration of COE1 is rather short, tG − tm ≈ 0.01sPl,
and does not reveal a systematic dependence on m0 in the investigated range, as shown
in Table 3. As opposed to QIM1, the amplitude of the scalar field does not change sign
and simply rolls down on one of the “sides” of the quadratic potential Uk(ϕ). At t = tm

all energy fractions x2, y
¯

2, and u2 are of the same orders of magnitude, while x2 slightly
increases, y

¯
2 decreases for t → tG (see the plot to the left on Figure 13). One can see on

Figure 11 that the inverse proportionality of the energy scale k with the cosmological time t

does not hold in COE1, although k(t) remains a strictly monotonically decreasing function
of t.
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Figure 11. Time dependences of the Hubble parameter H(t), that of the reciprocal of the momentum
scale k(t), and that of the scalar field amplitude ϕ(t) (from the left to the right) in COE1 along the
phase trajectories providing the desirable inflation for QIM2. The dashed line on the plot for 1/k(t)

indicates the value 1/kG.

Since in COE2, the inflaton mass takes its constant IR value m0, one can use the same
numerical procedure for the evaluation of the evolution as in the case of QIM1. Comparing
the plots in Figure 12 and the plot to the right in Figure 13 for QIM2 with the plots on the
top of Figure 4, the plot to the left in Figure 3, and the plot to the right in Figure 2 for QIM1,
one realizes that the qualitative features of the evolution in COE2 are quite similar for both
quantum-improved models. The reason is, on the one hand, that the dimensionful inflaton
mass takes its constant IR value. On the other hand, the plot to the right in Figure 13 shows
that at the beginning of COE2, the energy fractions x2 and u2 are nearly equal, while y

¯
2

is yet cca. 5 times smaller. Therefore, the physical initial conditions are rather close to
those at the beginning of COE2 in QIM1. Furthermore, the universal attractor acquires a
quantum correction of the order (ki/kG)

2 ∼ O(10−4) in QIM2 (see our arguments at the
end of Appendix B), which is rather small even in that case. Thus, our detailed analysis
of the evolution in COE2 made for QIM1 can equally well be applied to the evolution in
COE2 in QIM2. The only significant difference occurs in the different time and energy
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scales characterizing the details of the scenario (see Table 4). The characteristic points of
time associated with the slow-roll inflation seem to scale nearly inversely proportionally
with the (IR value of) the inflaton mass in both QIM1 and QIM2, as indicated by the last
four columns of Table 4.
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1
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Figure 12. Plots of the functions H(t), k(t), and ϕ(t) (from left to right) in COE2 along the phase
trajectories providing the desirable inflation for QIM2.
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Figure 13. Plots of the functions x2(t), y
¯

2(t), and u2(t) in COE1 (to the left) and in COE2 (to the right)
for QIM2 along the phase trajectory providing the desirable slow-roll inflation.

Table 4. Comparison of characteristic points of time (in sPl) in COE2 for QIM1 and QIM2. The
characteristic points of time multiplied by the (IR) inflaton mass are given in the last four columns. It
holds m = m0 for QIM1.

Model m0/mPl tG txy ti t f m0txy m0ti m0t f

QIM1 10−10 1.27 5 × 108 2.3 × 109 1.84 × 1011 5 × 10−2 2.3 × 10−1 1.8 × 101

QIM2 4.15 × 10−2 0.31 0.95 13.8 448 3.9 × 10−2 5.7 × 10−1 1.9 × 101

The desirable phase trajectory on the (x, z) plane shows similar features in COE2
as the one in QIM1 depicted on the plot to the right on Figure 5: at t = ti it runs onto
the universal attractor slowly departing it for increasing time t → t f . Making use of the
analytic expressions given in Appendix E, one finds that the CFPs occur in QIM2,

x∗ ≈ ±0.54, z∗ =
k

√

8πg∗ϕ
=

√

6πg∗

(

1 − C∗
3g∗λ∗

)

≈ 2.8, (74)

which represents the entire RFPE, although the energy scale k is not frozen. In COE1, the
phase trajectory moves from the CFP to the point (x ≈ ±1, z ≈ 0) first and keeping the
almost constant z ≈ 0 value, it jumps afterward suddenly to the beginning of the universal
attractor at x = z ≈ 0.
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It is a drawback of our interpolation Formula (56) for the inflaton mass that it is
not continuously differentiable at k = km and k = kG, which causes a discontinuity of
νRG figuring in the evolution equations and discontinuities in the time derivatives Ḣ, k̇,
and ϕ̇. As a consequence, the kinetic energy fraction of the scalar field turns out to be
discontinuous at those points:

∆x2(tm) ≡ x2(tm + 0)− x2(tm − 0) = −0.0944, (75)

∆x2(tG) ≡ x2(tG + 0)− x2(tG − 0) = −0.498. (76)

The numerical values correspond to the phase trajectory, providing the desirable inflation.
Since the potential energy fraction y

¯
2 of the scalar field is continuous and it holds x2 + y

¯
2 +

u2 = 1, the discontinuity of x2 implies the discontinuity ∆u2 = −∆x2 of the dark energy
fraction: a sudden energy exchange between the scalar field and the dark energy. These
discontinuities result in the sudden change of the EoS of the scalar field, i.e., in the ratio

w =
p(ϕ)

ρ(ϕ)
=

x2 − y
¯

2

x2 + y
¯

2 . (77)

We have found that

∆w(tm) = w(tm + 0)− w(tm − 0) = 0.161, (78)

∆w(tG) = w(tG + 0)− w(tG − 0) = −0.335 (79)

for the phase trajectory providing the desirable inflation. Although these discontinuities
are artificial, following our arguments at the end of Section 4.2.1, one is inclined to suggest
that similar changes would occur in short time intervals ∆tm ≪ tm at around t = tm and
∆tG ≪ (tG − tm) at around t = tG if one would evaluate the evolution with a smooth mass
formula fitted to the result of the RG analysis. Therefore, we expect that our main results with
respect to the timing of the slow-roll inflation are a correct order-of-magnitude estimate.

Let us now compare the times of the onset and end of the desirable slow-roll inflation
in the classical GRM and in the quantum-improved models QIM1 and QIM2. The main
difference caused by the quantum effects reveals itself in the rather different onset times ti.
In QIM1 (in QIM2), a delay (a hastening) of several orders of magnitude occurs in the onset
of the slow-roll inflation as compared with the corresponding classical model (see Table 5).
The order of magnitude of the the end time t f of the slow-roll inflation seems to be roughly
inversely proportional to the (IR) inflaton mass, t f ∝ 1/m. Since ti/t f ∼ O(10−2), the same
holds for the duration t f − ti of the slow-roll inflation. It is worthwhile mentioning that
a factor of ∼1.5 increase of the IR inflaton mass m0 results in a factor of ∼1/3 decrease in
the number N, of e-foldings during the slow roll in QIM2 (see Table 3), whereas a similar
decrease of N, needs nearly six orders of magnitude increase of the constant inflaton mass
m in QIM1 (see Table 1).

As a byproduct, we obtained analytic estimates for the singular behavior of QIM1 and
QIM2 in Appendices A and E, respectively, and compared those in Table 6 to the singular
behavior of the corresponding classical model given in [58]. One can see from Table 6 that
the amplitude of the inflaton field is more singular in the quantum-improved case than in
the corresponding classical model, but the RG flow of the inflaton mass does not affect the
singular behavior of the quantum-improved models.
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Table 5. Order-of-magnitude comparison of the typical (IR) inflaton masses, onset times ti, and the
end t f of the slow-roll inflation for the solutions yielding the desirable number N, ≈ 60 e-foldings. It
holds m = m0 for GRM and QIM1.

GRM QIM1 QIM2

m0/mPl 10−6 10−10 4.2 × 10−2

ti (sPl) 1.3 × 105 2.3 × 109 1.4 × 101

t f (sPl) 1.8 × 107 1.8 × 1011 4.5 × 102

mti 1.3 × 10−1 2.3 × 10−1 5.9 × 10−1

mt f 1.8 × 101 1.8 × 101 1.9 × 101

Table 6. Singular behavior of the inflaton field ϕ, the Hubble parameter H, and the RG scale k vs.
the cosmological time t after the Big Bang in the various models. The singular behaviors are taken
from [58] for GRM, from Appendix A for QIM1, and from Appendix E for QIM2.

