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A B S T R A C T

The exceptionally good agreement between the predictions of the
Standard Model of particle physics and the measurements made by
the experiments at the Large Hadron Collider at CERN requires col-
lecting more and more data to set increasingly tighter upper limits
on observables in the search for physics beyond the Standard Model.
Ongoing upgrades aimed at increasing the amount of data delivered
to the experiments are pushing the limits of the currently used algo-
rithms that specialize in separating signal and background in order
to produce clean samples for physics analyses. Recent advances in
machine learning technology allow the development of a new genera-
tion of these algorithms that, more often than not, outperform their
heuristic-based counterparts in online, real-time triggering scenarios
and offline data analysis. In particular, fast inference of trained ma-
chine learning models in FPGAs has been recently made achievable
by the introduction of new tools.

This thesis explores these next-generation algorithms in the context
of online and offline analysis. The online analysis concerns triggering
on τ leptons at the Level-1 ATLAS trigger using boosted decision trees,
and the offline one explores the utilization of graph neural networks
and boosted decision trees in the VHbb(cc) Legacy analysis, which
sets the most stringent constraints to date on the coupling of the Higgs
boson to b- and c-quarks.

The work presented in this thesis results in the first operational
machine learning model used for data taking in the Level-1 trigger of
the ATLAS experiment, based on a fully evaluated boosted decision
tree, with no special hardware requirements, for the identification of τ

leptons, opening the gate for the next generation of trigger algorithms
at the ATLAS experiment.
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Hofstadter’s Law: It always takes longer than you expect, even when you
take into account Hofstadter’s Law

— Douglas R. Hofstadter [1]

A C K N O W L E D G M E N T S

These lines are among the last lines I’m writing before submitting
the thesis and I find it hard to believe that I’m actually at the finish
line. This was, from a personal perspective, a period of profound
change in my life, with the birth of my youngest child Emma and
the immigration to and settling in a foreign country, and from a
professional perspective, a voyage riddled with days of smooth sailing,
days of heavy storms and incidents of running aground which made
me question everything, during which the thing that kept me going
was the cold awareness of the law of regression towards the mean and,
more importantly, the wonderful people that I was surrounded with,
whom I would like to thank here.

It seems like life is a long, unplanned random walk, new directions
forming by bumping into people we meet along the way. I myself
am not a very social person and tend to lock myself in a lab/office
and work alone, only reaching out when completely stuck (which,
I am aware, is not the best quality). Therefore, I am surprised that,
looking back 10 years, I’m so far from my starting point, and in such
an unexpected direction. This I attribute to a handful of encounters
with key people in my life, of which probably the most influential is
my supervisor, Prof. Erez Etzion, to whom I wish to express my deepest
gratitude, for catching me back when I dropped from my attempt to
ascend the high cliffs of theoretical physics during my master’s and
being my supervisor all the way through, closer to sea level, where I
can honestly say I’m much more comfortable. The positive, carefree
approach and constant support of the decisions I made with just the
right amount of nudges in the right directions gave me the confidence
and ability to surmount this formidable task of starting and finishing
a Ph.D. in experimental particle physics, while acclimating to a life in
another country.

This work contains two large projects - τ identification on FPGAs
and the VHbb(cc) Legacy Analysis, none of which would be possible
without the support and help of others.
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1
I N T R O D U C T I O N

The Large Hadron Collider (LHC) is among the most complex experi-
mental setups ever built and is designed to probe with high precision
physical processes at high energies in order to advance our knowledge
of fundamental particle physics. The ATLAS experiment is one of the
detectors at the LHC. It detects and records vast quantities of proton-
proton collision data which is analyzed by multiple teams whose
objective is to constrain the parameters of or look for physics beyond
the Standard Model (SM). ATLAS has recently concluded Run 2, by
the end of which it has collected 139 fb−1 of proton-proton collision
data for physics analyses at a center-of-mass energy of

√
s = 13 TeV,

and, at the time of writing, is in the middle of Run 3 which is expected
to collect more data at a higher energy of 13.6 TeV.

The LHC’s plan for the future of its operation is to increase as
much as possible the amount of interactions per unit time in order
to increase the amount of collected data to set more stringent con-
straints on interesting observables. However, this planned increase in
luminosity is a double-edged sword - while delivering more data for
analyses and improving the precision, it also raises problems with
how to separate the small amount of signal processes from the ex-
pected copious amounts of background from processes with a similar
experimental signature both online - during the process of data taking,
and offline - when the recorded data is being analysed. In particular,
a major problem is the presence of an increasingly higher amount of
near-simultaneous collisions, known as pile-up.

The LHC is designed to produce at least one proton-proton collision
every 25 ns, which requires high resolution data acquisition at a rate
of 40 MHz. In the ATLAS experiment this results in a torrent of data
far beyond the processing and storage capacity of current technologies
at reasonable costs. Before being analysed offline, these raw data pass
through a set of online and subsequent offline filters forming a sieve
which allows only the most interesting parts of the most interesting
collision events for a physics analysis through.

In ATLAS, the very first, real-time filter through which all collision
events must pass is the ATLAS trigger, which reduces the rate of
captured events from 40 MHz to around 1 kHz. In Runs 1-3 of the

1



2 introduction

LHC, this trigger is further sub-divided into the hardware-based Level-
1 (L1) trigger, which reduces the rate from 40 MHz to 100 kHz, and
the software-based High-Level Trigger (HLT), which further reduces
the rate down to the final 1 kHz. The L1 trigger is comprised of
several components specializing in the fast identification of one or
more physics objects such as e, µ, τ, jets and missing energy, with
the HLT running more elaborate higher-latency algorithms to make a
more precise identification.

After being selected and stored, as part of an offline physics analysis,
the events are analysed in order to compute observables on a subset
of the collected data that contains a signal, which is a physics process
of interest, in order to perform a statistical fit of functions that model
these observables and that are parameterized by the physics param-
eters of interest, related to this process, that we want to constrain.
Usually, the bulk of the effort in such analyses goes into designing a
selection algorithm that produces a sub-sample of the experimental
data which has high purity in terms of the desired signal while at
the same time having a high signal selection efficiency. Nevertheless,
even after careful selection, the data will be a mixture of signal and
background, so the chosen fit observables must be maximally sensitive
to the signal.

In both the online and offline cases there is increasing interest
in trainable machine learning models, which more often than not
show superior performance over simple heuristics-based algorithms
in separating signal from background. These algorithms become more
and more crucial as the amount of bandwidth and data in both cases
increases and present a solution to the signal-background separation
problem in noisy environments.

One of the main goals of the ATLAS experiment is to make precision
measurements of SM parameters and set limits on them, which may
provide clues to physics beyond the SM. In 2012 a particle consistent
with the theoretically predicted SM Higgs boson was discovered by the
ATLAS and CMS experiments [2, 3]. Since then, the analysis of data
collected at center-of-mass energies of 7, 8 and 13 TeV during Runs 1

and 2 has led to the observation and measurement of the four main
Higgs production modes - gluon-gluon fusion, vector boson fusion and
associated production with a weak gauge boson or a pair of top quarks,
as well as several decay channels predicted by the SM [4]. Among these
a 6.4σ observation of H → ττ in agreement with the SM [5] and an
upper limit of 26 times the predicted SM cross section times branching
fraction for a Higgs produced in association with a vector boson and
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decaying to a pair of charm quarks [6] were recently obtained. Both
of these decay modes are sensitive to contributions from, and are
therefore promising probes of physics beyond the standard model and
therefore it is crucial to improve their sensitivity to their respective
signals. The analyses that target these processes can benefit from
machine-learning based online and offline improvements.

The work presented here documents the contribution of the author
to offline ATLAS physics analysis and online data acquisition. The
former is done in the context of the VHbb(cc) Legacy analysis, aiming
to combine several previous analyses of the Higgs boson decaying to
b or c quarks in association with a vector boson in order to improve
the signal sensitivity. The latter is done in the context of τ lepton
identification in the ATLAS L1 trigger and results in the world-first
full evaluation of a machine learning model in a high-energy physics
experiment L1 trigger algorithm, without requiring special hardware.
The algorithm has become the baseline τ identification algorithm,
operating during Run 3 and opening the gate to the usage of machine
learning algorithms in the L1 trigger in ATLAS.

The work presented here is divided into four parts. Part 1 lays out
the required theoretical background, Part 2 describes the LHC and the
ATLAS experiment, Part 3 details the development, implementation
and tuning of the L1 τ identification algorithm and Part 4 describes
the VHbb(cc) Legacy analysis and the relevant contributions by the
author.

1.1 personal contributions

For τ identification at the L1 trigger, almost all aspects of the algo-
rithm’s design, implementation both in hardware and in software
and subsequent tuning and optimization for physics performance and
resource efficiency (aside from professional guidance) were done by
the author. That includes implementation of novel proprietary tools in
order to tackle the non-trivial task of introducing a machine-learning
algorithm into a previously all-heuristic environment.

For the VHbb(cc) Legacy analysis, the author was a member of the
analysis team and participated in several of its aspects. One is the
contribution to the software frameworks used for event selection and
multi-variate analysis. In particular, the author developed a system to
facilitate and speed up the running of jobs on the CERN computing
grid that has been used by the entire analysis team. Another aspect is
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a contribution to training and evaluating the trained boosted decision
tree models producing the discriminant used for the final fit in VH(→
bb̄) 2-lepton and VH(→ cc̄) 1-lepton channels. A final contribution is
a preliminary assessment of the performance of a GNN-based model
for the production of the fit discriminant. A significant part of the
materials and plots presented in Part 4 is based on the internal note
of the analysis, collaboratively written by the analysis team members,
and is provided to give context to the author’s contributions.

One contribution not mentioned in detail in this work, as it is
not directly physics-related, but which had, nevertheless, required
significant effort, is the development and maintenance of a system
responsible for collecting and storing measurements and construction
details of the sTGC wedges of the ATLAS New Small Wheel during its
construction as part of the Phase-I upgrade of the ATLAS detector in
2018. This was done in a context of a qualification task required by all
ATLAS members who wish to gain authorship rights. The work lasted
one full year and required the author’s full attention. The system
was deployed around the globe in all laboratories participating in the
construction of the wedges in Canada, Chile, China, Israel, Russia
and in CERN and was exclusively used for the documentation of the
construction.



Part I

T H E O R E T I C A L B A C K R O U N D





2
T H E S TA N D A R D M O D E L

The Standard Model (SM) of particle physics [7–10] is built upon the
framework of quantum field theory. The model’s assumption is that
several fields, each with at least one degree of freedom are superim-
posed at each space-time point. A Lagrangian, constructed from those
fields as the most general one obeying a set of invariance requirements
under transformations (representing symmetries of nature) acting on
those fields governs their dynamics.

An especially important set of transformations under which the
Lagrangian is invariant are global and local gauge transformations.
While the requirement of invariance under the former leads to the
conservation of certain combinations of those degrees of freedom,
known as charge, due to Noether’s theorem, imposing invariance
under the latter leads to the emergence of gauge fields that result in
forces acting between particles which carry this charge. The force
carrier particles are excitations of those fields.

Figure 2.1: Elementary particles of the SM and their properties.
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8 the standard model

The elementary particles of the Standard Model comprise three
generations of leptons where each generation is a pair of an electrically
charged massive particle of charge −e with a corresponding massless
and electrically neutral neutrino and three generations of quarks where
each generation is a pair of an up-type quark with an electrical charge
2e/3 and a down-type quark with a charge −e/3. The quarks also
carry a strong color charge and come in three "colors" - red, green and
blue.

There are four vector gauge boson charge carrier particles - the
neutral massless photon which carries the electromagnetic force, the
massive electrically neutral Z and charged W bosons which carry the
weak force and the electrically neutral massless gluons which carry a
color charge and mediate the strong force.

The massive leptons and quarks interact with photons, W and Z
bosons and therefore are influenced by the weak and electromagnetic
force. Neutrinos interact only with the W and Z bosons and feel only
the weak force.

The quarks, while interacting with photons and the W and Z bosons,
interact also with gluons and therefore in addition feel the strong force.
The strong interaction confines quarks to bound states of two, termed
mesons or of three quarks, termed baryons, though bound states of
more quarks have recently been observed [11]. The proton and the
neutron are baryons which, along with electrons are the building
blocks of all visible matter.

An additional elementary particle that will be discussed in more
detail in the following section is the electrically neutral massive scalar
Higgs boson discovered at the LHC in 2012, after having been pre-
dicted from theory. It is a necessary component of the SM to allow
electroweak (EW) symmetry breaking which unifies the weak and elec-
tromagnetic forces. The SM particles and their details are summarized
in Figure 2.1.

2.1 the electroweak sector and the higgs mechanism

While in the electromagnetic and strong interactions the emerging
gauge fields have no mass terms in the Lagrangian, as they describe the
massless gluons and photon, respectively, a problem arises in the weak
interaction. Unlike with the strong interaction, where its short range
is a consequence of color confinement, the short range of the weak
force originates from its massive force carriers, the W± and Z bosons
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and thus their mass terms must somehow appear in the Lagrangian as
self-interaction terms of the form Aµ Aµ. However, such terms are not
invariant under the corresponding local gauge transformation, as such
a transformation shifts the gauge fields. Therefore the local gauge
symmetry must be broken in some way, while keeping the Lagrangian
invariant.

In the 1960s Weinberg, Salam and Glashow proposed the EW theory,
in which the electromagnetic and weak force are unified above a cer-
tain energy scale. Since the weak interaction violates parity, fermions
with left- and right-handed chirality should couple differently to the
gauge bosons of the theory. This is achieved by grouping the left-
handed fermions into a SU(2) doublet and the right-handed ones
into a SU(2) singlet. The group SU(2) has 3 generators, while four
are required (one for each gauge boson W±, Z0, γ), so the final sym-
metry group is called SU(2)L ×U(1)Y. The corresponding charges
are the three components of the weak isospin T1,2,3, Ti ≡ σi

2 and the
hypercharge Y. The four gauge fields do not have explicit mass terms
in the Lagrangian and masses for three combinations of them are ac-
quired at lower energies via the Higgs mechanism in a process called
spontaneous symmetry breaking (SSB).

2.1.1 EW Gauge Bosons, SSB and the Higgs Mechanism

Assuming a complex SU(2) doublet field Φ, its Lagrangian is

L = (DµΦ)† (DµΦ
)
− µ2Φ†Φ− λ

(
Φ†Φ

)2
(2.1)

with

Φ =
1√
2

φ1 + iφ2

φ3 + iφ4

 (2.2)

where φi, i = 1..4 are real scalar fields and

DµΦ =
(

∂µ + igTiW i
µ + ig′YBµ

)
Φ, (2.3)

is the covariant derivative. W i
µ, i = 1..3, Bµ are three gauge fields origi-

nating from the SU(2)L symmetry and one from U(1)Y, respectively,
g and g′ are coupling constants and Ti ≡ σi

2 , Y ≡ I
2 are the generators

of SU(2)L and of U(1)Y, respectively, where σi are the Pauli matrices.
If µ2 < 0, the potential

V(Φ) = µ2Φ†Φ + λ
(

Φ†Φ
)2

(2.4)
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has a minimum at Φ†Φ =
√
−µ2

λ ≡ ν. All fields Φ that satisfy this
relation are minima of (2.4), and they’re all related by transformations
of SU(2)L ×U(1)Y. To break the symmetry, we select one of those
vacua. We can make a SU(2) rotation from (2.2) so that φ1, φ2, φ4 = 0
and φ3 = v. After selecting a vacuum the state of lowest energy
is not symmetric and the SU(2)L × U(1)Y symmetry is said to be
spontaneously broken. Expanding around this minimum field value, we
can write

Φ =
1√
2

 0

ν + h(x)

 (2.5)

where h(x) is a real field with zero expectation value at lowest energy
and v is a real number. The W term in (2.3) can be written as

σiW i
µ =

(
σ+ + σ−

)
W1

µ +

(
σ+ − σ−

i

)
W2

µ + σ3W3
µ

=
√

2σ+

(
W1

µ − iW2
µ√

2

)
+
√

2σ−
(

W1
µ + iW2

µ√
2

)
+ σ3W3

µ.

Defining W± ≡ W1
µ∓iW2

µ√
2

and using (2.5), the first term of (2.1) becomes

(DµΦ)† (DµΦ
)
=

1
2

∂µh∂µh +
g2

4
W−µW+

µ (ν + h)2 +

1
2

( g
2

W3µ − g′Bµy
) ( g

2
W3

µ − g′Bµy
)
(ν + h)2,

(2.6)

where y is the hypercharge of the Higgs field. For convenience, we’ll
set it to its final value, y = 1

2 . Setting Z ≡ gW3µ−g′Bµ√
g2+g′2

, we are left with

the following three massive gauge bosons and an additional massless
field A ≡ g′W3µ+gBµ√

g2+g′2
which is a combination of W3 and B orthogonal

to Z0:

W±, MW± =
gv
2

Z0, MZ =
v
√

g2 + g′2

2
A, MA = 0.

From (2.6) the interaction vertices between the gauge bosons and
the Higgs are evident and similarly the Higgs self-interaction vertices
can be obtained by substituting (2.5) into (2.4).
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The existence of a massless gauge boson implies that there is a
transformation under which the ground state is degenerate, i.e. it
transforms the ground state into itself, or, equivalently, its generator
annihilates the ground state. This generator is a combination of those
of SU(2)L ×U(1)Y and is precisely the electric charge Q = Y + T3:

(Y + T3)Φ =

(
1
2

I +
1
2

σ3

)
1
2

 0

ν + h(x)

 =

(
1
2
− 1

2

)
Φ = 0. (2.7)

2.1.2 Fermion Masses

We can now examine the coupling of the fermions to the gauge and

Higgs bosons by introducing a left-handed SU(2)L doublet

νe

eL


and a right-handed SU(2)L singlet eR, where eL, eR are left- and right-
handed Dirac spinors of the electron, respectively and νL is the left-
handed Dirac spinor of the neutrino. According to the relation Q =

Y + T3, the values of the hypercharge Y are − 1
2 for the doublet and

−1 for the singlet.
Mass terms of the form mψ̄ψ for a Dirac spinor ψ are not allowed

in the case of the SM, since, e.g. for the electron spinor, ēe = ēReL +

ēLeR and the SU(2)L transformation can rotate eL into νL. Therefore,
fermion masses are also acquired through coupling with the Higgs
boson. After SSB, the coupling between the Higgs and the fermions
becomes:

c
(

ν̄eL ēL

) 1√
2

 0

v + h(x)

 eR + h.c. =
c√
2

ēLeR (v + h(x)) + h.c.

(2.8)

where c is an arbitrary constant. Due to the arbitrariness of c, the
masses of the fermions are also arbitrary, but it is evident that the
coupling of the fermions to the Higgs is proportional to their masses.

For quarks the coupling is similar, but since it is observed that,
e.g. strange and down quarks can both decay into up quarks, the
quantum states of down-type quarks undergoing a weak interaction
are a linear combination of their states when they propagate freely.
One can transform between those bases using the Cabibbo-Kobayashi-
Maskawa (CKM matrix).

Thus, to conclude, the fermions as well as the gauge bosons acquire
masses by interacting with the condensate of the Higgs field and
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the coupling of the latter to all fermions and gauge bosons can be
summarized as follows:

Coupling to Z/W
2M2

Z/W

v
,

Coupling to fermion f
M f

v
. (2.9)

2.2 higgs production and decay modes

In hadron colliders, the main processes in which a Higgs boson is pro-
duced are shown on Figure 2.2. The Higgs production cross sections
for these processes are shown on Figure 2.3. The processes are:

• Gluon-gluon fusion (ggF) - The Higgs is produced with no
associated particles, making it a challenging production mode
to identify, even though this process has the highest production
cross section. It is mediated by the exchange of a heavy top quark
and the contribution to the cross section from lighter quarks
propagating in the loop are suppressed proportionally to the
square of their mass. The dominance of this process originates
from the high momentum fraction carried by the gluons in a
p-p collision. Due to the mass-dependant coupling of the Higgs
to fermions, the top quark loop has the biggest contribution to
Higgs production.

• Vector boson fusion (VBF) - the second dominant production
mode. In this process two quarks interact via a weak gauge boson
exchange, which radiates a Higgs boson with the quarks forming
two associated jets. The extra two jets facilitate the identification
of this process.

• WH and ZH associated production (VH) - the Higgs is produced
in association with a weak gauge boson primarily through Higgs-
strahlung, in which it is radiated off a weak boson produced
in the interaction of a quark and an anti-quark. For the ZH
production mode there is a contribution from production via a
top quark loop (diagram (d) in Figure 2.2). Due to the leptonic
decays of the gauge bosons, Higgs production via this mode is
easier to identify than the previous two.

• Higgs in association with top quarks (tt̄H) - the Higgs is pro-
duced from a fusion of a pair of top quarks, in association with
a pair top quarks. It provides a direct probe to the top-Higgs
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Yukawa coupling. A similar process exists for b-quarks, but is
suppressed due to the much lower b-quark mass.

• Higgs in association with a single top - the Higgs is produced
in association with a single top quark and an additional quark.
The process occurs either through the Yukawa coupling of the
top quark with the Higgs or via an emission from a W boson.

Figure 2.2: Leading order Feynman diagrams for Higgs production modes -
(a) gluon fusion, (b) vector boson fusion, (c) Higgs-strahlung, (d)
associated production with a gauge boson from a gluon-gluon
interaction, (e) associated production with a pair of top quarks,
(f-g) production in association with a single top quark.

The branching fractions for the various Higgs decay modes are
summarized in Figure 2.4. Due to the dependence (2.9) of the Higgs
coupling on the mass of the particle it couples with, the most dominant
tree-level decays are H → bb for quarks, H →WW? for vector gauge
bosons and H → ττ for leptons. Decays into products containing
massless particles, such as H → gg, H → γγ and H → Zγ are
loop-induced.
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Figure 2.3: Production cross sections for a Higgs boson of mass 125 GeV at
different center-of-mass energies of p-p collisions [12].

Figure 2.4: The branching fractions for the main decays of a Higgs boson of
mass around 125 GeV [12].



3
TAU L E P T O N S

The τ lepton is the only lepton which, due to its high mass of 1.777

GeV c−2 can decay both into leptons and hadrons. The former occurs
in 35% of the cases and the latter - in the remaining 65%. The τ lepton
has a lifetime of 2.9× 10−13 s (cτ = 87 µm) and therefore it decays
before it reaches any of the ATLAS sub-detectors. Identification of the
τ lepton therefore relies on the ability to identify its decay products.

Figure 3.1: The visible transverse energy of τ leptons from different physics
processes [13].

15
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Since the leptonic decay of the τ is indistinguishable from prompt
leptons, it is not considered for τ identification [14] and will not be
further discussed. In the hadronic decay mode, the majority of the
decays are characterized by one ("one-prong") or three ("three-prong")
charged pions which may be accompanied by neutral pions. Those
form a jet signature in the detectors, which is very similar to that
of a quark- or gluon-initiated jet (QCD jet). Besides two identifying
features - the fact that τ-originating jets are typically narrower than
QCD jets and their distinct number of prongs, it is very challenging to
discriminate τ jets from QCD jets [14] in a hadron collider.

The range of interest for different physics scenarios of the τ trans-
verse momentum spans from below 10 GeV to above 500 GeV. Figure
3.1 shows some interesting processes with taus in the final state, such
as top quark decays, W/Z production, SM Higgs vector boson fusion
production with H → ττ and BSM scenarios.

The products of the τ lepton decay that are stable enough to reach
the calorimeter are charged pions and kaons with a mean lifetime of
2.6 · 10−8 sec and 1.2 · 10−8 sec, respectively, that travel a distance of
O(10) m in the laboratory frame before decaying. Additional decay
products of taus are neutral pions which, having a lifetime of 8.4 · 10−17

sec, decay immediately into photon pairs. Table 3.1 shows a summary
of the leading decay modes of the τ lepton.

3.1 kinematics of a two-body decay

The kinematics of a general two-body decay of a particle in its rest
frame are illustrated in Figure 3.2. The two decay products are pro-
duced back-to-back. The ẑ axis is the direction of boost in the labora-
tory frame.

Let p∗µ1 = (E∗1 , p∗1) and p∗µ2 = (E∗2 , p∗2) be the 4-momenta of particles
1 and 2, in the decaying particle’s rest frame. We then have

p∗1 + p∗2 = 0

m = E∗1 + E∗2
m2

1 = E∗21 − p∗21

m2
2 = E∗22 − p∗22



3.1 kinematics of a two-body decay 17

Figure 3.2: The two-body decay of a particle in its rest frame

From which we can express E∗1 , E∗2 and p∗ ≡ p∗1 = p∗2 , as

E∗1 =
m2 −m2

2 + m2
1

2m
(3.1)

E∗2 =
m2 + m2

2 −m2
1

2m

p∗2 =

(
m2 −m2

2 + m2
1

)2

(2m)2 −m2
1.

When boosting p∗µ1 and p∗µ2 to the laboratory frame in the ẑ direction,
we get the energy and momentum of both particles in the laboratory
frame:

E1 = γ (E∗1 + βp∗ cos θ∗1 ) (3.2)

E2 = γ (E∗2 − βp∗ cos θ∗2 )

p1 = p∗⊥ + γ (βE∗1 + p∗ cos θ∗1 ) ẑ

p2 = −p∗⊥ + γ (βE∗2 − p∗ cos θ∗2 ) ẑ

where p∗⊥ is the projection of p∗ on the xy plane, orthogonal to the
boost direction.

The angle ψi between the trajectory of particle i(= 1, 2) and the
boost direction ẑ, in the laboratory frame is

sin ψi =
p∗⊥
pi

=
p∗ sin θ∗i

pi
(3.3)

It is already evident from this equation that for given quantities in
the rest frame, ψi is smaller for higher boosts (i.e. a more energetic
mother particle), so that the resulting two particles are more collimated.
Squaring equation (3.3), substituting (3.2) and rearranging, we get
expressions for ψ1 and ψ2:
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tan ψ1 =
p∗ sin θ∗

γ
(

βE∗1 + p∗ cos θ∗
) (3.4)

tan ψ2 =
p∗ sin θ∗

γ (βE∗2 − p∗ cos θ∗)
(3.5)

The maximum angle between the original and daughter particle
in the laboratory frame would then correspond to d tan ψ1,2/dθ∗ = 0,
which gives

cos θ∗ = ∓ p∗

βE∗1,2
. (3.6)

For a characteristic rest frame decay angle of θ∗ = π/2, the above
maximum angle for a massive daughter particle would be

ψC, max. ≈
p∗

γE∗
. (3.7)

and for a massless daughter particle

ψm=0

C, max. ≈
1
γ

, (3.8)

where the approximation is true for the relativistic limit.
It is also useful to derive the energy distribution of one of the two

daughter particles. If N unpolarized mother particles decay, we can
compute dN/dE1 by assuming a flat distribution of dN/d(cos θ∗) =

1/2. From (3.2),

dN
dE1

=
dN

d cos θ∗
d cos θ∗

dE1
=

1
2

d cos θ∗

dE1
=

1
2γβp∗

≈ 1
2γp?

. (3.9)

This is a flat distribution in E1, with the values for E1 bounded by the
extreme values of equation (3.2),

γ (E∗1 − p∗) / E1 / γ (E∗1 + p∗) , (3.10)

for which the average value is

〈E1〉 = γE∗1 . (3.11)

The approximations are valid for the relativistic limit.

3.2 kinematics of a hadronic τ decay

A hadronic decay of a τ lepton produces an electrically charged
hadronic resonance and a neutrino, according to the Feynman diagram
shown in Figure 3.3.
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τ−

ντ

q1

q2

W−

Figure 3.3: Tree level Feynman diagram of the hadronic decay of the τ lepton.
In the majority of cases, q1 = u and q2 = d.

We can use the results of Section 3.1 to estimate some practical
values used in the identification and reconstruction of hadronically
decaying τ leptons, such as the typical angle between the direction of
the visible τ decay products and the original τ particle and a rough
estimate of the opening angle of the τ jet. In equations (3.1), if particle
1 is the hadronic resonance and particle 2 is the neutrino, we can
set m2 = 0 , m1 = mhad, m = mτ and ignore ψ2 in (3.4). Then (3.1)
becomes

E∗ =
m2

τ + m2
had

2mτ
(3.12)

p∗ =
m2

τ −m2
had

2mτ
.

Then, using (3.7) and (3.12), we can estimate a characteristic angle
between the τ lepton and the visible hadronic jet in the case of a
charged pion and ρ meson by setting, mhad = mπ± ≈ 140 MeV or
mhad = mρ± ≈ 770 MeV, respectively, for the lowest energy of interest
of a τ of approximately 10 GeV. That gives ψτ,π

C, max. ≈ 0.17 radians
and ψ

τ,ρ
C, max. ≈ 0.12 radians. This matching angle between the true

τ particle and the visible hadronic τ jet is often used to match τ

calorimeter clusters and reconstructed hadronic τ jets in simulated
data.

Similarly, we can also get a rough estimate of the opening angle of
the visible hadronic τ jet assuming the most common, 1-prong decays
τ → π−ντ and τ → π−π0ντ (see Table 3.1).

For the τ → π−ντ decay, the pion is typically highly energetic be-
cause it originates from a decay of a highly boosted τ lepton. With a
lifetime of 2.6 · 10−8 sec, it lives long enough to reach the EM calorime-
ter’s main sampling layer positioned roughly 1.7 m from the inter-
action point around η = 0 (see Section 5.2.4.2). As shown on Figure
3.4, the pion deposits a minimum amount of energy of around 1.5
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Figure 3.4: Mean energy loss for π± in different materials [12].

