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Abstract: Within the framework of the XHe hypothesis, the positive results of the

DAMA/NaI and DAMA/LIBRA experiments on the direct search for dark matter particles

can be explained by the annual modulation of the radiative capture of dark atoms into

low-energy bound states with sodium nuclei. Since this effect is not observed in other

underground WIMP (weakly interacting massive particle) search experiments, it is neces-

sary to explain these results by investigating the possibility of the existence of low-energy

bound states between dark atoms and the nuclei of matter. Numerical modeling is used

to solve this problem, since the study of the XHe–nucleus system is a three-body problem

and leaves no possibility of an analytical solution. To understand the key properties and

patterns underlying the interaction of dark atoms with the nuclei of baryonic matter, we

develop the quantum mechanical description of such an interaction. In the numerical

quantum mechanical model presented, takes into account the effects of quantum physics,

self-consistent electromagnetic interaction, and nuclear attraction. This approach allows

us to obtain a numerical model of the interaction between the dark atom and the nucleus

of matter and interpret the results of direct experiments on the underground search for

dark matter, within the framework of the dark atom hypothesis. Thus, in this paper, for

the first time, steps are taken towards a consistent quantum mechanical description of the

interaction of dark atoms, with unshielded nuclear attraction, with the nuclei of atoms

of matter. The total effective interaction potential of the OHe–Na system has therefore

been restored, the shape of which allows for the preservation of the integrity and stability

of the dark atom, which is an essential requirement for confirming the validity of the

OHe hypothesis.

Keywords: composite dark matter; dark atoms; XHe; stable multiple charged particles;

effective interaction potential; dipole moment; low-energy bound state; dipole coulomb

barrier; nuclear interactions

1. Introduction

One of the most pressing unsolved mysteries of modern physics is that of the essence

of dark matter. According to the modern standard cosmological model ΛCDM (Lambda-

Cold Dark Matter), dark matter (DM) accounts for approximately 25% of the total energy

density of the universe and is the dominant component of non-relativistic matter. Within

the framework of cosmology and astrophysics, which are based on empirical data and

evidence confirming the existence of dark matter, the latter is described as non-baryonic,

since in order to explain its nature, dynamic characteristics, and theoretically possible
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observable manifestations, it is necessary to go beyond the Standard Model (SM) of ele-

mentary particles.

The non-baryonic nature of dark matter indicates the presence of new stable forms of

non-relativistic matter in the universe, playing the role of stable dark matter particles. From

the perspective of such particles, this stability implies that they possess new conserved

quantum numbers (charges) that are absent from the particles of the SM which indicates the

existence of a new symmetry extending that of the SM. Thus, in order for particles to claim

the role of candidates for dark matter forming the large-scale structure of the universe, in

addition to stability, the ability to match the measured density of dark matter and the ability

to separate from plasma and radiation before the beginning of the stage of dominance of

ordinary matter, all candidates for the role of dark matter particles must reflect the presence

of some additional symmetry of the microcosm [1].

There are many models describing physics beyond the SM [1–9]. The lack of defini-

tive experimental confirmation for weakly interacting massive particles (WIMPs) and the

inability to detect supersymmetric (SUSY) particles at the energy scales probed by the

Large Hadron Collider (LHC) suggest the need to explore alternative, non-supersymmetric

explanations for the origin and nature of cosmological dark matter [10]. These observa-

tions also point to a potential resolution of the divergence problem associated with the

Higgs boson mass, offering insights into the fundamental properties of dark matter. One

promising avenue lies within composite Higgs boson models, which propose that stable,

multicharged particles may exist. Such particles are predicted by certain extensions of the

standard model, such as the minimal walking technicolor (WTC) framework [11–15].

The current paper considers a hypothetically possible connection between the com-

posite nature of the Higgs boson and the existence of new, stable, multicharged, lepton-like

particles. Moreover, the excess of hypothetical, stable, relict, negatively charged leptons

of this type can be balanced with baryon asymmetry, due to sphaleron transitions in the

early universe, which has made it possible to establish a connection between dark matter

and the density of baryonic matter in the universe [16]. Such scenarios provide a novel

perspective on dark matter suggesting that it possesses a composite structure [1]. Thus,

within such a theoretical framework, the existence of additional heavy fermions is hy-

pothesized, which interact through a new gauge force. Furthermore, the Higgs boson,

in this context, is reinterpreted as a composite particle. This reinterpretation aligns the

physics of the Higgs boson with the dynamics of these new gauge interactions, offering

a unified understanding of its composite origin. It is assumed that the electric charge of

the new, stable, multicharged particles is not fixed; however, there are exceptionally strict

experimental restrictions that rigorously limit the possible charge value of these particles.

Stable, negatively charged particles can only have a charge of −2n [1], where n is a natural

number; hereon, we indicate these particles as X. In a special case, when the charge of a

particle is −2, we denote it as O−−.

These models also assume the presence of antiparticles with a charge of +2n, so the

cosmological scenario should include a mechanism for their suppression. This can be

realized under the conditions of charge asymmetry, in which particles with a charge of −2n

predominate [17]. As a result, antiparticles with a positive charge of +2n can effectively

annihilate in the early universe [18]. In the scenario under consideration, it is assumed that

an excess of stable particles with a charge of −2n compared to their antiparticles with a

charge of +2n occurs as a result of sphaleron transitions, which also lead to an excess of

baryons [17,19–21]. The relationship between the excess of particles with a charge of −2n

and the baryonic asymmetry can explain the observed ratio of densities of baryonic and

dark matter. There are various models predicting the appearance of such stable particles

with a charge of −2n [1].
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This paper focuses on a scenario of composite dark matter in which hypothetical,

stable, lepton-like (that is, without QCD (quantum chromodynamics) interaction or with

strongly suppressed QCD interaction; according to the framework of the XHe hypothesis,

a stable, charged X particle may exhibit lepton-like properties or represent a distinct

combination of new heavy quark families, which are defined by their weak interactions

with hadrons [1]) heavy particles X−2n bind using the usual electromagnetic Coulomb force

with n nuclei of primary 4He into neutral atom-like states XHe, called dark atoms.

2. XHe Dark Atoms and Solving the Problem of Direct Search for Dark
Matter Particles

Dark atom is atom of dark matter, which is a coupled quantum system of the X particle

and the n nuclei of 4He (n–He nucleus).

Previous experimental evidence has indicated that the minimum mass for multi-

charged stable X particles is approximately 1 TeV [2,22]. At this mass scale for X particles,

their cumulative contribution to the total density of non-relativistic matter aligns with the

characteristics observed for dark matter. The mass of X particles with an even negative

charge is actually equal to the mass of dark atoms thus providing a plausible explanation

for the observed density of dark matter.

The structural properties of a dark atom system are characterized by the parameter

a ≈ ZαZXαAαmpRnHe. Here, α represents the fine-structure constant, ZX and Zα denote

the charge numbers of the X particle and the n–He nucleus, mp is the proton mass, Aα

corresponds to the mass number of the n–He nucleus, and RnHe represents the radius of

n–He. The parameter a defines the ratio of the Bohr radius of the XHe atom to the radius

of the n–He nucleus. If the Bohr radius of the dark atom is smaller than the size of the

n–He nucleus, the dark atom adopts a Thomson-like structure; otherwise, it resembles a

Bohr atom.

When the parameter a is within the range 0 < a < 1, the bound state resembles a

Bohr atom, with the negatively charged X particle at the center and the helium nucleus,

treated as a point-like particle, orbiting around it, similar to Bohr’s atomic model. On

the other hand, for a values in the range 1 < a < ∞, the system adopts characteristics

of Thomson’s atomic model, where the not-point-like helium nucleus oscillates around

the much heavier, negatively charged X particle. That is, in the case where the structure

of the dark atom is akin that of a Thomson-like atom, the heavy point-like X particle is

located inside the much lighter n–He nucleus of finite size (the radius of the n–He nucleus

is greater than the Bohr radius), forming a connected quantum mechanical system of the

XHe dark atom with this n–He nucleus. In Ref. [23], where it is determined that the

XHe system constitutes three charged particles interacting via electromagnetic and nuclear

forces, a step-by-step semiclassical numerical model was developed. This model allowed

for a qualitative reconstruction of the effective interaction potential between the XHe atom

and the target nucleus, employing the following two semiclassical methods: one based on

reconstructing particle trajectories, including both the Bohr and Thomson atom models,

and the other based on reconstructing the potential. In this paper, we consistently develop

a completely quantum mechanical numerical model for the interaction of dark atoms with

the nucleus of a substance in the XHe–nucleus system.

