

1 The CMOS Pseudo-Thyristor: A Zero-Static Current

2 Circuit for Pixelized Detector Front-End Stage

3 **X. Wen, ^aD. Gong, ^bX. Huang, ^a T. Liu, ^bP. Gui, ^b and J. Wu, ^{b,1}**

4 *^aSouthern Methodist University,
5 Dallas, TX 75275, USA.*

6 *^bFermi National Accelerator Laboratory,
7 Batavia, IL 60510, USA.*

8 *E-mail: jywu168@fnal.gov*

11 ABSTRACT: A very low power front-end discriminator circuit for pixelized detectors, called
12 pseudo-thyristor is described in this document. It is a positive feedback topology using regular
13 PMOS and NMOS field-effect transistors (FET's) with zero static current. When a small charge
14 is injected into the circuit, it flips rapidly due to the positive feedback and outputs a logic transition
15 for further digitization. Simulation shows that in 65 nm process, it is possible to achieve a
16 detecting threshold of 5 fC while maintain the average power consumption below 10 micro-Watts
17 when the hit occupancy is < 10% for 40 MHz operation.

18 KEYWORDS: Front-end electronics for detector readout; Solid state detectors; Timing detectors

¹ Corresponding author.

20 **Contents**

21	1. Introduction	1
22	2. Design of the Pseudo-Thyristor Discriminator	2
23	2.1 Circuit Diagram	2
24	2.2 An Application Example	4
25	2.3 Design Considerations	5
26	3. Simulation Results	5
27	3.1 Operations of the pseudo-thyristor discriminators	5
28	3.2 Power Consumptions	6
29	4. Conclusion and outlook	7
30		
31		
32		

33 **1. Introduction**

34 In contemporary high energy physics detectors, pixelized detectors, either silicon detectors or
35 Low-Gain Avalanche Detectors (LGADs) are widely used for tracking, timing or calorimeters.
36 As the number of detector elements or pixels continues to increases towards the future, much
37 lower power consumption of the front-end circuits is required or desired. In some applications,
38 power consumption as low as 10 micro-Watts per channel is desired. In typical architecture today,
39 the front-end circuits consist of pre-amplifiers and discriminators, each consumes about 1 milli-
40 Watts power for 65-180 nm CMOS fabrication processes and this is a factor of 100 higher than
41 what's desired in the future. To reduce the power consumption by up to two orders of magnitude,
42 new approaches of the front end design are required. The Pseudo-Thyristor proposed here is a
43 novel CMOS circuit with zero static current for LGAD-like frontend electronics with the potential
44 to have ultra-low power consumption.

45 The circuit is a positive feedback topology (which is rarely used in analog frontend circuits)
46 using regular PMOS and NMOS field-effect transistors (FET's). The core of the circuit consists
47 of a pair of PMOS and NMOS FET's with the drain and gate terminals of them cross connected
48 to form a positive feedback loop. When a small amount of electric charges is injected into the
49 NMOS gate, both the NMOS and PMOS FET's are turned from OFF to ON state similar as a
50 thyristor, except that in both ON and OFF states, the static current of the circuit is almost zero
51 (with small leakage currents in deep nanometer fabrication processes) as in most digital CMOS
52 circuits. The circuit converts a signal with a small charge into a logic level transition and later
53 resets from ON to OFF state with a set of MOS FET's.

54 Intrinsically, in typical architecture today, the transistors in the amplifiers and discriminators
55 must operate with a static current so that the transistors are in high conductivity region to follow
56 the input pulse at high speed. The topologies used in amplifiers usually employs deep negative
57 feedback to improve bandwidth and linearity.