MeVg−1cm2 above a momentum of 100 MeV/c, making it a minimum
ionizing particle. For a calorimeter with 400 mm of lead as an absorb-
ing medium with a density of 11.35 g/cm3, which is a very rough
approximation of the ATLAS EM calorimeter absorber medium close
to η = 0, it will leave roughly 700 MeV in the EM calorimeter, passing
it as a single "prong".

To estimate the opening angle of the τ± → π±π0ντ decay, which
occurs via an intermediate ρ± meson, we use (3.11) to get the typical
value of the energy of a ρ meson for the same low τ lepton energy of
10 GeV for which γ ≈ 6. Using (3.12) to compute E∗ for a τ± → ρ±ντ

decay, we get a typical value of Eρ = 6 GeV. Then, to compute the angle
between the ρ meson and each of the pions in the ρ± → π±π0 decay,
we can use (3.1), where we assume that m1 = m2 = mπ± ≈ mπ0 ≈ 140
MeV and m = mρ ≈ 770 MeV, and (3.7) to get a value of ψ

ρ,π
C, max. ≈ 0.18

radians. Of course, for higher energies of the τ lepton, the computed
opening angles will be smaller.

The immediate decay of the energetic neutral pion into two photons
will result in a highly collimated photon pair, with the opening angle
roughly given by (3.8).

To conclude this section, these computations indicate that, for the
energies of interest of τ leptons produced in proton-proton collisions
at the LHC, the angular window in which a τ lepton can be contained
is of the order of 0.3 radians. Translated to ATLAS coordinates (see
Section 5.2.1), and assuming we only consider the plane transverse



3.2 kinematics of a hadronic τ decay 21

to the beam axis, this corresponds to an angular distance of about
∆R = 0.3. In addition, the visible hadronic decay products of a τ lepton
will be typically located within a cone of ∆R = 0.2 with respect to the
true τ lepton’s direction for the low-end of the expected energies and
the most common τ decays. That being said, most analyses involving τ

leptons typically look at high energy regions due to high background
contamination at low energies. In these regions, these angles are lower
still.
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Process Branching fraction (%)

Leptonic

e−ν̄eντ 17.8175± 0.0399

µ−ν̄µντ 17.3937± 0.0384

Hadronic, "1-prong", pions only

π−π0ντ 25.4941± 0.0893

π−ντ 10.8164± 0.0512

π−2π0ντ 9.2595± 0.0964

π−3π0ντ 1.0429± 0.0707

Hadronic, "3-prong", pions only

π−π−π+ντ 8.9868± 0.0513

π−π−π+π0ντ 2.7404± 0.0710

Hadronic, "1-prong", involving kaons

π−K̄0ντ 0.8384± 0.0138

K−ντ 0.6964± 0.0096

K−π0ντ 0.4328± 0.0148

π−K̄0π0ντ 0.3817± 0.0129

K−π0K0ντ 0.1500± 0.0070

K−K0ντ 0.1486± 0.0034

Hadronic, "3-prong", involving kaons

π−K−K+ντ 0.1435± 0.0027

Table 3.1: Summary of the leading decay modes and corresponding experi-
mental branching fractions for the τ lepton. The branching fractions
exclude processes with intermediate resonances. Only several lead-
ing ones are shown.
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M A C H I N E L E A R N I N G

Machine learning (ML) has historically played a significant role in
signal-background classification tasks in particle physics using classi-
cal techniques, such as boosted decision trees (BDT), support vector
machines (SVM), simple multi-layer perceptrons (MLP) and others
[15]. It is an extremely fast-growing field, where novel ML models
are introduced regularly, especially in the field of Artificial Neural
Networks (ANN) which show exceptional performance in learning
tasks in a variety of fields.

4.1 artificial neural networks

ANNs are ML models inspired by the functioning of networks of
neurons in the brain. They consist of interconnected layers of neurons,
each having multiple inputs and a single output, so that the output is
a weighted, and optionally biased, sum of the inputs followed by an
activation function, such as a sigmoid or a simple ramp function. The
model’s weights can be learned from training data, by minimizing
a distance metric between the output of the ANN and the expected
output, for each data point. An important property of ANNs is that
they can approximate any well-behaved function given a deep or wide
enough architecture [16] [17].

4.2 graph neural networks in event classification

A recent development in the field of ANNs is an approach for learning
functions on graphs, called graph neural networks (GNN). In many
classification problems the data is inherently permutation invariant
and is naturally representable in graph form. For example, in a col-
lision event we have candidate leptons, jets and missing transverse
energy, which can be placed on nodes of a graph with the edge con-
necting any two nodes being some geometric proximity measure of
the two objects, such as their ∆R =

√
∆η2 + ∆φ2. Such an approach

has been shown to outperform other cutting-edge ML algorithms such

23
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as Deep Neural Networks (DNNs), which are multi-layered ANNs, in
the context of event classification at the LHC [18][19][20].

4.2.1 Graph Network Formalism

Formally, a graph can be described by G = (u, V, E), where u repre-
sent graph-level attributes, V = {vi}i=1:Nv

are a set of node attributes
with Nv the number of nodes and E = {(ek, rk, sk)}k=1:Ne

where ek is
a collection of attributes of edge k which connects nodes with indices
sk and rk.

A convenient framework within which a general function of a graph
or, equivalently, a graph neural network, can be described is the graph
network (GN) formalism [21]. GN blocks are graph-to-graph functions,
whose output graphs have the same node and edge structure as the
input. The processing stages of a GN block are:

e′k = φe (ek, vsk , vrk , u) ē′i = ρe→v (E′i) Edge block

v′i = φv (ē′i, vi, u
)

ē′ = ρe→u (E′) Node block

u′ = φu (ē′, v̄′, u
)

v̄′ = ρv→u (V ′) Global block

(4.1)

Note that there are two types of functions - update functions (φ), which
accept a fixed-sized input and produce a fixed-sized output, and
aggregation functions (ρ), which accept a variable-size set of inputs
and produce a fixed-sized representation of it, so that the output is
invariant under permutations of the input set, which is the reason the
GN can approximate a function of a set of objects, invariant under
permutations.

The edge block updates the attributes ek of edge k to e′k, a represen-
tation (also called embedding) of the attributes, which is a function φe

of the edge attributes ek, the attributes of its start and end nodes, vsk

and vrk , respectively, and the graph-level attributes u. Similarly, the
node block updates the attributes vi of each node i to an embedding v′i
which is a function φv of the aggregation ρe→v of the embeddings E′i of
edges terminating at node i, the node attributes vi and the graph-level
attributes u. The global block transforms the graph-level attributes
to an embedding u′, which is a function φu of the aggregations ρe→u,
ρv→u of the set of all edge (E′) and node (V ′) embeddings, respec-
tively, and the graph-level attributes u. This is illustrated graphically
in Figure 4.1.

In practice, the update functions φ are often implemented using a
simple ANN per function while the aggregation functions are imple-
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Figure 4.1: A GN block. A graph (u, V, E) is the input graph and the output
is (u′, V′, E′)

mented as permutation-invariant reduction operators, such as a sum,
mean or maximum.

An important thing to note is that after passing a single GN block,
the embedding of each node incorporates information from nodes
directly connected to it by an edge as well as from the edges them-
selves. That way, nodes receive information from their surroundings
through edges connecting them with adjacent nodes. Also, graph-level
embeddings receive information from the set of all edges and nodes
and edge embeddings receive information from their originating and
terminating nodes. This information sharing is referred to as message
passing and it’s an important advantage of GNNs over other ANN
architectures. It allows the GNN to take into account node attributes,
global attributes and pairwise relations between nodes encoded in
edge attributes to produce the output. Multiple GN blocks can be
chained together, allowing node embeddings to incorporate informa-
tion from outside their immediate neighboring nodes.

The most general GN block given by (4.1) and Figure 4.1 describes
the most general GNN architecture. However, it can be modified
by removing or rearranging some of the update and aggregation
functions. The GN formalism is therefore suitable for describing many
GNN architectures.

4.2.2 Deep Sets

A deep set is a simple GNN architecture, without message passing
between nodes. In the framework of the GN formalism, it can be
described by a node embedding function φv, an aggregation function
ρv→u and a graph-level update function φu, arranged as shown on
Figure 4.2.
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Figure 4.2: A DeepSet GN block.

4.3 boosted decision trees

A boosted decision tree (BDT) is a prediction model which accepts
a vector of a fixed set of features as inputs and produces a single
score as an output. The score can be further thresholded for the BDT
to act as a classifier. For any input represented by a vector of values
corresponding to the input features, a collection of decision trees, each
representing a set of cuts in the input feature’s space and providing
a score for a given input is boosted by summing all scores together,
producing the final BDT score. Each tree by itself is a weak, low
performance classifier. Using ensembles of weak learners to boost
performance was introduced in the early ’90s and in many instances
results in dramatic performance increase [22].

The package that is used to train the BDT for the τ algorithm is
a Python implementation of XGBoost [23]. Since the choice of the
different hyperparameters (HP) of the BDT model affects both the
classification power and resource usage, they will be briefly discussed.

In the general case of a two-class classification problem, a BDT is
trained on a training data set which is comprised of a set of features
and their class labels. Given a training set of n feature vectors xi each of
dimension m and corresponding labels yi, {(xi, yi)}n

i=1 , xi ∈ Rm, yi ∈
R, the BDT score of a model with K trees for sample i is computed as
such:

ŷi =
K

∑
k=1

fk (xi) (4.2)

where fk (xi) is a score for tree k, and example i which is computed
by applying a set of thresholds on the components of xi. The latter
can be described by qk (xi) : Rm → Tk, a function that returns the leaf
index into which example xi falls in tree k and a leaf weights vector
wk ∈ RTk , so that fk(xi) = wqk(xi), with Tk the number of leaves in tree
k. The model is trained by adjusting the tree structures qk (and in the
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process also the number of leaves Tk) and leaf weights wk, so that the
following objective function is minimized:

L = ∑
i

l (ŷi, yi) + ∑
k

(
γTk +

1
2

λ‖wk‖2
)

, (4.3)

where l is a differentiable convex distance measure between the class
label and predicted score, and the second sum is a regularization
term with two parameters, where the first term penalizes trees which
have many leaves and the second penalizes large values of leaf scores.
The index i runs over a set of input vectors used to evaluate the
training process while k runs over the trees. The importance of the
two regularization terms is controlled by the parameters γ and λ. The
γ parameter controls the level of pruning of each tree - the higher it
is, the less leaves each tree will tend to have, while the λ parameter
keeps the magnitude of the leaf scores from diverging.

4.3.1 The XGBoost Training Algorithm

The training algorithm for XGBoost is a gradient boosting algorithm
with optimizations aimed at making it exceptionally fast and resistant
to overfitting. As in other gradient boosting algorithms, every training
iteration a new decision tree is added. The new tree’s structure is
converged upon by starting with a root node and scanning different
cut points for all features in the input vectors so that the split has a
maximum gain to the predictive power of this tree until this gain is
lower than a certain threshold.

If ŷ(t−1)
i is the prediction of the model for instance i at iteration

t− 1, then when we add a new tree ft(xi), at iteration t, we need to
minimize the following objective function

L(t) =
n

∑
i

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( ft), (4.4)

where Ω( f ) ≡
(
γT + 1

2 λ‖w‖2) is the regularization term from (4.3).
Expanding in ft,

L(t) '
n

∑
i

[
l
(

yi, ŷ(t−1)
i

)
+ gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft), (4.5)

where gi ≡ ∂ŷ(t−1) l
(

yi, ŷ(t−1)
i

)
and hi ≡ ∂2

ŷ(t−1) l
(

yi, ŷ(t−1)
i

)
.
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The first term is constant and therefore can be dropped. This can
then be re-written the following way:

L̃(t) =
T

∑
j=1

∑
i∈Ij

gi

wj +
1
2

∑
i∈Ij

hi + λ

w2
j

+ γT. (4.6)

Where Ij is the subset of all input vectors which fall into leaf j. If
the tree structure q is fixed, we can minimize L̃(t) to get the optimal
set of leaf weights

w∗j = −
Gj

Hj + λ
(4.7)

for which the minimum value for L̃(t) is

L̃(t)(q) = −1
2

T

∑
j=1

G2
j

Hj + λ
+ γT (4.8)

where Gj = ∑i∈Ij
gi, Hj = ∑i∈Ij

hi.
Using this result, we can start constructing a tree in the following

manner. Starting from a root node representing a leaf into which all
input vectors fall and which has some initial weight value, introduce
a cut on one of the input features at a certain value of the feature,
creating a split of the set of all input vectors into two subsets IL and
IR. This split will increase the loss function by

Lsplit =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− G2

H + λ

]
− γ, (4.9)

where G and H are evaluated over I = IL ∪ IR. Repeat over all possible
cuts on all features and select a cut that produces a minimal value
for (4.9). Repeat the process recursively for the resulting tree until
a stopping condition is reached. A common stopping condition is
a requirement that some minimum number of input vectors shall
fall into a leaf or that no further cut exists that reduces the loss (4.9)
sufficiently.

The problem now is reduced to finding an optimal way to pick
the cut values and the features on which to cut in order to reduce
training time. Implementations such as scikit-learn [24] scan over
every possible cut value of all features, being very powerful but at
the same time resulting in long training times which are prohibitive
when trying to analyse and compare multiple trainings. To shorten
training times XGBoost uses an approximate algorithm which, for each
feature, proposes optimal cuts which are used for the cut values in
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the construction of the tree. That, along with optimal use of computer
resources by distributing the training over multiple processors makes
training a BDT with XGBoost exceptionally fast.

To mitigate overfitting, in addition to the regularized objective func-
tion (4.3), which helps smooth the final learnt weights, additional
techniques are used. Feature sub-sampling selects a random sub-set of
features to consider for each new training iteration. Shrinkage is used
to assign a progressively smaller weight to subsequent trees. Early
stopping is used to evaluate the trained model at every iteration on a
validation set and stop the training if the performance on the latter
starts to degrade.

4.3.2 XGBoost Hyperparameters

In the training of BDTs in general and with XGBoost in particular,
several HP can be modified to achieve optimal performance, latency
and resource usage. These are the number of trees K, maximum
depth of a tree M and the γ pruning regularization parameter dis-
cussed previously, as well as the number of early stopping rounds and
scale_pos_weight, which compensates for an unbalanced dataset.

The deeper the trees in the BDT, the better the BDT captures de-
pendencies between variables during training. It is important to not
have this parameter set too high, however, since then it would fail to
generalize and will overfit on outliers. The benefit of higher M can
somewhat be preserved and overfitting can be mitigated by using
a higher value of γ, keeping the tree pruned, so that tree branches
which contribute to better separation between the classes are kept,
while others are pruned during the training process.

Each successive tree in a BDT corrects for the errors of the previous
tree’s prediction, so it’s generally better to have a high value of K.
However, at some point further increase in K might also lead to slight
overfitting when subsequent trees start to compensate for noise.

Lastly, if the training dataset is unbalanced with e.g. more signal
than background samples, the BDT’s structure should be more strongly
corrected for prediction errors on the minority sample than on the
majority one, which is controlled by the scale_pos_weight HP.
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4.4 evaluation of a model’s performance

A trained ML model assigns a score to a data point presented at the
input which is preferably high for signal and low for background data.
A two-class classifier model, which we’ll be concerned with in this
work, sets a threshold on the score to separate signal from background.
There are several metrics that can be computed to describe the model’s
performance, but the two most critical ones for our purpose, which is
trying to learn, from data, about the presence or absence of a signal,
are efficiency and background rejection.

The efficiency εS, is the probability that a signal input will be tagged
as such by the model. Background rejection RB is the probability that a
background input is not tagged as signal and is trivially related to the
background efficiency εB, which is the probability to tag a background
input as signal:

RB = 1− εB (4.10)

For example, in the case of a trigger application in high energy
physics, that will be discussed in depth in the following chapters,
high trigger rates are prohibitive, so RB should be as high as possible,
while we want to keep as many interesting events as we can, which
translates to having a high εS.

Usually, training a model for classification is a computationally
intensive task, so the model is trained once after carefully selecting the
hyperparameters and then tuned by modifying the threshold above
which the classifier tags an input as signal. Increasing this threshold
results in less signal and background events being selected and thus
in lower εS and higher RB and vice versa.

A convenient metric for visualizing the power of a trained model in
the context of signal-background classification by a model producing a
thresholded score is the receiver operating characteristic (ROC) curve,
as the one shown on e.g. Figure 13.10b. It is computed by varying the
threshold over a signal and background distribution of the model’s
score and for each threshold plotting εS on the y axis and εB on the x
axis. The straight blue dashed line is produced when the model has no
classification power, i.e. attributing random scores to the inputs, while
a concave curve implies a more powerful model. Furthermore, the area
under the curve (AUC) has a convenient probabilistic interpretation
- it is the probability that a randomly selected signal event is scored
higher by the model than a randomly selected background event, and
is often used as a metric to describe the power of the model.
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T H E L H C A N D T H E AT L A S E X P E R I M E N T

5.1 the large hadron collider

The Large Hadron Collider (LHC) [25] at the European Organization
for Nuclear Research (CERN) located near Geneva on the Franco-Swiss
border is a hadron accelerator and collider installed in the circular 26.7
km tunnel, which lies in a depth between 45 and 170 meters, originally
constructed for the Large Electron-Positron (LEP) collider.

The LHC is designed to accelerate protons or heavy ions, according
to a predetermined schedule, and collide them at record energies
for physics studies. Particles are accelerated in a sequence of circular
accelerators after being boosted in a linear accelerator, as shown in
Figure 5.1 until they reach the LHC beam pipe. Two beams travel
in opposite directions until they reach the target energy. There are
four interaction points at which the beams cross, where the particles,
arranged in bunches, cross each other and produce collisions every
bunch crossing, which occur at 40 MHz during physics data taking
periods.

Figure 5.1: The CERN accelerator complex.

The LHC is an infrastructure that is designed to deliver hadron colli-
sions to several detectors located around each interaction point and is
maintained by large international collaborations. The physics program

33
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of the LHC is dominated by four experiments - ATLAS (A Toroidal
LHC ApparatuS) and CMS (Compact Muon Solenoid), designed to
be general-purpose experiments for the detection of the Higgs boson,
super-symmetry, dark matter and precision measurements of the SM,
ALICE (A Large Ion Collider Experiment) which is a detector dedi-
cated to heavy ion physics and the study of conditions which existed
just after the big bang, and LHCb (Large Hadron Collider beauty),
which focuses on the study of b-mesons and the matter-antimatter
asymmetry. These experiments record collisions delivered by the LHC
in multi-year runs with data already taken during Run 1 (2010 - 2013)
with beam energies of 3.5 and 4 TeV [26], and Run 2 (2015 - 2018) with
a beam energy of 6.5 TeV [27].

5.2 the atlas detector

5.2.1 Coordinates and Kinematic Variables

The ATLAS detector [28] is a particle detector surrounding the inter-
action point with respect to which it is nominally forward-backward
symmetric. Cylindrical coordinates are used to describe the detector
and the particles emerging from collisions. The origin of the coordinate
system is nominally defined to coincide with the interaction point.
The beam direction defines the z-axis; the x-axis is defined as pointing
from the origin toward the center of the LHC ring, and the y-axis is
defined as pointing from the origin upward. The azimuthal angle φ is
measured from the positive x-axis and takes values in the range π and
−π, while the polar angle is measured from the positive z-axis and
takes the values in the range 0 and π. The transverse plane is defined
as the x-y plane, while the longitudinal direction is defined as being
along the beam axis.

Since in a hadron collider, only some partons of two colliding
hadrons interact, the initial momentum along the beam direction is
essentially unknown, and therefore, all resulting particles originating
from a single collision are arbitrarily boosted along the beam axis.
Angles of particles as expressed by the polar angle θ would there-
fore depend non-trivially on the boost, which would be inconvenient
for expressing, e.g., angular distances between particles. Therefore,
it is convenient to introduce rapidity, defined as y = 1

2 ln
(

E+pz
E−pz

)
,

where pz = |p| cos θ. This quantity is additive under Lorenz boosts
along the longitudinal direction, and therefore, for each collision
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event, the angular distances between particles expressed in this vari-
able are Lorenz invariant. For high energies, p � m and therefore
y→ 1

2 ln
( 1+cos θ

1−cos θ

)
≡ η, called the pseudorapidity, which is the actual

quantity used for energetic particles. Thus, particles detected in the
ATLAS experiment are described, in addition to their energy, by three
quantities invariant under boosts along the longitudinal direction -
the transverse momentum pT =

√
p2

x + p2
y, azimuthal angle φ and

pseudorapidity η.

5.2.2 Detector Layout

The overall layout of the detector is shown in Figure 5.2. It consists of

Figure 5.2: Cut-away view of the ATLAS detector.

an inner detector (ID) used for tracking, surrounded by electromag-
netic and hadronic calorimeters and an external muon spectrometer.
The solenoid is surrounded by a lead/liquid argon electromagnetic
calorimeter, which, along with its end-cap components (EMEC), cov-
ers the region |η| < 3.2. Electromagnetic calorimetry coverage is also
provided by a copper/liquid-argon module of the forward calorimeter
(FCal) in the region 3.1 < |η| < 4.9. The electromagnetic calorimeter
is surrounded by a hadronic calorimeter comprised of steel as the ab-
sorber medium and scintillator tiles, along with a copper/liquid argon
hadronic end-cap calorimeter (HEC) and two copper-tungsten/liquid-
argon modules of the FCal, providing hadronic calorimetry coverage
of |η| < 4.9. The muon detection system surrounds the calorimeters. It
consists of a system of high-precision monitored drift tube chambers
(MDT) detectors arranged in 3 concentric cylindrical layers, which
provides coverage in the range |η| < 2.7 along with corresponding
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MDT end-cap layers. In the region 2 < |η| < 2.7, cathode-strip cham-
bers (CSC) are used instead of MDT in the inner layer. An additional
system of thin gap chambers (TGC) and resistive plate chambers (RPC)
is used to trigger on muons. Barrel and end-cap toroids produce a
toroidal magnetic field of strengths 1 T and 0.5 T, respectively, for the
barrel and end-cap muon detector systems.

The triggering system consists of a hardware-based first-level (L1)
trigger and a software-based high-level trigger (HLT), which reduces
the rate of events from around 40 MHz of collisions to around 1 kHz
for recording.

By the end of Run 2, an integrated luminosity of 139 fb−1 of collision
events good for physics analysis at a center-of-mass energy of

√
s = 13

TeV were collected with an average of 33.7 hard interactions per event
(pileup), as shown on Figure 5.3. The ongoing Run 3 is expected to
collect 400 fb−1 of events at

√
s = 14 TeV with peak pileup of 55 [29].

5.2.3 Inner Detector

The inner detector (ID) [30], being closest to the beam pipe, is re-
sponsible for constructing the tracks and vertices in a collision event
with high efficiency. Along with the calorimeter and muon systems,
it contributes to the electron, photon, and muon reconstruction and
supplies the important extra signature for displaced vertices of short-
lived particle decays. The detector provides full tracking coverage in
the region η < |2.5| and is immersed in a 2 T magnetic field, curving
trajectories of charged particles and allowing the reconstruction of
their momenta.

The inner detector, illustrated in Figure 5.4, consists of three subsys-
tems relying on different tracking technologies and having different
spatial resolutions. The first layer, closest to the interaction point, is
comprised of fine-granularity pixel semiconductor tracking detectors,
with a typical resolution of 12 µm in the Rφ plane and 66 (77) µm in
the z (R) direction in the barrel (end-cap) region. The second layer is
comprised of several layers of semiconductor trackers based on sili-
con microstrip technology providing a resolution of 16 µm in the Rφ

plane and 580 µm in the z (R) direction in the barrel (end-cap) region,
followed by a third layer comprised of transition radiation trackers
made of gas-filled drift tubes which reduce cost and material density
of the inner detector while still allowing efficient track reconstruction
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Figure 5.3: Total integrated luminosity delivered by the LHC and recorded
by ATLAS (a) and pile-up (b) during Run 2.
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by providing a large number of points along the track. These provide
a resolution of 170 µm per straw.

In the barrel region, the first-pixel layer receives most of the radiation
and is, therefore, subject to significant degradation due to radiation
damage. As displaced vertex-based tagging of b-jets is crucial for the
majority of ATLAS analyses [31], between Runs 1 and 2 a new pixel
detector, the Insertable B-layer (IBL) [31] was installed in the barrel
region between this layer and the beam pipe to improve displaced
vertex identification efficiency, mitigating the effect of accumulated
radiation damage during Run 1.

5.2.4 Calorimeters

The ATLAS calorimeters are designed to measure the energy and
position of electromagnetically and strongly interacting particles. They
are designed to absorb the energy of most of these particles produced
in collisions. The ATLAS calorimeters are sampling calorimeters in
that they consist of layers of "absorbing" high-density materials that
stop incoming particles, interleaved with layers of "active" media
that measure the particle energies [32]. The calorimeter layout of the
ATLAS experiment is shown in Figure 5.5

The calorimeter system is composed of a liquid argon-based EM
calorimeter, which absorbs the energy of electromagnetically interact-
ing particles in the barrel (|η| < 1.475) and end-cap (1.375 < |η| < 3.2)
regions. A hadronic calorimeter surrounds the EM calorimeter, the
purpose of which is to absorb any strongly interacting particles that
pass through the EM calorimeter to capture the full energy of the
event minus the energy carried by muons and neutrinos and mini-
mize punch-through into the surrounding muon system. The hadronic
calorimeter covers a region of |η| < 4.9.

5.2.4.1 EM calorimetry

An EM calorimeter is designed for optimal absorption of the energy
of electromagnetically interacting particles such as photons and elec-
trons. A charged particle loses its energy in a medium primarily
either through radiative effects, such as bremsstrahlung, which is the
emission of photons due to the charged particle’s deceleration, or
collisional losses, such as excitation and ionization of the atoms in the
medium. An energetic photon loses energy primarily due to electron-
positron pair production, which further interacts with the medium as



5.2 the atlas detector 39

(a)

(b)

Figure 5.4: (a) Illustration of the inner detector layers in the barrel region,
showing a trajectory of a traversing particle (red line). (b) Full
view of the inner detector.
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Figure 5.5: Cut-away view of the ATLAS detector.

electrically charged particles. For a given charged particle type, a criti-
cal energy Ec can be defined above which radiative and below which
collisional losses dominate. When a highly energetic charged particle
traverses the absorbing medium, it produces bremsstrahlung photons,
which produce e+e− pairs, forming an electromagnetic shower of par-
ticles with progressively lower energies. When a charged particle’s
energy falls below Ec, energy loss through bremsstrahlung radiation
becomes sub-dominant and eventually negligible as the charged par-
ticle slows down to rest. The dominant mechanism of energy loss at
low energies is excitation and ionization. The resulting ions and free
electrons are collected towards electrodes, producing electric signals
allowing an estimate of the energy of the initial particle. Values of the
Ec of electrons for solids and gases for different chemical elements are
shown in Figure 5.6.

The typical length scale for charged, energetic particle paths in
matter is the radiation length X0, which is defined as the typical
distance an energetic electron travels in the calorimeter medium before
it loses all but 1/e of its energy, or 7/9 of the mean free path of
a en energetic photon before e+e− pair production. Lengths of the
calorimeter are, therefore, often conveniently stated as multiples of X0.
Values of X0 for chemical elements with Z > 20 are shown in Figure
5.7.

The lateral extent of an EM shower is approximated by the Molière
radius RM, given by

RM = 21[MeV]
X0

Ec
, (5.1)
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Figure 5.6: Critical energy Ec for electrons in gaseous and solid states of
different chemical elements [12].

where Ec is given in MeV, and defined so that 90% of an electro-
magnetic shower’s energy is contained within an infinite cylinder of
the same radius.

For electrons, the critical energy is of the order of 10 MeV for high-Z
materials (from Figure 5.6), while X0 is of the order of 1 cm (from
Figure 5.7), which results in RM ∼ 2 cm. This value drives the choice
of cell granularity of the electromagnetic calorimeter.

Figure 5.7: Radiation length X0 and nuclear interaction length λI for chemical
elements with Z > 20 [12].
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5.2.4.2 The ATLAS EM LAr calorimeter

In ATLAS, the EM calorimeter is a lead/liquid argon (LAr) detector,
with the former serving as the active medium and the latter as the
absorber medium. It has an accordion geometry which provides com-
plete φ coverage without azimuthal cracks and is divided into a barrel
part (|η| < 1.475) and two end-caps (1.375 < |η| < 3.2). The thickness
of the lead absorber plates changes with η and has been optimized in
terms of EM calorimeter performance in energy resolution. The EM
calorimeter has a thickness of > 24X0 in the barrel region and > 26X0

in the end-caps.
Over the region devoted to precision physics (|η| < 2.5) the EM

calorimeter is segmented into three longitudinal sections, as shown
in Figure 5.8. The strip section, which has a constant thickness in η

of 4.3X0 is equipped with narrow strips of width ∆η = 0.0031, well
below the Molière radius RM, and is used as a ’preshower’ detector,
enhancing identification of particles and providing a precise position
measurement in η. The second section is thick and is designed to
absorb most of the energy. It is transversally segmented into square
towers of size ∆η × ∆φ = 0.025× 0.025, which translates to roughly
37× 37 mm at the narrowest around η = 0, which is enough to contain
more than 90% of an electromagnetic shower, based on the estimated
value RM = 20 mm. This layer has a varying thickness, tapering
towards high η. The third section is segmented into ∆η× ∆φ = 0.05×
0.025 sections and has a thickness of at least 2X0.