Dark atoms are considered the prospective candidates for composite dark matter,

meeting all the necessary requirements to align with the cosmological data on which cur-

rent cosmology is based [1]. Despite their nuclear interactions, the dark atom gas decouples

from plasma and radiation before the era of matter domination, thereby contributing

to the emergence and development of gravitational instability. This decoupling enables

the amplification of small enough initial density fluctuations, leading to the large-scale
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structure formation of the universe, consistent with the observed anisotropy of the cosmic

microwave background (CMB) radiation [1]. The unique properties of dark atoms intro-

duce a “warmer-than-cold dark matter” scenario in structure formation, which, despite

requiring further investigation, remains compatible with the data from precision cosmol-

ogy [1]. This study presented, is relevant, among other points as soon as it is necessary to

further study the nuclear physics of dark atoms and the active influence of XHe on nuclear

transformations, as this is of a special importance when assessing the quantitative role of

dark atoms in primary cosmological nucleosynthesis, the evolution of stars and various

other physical, astrophysical, and cosmological manifestations of such an interaction in the

early universe [1].

Despite the extensive efforts made to directly detect dark matter particles, the results

have been contradictory. XHe atoms of composite dark matter could be key in addressing

these inconsistencies. The properties of XHe atoms, which can be described by both the

Thomson and Bohr models, contribute to significantly slowing the cosmic dark atom flux.

This deceleration reduces their energy to thermal levels, causing them to diffuse slowly

towards the Earth’s core. Such a deceleration mechanism makes it more challenging to

detect dark matter particles through the conventional methods, which rely on recoil effects

from WIMP–nucleus interactions [24].

The discrepancies in outcomes among experiments aiming to directly detect dark

matter stem from the intricate nature of the interactions between dark matter particles and

the detector materials used in underground setups. The framework of XHe posits that these

complex interactions, combined with the potential formation of low-energy bound states in

the XHe–nucleus system, may elucidate the positive results reported by the DAMA/NaI

and DAMA/LIBRA experiments. These outcomes stand in contrast to the null results

obtained by other experiments, such as XENON100, LUX, and CDMS [1,25].

The isoscalar and scalar characteristics of XHe dictate that quite low-energy bound

states with ordinary nuclei can only be formed via an electric dipole (E1) transition. Such a

transition necessitates a violation of isotopic symmetry, making it proportional to the square

of the relative velocity between the interacting particles and thus sensitive to temperature.

This dependence leads to the significant suppression of this mechanism in experiments

operating at cryogenic temperatures [1].

This explanation accounts for why detection efforts other than those by DAMA/NaI

and DAMA/LIBRA experiments have failed to produce positive results, as these exper-

iments typically focus on observing nuclear recoil effects signals. Such signals might be

misinterpreted as background noise due to their subtle nature [24]. Consequently, it be-

comes necessary to explore an alternative theoretical framework capable of explaining the

outcomes of the DAMA experiments, which this study aims to develop and substantiate.

When quite low-velocity XHe dark atoms interact with ordinary nuclei, those atoms

can form stable low-energy bound states. Within the uncertainties inherent to nuclear

physics parameters, there exists a range where the binding energy of the XHe–Na system

lies between 2 and 4 keV [1]. The transition of dark atoms into these bound states releases

energy, which manifests as an ionization signal detectable by experimental setups like those

in the DAMA study.

The concentration of XHe within underground detectors is governed by the equi-

librium between the influx of cosmic dark matter atoms and their diffusion deeper into

the Earth’s interior. The interaction between XHe and terrestrial material rapidly adjusts

the dark atom presence in the Earth’s crust, shaped by variations in the cosmic flux of

XHe. Consequently, the capture rate of these dark atoms is expected to exhibit seasonal

fluctuations, producing a periodic annual modulation in the ionization signal arising from

such interactions.
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The unscreened nuclear charge of dark atoms raises the possibility that XHe atoms

could engage in strong nuclear interactions with ordinary nuclei, potentially destabilizing

the bound state of dark atoms. This process might result in the formation of anomalous

isotopes, whose environmental concentrations are subject to stringent experimental con-

straints [1]. A notable implication of this model is the predicted appearance of anomalously

heavy sodium isotopes in the DAMA detector material, with masses exceeding those of

typical sodium isotopes by at least 1 TeV. These superheavy isotopes, if partially ionized,

would exhibit mobility governed by atomic cross-sections significantly smaller—by several

orders of magnitude—than those of OHe atoms [1]. As a result, such isotopes are expected

to remain within the detector. Thus, performing mass spectrometry on the detector material

could offer further evidence of the XHe component’s contribution to the DAMA signal.

However, the techniques used must account for the delicate structure of XHe–Na bound

states, as their binding energy is only a few keV [1].

3. The Effective Interaction Potential Between Dark Atoms and the
Atomic Nucleus of Matter

To address the challenge of the formation of the overabundance of anomalous isotopes,

the concentration of which is strictly limited in the environment, the XHe hypothesis

introduces an effective interaction potential characterized by a shallow potential well

coupled with a dipole Coulomb barrier. This structure serves to prevent the fusion of n–He

and X particles with the nuclei of matter; see Figure 1. The presence of such features

in the interaction potential is a critical requirement for the plausibility of the XHe dark

matter model.

The form of effective potential (see Figure 1) is mainly due to the competition between

the electromagnetic repulsion of n–He and the heavy nucleus of matter, as well as the

nuclear attraction of the nuclear shell of a dark atom to the nucleus of matter.

Figure 1. Hypothetical qualitative form of the effective interaction potential of XHe dark atom with

the nucleus of atom of matter [1]. See text for details.

The effective interaction potential of the XHe–nucleus system can be interpreted as

the total potential energy of the nucleus of a substance when exposed to various forces
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from the dark atom, which is located at the beginning of the coordinate system, while the

nucleus of matter slowly approaches the dark atom from the side of plus infinity. In the

XHe–nucleus system, the following types of interactions operate between the dark atom

and the nucleus of substance: the nuclear potential UNuc of interaction between n–He and

the nucleus of a substance; the potential Ue
XHe of the electrical interaction of unpolarized

dark atoms with the nucleus of a substance taking into account the screening effect of the

charge of the particle X by the n–He nucleus; the Stark potential USt due to the Stark effect,

leading to the polarization of XHe and the need for determining the electrical interaction of

a polarized dark atom, that is, the dipole XHe, with the nucleus of matter; and finally, the

centrifugal potential UrotXHe−nuc
of the interaction of dark atoms with the nucleus of matter.

Considering all interaction types within the XHe–nucleus system, Figure 1 illustrates

the theoretically expected qualitative behavior of a dark atom interacting with a nucleus of

ordinary matter. In region IV, the nucleus remains distant from XHe, causing UNuc and

Ue
XHe to effectively vanish. These potentials only become significant at close proximity to the

dark atom, as their magnitudes diminish rapidly with increasing separation. Consequently,

the total interaction potential in this region is governed by USt and UrotXHe−nuc
. Here, the

dark atom undergoes negative polarization due to the external electric field generated by

the matter nucleus. This causes the n–He component of XHe to shift leftward relative to

particle X, which, in contrast, experiences attraction toward the nucleus.

As the nucleus approaches the dark atom, polarization intensifies, reaching its max-

imum in region III. At this point, the well depth, −U3, is determined by the combined

influence of the Stark and centrifugal potentials. The maximum negative value of the Stark

potential corresponds to the largest negative dipole moment of XHe. Within this shallow

well, a low-energy bound state between the dark atom and the nucleus of ordinary matter

may form.

In region II, dipole Coulomb repulsion emerges between the nucleus and the dark

atom. Here, the n–He particle begins to experience significant nuclear attraction from

the matter nucleus, prompting it to shift rightward relative to particle X. This movement

increases the likelihood of n–He tunneling into the matter nucleus, and the dipole moment

of XHe shifts toward a positive value. The sum of USt and UrotXHe−nuc
determines the height

of the dipole Coulomb barrier, U2, which prevents the fusion of the matter nucleus with

XHe, thereby preserving the integrity of the dark atom.

Finally, in region I, the nuclear potential, UNuc, and the electric potential, Ue
XHe, domi-

nate over USt and UrotXHe−nuc
. This dominance results in the formation of a deep negative

potential well of depth −U1 in this region, reflecting the significant influence of these

interactions at close distances.