GRM QIM1 QIM2

ϕ̇ ∼t−1 ∼t−2 ∼t−2

H ∼t−1 ∼t−1 ∼t−1

k — ∼t−1 ∼t−1

5. Summary

In the framework of the quantum-improved cosmology, the evolution of the spatially
flat, homogeneous, and isotropic toy-model universe has been determined numerically
with the simple matter content of a single massive, non-self-interacting real scalar field,
the inflaton field. Quantum improvement is performed by taking into account the RG
flow of the various couplings in asymptotically safe EH gravity minimally coupled to
the inflaton field. Two versions of the model have been discussed: QIM1 with a constant
dimensionful inflaton mass and QIM2 with a running inflaton mass. The RG flow of
the gravitational couplings was described by the interpolation formulas obtained by us
previously in Ref. [43], whereas another interpolation formula for the inflaton mass has
been derived in the present work by investigating the global RG flow of the inflaton mass
along the RG trajectories running to the Reuter FP in the limit k → ∞ and approaching the
Gaussian FP for IR scales. In addition to the energy scales kG ∼ 100mPl and kΛ ∼ 10−30mPl

induced by the RG flow of the gravitational couplings, the running inflaton mass induces
the scale km ∼ 101mPl above the Planck scale. Here we extrapolated the validity of EH
gravity and its asymptotically safe quantum-improved versions back in time to the Big
Bang, treated the dimensionful inflaton mass in GRM and QIM1 and its IR value in QIM2 as
the only free parameter, and looked for phase trajectories providing the desirable slow-roll
inflation with the number N, ≈ 60 of e-foldings. The reduced consistency condition of the
Friedmann equations has been used to settle the conversion rule k = k(t) relating the RG
scale k to the cosmological time t without any ambiguity.

It was shown that for both QIM1 and QIM2, there exists a range of the (IR) inflaton
mass for which the slow-roll inflation occurs, and the desirable inflation can be achieved by
the appropriate choice of the value of the (IR) inflaton mass. It turned out that the numeri-
cally obtained conversion rule k = k(t) is represented by a function strictly monotonically
decreasing with increasing t. The RG-induced energy scales determine the typical time
scales ta via the relations ka = k(ta) for a = m, G, Λ. Therefore, in QIM2, RFPE lasts for
a rather short time after the Big Bang and is followed by COE1, whereas in QIM1, RFPE
covers the whole Planck era. In both QIM1 and QIM2, the evolution for the energy scales
kΛ < k < kG is governed by the crossover scalings of the gravitational couplings, while the
inflaton mass keeps its constant (IR) value. This COE2 starts with a preinflationary era for
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tG ≤ t ≤ ti followed by the slow-roll inflationary era for ti ≤ t ≤ t f . It was found that the
desirable inflation occurs in COE2, i.e., it holds the chain of inequalities tG < ti < t f < tΛ.
For the onset of the slow-roll inflation, the quantum effects essentially die out so that the
phase trajectory runs onto the universal attractor determined by the classical relation. Nev-
ertheless, the quite different prehistories in the Planck era in GRM, QIM1, and QIM2 result
in rather different (IR) optimal values of the inflaton mass for which the desirable inflation
can be achieved in these models. This results in many order-of-magnitude differences in
the time scales of the desirable slow-roll inflation in these models. It turned out that the
end time t f and the duration t f − ti of the slow roll are nearly inversely proportional to the
(IR) inflaton mass. Nevertheless, the initial conditions for the evolution of COE2 in both
QIM1 and QIM2 are quite similar at the end of the Planck era. The rather different optimal
inflaton mass values do not affect too much the values of the observables ε(ti), ns(ti),
and r(ti), but the amplitude As of the scalar fluctuations, being essentially proportional
to the (IR) inflaton mass squared, is highly model-dependent. In particular, none of the
quantum-improved models, QIM1 and QIM2, are able to reproduce the observed order of
magnitude of As, while GRM does.