Over the η range where the amount of material before the calorime-
ter exceeds 2X0, such as in the region |η| < 1.8, the EM calorime-
ter is preceded by a presampler layer, with granularity ∆η × ∆φ =

0.05× 0.025, which is necessary to correct for the energy lost in the
material located between the interaction point and the calorimeter
edge.

During the Phase-I upgrade that occurred between Run 2 and Run 3,
the readout of the LAr calorimeter was significantly improved. Before
the upgrade, each trigger tower in the EM calorimeter had only a
single readout. Following the upgrade, this number increased to 10,
with access to the four individual layers and four sub-divisions in η of
the 0.1× 0.1 regions of the first and second sampling layers. Each such
region that can be individually read out is called a supercell. Figure
5.9 illustrates a 70 GeV electron as seen by the L1 Calorimeter trigger
before and after the upgrade.



5.2 the atlas detector 43

Figure 5.8: Inner structure of the EM LAr calorimeter in the barrel region.

5.2.4.3 Hadronic calorimetry

Hadronic calorimeters are designed to absorb the energy of strongly in-
teracting particles, such as protons, neutrons, pions, and kaons. These
particles lose their energy primarily through hadronic interactions,
where secondary particles such as protons, neutrons, and pions are
produced, causing a hadronic shower to be formed. At each step of the
shower, about 1/3 of the energy is converted to photons through neu-
tral pions, which immediately decay into a pair of photons. Therefore,
hadronic showers have two distinct components - electromagnetic and
hadronic, composed of charged pions, heavy fragments, and excited
nuclei. This gives rise to a much more complex cascade development
that limits the hadronic calorimeter’s energy resolution.

The typical length scale for hadronic showers is the nuclear inter-
action length λI , which is the mean distance a hadron travels in the
medium before undergoing an inelastic nuclear interaction. λI is typi-
cally larger than X0 and the typical length of a hadronic calorimeter
is larger than that of an EM calorimeter. Values of λI for different
chemical elements are illustrated in Figure 5.7.

5.2.4.4 The ATLAS Hadronic Calorimeters

The hadronic calorimeter system in ATLAS covers a wide range of
|η| < 4.9 and is divided into sections utilizing different materials
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(a)

(b)

Figure 5.9: A 70 GeV electron as seen by the Level-1 calorimeter trigger before
(a) and after (b) the Phase-1 upgrade.
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and techniques best suited for the varying requirements and radi-
ation environments in them. In the region |η| < 1.7, the hadronic
calorimeter is built using iron as the absorber and scintillating tiles as
the active medium. Over the range 1.5 < |η| < 4.9, LAr calorimeters
are used. The latter region is sub-divided into the hadronic end-cap
(HEC) calorimeter in the range |η| < 3.2 and the high-density forward
calorimeter (FCAL) in the range 3.1 < |η| < 4.9.

The Hadronic calorimeter has to reduce punch through to the muon
system to a minimum and provide good containment for hadronic
showers. A total thickness of 11λI was shown to reduce the punch
through to a minimum while a thickness of the active calorimeter
medium of around 10λI was shown to be adequate to provide good
resolution for high energy jets [31].

5.2.5 Muon Spectrometer

The Muon Spectrometer (MS) [33][32] forms the large outer part of the
ATLAS detector and detects charged particles exiting the calorimeters,
measuring their momentum in the pseudorapidity range |η| < 2.7.
Since muons are minimum ionizing particles, depositing a minimal
amount of energy of around 1.5 MeVg−1cm2 in any solid medium
they pass through, which corresponds to O(1) GeV/m for lead and
iron, most muons produced in collisions will escape the calorimeter
system into the MS.

Since the MS volume is very large it is impossible to provide contin-
uous tracking. Instead, tracks are reconstructed from measurements
at 3 stations - the first one close to the calorimeters, upstream of the
toroid magnetic field, the second one inside or immediately after the
magnetic field, and a third one well outside the magnetic field of
ATLAS. At each of the three stations, the measurement is multilay-
ered, reconstructing a straight-track segment with a well-measured
orientation in space.

The MS is immersed in a nonhomogenous magnetic field, causing
the muon paths to curve. Through the measurement of this curvature
the muon momentum is estimated. A magnetic field mostly orthogonal
to the trajectories is generated by the large barrel toroid magnet in the
range |η| < 1.0, smaller end-cap magnets in the range 1.4 < |η| < 2.7
and a combination of the fields in the transition region of 1.0 < |η| <
1.4.
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The MS is designed for a momentum resolution of ∆p/pT < 10−4

for pT > 300 GeV and a lower resolution of a few percent for lower
muon pT. To achieve this target resolution from the measurement of
tracks obtained from 3 points, each point must be measured with an
accuracy better than 50 µm. This, along with economic constraints,
guided the choice of design and detector technologies utilized in the
MS, resulting in several sub-detector types. Over most of the η range,
a precision measurement of the track coordinates in the principal
bending direction is provided by Monitored Drift Tubes (MDTs). At
large pseudorapidities and close to the interaction point, Cathode Strip
Chambers (CSCs) are used to withstand the demanding rate and the
conditions of the background. The muon triggering system covers the
pseudorapidity range |η| < 2.4 and is comprised of Resistive Plate
Chambers (RPCs) in the barrel region and Thin Gap Chambers (TGCs)
in the end caps. The layout of the muon system is shown on Figure
5.10.

Figure 5.10: Upper right quadrant of the muon system.

During the Phase-I upgrade of the ATLAS detector, part of the end-
cap TGC system was upgraded to cope with the large backgrounds
expected from the planned luminosity increase. Without this upgrade,
muon triggers would have to set higher pT thresholds, losing data at
low-pT. As part of the upgrade, the New Small Wheel (NSW) was
installed in place of the Endcap Inner (EI) wheel. This detector is
comprised of two layers of different technologies - small strip TGC
detectors (sTGC) and micro-mesh gaseous structure detectors (MM).
The author of this thesis was responsible for the construction and
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maintenance of a system used to coordinate the recording of measure-
ments and hierarchy of components of the sTGC wedges shown in
Figure 5.11 and eventual storage of those measurements in a central
database.

Figure 5.11: The NSW wedge (right) and arrangement of wedges into the
NSW (left).

5.3 trigger and data acquisition

The ATLAS triggering system is designed to select the most interesting
events defined through physics requirements in order to reduce the
vast volume of data produced by the ATLAS experiment to that
manageable by the data storage system - while collisions are produced
at a rate of 40 MHz, the latter can only handle a rate of 1 kHz.

The trigger system schematic for Run 3 and data rate flow com-
parison for Run 1 and Run 3 are shown in Figure 5.12. The system
has two levels. The Level-1 trigger system (L1), which receives the
unfiltered torrent of data, has to be in sync with the collision rate
of 40 MHz, running simple and fast identification algorithms and
therefore is implemented in hardware, driven by a hardware clock,
while the latter, the High-Level Trigger (HLT), requires to run more
elaborate algorithms, having less stringent latency requirements and
is, therefore, software-based.

The L1 trigger system has several components that are used to
identify interesting patterns in data from a collision. These include the
L1 Calorimeter (L1Calo) and L1 Muon (L1Muon), which receive inputs
from the calorimeters and muon detectors, respectively. The processed
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Figure 5.12: Schematic overview of the trigger system for Run 3. The data
rate at each stage comparison between Run 1 and Run 3 is shown
on the right.

outputs from these components are combined and processed in the
L1 Central Trigger, which generates an L1 Accept (L1A) signal. While
the decision is being made at L1, the signals from the detectors wait
in buffers in the detector readout systems until they receive an L1A
signal.

When the detector readout receives L1A, the buffered data are
released and passed through the Readout Drivers (RODs), which
perform various levels of feature extraction and into the Readout
System (ROS), where the data await readout by the HLT. At this stage,
the HLT has access to regions of interest identified by the L1 system
and full tracking information provided by the Fast Tracker (FTK)
system introduced during the Phase-1 upgrade. With these inputs, it
is able to run essentially offline algorithms to provide a final decision
on whether to store the event within about 550 ms.

5.3.1 The Level-1 Calorimeter Trigger

As mentioned in Section 5.2.4.2, the LAr readout granularity has in-
creased following the Phase-I upgrade. The goal was to provide more
information to the trigger system in order to improve background
rejection under the new high luminosity conditions of Run 3. The
L1Calo system was heavily upgraded to utilize this additional infor-
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mation. Figure 5.13 describes the architecture of L1Calo during Run
3.

Several new modules were introduced in the Phase-I upgrade. The
Electron Feature Extractor (eFEX) identifies e/τ/γ, the Jet Feature
Extractor (jFEX) identifies jets, computes the ET sum and the missing
ET per event, and provides additional information for τ identification.
An additional module not appearing in Figure 5.13 is the Global
Feature Extractor (gFEX), which identifies large area jets. In order to
perform topological cuts on objects identified by the three previous
modules as well as the muon triggering system, an additional L1Topo
module, external to L1Calo, was introduced.

Figure 5.13: L1Calo system architecture during Run 3. Yellow components
were added during the Phase-I upgrade. Components left over
from Run 1 (Run 2), marked by dark (light) green, are being
gradually decommissioned during Run 3.
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D ATA P R O C E S S I N G A N D A N A LY S I S

6.1 reconstruction of physics objects

Data acquisition from the ATLAS sub-detectors is followed by complex
post-processing, an important part of which is the identification and
reconstruction of physics objects used for physics analyses. Offline
analysis should be distinguished from online triggering. Events se-
lected by the latter are stored, and an offline process of reconstruction
of physics objects is applied to them. This chapter will introduce the
common physics objects and a quick overview of their reconstruction
methods in ATLAS.

It is worth mentioning that despite this separation between online
(trigger) and offline analysis, the HLT uses algorithms very similar
to the offline ones to reconstruct the physics objects in real time for
triggering.

6.1.1 Auxiliary Objects

The reconstruction of primary physics objects is preceded by the
reconstruction of auxiliary objects used in the reconstruction of the
former. These include clusters of energy in the calorimeters, tracks in
the tracking detectors, and interaction and decay vertices.

6.1.1.1 Topo-clusters

A cluster needs to be defined to compute the energy depositions in
the calorimeters. Topo-clustering [34] is an algorithm for combining
calorimeter cells with significant energy depositions to form a cluster
of energy with well-defined boundaries and energy content. The algo-
rithm starts with finding a cell with an energy deposition significantly
higher than the noise level resulting from electronic noise and pile-up
(e.g., above 4σ). It then includes surrounding cells in layers containing
progressively lower energies (e.g., 2σ followed by 0σ).

51
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6.1.1.2 Tracks

The ATLAS tracking system reconstructs the curved trajectories of
charged particles propagating through the ATLAS magnetic field in
the form of tracks [35], which are crucial for the measurement of their
momentum and charge as well as subsequent association with EM
clusters and interaction vertices to form a complete picture of the
physics object being reconstructed.

Tracks are reconstructed from energy depositions in the layers of
the ID. A track is characterized by a reference point, which is usually
the average position of the interaction point between the protons, the
transverse and longitudinal impact parameters d0 and z0, which are the
closest points to the reference point in the transverse and longitudinal
planes, the polar θ and azimuthal φ angles and the ratio between the
measured charge and momentum of the track.

6.1.1.3 Primary Vertices

The points at which interactions and decays happen are called vertices.
The primary vertex (PV) is the position of the primary p-p interaction.
The existence of pile-up makes it challenging to identify the PV since
multiple vertices are present.

The reconstruction of the PV is described in [36] and involves an
iterative process of associating tracks with a reference point at the
interaction region, performing a fit, removing the less relevant tracks,
and repeating. This results in a set of PV candidates for which the
sum of the squared momenta of the associated tracks is computed,
and the vertex with the highest value is selected.

6.1.2 Physics Objects

The full reconstruction of physics objects includes their reconstruc-
tion, identification, and calibration. The reconstructed objects used
in analyses often come with a quality ranking in the form of working
points, often denoted as loose, medium, and tight, corresponding to
progressively tighter requirements on the thresholds of the various
discriminants that are considered in their identification and recon-
struction stages and resulting in a progressively purer sample of
reconstructed objects.
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6.1.3 Electrons and Photons

Reconstruction of electrons and photons [37] is done by summing the
energy of multiple adjacent topo-clusters, known as a supercluster and,
for electrons, including an associated track of high enough quality.

Electrons and photons are identified by energy clusters in the EM
calorimeter and a lack thereof in the hadronic calorimeter. An electron
can be distinguished from a photon by the existence of a track detected
by the ID associated with its EM cluster. Semi-leptonic decays of
hadrons, π0 → γγ decays, and hadronic jets form the backgrounds
for electron and photon identification. Electrons’ EM shower shape
and track characteristics are used for identification. For photons, the
shower shape and leakage of energy into the hadronic calorimeter
are used as discriminants since non-prompt photons (i.e., those that
are not produced directly in the primary p-p interaction) result in
higher activity in the hadronic calorimeter and the main π0 → γγ

background is characterized by two energy depositions in the first
fine-grained layer of the EM calorimeter, affecting the shower shape.

A further discriminant that helps reject background is the isolation
of energy depositions for electrons and photons in the calorimeters -
the active region in the calorimeter should be small and the surround-
ing region around it should contain little energy. A similar requirement
is applied to associated tracks in the case of electrons.

6.1.4 Muons

Muons are reconstructed from tracks in the ID and the MS [38]. First,
segments of tracks are formed from hits inside each muon chamber.
Muon candidates are formed by fitting segments in different layers. A
χ2 fit is used, and tracks with a sufficiently low χ2 value are kept and
combined with ID tracks and information from the calorimeter.

Identification of prompt muons is performed to separate them from
muons originating from π and K decays. This stage involves the
requirement of isolation on the candidate muon tracks and considers
variables describing muon track quality.

6.1.5 Jets

Jets are the most abundant objects produced in LHC collisions, forming
the majority of background for physics analyses.
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Partons produced in the initial p-p collision cannot exist in isolation
due to color confinement and, therefore, hadronize as they propagate
away from the interaction point. This forms an object that looks like
a jet of particles around the direction in which the original parton
was traveling. The object has clusters of energy in the calorimeter and
tracks in the tracking detectors associated with it.

Jet formation generally happens in two stages, which can be fac-
torized and treated separately, depending on the underlying physics.
The initial stage immediately following the hard scattering interaction,
where energetic partons constituting the colliding protons interact, is
a parton shower, which is governed by perturbative QCD. At each
stage of the shower, the probability of a parton emitting another par-
ton increases with the decreasing energy of the radiated parton and
its angle from the initial parton, resulting in a collimated shower of
rapidly decreasing energy.

When the energy scale of the partons falls below that of around
1 GeV, the strong coupling constant αs is too large for perturbative
calculations. Here, a second, non-perturbative stage of hadronization
begins, in which partons form color singlets in a process resulting in a
final state of hadronic resonances, the most abundant of which are the
light mesons - pions, kaons, and ρ mesons [39].

In physics analyses, jets are objects defined by the algorithm that
reconstructs them, as the produced set of jets is dependent on the
algorithm. Jet reconstruction in ATLAS is usually done using an
iterative bottom-up calorimeter clustering algorithm called anti-kt [40].
The algorithm can accept as inputs either calorimeter topo-clusters,
tracks (producing track jets as a result) or MC truth particles.

The anti-kt algorithm works by taking all topo clusters in an event
and computing a measure of proximity between every pair of them
and between everyone to the beamline with a parameter R scaling the
∆R distance between two topo-clusters and controlling the cone angle
of the resulting jets. A minimum on this set of proximity measures
is computed, and if it belongs to a pair of clusters, they are merged
together into a larger cluster. If the minimum is between a cluster and
the beamline, the cluster is taken as a separate jet, and the proximity
measure is removed from the set. This proceeds iteratively until the
set is empty. The result is a collection of clusters in the calorimeter
that are clustered around the hardest object and which typically have
a symmetric shape around it, as can be seen in Figure 6.1.

A recent upgrade to the jet reconstruction process known as the
particle flow (PFlow) algorithm [41] also considers track information.
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Figure 6.1: Sets of jets from applying different clustering algorithms in a
single simulated event [40]. The clustering is done on stable truth
particles in MC and not on calorimeter depositions.

It allows, e.g., to mitigate pile-up effects by removing calorimeter
clusters associated with tracks from pile-up vertices and improving
energy resolution by including soft charged particles swept away by
the magnetic field.

The production of energy clusters by hadronic showers does not
account for all the energy of the jet because of undetectable energy
emitted during its formation. Additionally, the effects of pile-up re-
duce the resolution of the measured jet observables. A multi-stage
calibration procedure is therefore necessary to correct the raw ob-
servables. For example, the pile-up contribution to the jet energy is
corrected, and the jet four vectors are corrected to point to the primary
vertex. An additional stage in the processing of jets is the removal of
entire jets that likely originate from pile-up interactions.

6.1.5.1 Flavour Tagging

A crucial part of jet reconstruction for physics analyses is understand-
ing what is the flavour of the parton initiating the jet. This process is
referred to as flavour tagging.

In ATLAS, the three distinguishable categories of QCD jets are light
jets, originating from up/down quarks or gluons, b-jets, and, recently,
c-jets. The distinction between the three is possible by considering
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features of the tracks and vertices associated with the jet and is based
on the decay properties of the hadrons formed by these particles.

A b-hadron typically produces a detectable secondary decay vertex
due to its relatively long lifetime (〈cτ〉 = 450 µm in the rest frame) [42].
The b-hadron typically carries about 70% of the jet momentum and
has a high decay product multiplicity, which includes a charged lepton
in around 20% of the time. Due to b-quarks decaying primarily to
c-quarks as a result of the suppression from the CKM matrix elements
(|Vcb|2 � |Vub|2), a tertiary vertex inside the jet cone is an additional
identifying sign of a b-jet. A c-hadron has characteristics similar to
the b-hadron, except for having only a single displaced vertex and an
intermediate decay multiplicity at the secondary vertex.

The flavour tagging strategy developed by the ATLAS collaboration
is based on a two-stage approach. First, low-level algorithms reconstruct
the features of the tracks and vertices of the heavy-flavour (i.e., b-
and c-) jets and then high-level algorithms combine these features via
multivariate methods into jet flavour classifiers. The analysis of Run
2 data uses a new generation of some of those algorithms based on
recurrent and deep neural networks, which results in considerable
improvements in flavour tagging performance [43].

6.1.6 Missing Transverse Energy

Neutrinos are particles appearing in the final states of many decays.
However, they are undetectable as they interact with matter only
weakly and are thus practically invisible to the detector. Various BSM
particles, such as dark matter candidates, are also expected to pass
undetected. Since the total transverse momentum in each collision
must be zero, in order to identify such particles, one can sum all of the
transverse momenta originating from the visible objects to estimate
that of the invisible ones, denoted as Emiss

T .
The reconstruction of missing transverse energy (MET) is generally

done by taking the negative of the vectorial sum of all the recon-
structed physics objects and a soft term, which is the pT of all the
tracks associated with the PV but not associated to any of the recon-
structed objects.
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6.1.7 τ Leptons

The properties and decay modes of the τ lepton have been discussed
in detail in Chapter 3. Since the leptonic decays of the τ are indis-
tinguishable from prompt leptons, usually only hadronic τ decays
are considered. The signature of these decays is one or three charged
tracks due to the π± decay products associated with a narrow jet in
the EM and hadronic calorimeters.

The reconstruction of taus starts with the anti-kt clustering algo-
rithm with a small radius parameter of R = 0.4. The seeding jets
must be energetic enough (typically pT > 10 GeV) and located within
|η| < 2.5 [44]. A recurrent neural network (RNN) is trained to sep-
arate the τ jets from QCD-originating jets based on information on
the associated tracks and calorimeter clusters as well as high-level
discriminating variables and is used to set a working point for τ-based
analyses [45]. The latter is an improvement to a previous BDT-based
discriminant.
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6.2 constraining parameters of interest in a collider

experiment

To measure and constrain the value of a physics parameter from data
collected in a particle collider experiment, one usually resorts to a
counting experiment of a well-defined and sufficiently detectable pro-
cess. One then parametrizes the expected result using parameters
of interest (POIs), the value and uncertainty we’re interested in ob-
taining, and nuisance parameters resulting from uncertainties in our
assumptions, which, along with the POIs, must be determined from
measurements. To perform the parametrization, the parameters must
be set in a model describing the data being measured, which is the SM
for particle physics experiments. From the latter, the expected result
can be reproduced, and the parameters can, e.g., be constrained by
computing the range of their values that would likely produce the
observed result.

6.2.1 Monte-Carlo Experiments

To obtain the expected result of our counting experiment from the
SM, it is not possible to use a mathematical derivation directly from
the SM since the experimental setup is vastly complex. Starting from
the predictions of the SM about the probabilities to produce given
final states from initial states with basic given quantities such as
momenta and spin, it is necessary to pass the resulting simulated
particles through a computer simulation of the material surrounding
the collision point and all detectors, their readout electronics and
subsequent processing of the signals and data. The response of the
simulated detector and the processing stages must be identical as much
as possible to that of the real detector at the time of the acquisition
of the analyzed data. This stage is critical for any particle physics
experiment and is called a Monte-Carlo (MC) simulation.

An important concept in MC is the truth information. Since the
event is simulated via careful bookkeeping, one knows exactly which
particles were reconstructed into which final physics objects, a feature
crucial for performing preliminary studies.

MC simulations are done in multiple stages. Generally, the particle
interactions are simulated first, followed by the simulation of the
detector response. The particle interactions are simulated starting from
the probability distribution functions of the partons. Then, focusing
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on a specific process, the hard scattering interaction is simulated to a
fixed order (LO, NLO, NNLO, etc.), followed by the process of parton
showering, hadronization, and hadronic decays to final states. Multiple
MC generators specialize in the different stages of particle interactions,
which are often interfaced together to produce a simulation of a given
process. Each generator has a set of parameters called a tune.

MC-generated samples will have a MC event weight assigned to
each event, which originates from the fact that the differential cross
section with respect to phase space configuration for a particular
process is not constant. When unweighted, a sample generated by a
MC generator for any particular process generally does not have a
natural distribution of that process like it would be found in collision
events. This characteristic is restored when the MC event weights are
applied.

The individual MC event weights must be further multiplied by
additional weights to represent the data. These include weights that
scale the number of MC events to the actual luminosity of the data
and weights that are applied to correct for changes in yields due to
pileup.

MC generators will introduce systematic uncertainties originating
from imperfections of the assumed model. These can be estimated
by varying the configuration of the generators or using different
generators to produce nominal and alternative MC samples, with the
former serving as the baseline sample and the latter producing a
variation to estimate these uncertainties.

6.2.2 Statistical Formalism

In a collider experiment, we typically measure an observable that is
selected to be sensitive to the signal we’re interested in. For example,
when searching for a resonance that decays into two particles, a com-
mon observable choice is the invariant mass of the two candidate final
state particles since, in the presence of the resonance, the distribution
of this observable is expected to be affected around the rest mass of
the resonance as opposed to its absence. Another common choice is a
multi-variate discriminant, usually a score from a machine learning
model trained on MC samples to discriminate signal and background
events, resulting in a clearly visible signal peak.

Once measured, the observable is binned, and at this stage, the
parametrization is introduced. Each bin is treated as a counting experi-
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ment and is therefore Poisson distributed with a mean of the expected
number of background events and the SM expected number of signal
events scaled by the signal strength µ, which is usually our POI. At this
stage, we can define the likelihood function, parametrizing in terms
of the POI, the probability of getting the measured result assuming a
value of µ:

L(µ) = ∏
i∈bins

Pois (Ni|bi + µsi) = ∏
i∈bins

(bi + µsi)
Ni

Ni!
e−(bi+µsi),

(6.1)

where Ni is the measured number of events in bin i and bi(si) are the
number of background (signal) events in bin i expected from the SM,
estimated from MC samples.

To take into account systematic uncertainties, they are introduced as
additional parameters ~θ called nuisance parameters. These parameters
affect si and bi, so that {si, bi} →

{
si(~θ), bi(~θ)

}
. This effect is studied

in auxiliary measurements, and the parameters are multiplied into
the likelihood function as Gaussian terms with zero mean and unit
variance so that a value of a nuisance parameter that is far from its
nominal pulls the likelihood value down:

LAux = ∏
θ∈~θ

1√
2π

e−θ2/2. (6.2)

Not all nuisance parameters are constrained, and some are allowed
to take any value to be determined from the final fit to the data and
are not included in the above constraint. These parameters are called
free floating.

Statistical uncertainty effects due to low simulation statistics for
the background are parametrized by parameters γi, one per each bin,
which scale the background yields (bi(~θ)→ γibi(~θ)):

LBkgStat(~γ) = ∏
i∈bins

Gauss
(

βi|γiβi,
√

γiβi

)
, (6.3)

with βi = 1/σ2
rel, where σrel is the relative statistical uncertainty on the

expected total background yield.
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The final likelihood function is obtained by multiplying 6.1, 6.2 and
6.3:

L(µ,~θ,~γ,~τ) = ∏
i∈bins

(
bi(~θ,~γ,~τ) + µsi(~θ)

)Ni

Ni!
e−(bi+µsi) ×∏

θ∈~θ

1√
2π

e−θ2/2×

∏
i∈bins

Gauss
(

βi|γiβi,
√

γiβi

)
, (6.4)

where the ~τ parameters are the free-floating ones. We can promote the
POI µ to a vector ~µ since we are often measuring the signal strength
in multiple regions, which results in multiple signal strengths, one per
region.

Once the likelihood function is defined and the data is measured,
the POIs and the nuisance parameters can be constrained by fitting
our model to the measured data, which is done by a maximization
procedure for the likelihood function. At this stage, we’d like to test
different hypotheses on the values of the POIs ~µ. To test a certain
hypothesis, we define the log likelihood ratio:

λ(~µ) =
L(~µ,

ˆ̂~θ, ˆ̂~γ)

L(~̂µ,~̂θ, ~̂γ)
, (6.5)

where
ˆ̂~θ, ˆ̂~γ are the values that maximize the likelihood for a specific

value of ~µ and ~̂µ,~̂θ, ~̂γ maximize the likelihood over all the parameters.
A value of λ(~µ) close to one implies consistency of the ~µ hypothesis
with the data, while that close to zero implies inconsistency. A test
statistic q~µ = −2 ln λ(~µ) is then defined, which, for values of ~µ in-
consistent with the data, would take high values. Thus, for a given
measurement, we can compute the value of qµ and ask what is the
probability of obtaining in measurement a value at least as extreme,
assuming the tested hypothesis, by computing the p-value:

p~µ =
∫ ∞

q~µ,obs.

f (q~µ|~µ)dq~µ, (6.6)

where q~µ,obs. is the observed value of q~µ and f (q~µ|~µ) is the probability
distribution function of q~µ assuming a signal strength of ~µ.

From the p-value, the significance Z of the observation can be
computed, which is related to it by

Z = Φ−1(1− p~µ). (6.7)

As an example, the Value of ~µ = 0 implies that we’re testing a
hypothesis of background only. A value of p~µ=0 = 2.87× 10−7 would
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imply that the observation has a significance of 5σ relative to the
background-only hypothesis, which is the accepted standard for declar-
ing an observation in high energy physics.

The analysis is often not sensitive to specific regions of ~µ values. In
that case, a sufficiently large statistical fluctuation in the data could
lead to a rejection of the ~µ hypotheses in these regions. To mitigate
that, instead of the bare p-value, a common metric used in LHC
experiments to exclude a hypothesis is CLs [46], defined as

CLs =
pµ

1− p0
, (6.8)

where pµ (p0) is the p-value assuming the µ (µ = 0) hypothesis.
The power of CLs vs the regular p-value for the exclusion of a given

hypothesis may be illustrated by an example. If we assume that a
certain µ hypothesis is true but the analysis is not sensitive to it, it
means that the distributions of qµ and q0 strongly overlap. If there is a
large upward statistical fluctuation in the data, it will result in a high
observed value qµ,obs.. If we only consider pµ for exclusion, we would
wrongly exclude the true hypothesis. However, in the case of CLs, and
assuming the center of mass of the q0 distribution is situated to the
right of that of qµ, p0 would be large, thus increasing the value of CLs

and "softening" the rejection of such regions.
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7.1 introduction

Since the discovery of a particle consistent with the SM Higgs boson
in 2012 at the LHC, measurements have been performed to study its
physical properties. Perhaps the most important feature of the Higgs
boson is its coupling to massive particles, which is expected to depend
on the mass of the particle. Therefore, measurements of the Higgs’
couplings to different particles play a very important role at the LHC.

Decays of the Higgs boson to τ leptons [47] and to a pair of b quarks
[48] were recently observed at the LHC, as well as a decay to a pair of
muons with a significance of 3σ [49]. A summary plot of the coupling
strengths of the Higgs to various fundamental particles is given on
Figure 7.1. A similar observation into lighter quarks is challenging
due to the Higgs’ coupling to fermions being proportional to their
mass, resulting in fewer data for lighter quarks, the significant amount
of background from the quark- and gluon-initiated jets in hadron
colliders, and challenges in jet flavour identification.