Unlike ordinary atoms, dark atoms consist of a leptonic core and a nuclear shell,

rendering standard atomic physics approximations ineffective. The challenge of describing

the interaction between dark atoms and matter nuclei is three-body problem for which

no exact analytical solution exists. Therefore, to assess the physical implications of the

proposed scenario—characterized by a dipole Coulomb barrier and a shallow well within

the effective interaction potential—a precise numerical quantum mechanical model of

this three-body system is developed. This model must carefully account for the complex

dynamics and non-trivial behavior intrinsic to such systems, enabling a rigorous validation

of the proposed mechanism’s realization.

The subsequent sections of this paper outline the step-by-step development of a

quantum mechanical numerical model for describing the interaction between a dark atom

and the nucleus. The primary goal of this model is to reconstruct the effective interaction

potential, offering a comprehensive analysis of the characteristics and subtleties involved in
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the interaction between dark atoms, as composite dark matter constituents, and the nuclei

of ordinary matter.

4. The Isolated Dark Atom System

When subjected to the alternating electric field produced by an external nucleus, the

XHe dark atom undergoes the Stark effect, which induces its polarization. This polarization

gives rise to a dipole Coulomb repulsion between the XHe and the nucleus, facilitating

the development of a bound state within this system. The presence of this bound state is

attributed to the formation of a potential well located before the dipole Coulomb barrier in

the total effective interaction potential.

To perform precise numerical modeling of the effective interaction potential in the XHe–

nucleus system, an accurate computation of the Stark potential is essential. This potential

governs the interaction between the polarized XHe dipole and the charged nucleus, playing

a critical role in determining the following two key features: the depth of the potential

well, which defines the conditions for forming a low-energy bound state between XHe

and the nucleus of ordinary matter, and the height of the dipole Coulomb barrier, which

serves as a repulsive force preventing the fusion of the dark atom with the nucleus. This

calculation necessitates the quantum mechanical determination of the dipole moment δ⃗ of

the XHe. The Stark potential’s structure is directly influenced by the dipole moment δ⃗, as

characterized by the following relationship:

USt = eZnHe(E⃗nuc · δ⃗), (1)

where e denotes the electron charge, E⃗nuc represents the strength of the external electric

field generated by the heavy charged nucleus, and ZnHe is the charge number of the

n–He nucleus.

In this paper, we consider a special case of dark atoms when the charge of the X

particle is −2, that is, when the X particle is a O−− particle bound to the 4He nucleus of

primary helium with a neutral OHe dark atom of dark matter.

To perform precise quantum mechanical calculations of the dipole moment in a po-

larized dark atom, it is essential to determine the ground-state wave functions of helium

within the OHe–nucleus system. Furthermore, obtaining the wave function of helium in its

ground state for non-polarized OHe dark atom is equally meaningful. The procedure starts

with the analysis of Ĥ0, the Hamiltonian operator for the isolated OHe in the absence of

any external perturbations.

Using a numerical difference scheme, Ĥ0 is represented as a matrix, enabling the

computation of its eigenvalues through numerical methods. These eigenvalues corre-

spond to discrete energy states of helium, EOHe, in the isolated OHe. Simultaneously, the

eigenvectors associated with these energy levels represent the helium wave functions, Ψ,

within the OHe system. Thus, the solution involves numerically resolving the following

one-dimensional Schrödinger equation:

Ĥ0Ψ(⃗r) = EOHeΨ(⃗r), (2)

or by presenting this expression in another form as follows:

∆rΨ(⃗r) +
2mHe

h̄2

(

EOHe +
4e2

r

)

Ψ(⃗r) = 0, (3)
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where r⃗ represents the position vector of the helium nucleus, mHe is the mass of the He

nucleus, and h̄ is the reduced Planck constant. The origin of the coordinate system is located

in the center of the particle O−−.

Theoretical analysis indicates that the energy levels of helium, the mass and charge

of which are concentrated at one point in the center of the particle, in the OHe dark

atom, denoted as EnOHe
, follow a certain pattern analogous to the Bohr model of the

hydrogen atom, as follows:

EnOHe
=

− 8mHeα2

n2
MeV, (4)

where n denotes a natural number, and α is the fine structure constant.

By numerically solving the one-dimensional Schrödinger Equation (2) using a numer-

ical difference scheme for the helium radius vector r = |2.5 ×10−12 cm| and setting the

number of iterations to Niter = 2000, the first three eigenvalues of the Hamiltonian operator,

Ĥ0, were determined as E1,2,3num = −1.585,−0.393,−0.042 MeV, respectively. For compari-

son, a theoretical estimation of the initial three energy levels of helium in the OHe, derived

using expression (4), results in the following: E1,2,3OHe
= −1.589,−0.397,−0.177 MeV,

respectively. The numerical results for the first two energy levels are consistent with the

theoretical values up to the second decimal place. For the purpose of calculating the dipole

moment of polarized OHe in a quantum mechanical framework, it is sufficient to know the

ground energy state wave function of helium in isolated OHe.

Once the wave functions for the specific energy states of helium in the dark atom are

determined, a discrete spectrum of helium energy levels can be constructed. Additionally,

the plots representing the squared modulus of the wave functions for these energy states in

the dark atom potential can be built. Figure 2 illustrates the first three energy levels and the

corresponding wave functions.

Figure 2. The eigenvalues of the helium nucleus Hamiltonian, corresponding to the first three energy

levels, in the OHe dark atom potential (red solid line), along with the squared modulus of the wave

functions associated with these energy levels (blue solid line). The results of the paper [16] were used

in the calculations.

5. Three-Body OHe–Na System

5.1. Potential of Interaction of Helium in the Three-Body OHe–Nucleus System

The three-body challenge under investigation is defined by the interaction within the

XHe–nucleus system. Consider a particular instance where the XHe dark atom adopts
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the structure of a hydrogen-like Bohr atom, known as OHe. In this configuration, the

coordinate system is anchored at the center of the O−− particle, which forms a bound dark

matter atomic structure by interacting with the helium nucleus, treated as a point-like entity,

through Coulomb forces. The OHe dark atom is influenced by an external, non-uniform

electric field generated by a third particle, the nucleus, characterized by its charge number

Znuc, neutron count Nnuc, and mass number A. This nucleus approaches the dark atom

quite slowly, engaging in both the electromagnetic interactions and strong nuclear forces.

The Hamiltonian governing the dynamics of the point-like helium nucleus within the

OHe–nucleus system can be expressed as follows:

Ĥ = Ĥ0 + Û, (5)

where Û characterizes the interaction potential between helium and an external atomic nu-

cleus.

To enhance the clarity of the description, the vectors r⃗, R⃗OA, and R⃗HeA are defined as

follows: r⃗ here represents the relative position vector connecting the O−− particle to the

helium nucleus, R⃗OA indicates the location of the external nucleus, and R⃗HeA is the distance

between the centers of helium and the nucleus of matter. These vectors are interconnected

by the following relationship:

R⃗HeA = R⃗OA − r⃗. (6)

Consider the following equations for Ĥ0 and Û:

Ĥ0 = −
h̄2

2mHe
∆ −

4e2

r
, (7)

Û = UCoulomb(|R⃗OA − r⃗|) + UNuc(|R⃗OA − r⃗|), (8)

where UNuc(|⃗ROA − r⃗|) is expressed using the Woods–Saxon potential. Additionally,

UCoulomb(|⃗ROA − r⃗|) represents the Coulomb potential characterizing the interaction between

the point-like helium nucleus and the extended nucleus of ordinary matter.

The nuclear interaction potential is determined based on the distance between the

neutron distribution surfaces of the nuclei involved. In particular, UNuc(|R⃗OA − r⃗|) is

expressed by the following equation:

UNuc(|R⃗OA − r⃗|) = −
U0

1 + exp

( |R⃗OA − r⃗| − RNnuc − RNHe

p

)

, (9)

where RNnuc and RNHe
denote the root-mean-square radii associated with the neutron

distributions in the heavy nucleus and the helium nucleus, respectively. The parameter U0

represents the depth of the potential well, with a value of approximately of 43 MeV for the

sodium nucleus, while p is the diffuseness parameter of about 0.55 fm.