58 However, in pixelized detectors, full waveform information is usually not needed because
59 we usually only care about whether a charged particle passed through a given pixel, or we are also
60 interested in the arrival time of the particle. The full waveform information is also not practical
61 due to the limited data link bandwidth. In many cases, single bit hits indicating the coordinates
62 of the passing points of charged particles in a tracking detector are sufficient. Beyond that, one
63 may digitize the arrival times of the particle hits and sometimes digitize the pulse widths for time
64 walk correction. In these situations, the requirement to the front-end circuit is nothing more than
65 to provide a logic flipping. This requirement can be fulfilled using very low power circuits
66 consuming zero static current. Also, since the detector elements produce only one type of charges
67 (negative charges), symmetric topologies in the front-end circuits are not necessary, which further
68 simplifies the circuits and results in lower power consumption.

69 While the circuit can be at least utilized for 1-bit hit detection in tracking pixel detectors,
70 timing walk correction is possible when the 4D detection is demanded, although further
71 simulation and testing are needed..

72 We chose a circuit scheme with positive feedback for fast switching between OFF and ON
73 states that operates like a thyristor. However, unlike a thyristor that needs a static current to
74 maintain the ON state, our front-end circuits consumes zero static currents for both ON and OFF
75 states as in regular CMOS digital circuits. For this reason, we name the circuit as Pseudo-
76 Thyristor Discriminator. In this documents, circuit design of the pseudo-thyristor discriminator
77 is described in Section 2 and simulation results are shown in Section 3, followed with conclusion
78 in Section 4.

79 **2. Design of the Pseudo-Thyristor Discriminator**

80 **2.1 Circuit Diagram**

81 Figure 1 illustrates the circuit diagram of the pseudo-thyristor discriminator. The entire circuit is
82 constructed with regular PMOS and NMOS field-effect transistors (FET's) in TSMC 65 nm
83 process.

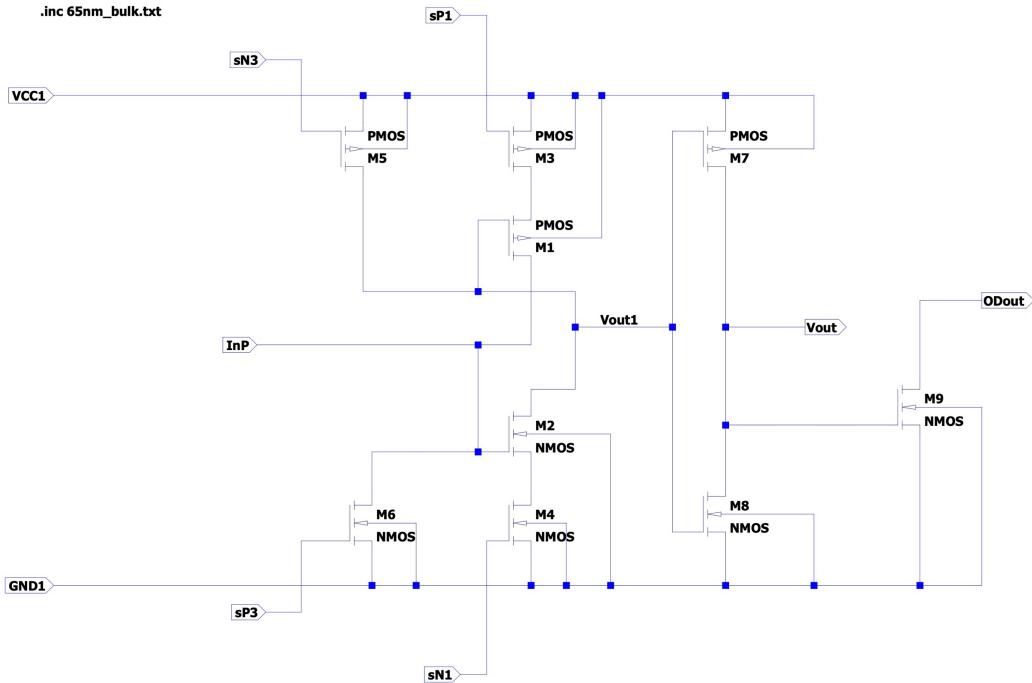
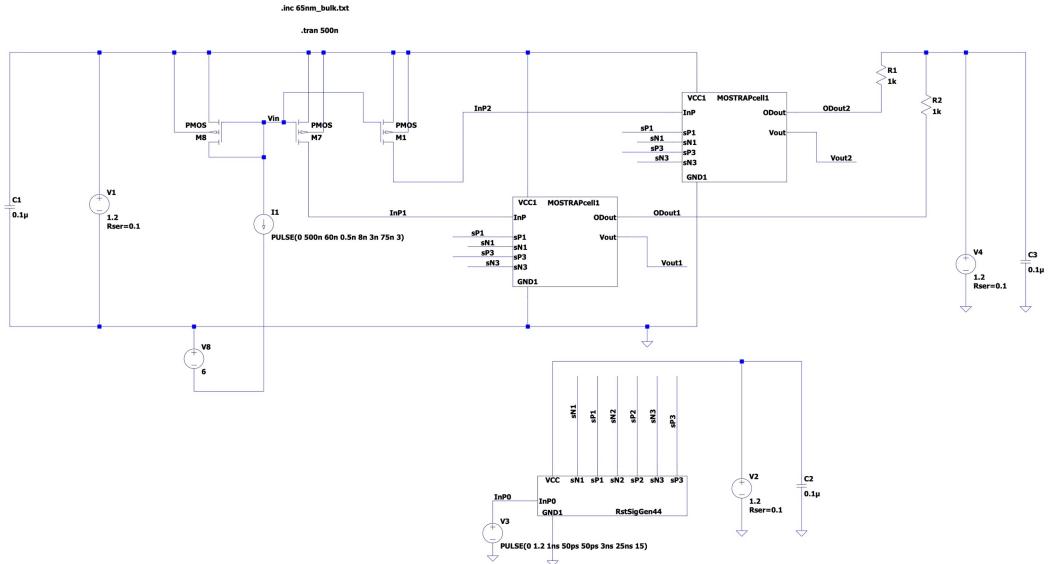