As discussed in Section 2.2, the Higgs boson’s production modes
with the highest cross-section are ggF and VBF. However, the sig-
natures of these modes do not allow for easy separation of those
processes from the abundant QCD jet background of quark- and
gluon-initiated jets, as the Higgs boson is either produced alone or
in association with jets. The next mode with the highest cross section
is the VH production mode. The existence of a vector boson can be
used to suppress the background of QCD jets by selecting events
with leptons from the leptonic decay modes of the Z and W bosons,
which decay leptonically approximately 30% and 33% of the time,
respectively [12]. The decay of the Higgs to two b- or c-quarks may
thus be observed, and the relevant couplings may be measured and
constrained.

The observation of the Higgs boson produced in association with
a vector boson and decaying to two quarks is done differently if the
Higgs is of relatively low energy as opposed to when it’s energetic,
since for low-energy Higgs bosons, the resulting jets can be resolved by
the detector. At the same time, in the latter case, they are observed as

65
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Figure 7.1: A plot summarizing the measured coupling strengths of the
Higgs to various fundamental particles. κ is the ratio between
the coupling measured to that of the SM. Since the couplings go
as the square of the mass for gauge bosons and as the mass for
fermions (see eq. (2.9)), there is a square root over v and κV for
the vector bosons.

being merged into a single large-radius jet due to the highly boosted
two-body decay of the Higgs. These observations and subsequent
measurements of cross-section times branching ratio of the Higgs
decaying to two b-quarks in association with a leptonically decaying
vector boson have recently been performed in these two regimes and
the corresponding analyses are referred to as VH(→ bb̄) resolved [48]
and VH(→ bb̄) boosted [50], respectively. The VH(→ bb̄) resolved
analysis produced an observation of 6.7σ for this process [48].

An analysis that sets an upper limit on the signal strength of a
Higgs decaying to two c-quarks in association with a leptonically
decaying vector boson, referred to as VH(→ cc̄), has also recently
been published and produces an upper limit of 26 times the SM
prediction for the production rate of this process [6].

The VH(→ bb̄) resolved and boosted analyses have an overlapping
region of energy at pV

T > 250 GeV, with the scale of an event’s energy
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determined by pV
T , the pT of the associated vector boson. In this region,

the efficiency of the Higgs reconstruction is low for the resolved
analysis and high for the boosted one. Merging these analyses would
increase Higgs reconstruction efficiency and better measure the Higgs
coupling to b-quarks around pV

T = 250 GeV. Additionally, the tagging
of jets in the VH(→ bb̄) and VH(→ cc̄) analyses is done by assigning
a probability for a jet being a b- or a c-jet. Therefore, merging the
VH(→ bb̄) analyses and the VH(→ cc̄) one can increase the efficiency
of reconstruction of the Higgs from b- and c-jets by, e.g., including jets
considered for the VH(→ cc̄) signal as events with low weight in the
VH(→ bb̄) analysis and vice-versa. In contrast, at the moment, the
VH(→ bb̄) and VH(→ cc̄) analyses have no overlap at all in the data
that passes their signal selections. It is, therefore, natural to merge
these three separate analyses together into a single one, referred to as
the VHbb(cc) Legacy analysis.

In addition to the aforementioned benefits of merging the three anal-
yses, the VHbb(cc) Legacy analysis benefits from the harmonization
of the analysis framework code and from tools used in the constituent
analyses. For example, the VH(→ cc̄) analysis was performed only in
the resolved regime and relied on a fit to the reconstructed invariant
mass of the Higgs candidate. The VH(→ bb̄) boosted analysis relied
on a similar fit. The VH(→ bb̄) resolved analysis, on the other hand,
is used to fit the score of a BDT model trained to classify signal and
background events, and thus, its BDT framework can be used to boost
the performance of the other analyses. Similarly, it is much easier
to extend VH(→ cc̄) into the boosted regime using the framework
developed for the VH(→ bb̄) boosted analysis.

Various enhancements are likewise introduced into the combined
analysis, such as improvements in algorithms for reconstructing hadronic
jets and moving from the older, BDT-based, MV2 jet flavor tagging
algorithm to DL1r, a newer, deep neural network-based one. Addition-
ally, a technique was utilized based on GNNs for assigning weights
to events in order to be included in different analysis regions and
enhance their MC statistics, referred to as truth tagging and briefly
described in Section 7.6.2.

An additional motivation to merge the analyses is their similarity
- each of the three analyses was done in the same three channels -
ZH → ννqq̄, WH → νlqq̄ and ZH → llqq̄, where q is b for VH(→ bb̄)
and c for VH(→ cc̄). In the first and last ones, the associated Z boson
decays to invisible neutrinos or two charged leptons, respectively, and
in the second one, the associated W boson decays to one charged
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lepton and a neutrino. The Higgs decays to two b- or c-quarks in all
channels.

The VHbb(cc) Legacy analysis is naturally very complex, lasting
several years and involving many participants. As a result, it will
not be possible to describe all of its aspects in detail, and in those
described in this chapter, the author was one of multiple contributors.
In this section, the focus is mainly on providing an overview of the
analysis methodology and describing the components relevant to the
author’s contributions to the analysis, part of which was technical in
nature - improving the analysis infrastructure in terms of performance
and usability. In contrast, the other part was the evaluation of BDT
training on physics-motivated input variables for a final statistical
fit. An additional contribution is a preliminary assessment of using a
GNN-based classifier instead of BDT, described in Section 8.1.4.

7.2 simplified template cross sections

During Run 1, the main results of the Higgs boson coupling mea-
surements were signal strength and multiplicative coupling modifiers.
As more data becomes available, it is possible to measure the Higgs
production and decay cross sections in a more granular fashion. Sim-
plified template cross sections (STXS) [51] have been adopted by the
LHC experiments as an evolution of the Run 1 measurements. They
provide more fine-grained measurements of physical cross sections for
individual Higgs production modes in mutually exclusive kinematic
regions, known as STXS bins.

The different STXS bins are defined to be as close as possible to
typical experimental kinematic selections or, more generally, the kine-
matic regions that dominate the experimental sensitivity. By looking
at the fiducial phase space, which is a phase space restricted to a region
defined by the experimental selection and the acceptance cuts of an
analysis instead of the full phase space, the dependence on theory
predictions is reduced, and so are the resulting theoretical uncertain-
ties. The uncertainties due to extrapolations outside of the fiducial
phase space are also reduced. An additional benefit of organizing
measurements in STXS bins is that it facilitates combinations of the
different production modes and phase space regions in combination
analyses that aim to constrain BSM physics, e.g. [52] and [53].

As the amount of collected data increases, measurements in in-
creasingly finer phase space bins become obtainable. With time and
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experience, refinements to the bins are also expected to be introduced.
The STXS binning is therefore defined in stages, with the latest stage
at the time of writing being 1.2. For cross-section measurements of the
Higgs produced in association with a vector boson, which is consid-
ered in the current analysis, the STXS bins are shown in Figure 7.2.
Since there is currently not enough sensitivity to distinguish between
the qq→ ZH and gg→ ZH processes, they are treated as a single ZH
process.

qq̄′ → WH

0-jet 1-jet ≥ 2-jet

gg → ZH

0-jet 1-jet ≥ 2-jet

qq̄ → ZH

0-jet 1-jet ≥ 2-jet

V H = V (→ leptons)H

75
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150
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400

∞

pV
T

Stage 1.2

Figure 7.2: Definition of stage 1.2 STXS bins for a Higgs boson produced in
association with a vector boson.

7.3 analysis strategy

The goal of the analysis is a coherent measurement of VH → (bb̄)
and VH → (cc̄) decays, utilizing the leptonic decay modes of the
associated vector boson. The three possible leptonic decay channels for
this process are illustrated in Figure 7.3. Each channel is characterized
by the vector boson decay products, producing different detector
signatures and, therefore, must be treated individually. The channels
are further subdivided into regions of the transverse momentum of
the vector boson pV

T and the number of jets in the final state, allowing
reporting of the results in STXS bins.

Three regimes are combined together in this analysis, character-
ized by the reconstruction technique of the Higgs. The VH → (bb̄)
configuration, which is characterized by the presence of two b-jets, is
sub-divided into a resolved regime, in which the Higgs has relatively
low energy, resulting in well-resolved b-jets, and a boosted regime, in
which an energetic Higgs produces two collimated b-jets resulting in
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Figure 7.3: Tree level Feynman diagram of the VH production and the three
Higgs decay channels targeted by the VHbb(cc) Legacy analysis-
(a) 0-lepton, (b) 1-lepton and (c) 2-lepton.

a difficulty to resolve the two. The cut between these two regimes is
done at pV

T = 400 GeV. The third regime is VH → (cc̄), in which the
Higgs decays to two c-jets and is characterized by the presence of c-jets.
These regimes are further categorized by pV

T , guided by the STXS bins
for the VH process shown in Figure 7.2. The different regimes and
categories are illustrated in Figure 7.4.

The main backgrounds in all analyses come from processes, the
final products of which are indistinguishable from those of the signal
processes. In this analysis, these are the production of a vector boson
in association with jets (V + jets), tt̄, single-top production, and di-
boson (e.g. WW). Monte-Carlo simulated samples are used to model
the background and the signal H → bb̄, H → cc̄ processes.

7.4 object reconstruction

The physics objects used by the VHbb(cc) Legacy analysis are electrons,
muons, missing transverse energy, jets, and hadronic taus. The follow-
ing sections contain details on their reconstruction strategy specific to
the analysis.
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Figure 7.4: The VHbb(cc) Legacy analysis regimes and pV
T categorization.

7.4.1 Leptons

Electrons and muons are the decay products of the associated vector
boson in the 1- and 2-lepton channels. They are reconstructed in
general as described in Sections 6.1.3 and 6.1.4, respectively. In the
analysis, three selection criteria are defined for the electrons, VH-
Loose, ZH-Signal and WH-Signal, summarized in Table 7.1. VH-Loose
is defined to allow for the maximum electron selection efficiency for
signal processes and is used as the default selection for electrons in all
relevant channels. For the 2-lepton channel, two VH-Loose electrons
are required with one of them satisfying the ZH-Signal criterion. In
the 1-lepton channel, the tighter WH-Signal criterion is required to
suppress the multi-jet background, which is more abundant than in
the 2-lepton channel.

Electron Selection pT η ID dsig
0 |∆z0 sin θ| Isolation

VH-Loose >7 GeV |η| < 2.47 LH Loose < 5 < 0.5 mm Loose_VarRad

ZH-Signal >27 GeV Same as VH-Loose

WH-Signal Same as ZH-Signal LH Tight Same as ZH-Signal HighPtCaloOnly

Table 7.1: Electron selection criteria. The ID is an electron identification crite-
rion based on likelihood providing the two LH Loose and Tight
working points, isolation is the isolation working point with High-
PtCaloOnly being tighter. The dsig

0 and |∆z0 sin θ| columns are
constraints on the transverse and longitudinal impact parameters
of the electron tracks.
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7.4.2 Hadronic Taus

Hadronically decaying taus are used as a veto to suppress tt̄ back-
ground in the 1-lepton channel where both top quarks decay to a W
boson and a b-quark and one of the W bosons decays to a hadronically
decaying τ, resulting in one lepton, two b-jets and an additional jet in
the final state corresponding to a 1-lepton channel signature. Hadronic
taus are also identified in the 0-lepton channel to retain W(→ τν)H
decays where the τ decays hadronically and can be identified as a τ

jet, using the latest RNN-based τ vs. QCD jet classifier mentioned in
Section 6.1.7, bringing almost 5% signal gain.

The taus considered in this analysis are required to have pT > 20
GeV, |η| < 2.5, excluding the calorimeter crack region 1.37 < |η| <
1.52, one or three tracks corresponding to one- or three-pronged taus
and a loose RNN identification criterion.

Future iterations of this analysis following the conclusion of Run 3

will use data containing taus identified using the author’s τ algorithm
at the L1 trigger, described in the last part of this thesis, bringing
further gains via hadronic taus.

7.4.3 Jets

Three types of jets reconstructed with the anti-kt algorithm are consid-
ered in this analysis.

• Small-R jets - jets based on particle flow information with anti-kt
parameter R = 0.4 [40]. Used to reconstruct the Higgs candi-
date for VH(→ cc̄) and resolved VH(→ bb̄) and also in the
event categorization of boosted VH(→ bb̄) to improve the signal
sensitivity. Two types of small-R jets are considered - signal jets
and forward jets. Only the signal jets are used to reconstruct the
Higgs candidate, while the forward jets are also included when
counting jet multiplicity in events. Table 7.2 summarizes the
selection criteria for the two types.

• Large-R jets - jets with R = 1. Used to reconstruct the Higgs
candidate for boosted VH(→ bb̄). They are required to have
pT > 150 GeV and |η| < 2.0.

• Variable-R track jets - track jets reconstructed with a variable R pa-
rameter, depending on the jet pT, R(pT) = ρ/pT with maximum
and minimum cutoffs Rmax, Rmin. These track jets are used to re-
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construct the b-tagged objects inside the large-R jet in VH(→ bb̄)
and the parameters ρ, Rmax, Rmin are optimized to give the high-
est truth sub-jet double b-labelling efficiency [54] (ρ = 30 GeV,
Rmax = 0.4, Rmin = 0.02). An overall requirement for VR track
jets is to have pT > 10 GeV and |η| < 2.5.

Jet Category Tight Jet Cleaning pT η JVT/fJVT

Signal Jet true > 20 GeV < 2.5
JVT>0.5

for |η| <2.4, pT < 60 GeV jets

Forward Jet true > 30 GeV 2.5 < |η| < 4.5
fJVT<0.5

for pT < 120 GeV jets

Table 7.2: Small-R jet selection requirements. Jet cleaning removes events in
regions corresponding to abnormally active calorimeter cells. Tight
Jet Cleaning is applied to all channels to suppress non-collision
background. To suppress jets arising from pileup, a TightJVT (Jet
Vertex Tagger) and a LooseJVT is applied to signal or forward jets,
respectively.

7.4.3.1 Flavour Tagging

Flavour tagging plays a crucial role in this analysis, as the signal
final states are b- and c-jets. Distinguishing between these and light
and τ jets plays an important role in improving the sensitivity to
the signal. The high-level ATLAS flavour tagging algorithm DL1r
[43] is used. It is implemented as a neural net that takes 31 inputs
produced by the low-level flavour tagging algorithms and produces
three outputs plight, pc, pb corresponding to the jet being a light, c or
b-jet, respectively.

For b-tagging, the final DL1r discriminant is computed as

Db-tag
DL1r = ln

(
pb

f · pc + (1− f ) · plight

)
. (7.1)

The parameter f is selected to optimize the performance of the tagger.
A high value will better discriminate b-jets against c-jets, while a low
value will discriminate better against light jets. It should, therefore,
correspond to the effective c-jet fraction in the background sample.
Similarly, a Dc-tag

DL1r discriminant for tagging c-jets can be defined. A
working point is then defined by setting the value of f and a cut
on Db-tag

DL1r and Dc-tag
DL1r. Working points are denoted by the efficiency of

tagging the respective flavored jet by its true flavor.
In the resolved VH(→ bb̄) and VH(→ cc̄) regimes, since both b-

and c-jets are considered, a scheme called Pseudo Continuous Flavor
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Tagging (PCFT) is utilized. The DL1r discriminants for b-tagging and
c-tagging are viewed in two dimensions, and the score is segmented in
the way shown in Figure 7.5. Two b-tagging working points and two
c-tagging ones are defined, dividing the plane into 5 exclusive bins.
For b-tagging, the working points are 70% and 60%, and for c-tagging,
they are 40% and 20% for loose and tight settings, respectively. These
values stand for the efficiency of selecting true jets of the respective
flavor. The bins are numbered from 0 to 4 and jets are classified into
them according to their DL1r scores for b- and c-tagging. The distinc-
tion between the two b-tagging bins is only used for the multivariate
analysis (MVA) training described in Section 8. The cut values of the
60% and 70% working points follow the official ATLAS recommenda-
tion from the FTAG group responsible for flavour tagging. In contrast,
the 20% and 40% working points are optimized as part of the analysis
to maximize the sensitivity to the VH(→ cc̄) signal strength.

In the boosted VH(→ bb̄) regime, only b-tagging is targeted. Here
the Pseudo Continuous b-Tagging (PCBT) scheme is applied, where the
Db-tag

DL1r discriminant of the tagged jet is binned into 4 bins correspond-
ing to b-jet tagging efficiency of 60%, 70%, 77% and 85%. Two sub-jets
inside the large R jet resulting from the boosted Higgs decay are sub-
ject to the tagging, and to maximize the signal yield, the 85% WP is
chosen for this regime.

Figure 7.5: The DL1r-based PCFT bins.
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7.4.4 Missing Transverse Energy

The presence of missing ET (Emiss
T ) is used as a sign of neutrinos in

the 0- and 1-lepton channels in all analysis regimes. It is also used in
the 2-lepton channel in MVA studies to reduce tt̄ contamination. The
general reconstruction procedure is described in 6.1.6.

7.5 event selection

All selected events in the VH(→ bb̄) and VH(→ cc̄) categories are
required to pass a trigger criterion that is harmonized between the two
but different for the different lepton channels. For the 0-lepton channel,
the event must have been triggered by a Emiss

T trigger. For the 1-lepton
channel, the trigger is required to be a low-pT lepton for events with
pV

T < 150 GeV and the same Emiss
T trigger as in the 0-lepton channel

for pV
T > 150 GeV. For the 2-lepton channel, the trigger requirements

are the same except that the pV
T threshold is 250 GeV. The Emiss

T -based
triggering was shown to increase the signal acceptance by around 5%
in internal studies.

To classify into lepton channels, leptons defined in Section 7.4.1
are used. The 0-lepton channel contains events with zero VH-loose
leptons, The 1-lepton channel contains those that have exactly one
WH-signal lepton and no additional VH-loose ones, and events with
exactly two VH-loose leptons are considered for the 2-lepton channel.
Other combinations of leptons are not considered in the analysis.

In the 0-lepton channel, the signal is expected to be ZH → ννbb̄ or
ZH → ννcc̄, where the neutrinos appear as Emiss

T and therefore events
are required to have Emiss

T > 150 GeV. Additional cuts are applied to
the sum of the pT of all jets in the event. One issue in this channel is
the contamination of 1-lepton events from WH(→ bb̄) and WH(→ cc̄)
where the W decays to a τ lepton and a neutrino and the τ decays
hadronically, which results in a signature consistent with the 0-lepton
channel. Therefore, in events with a reconstructed hadronic τ, the
W boson mass mW

T is reconstructed and is used as a discriminant to
exclude them from this channel.

In the 1-lepton channel, the signal is expected to be WH → lνbb̄
or WH → lνcc̄, where the transverse momentum of the W boson is
reconstructed from the vectorial sum of the lepton and Emiss

T and is
required to be above 75 GeV.
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In the 2-lepton channel, the signal is expected to be ZH → llbb̄
and ZH → llcc̄. Here the Z boson can be reconstructed from the
two leptons, which are required to have the same flavour. Due to
the high charge mis-identification rate for electrons, a requirement of
opposite charge for the leptons is only imposed in the muon channel.
A pT > 25 GeV cut for electrons and 27 GeV for muons is required,
and at least one of the leptons is required to pass the ZH-Signal
criterion described in Section 7.4.1. Furthermore, the invariant mass
of the di-lepton system is required to be consistent with the Z mass.

7.5.1 Higgs Candidate in Resolved Regime

The Higgs candidate is reconstructed from jets using the jet flavour
tagging information. Ideally it can be reconstructed from two jets
tagged as b- or c-jets, however, there are cases where there are more
than two jets. Furthermore, due to limitations in flavour tagging
and possible overlap between VH(→ bb̄) and VH(→ cc̄), a more
complicated selection is required, which is done in two steps.

After tagging the jets in the event based on the PCFT scheme, The
first step avoids overlap between VH(→ bb̄) and VH(→ cc̄). Only
events without any b-tag pass the VH(→ cc̄) selection, while only
those without any tight c-tag pass the VH(→ bb̄) one for the 0- and
1-lepton channels. For these channels, events that have both a tight
c-tag and a b-tag will not enter any signal region. In VH(→ bb̄), for
the 2-lepton channel, a tight c-tag veto is not applied.

In the second step, all signal jets are considered. In the VH(→ bb̄)
regime, an event will enter the signal region only if it has exactly
two b-tagged jets, which will then be used to reconstruct the Higgs
candidate. In the VH(→ cc̄) regime, jets are prioritized as tight c-tag,
then loose c-tag, then no c-tag, and the leading two are selected to
reconstruct the Higgs candidate.

7.5.2 Analysis Regions

The analysis includes multiple signal and control regions. The events
falling in the signal regions are used to reconstruct the Higgs. In
contrast, those that fall in the control regions are used to constrain un-
certainties and understand distributions of observables of background
processes for cases in which a good description of the process is not
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attainable from MC simulations. Figure 7.6 summarizes all signal and
control regions in the analysis.

7.5.2.1 Resolved VH(→ bb̄)

In the VH(→ bb̄) resolved regime, signal regions require exactly two
b-tagged jets and are defined in three different bins of pV

T , 75 GeV <

pV
T < 150 GeV (for 1- and 2-lepton channels only), 150 GeV < pV

T <

250 GeV and 250 GeV < pV
T < 400 GeV with separation between

events with two and three jets. For the 2-lepton channel a four or
more jet category is included and in the 0-lepton channel a category
of exactly four jets is included, due to the high tt̄ contamination at
higher jet multiplicity.

For each signal region, an orthogonal control region in which the
∆R between the two Higgs candidate jets is high is defined, referred
to as high-∆R. These control regions are used to determine the yield
of the V + jets and tt̄ backgrounds from data. In the 1-lepton channel,
an orthogonal low-∆R control region is used to better control the
contribution of the W + bb background by training a BDT to separate
the V + jets background from the dominant tt̄ one, referred to as
BDTLow-∆R CR.

A top control region is defined in the 0- and 1-lepton channels by
the requirement of one b-tag and one tight c-tag and in the 2-lepton
channel by requiring different lepton flavors for the two leptons,
namely e and µ.

7.5.2.2 VH(→ cc̄)

In this category, the division into channels and pV
T regions is similar

to the VH(→ bb̄) resolved one, with the highest pV
T bin being pV

T >

400 GeV, since the impact of the overlap with the VH(→ bb̄) boosted
region of pV

T > 400 GeV is small. There are two sets of signal regions,
both of which require at least one tight c-tag. One set requires the
presence of an additional loose or tight c-tagged jet, and the other
requires the presence of additional jets, which are neither b- nor
c-tagged. Each signal region has a corresponding high-∆R control
region. Additional control regions especially relevant for VH(→ cc̄)
in order to control background originating from W and Z bosons
associated with light jets are the V + light control regions, in which
one of the Higgs-candidate jets are required to be loose c-tagged
and one not tagged. This control region is excluded in the 1-lepton
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75 GeV < pV
T < 150 GeV region due to fit instabilities. The top control

region is shared with VH(→ bb̄) resolved.

7.5.2.3 Boosted VH(→ bb̄)

In the boosted VH(→ bb̄) regime, the events are categorized into two
pV

T regions, 400 GeV < pV
T < 600 GeV and pV

T > 600 GeV. The signal
regions are defined to have exactly two of the three leading sub-jets
of the large R jet to be b-tagged. In the 0- and 1-lepton channels,
events with b-tagged track jets outside of the large-R jet are moved to
dedicated tt̄ control regions.

7.6 truth tagging

After being selected, events are categorized according to the flavor and
multiplicity of the jets. There are several approaches to achieving this.
In direct tagging, jets in the event are assigned a PCFT bin, as described
in 7.4.3.1, and the event is classified by counting the number of b-jets
and c-jets in it. For example, VH(→ bb̄) resolved requires to have
events with exactly two b-tags and VH(→ cc̄) requires at least one
tight c-tag. However, the low efficiency of c-tagging results in regions
with very low statistics and, therefore, high statistical uncertainty.

To mitigate that, another approach called truth tagging is used.
Instead of a binary decision of either keeping or discarding an event,
it is assigned a weight

w =
C

∑
i

∏
j∈Ti

εj(x|~θ) ∏
j∈�Ti

(1− εj(x|~θ)) (7.2)

where εj(x|~θ) is the probability to tag jet j by its flavour using a tagger
trained on features x assuming a set of parameter values ~θ, Ti is the
set of jets assumed tagged and ��Ti is the complement - the jets assumed
not tagged. The sum goes over all possible permutations. This weight
is the event’s probability of passing a selection otherwise based on
its jet flavor content and multiplicity. The probability for each jet is
parametrized by the components of ~θ, which are its pT and η. An
illustrative example is the computation of the probability of tagging
two jets in a 3-jet event. The permutations, then, are all combinations
of two jets tagged out of a total of three, where the third is not tagged.

After the weight is computed, it is applied to the pair of jets that are
used to reconstruct the Higgs candidate. For a given event, a single
permutation of tagged and untagged jets out of all possible ones is
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randomly chosen with a probability proportional to the corresponding
term in the sum (7.2). This way, not all permutations are considered
because the likelihood fit used in the analysis assumes no correlation
between bins, and using multiple permutations for the same event
would spread a single event into multiple bins, increasing correlation.
As an example, if we compute an observable using two tagged jets
out of a total of three, using two different permutations would yield
two different values of the observable for the same event, potentially
placing this event in two different bins, increasing their correlation.

Truth tagging can be done either using a map-based approach or a
GNN-based one. Those are discussed in more detail below. The final
tagging strategy in the VHbb(cc) Legacy analysis is a combination
of direct and GNN-based truth tagging based on the sizes of MC
samples, tagging efficiency in different regimes and analysis regions,
and the closure of truth tagging to direct tagging.

7.6.1 Map-Based Truth Tagging

The most straightforward way to parametrize the efficiency of a jet
to be correctly tagged by a tagger is to use a map-based approach in
which one considers the most dominant parameters contributing to
the tagging efficiency, which are, as already mentioned, the η and
pT of the jet. Two-dimensional maps of the efficiency as a function
of these parameters are constructed using MC samples and are then
used to compute the efficiency for data. This approach was used in
previous VH(→ bb̄) [55] and VH(→ cc̄) [6] analyses.

The map-based approach has its drawbacks. The tagging efficiency
depends not only on η and pT, but on other parameters, however, it is
not practical to create multi-dimensional maps because of "the curse
of dimensionality" - the statistics per bin would be too low for maps of
dimensionality higher than two. Another drawback is that nearby jets
in the vicinity of the analyzed jet affect its tagging efficiency. However,
the map approach does not take the environment into consideration.

7.6.2 GNN-Based Truth Tagging

An approach that was pioneered in this analysis is a machine learning,
GNN-based approach. A GNN is a perfect tool to address the two draw-
backs of the map-based approach. It can handle high dimensionality
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problems as well as consider the environment of the jets due to its
internal message-passing capabilities, as described in Section 4.2.1.

The input to the network is a fully connected graph representing
the jet state of the event. Each node in the GNN represents a track jet
with 8 features based on its kinematics and a single event-level feature
quantifying the pileup. The edges represent jet pairs with a single fea-
ture of ∆R between them. This graph is passed through several layers
of message-passing networks which update the node representations
while considering the information about the neighboring nodes, utiliz-
ing the message passing functionality of GNNs described in section
4.2.1. These node representations then pass through a fully-connected
network which returns the flavor-tagging efficiency for each track jet.
More details on this approach can be found in [56].

The GNN-based approach was shown to be more accurate than
the map-based approach by exhibiting better closure of discriminat-
ing variable distributions between those produced using direct tag-
ging and those produced with GNN-based tagging as opposed to
map-based tagging. This closure is achieved after re-weighting the
distributions and shows that their shapes match better with distribu-
tions produced by direct tagging when produced by GNN-based truth
tagging as opposed to the map-based truth tagging.
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8
M U LT I - VA R I AT E A N A LY S I S

As explained in Section 6.2.2, in order to make a measurement of the
POIs, a fit is performed to a distribution of an observable in which the
signal can be clearly visible, increasing sensitivity. With well-chosen
input variables, an ML-based multi-variate analysis (MVA) discrimi-
nant can be trained, which clearly separates signal and background.
In this analysis, MVA was used in all analysis regimes, as opposed to
previous iterations of the constituent analyses, where a fit on MVA
was used only for VH(→ bb̄). A BDT provided by the TMVA package
of Root [22] was used for the MVA discriminant. The different regimes
and lepton channels have separate input variables to the BDT, and
each channel is further subdivided into regions of pV

T and a number
of jets in order to increase the sensitivity of the training.

The BDTs are trained to distinguish signal from background, so
for VH(→ bb̄) they were trained with VH(→ bb̄) as signal while for
VH(→ cc̄) they were trained with VH(→ cc̄) as signal. For both cases,
V+jets, tt̄, single-top, and di-boson samples are the background.

The training regions are summarized in Figure 8.1. In the resolved
topology, the pV

T = 400 GeV cut between resolved and boosted regimes
is not applied for the training, but only considered in evaluation.
Separate trainings are performed for events with different numbers
of jets and in different regions of pV

T , as shown in the figure. In the
VH(→ cc̄) regime, the trainings are split into a two c-tag region
denoted in the figure as "TT+TL", where T stands for tight, and L
stands for loose, which covers events that have two c-tags with at least
one of them tight, and a one c-tag region "TN" where one jet has a
tight c-tag, and one is untagged.