The radii RNnuc and RNHe
are determined according to the following equations [26]:

RNnuc,He
=

√

3

5
R2

0Nnuc,He
+

7π2

5
a2

Nnuc,He

√

1 +
5b2

nuc,He

4π
fm, (10)

where bnuc,He represents the deformation parameter for both the helium nucleus and the

matter nucleus. Specifically, the sodium nucleus is assigned a deformation parameter value

of bNa = 0.447, while the helium nucleus is modeled as having a spherical symmetry,

corresponding to a deformation parameter of zero. The parameter R0Nnuc,He
is the half-
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radius of the neutron distribution in the helium and matter nuclei and is determined

by the number of neutrons N and protons Z in the nucleus and is calculated using the

following expression:

R0Nnuc,He
= 0.953N1/3

nuc,He + 0.015Znuc,He + 0.774 fm, (11)

where the parameter aNnuc,He
is dimensional constant that depends on Z and N in the

respective nucleus and is expressed by the following relation:

aNnuc,He
= 0.446 + 0.072

Nnuc,He

Znuc,He
fm. (12)

For the Coulomb interaction potential UCoulomb(|R⃗OA − r⃗|) between the point-like

helium nucleus and the nucleus of the heavy element, where the radius is taken as the

root-mean-square radius of the proton distribution Rpnuc , the potential is determined by

the following equation:

UCoulomb(|R⃗OA − r⃗|) =























2e2Znuc

|R⃗OA − r⃗|
for |R⃗OA − r⃗| > Rpnuc ,

2e2Znuc

2Rpnuc

(

3 −
|R⃗OA − r⃗|2

R2
pnuc

)

for |R⃗OA − r⃗| <= Rpnuc ,

(13)

where Rpnuc is defined by the following expression [26]:

Rpnuc =

√

3

5
R2

0pnuc
+

7π2

5
a2

pnuc

√

1 +
5b2

nuc

4π
fm, (14)

where the parameter R0pnuc represents the half-radius of the proton distribution in the

nucleus and is calculated based on the charge number Znuc and the number of neutrons

Nnuc in the heavy element nucleus as follows:

R0pnuc = 1.322Z1/3
nuc + 0.007Nnuc + 0.022 fm, (15)

whereas apnuc is dimensional constant, also dependent on the proton and neutron numbers

of the nucleus, and is expressed by the following relation:

apnuc = 0.449 + 0.071
Znuc

Nnuc
fm. (16)

Thus, the Hamiltonian operator Ĥ for the helium nucleus within the OHe–nucleus

system is governed by the radius vectors r⃗ and R⃗OA. However, by fixing the position of

R⃗OA and altering the location of the substance’s nucleus, i.e., varying R⃗OA, one can derive

a series of Schrödinger equations that depend exclusively on r⃗. Each of these equations

corresponds to a specific configuration of the external nucleus relative to the dark atom.

Hence, the Schrödinger equation to be solved is expressed as follows:

ĤΨ(⃗r) = EΨ(⃗r), (17)

which can be expressed as follows:

∆Ψ(⃗r) +
2mHe

h̄2

(

E +
4e2

r
− UCoulomb(|R⃗OA − r⃗|)− UN(|R⃗OA − r⃗|)

)

Ψ(⃗r) = 0. (18)
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By approximating the Hamiltonian operator using the finite difference method in

matrix form, it becomes feasible to numerically calculate the eigenvalues of the operator

Ĥ, which correspond to the energy levels E of helium within the OHe–nucleus system

for a given fixed position of the external nucleus R⃗OA. Additionally, the eigenvectors of

the Hamiltonian, which describe the wave functions Ψ of the helium atom in this system,

are determined.

To achieve this, it is necessary not only to represent the Laplace operator ∆ in matrix

form but also to construct the matrix representation of the interaction potential between

the helium nucleus and the external nucleus in the OHe–nucleus system for each specified

value of R⃗OA, as follows:

UHe = −
4e2

r
+ UCoulomb(|R⃗OA − r⃗|) + UN(|R⃗OA − r⃗|). (19)

Figure 3 shows an example of the reconstructed total interaction potential, UHe, for

helium in the OHe–Na system. This potential is displayed as a function of the helium

radius vector r⃗, while the radius vector R⃗OA of the external sodium nucleus is kept fixed.

Figure 3. Interaction potentials in the OHe–Na system for fixed R⃗OA, including the Coulomb

interaction (green dotted line) and nuclear interaction (black dotted line) between the helium nucleus

and the sodium nucleus, as well as the Coulomb potential between the helium nucleus and the

O−− particle (blue dotted line). The combined total interaction potential experienced by the helium

nucleus is represented by the red dotted line. The red circle shows the radius of the helium. The

results of the paper [16] were used in the calculations.

As shown in Figure 3, the interaction potentials highlight the contributions of the

Coulomb and nuclear forces between the helium and sodium nuclei, alongside the Coulomb

interaction between helium and the O−− particle. The total effective potential for helium

within the OHe–Na system is also depicted.

To address the quantum mechanical three-body problem in the OHe–nucleus system, it

is necessary to solve the Schrödinger equation for the helium nucleus under the assumption

of a fixed position for the external nucleus, R⃗OA. This involves constructing the Hamiltonian

of the helium nucleus in matrix form, enabling the numerical computation of its eigenvalues

and eigenvectors. The eigenvalues represent the discrete energy states of helium, while the

eigenvectors correspond to the helium Ψ-functions within the OHe–nucleus system.
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5.2. The Solving of the Schrödinger Equations for Helium Within the OHe–Nucleus System

In the absence of an external nucleus, the dark matter atom remains in an unpolarized

state, with the ground-state energy level of helium in the OHe system being approximately

1.6 MeV. When external nucleus approaches, the dark atom becomes polarized due to

the electric field generated by the external heavy nucleus, leading to the onset of the Stark

effect. As a result, OHe develops a non-zero dipole moment and begins to interact with

the external nucleus as a dipole. This interaction is described by the Stark potential (see

Equation (1)). In accordance with the dark atom model, the effective interaction potential

between OHe and the external heavy nucleus is expected to give rise to a dipole barrier,

which prevents dark matter particles from entering the nucleus. Furthermore, a low-energy

bound state is anticipated to form between the dark atom and the external nucleus.

To solve the one-dimensional Schrödinger equation for the helium in the OHe–nucleus

system, as expressed in Equation (18), it is crucial to establish the range of values for the

helium radius vector, r⃗ while maintaining a fixed position for the external nucleus, R⃗OA. In

this framework, r⃗ functions as an free variable influencing the total interaction potential

experienced by the helium nucleus within the OHe–nucleus system for a specified position

of the nucleus of matter.

The solution process entails addressing this set of equations, which involves the

Schrödinger equation corresponding to each specific position of the external nucleus, which

is considered to move slowly. Therefore, it is also essential to define the interval for the

radius vector R⃗OA of the external nucleus to comprehensively describe the interaction

dynamics in this three-body system.

Setting r⃗ to fully overlap with R⃗OA would quite probably place helium in the deep

potential well generated by the heavy nucleus. Since the initial position of the helium

nucleus is within the dark atom—where OHe exists as bound quantum mechanical system

before interacting with the heavy nucleus—the intervals for r⃗ and R⃗OA should be selected

such that their boundaries are close but do not overlap. This approach allows the helium

nucleus to initially remain within the dark atom, gradually sensing the influence of the

approaching nucleus and, as it nears, to begin tunneling into the nucleus through the

Coulomb barrier with increasing probability. Thus, for the given interval r⃗, with boundary

points equal in magnitude but opposite in sign, the R⃗OA interval is configured to begin at

the maximal distance from the dark atom and to conclude near the right endpoint of the

helium radius vector interval. That is, the radius vector of helium is given as r⃗ = [−d; d]

and the radius vector of the outer nucleus of matter as R⃗OA = [c; b], where d, c, b > 0 and

d ⩽ b < c. Thus, the fixed position of the nucleus of the substance, R⃗OA, consistently takes

values from the interval [c; b], starting from point c to point b. And for each point q∗ ∈ [c; b],

the distance between the helium nucleus and the nucleus of matter, R⃗HeA = R⃗OA − r⃗, varies

in the interval R⃗HeA = [q∗ + d; q∗ − d]. As the external nucleus approaches the dark matter

atom, the polarization of OHe intensifies, responding to the proximity of the nucleus.

As the nucleus of the substance moves closer to the OHe system, the ground state

of the helium nucleus in the dark atom undergoes the corresponding modifications. To

evaluate the variation in the dipole moment of the polarized OHe, it is essential to compute

the changes in both the ground-state energy and the wave functions of the polarized dark

atom. By incrementally decreasing the distance between the external nucleus and OHe

and solving the Schrödinger equation for helium at each fixed value of the radius vector

R⃗OA of the external nucleus, the complete energy spectrum of helium within the polarized

OHe system was determined for each specific position of the outer nucleus. In these

computations, the external nucleus was consistently assumed to be 11Na.
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Figure 4 illustrates the dependence of the helium ground-state energy in the polarized

dark atom on the radius vector of the sodium nucleus within a range where the helium

radius vector is r = |1.1 × 10−12 cm|.