Figure 1. Circuit diagram of the pseudo-thyristor discriminator


84
85 The core of the circuit consists of a pair of PMOS (M1) and the NMOS (M2) FET's with the
86 drain and gate terminals of them cross connected to form a positive feedback loop. At standby
87 condition, external control signals $sP1=LO$ and $sN1=HI$ which cause M3 and M4 in ON state
88 while $sP3=LO$ and $sN3=HI$, causing M6 and M5 in OFF state. After initialization, both M1 and
89 M2 are in OFF state, i.e., the gate of M1 (and the drain of M2) is in HI state while the gate of M2
90 (and the drain of M1) is in LO state. When a small amount of electric charges (typically several
91 femto-Coulombs) is injected via InP port into the NMOS (M2) gate, after the M2 gate is charged
92 beyond the threshold voltage, both the M2 and M1 are turned from OFF to ON state. Due to
93 positive feedback, the switching process is fast with relatively large instantaneous currents that
94 charge the gates of the FET's in a short amount of time. Once in the ON state, both M1 and M2
95 are conductive and the gates of M1 and M2 are kept in the LO and HI voltage level, respectively,
96 which maintain both transistors in ON state until the next reset period.

97 During reset period, $sP3$ is turned to HI while $sN3$ is turned to LO causing both M6 and M5
98 becoming ON. The gates of M1 and M2 are discharged to HI and LO voltage levels, respectively,
99 which force both of them to go OFF state. To prevent shorting power rail that cause large current
100 when M5 and M6 become conductive before M1 and M2 are turned OFF, transistors M3 and M4
101 are added and controlled by $sP1$ and $sN1$ signals. The $sP1$ and $sN1$ are flipped slightly earlier
102 than $sP3$ and $sN3$ so that they can cut off current paths before M6 and M5 are turned ON.
103 Therefore, the detailed resetting process takes several small steps: (1) M3 and M4 are turned from
104 ON to OFF, (2) M5 and M6 OFF to ON, (3) M1 and M2 ON to OFF, (4) M3 and M4 OFF back
105 to ON, (5) M5 and M6 ON back to OFF. After resetting, M1 and M2 remain OFF until external
106 charges injected into the gate of M1.