The training region of pV
T > 150 GeV includes both of the analysis

regions 150 GeV < pV
T < 250 GeV and pV

T > 250 GeV since training
on the inclusive region results in comparable performance as two
dedicated trainings and since the pV

T > 250 GeV region contains less
statistics, which leads to overtraining.

In the boosted topology, only one BDT is trained per channel in the
pV

T > 400 GeV region.

83
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Figure 8.1: All training regions of Higgs signal vs. background in the
VHbb(cc) Legacy analysis.

8.1 input variables

In this section, the focus is on the variables for the 1-lepton and
2-lepton channels used in the VH(→ bb̄) resolved and VH(→ cc̄)
analyses, in which the author made contributions to validations of the
training and variable distributions.

8.1.1 VH(→ bb̄) Resolved and VH(→ cc̄) MVA Input Variables

In previous iterations of the constituent analyses, only VH(→ bb̄)
resolved used an MVA discriminant. The starting point for the list of
variables used in the current analysis is those used in that iteration,
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which were optimized by removing variables that have a negligible
impact on the BDT score and adding those that bring a significant
(more than 3%) improvement to the signal sensitivity in a given chan-
nel. Variables that are strongly correlated with others in the list are
not included in the training, since they do not supplement the model
with additional useful information. The final set of variables was
harmonized between VH(→ bb̄) resolved and VH(→ cc̄) and is:

• pV
T : transverse energy of the vector boson. This is computed

differently per channel - it’s the missing transverse energy (Emiss
T )

in 0-lepton, vector sum of Emiss
T and lepton pT in 1-lepton, and

vector sum of the two leptons’ pT in 2-lepton.

• pj1
T , pj2

T : transverse momenta of the Higgs candidate jets where j1
is the jet with the higher pT.

• mj1 j2 : invariant mass of the Higgs candidate (Hcand) system.

• ∆R(j1, j2): the angular distance between the two Higgs-candidate
jets forming the Hcand system.

• mj1 j2 j3 : the invariant mass of two Higgs-candidate jets and the
remaining jet with the highest pT. When there are only two jets
in an event, mj1 j2 j3 = mj1 j2 .

• ∆φ(V, Hcand): azimuthal distance between the reconstructed vec-
tor boson and Higgs boson candidates.

• binDL1r(j1), binDL1r(j2): the flavour tagging bin a jet belongs to,
with five possible bins - untagged, loose (70% WP) and tight
(60% WP) b-tagged, and loose and tight c-tagged bins, as shown
on Figure 7.5. In the MVA, the value for the two Higgs-candidate
jets are used.

• ∑
i 6=1,2

pji
T: pT sum of non Hcand jets that have pT > 20 GeV.

• 1-lepton channel specific variables:

– mW
T : transverse mass of the W boson candidate reconstructed

from the lepton and Emiss
T .

– Emiss
T : missing transverse energy.

– ∆y(V, Hcand): rapidity difference between the vector boson
and Higgs boson candidates.

– min{∆R(ji, j)}, i = 1, 2: the distance in R between a Hcand

jet (b- or c-tagged) and the closest additional jet.
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– min{∆φ(l, ji)}, i = 1, 2: distance in φ between the lepton
and the closest b-tagged (c-tagged) jet.

– mtop: reconstructed mass of the leptonically decaying top
quark to suppress top background.

• 2-lepton channel specific variables:

– m``: the invariant mass of the two leptons system.

– cos θ(`−, Z): the angle between the Z boson and the lepton,
which is sensitive to the Z boson polarization, which is
distributed differently between the Zbb̄ background and
the signal [57].

– Emiss
T /

√
ST: the quasi-significance of Emiss

T with ST being
the scalar sum of the pT of the leptons and jets in the event.

– ∆y(V, Hcand): rapidity difference between the vector boson
and Higgs boson candidates.

To illustrate the variable distributions, the variables of VH(→ bb̄)
1- and 2-lepton in the evaluation region 75 GeV < pV

T < 150 GeV
with exactly two and with at least four jets, respectively, are shown in
Figures 8.2 and 8.3.

8.1.2 Training

The BDT training is done on all the nominal MC samples of this
analysis. GNN truth tagging is used in order to maximize training
statistics. The following BDT hyperparameters were tuned. Some of
them are described in more detail in Section 4.3.2.

• Boost type - The algorithm used to enhance the classification
performance of the BDT.

• Number of trees - the number of tree estimators in the BDT
ensemble.

• Maximum depth - the maximum depth of any tree estimator.

• Learning rate - multiplicative factor applied to each tree to
control the weight of the contribution of subsequent trees. A
small value progressively "softens" the contribution of trees.

• Number of cuts - controls granularity with which to scan for the
optimal cut on a feature’s value while building trees.
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Figure 8.2: Normalised BDT input variable distributions for signal (solid
blue) and background (red) in the 1-lepton channel 2-jet region
with 75 GeV < pW

T < 150 GeV. The upper bin is filled with the
overflow content.
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Figure 8.3: Normalised BDT input variable distributions for signal (blue) and
background (red) samples in the 2-lepton channel for the ≥ 4-jet
region with 75 GeV < pZ

T < 150 GeV. Overflowing events are
included in the last bin.
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• Minimum node size - stop splitting a BDT node when the num-
ber of events in the node reaches this value.

• Separation method - separation criterion used to assess the
signal-background separation of a specific cut on a specific vari-
able. The criterion is maximum at the worst performance and
falls off to zero. The Gini index criterion is defined as p(1− p)
where p is the fraction of signal events after the cut.

• Pruning method - whether pruning is applied or not.

The selected values of the hyperparameters are listed in Table 8.2 for
VH(→ bb̄) boosted and resolved and in Table 8.3 for for VH(→ cc̄).
The values were chosen for each region to maximize the BDT score-
based signal significance described in Section 8.1.3.

The training of the BDT is performed using the k-fold method,
where the training sample is divided into k subsamples (folds), and
the training is done in k iterations, with each iteration trained on
one subsample and evaluated on the rest. In all regions, k = 2 was
used. For each training, the distributions of the BDT score for the
different evaluation folds are summed together to produce the final
distribution.

8.1.3 Evaluation of Trainings

An overtraining check is performed for each training by comparing
the BDT score distributions and ROC curves between the training and
test samples. In the absence of overtraining, these should be very close,
as can be seen, for example, in the case of the VH(→ bb̄) resolved
regime’s 1-lepton channel in Figure 8.4 and which is also the case in
all other trainings.

The most important metric relevant for physics is how sensitive we
are to the signal in the BDT distribution, or the signal significance as
computed on the binned distribution, which is given for a particular
binning, as

Z =

√
∑

i
2
(
(si + bi) ln

(
1 +

si

bi

)
− si

)
, (8.1)

where i runs over the bins, si and bi are the number of signal and
background events in the i-th bin, respectively. Evidently, different
binnings will give different signal sensitivities, so the binning must
be optimized to achieve high sensitivity. In particular, regions of the
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(a) (b)

Figure 8.4: Resolved VH(→ bb̄): Overtraining checks for the 1-lepton, two
b-tagged 2-jet category for BDT trainings performed with GNN
truth tagging in the region 75 GeV < pV

T < 150 GeV. (a) ROC
curves for the training and testing samples, (b) BDT score distri-
butions for the training and testing samples.

pV
T ∈ [75, 150]GeV pV

T ∈ [150, 250]GeV pV
T ∈ [250, 400]GeV pV

T ∈ [400, 600]GeV pV
T > 600GeV

VH(→ bb̄) zs = 10, zb = 5 zs = 5, zb = 3 zs =

3 for 0-, 1-lepton

2 for 2-lepton
, zb = 2

VH(→ cc̄)

TT-tagged: zs = 5, zb = 3

Else: zs = 10, zb = 5



0-/1-lepton

TT-tagged: zs = 5, zb = 3

Else: zs = 10, zb = 5

2-lepton


TT-tagged: zs = 2, zb = 2

LT-/XT-tagged: zs = 5, zb = 5

Else: zs = 10, zb = 5


TT-tagged: zs = 2, zb = 2

LT-/XT-tagged: zs = 5, zb = 3

Else: zs = 10, zb = 5

Table 8.1: Parameter zs and zb settings used in Transformation D for different
phase space.

BDT score with high statistics should have more bins and vice versa.
A transformation called Transformation D is performed on the bins for
that purpose. The transformation is based on the following formula:

ZD = zs
ns

Ns
+ zb

nb

Nb
, (8.2)

where Ns, Nb are the total number of signal and background events
in the histogram and ns, nb are the number of signal and background
events in a certain bin. The transformation works iteratively, starting
from the highest bin and merging bins into a single one, which causes
ns and nb to increase until ZD > 1 for the new bin, after which the
process repeats from the next unmerged bin. The parameters zb and
zs roughly represent the desired number of background- and signal-
enriched bins, respectively. These parameters are optimized for each
region to give more bins in regions with higher statistics and vice
versa. The optimal values for these parameters in each training region
are given in Table 8.1. An example of a BDT distribution before and
after the transformation is given in Figure 8.5.
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Figure 8.5: Comparison of BDT score distribution before (left) and after (right)
applying Transformation D. This is evaluated in the 1-lepton
channel of VH(→ cc̄), in the region 150GeV < pV

T < 250GeV.

Resolved VH(→ bb̄) Boosted VH(→ bb̄)

Settings 0-lepton 1-lepton 2-lepton 0-lepton 1-lepton 2-lepton

Boost type Gradient boost Gradient boost Gradient boost Adaboost Adaboost Adaboost

Number of trees 200 600 200 800 800 400

Maximum depth 3 4 4 3 3 3

Learning rate (β) 0.5 0.5 0.5 0.5 0.35 0.3

Number of cuts 100 100 100 60 60 100

Minimum node size 5% 5% 5% 2% 2% 7%

Separation method Gini index Gini index Gini index Gini index Gini index Gini index

Pruning method No pruning No pruning No pruning No pruning No pruning No pruning

Table 8.2: BDT hyperparameters used for the 0-, 1- and 2-lepton channels for
the VH(→ bb̄) resolved and boosted analyses.

VH(→ cc̄)

Settings 0-, 1- and most 2-lepton regions 2-lepton, ≥ 3J, low pV
T

Boost type Gradient boost Adaboost

Number of trees 600 200

Maximum depth 4 4

Learning rate (β) 0.5 0.15

Number of cuts 100 100

Minimum node size 5% 5%

Separation method Gini index Gini index

Pruning method No pruning No pruning

Table 8.3: BDT hyperparameters used for the 0-, 1- and 2-lepton channels for
VH(→ cc̄) analysis.
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8.1.4 GNN as Signal-Background Classifier

The author performed a study on the classification performance of
GNN versus BDT in the context of the VHbb(cc) Legacy analysis. The
data on which the study was done are MC ntuples of signal (H → bb)
and relevant background, the same ones used to train the BDT. The
study was performed in the resolved 2-lepton channel, as that channel
has kinematic information of four to five objects - two leptons and
two or three jets, as opposed to, e.g., the 0-lepton channel, which has
three or four objects - missing energy and two or three jets. The signal
H → cc samples were omitted from the data, as in the BDT training.

As for BDT, the data were split into two folds: selecting all events
with an even event number for the first and an odd number for the
second. One fold is used as the training set, while the other is the
test set. The events in the ntuples file are weighted so that the sum of
the weights of all events belonging to a sample of a given process is
proportional to the theoretical cross-section of that process.

The trained proof-of-concept model was a simple DeepSet model
implemented in PyTorch [58]. The model’s input is an unordered
set of four or five objects consisting of two leptons and two or three
jets, respectively. Each object is a node in the graph, without edges
connecting the nodes. The features of each node are listed in Table 8.4.
For each node, there is a total of six features, the first four of them
being object-specific and the other two event-wide, replicated over all
nodes in the graph.

Variable Meaning

pT Transverse momentum

η Pseudorapidity

φ Azimuthal angle

bin_bTag 1 to 5, corresponding to the PCBT b-tag score bin if the
particle is a jet or 6 if it’s a lepton

nJ number of jets in event

FlavL Lepton flavour, according to PDG identifiers (11 for electron,
13 for muon) [12]

Table 8.4: A list of variables used as the nodes of the input graph. The first
four variables are particle-specific, while the last two are event-
wide features replicated over all particles.
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(a) (b)

(c)

Figure 8.6: Evaluation of a DeepSet classifier trained to separate VH(→ bb̄)
signal from background. (a) is the ROC curve of the trained
classifier produced by treating each event in the test set equally,
and (b) was produced by weighing each event by its weight. (c)
shows the signal-background separation for the weighted and
unweighted cases.

A training of the GNN model on a sample consisting of 2.5 million
randomly selected events from a single region of 75 GeV < pV

T <

150 GeV and at least three jets, evaluated on a separate test set of the
same region, resulted in a ROC curve which is better than that of the
BDT, trained and evaluated on a much larger number of events from
the same region when the ROC curve is computed without applying
event weights, but worse than the BDT when weights are applied, as
shown on Figure 8.6. This implies that the DeepSet model captures
the internal structure of events well but, during training, emphasizes
the more numerous events with low weights.

In the BDT training of the VH(→ bb̄) resolved analysis, before the
training, the event weights in the training sample are re-calculated so
that the sum of signal event weights and the sum of background event
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weights are each equal to the number of signal events. However, for
GNN training, it is unclear how to include the weights, what kind of
re-weighting should be done, and how to treat negative event weights.

Studying the effect of different re-weighting schemes on the model’s
classification performance required multiple trainings and pre-processing
of the data. One of the challenges of training ML models is the hard-
ware restrictions, as the amount of data in the training set often exceeds
the maximum memory capacity of the workstation. ANN training also
involves computationally intensive matrix multiplication operations,
best performed on machines with graphics processing units (GPU),
which provide orders of magnitude speed up relative to ordinary cen-
tral processing units (CPU). To remedy this, a semi-automatic pipeline
was implemented that leverages GPU nodes on CERN’s batch comput-
ing system, HTCondor, for training. Its input is an ntuples file, and the
output is several models trained on a training set with multiple event
re-weighting schemes and evaluated on a test set. During evaluation,
the signal significance given by (8.1) is evaluated for each training.

The framework allows the production of comparisons between
different training processes and, in particular, different weighting
schemes, which makes it possible to select the best data pre-processing
and training scheme to increase the significance of the signal after
classification. An example comparison is shown in Figure 8.7, for a
different training and evaluation region of 150 GeV < pV

T < 250 GeV
and two jets, in which the red line is the BDT performance and the
blue bars show the performance of a GNN in different scenarios. These
include mainly re-weighting schemes, such as special treatment of
outlying weights by pulling them closer to the bulk of the weights’ dis-
tribution ("squashing"), normalizing to different intervals, and using
different loss functions (described in the next section), as summa-
rized in Table 8.5. None of the trained models results in performance
superior to the BDT.

8.1.4.1 Modified Loss Function

Searching for optimal re-weighting is effectively equivalent to introduc-
ing additional hyperparameters that guide the treatment of weights
and optimizing them by searching for the optimal re-weighting for
a specific dataset. A more general approach to the utilization of the
weights is desirable. An additional problem is the appearance of very
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Re-weighting Description

abs_squash_outliers_norm_0_x_plus1 Squash outliers, normalize to interval 0-x,
add 1 to all weights

norm Normalize to interval 0-1

norm_EqualNumWeights Average weight of 1 per event for signal,
and sum events for background equal to
sum events for signal (same as in BDT
training)

norm_plus1 Normalize to interval 0-1, add 1 to all
weights

noweights All events have weight 1

trivial All events have their original MC weights

trivial_bce_minus_significance Similar to trivial, but the loss function is
the binary cross-entropy minus the signif-
icance

trivial_plus1 All events have their original MC weights,
add 1 to all weights

Table 8.5: A list of re-weighting schemes used to evaluate the GNN classifier.

large and negative weights, the latter being notoriously problematic
for ML models. For example, the TMVA manual recommends drop-
ping negative weights for models that don’t treat them properly but
keep them during evaluation [22].

For all re-weightings considered so far, the event weights are utilized
in the training by using them to weight the binary cross-entropy loss
function, which is a measure of the distance of each event’s prediction
score from the actual class (signal/background) of that event, the
value of which the training is designed to minimize. The training is
done in batches of 500 events, so the final score for a batch is the
weighted sum of the values of the loss function for all events in the
batch. Since it is not clear whether negative event weights can be used
in this manner, as is the effect of large event weights on training, and
since we’re interested in the signal significance, it is natural to use a
loss function that simultaneously minimizes the original, unweighted,
binary cross-entropy loss function and maximizes the significance of
the signal, so that the loss function for a batch is:

Lsignif. = LBCE − Z, (8.3)

where LBCE is the original, unweighted, binary cross-entropy loss func-
tion, and Z is given by (8.2) with 20 equal-width bins. This effectively
splits the loss function into a term that is independent of weights,
"pushing" the event score predictions towards their true values, and a
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(a) (b)

Figure 8.7: Significance (a) and AUC (b) values for various re-weightings of
the events in the training set for the DeepSet model in the two
jets, 150 < pV

T < 250 GeV region of the 2-lepton channel. The red
line is the reference BDT performance in the VH(→ bb̄) resolved
analysis in the same region.

second term that is of physical interest, which we seek to maximize
and in which weights are properly treated by weighting each event
that goes into the model score histogram, exactly as it’s done for the
final evaluation of the model.

The resulting performance for this kind of loss function can be
seen in Figure 8.7, second bar from the right. The performance is
not the best among the re-weighting schemes. Still, it is promising
as it provides a natural treatment of weights, and the performance
of this method of utilizing weights may be further improved by, e.g.,
increasing the training batch size.

These results are intended to inspire subsequent studies in future
iterations of this analysis. Graphs are structurally suitable to represent
events, and GNNs are the optimal models to e.g. classify graph repre-
sentations of objects. Therefore, it is likely that with further studies on
how the data should be processed and on the structure of the model,
using a GNN in place of a BDT may boost the significance of the signal.
That being said, the results here show that the humble BDT model
is still highly performant, even with respect to the latest generation
ANNs.
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9.1 statistical model

The statistical model is based on fits to a likelihood function as de-
scribed in Section 6.2.2. Multiple fits were performed, with each fit
corresponding to a single set of signal-strength POIs in different
regions. The effects of systematic uncertainties are included in the like-
lihood as nuisance parameters, and the normalizations of the largest
backgrounds, top, and V+jets are determined by the fit, so they are
left as free-floating parameters.

In signal regions, the BDT output discussed in Chapter 8 is used
for the fits, while different observables were fitted in different control
regions. Table 9.1 lists the observables used for the fit in the VH(→ bb̄)
resolved control regions. For the boosted regime, the mass of the large-
R jet is fitted in the Top CRs.

The fits that were performed for VH are:

• Two-POI fit for {µbb
VH, µcc

VH},

• Four-POI fit for {µbb
WH, µcc

WH}, {µbb
ZH, µcc

ZH} to extract the signal
strengths of WH and ZH production modes in H → bb and
H → cc,

• 13-POI fit to measure the signal cross section multiplied by the
H → bb and V → leptons in 13 STXS bins,

• 10-POI fit, similar to the 13-POI fit but with no split in the
number of jets.

Additional fits were performed for a similar cross-check di-boson
analysis, which measures the signal strength of VZ, analogous to VH
with Z replacing H and decaying either to cc̄ or bb̄.

9.2 results

The results are obtained by performing a combined simultaneous
fit to all signal regions of VH(→ bb̄) and VH(→ cc̄), on the full
Run 2 dataset of 140 fb−1. The observed (expected) significance of the
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Table 9.1: A schematic of the fit variables used in the control regions. The
‘Norm. Only’ label indicates that only a single bin is used in the
fits and ‘—’ indicates that the region is not used in the fits. The
first row contains the flavour tagging regions for the two jets - B,
CT, CT, N stands for b-tagged, tight c-tagged, loose c-tagged and
not tagged, respectively.

Channel Region BB CTN CTCL CTCT BCT CLN

0-lepton

High-∆R CR Norm. Only —

BCTTop CR — mj1 j2 —

V+ lf CR — Norm. Only

1-lepton

Low-∆R CR BDTLow-∆R CR —

High-∆R CR pV
T mj1 j2 —

BCTTop CR — mj1 j2 —

V+ lf CR — pV
T

2-lepton

High-∆R CR pV
T mj1 j2 —

Top eµ CR — Norm. Only – —

V+ lf CR — pV
T
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VH(→ bb̄) signal is 7.4σ (8.0σ). The signal strength and its uncertainty
are:

µbb
VH = 0.92+0.16

−0.15 = 0.92±−0.10(stat.)+0.13
−0.11(syst.). (9.1)

For VH(→ cc̄), the fit resulted in an observed (expected) 95% confi-
dence level (CL) upper limit on the signal strength of 11.5 (10.6) times
the SM prediction. The expected and observed 95% CL upper limits
on this signal strength for the individual lepton channels and the
combination are summarized in Figure 9.1. The corresponding signal
strength is

µcc
VH = 1.0+5.4

−5.2 = 1.0+4.0
−3.9(stat.)+3.7

−3.5(syst.). (9.2)

This is a significant improvement over the previous result of 26 times
the SM prediction for the previous VH(→ cc̄) analysis [6]. The signal
strength expected and observed 95% and 68% CL contours for VH(→
bb̄) and VH(→ cc̄) are shown on Figure 9.2.

Figure 9.1: Expected and observed 95% CL upper limits for the VH(→ cc̄)
signal strength for individual lepton channels and their combina-
tion.

The result of the four-POI fit for the signal strength of WH and
ZH with H decaying to bb̄ is summarized in Figure 9.3. The observed
(expected) significance of the ZH, H → bb̄ measurement is 4.9 (5.6)
standard deviations, and for WH, H → bb̄ it is 5.3 (5.5) standard
deviations, making this the first observation of the WH, H → bb̄
process.
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Figure 9.2: Expected and observed 95% and 68% CL contours for the VH(→
bb̄) and VH(→ cc̄) signal strengths.

The observed and expected values for the 13-POI and 10-POI STXS
fits are summarized in Figures 9.4, 9.5, respectively, showing no signif-
icant deviations from the SM predictions.

9.2.1 Measurement Uncertainties

Table 9.2 shows the breakdown of the sources of statistical and sys-
tematic uncertainties contributing to the total uncertainties in the
observed and expected signal strength measurements of VH(→ bb̄),
WH(→ bb̄), ZH(→ bb̄), and VH(→ cc̄). The statistical and systematic
uncertainties are similar in size. The largest contribution to the sys-
tematic uncertainties comes from theoretical modeling, mainly from
the signal and the W + jets and Z + jets backgrounds, followed by ex-
perimental uncertainties from jet reconstruction and flavor tagging. A
significant reduction in uncertainty relative to the previous iterations
of the VH(→ bb̄) resolved, VH(→ bb̄) boosted, and VH(→ cc̄) analy-
ses is obtained due to several factors, some of which are the increase
of 25% in the c-jet rejection of the DL1r flavor tagging algorithm at
the same b-tagging efficiency, the introduction of dedicated CRs to
constrain the top background and the re-optimization of the MVA.
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Figure 9.3: Signal strength

Figure 9.4: Result of the 13-POI fit for the measurement of the VH, V →
leptons cross sections times the H → bb̄ branching ratio in 13

STXS bins.
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Figure 9.5: Result of the 10-POI fit for the measurement of the VH, V →
leptons cross sections times the H → bb̄ branching ratio in STXS
bins with no split in the number of jets.
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Table 9.2: The breakdown of contributions to the uncertainty in the fitted
value of the signal strengths for the VH(→ bb̄), WH(→ bb̄),
ZH(→ bb̄), and VH(→ cc̄) processes.

Source of uncertainty
σµ

VH(→ bb̄) WH(→ bb̄) ZH(→ bb̄) VH(→ cc̄)

Total 0.153 0.204 0.216 5.31

Statistical 0.097 0.139 0.153 3.94

Systematic 0.118 0.149 0.153 3.57

Statistical uncertainties

Data statistical 0.090 0.129 0.139 3.67

tt̄ eµ control region 0.009 0.014 0.027 0.08

Background floating normalisations 0.034 0.049 0.042 1.24

Other VH floating normalisation 0.007 0.018 0.014 0.33

Simulation samples size 0.023 0.033 0.030 1.62

Experimental uncertainties

Jets 0.027 0.035 0.030 1.02

Emiss
T 0.010 0.005 0.021 0.23

Leptons 0.003 0.002 0.010 0.25

Flavour-tagging

b-jets 0.020 0.018 0.026 0.29

c-jets 0.013 0.017 0.012 0.73

light-flavour jets 0.005 0.008 0.008 0.66

Pile-up 0.008 0.017 0.002 0.23

Luminosity 0.006 0.007 0.006 0.08

Theoretical and modelling uncertainties

Signal 0.076 0.074 0.101 0.72

Z + jets 0.042 0.018 0.081 1.77

W + jets 0.054 0.087 0.026 1.42

tt̄ and Wt 0.018 0.033 0.018 1.02

Single top quark (s-, t-ch.) 0.010 0.018 0.002 0.16

Di-boson 0.033 0.039 0.049 0.52

Multi-jet 0.005 0.010 0.005 0.55





10
C O N C L U S I O N

The VHbb(cc) Legacy analysis aims to combine together previous
iterations of the measurements of Higgs couplings to b- and c-quarks,
known as the VH(→ bb̄) Resolved, VH(→ bb̄) Boosted, and VH(→
cc̄) analyses, by focusing on the Higgs production mode in association
with a vector boson, which, though not the leading production mode,
produces a clear signature which improves sensitivity to signal.

Looking at the full Run 2 data, the analysis takes the strongest
features of the aforementioned analyses and combines the phase
spaces to increase the sensitivity. One of the main upgrades is the
usage of a BDT discriminant that was trained to separate signal and
background in different phase space regions. This, along with the
increase in statistics and improvements in flavor tagging techniques,
among others, allowed us to perform the first 5.3σ observation of
the WH, H → bb̄ process and tighten the constraint on the coupling
constant of the Higgs boson to c-quarks from 26 to 11.5 times the
SM prediction. All measurements produced results in agreement with
those expected from the SM.

The paper summarizing this analysis was sent to publication [59],
with future iterations of the analysis to come that would look at Run 3

data. Using further improvements based on machine learning models
such as GNNs for the fit discriminant instead of the currently used
BDT may potentially improve the sensitivity of the fit to the signal,
especially because a GNN is designed to operate on graphs, which are
highly suitable for representing collider events, taking into account
the interactions between particles using the GNN’s internal message
passing mechanism. While the rough preliminary study presented in
this chapter showed no clear advantage over the BDT discriminant,
future careful studies of the GNN as a signal-background classifier
for physics analyses are required. From the study presented here,
two suggestions for future research direction would be the proper
treatment of MC weights in the loss function when training an ML
model and selecting a more suitable differentiable loss function that
would more clearly reflect the sensitivity to the physics signal of
interest.
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TAU I D E N T I F I C AT I O N I N T H E AT L A S L E V E L - 1

C A L O R I M E T E R T R I G G E R

11.1 introduction

The τ lepton plays an essential role in the physics program of the
ATLAS experiment. Being the heaviest lepton, it is an excellent probe
of the coupling of the SM Higgs boson to leptons [44] as well as
for searches for BSM effects in the Higgs sector [60–62], dark matter
candidates [63] and super-symmetry [64, 65]. Final states with τ lep-
tons are also good probes for anomaly searches [60] and precision
measurements [66] in the electroweak sector. It is therefore crucial to
implement a mechanism for a highly efficient selection of τ lepton-
containing events, producing a sample of as high a purity as possible
to reduce non-τ backgrounds and, therefore, maximize the sensitivity
of τ-based physics analyses, both in Run 3 and onwards.

Searches for BSM and precision measurements of SM processes
require collecting more and more data. Run 3 of the LHC started the
commissioning process in 2022, following the Phase-I upgrade with an
expected instantaneous luminosity of L = 3× 1034 cm−2s−1 and pile-
up values of 〈µ〉 = 80 [67], compared to L = 1.9× 1034 cm−2s−1 and
〈µ〉 = 33, respectively during Run 2 [68]. During the upgrade, several
systems of the ATLAS detector were upgraded, among which are the
LAr calorimeter [67] and the TDAQ system [69], allowing a higher
granularity readout of calorimeter energy depositions. The purpose
of this upgrade was to enhance the physics reach of the experiment
during Run 3 and beyond at increasing LHC luminosities.

The high mass of the τ causes it to have a very short lifetime, result-
ing in its decay before entering the inner detector. When a τ decays
hadronically, which occurs 66% of the time, it results in a signature
almost indistinguishable from QCD jets. During Run 3, this discrim-
ination between τ particles and jets will be even more complicated
due to the significant increase in pile-up. This is especially critical for
the L1Calo trigger subsystem, that uses only calorimetric information
and is limited in available resource and latency for algorithms. The
planned increase in pile-up degrades the calorimeter resolution, re-
quiring an increased granularity readout of the calorimeters along
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with improved algorithms, all of which are addressed by the Phase-I
upgrade. The upgraded L1Calo makes full use of the finer granularity,
using new electron/photon, jet, and global feature extraction modules
referred to as eFEX, jFEX, and gFEX, respectively [69].