Figure 4. The dependence of the helium ground-state energy in the polarized OHe (blue stars) on the

radius vector of the sodium nucleus. The results of the paper [16] were used in the calculations.

In Figure 4, the blue stars indicate the ground-state energy levels of helium within the

polarized OHe, calculated for the various fixed values of the sodium nucleus’ radius vector,

R⃗OA. The graph illustrates that when the external nucleus is positioned far from OHe, the

dark atom exhibits behavior nearly identical to that of an isolated system. Under these

conditions, the ground-state energy of helium stabilizes around −1.6 MeV, which corre-

sponds to the binding energy of the OHe. However, as the sodium nucleus approaches, the

polarization of OHe intensifies, leading to a shift in the helium ground-state energy toward

positive values. At close enough separations, the probability of helium tunneling into the

sodium increases significantly, with the energy levels converging to a value determined by

the square of the modulus of the wave function at the point where helium is most probably

in the middle of the sodium.

Consequently, by solving the Schrödinger equations for He in the OHe–Na system for

the various fixed positions of the external nucleus, R⃗OA, the ground-state energy spectrum

of helium in the polarized dark atom was determined, along with the corresponding wave

functions associated with these energy states.

5.3. Calculation of the Values of the Dipole Moment of Polarized Dark Atom

Using the normalized ground-state wave function of helium in an unpolarized dark

atom, ΨOHe, which was obtained by solving the Schrödinger equation for helium in an

isolated OHe dark atom, along with the normalized wave functions of helium in a polarized

dark atom corresponding to the various ground-state energy values, ΨOHeNa, we calculated

the spectrum of dipole moment values δ for polarized OHe. The dipole moment δ for the

given ΨOHeNa was calculated by the following equation:

δ =
∫

r
Ψ
∗
OHe · r · ΨOHeNa · 4πr2dr. (20)

To evaluate the integral in Equation (20), it is essential to precisely establish the in-

tegration limits. This requires considering the spatial probability distribution of helium

within the polarized dark atom, as the goal is to calculate its dipole moments. The integra-
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tion boundaries are determined by locating the points of intersection between the curve

representing the squared modulus of the helium wave function and the curve depicting

the total interaction potential for He in the OHe–Na system at the fixed position of R⃗OA.

Figure 5 demonstrates the procedure of determining the integration boundaries needed

for calculating the integral in Equation (20). In Figure 5, the red solid curve represents the

total interaction potential of helium within the OHe–Na system for a specific fixed position

of the sodium nucleus, R⃗OA. The blue solid curve illustrates the squared modulus of the

helium ground-state wave function at the same fixed R⃗OA. The intersection points of these

two graphs, marked by black circles, define the integration limits. Specifically, the first

two intersections, moving from left to right, establish the bounds for Equation (20). In the

example shown in Figure 5, the dark atom is in a state of negative polarization. This is

indicated by the higher probability of finding helium on the left-hand side of the origin

(the position of the O−− particle) compared to the right. The sodium nucleus is situated at a

distance where helium begins to sense the nuclear potential, as evidenced by the formation

of a potential well on the right-hand side of the Coulomb barrier. However, the nucleus

remains far enough away to prevent significant tunneling of helium through the barrier.

Figure 5. The red solid line represents the total interaction potential of helium in the OHe–Na system

for a fixed position of the sodium nucleus, R⃗OA. The blue solid line illustrates the squared modulus

of the helium ground-state wave function within the polarized dark atom at the same fixed R⃗OA.

Black circles denote the intersection points between the graph of the total helium potential and the

squared modulus of its wave function in the ground state. The results of the paper [16] were used in

the calculations.

After determining the range of dipole moment values, δ, for the polarized OHe

dark atom at various fixed positions of the sodium nucleus, R⃗OA, one can represent the

relationship between the dipole moment of the polarized dark atom and the radius vector

R⃗OA (see Figure 6).

In Figure 6, the blue stars depict the calculated dipole moment values for the polarized

OHe, each corresponding to specific fixed positions of R⃗OA within the interval where

the helium radius vector is r = |1.1 × 10−12 cm|. Figure 6 shows that when the sodium

nucleus is far from OHe, the dark atom behaves nearly as an isolated system, with its

dipole moment approaching zero. However, as the sodium nucleus approaches the OHe,

the polarization of OHe increases significantly, resulting in a progressively more negative

dipole moment. This phenomenon occurs because the repulsive Coulomb force exerted

by the sodium nucleus pushes helium preferentially to the left-hand side of the O−−
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particle. When the sodium nucleus is positioned quite close to the dark atom, such that

R⃗OA approaches the rightmost boundary of the helium radius vector interval r⃗, the nuclear

interaction between helium and sodium dominates their Coulomb interaction, causing δ to

trend back toward zero.

Figure 6. The relationship between the dipole moment of the polarized OHe (blue stars) and the radius

vector of the external sodium nucleus. The results of the paper [16] were used in the calculations.

At a particular point, the likelihood of helium tunneling into the nucleus of the sodium

increases significantly, resulting in a reversal of the dipole moment’s sign, making it positive

(see Figure 7). Until this stage, the probability of helium remaining within the confines of

the dark atom does not vanish, signifying that the OHe atom remains intact but undergoes

a change in polarization. In this arrangement, the He nucleus is positioned between the

O−− and the nucleus of the substance. Consequently, a dipole-induced Coulomb repulsion

may develop between the helium and the sodium nucleus. This interaction, driven by the

dipole coupling of the OHe atom with the external nucleus, can facilitate the emergence of

a low-energy bound state in the OHe–Na system.

Figure 7. The dependence of the dipole moment of the polarized OHe (blue stars) on the radius

vector of the sodium nucleus at the moment when the dark atom undergoes repolarization. The

results of the paper [16] were used in the calculations.
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The reversal of the dipole moment’s sign aligns with the theoretical expectations. At

large distances between the matter nucleus and the OHe, the repulsive Coulomb force

acting on helium dominates over the nuclear attraction. In this scenario, helium is dis-

placed further from the heavy nucleus, while the O−− is drawn toward the sodium by

the Coulomb interaction. As the sodium nucleus approaches the OHe, the nuclear forces

become increasingly prominent, positioning helium between the O−− and the sodium, as

predicted. This shift is manifested as a change in the sign of the dipole moment.

Despite of this, the dipole Coulomb barrier introduces a repulsive force that prevents

helium from fully merging with the sodium, thereby preserving the structural stability of

the dark atom of the dark matter. As the vector R⃗OA decreases further, bringing the sodium

even closer to the OHe, the dipole moment progressively decreases, approaching zero (see

Figure 7). This trend reflects helium’s deeper penetration into the sodium, which increases

the possibility of quantum tunneling. Simultaneously, the probability of helium remaining

confined in the OHe diminishes, causing the dipole moment to approach zero.

Figure 8 presents initial plots of the squared modulus of the helium Ψ-functions

(depicted by the blue solid line) corresponding to the ground-state energy levels within the

total interaction potential of the OHe–Na system (indicated by the red solid line). These

representations are associated with particular fixed positions of the sodium, marking the

beginning of the OHe repolarization process. During this phase, the dipole moment begins

to shift from its maximum negative value toward positive values, signaling an increased

probability of helium tunneling into the sodium nucleus of matter by overcoming the

Coulomb barrier. This progression ultimately results in the reversal of the dipole moment’s

sign to positive, as evidenced by the dependence of the dipole moment on the sodium

position shown in Figures 6 and 7.

Figure 8. The squared modulus of the wave functions (blue solid line) for specific energy levels of

helium in its ground state within the total interaction potential of the OHe–Na system (red solid line).

These lines correspond to the particular positions of the sodium nucleus R⃗OA, marking the onset of

the dark atom’s repolarization. The results of the paper [16] were used in the calculations.

Figure 9 displays the additional plots of the squared modulus of the He Ψ-functions

(depicted by the blue solid line) corresponding to the ground-state energy levels in the

helium total interaction potential (illustrated by the red solid line). These plots pertain to

the specific configurations of sodium as helium transitions to a high-probability tunneling

state from the repolarized OHe into sodium. At this stage, the dipole moment decreases

from its peak positive value toward zero, coinciding with a significant reduction in the
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likelihood of helium remaining confined within the OHe. This phenomenon is further

illustrated by the relationship between the dipole moment and the sodium position vector

shown in Figure 7.