Finally, we have to conclude that AS EH gravity minimally coupled to the massive,
non-self-interacting scalar field and extrapolated back in time to the Big Bang is not able
to give an in-order-of-magnitude reasonable description of the evolution of our universe.
This may happen, on the one hand, because the models investigated here are rather poor
in many senses: (i) they do not incorporate any self-interaction of the scalar field, maybe
in the form of a Higgs-type potential energy density, (ii) do not incorporate non-minimal
coupling of the inflaton field to gravity, and (iii) reduce the matter content to the inflaton
field only. Most probably, the inclusion of additional RG-improved running couplings may
influence the timing of the evolution and that of the slow-roll inflation. The results obtained
in Ref. [66] hint at that: the author succeeded in reconstructing a scale-dependent inflaton
potential in the framework of asymptotically safe cosmology, which provides a slow-roll
inflation compatible with current observations. On the other hand, it may happen that even
the extrapolation of the quantum-improved EH gravity back in time to the Big Bang is not
viable. In light of our results, one may be inclined to suggest that the success of GRM with
a simple quadratic inflation potential to predict the reasonable order of magnitude of the
amplitude of the scalar perturbations is probably accidental.

Author Contributions: Conceptualization, J.N., S.N. and K.S.; writing—review and editing, J.N., S.N.
and K.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The datasets generated and analyzed during the current study are
available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Analytic Estimate of the Evolution in RFPE for QIM1

For QIM1, where the RG flow of the inflaton mass is neglected, we assume that the
EoS of the inflaton field is ultrahard just after the Big Bang, i.e., in RFPE, just like in
the nonimproved case, i.e., in GRM [52,58]. This means that the kinetic energy density
ϕ̇2/2 of the inflaton field dominates over its potential energy density U(ϕ) so that the
contribution of the latter can be omitted in the energy density ρ(ϕ). Therefore, the evolution
is universal in RFPE in QIM1; it does not depend on the value of the inflaton mass. In that
approximation, Equation (13) yields

1
2

ϕ̇2 = ρ(Λ), (A1)
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because it holds λRG = −ηRG = 2 in RFPE. Inserting the exact relation (21) into the
Friedmann Equation (16), we get the first-order ODE for the function k(t),

hk̇ = −1
2

κ2 ϕ̇2 = −κ2ρ(Λ) = −Λ(k) = −λ∗k2 (A2)

with the solution

k(est)(t) =
h

λ∗
1
t
=

√

2
3λ∗

1
t

, (A3)

where the constant of integration has been chosen to put the initial singularity to t = 0.
Then, Equations (21) and (A1) yield

H(est)(t) =
2
3t

and ϕ̇(est) = ± 1
√

9πg∗λ∗t2
. (A4)

Hence we find

ϕ(est) = ∓ 1
√

9πg∗λ∗t
+ ϕin, (A5)

where ϕin is a constant of integration, and a(est)(t) ∝ t2/3. The ultrahard EoS approximation
is justified since ϕ̇(est)2/2 ∼ O(t−4) is much more singular than m2 ϕ(est)2/2 ≲ O(t−2) in
the asymptotic limit t → 0. Thus, the solution with the singularity at t = 0 has no free
parameters and is uniquely determined in the approximation considered. Inverting the
relation k(est)(tG) = kG, one arrives at the estimate

t
(est)
G =

√

2
3λ∗

1
kG

=
4
√

G0

3ω
≈ 1.27m−1

Pl . (A6)

For m ≈ 10−10mPl, one obtains the estimates x2 ≈ u2 ≈ 1/2 and y2 ≈ 0.5 × 10−20t2,
and the mass term in the KG Equation (11) is negligible since |3H ϕ̇| ≈ |ϕ̈|, while
|m2 ϕ| ≈ 10−20|3H ϕ̇|t2 (where t should be measured in sPls).

Appendix B. Quantum-Improved Universal Attractor

Both in QIM1 and QIM2, the inflaton mass m is constant in COE2, so that
νRG = βm2 = 0, while the gravitational couplings vary according to the interpolation
Formulas (3) and (4). Let us choose the following independent equations for the description
of the evolution: the Friedmann Equation (7), the continuity Equation (12) with vanishing
right-hand side,

ρ̇(ϕ) + 3H ϕ̇2 = 0, (A7)

and the reduced consistency condition (22). Our purpose is to eliminate the Hubble
parameter H(t) and find a set of first-order ODEs for the functions k(t) and ϕ(t). Let us
take the first time derivative of Equation (22) and the expression of H from (7), and insert
those into the continuity Equation (A7). Then, we get

kk̇ + 2πb

√

3
c

√

2k2
(

1
2

E − k2
)