The first stage of τ identification in the ATLAS trigger in Run 3 is
implemented in the eFEX module. The baseline algorithm used for
this runs on FPGAs and is based on several heuristics, such as an
estimation of ET of a predefined calorimeter cluster and measuring
the isolation in a cluster around a local maximum of energy. These
values are very quick to compute in hardware and set a threshold,
eliminating the vast majority of QCD jets. Still, the finer granularity
opens up a much larger space of observables to explore for similar
thresholding, which is a natural setting for a machine-learning (ML)
based approach for triggering.

Due to the planned increase in luminosity of the LHC and the
increase in background, the ML approach will likely be required in the
future to bring the trigger rates down while maintaining high signal
efficiency. However, using ML algorithms in ultra-low-latency settings
is a novel technology and requires experimentation to extract its full
potential. The first implementation of an L1 ML-based algorithm at
the LHC was done in the CMS experiment, where a BDT was trained
as a regression model for muon pT estimation from 25 input variables,
improving the background rejection by a factor of three [70]. However,
the implementation involved encoding the BDT as a 1.2 GB look-up
table and storing it on special hardware, an impossible approach using
the current ATLAS trigger hardware, where resources are limited. A
new approach is required, where the ML model, instead of being
encoded in a look-up table, is fully evaluated.

There is a multitude of details that need to be addressed in such a
workflow by experimenting with a simple yet powerful ML model in
order to get crucial experience in such a setting. As an example, from
the perspective of firmware implementation, these algorithms often
require a different approach, in which the model’s design is generated
using automated tools and incorporated into a larger, manually written
design. Unlike a fixed, heuristic-based algorithm, an ML-based one
may need to be re-trained at different points in time during data taking.
In order to understand the effect and real-world costs of maintenance
and re-training, it is essential to experiment with a simple ML model
in the L1Calo trigger during ATLAS data taking.

This part describes the development, implementation, and perfor-
mance studies of a BDT-based algorithm used for data taking in Run 3
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during 2024 for τ triggering. The algorithm has a superior performance
for resource usage over the previous heuristics-based τ algorithm in
the τ ET range relevant for physics analyses.

11.2 trigger chains

From the initial torrent of data resulting in the full ATLAS detector
being read out at a rate of 40 MHz, the triggering system must reduce
the rate to around 1 kHz. This is done in ATLAS by focusing on
specific physics objects and combinations of them and forming trigger
chains, which specialize in their identification and are motivated by the
data required for offline physics analyses, where the trigger chain that
fired the event is used in the initial selection of the events of interest.

The initial identification stage, which receives the full 40 MHz flow,
is the level-1 trigger, which itself is separated into sub-stages for iden-
tification, with several algorithms specializing in the identification of
particular physics objects. The very first stage, which is the context
of the algorithms discussed herein, is the efficient identification of
single objects, referred to as regions of interest (RoIs), such as isolated
calorimeter clusters with particular features corresponding to a partic-
ular physics object of interest. These RoIs are then used as seeds for
more elaborate algorithms within the L1 trigger. For example, two τ

calorimeter clusters and one jet calorimeter cluster can be combined
to form a trigger requiring a topological cut on the angle between the
τ clusters in addition to a jet.

If an L1 trigger fires, the RoIs are then used as seeds for offline-style
algorithms at the HLT described in Section 5.3. These can, for example,
fully reconstruct a τ jet from tracking and calorimeter information and
cut on the fully reconstructed pT of the τ jet to reach a final decision
on whether to fire this particular trigger chain. If one trigger chain
fires, the data from this particular bunch crossing is considered for
storage.

11.3 turn-on curves and trigger rates

To evaluate the efficiency of a triggering algorithm for signal selection,
a turn-on curve is generated, such as one of those shown in Figure 13.1,
which plots the efficiency for the selection of events containing signal
objects, as determined by the evaluated algorithm, as a function of
the pT of the fully reconstructed object that the algorithm is meant to
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identify. Turn-on curves are generated on signal MC samples or data
samples that had undergone a selection for events containing signal
physics objects. They can be produced with respect to events, in which
case the number of events containing at least one RoI that passes the
target algorithm’s threshold serves as the numerator, and the total
number of signal events serves as the denominator. They can also
be produced for physics objects, in which case, after reconstruction,
the physics objects are matched to RoIs. The numerator is then the
number of RoIs that pass the target algorithm’s thresholds and match
a physics signal object, and the denominator is the total number of
signal objects.

The turn-on curve shows only part of the picture since a very crucial
quantity for the proper operation of the ATLAS triggering system and
subsequent data storage is the rate produced by a given trigger chain.
The algorithm under evaluation is tuned so that the rate does not
exceed that which can be handled by the ATLAS systems downstream
of the trigger. To estimate the background rate, the number of events
that pass selection, given a specific tuning, is evaluated on a sample
containing the primary background, on which the thresholds of the
algorithm are set to produce the maximum allowed rate for a particular
trigger.

A data sample suitable for rate counting that represents the "back-
ground hum" inside the detector is usually a zero bias sample. It is
collected by a purely random trigger, thus having no selection bias
and hence its name. Alternatively, an MC background sample of QCD
jets can be used. Still, if data is available, it is much preferable to MC
because of multiple corrections that need to be applied to MC samples
to reflect the real detector.

11.4 tau triggering algorithms in l1calo

The RoIs that serve as inputs to calorimeter-based τ identification al-
gorithms are trigger objects (TOBs), fixed-form calorimeter cell clusters.
These are designed to be large enough to contain jets originating from
hadronic τ decays. Based on the approximations of opening angles
for such jets done in Section 3.2 and the order of the Molière radius
mentioned in Section 5.2.4.1, a sufficient size would be of the order of
0.3× 0.3 in η × φ space.

For every bunch crossing, all possible calorimeter TOBs are analyzed
by the L1Calo system using dedicated processors that look at a specific
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region of the calorimeter. Logically, the algorithms work in three
stages:

• Seeding - TOBs that have a maximum of ET deposition in their
center are considered, and the rest are ignored.

• Discriminant computation - compute an estimate of the ET

deposited in the full TOB as well as any additional discriminants.

• Comparison against thresholds - Comparison of the discrimi-
nants against thresholds passed as parameters. For the outputs
of the algorithms, due to tight constraints on bandwidth, the
full discriminants cannot be written out, and therefore, a few
discrete working points are defined by sequences of thresholds.
Usually, there are three working points for τ identification -
loose, medium, and tight.

For each TOB containing a seed, an estimate of the ET deposition
within the TOB is used as the primary feature for its selection for
further processing, with a configurable threshold. Additional dis-
criminants that help separate a particular physics object from the
background are then thresholded to reject background-originating
TOBs.

Taus have a similar signature to QCD jets in the calorimeter, and
distinguishing between the two is very challenging. To make things
more difficult, the demanding latency and resource requirements on
the L1Calo algorithms allow only the most basic features to be used
as discriminants. The primary discriminant for identifying τ jets in
L1Calo is based on the fact that τ jets are typically more collimated
than QCD jets, with the energy deposition dropping off more sharply
from the center of the TOB. Therefore, to improve the distinction of
τ jets from QCD jets, only a single feature can be used, which is a
measure of isolation around the highest ET region.

Due to the change in readout granularity of the LAr calorimeter
after the Phase-I upgrade, there is a difference in the definition of the
TOB and the isolation between Runs 1 and 2 and Run 3. Consequently,
the algorithms have changed as well.

11.4.1 Tau Triggering in Runs 1 and 2

During Runs 1 and 2 the TOB was a 4x4 cluster of 0.1× 0.1 trigger
towers, as illustrated on Figure 11.1. Each tower provides two val-
ues - the energy deposition in the EM part and the hadronic part,



114 tau identification in the atlas level-1 calorimeter trigger

originating from the EM and hadronic calorimeters, respectively. In
the EM calorimeter, ET values are summed for the towers in each of
the four possible 1× 2 and 2× 1 sections within the central region.
Additionally, the ET within the towers in the central 4× 4 region of
the hadronic calorimeter is computed and added to each of the four
sums. At least one of the resulting four values is required to pass a
threshold.

Figure 11.1: Trigger object of the calorimeter trigger for τ during Runs 1 and
2. [71]

For the isolation requirements, the ET values in the 12 towers of
the isolation ring surrounding the central 2× 2 region are summed
separately in the EM and hadronic calorimeters to produce the values
EEM isol

T and EHAD isol
T , respectively, and each of these values is required

to be less than a programmable value. The isolation requirements for
Runs 1 and 2 are detailed in Table 11.1.

11.4.2 Tau Triggering in Run 3

After the Phase-I upgrade, the amount of ET values provided by each
tower increased from 2 to 11, paving the way to finer algorithms. A
baseline algorithm following the same principles as the one used in
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Isolation

Run 1 EEM isol
T < 4 GeV

Run 2 EEM isol
T [GeV] ≤ (ET[GeV]/10 + 2) for ET < 60

Table 11.1: Isolation requirements for τ triggering at L1 in Runs 1 and 2.

Runs 1 and 2 was designed and initially planned to be used. It will
be referred to as the Heuristic algorithm. The second algorithm that is
eventually used for Run 3, fully designed and implemented by the
author of this thesis, is the BDT algorithm.

The Phase-I upgrade introduced several sub-systems to the L1Calo
system in order to analyze the more granular picture provided by
the LAr calorimeter, described in Section 5.2.4.2. Tau trigger chains in
ATLAS start from two systems - eFEX and jFEX.

The eFEX system looks at TOBs comprised of 3× 3 trigger towers,
each with a size 0.1× 0.1 and 11 supercells, as illustrated in Figure
11.2. It looks for seeded TOBs, which have a deposition of ET in the
central tower that is higher than the surrounding ones, computes a
sum over a subset of the supercells to estimate the TOB ET as well as
an isolation measure internal to the TOB.

11.4.2.1 jFEX Isolation

The jFEX system, which is responsible for identifying jets, indepen-
dently of the eFEX system and, among others, implements a small-
radius (SR) jet algorithm, which scans the calorimeter and looks for
larger regions of 5× 5 trigger towers. It computes a sum over super-
cell ET within a seed of 3× 3 towers at the center and selects those
5× 5 regions for which the seed is higher than the neighboring seeds.
For each region, it computes two sums - E3×3

T,jFEX, the full sum over

the 3× 3 towers seed and Ering
T,jFEX, a sum over the towers in a ring of

0.2 ≤ R < 0.4 around the seed, as illustrated on Figure 11.3.
Since the jFEX SR-jet seed is the same size as the eFEX TOB, the sum

over the ring around the TOB can be used to compute an additional
isolation measure to reject the less collimated QCD jets. Thus, in the
L1Topo system, the eFEX TOBs and the jFEX 5× 5 regions are matched,
and a cut on this isolation is performed.
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(a) (b)

(c)

Figure 11.2: Illustration of the Run 3 τ TOB structure and the supercells
(colored) participating in ET discriminant sums for the Heuristic
algorithm. The red supercell is the small seed. (a) EM core sum,
(b) EM environment sum, (c) ET sum.
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Figure 11.3: A small-radius jet, as defined by the jFEX. [32]

The jFEX isolation condition was initially computed and evaluated
as

1024 · Ering
T,jFEX < R · ET,eFEX, (11.1)

where ET,eFEX is the ET estimate in the eFEX TOB as computed by eFEX,
as will be described in Section 11.4.2.2, 1024 is a factor that facilitates
the implementation in hardware, and R is the isolation threshold - the
smaller it is, the more collimated a jet is. This computation, however,
misses some isolation energy. As discussed in the following sections,
the Run 3 eFEX algorithms compute ET,eFEX over a small cluster of
supercells within a 3× 3 TOB instead of the full sum over the TOB.
Therefore, the ET between this cluster and the jFEX isolation ring
is lost when using the above definition. An improved scheme was
proposed just prior to the beginning of data taking for the year 2024

in which the ET in this lost region is considered by modifying the
isolation condition:

1024 ·
(

Ering
T,jFEX +

A
1024

E3×3
T,jFEX −

B
1024

ET,eFEX

)
< R · ET,eFEX

(11.2)

Where A, B, and R are parameters. As an example, if A = B = 1024,
(11.2) becomes (11.1), with Ering

T,jFEX replaced by Ering
T,jFEX +

(
E3×3

T,jFEX − ET,eFEX

)
,

which is the ET in the isolation ring around the small cluster in eFEX.
Eq. (11.2) can further be re-written as

1024 · Ering
T,jFEX + AE3×3

T,jFEX < R′ · ET,eFEX (11.3)

where R′ = R + B, reducing the tunable parameters to A and R′.
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11.4.2.2 Run 3 Heuristic Algorithm

The Heuristic τ algorithm works by finding the supercell in the central
tower’s EM2 layer with the maximal energy deposition as illustrated in
Figure 11.2. This is referred to as the small seed. A direction in φ is de-
termined by looking at the energy deposition directly above or below
the small seed. The higher value determines the φ direction. A 5× 2
energy cluster in the φ direction and around the small seed is defined
in the EM2 and EM1 layers, and a 3× 2 cluster in the PS, EM3, and
HAD layers. The ET of the TOB is estimated by summing over these
clusters. Additionally, an intra-TOB isolation measure is computed by
taking in a similar fashion a 3× 2 region and a 9× 2 region around
the small seed and in the φ direction determined previously, referred
to as the EMCore and EMEnv sums, and illustrated on Figures 11.2a
and 11.2b, respectively. An equivalent of an EMCore/EMEnv ratio
between the two is then computed, forming the Rcore discriminant
[32].

11.4.2.3 ML Model for τ Triggering in Run 3

The granular picture of the TOB illustrated in Figure 11.2 allows the
computation of discriminants that may give better separation of τ

signal and background TOBs. Studying those variables by manually
applying cuts is tedious and time-consuming. A natural approach in
this case would be to use them as inputs to an ML model and to allow
it to train on signal vs. background samples.

The score of the model needs to be used as a discriminant. Keeping
in mind that any algorithm suggested at this late stage when the
firmware is already written must be compliant with the firmware and
the way this algorithm is expected to be utilized during data taking
as well as the fact that the primary feature of interest used to select
interesting TOBs is the ET deposition in the TOB, the score can only
replace the Heuristic algorithm’s RCore discriminant, representing
isolation. Therefore, the ML model should effectively provide a more
performant isolation discriminant based on the fine-grained picture of
the ET depositions in the TOB.

There is a large variety of ML models to choose from. The two main
constraints in the choice of models are the amount of resources avail-
able on the processors running the firmware and the strict latency re-
quirements. Different models have different strengths and weaknesses.
While some varieties of ANNs are potentially more performant, their
power lies in automatically learning unspecified, high-level features
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from low-level ones, which requires resource-heavy deep neural nets
that take a long time to evaluate. Since these types of models are not
feasible, it is necessary to engineer input variables, compute them, and
then use them as inputs to a model. For this kind of problem, BDTs are
often as performant as ANNs while being much less resource-heavy
and much faster to evaluate, as will be explained in more detail in
Section 12.1.2.

As the ML model of choice, a BDT model was hence chosen. In the
2024 configuration, the BDT has a maximum depth of three with nine
trees and has as inputs 10 variables that represent sums at different
distances around the center of the TOB and an additional variable that
provides the scale of the total ET deposited in it. During the training,
the BDT learns cuts on the first ten variables at different ET scales,
providing a more sensitive isolation discriminant compared to the
Heuristic algorithm’s RCore. The algorithm’s implementation details
will be discussed further in the upcoming sections.
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12.1 field programmable gate arrays

The strict LHC bunch crossing frequency of 40 MHz requires that all
experiments are synchronized with it in order to collect data optimally.
For that reason, the first stage of the triggering systems of general-
purpose experiments such as ATLAS and CMS, which are required to
trigger on a large number of signatures, resulting in very low latency
requirements, are implemented in hardware and are controlled by
a strict clock signal which must be synchronized with the bunch
crossing frequency.

There are generally two kinds of integrated circuits that are ca-
pable of running clocked logic - application specific integrated circuits
(ASICs) and field-programmable gate arrays (FPGAs). The main differ-
ence between the two is that the former is manufactured with the
logic already present and immutable, while the latter contains a grid
of logic elements that can be connected "in the field" to form logic
circuits and is thus programmable and provides the best compromise
between design flexibility and performance required by high energy
physics experiments.

12.1.1 FPGA Firmware Design

Two essential components in an FPGA are lookup tables (LUT) and
registers or flip-flops (FF). Ideally, any function can be implemented by
combining multiple LUTs. However, connecting an arbitrary amount
of LUTs to produce an immediate output assumes that the travel time
of signals over the wires connecting the LUTs is zero. In reality, one
must take care that logic signals at the inputs of the LUTs are stable
long enough to get a reliable output. For that reason, the logic flow
is fragmented into a sequence of stages by introducing FFs, which
are storage elements controlled by a square clock signal between the
stages. When the clock changes from a low to a high logic value, the
FF releases the stored value and takes in the next value at its input.
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This makes the flow of logic resemble a production line, where a logic
operation is performed every clock cycle.

A digital signal processor (DSP) is an additional component that
helps signal processing on an FPGA. These components are used
instead of implementing signal processing operations such as multi-
plications using LUTs.

The description of the transfer of logic signals between the FPGA’s
components is a design abstraction called register-transfer level (RTL)
ans is written using a hardware description language (HDL) such as
VHDL or Verilog. A design implemented in HDL is synthesized into
a file describing the exact wiring and locations of the physical compo-
nents on the FPGA using a toolchain provided by the FPGA vendor,
which can then be used to program the FPGA. The process usually
consists of two stages, the first is the synthesis of the design, which
converts the HDL code into a lower-level description of logic blocks
and their connections and the second is the implementation of the de-
sign which selects the physical elements on the FPGA and determines
the wires that connect them together.

Several real-world constraints need to be taken into account when
designing a logic circuit on FPGAs. The most important and obvious
is the amount of resources utilized by the design.

A further complication arises when a design is large enough and
utilizes a sizeable fraction of the FPGA resources. In this case the
vendor’s toolchain may be unable to place some components of the
design close enough together so that signals between them propagate
within the expected time along the logic paths that connect them.
Essentially, once a design is synthesized and placed on the FPGA, a
minimum is computed over the estimated slack value of each logic
path in worst-case working conditions, where the slack of a path is the
required time it should take a signal to propagate along it by design
and the actual time it takes in reality. A complex design that uses a
lot of resources may have paths with negative slack, in which case the
design is said to fail timing. Such a design cannot be used in reality as
it may behave unpredictably.

Further constraints are energy consumption and heat dissipation,
which this thesis will not discuss.

12.1.1.1 Latency and Throughput

An algorithm operating in an extremely low-latency domain, such
as the ATLAS L1 trigger, must be fast enough to process the large
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volume of incoming data and produce trigger decisions in synchrony
with the LHC’s 40 MHz collision rate. The temporal performance of
such an algorithm is typically evaluated using two metrics: latency and
throughput.

Latency is the amount of time it takes for an algorithm to process
a single input. However, when processing a long sequence of inputs,
the total processing time is not significantly affected by latency - if
the latency is sufficiently low. Throughput, on the other hand, refers
to how many inputs the algorithm can process per unit time. The
maximum throughput at a given clock frequency corresponds to the
algorithm consuming a new input every clock cycle.

The number of clock cycles between two successive input consump-
tions is called the initiation interval (II). Therefore, maximum through-
put is achieved when II = 1. For a long input sequence, increasing
the II from, for example, 1 to 2 will approximately double the total
processing time. As such, a key guideline for algorithm development
in extremely low-latency applications - such as the ATLAS L1 trigger -
is to maximize throughput as much as possible.

Increasing throughput is often referred to as pipelining the algorithm
and takes advantage of the parallelism enabled by FPGAs. Certain
operations that would typically be considered sequential in CPU-
targeted algorithms can be parallelized on FPGAs. For example, in
the context of a loop, if the iterations are independent, they can all be
computed in parallel. In other cases, a subsequent iteration can begin
execution before the previous one has completed. Such optimizations
are generally ineffective on CPUs, which are inherently sequential in
nature.

While beneficial for speed, increasing throughput often results in
higher resource utilization on the FPGA. To understand why, one can
imagine a logic path on the FPGA as a production line, where multiple
processing stations handle incoming data packets, with each station
representing a hardware resource. If the slowest station requires two
clock cycles to process a packet, new packets must be introduced every
two cycles, corresponding to an initiation interval of II = 2. To reduce
the II to 1, or fully pipeline the algorithm, the slowest station would
need to be duplicated, thereby increasing resource usage on the FPGA.
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12.1.2 FPGA Implementation

The structure of a BDT model allows it to be very efficiently imple-
mented in a highly parallel design on an FPGA. Since the model is a
collection of threshold comparisons and eventual summation of inde-
pendent tree scores, the evaluation of thresholds and individual trees
can be parallelized, producing a low-latency, fully pipelined design
with the help of modern high-level synthesis (HLS) tools that convert
logic written in human-friendly languages such as C++ to RTL.

The tool that is utilized in order to produce such a design for the
τ algorithm is Conifer [72]. It has several back-ends to synthesize a
VHDL design for a BDT, given a trained XGBoost model, of which
the XilinxHLS back-end is used. It implements a two-stage process in
which it first synthesizes C++ code implementing the BDT decision
function from the trained model and then utilizes Xilinx’s Vitis HLS
tool to produce a highly parallelized, fully pipelined, low-latency
implementation of the BDT.

Several parameters, such as the bit widths of the thresholds and
scores, clock period, and clock period uncertainty, steer the design’s
synthesis. Vitis HLS takes care to produce an optimal design in terms
of both resources and latency. Details of the generated RTL, such as
the latency of the resulting design, which resources to use, and its
interface, can be fine-tuned using special C++ pragma directives.

As an example, the resulting design of a single M = 2 tree is
illustrated in Figure 12.1 for a simple case of an input feature vector of
length three and three corresponding thresholds. All nodes in the tree
are evaluated in parallel, and the tree is traversed, resulting in 2M bits,
each representing a path. Only one bit is 1, corresponding to the path
taken in the tree, while the rest are 0. These bits are used to index a
small lookup table which stores the scores of that tree. The thresholds
and leaf scores are fixed in the logic of the FPGA firmware rather than
being fetched from an external memory. This process is done for all K
trees in parallel and the resulting scores are added using a balanced
adder reducing the scores to their sum in a pair-wise tree structure
[72].

The resulting score of the BDT, as implemented in hardware, does
not have the usual sigmoid function applied to it, so its value is not
constrained. Since the sigmoid is a monotonous function of its input
and our purpose is to set simple thresholds on the score, this is an
unnecessary step.
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Figure 12.1: Schematic of the implementation of decision trees, showing a
single tree with depth of 2. The x are the node features, and t
the thresholds. The ‘¬’ is the unary ‘not’ operator, and ‘&’ is
the binary ‘and’. The Boolean leaf activations are concatenated
and used to address a look-up table of output scores. The labels
‘a’, ‘b’, ‘c’, and ‘d’ on the schematic correspond to the respective
labeled leaf nodes of the tree represented at the bottom left. [72]

12.1.3 The Effect of Hyperparameters on the Synthesized Design

The choice of HP affects the complexity of the trained model and,
therefore, the two critical metrics of its synthesized design on hardware
- resource usage and latency.

Timing closure is an additional important quantity that is difficult
to estimate a priori from HP values and is only available after running
full implementation and routing of the full firmware design, with the
BDT model integrated, on the target FPGA.
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Resource usage and timing closure heavily depend on the number
of nodes N in the BDT, where a node is either a single comparison
operation of a feature with a threshold or a leaf of a tree.

The number of trees K, the tree depth M, and the pruning regular-
ization parameter γ, in turn, have an effect on N. For an unpruned
tree,

N = K ·
(

2M+1 − 1
)

, (12.1)

and the effect of increasing the γ parameter is to reduce the number
of nodes in an a priori unpredictable way.

The latency of the BDT model is affected by both M and K, and this
effect is somewhat predictable. During the evaluation of the input,
the tree must be traversed from the root to the leaf node, which,
for an unpruned tree, takes M sequential stages and can be done in
parallel for all trees. Then, all leaf scores must be added, which takes
log2 K sequential stages of addition. This results in a total latency
of approximately M + log2 K sequential stages. The HLS tool often
optimizes the design to reduce the overall latency by placing multiple
stages in a single clock cycle, making the actual latency of the model’s
design difficult to predict a priori, but this approximation allows for
estimating an upper bound.
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The rationale for the choice of a BDT as the model of choice and its
usage for triggering was briefly discussed in Section 11.4.2.3 and is,
in hindsight, fairly trivial. However, converging to the final algorithm
used in 2024 data taking, referred to as "BDT v16", involved a long
process of trial and error with many successes, failures, and direction
changes, involving different ML models, training methods, and input
variables.

The multi-year process of developing the algorithm can, in retro-
spect, be divided into two stages. The first one was an exploratory
development stage, during which the tools and data used for exploring
the various possibilities and approaches to BDT training, evaluation,
and firmware implementation were adequate but did not fully rep-
resent the real-world systems and methodologies in ATLAS, partly
because Run 3 has not yet started and a lot was still under devel-
opment. The second was a commissioning stage, during which the
algorithm was integrated within ATLAS simulation and firmware and
proper methodologies were applied for its evaluation and tuning, with
the involvement of ATLAS physicists and engineers from the L1Calo
system and the ATLAS τ trigger group.

This chapter describes both the progression of the algorithm during
the development stage, summarizing the main directions that were
studied before converging to the current state of the algorithm until
Section 13.4.2 and continues to describe the algorithm in its current
state.

13.1 choice of model

Due to its simplicity relative to other models, the idea of using a BDT
as the model of choice was fairly clear from the beginning, though
some attempts at training ANNs were made. The initial plan was to
use a deep BDT with many highly performant variables in order to
improve the low-pt efficiency of the tau identification algorithm in
L1Calo (Figure 13.1), where the identification of tau leptons is difficult
due to the overwhelming amount of QCD jet background, as can be
seen on Figure 13.2, and where it was believed that a ML approach
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Figure 13.1: Efficiency as a function of the pT of the reconstructed tau jet in
Run 2 for L1 and HLT [73].

would increase the efficiency of identifying taus. In parallel, feasibility
studies of running different models on hardware were performed.

Initially resource and latency considerations did not play a big role
and the goal was to see how well a BDT can separate signal from
background. The first BDTs tested were very deep and wide - up to
max. depth of eight and 200 trees, with good performance relative to
that of the Run 2 algorithm on the same dataset.

13.2 training and performance evaluation

The training during the development stage was done on MC16 Monte-
Carlo samples with Z → ττ as signal and di-jet samples as back-
ground, described in more detail in Section 13.8. The performance
during this stage was measured by producing a turn-on curve, assum-
ing that the only tunable threshold for the algorithm is the BDT score,
while the TOB ET was not thresholded.

This way of producing the turn-on curves used during the de-
velopment stage is simplified and does not fully reflect how they
were produced during the commissioning stage. It was done this
way because the initial idea was to use the BDT score as the primary
discriminant instead of the TOB ET.

For comparison, the Run 2 (also referred to as the Legacy) turn
on was also computed and was based on the thresholds on the sub-
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Figure 13.2: Distribution of pT for TOBs in a di-jet MC sample.

leading tau TOB of the primary di-tau trigger used during Run 2, re-
quiring a minimum TOB ET of 12 GeV and isolation of EEM isol

T [GeV] ≤
(ET[GeV]/10 + 2) [74]. A fixed early estimate of ET,eFEX/Ering

T,jFEX =

0.275 for the jFEX isolation, described in Section 11.4.2.1, was applied
for the BDT turn-on curves. This value was taken from earlier perfor-
mance studies done on Monte-Carlo samples with a center-of-mass
energy of 13 TeV. During the commissioning stage, the methodology
was to switch to the TOB ET as the primary discriminant, and the
jFEX isolation, along with the BDT score applied as additional cuts to
reduce the rate while keeping the same efficiency.

When comparing several turn-on curves meant to represent the
efficiency of several algorithms (or the same algorithm with different
threshold settings), the algorithms are first tuned so that they pro-
duce the same background rate, which is required to be equal to the
background rate during Run 2, since Run 3 data was not yet available
during the development stage. During this stage, the background rate
was defined as the number of events that contain at least one TOB
that passed the algorithm’s threshold. As discussed in Section 13.7.3,
during the commissioning stage, a more realistic requirement of events
containing several TOBs and other objects is required for background
rate estimation.
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13.3 combined cuts

After a BDT score is produced, the most trivial way to apply a thresh-
old is to apply it directly to the BDT score. However, some boost
in performance can be gained from combining the BDT score with
other variables. For example, those that take too long to compute and
therefore cannot be used directly as inputs to the BDT, or the fact
that shallow BDTs are used, so cuts on specific variables are omitted
by the training algorithm in favor of the more powerful variables, so
combining other variables may be an interesting exercise.