Figure 9. The squared modulus of the wave functions (blue solid line) for certain ground-state energy

levels of helium within the total potential of the OHe–Na system (red solid line). These are associated

with the positions of the sodium nucleus R⃗OA at the stage when helium begins tunneling with high

probability from the repolarized dark atom into the sodium nucleus. The results of the paper [16]

were used in the calculations.

5.4. Reconstruction the Effective Interaction Potential of the OHe–Na System

To reconstruct the Stark potential (1), which represents the electric interaction between

dipole of dark atom (polarized dark atom) and the nucleus of matter, we utilize the

quantum mechanically computed dipole moment values. Additionally, to obtain the

complete effective interaction potential for the OHe–Na system, that is, the total interaction

potential of the sodium nucleus with the dark atom of OHe, one must also reconstruct the

nuclear interaction potential, adopting Woods–Saxon model for the helium and sodium

nuclei, along with the electrical interaction potential Ue
XHe of the unpolarized OHe dark

atom with the sodium nucleus.

In order to restore the shape of the interaction potential Ue
XHe, one needs to calculate

the electric potential, φ, that creates unpolarized dark atoms as a whole in a general case,

that is, for the XHe dark atom at distance r from the center of the X particle, in which we

place the nucleus of the substance. To do this, one needs to solve the self-consistent Poisson

equation for the test wave function ψ =
e−r/r0

√
πr3/2

0

, where r0 is free parameter, as follows:

1

r
(φr)′′ = −4πe

(

np +
ZXe−2r/r0

πr3
0

)

, (21)

where the prime denotes the derivative with respect to r, and enp is the charge density of

n–He:

enp =



















eZα

4

3
πR3

nHe

for r < RnHe,

0 for r > RnHe.

(22)
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As a result, by solving Equation (21), one obtains the electric potential created by the

unpolarized dark atom XHe, consisting of the spherically symmetric uniformly charged

nucleus n–He with radius RnHe and particle X, taking into account the screening effect of

the nucleus n–He on the particle X, as follows:

φ =







































−eZXe−2r/r0

(

1

r0
+

1

r

)

for r > RnHe,

−eZXe−2r/r0

(

1

r0
+

1

r

)

+
eZX

r
+

+
eZα

RnHe

(

3

2
−

r2

2R2
nHe

)

for r < RnHe.

(23)

Therefore, the potential of the electrical interaction between the unpolarized XHe dark

atom and the nucleus of substance is given by the following expression:

Ue
XHe = eZAφ, (24)

where ZA is the charge number of the nucleus of matter.

Thus, the Ue
XHe potential is derived from solving the self-consistent Poisson equation

while accounting for the screening effect of the O−− particle by the He nucleus, an effect

that significantly diminishes with distance due to exponential decay.

Summing the nuclear interaction potential of the Woods–Saxon type, Ue
XHe and USt

yields the total effective interaction potential form for the OHe dark atom’s interaction with

the sodium nucleus (see Figure 10).

Figure 10. Various interaction potentials as functions of the distance between the helium nucleus,

located within the Bohr orbit of the OHe, and the sodium: the nuclear potential in the Woods–Saxon

form (black dotted line, overlapped by the blue dotted line), Ue
XHe (green dotted line), the Stark

potential (red dotted line, overlapped by the blue dotted line), and the total effective interaction

potential of OHe with the sodium (blue dotted line). The black circle highlights the addition amount

of the radii of the helium and sodium nuclei. The radius vector of helium is set to r = |1.1× 10−12 cm|.
The results of the paper [16] were used in the calculations.

In Figure 10, the blue dotted curve represents the total effective interaction potential

governing the interaction between OHe and the sodium. This potential describes the field

in which the sodium nucleus is influenced by OHe. On the given scale, the individual

contributions from the Woods–Saxon nuclear potential (depicted as a black dotted line) and

Ue
XHe (illustrated by a green dotted line) are minimal and can be considered negligible. As
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a result, the primary factors defining the depth of the potential well are the total effective

potential (shown as a blue dotted line) and the Stark potential (shown as a red dotted

line), determined by the negative dipole moment arising from the polarization of OHe.

This well exhibits significant depth of approximately of 0.5 MeV indicating that a bound

state between sodium and the dark atom in this potential—under the given intervals of r⃗

and R⃗OA—would possess relatively high energy, diverging from the lower energy states

inferred from the DAMA experiment.

A more detailed representation of the effective interaction potential between OHe and

the sodium nucleus can be constructed, especially around the region associated with dark

atom repolarization, where the dipole moment shifts to positive values; see Figure 11.

Figure 11 analyzes the formation of a positive dipole Coulomb barrier within the total

effective interaction potential in the OHe–Na system. This barrier emerges based on the

ability of the Stark potential’s positive contribution (represented by the red dotted line),

resulting from the positive dipole moment of the repolarized dark atom, to effectively

oppose the combined negative effects of the nuclear interaction potential (illustrated by the

black dotted line) and the electric interaction potential of unpolarized OHe with sodium,

Ue
XHe (depicted by the green dotted line).

Figure 11. Various interaction potentials as functions of the separation between the helium and the

sodium: the Woods–Saxon nuclear potential (black dotted line), the Ue
XHe potential (green dotted

line), the Stark potential (red dotted line), and the total effective interaction potential for the OHe–Na

system (blue dotted line). The radius vector of He was set equal to r = |1.1 × 10−12 cm| during the

phase of repolarization of the OHe. The results of the paper [16] were used in the calculations.

As depicted in Figure 11, when the separation between helium and the sodium is

approximately 11.6 fm, the peak of the Stark potential remains insufficient to offset the

combined negative contributions from the nuclear and the Ue
XHe interaction potentials. This

results in negative values for the total effective interaction potential. However, since the r⃗

is treated as a freely adjustable parameter in solving the Schrödinger equation for helium

at fixed R⃗OA, this interval can be expanded. By simultaneously increasing the range of

R⃗OA, the interaction distance at which He in the OHe begins to “feel” that the sodium can

be extended.

Such adjustments would lead to a decrease in the maximum negative dipole moment

of the polarized OHe. The negative dipole moment is primarily influenced by the Coulomb

interaction between the helium and sodium nuclei, which diminishes as the separation

between these nuclei occurs. Thus, the minimum of Stark potential, which determines the
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depth of the potential well in the effective interaction potential of the OHe–Na system,

would become less.

Furthermore, extending the r⃗ and adjusting the R⃗OA would result in a broader

Coulomb barrier in the total effective interaction potential experienced by helium. This

modification would alter the helium Ψ-functions, thereby reducing the likelihood of helium

tunneling into the sodium. Additionally, the positive dipole moment of the repolarized

OHe, and the associated Stark potential barrier, would decrease. However, the increased

distance between the nuclei would reduce the amplitudes of both the nuclear and the Ue
XHe

interaction potentials. Consequently, the total effective interaction potential in the OHe–Na

system could exhibit the expected positive barrier values.

The OHe model suggests that the dipole Coulomb barrier in the total effective in-

teraction potential of the OHe–Na system is sufficiently large to prevent a direct fusion

between the nucleus of matter and the OHe. In the DAMA experiment conditions, the

sodium exhibits thermal motion in the OHe–Na system, corresponding to the typical room

temperature conditions of approximately 300 K. This thermal movement results in a

kinetic energy of about 2.6×10−2 eV for the sodium. Consequently, the dipole Coulomb

barrier in the effective interaction potential is expected to significantly exceed this energy

level, ensuring the stability of the OHe system.

To analyze this phenomenon, the helium radius vector was extended from

r = |1.1 × 10−12 cm| to r = |2.5 × 10−12 cm|, while the sodium radius vector was set

as ROA = [3.5; 2.8]× 10−12 cm. For each fixed value of R⃗OA, one-dimensional Schrödinger

equations for helium were solved. The dipole moments corresponding to the ground-state

energy levels of He in the polarized OHe were then determined. Based on these com-

puted dipole moments, the effective interaction potential between OHe and sodium was

subsequently reconstructed, see Figures 12 and 13.