+ k4 + Fϕ̇2 = 0, (A8)

while Equation (22) yields the differential equation

ϕ̇2 + m2 ϕ2 =
c

2πb
k2. (A9)
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For k ≤ k f ≪ kΛ, one can neglect F under the square root on the left-hand side of
Equation (A8) and reduce it without loss of the numerical accuracy to the more simple form

k̇ + 2πb

√

3
c
(E − k2)ϕ̇2 ≈ 0. (A10)

Making use of Equations (A10) and (A9), one can characterize the quantum-improved
universal attractor along which the slow-roll inflation takes place in QIM1 and QIM2. Let
us set to zero the kinetic energy density of the scalar field on the left-hand side of (A9) in
the slow-roll approximation,

m2 ϕ2 ≈ c

2πb
k2, (A11)

and take the first time derivative of both sides of Equation (A11)

m2 ϕϕ̇ ≈ c

2πb
kk̇. (A12)

Now, we express |ϕ| from Equation (A11) and insert it into Equation (A12) after taking the
magnitude of both sides,

m|ϕ̇| ≈ −
√

c

2πb
k̇, (A13)

where we made use of the inequality k̇ < 0. Let us insert here −k̇ given by Equation (A10).
Then we obtain for the quantum-improved univesal attractor the relation

|ϕ̇q.i.
attractor| ≈ m

√

6πb(E − k2)
. (A14)

As compared with the attractor in the classical case, in GRM, given by Equation (A20),
the quantum-improved attractor exhibits a slight k-dependence instead of providing the
constant value u0. Neglecting the k-dependence of the denominator on the right-hand side
of Equation (A14), we just recover the classical relation (A20) since E ≈ 3k2

G. However, the
slow-roll appears on the scales ki ≤ k ≤ k f , for which E ≈ 3k2

G ≫ k2, supposing that it
holds ki ≪ kG. In such cases, the quantum correction of the attractor is rather small, of the
order of (ki/kG)

2.

Appendix C. Slow-Roll Inflation in GRM

Let us remind a few basic relations describing the single scalar field-driven inflation in
classical cosmology, in GRM, when the inflaton potential is represented by a simple mass
term U(ϕ) = m2 ϕ2/2. The Friedmann equations are

3H2 = κ2
0ρ(ϕ) + Λ0, (A15)

2Ḣ = −κ2
0 ϕ̇2 (A16)

with κ2
0 = 8πG0. Their consistency condition is just equivalent with the KG Equation (11)

in the FLRW spacetime,

ϕ̈ + 3H ϕ̇ + m2 ϕ = 0. (A17)

Expressing H from Equation (A15) and inserting it into Equation (A17) yields

ϕ̈ +
√

3
(

κ2
0ρ(ϕ) + Λ0

)1/2

ϕ̇ + m2 ϕ = 0. (A18)
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This equation has turned out to be rather useful for getting a deeper insight into the
behavior of the phase trajectory of the inflating universe (see, e.g., [52,58]). For comparison
with slow-roll inflation in the quantum-improved cosmology, it is worthwhile mentioning
that in the slow-roll approximation with ϕ̈ ≈ 0 and ρ(ϕ) ≈ U(ϕ) ≫ Λ0 Equation (A18) can
be approximated as

√

12πG0 ϕ̇ ≈ ±m (A19)

providing

ϕ̇cl. ≈ ± m√
12πG0

≡ ±u0. (A20)

Therefore the phase trajectories along which slow-roll inflation takes place run onto the
universal attractor represented by the straightline sections ϕ̇ = ±u0 on the (ϕ, ϕ̇) plane,
independently of the initial conditions.

Appendix D. Influence of the Inflaton Mass on the Observable Features
of the Slow-Roll Inflation

The slow-roll inflation occurs in COE2 at scales ki ≥ k ≥ k f where ki/kG ≪ 1 and
k f /kΛ ≫ 1, so that G(k) = b

[

−k2 + (E/2
]

≈ 3k2
Gb/2 ≈ G0. Furthermore, discussing

Equation (A14), we argued that it holds the classical estimate |ϕ̇attractor| ≈ m(12πG0)
−1/2

with an accuracy of at least of the order of (ki/kG)
2 being equal to O(10−18) in QIM1 and

O(10−4) in QIM2. Therefore, the quantum effects die out practically before the onset of
the slow roll in QIM1 and QIM2. The (IR) value of the inflaton mass is the only parameter
which can modify the basic features of the slow roll. Let us remember how those features
are affected by the inflaton mass in the classical case. Then, one finds that it holds the
estimate Ḣ ≈ −4πG0 ϕ̇2

attractor ≈ −m2/3 and

Hsl.r.(t) ≈ H(t f ) +
m2

3
(t f − t) for ti ≤ t ≤ t f (A21)

for ti ≤ t ≤ t f . This yields the estimate of the slow-roll parameter

εest(t) = − Ḣsl.r.