107 The pair of transistors M7 and M8 form a inverting buffer to drive circuits in later stages.
108 The NMOS transistor M9 can be used as an open drain driver.

109 **2.2 An Application Example**

110 An application example of the pseudo-thyristor discriminator interfacing with a negative
 111 current source is studied and the circuit diagram is shown in Figure 2.

Figure 2. Circuit diagram of the application of pseudo-thyristor discriminator interfacing with a negative current source.

112
 113 The current source I1 emulates the input from a detector element that generate a short (~10
 114 ns) negative pulse with total charge approximately 5fC. The input current is amplified with a
 115 current mirror structure built with M8, M7 and M1. The outputs from M7 and M1 are fed into
 116 two identical pseudo-thyristor discriminators in the subcircuit MOSTRAPcell1 blocks with circuit
 117 diagram as shown in Figure 1.

118 The block RstSigGen44 contains a set of inverters and converts the input pulse (InP0) into
 119 the control signals sN1, sP1, sN3 and sP3 for reset process as described in previous subsection.
 120 In this example, the reset pulse is a 40 MHz periodic signal that emulates resetting the circuits
 121 every beam crossing for detectors operating in LHC environment. In fact, the resetting pulse may
 122 also be a delayed version of the output logic level, so that the circuit can operate in a self-trigger,
 123 self-resetting mode, which we will discuss later.

124 The outputs of the pseudo-thyristor discriminators Vout1 and Vout2 are used to drive later
 125 stages and the open-drain outputs ODout1 and ODout2 are used to drive internal wires with pull-
 126 up resistors. The voltage supplies V1, V2 and V4 with some internal resistance are bypassed with
 127 capacitors. Note that the values of the resistance and capacitance are not realistic and they are
 128 chosen solely for the purpose of measuring the power consumptions of different parts of the circuit
 129 conveniently.

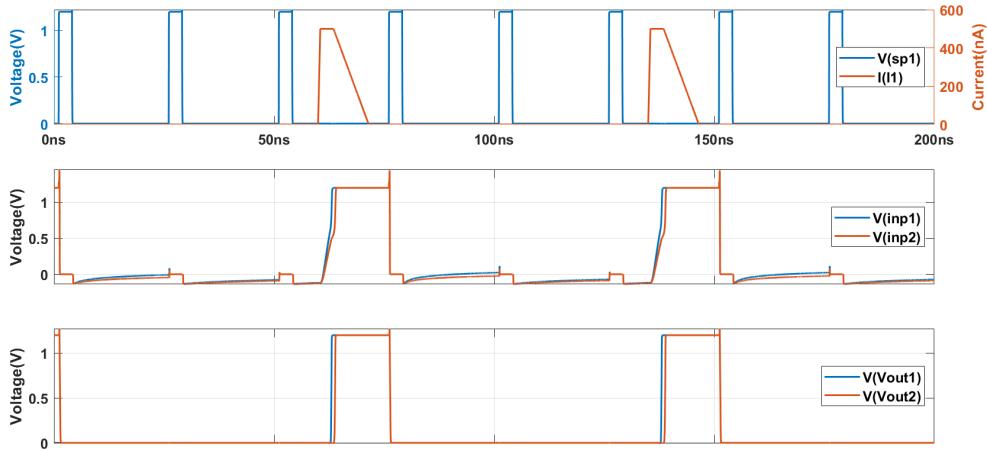
130 In the current mirror, the widths of M7 and M1 are designed to be different so that their
 131 outputs have different gains. The gain difference effectively causing the two pseudo-thyristor
 132 discriminators to flip with different thresholds of the input charges. For a given input current
 133 pulse, the two output logic levels have different flipping times that reflect the pulse height and the
 134 time difference is intended to be utilized for time walk correction. Although the time walk
 135 correction is yet to be studied.