Figure 12. Various interaction potentials as functions of the separation between the helium and the

sodium: the Woods–Saxon nuclear potential (black dotted line, overlapped by the green dotted line),

the Ue
XHe potential (green dotted line), the Stark potential (red dotted line, overlapped by the blue

dotted line), and the total effective interaction potential between OHe and the sodium (blue dotted

line). The radius vector of helium was set equal to r = |2.5 × 10−12 cm|. The results of the paper [16]

were used in the calculations.

As illustrated in Figure 12, there is a noticeable reduction in the depth of the potential

well for the effective interaction potential between the dark atom and the sodium nucleus

(blue dotted line). A comparison of Figure 12 with Figure 10 reveals that, upon extending
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the interval r⃗ and increasing the sodium position R⃗OA, the depth of the potential well

diminishes significantly, from approximately of 0.5 MeV to about 35 keV.

Figure 13. Dependence of various potentials on the separation between the helium and the sodium:

the Woods–Saxon nuclear potential (black dotted line, overlapped by the green dotted line), Ue
XHe

(green dotted line), the Stark potential (red dotted line, overlapped by the blue dotted line), and the

total effective interaction potential (blue dotted line). The radius vector of helium was set equal to

r = |2.5 × 10−12 cm| during the phase when the dark atom undergoes repolarization. The results of

the paper [16] were used in the calculations.

In Figure 13, the nuclear potential of Woods–Saxon (represented by the black dot-

ted line) and Ue
XHe (depicted as the green dotted line) diminish to negligible values at

a separation approximately of 28.33 fm between the helium and sodium. As expected,

the Stark potential emerges as the dominant contributor, establishing a positive potential

barrier in the total effective interaction potential for the OHe–Na system. A comparison

of Figures 11 and 13 demonstrates that extending the interval r⃗ and increasing R⃗OA, rep-

resenting the sodium nucleus’s position relative to the OHe, results in a reduction in the

positive Stark potential barrier. This barrier diminishes from approximately 7.5 eV to about

0.3 × 10−2 eV, with the change attributed to a decrease in the repolarized dark atom’s

dipole moment.

In Figure 13, the dipole Coulomb barrier in the effective interaction potential is shown

to be approximately ten times smaller than the kinetic energy of the sodium nucleus

approaching the dark atom under the experimental conditions of the DAMA experiment

(about 2.6 × 10−2 eV). However, the depth of the potential well in this interaction remains

nearly six times greater than the experimental findings reported by the DAMA experiment

(6 keV) and significantly higher than the theoretically estimated binding energy of sodium

in a low-energy state with the dark atom (about 4 keV). To address these discrepancies, we

extend the range of the helium radius vector r⃗, solve the Schrödinger equation for helium

within the OHe–Na system, as well as increase R⃗OA, and thus further decrease the potential

well depth and lower the dipole Coulomb barrier, which are already below the predicted

values. Improving the accuracy of the numerical model is critical to refining these results,

necessitating the consideration of additional effects that influence the interaction between

the dark atom and the atomic nuclei. One such effect is the centrifugal interaction potential,

UrotOHe−Na
, which may play a role in characterizing the dynamics of the OHe–Na system.
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5.5. Incorporating the Centrifugal Potential into the Quantum Mechanical Numerical Model

The centrifugal potential governing the interaction between the OHe and the sodium,

UrotOHe−Na
, depends on the total angular momentum of the interacting system, J⃗OHe−Na, as

well as the distance, R, between the two interacting particles. Neglecting the moments of

inertia of the nuclei, it is expressed as follows (see Equation (27) in Ref. [27]):

UrotOHe−Na
(R) =

h̄2c2 JOHe−Na(JOHe−Na + 1)

2µc2R2
, (25)

where µ denotes the reduced mass of the system and c denotes the speed of light.

Since the mass of the OHe is entirely determined by the O−−, which is assumed to

have a mass of 1 TeV, and given that the sodium has a significantly smaller mass of approx-

imately mNa ≈ 21.4 GeV, the reduced mass of the OHe–Na system can be approximated as

µ ≈ mNa/c2.

The total angular momentum, J⃗OHe−Na, for the interaction between OHe and the

sodium nucleus is defined as follows:

J⃗OHe−Na(ρ) = l⃗OHe−Na(ρ) + I⃗Na + I⃗OHe, (26)

where l⃗OHe−Na(ρ) denotes the orbital angular momentum, which is a function of the impact

parameter ρ, I⃗Na is the sodium’s intrinsic angular momentum, and I⃗OHe represents the spin

of the OHe. The I⃗OHe is composed of the spin of the O−−, I⃗O−− , combined with the intrinsic

angular momentum, I⃗He, of the He as follows:

I⃗OHe = I⃗He + I⃗O−− . (27)

Let us consider the specific case of a direct collision between sodium and dark atom.

In this head-on interaction, characterized by an impact parameter ρ = 0, the orbital angular

momentum of the system becomes zero, l⃗OHe−Na(0) = 0⃗. The sodium contributes intrinsic

angular momentum which is defined as I⃗Na =
−→
3/2.

The OHe spin is dictated by the spin of the O−−, because the He intrinsic angular

momentum is equal to I⃗He = 0. The spin of O−− depends on the specific internal structure

and properties of this particle. In particle models involving four or five fermion generations,

a stable particle with a charge of −2, denoted as ∆
−−
ŪŪŪ

, is theoretically viable and consists

of three antiquarks, such as fourth-generation Ū quarks, formulated as ∆
−−
ŪŪŪ

= (ŪŪŪ) [1].

Consequently, if O−− takes the form of ∆
−−
ŪŪŪ

and includes quarks from these extended

families, then I⃗O−− =
−→
3/2. The walking technicolor (WTC) model, based on SU(2) symme-

try, proposes a unique type of interaction that binds a novel type of quarks [11]. Within

the framework of the walking technicolor theory, technibaryons are hypothesized to form

from techniquarks that are bound by specific technicolor interaction and charge. If O−− is

identified as a technibaryon, its spin, I⃗O−− , may take on values of either 0⃗ or 1⃗. Additionally,

WTC predicts the existence of a fourth generation of technileptons. If O−− is categorized

as a member of the technilepton family, its spin would correspond to I⃗O−− =
−→
1/2.

In the scenario being analyzed, where the impact parameter satisfies ρ = 0, the total

angular momentum of interacting OHe and the sodium can be expressed as follows:

J⃗OHe−Na =
3⃗

2
+ I⃗O−− . (28)

To account for the centrifugal potential UrotOHe−Na
within the total effective interac-

tion potential of the OHe–Na system, it is necessary to include the centrifugal potential

arising only due to the He and sodium interaction, denoted as UrotHe−Na
. Consequently,
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UrotHe−Na
must be added to the total potential affecting the He in the OHe–Na system (see

Equation (19)) for each fixed position of sodium, R⃗OA, as follows:

UHe+rot = −
4e2

r
+ UCoulomb(|R⃗OA − r⃗|) + UoN(|R⃗OA − r⃗|) + UrotHe−Na

(|R⃗OA − r⃗|), (29)

where UrotHe−Na
(|R⃗OA − r⃗|) is given by the following expression:

UrotHe−Na
(|R⃗OA − r⃗|) =

h̄2c2 JHe−Na(JHe−Na + 1)

2mHec2|R⃗OA − r⃗|2
, (30)

where J⃗He−Na denotes the total angular momentum associated with interaction of He and

Na.

J⃗He−Na is governed exclusively by the intrinsic angular momentum of Na. This arises

from the feauture that He possesses no intrinsic angular momentum, I⃗He = 0⃗. Additionally,

when Na approaches the helium with ρ = 0, the orbital angular momentum between the

two nuclei becomes negligible. Consequently, the total angular momentum for interaction

particles simplifies to J⃗He−Na =
−→
3/2.

Figure 14 illustrates a representative case of the total interaction potential experienced

by He within the OHe–Na system, UHe+rot. This potential accounts for the inclusion of the

centrifugal interaction potential arising from the interaction between the He and Na. The

plots are functions of the helium radius vector, r⃗, for a fixed value of R⃗OA.

Figure 14 illustrates the Coulomb and nuclear interaction potentials between He

and Na, alongside the centrifugal potential, UrotHe−Na
(|R⃗OA − r⃗|), calculated for ρ = 0.

Additionally, the figure presents the Coulomb potential arising from the interaction between

He and the O−− and, finally, the total effective potential acting on the He in the OHe–Na

system.

Figure 14. The interaction potentials in the OHe–Na system for specific fixed value of R⃗OA, including

the Coulomb interaction potential (green dotted line), nuclear interaction potential (black dotted line),

and the centrifugal interaction potential (magenta solid line) between the He and the Na nucleus.