Hsl.r.2 ≈ m2/3

[H(t f ) +
m2

3 (t f − t)]2
, (A22)

and that of the time-dependent number of e-foldings

N̄ est(t) =
∫ t f

t
Hsl.r.(t

¯
)dt

¯
≈

(

H(t f ) +
m2

6
(t f − t)

)

(t f − t) (A23)

counted during the time interval [t, t f ], i.e., N̄ (ti) = N, and N̄ (t f ) = 0. Making use of
Equation (A22), one obtains Hsl.r.(t) = m[3εest(t)]−1/2 and H(t f ) = Hsl.r.(t f ) = m/

√
3,

where it has been set εest(t f ) = 1. Expressing (t f − t) ≥ 0 from Equation (A23),

t f − t ≈
√

3
m

(−1 +
√

1 + 2N̄ ), (A24)

and inserting it into the expression (A22), one obtains the expression of the slow-roll
parameter as the function of the number of e-foldings,

εest(N̄ ) ≈ m2/3
(

m√
3

√
1 + 2N̄

)2 =
1

1 + 2N̄ . (A25)
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Since the quantum effects are negligible in the slow-roll era, it is the inflaton mass, the only
parameter figuring in the above-given discussion whose values are radically different in the
quantum improved and the classical cases. Fortunately, we see, however, that the inflaton
mass cancels in the expression of εest(ti) = εest(N̄ ). Therefore, the estimated value of ε,

εest.(ti) ≈ 1/121 ≈ 0.0083 (A26)

for the desirable number N, = 60 of e-foldings is not sensitive to the quantum improvement
and provides

nest.
s = 1 − 2εest. ≈ 0.98, rest. = 16εest. ≈ 0.13 (A27)

for the scalar spectral index and the tensor fraction, respectively. These analytical estimates
overshoot both the scalar spectral index and the tensor fraction as compared with the data
of the Planck 2018 survey [61,62] estimating ns = 0.9649 ± 0.0042 at 68% CL and r ≲ 0.056
at 95% CL (the more recent BICEP/Keck measurement [67] gives r ≲ 0.036 at 95% CL).
Furthermore, the amplitude of the scalar perturbations As ≈ (2.43 ± 0.091)× 10−9 [60] can
be estimated as (the generalization of eq. (168) in [68] with the replacement G0 −→ G(t))

Aest.
s =

H2(t)

πεm2
Pl

G(t)

G0
≈ 1

π

(

m/mPl
√

3(1 + 2N, )

)2

(1 + 2N, ) =
m2

3πm2
Pl

. (A28)

This relation shows that the order of magnitude of the square of the (IR value of the) inflaton
mass determines the order of magnitude of the amplitude of the scalar perturbations.
Therefore, As may be rather sensitive to quantum improvement, supposing the latter alters
the magnitude of the inflaton mass needed for the desirable slow-roll inflation.

Appendix E. Analytic Solution of the Evolution Equations in RFPE
for QIM2

Here, we look for an approximate analytic solution of the set of the evolution
Equations (11), (63) and (64) in the leading order of the powers of 1/t. We make the
power-law ansatz,

H(t) = Xt−α, ϕ(t) = Ft−β + A, k(t) = Kt−γ (A29)

where α, β, γ, X, K should be real, positive constants, F and A real constants. Inserting
ansatz (A29) into Equations (11), (63) and (64), one finds

X2t−2α =
2λ∗

3
K2t−2γ +

4πC∗
3

(F2t−2β + 2AFt−β + A2), (A30)

−αXt−α−1 = −λ∗K2t−2γ, (A31)

0 = β(β + 1)Ft−β−2 − 3βXFt−α−β−1 +
C∗
g∗

K2t−2γ(Ft−β + A). (A32)