The effect of combining the BDT score with the TOB ET computed
by summing over all the supercells in the TOB was studied by per-
forming linear and non-linear combinations of the two and using the
combination as the discriminant instead of the BDT score to produce a
turn-on curve. An example of a comparison in performance of a direct
cut on BDT, as well as linear and non-linear combinations, is shown
in Figure 13.3. Figure 13.3a shows the effect of the combination on
the turn-on curves. The red dots are an approximation of the turn-on
curve of the Run 3 Heuristic algorithm, used as a baseline here, which
was computed in an independent study. All three models result in the
same background rate. The effect is mostly on the low- and high-pT

regions, where a combination cut of this type loses signal TOBs at low-
pT, reducing the low-pT performance while improving it at high-pT

by accepting more signal events in that region.
The study demonstrates the potential benefits of using a combina-

tion. For example, a model that performs much better at low pT but
worse at high pT relative to a baseline algorithm can be combined
with the TOB ET in this manner, sacrificing some performance at low
pT but bringing it up to that of the baseline algorithm for high-pT to
produce an overall better model relative to the baseline. This effect is,
however, smaller when the TOB ET and the BDT score are correlated,
which is always the case since the BDT picks up the strong dependence
of the likelihood of a TOB being signal on its ET, even though the
ET is not directly used as the input variable to the BDT. Applying a
combination cut also complicates implementation in firmware and
introduces additional parameters to be tuned - the coefficients of the
combination. It was therefore decided not to investigate this direction
further, though future studies could prove beneficial.
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(a)

(b)

Figure 13.3: The effect of combining a BDT score with the full TOB ET . (a)
Distribution of signal and background TOBs in the BDT score-
TOB ET plane. The horizontal orange line is a cut on the BDT
score only while the purple dotted line is a cut on a linear
combination of the BDT score and TOB ET . The green curve
is a non-linear combination that attempts to "surround" the
background. The resulting same-rate turn-on curves are shown
in (b). The red Run 3 curve is an approximation of the Run 3

Heuristic algorithm.
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13.4 input variables

There were initially a total of 24 variables, which were highly per-
formant but very expensive to compute since they were based on
divisions and summations over large areas. Some example variables
that illustrate their complexity are listed in Table 13.1. The correspond-
ing distributions are shown on Figure 13.4.

Variable Definition Description

ETOB ∑l,η,φ El,η,φ Full TOB ET.

Width ∑l,η,φ El,η,φ·R(η,φ)
ETOB Measures how focused the

energy is in the center of the
TOB. R(η, φ) is the distance
of cell (η, φ) from the TOB
axis.

Density ln
(

∑l,η,φ(103·El,η,φ)
2
/Vl

ETOB

)
Density measure of the en-
ergy in the TOB. Vl is the
volume of a supercell in
layer l.

MaxRatio max2E2,η,φ
max1E2,η,φ

Ratio between the high-
est and second highest en-
ergy depositions in the EM2

layer.

MaxF2
max2E2,η,φ

E2
Ratio between the second
highest energy deposition
and the energy in EM2.

Table 13.1: Some variables used as initial inputs to the BDT model. The index
l runs over all layers while η and φ take values of zero up to the
maximum index of supercell in the respective direction, El,η,φ is
the ET in layer l and position (η, φ).

In addition to the 24 variables, other variables were evaluated based
on summations over permutations of supercells and weighted sums
of the supercells, described in the following sections.

13.4.1 Energy Flow Polynomials as Variables

One of the ideas for input variables was inspired by Energy Flow
Polynomials (EFPs) [75] and motivated by the assumption that sums
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Figure 13.4: Distributions of the variables described in Table 13.1.

over specific permutations of cells within specific TOB layers might
carry information about the τ jet’s internal structure, such as the
number of prongs or the photon decay products from neutral pions in
the EM1 layer.

EFPs are functions of the form

EFPG =
M

∑
i1=1
· · ·

M

∑
iN=1

zi1 · · · ziN ∏
(k,l)∈G

θikil (13.1)

where G is a multigraph (i.e. a graph with at least zero edges between
any two vertices) with N vertices and edges (k, l) ∈ G,

za ≡
(

pTa

∑M
b=1 pTb

)κ

θab ≡
(
∆η2

ab + ∆φ2
ab
)β/2

, (13.2)

∆ηab, ∆φab are the distances in η, φ, respectively, between supercell a
and b, pTa is the energy deposit in supercell a, M is the total number of
supercells, and κ, β are parameters. These functions can be graphically
represented by multigraphs. For example:

=
M

∑
a=1

M

∑
b=1

M

∑
c

zazbzcθabθacθ2
bc (13.3)

Two things should be noted. First, these functions are invariant
under permutations of the vertices due to the summation of all possible
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permutations, which reflects the nature of depositions of energy in
a TOB resulting from a jet with multiple constituents. Second, these
functions encode a relation between the vertices. For instance, in
(13.3), the angular proximity between vertices b, c is more critical than
that between a, b or a, c. These two features potentially allow probing
various configurations of the energy depositions within the TOB.

In one study, five arbitrary EFPs were selected and generated, and
a BDT was trained on the 18 most highly ranked of the 24 original
variables in addition to the five EFPs, resulting in an improvement of
the turn-on curve in the low-pT region, as shown on Figure 13.5. The
signal-background distribution for each EFP, their multi-graphs, and
their κ and β coefficients are shown in figure 13.6.

Figure 13.5: Improvement in low-pT of the BDT performance due to adding
five EFP variables. The green curve is the Run 2 algorithm
performance, blue is the original BDT performance and orange
is the performance of the BDT trained on the original variables
plus the five EFPs.

The EFP variables, as many of the other variables, while boosting
performance, were dropped at later stages because of their prohibitive
resource and latency requirements when implemented on hardware.

13.4.2 Weighted Sum as a Variable

A weighted sum of the supercells in a TOB was another variable that
was shown to boost performance. The idea for assigning weights to
sections of the TOB and summing to produce a discriminant originated
from a coding error. During the computation of the total ET in a TOB
to use it as the primary discriminant to produce a turn-on curve, one
of the layers was accidentally counted twice, and the resulting turn-on
curve was slightly better.
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Figure 13.6: Signal-background distribution of five arbitrary EFP variables.
The multi-graphs and coefficients describing them are shown
under each plot.

In order to converge to the optimal weights of the weighted sum, a
turn-on curve was produced, assuming a weighted sum model that
produces the weighted sum discriminant as the output. The area under
the turn-on curve at low-pT for this model was used as a performance
metric, and the weights randomly varied. The weights that produced
the maximum area were selected. The scanning for optimal weights
was done in iterations since it was not computationally possible to
scan over the full space of 99 weights (one per supercell). At each
iteration, the TOB was divided into a manageable number of three
groups of cells in a symmetric way around its axis, assigning a weight
to each group and selecting the triplet of weights that maximized the
area metric. In the next iteration, a different segmentation into three
groups was done, and the optimal weights of the first iteration were
multiplied by those of the second iteration, and so on. The weights in
the various optimal sets that resulted from these scans were usually
falling off radially from the TOB axis, as seen in figure 13.7. Supercells
at the periphery of the TOB had low and even negative weights, while
central supercells had high weights, with depositions far from the
center reducing the score, making the TOB more background-like.
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Figure 13.7: Optimal weights that maximize the area under a turn-on curve
produced by assuming a weighted sum as the τ identifying
discriminant.

Using this variable with the optimal weights as an input to the BDT
slightly improved its performance. However, it was soon discarded, as
producing a weighted sum in hardware was not feasible within the
available resource and latency constraints. HLS-generated designs for
evaluating a weighted sum of 99 supercells far exceeded the latency
requirement of the τ algorithm in the eFEX system, which was limited
to 12 cycles at 200 MHz, as will be mentioned in Section 14.1.2.1.

A possible future direction for the weighted sum could be to inves-
tigate the impact of weight quantization on latency - an aspect not
explored by the author. Nonetheless, the image in Figure 13.7 sparked
the idea for the final set of input variables, which are described in
detail in Section 13.4.3.

13.4.3 Symmetric Sums

As previously discussed, many choices of variables are available that
demonstrate good performance, however the latency and resource
constraints render these variables unusable in reality. As a result, an
alternative set of variables that capture internal TOB structure while
being quick and less resource-intensive to compute was required.

Since the TOB is essentially symmetric around its axis, in the sense
that, given a TOB with ET depositions, the score of an algorithm meant
to detect a τ-lepton signature in the TOB should not change if the TOB
is arbitrarily rotated around its axis, it is reasonable to estimate ET

depositions at different radii around the TOB axis at different layers
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and then train a BDT to classify signal vs. background with these
values as inputs.

The finest granularity for probing the ET deposition as a function
of the distance from the TOB’s axis, given the current readout gran-
ularity of the EM LAr and hadronic calorimeters, can be accessed
by producing symmetric sums - sums over supercells located at the
same distance from the TOB axis at a specified layer. There is a total
of 33 such sums, as illustrated on Figure 13.8. The supercells used to
compute each symmetric sum are summarized in Table 13.2, while
the indexing convention of the supercells is described in Figure 13.8.
The name of each variable has two parts separated by an underscore.
The first part, preceded by ’l’, is the layer index, and the second part,
preceded by ’d’, is the ∆R =

√
∆η2 + ∆φ2 between the center of the

layer and the center of any supercell in the sum, rounded to four digits
after the decimal point and multiplied by 10000.

As each variable is constrained to a single layer, an additional vari-
able estimating the total ET in the TOB allows the BDT to automatically
optimize the learned cuts on the symmetric sums as a function of the
energy scale. To minimize resource usage, the ET deposition in the
core tower was selected and is henceforth referred to as CORE. With
this variable and the symmetric sum variables as inputs, the BDT
score essentially encodes an elaborate measure of isolation of the ET

deposition in the TOB as a function of its energy scale.

Figure 13.8: An illustration of possible variables for BDT inputs based on
sums over groups of supercells equidistant from the TOB axis.
For each layer, every such group is marked by the same shade.
The numbering convention of all supercells is shown, as well as
the increasing η and φ directions.
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13.5 training of the bdt

BDT v16 is trained on individual TOBs from signal and background
samples extracted from Z → ττ MC and a zero bias data sample
from a 2023 run, respectively. A summary table of the dataset and
the hyperparameters is given in Table 13.3. The datasets used are
described in more depth in Section 13.8.

The signal + background dataset was randomly split in two - 80% for
training, 20% for test, preserving the integrity of the events. The train
set was further split into 80% for training and 20% for validation used
to evaluate the training for early stopping by XGBoost. To converge
on a minimal set of the strongest variables, the BDT was trained
in iterations, starting with the full set of 34 variables, performing
variable ranking, removing the weakest variables, and re-training on
the trimmed variable set, as further detailed below.

Following the discussion in Section 4.3.2 and given that the full
evaluation of the BDT working point must be done within 12 clock
cycles at 200 MHz (see Figure 14.2 for a timing diagram), during
the development of the algorithm it was decided that the space of
possible HPs shall be limited to a domain such that the latency of the
resulting algorithm does not exceed seven clock cycles, leaving enough
time for input variable computation and BDT condition estimation.
In addition, the resource usage on the FPGA shall be low enough for
the full firmware, with the BDT algorithm integrated, to meet timing
requirements, as described in Section 12.1.1.

Within these constraints, an XGBoost model of depth three and nine
trees was trained using the Python XGBoost package version 1.5.2 with
five early stopping rounds. The values for max. depth and number
of trees were selected to give the best ROC curve while constraining
the total node count to at most 200, but lower values of the latter
were preferred due to issues of the final design’s difficulty in meeting
timing. Since the dataset is unbalanced, XGBoost’s scale_pos_weight
hyperparameter with a value of 3.43 was used to compensate. It is the
ratio between the size of the majority signal class and the minority
background class, following the recommendation in XGBoost’s online
reference.

The training is visualized in Figure 13.9. The plots were obtained
by training a model while allowing the number of trees to go up to
50. When training a BDT using XGBoost, each tree compensates for
the errors of the sum of the preceding trees, so the number of trees is
equivalent to the number of training iterations.
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A low number of total nodes in the BDT of around 135 was selected
to facilitate its implementation on the FPGA with no timing violations.
At this value, the error function does not plateau yet, and the AUC
is still increasing, so, in principle, selecting a model with more nodes
would result in better performance. However, it will be shown in
Section 13.7.4 that compared to the heuristic algorithm’s performance,
this model is already superior while being less resource intensive, as
shown in Table 14.3. Potentially better hyperparameters for the BDT
are explored in Section 13.5.2.

The ROC curve of the final model with the number of trees con-
strained to 9 is shown on Figure 13.10b, evaluated on subsamples of
the test set with different minimum cuts on the TOB ET applied while
the BDT distribution for signal and background is shown on Figure
13.10a. The AUC of the final model on the full test set is around 0.77.

Figure 13.9: Training of the BDT algorithm. The AUC metric is on the left
y-axis, and the number of nodes in the BDT is on the right y-axis
as a function of the number of trees. The selected number of
nodes is shown along with the number of trees and the resulting
AUC of the trained model at that point.
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(a)

(b)

Figure 13.10: Evaluation of the final BDT model. 13.10a Separation between
signal and background samples in the test dataset [76], 13.10b
ROC curve of the final model.
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13.5.1 Variable Ranking

A selection of the strongest variables is made using computation
of SHAP values [77], which are useful to understand how strongly
different values of the variables contribute to the final score and
simultaneously to explain what a model had learned.

Given a single input vector of BDT variables, the computed SHAP
values of its components quantify the contribution of each variable
to the BDT score of the vector, which can be expressed as the sum
of the SHAP values of the variables, as shown in Figure 13.11. In
13.11a, high ET depositions in the EM2 layer and the hadronic layer
give a significant contribution to the TOB’s high score of −2.869 while
the lack of ET deposition in the cells comprising the symmetric sum
l2_d0375 reduces the score. In 13.11b, the lack of ET deposition in
the center of the EM2 layer and a low ET deposition in the hadronic
layer push towards a lower score while the presence of a significant ET

deposition in EM2 pushes the score higher. The negative score of the
BDT in this example is the consequence of not applying the sigmoid
function to the BDT score.

Once the SHAP values are computed, a feature ranking can be
constructed by computing the median of its SHAP values over a set
of input vectors for each variable. An explanation of the model can
be visualized by plotting all SHAP values for all input vectors in a
dataset as shown in Figure 13.12a.

The variable selection is done iteratively. The result is a set of 11
variables shown in Figure 13.12 along with their ranking and SHAP
value distributions. A BDT model is first trained on the full set of
33 + 1 variables, where "+1" stands for the additional CORE variable.
At each step, a simplified turn-on curve (used during the development
stage, as described in Section 13.2) is produced on a validation set
along with a Run 2 reference curve. The variables with SHAP scores
close to zero are dropped, and the BDT is re-trained on the remaining
variables. This process is repeated several times, until a further removal
of variables either has a significant reduction in efficiency or if the
BDT curve falls below the Run 2 reference curve. The resulting SHAP
scores and the position of the variables in the TOB are shown in Figure
13.12.
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(a)

(b)

Figure 13.11: Example of TOB explanation with SHAP values for two TOBs
- (a) matched to a truth tau from a Z → ττ MC sample and
(b) one from a di-jet MC sample, computed using a separate
training. The names and values of the strongest variables are
listed on the left side of each plot and the contribution of each
variable to the final BDT score f (x) is given by the arrows and
their annotations.
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(a)

(b)

Figure 13.12: (a) A bee swarm plot explaining the trained BDT model in
terms of SHAP value distributions of the final set of 11 input
variables. The variables are ordered by their classification power.
The range of values of each variable is colored according to a
blue-to-red gradient color map, with blue corresponding to low
and red-to-high values. Negative SHAP values reduce the BDT
score, while positive ones increase it. (b) Illustration of the 11
BDT variables in a TOB.
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13.5.2 Effect of Hyperparameter Choice on BDT Performance

During training and hyperparameter selection, the main focus was on
the feasibility of the project. In the late development and early com-
missioning stages, the primary concerns were focused on technical
implementation details and the ability to outperform the Heuristic
algorithm while having a lower resource footprint. At this experimen-
tal stage of using ML algorithms in the eFEX firmware, the process
of re-training, integrating the BDT in the firmware, and subsequent
performance evaluation and hardware tests required substantial time
and effort. This, along with the BDT becoming a viable option very
close to the start of Run 3, resulted in selecting a BDT with a perfor-
mance slightly below optimal to be improved in future re-trainings.
This section presents a recent study showing how the choice of hy-
perparameters affects the performance and where the selected BDT is
situated relative to the optimal one.

The primary hardware constraint for the BDT hyperparameters
comes from resources. As discussed in Section 4.3.2, the resource
usage heavily depends on the number of nodes in the BDT, and the
higher the resource usage, the higher the likelihood of the design to
fail timing. From experimentation, the cutoff value for the number
of nodes above which the full firmware with the BDT is likely to fail
timing is around 200.

In this study, several hyperparameters are varied independently -
max. depth, the pruning parameter γ and scale_pos_weight. The effect
of their different values on the model’s performance, quantified by the
AUC metric, is observed as a function of the training iteration, which
is roughly proportional to the number of nodes, since a new decision
tree is added every iteration.

The strongest effect was observed by varying the max. depth hyper-
parameter. The AUC vs. number of nodes for this variation is shown
in Figure 13.22. Other hyperparameters showed negligible effect on
the AUC metric. From 13.13a it is evident that the deeper the tree, the
more performant it can get given a large enough number of iterations
translating to a large enough number of nodes. However, 13.13b shows
that in the region where the number of nodes is within our range, i.e.,
below the cut-off point for timing failure of ∼ 200 nodes, the shallower
model is more performant.
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(a)

(b)

Figure 13.13: (a) AUC of different models with different values of the max.
depth hyperparameter over a large range of nodes. (b) The
same AUCs, zoomed into the relevant range of nodes, from 100
to slightly above the timing failure cutoff value of 200.



146 the efex bdt τ algorithm

13.6 estimation of tob ET

Figure 13.14: The cluster of supercells over which the BDT v16 algorithm
sums to produce the TOB’s ET estimate.

The BDT τ algorithm, unlike the Heuristic, estimates the sum of
the ET within the TOB by summing over a fixed set of supercells. The
Heuristic algorithm’s computation of ET is summarized in Section
11.4.2.2 and requires logic to search for the small seed in the central
region of the EM2 layer and to compute the direction in φ in which to
construct the cluster. This requires a fair amount of resources, and it
was decided to drop this functionality in the BDT algorithm to make
more room for a more complex BDT model and instead to sum in a
symmetric fashion over a region centered on the TOB axis in all layers,
with a particularly wide sum in the EM2 layer which is the deepest
sampling layer of the calorimeter, absorbing most of the energy. The
ET sum of the BDT v16 algorithm is illustrated in Figure 13.14.

The fact that the Heuristic algorithm uses an asymmetric cluster
while the BDT one uses a wide symmetric sum for ET estimation
results in some fundamental differences between the two. One conse-
quence is a difference in granularity with which the algorithm reports
the TOB in the η direction. The Heuristic algorithm relies on the posi-
tion of the small seed, which is the supercell in the central region of
the EM2 layer having the highest energy deposition, in order to refine
the reporting of the η coordinate of the TOB. It can thus report the η

position of the TOB to the downstream algorithms with a precision
of 0.025. The BDT algorithm, having omitted the small seed, can only
report the center of the TOB, which has a precision in η of 0.1. That
being said, this does not affect any downstream trigger algorithms



13.6 estimation of tob ET 147

(a)

(b)

Figure 13.15: The ET reported by the Heuristic vs that reported by the BDT
algorithm for a reconstructed τ jet at low (a) and high (b) pT ,
evaluated on a MC sample of off-shell γ decaying to ττ.
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(e.g., in L1Topo) as they do not rely on the fine-grained reporting of
the Heuristic algorithm.

Another fundamental difference is a skew of ET of the BDT algo-
rithm relative to the Heuristic one at low-pT, as can be seen in Figure
13.15. To produce the plot, the ET was read off the TOBs produced
by the Heuristic and BDT algorithms that match reconstructed τ jets.
Figure 13.15a contains only τ jets between 16 and 18 GeV while Figure
13.15b contains those between 50 and 52 GeV. At high-pT there is
no significant skew in ET, but in the low-pT region, there is a skew
in how much the BDT algorithm over-reports the ET relative to the
Heuristic one. This skew, however, is present only at energies well
below the range of TOB ET thresholds used for triggering, the lowest
being above 11 GeV, and is therefore not of concern.
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Symmetric sum name Constituent supercells

l0_d0000 4

l0_d0982 1, 3, 5, 7

l0_d1402 0, 2, 6, 8

l1_d0125 26, 27

l1_d0375 25, 28

l1_d0625 24, 29

l1_d0875 23, 30

l1_d0990 14, 15, 38, 39

l1_d1051 13, 16, 37, 40

l1_d1125 22, 31

l1_d1164 12, 17, 36, 41

l1_d1315 11, 18, 35, 42

l1_d1375 21, 32

l1_d1493 10, 19, 34, 43

l1_d1690 9, 20, 33, 44

l2_d0125 62, 63

l2_d0375 61, 64

l2_d0625 60, 65

l2_d0875 59, 66

l2_d0990 50, 51, 74, 75

l2_d1051 49, 52, 73, 76

l2_d1125 58, 67

l2_d1164 48, 53, 72, 77

l2_d1315 47, 54, 71, 78

l2_d1375 57, 68

l2_d1493 46, 55, 70, 79

l2_d1690 45, 56, 69, 80

l3_d0000 85

l3_d0982 82, 84, 86, 88

l3_d1402 81, 83, 87, 89

l4_d0000 94

l4_d0982 91, 93, 95, 97

l4_d1402 90, 92, 96, 98

Table 13.2: All symmetric sums around the TOB axis and the constituent
supercells. These sums serve as the building blocks of the BDT
input variables. The cell indices correspond to those in Figure
13.8.
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Dataset

Sample Class Size

Train Validation Test

Z → ττ Signal 948867 (720436) 237225 (179926) 296589 (225081)

Run 452843 ZeroBias Signal 276584 (170996) 69441 (42933) 86092 (53492)

XGBoost Hyperparameters

Parameter Value

scale_pos_weight 3.43

max_depth 3

n_estimators 9

early_stopping_rounds 5

Table 13.3: Training inputs summary for the BDT algorithm. The dataset size
is the number of TOBs, and the numbers in parentheses are the
number of events.
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13.7 algorithm tuning and performance

Before an ATLAS run starts, the parameters for all the trigger algo-
rithms are set in a trigger menu. Before physics data taking, these
parameters must be tuned to give the optimal performance in terms
of efficiency, background rejection, and trigger rate.

Besides optimizing the BDT algorithm’s parameters, it is crucial to
compare the performance of the baseline Heuristic algorithm with
the BDT algorithm to see which candidate algorithm has a better
performance. For that, the heuristic and BDT algorithms must be
tuned individually. This section describes the tuning of the thresholds
of the two algorithms, based on utilizing them inside primary Run 3 τ

triggers, counting the resulting rates, and changing the thresholds until
the rates are similar to the equivalent triggers based on the Legacy
(Run 2) τ algorithm. Efficiency plots using the tuned algorithms are
presented. The tuning is performed using a combination of MC and
data samples produced during Run 3 described in Section 13.8.

13.7.1 Parameters of the Tau Algorithms

There are several tunable parameters internal to the BDT and Heuristic
algorithms. These are either triplets or single numbers. The triplets
correspond to three thresholds, setting three working points - loose,
medium, and tight. These can be either multipliers or direct thresholds.
Multipliers are used to avoid applying direct thresholds on ratios,
which are hard to compute in hardware, and instead are used to
multiply the denominator of the ratio and compare with the numerator.
In addition, there are several external parameters. Following is a list
of all parameters:

• Parameters common to the BDT and Heuristic algorithms

– Hadronic fraction multipliers Mhad
1 ,Mhad

2 ,Mhad
3 - a triplet

of multipliers to set working points on the hadronic fraction,
logically the ratio between the energy depositions in the
hadronic and the EM calorimeters. The hadronic fraction
working point is not used for τ triggering and is imple-
mented as part of the τ algorithm due to a requirement for
potential future triggering on long-lived particles. It was
not considered in the tuning.
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– Minimum ET ET,min.- a threshold on the TOB ET below
which the TOB is not written out from the eFEX system. It
is set to 5 GeV and is not tuned.

– Maximum ET ET,max.- a threshold on the TOB ET above
which the isolation discriminant is ignored and is always
considered as passed (i.e., "tight").

• Parameters specific to the BDT algorithm

– BDT thresholds B1, B2, B3- a triplet of BDT score thresholds,
defining three working points, depending on where the
score lands.

– Hadronic fraction multipliers Mhad
1 ,Mhad

2 ,Mhad
3 - in the

BDT algorithm, the Hadronic and EM energies, due to prac-
tical reasons, are computed by summing over several BDT
input variables in the HAD and EM2 layers, respectively.

– Low ET BDT cutoff EBDT
T,min.- a minimum threshold for ET

below which the BDT score is ignored, discussed in Section
13.7.1.1.

• Parameters specific to the Heuristic Algorithm

– Rcore multipliers Mcore
1 ,Mcore

2 ,Mcore
3 - a triplet of multipliers

to set working points on the Rcore discriminant, described
in Section 11.4.2.2.

– Hadronic fraction multipliers Mhad
1 ,Mhad

2 ,Mhad
3 - in the

Heuristic algorithm, the EM and hadronic energies are
computed around the small seed, in the φ direction of
highest energy in the EM2 layer and over two φ rows in the
same φ direction in the hadronic layer.

• Parameters external to the eFEX algorithms

– Trigger ET threshold - the primary cut on the ET of the
TOB, which, for a given trigger chain, is largely fixed at
a certain energy value, while other parameters are varied
during tuning.

– jFEX isolation multipliers - a triplet of multipliers to set a
working point for the jFEX isolation, as described by (11.1).

13.7.1.1 BDT vs. Heuristic Isolation

As already discussed in Section 11.4, the major difference between the
Heuristic and BDT algorithms is the isolation discriminant, which in
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the former case is provided by the Rcore ratio, while in the latter - by
the BDT score.

One fundamental difference in the nature of isolation between the
BDT and the Heuristic algorithm is the fact that the Rcore discriminant
is computed as a ratio of the energy deposition in a core over an
environment region that is not very sensitive to the energy scale, while
the BDT is required to pick up the isolation’s scale dependence in
training, through the provided CORE variable, as described in Section
13.4.3. This can lead to sensitivity of the performance to the training
dataset and is a disadvantage of the BDT algorithm in its current form.
Such a dependence was indeed observed during 2024 data taking, as
will be mentioned in Chapter 15.

Another interesting difference is how tightening the threshold on
the isolation discriminant affects the signal turn-on curve’s shape. This
effect is demonstrated in Figure 13.16. Tightening the Rcore isolation
results in a "dent" in the mid-pT region of the turn-on curve, while
tightening the BDT threshold results in a later turn-on. This is not
surprising since the strongest BDT input variable is the CORE variable
(see Figure 13.12a), which is highly correlated with the TOB’s primary
ET discriminant. Therefore, tightening the BDT score has a similar
effect as tightening the ET cut, which lowers the efficiency at low-pT

values of reconstructed τ jets.
In order to mitigate this effect of low efficiency at low-pT, an ad-

ditional parameter, EBDT
T,min., was proposed and implemented by the

author and accepted by the ATLAS L1Calo collaboration, of a minimal
ET value below which the BDT score is ignored.

13.7.2 Choice of Triggers for Tuning

The challenging signature of the τ lepton does not allow using low-
threshold single τ triggers for data taking since they produce unac-
ceptable rates at L1. Therefore, to reach low thresholds which are
essential for sensitive measurements of the Higgs boson’s coupling to
fermions, the τ triggers used for physics data taking are topological
triggers that require a combination of two low-ET taus originating
from the eFEX τ algorithm with an isolation requirement on both,
additional jets and topological cuts between them.

The effect of adding some example topological requirements at the
L1 level on the L1 rates, as evaluated on Run 2 data, is shown in Figure
13.17. Starting with a bare di-τ trigger of two unisolated τ TOBs with
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(a)

(b)

Figure 13.16: Efficiency curves for a single-τ trigger produced by progres-
sively tightening the isolation discriminant, as a function of the
pT of the offline reconstructed τ. (a) Heuristic Rcore discrimi-
nant, (b) BDT score discriminant. The jFEX isolation working
point is kept constant and loose.
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Figure 13.17: L1 rate of a di-τ trigger as a function of instantaneous luminos-
ity for different additional topological requirements evaluated
on Run 2 data using the Legacy L1Calo τ algorithm. [78]

ET thresholds of 12 GeV and 20 GeV (black circles), the addition of
isolation reduces the rate by a factor of 2.3. The requirement of an
additional jet or a topological requirement of a ∆R(τ1, τ2) ≤ 2.8 cut
between the taus as well as the requirement of an additional jet above
25 GeV reduces the rate further.

13.7.3 Rate Counting

In Run 3 the highest rate τ triggers are expected to be low-threshold
di-τ triggers with at least two extra jets followed by a di-τ trigger
with an additional jet, topological cut of ∆R(τ1, τ2) ≤ 2.8 between the
two taus and a disambiguation cut of ∆R(τ, j) > 0.1 between each τ

and an additional jet. For that reason, the thresholds for the BDT and
Heuristic algorithms are computed on emulations of the di-τ+ ≥ 2
jets trigger. The jFEX group performed a separate, similar tuning on
jet trigger parameters in the jFEX system, which was responsible for
producing the jet TOBs used in the emulation of this trigger.

The optimal working points for the leading and sub-leading com-
ponents of the di-τ trigger following tuning are given in Table 13.4.
Table 13.5 summarizes the resulting event counts, as computed on
a zero bias sample, for the pure di-τ trigger and the di-τ+ ≥ 2 jets
one, for which the rates are roughly the same for all algorithms, as
required. These results are not the final results and are not up to date,
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as the process of tuning and algorithm improvement is still ongoing
at the time of writing due to changes in ATLAS detector running con-
ditions. The rates are shown for a given set of run conditions mainly
to compare the primary trigger rates for legacy, heuristic, and BDT
algorithms used to select individual τ TOBs, as was computed prior
to the approval of the BDT algorithm.