136 **2.3 Design Considerations**

137 Cautions must be taken during the design of the pseudo-thyristor discriminators. During the
 138 standby condition, M1 and M2 in Figure 1 are both in OFF state. The OFF state leakage current
 139 of a transistor may charge the gate of the other one which may cause the transistor pair to go to
 140 ON state spontaneously via positive feedback if the one of the gates is charged above the
 141 conductive threshold. To prevent the transistor pair from spontaneous state changing, the lengths
 142 of M1 and M2 are chosen to be relatively large so that they are turned OFF as completely as
 143 possible. The transistors M5 and M6, on the other hand, are designed to provide small OFF state
 144 leakage currents to maintain M1 and M2 in OFF state.

145 In standby condition, the transistor M8 is in ON state, leakage current through its gate is not
 146 negligible, especially in IC chips fabricated with deep nano-meter processes. The length and
 147 width of M8 is chosen to be relatively small and the leakage current of M8 is to be balanced with
 148 the OFF state leakage current through the M5 drain.

149 With appropriate sets of the transistor lengths and widths, the circuit is able to remain in
 150 standby condition indefinitely. However, for applications in colliders, periodic resetting is still a
 151 reasonable operating mode to reduce fake hit rate and reduce variations of the flipping thresholds.


152 **3. Simulation Results**

153 The operations of the pseudo-thyristor discriminators is simulated in schematic-level with TSMC
 154 65 nm process technology.

155 **3.1 Operations of the pseudo-thyristor discriminators**

156 The simulation is based on an application in a collider with 40 MHz beam crossing as described
 157 in Figure 2. The reset pulses generated by V3 in Figure 2 repeat in 25 ns periods with about 3 ns
 158 ON state. The external current input is emulated with current source I1 that produces pulses up
 159 to 500 nA for about 10 ns, resulting in a total input charge approximately 5 fC.

160 The reset pulses and the signal input pulses are plotted in the top pane in Figure 3.

Figure 3. Simulation of the operations of the pseudo-thyristor discriminators

161
 162 The middle pane shows the voltage at the node InP1 and InP2. The outputs of the current
 163 mirrors of the drains of M7 and M1 in Figure 2 charge up the gates of M2 in Figure 1. Since the

164 mirror ratios for these two outputs are different, the charging speeds of these two nodes are
 165 different. They reach the threshold at different time and therefore, the two pseudo-thyristor
 166 discriminators flip from OFF to ON state at different time. The time difference can be used to
 167 estimate the input pulse height and make time walk correction. If the pulse is higher, the time
 168 difference becomes smaller given that the two currents from the current mirrors have a constant
 169 relative ratio.

170 The two pseudo-thyristor discriminators stay at ON state until the reset at the end of each
 171 beam crossing.

172 The bottom pane shows the V_{out} of the two pseudo-thyristor discriminators. Again the times
 173 of their leading edges are different due to different charging threshold for the two branches and
 174 their trailing edges are due to reset at the end of beam crossing.

175 3.2 Power Consumptions

176 The bottom pane in Figure 4 shows the currents flowing through the voltage supplies V_1 and V_2
 177 which reflect the power consumptions in different part of the circuit in schematic-level.

178 In static state, the current flowing through the pseudo-thyristor discriminators and current
 179 mirrors is very small as in regular CMOS logic circuits. From the trace of $I(V_1)$, the current
 180 flowing through power supply V_1 , one can see a large current pulse due to the operations with an
 181 input. The peak of $I(V_1)$ is about $5 \mu A$ (with the effect of the bypass capacitor and internal
 182 resistance), and the average over a short time interval (75 ns in this case) is approximately $1.1 \mu A$.
 183 The power consumption in this extreme case (33% hit occupancy) is roughly $1.3 \mu W$. In real
 184 applications with pixelized detector, hit occupancy is typically $<1\%$ and therefore, the power
 185 consumption in this part is very small ($<1 \mu W$).