Additionally, the Coulomb interaction potential between He and the O−− is shown by blue dashed

line, while the total interaction potential experienced by the He is represented by the red dotted

line. The black circle shows the radius of the helium. The results of the paper [16] were used in the

calculations.

Ultimately, we calculated the energy values of the ground state of He in polarized

OHe through solutions for the Schrödinger equations for He in potentials UHe+rot. This
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analysis was conducted for the various fixed positions of the sodium in the range ROA =

[3.5; 2.8]× 10−12 cm, as well as for r = |2.5 × 10−12 cm|. Corresponding wave functions

associated with these energy values of the ground state were also calculated. Based on this

information, dipole moments for each ground-state energy of He in the polarized OHe

were evaluated. These dipole moments enabled the reconstruction of the total effective

interaction potential in the OHe–Na system. This potential includes UrotOHe−Na
and is

presented for two values of the total angular momentum J⃗OHe−Na,
−→
3/2 and

−→
3 ; these

total angular moments correspond to the following values of the spin of the O−− particle:

I⃗O−− =
−→
0 and

−→
3/2, respectively (see Figures 15 and 16).

Figure 15. Various interaction potentials relevant to the OHe–Na system: the Woods–Saxon nuclear

interaction potential (black dotted line), the Ue
XHe interaction potential (yellow dotted line), the Stark

interaction potential (red dotted line), the centrifugal interaction potential (green dotted line), and the

total effective interaction potential (blue dotted line). Potentials shown as a function of the separation

distance between He in OHe and Na. The case corresponds to J⃗OHe−Na =
−→
3/2. See text for details.

The results of the paper [16] were used in the calculations.

Increase in I⃗O−− and, therefore, the total angular momentum J⃗OHe−Na leads to a

substantial amplification of the UrotOHe−Na
within the total effective interaction potential of

the OHe–Na system, that, in turn, strongly affects the shape of this potential, as it can be

seen in Figures 15 and 16. An increase in I⃗O−− quantitatively affects the effective potential

by reducing the depth of the potential well and elevating the height of the dipole potential

barrier. These changes play a crucial role in preventing both the uncontrolled fusion of the

Na with the OHe and the subsequent disintegration of the latter.

The three-body dynamics inherent in the task we are considering necessitate a thor-

ough consideration of the feedback mechanisms among the interacting components of the

OHe–Na system, where the outcomes of their interactions directly influence the subsequent

behavior of system. The analysis commenced by focusing on the He in the OHe–Na system.

The forces acting upon He are systematically evaluated, and the total potential shaping

its behavior in this system is reconstructed for each fixed position of sodium. By solving

the Schrödinger equations for the total potentials of He, the dipole moments of the polar-

ized OHe was calculated for each fixed R⃗OA. This methodology inherently captures the

influence of the Na on the polarization of the OHe, characterized by the dark atom’s dipole

moment.

Additionally, UrotHe−Na
is incorporated, which modifies the structure of the total interac-

tion potential for He. The inclusion of UrotHe−Na
influences the dipole moment by changing

the shape of the helium total interaction potential. Comparison of Figures 12 and 16 reveals
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that the inclusion of UrotHe−Na
results in a deeper Stark potential well, what can be seen

from Figure 16. Stark potential is closely aligned with the effective interaction potential

depicted in Figure 12. These findings illustrate how UrotHe−Na
contributes to increasing the

negative values of δ.

Furthermore, adding UrotHe−Na
into UHe+rot reduces the Stark potential’s dipole

Coulomb barrier. This occurs because UrotHe−Na
promotes to increase in the positive value of

the barrier in the total potential of helium, thereby reducing the probability of it tunneling

into the Na. This highlights the role of Na in modifying the dark atom’s polarization. After

that, OHe begins to interact with Na as dipole, and this interaction is expressed by the Stark

potential. Beyond the Stark potential, Na interacts with OHe via additional contributions,

including the UrotOHe−Na
, Ue

XHe, and the nuclear potential.

Figure 16. Various interaction potentials within the OHe–Na system, presented as functions of the

separation distance between the He in OHe and Na: the Woods–Saxon nuclear interaction potential

(black dotted line), the Ue
XHe interaction potential (yellow dotted line), the Stark interaction potential

(red dotted line), the centrifugal interaction potential (green dotted line), and the total effective

interaction potential (blue dotted line). The case corresponds to J⃗OHe−Na =
−→
3 . The results of the

paper [16] were used in the calculations.

In conclusion, the total effective interaction potential of OHe–Na system, exemplified

in Figure 16, is reconstructed. This potential depends on IO−− , yet its general structure

aligns with theoretical predictions. The resulting total effective interaction potential makes

it possible to expand the r⃗ interval, which facilitates a potential well depth of approximately

of 6 keV and potential barrier height surpassing the sodium’s thermal kinetic energy,

estimated at about 2.6 ×10−2 eV. The presence of this positive dipole potential barrier is

pivotal in averting the fusion of helium or O−− particle with the nucleus of a substance,

thereby preserving the integrity and stability of the OHe. And it is a critical requirement

for sustaining the validity of the OHe hypothesis.

6. Conclusions and Further Directions

This paper investigates the hypothesis of composite dark matter, consisting of XHe

dark atoms. These dark atoms interact with the nuclei of ordinary substance through

nuclear and electromagnetic forces. The distinctive properties of these interactions of XHe

atoms with nuclei in underground dark matter detection experiments might explain the

inconsistencies observed in various direct dark matter detection efforts [1].

To study the detailed interaction mechanisms between XHe and the ordinary nucleus,

it is essential to determine the exact structure of their total effective interaction potential.
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Restoring this potential is essentially a three-body task, and therefore an exact analytical

solution is unattainable. Consequently, the study employs numerical modeling to examine

the behavior of XHe when interacting with the nucleus of a substance. This computational

approach aims to reconstruct the precise effective potential and establish a framework for

interpreting experimental results from direct dark matter detection efforts.

The quantum mechanical numerical model presented in this paper models a three-

particle system interacting via electric, nuclear, and centrifugal interactions. The methodol-

ogy involves solving the Schrödinger equation for helium in the OHe–Na system, with the

sodium nucleus positioned at various fixed locations relative to the OHe atom. By incor-

porating both nuclear and electromagnetic interaction characteristics, this model enables

the precise calculations of dark atom polarization by calculating the dipole moments of

the polarized OHe atoms. These dipole moments, as functions of the distance between

the sodium nucleus and the dark atom, facilitate an accurate reconstruction of the Stark

potential, which plays a pivotal role in shaping the effective interaction potential of the

OHe–Na system.

Finally, the total interaction potentials for He were comprehensively reconstructed for

each fixed position of sodium R⃗OA. The Schrödinger equations were numerically solved

for the following two scenarios: He in unpolarized OHe and in polarized OHe undergoing

interaction with Na. From the computed Ψ-functions of He, the δ of the polarized OHe

were derived. These results facilitated the calculation of the Stark potential and the sub-

sequent reconstruction of the total effective interaction potential of the OHe–Na system.

This potential incorporated contributions from the Stark, nuclear, centrifugal, and Ue
XHe

potentials. Thus, in this paper, for the first time, steps have been taken towards a consistent

quantum mechanical description of the interaction of dark atoms, with unshielded nuclear

attraction, with the nucleus of atom of matter. The total effective interaction potential of

the OHe–Na system has been restored, and its general form corresponds to theoretical

predictions. This effective interaction potential contains a shallow potential well and a

positive Coulomb dipole barrier exceeding the thermal kinetic energy of sodium. This

allows us to preserve the integrity and stability of the dark atom, which is an essential

requirement for confirming the validity of the OHe hypothesis.

In future studies, to further enhance the accuracy of the effective interaction potential

reconstruction and achieve a physically meaningful description of dark atom interactions

with heavy element nuclei, as well as to explain the results of direct dark matter detection

experiments, the quantum mechanical approach to potential reconstruction will be refined.

This refinement involves determining the nuclear and electromagnetic potentials for the

XHe interactions with ordinary matter nuclei, incorporating the finite sizes of the interact-

ing particles by considering the distributions of electric charge and nucleons within the

nuclei. Additionally, the model accounts for nucleus of matter deformation. We solve the

Schrodinger equation for the heavy element nucleus within this potential. Improvements

in the numerical model presented here allows us to more accurately exploration of pos-

sible explanations for direct dark matter search paradoxes and provide a foundation for

experimental tests regarding the dark atom hypothesis.
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