Type Algorithm ET cut [GeV] Isolation jFEX R′ jFEX A Max. ET [GeV]

Sub-leading

Heuristic Mcore
2 = 18 1784 1024 50

BDT 12 B2=896 1704 1024 100

Legacy Run 2 - - -

Leading

Heuristic Mcore
2 = 21 1632 1024 50

BDT 20 B2=908 1634 1024 100

Legacy Run 2 - - -

Table 13.4: Summary of a set of thresholds on discriminants of the leading
and sub-leading TOBs in a di-τ trigger producing the same rate
for the di-τ+ ≥ 2 jets trigger. Run 2 isolation is defined in Table
11.1.

Trigger Legacy Heuristic BDT

Di-τ 3088 2949 2876

Di-τ+ ≥ 2 jets 202 210 201

Table 13.5: Summary of the number of zero bias events that pass the di-τ and
di-τ + jets triggers for the Legacy, Heuristic, and BDT algorithms.

13.7.4 Turn-on Curves

Efficiency curves for reconstructed τ jets are computed for the Legacy,
BDT, and Heuristic algorithms on a γ∗ → τ(had.)τ(had.) MC sample
for the leading and sub-leading reconstructed τ jets.

All τ jets that match truth τ jets within a radius of ∆R = 0.2 are
selected and participate in the efficiency denominator. Those that
have a matching TOB within ∆R = 0.2 that passes the algorithm
requirements participate in the numerator.

Figure 13.18 shows the efficiency of the subleading and leading
taus for the two algorithms tuned as described in Table 13.4. The
BDT algorithm performs slightly better for the identification of TOBs
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(a)

(b)

Figure 13.18: Efficiency curves for a single-τ trigger produced as a function of
the pT of the offline reconstructed τ, for the tuning summarized
in Table 13.4, for sub-leading (a) and leading (b). The three
curves are Legacy (green), Heuristic (red), and BDT (blue).
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Figure 13.19: The effect of adding a minimum BDT cut below which the
TOB’s BDT score is ignored on the sub-leading TOB identi-
fication efficiency. The turn-on for the BDT outperforms the
Heuristic over the entire pT range. The event counts for the
Legacy, Heuristic, and BDT algorithms are shown for di-τ and
di-τ+ ≥ 2 jets (written as ≥ 4 jets) trigger emulations.

matched to reconstructed taus in the mid- to high-pT range of the
curve, especially for the lower 12 GeV cut on Figure 13.18a. The
Heuristic algorithm performs better at low-pT. However a recent
addition of the parameter EBDT

T,min. discussed in 13.7.1.1 improves the
performance, as seen in Figure 13.19, which shows a re-tuning done
with this additional parameter.

13.7.5 Performance Relative to Run 2 Algorithm

As evident from Figure 13.18a and Table 13.5, when requiring the same
rate for di-τ triggers as the Run 2 algorithm, the Run 3 algorithms are
less performant in the mid-pT region.

One reason for that is that the Run 3 algorithms, especially when
considering isolated objects, are more fine-grained than the Run 2

one and are capable of better resolving close-by energy depositions
as separate TOBs, triggering the di-τ triggers on the background.
This artifact makes background rejection worse, while not affecting
the signal efficiency since the τ jets in signal di-τ signatures usually
appear back-to-back and are well separated in η and φ.

Figure 13.21 shows the multiplicity per event of sub-leading Run 3

BDT and Run 2 TOBs that are selected by the respective algorithms
with and without the application of the isolation requirement listed in
Table 13.4, evaluated on a zero bias sample. While without isolation,
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there are more events with at least two TOBs, this is reversed when the
isolation requirement is applied. This supports the aforementioned
hypothesis - while the isolation is required to reject individual back-
ground TOBs, it also increases di-τ rate counts, which requires an
increase in thresholds to lower the rate to an acceptable level, which
in turn hurts the efficiency. Therefore, the better Run 2 performance at
mid-pT stems from worse background rejection for the primary di-τ
triggers and not from a worse efficiency for signal detection.

Type Algorithm ET cut [GeV] Isolation jFEX R′ jFEX A Max. ET [GeV]

Sub-leading

Heuristic 12 Mcore
2 = 0 460 0 50

BDT 11.9 B2=876 480 0 100

Legacy 12 Run 2 - - -

Leading

Heuristic Mcore
2 = 19 408 0 50

BDT 20 B2=888 350 0 100

Legacy Run 2 - - -

Table 13.6: Summary of a set of thresholds on discriminants of the leading
and sub-leading TOBs in a di-τ trigger producing roughly the
same single-τ leading and subleading efficiencies for all algo-
rithms. Run 2 isolation is defined in Table 11.1.

Trigger Legacy Heuristic BDT

Di-τ 3088 4159 4136

Di-τ+ ≥ 2 jets 202 247 244

Table 13.7: Summary of the number of zero bias events that pass the di-τ and
di-τ + jets triggers for the Legacy, Heuristic, and BDT algorithms
with the latter two tuned to give the same efficiency as the Legacy
algorithm.

To see that the same single-τ efficiency as Run 2 is attainable by the
Run 3 algorithms, a separate tuning, described in table 13.6 was done
to give the same efficiency between all algorithms, as seen on Figure
13.20. The resulting counts are listed in Table 13.7 and, as expected,
are much higher for Run 3 vs. Run 2 than those listed in Table 13.5.
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(a)

(b)

Figure 13.20: Same-efficiency curves for a single-τ trigger produced as a
function of the pT of the offline reconstructed τ, for the tuning
summarized in Table 13.6, for sub-leading (a) and leading (b).
The three curves are Legacy (green), Heuristic (red), and BDT
(blue).



13.7 algorithm tuning and performance 161

Figure 13.21: Multiplicity of Run 3 BDT and Run 2 TOBs that pass the cor-
responding algorithm thresholds of the sub-leading TOB with
and without the isolation requirement in a zero bias sample.

13.7.6 Dependence on Pileup

A MC simulation should ideally produce distributions of all observ-
ables identical to those of the data it is meant to describe. However,
some observables, in particular the pileup, can only be determined
after the data is taken. Therefore, any MC sample that is generated
before a dataset is taken will have a deviation in this observable.
Other observables may be significantly affected by varying levels of
pileup. Following this logic, the fact that we used data for background
and MC for signal in training the BDT means that the pileup distri-
bution is different in the background and signal samples. The BDT
could, in principle, pick up differences in observables due to pileup,
which could be dominant over differences between the signal and
background signatures.

In order to ensure that the dependence of the score distribution is
not strongly dependent on pileup, a histogram shown in Figure 13.22b
is produced on one of the signal MC samples used to tune the BDT
algorithm, where the BDT score of signal TOBs taken from events
falling within two extreme ranges of pileup is plotted, µ < 30 and
µ > 60. A pileup distribution of all events in the same sample is shown
in 13.22a. No change in the shape of the distribution is observed for
the two ranges.
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(a)

(b)

Figure 13.22: (a) Pileup profile of a γ∗ → ττ signal MC sample. (b) Distribu-
tion of the BDT score in the sample for different pileup ranges.
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13.8 data and mc samples

Different MC and data samples were used during the development
and commissioning stages for the training and evaluation of the BDT
algorithm. During the development stage, only MC samples were
used. For training, a Z → ττ sample was used as the signal and a
di-jet sample as the background, both at a center-of-mass energy of
√

s = 13 TeV.
During the commissioning stage, the model was re-trained on Z →

ττ at
√

s = 13.6 TeV for signal and a zero bias run for background. For
tuning, a γ∗ → ττ sample, which has a wider pT range and in which
all taus are restricted to decay hadronically, was used to compute
efficiencies and compare different BDT models and working points.
Zero bias data from multiple runs, which were the latest at the time,
were used to count the expected L1 rates for the different BDT models.
Table 13.8 summarizes all the MC and data samples used.

Process
√

s [TeV] Generators

Z → ττ 13 Powheg(v.2_r3781), Pythia8(v.308)+AZNLO+CTEQ6L1, EvtGen(v.2.1.1)+Photos++(v.3.64)

Di-jet 13 Pythia8(v.308)+A14 NNPDF23LO, EvtGen(v.2.1.1)

γ∗ → ττ 13.6 Pythia8(v.308), EvtGen(v.2.1.1)

Z → ττ 13.6 Powheg(v.2_r3781), Pythia8(v.308)+AZNLO+CTEQ6L1, EvtGen(v.2.1.1)+Photos++(v.3.64)

Table 13.8: Summary of the MC datasets used for training and evaluation of
the BDT algorithm.

To extract the training data from the MC datasets, reconstructed τ

jets were matched to truth taus within a radius of ∆R = 0.2. For each
reconstructed τ jet, simulated Run 2 and Run 3 TOBs were matched,
also within a radius of ∆R = 0.2. The supercell content of the TOBs
was used to construct input variables for the BDT in the way described
in Section 13.4.3.

For counting rates, zero bias streams from ATLAS physics data
taking runs recorded at the beginning of Run 3 were used, pre-selected
on events that pass the lowest Legacy isolated τ trigger. This trigger
requires a single TOB with its energy computed as described in Section
11.4.1 with an additional isolation requirement of EEM isol

T [GeV] ≤
(ET[GeV]/10 + 2) for ET < 60GeV.





14
H A R D WA R E A N D F I R M WA R E

Since the BDT τ algorithm is an alternative algorithm to the Heuristic
one, which was already implemented and ready for operation as a
baseline τ triggering algorithm for Run 3, the guiding principle in pro-
ducing the firmware design was to make the least amount of changes
to any surrounding components, whether in hardware, firmware or
software and to have the same interface, expecting the same input and
producing the same output. The latency of the algorithms had to be
the same, and the resource usage of the Heuristic algorithm served as
an upper limit to that of the BDT one. The fact that the firmware and
hardware environment were well defined both facilitated the develop-
ment on the one hand and constrained the physics performance on
the other.

14.1 the efex system

The BDT algorithm runs within the electron Feature Extractor (eFEX)
system introduced as part of the Phase-I upgrade. Its purpose is to
identify isolated e/γ and τ TOBs.

14.1.1 The eFEX Hardware

The eFEX system is comprised of 24 eFEX modules, which together
cover the calorimeter range of |η| < 2.5 [79]. Each eFEX module
contains four Xilinx Virtex 7 FPGAs for data processing (part number
xc7vx550tffg1927-2) and an additional FPGA for control. Each FPGA
accepts a fixed region of 0.6×1.0 in η× φ space as input and processes
a core region of 0.4 ×0.8, except in the border regions of η, where
the FPGAs accept a core region of 0.7× 1.0 and process a region of
0.5× 0.8. The regions are illustrated in Figure 14.1, where the core
regions are colored orange, and the full region is the core region and
the surrounding towers.

165
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Figure 14.1: EFEX multiplexing at 200 MHz. The η direction is horizontal.
The five columns illustrate the state of the system at each of the
five 200 MHZ clock cycles fitting into a single 40 MHz cycle. At
each clock cycle, eight algorithm cores simultaneously process
eight 3× 3 TOBs, partially overlapping in φ, positioned inside
the black box in each column in the upper part, where each small
rectangle is a single 0.1× 0.1 trigger tower. The blue columns
are filled with dummy data (e.g., all zeroes) in central regions
away from |η| = 2.5 and only contain valid calorimeter data in
the border regions touching |η| = 2.5.

14.1.2 The eFEX Firmware

Focusing here on functionality relevant to τ only, each eFEX FPGA’s
firmware implements eight identical copies of the τ identification
algorithm, referred to as algorithm cores. While data arrive at the
FPGAs at the LHC bunch crossing rate of 40 MHz, the algorithms
run inside a 200 MHz clock domain, allowing the eight algorithm
cores to process the 0.6× 0.1 region, or a grid of 6× 10 trigger towers
each spanning 0.1× 0.1 in η × φ space, by taking five clock cycles
to scan the grid in the η direction as illustrated in Figure 14.1. The
design of the algorithm must be fully pipelined, which means that
each algorithm core is required to produce output every clock cycle at
200 MHz.

A single algorithm core takes as an input a TOB comprised of 3× 3
trigger towers, containing information about the energy deposition in
a 0.3× 0.3 region in η × φ space of the EM and hadronic calorimeters.
Each tower is comprised of 11 16-bit words, resulting in an input of 99
16-bit words for the τ algorithm. For each input TOB, the output of the
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algorithm is a collection of conditions and discriminants computed
internally.

14.1.2.1 BDT τ Algorithm

The following schematics and description of the algorithm structure
will represent the current iteration of the BDT algorithm used in 2024,
BDT v16.

One of the guiding principles in the BDT algorithm’s firmware
implementation was to avoid introducing significant modifications to
an already existing system. Therefore, from the design perspective,
all significant modifications take place within a VHDL module im-
plementing all details of the algorithm, meant to serve as a drop-in
substitute for the Heuristic algorithm.

The algorithm’s implementation re-uses VHDL code and modules al-
ready present in the firmware as much as possible to conform with the
already established coding standards. The algorithm is implemented
under the assumption that the supercells participating in summations
of the TOB ET and BDT input variables, as well as the BDT model
itself, may change in the future, which requires an additional external
tool to automatically generate and test delay and summation VHDL
code to avoid painstaking manual changes otherwise required when
these modifications are made. The input to the algorithm is identical
to the input for the Heuristic algorithm, and the output is a set of
computed discriminants and conditions that are set downstream in
data structures that are structurally identical for both τ algorithms.

The two algorithms accept several parameters as inputs, which are
summarized in Table 14.1. As discussed in Section 13.7.1, parameters
are either arrays of three 8-bit elements for multipliers or single 16-
bit values. Initially, only parameters 0 − 3 were used for the BDT
algorithm to conform with the Heuristic one, and the fourth parameter
was added to the BDT algorithm close to its approval.

The output structure is summarized in Table 14.2. For the Heuristic
algorithm, the fields UpNotDown, Seed, and JetOrBDT contain values
that are specific to that algorithm and correspond to the direction in φ

in which the clustering is done, which of the four central supercells in
EM2 to cluster around (small seed), and an isolation working point,
respectively. The BDT algorithm stores the BDT score in the BDT
field, the JetOrBDT field is set to the BDT working point and the
UpNotDown and Seed fields are both set to zero. The ET sum over the
cluster with an energy overflow bit is reported for both algorithms in
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Index Elements Size Parameter description

BDT Heuristic

0 3 8 B1, B2, B3 Mcore
1 ,Mcore

2 ,Mcore
3

1 3 8 Mhad
1 ,Mhad

2 ,Mhad
3

2 1 16 ET,min.

3 1 16 ET,max.

4 1 16 EBDT
T,min. -

Table 14.1: Summary of the parameters of the τ algorithms. The size column
lists the size in bits per element. The parameters are explained in
Section 13.7.1.

the fields Energy and EnergyOF, respectively. The IsMax field signals
that the TOB has a maximum energy deposition in the central tower,
in which case it is said to be seeded. The Frac field is the hadronic
fraction working point. The Version field is set to 0 in the Heuristic
algorithm and to 1 in the BDT one.

Name Size Description

BDT Heuristic

Version 1 Heuristic/BDT algorithm indicator

Energy 16 Estimate of TOB ET

EnergyOF 1 Energy overflow indicator

UpNotDown 1 0 Direction of slowest energy decrease in φ

Seed 2 0 Small seed

IsMax 1 Maximum energy in core tower

JetOrBDT 2 BDT condition Rcore isolation condition

Frac 2 Hadronic Fraction

BDT 10 BDT score 0

Table 14.2: Summary of the output fields produced by the two τ algorithms.
The size columns is in bits.

The full structure of the BDT algorithm is illustrated in Figure
14.2. Logically, the implementation consists of a sequence of three
operations - computation of sums, computation of discriminants and
evaluation of conditions. The total latency of the algorithm is precisely
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equal to that of the Heuristic algorithm, which is 12 clock cycles at
200 MHz, or 60 ns.

14.1.2.2 Resource Usage

One of the benefits of the BDT algorithm, besides being more perfor-
mant than the Heuristic one, is that it is lighter in resources.

As discussed in Section 12.1.1, there are three main components
of an FPGA - LUTs, FFs, and DSPs. The exact number of each of
these utilized in a design is only known after the entire FPGA’s
firmware is fully implemented, with all components placed and all
connections between them routed. Table 14.3 shows a comparison of
the amount of resources used by the full eFEX firmware design with
the Heuristic algorithm and that used by the same design with the
Heuristic algorithm replaced by the BDT one as the only difference.

The usage of all types of resources is markedly reduced, with the
DSP count, in particular, dropping significantly. The reason for that
is the Rcore discriminant in the Heuristic algorithm, which requires
multiplication for which DSPs are utilized. In the BDT algorithm,
however, this discriminant is replaced by the BDT score, which only
requires comparisons and summations to evaluate.

Resource Heuristic BDT Reduction

LUT 195314 189596 3%

FF 295727 271187 8.3%

DSP 120 96 20%

Table 14.3: Comparison of resource usage between the Heuristic and BDT
algorithms. The numbers are reported for the full eFEX firmware,
the only difference being the τ algorithm.

14.2 framework and tooling

Since ML-based algorithms have never before been implemented at the
L1 trigger in ATLAS, a variety of tools had to be written to facilitate the
development, including tools for data preparation, training, evaluation,
simulation, tuning, and firmware generation of the BDT algorithm.
Most were developed by the author at different stages of the project
and are briefly described in this section.
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14.2.1 Data Preparation, Training and Evaluation

Data and MC in ATLAS are usually stored in Root [80] files, which
pass multiple derivation stages in a pipeline specific to each analysis
in which unnecessary information is removed and additional useful
information is added and the final lightweight Root files containing
only the relevant information for a particular need are called the
ntuples.

While Root files are optimized to be used for physics analyses imple-
mented in C++, it is much simpler and faster to use a tabular format
based on Python Pandas [81] data frames to store and manipulate data
for training XGBoost models in Python. For that, a tool that extracts
the supercell data from Root files into comma-separated values (CSV)
files, implements bookkeeping of different data file versions and auto-
matic download of files for training and performs data preparation
such as train-test splitting was developed.

For the training itself, a special tool was developed to e.g., have the
functionality to compute, in a configurable way, the BDT variables
from supercells, be able to systematically keep track of the trained
models to properly do parameter scans, and also manipulate already
trained models in order to test e.g., the effect of digitization of the BDT
leaf scores on the performance of the algorithm. The tool can also pro-
duce basic development-stage turn-on curves for model comparison,
described in Section 13.2.

14.2.2 Simulation

The ATLAS detector, including all components and algorithms is fully
simulated as part of the Athena framework written mostly in C++. A
necessary requirement was to implement the BDT algorithm in Athena
before the commissioning stage for performance studies, real-time
monitoring of the algorithm during Run 3 and derivation of analysis
data.

Two more places require the evaluation of the BDT algorithm -
the eFEX online simulation, which is the full simulation of the eFEX
system’s mock-up test rig used to test any changes to the full eFEX
firmware on hardware identical to the eFEX before being deployed to
ATLAS. The goal of the simulation is to accept the same inputs as the
test rig and verify that the outputs from the test rig produced by the
firmware match the output of the simulation. The second location is
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in local Python code for purposes of further algorithm development,
where the functionality of evaluating the BDT algorithm exactly as
implemented in Athena is greatly helpful.

One potential issue in implementing the algorithm in three differ-
ent locations was the workload required to manage three different
versions of the BDT algorithm’s code. To avoid it, and since this man-
agement was meant to be done fully by the author, at least in the
beginning, it was necessary to avoid code duplication as much as
possible. The approach to implement the simulation was, therefore, to
write an immutable C++ core implementation, fully configurable by
an external configuration file, that evaluates all output discriminants
given input supercells and parameters. A thin interface layer between
either Athena, the online simulation code, or the local Python code
was then implemented to bridge the core and the environment.

14.2.3 Tuning

During commissioning, it was critical to be able to quickly and con-
veniently produce turn-on curves and compute rates for different
combinations of τ triggers while being highly flexible in changing the
tunable parameters of both the eFEX BDT and Heuristic τ algorithms
as well as the jFEX isolation, on the tabular data mentioned in Section
14.2.1. It was also necessary to be able to quickly introduce new pa-
rameters, such as EBDT

T,min. discussed in Section 13.7.1 to see how they
affect performance. Prior to that, C++ analysis code based on the Root
framework was used for tuning, but it required long periods of time
from the idea to change or add a parameter to the production of the
desired plots. Therefore, a special tuning framework was developed
in Python which significantly simplified and accelerated this process.
This framework was used e.g., to produce the turn-ons in Figure 13.20

and the rate counts in Table 13.5.

14.2.4 Automatic Firmware and Simulation Generation

Due to the experimental nature of the BDT algorithm, several critical
components must be configurable:

• BDT model - it must be simple to switch with a re-trained model
in case the performance is not optimal.
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• BDT variables - although constrained to be summations over
groups of supercells, in principle, every re-training can have a
different set of highly ranked variables. Therefore, the groups
of supercells over which to sum in order to produce the output
must be configurable.

• ET sums - there are three besides the BDT variables that are com-
puted and used - the hadronic and EM sums used to compute
the hadronic fraction working point (see Section 13.7.1) and the
ET sum of the TOB. These were implemented as configurable
sums due to the initial concern that a sum over a large number
of supercells would require too many resources to compute.

While in software, these changes are trivial, in the firmware, a change
of a single sum or of the BDT model would require re-computation of
delays of signals entering and exiting the summations and the BDT
module and updating them in the design since, for example, a sum of
two numbers requires one clock cycle to evaluate. In comparison, a
sum of four numbers may require two, and, as discussed in Section
12.1.3, the depth and number of the trees in a BDT affect its latency.

To facilitate the switching of the BDT model and the summation
schemas, a pipeline was developed by the author, which takes as
an input a trained BDT model along with a description of which
supercells to use to compute each energy sum and produces the
finished VHDL code with all delays and summations automatically
computed and set, failing if the resulting design exceeds the target
latency of 12 cycles. All summations and delays are implemented
in a separate module so that the resulting VHDL code is clean and
readable. In addition, a configuration file for the simulation that fully
determines its behavior is generated.

A central component of the pipeline is the automatic computation
of delays and summations, for which a special tool was developed that
accepts as input the summands, a list of expressions of the required
sums to perform, one per each output sum, and any additional delays
to add to each sum after they are computed. It then uses the NetworkX
[82] Python package to analyze the sums as a directed acyclic graph
(DAG) and compute the delays of each sum. The tool can also produce
diagrams of the DAGs, as shown in Figure 14.3, which demonstrates
the complexity and amount of sums that need to be computed within
the BDT algorithm.

Testing is a time-consuming yet crucial part of firmware generation.
This is also handled by the pipeline automatically, testing the resulting
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VHDL implementation using Vivado Simulator on a set of inputs
taken from real ATLAS data as well as random inputs by comparing
the simulation outputs to those expected for each input. Once finished,
the tested VHDL code is ready to be dropped to a special folder in
the existing eFEX firmware repository without adding any further
modifications and without disturbing any components outside of the
folder.
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C O N C L U S I O N A N D O U T L O O K

A BDT-based algorithm for the identification of τ leptons in the L1

calorimeter-based ATLAS trigger was introduced as the default algo-
rithm for this purpose during Run 3, demonstrating improved per-
formance with respect to resource usage over the baseline heuristics-
based algorithm. This is the first time a trained machine-learning
model has been fully evaluated in the nanosecond domain in the
ATLAS experiment.

The performance gain of the BDT algorithm over the Heuristic
one is not very significant due to the similarity of hadronic τ and
QCD jets, especially when considering only calorimeter information.
Nevertheless, perhaps the most important goal of the algorithm is
to provide experience to ATLAS with using ML algorithms for L1

triggering and open the gate for additional ML algorithms to be
potentially included before the end of Run 3. In addition, it provides
a technical baseline for those planned to be introduced in the Phase-
II upgrade in several ATLAS trigger systems. Since this work was
submitted well into Run 3 as an example of the lessons learned on
utilizing an ML-based algorithm during physics data taking, it is
interesting to follow up with some recent developments.

Following the tuning done by the author and reported in this work,
the ATLAS τ signature group performed an independent tuning to set
the algorithm’s thresholds. While initially, it showed the same perfor-
mance, subsequent analysis following a fix in the ATLAS simulation
code resulted in signal events migrating into the low-score bumps vis-
ible in the BDT score distributions, which previously only contained
background data points (see Figure 13.10a), as shown on Figure 15.1a.
This caused a significant drop in any τ trigger’s efficiency when the
eFEX BDT isolation working point was anything but the loosest, as
can be seen in Figure 15.1b. Here, the red curve is based on the Legacy
algorithm, while the black curve is based on the BDT algorithm, with
matching thresholds.

This effect, after investigation, resulted in the realization that noise
cuts that are applied to the supercells before they enter the algorithm to
reduce random electronic noise have a strong effect on the algorithm’s
performance. As mentioned, during training, a zero-bias data sample

177
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(a)

(b)

Figure 15.1: (a) Signal vs background distribution showing a "bump" be-
tween BDT score 800 and 850 which contains both signal and
background events. (b) Drop in efficiency relative to the legacy
algorithm due to changes in the MC signal sample’s noise cut.
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was used for the background, and an MC sample was used for the
signal. The data sample had realistic, η-dependent noise cuts which
were lower than the ones set in the MC sample and which were
flat in η. This resulted in TOBs at high η values having high values
of the peripheral input variables, which reduced their BDT score
since, during training, these variables had high values only in the
background sample.

This realization requires retraining the model, and a lesson was
learned that retraining is required. This, in turn, requires an efficient
retraining framework, which the author is developing for that purpose
at the time these lines are written.

Although the BDT-based τ algorithm is already being used for
data collection during Run 3, further work remains in evaluating
the collected data. For instance, a data–MC comparison of the BDT
score is currently underway. This is an important step in assessing the
algorithm’s performance, particularly in addressing concerns related
to overfitting.

With all the infrastructure for tuning, training, and firmware gener-
ation in place, further experimentation with machine learning algo-
rithms in the Level-1 trigger is now possible. Potential future directions
include exploring different types of input variables, using a BDT as a
regression model to estimate the ET of TOBs, training models targeted
at specific regions of phase space, leveraging newly available tools
for anomaly detection using BDTs as autoencoders [83], and studying
the application of neural networks for calorimeter-based τ triggering
within the hardware trigger system. All of these avenues are now open
for investigation and development during Run 3.
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תקציר

המדידות             לבין החלקיקים פיזיקת של הסטנדרטי המודל של התחזיות בין הדופן יוצאת  ההתאמה
הגדול     ) ההדרונים במאיץ בניסויים -LHCשבוצעו של      CERNב(  וגדלות הולכות כמויות איסוף  דורשת

   , אחר           החיפוש במסגרת תצפית ערכי על ויותר יותר מחמירים עליונים גבולות לקבוע כדי  נתונים
        . לניסויים    המסופקים הנתונים כמות את להגדיל שמטרתם שדרוגים הסטנדרטי למודל מעבר  פיזיקה

     , נקיות         דגימות לייצר מנת על לרקע אות בין בהפרדה המתמחים האלגוריתמים גבולות את  דוחפים
         . פיתוח  מאפשרות מכונה למידת בטכנולוגיית האחרונות השנים של התקדמויות פיזיקליים  לניתוחים

        , מבוססי      מקביליהם על בביצועיהם עולים רבים במקרים אשר אלה אלגוריתמים של חדש דור  של
. אגורים,           נתונים בניתוח והן אמת בזמן טריגר של בתרחישים הן ההיוריסטיקות

 . הניתוח              מקוון ולא מקוון ניתוח של בהקשרים החדש מהדור האלגוריתמים את בוחנת זו מחקר  עבודת
ניסוי            של החומרה מבוסס בטריגר טאו מסוג לפטונים בזיהוי מתמקד בעצי   ATLASהמקוון שימוש  תוך

בה,              באנליזה החלטות ובעצי עצביות ברשתות השימוש את בוחן מקוון הלא הניתוח ואילו  החלטות
דעיכתו              של מדוייקת למדידה במקביל קסומים קווארקים לשני ההיגס בוזון דעיכת של חיפוש  מתבצע

            , בוזון   של הצימוד על כה עד ביותר המחמירות המגבלות את מציבה אשר תחתונים קווארקים  לשני
. אלו   לקווארקים היגס

לאיסוף             המשמש הראשון מכונה למידת מבוסס המודל לפיתוח מביאה זו בתיזה המוצגת  העבודה
ניסוי      של החומרתי בטריגר טאו.        ATLASנתונים מסוג לפטונים של ראשוני לזיהוי משמש  המודל

       . הבא         לדור הדלת את פותחת זו טכנולוגיה ייעודית חומרה של דרישות ללא החלטות עץ על  ומבוסס
בניסוי     טריגר אלגוריתמי .ATLASשל



" לפילוסופיה    "  דוקטור התואר עבור מחקר תזת

טאו         מסוג לפטונים של מיידי לזיהוי מכונה בלימוד  שימוש
לקווארקים        בדעיכה היגס בוזון חלקיקי של ולאנליזה  בחומרה

אטלס     בניסוי וקסם תחתון מסוג

ידי       על אביב תל אוניברסיטת לסנאט הוגש

רייכר  דוד

של     בהנחייתו בוצעה זו עבודה
עציון.   ארז פרופ