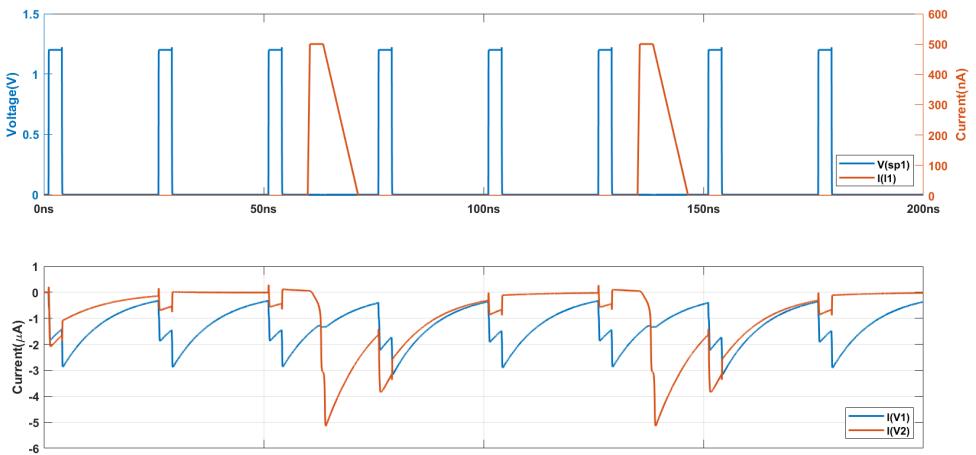


Figure 4. Simulation of the current of the pseudo-thyristor discriminators

186
 187 The trace $I(V_2)$ is the current through the power supply V_2 , which powers the block
 188 `RstSigGen44` that produces pulses for resetting process. The peak of this trace is around $3 \mu A$
 189 and the average is about $1.3 \mu A$ with an average power consumption of about $1.6 \mu W$, which
 190 should be acceptable for many applications. Note that this "service" circuit consumes dominating
 191 portion of the power in the entire circuit since resetting processes are repeated in all beam
 192 crossings.

193 If a self-trigger self-reset scheme is utilized, much lower total power consumption can be
194 anticipated. However, as mentioned earlier, there are advantages for using periodic resetting
195 approach. It is still possible to optimize the reset pulse generating circuit to further reduce the
196 power consumption.

197 **4. Conclusion and outlook**

198 A very low power consumption front end circuit, pseudo-thyristor discriminator is presented in
199 this document. Simulation results show that a power consumption $< 10 \mu\text{W}/\text{channel}$ is achievable
200 for ASIC chips fabricated with TSMC 65 nm process.

201 The positive feedback employed in the circuit helps reach a fast switching speed with a very
202 simple topology. The CMOS structure ensures current paths are cut off at both ON and OFF state
203 resulting in zero static current, while during the switch process, relative high currents flowing
204 through the transistors bring them into higher conductivity regions to fulfill the speed
205 requirements.

206 It is worth to mention that positive feedback processes are present in amplifications inside
207 natural materials for charged particle detections, such as in gaseous detectors. The frontend circuit
208 utilizing well-controlled positive feedback can be viewed as an extension beyond the interaction
209 of the charged particle with detecting materials.

210 **Acknowledgments**

211 This work has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-
212 07CH11359 with the US Department of Energy, Office of Science, Office of High Energy
213 Physics.

214 **References**

- 215 [1] G. Pellegrini et al., *Technology developments and first measurements of low gain avalanche detectors*
216 (*lgad*) *for high energy physics applications*, *Nucl. Instrum. Meth. A* **765** (2014) 12.
- 217 [2] Q. Sun et al., *The Analog Front-end for the LGAD Based Precision Timing Application in CMS ETL*,
218 Presented at [the 22nd Virtual IEEE Real Time Conference](#), zoom, 12 Oct 2020 [[arXiv: 2012.14526](#)].
- 219 [3] W. Zhang et al., *A Low-Power Time-to-Digital Converter for the CMS Endcap Timing Layer (ETL)*
220 *Upgrade*, Presented at [the 22nd Virtual IEEE Real Time Conference](#), zoom, 12 Oct 2020 [[arXiv: 2011.01222](#)].

222 [4]