Equation (A31) is satisfied identically for t ∈ [0, tm] if

2γ = α + 1, αX = λ∗K2. (A33)

Equation (A30) is satisfied in the leading order if

α = β = γ, X2 =
2λ∗

3
K2 +

4πC∗
3

F2. (A34)

Thus, we obtain α = β = γ = 1, X = λ∗K2, and
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0 = λ2
∗K4 − 2λ∗

3
K2 − 4πC∗

3
F2. (A35)

Furthermore, we see that the KG Equation (A32) is also satisfied in the leading order if
it holds

0 = 2 +
(

C∗
g∗

− 3λ∗

)

K2. (A36)

Then, we find

K = +

√

2
3λ∗

(

1 − C∗
3g∗λ∗

)−1/2

, (A37)

F = ±
√

1
9πg∗λ∗

(

1 − C∗
3g∗λ∗

)−1

, (A38)

X =
2
3

(

1 − C∗
3g∗λ∗

)−1

. (A39)

Now, we see that our ansatz works if the constant C∗ is bounded from above by
Ccr = 3g∗λ∗ ≈ 0.40. For NGFP1, the flow eqs. yielded C∗ ≈ 0.17.

Thus, one obtains the estimates in the limit t → 0:

H =
X

t
, k =

K

t
, ϕ =

F

t
+ ϕin (A40)

with the arbitrary constant ϕin and the constants given in Equations (A37)–(A39). This
also means that both the Hubble parameter and the amplitude of the scalar field are
proportional to the RG scale k, being inversely proportional to the cosmological time t in
the very beginning of the Planck era, i.e., there hold the relations H = hk and ϕ = f k in the
leading order of the powers of 1/t with

h =
X

K
=

√

2λ∗
3

(

1 − C∗
3g∗λ∗

)−1/2

, (A41)

f =
F

K
= ±

√

1
9πg∗λ∗

(

1 − C∗
3g∗λ∗

)−1√3λ∗
2

(

1 − C∗
3g∗λ∗

)1/2

= ± 1
√

6πg∗

(

1 − C∗
3g∗λ∗

)−1/2

. (A42)

It is straightforward to estimate the fractions of the various energy densities in the criti-
cal density:

x2 =
ϕ̇2/2

ρc
=

λ∗
3

K2

X2 =
1
2

(

1 − C∗
3g∗λ∗

)

≈ 0.29, (A43)

y
¯

2 =
m̃2∗k2 ϕ2/2

ρc
=

4πC∗
3

F2

X2 =
C∗

3g∗λ∗
≈ 0.42, (A44)

u2 =
ρ(Λ)

ρc
=

λ∗
3

K2

X2 = x2. (A45)

We see that all of these ratios are of the same orders of magnitude. The same holds for the
various terms of the KG Equation (11).

Appendix F. Evolution in COE1 for QIM2

The evolution in COE1 for QIM2 is described by the system of Equations (66)–(68). Our
purpose is to eliminate the functions H(t) and end up with a system of first-order ODEs
for the functions ϕ(t) and k(t). Take the first time derivative of both sides of Equation (66),
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HḢ =
2
3

kαm−2 · f (k, k̇, ϕ, ϕ̇), (A46)

where the function f (k, k̇, ϕ, ϕ̇) has been introduced via the relation

f (k, k̇, ϕ, ϕ̇) = λ∗k4−αm
d ln k

dt
+

1
2

ν2
[

(αm − 2)
d ln k

dt
+ 2

d ln ϕ

dt

]

ϕ2. (A47)

Let us rewrite Ḣ given by Equation (67) as

Ḣ = g(k, ϕ)kαm−2 (A48)

with

g(k, ϕ) = 2ν2
[

2α−1
m

(

1 +
B

A
kαm

)

− 1
]

ϕ2 − λ∗k4−αm (A49)

and insert it into the left-hand side of Equation (A46),

H · g(k, ϕ)− 2
3
· f (k, k̇, ϕ, ϕ̇) = 0. (A50)

Now, one expresses H from Equation (66),

H =

√

2
3
(λ∗k2 + ν2kαm−2 ϕ2)1/2 (A51)

and inserts it into the left-hand side of Equation (A50). Equation (73), obtained in that
manner, together with the reduced consistency condition (68) provides the system of
first-order ODEs for the functions ϕ(t) and k(t).
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