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Abstract: In this paper, we investigate the shadow properties of a rotating black hole with
a weakly coupled global monopole charge using a modified Newman–Janis algorithm.
This study explores how these charge and rotational effects shape the black hole’s shadow,
causal structure, and ergoregions, with implications for distinguishing it from Kerr-like
solutions. Analysis of null geodesics reveals observable features that may constrain the
global monopole charge and weak coupling parameters within nonminimal gravity frame-
works. Observational data from M87* and Sgr A* constrain the global monopole charge
and coupling constant to 0 ≤ γ ≲ 0.036 and −0.2 ≲ α ≤ 0, respectively.
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algorithm; shadow
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1. Introduction
Black holes are among the most fascinating astrophysical phenomena predicted by

general relativity (GR) and have been central to theoretical and observational research
for decades. Observations of M87* [1] and Sgr A* [2] by the Event Horizon Telescope
(EHT) collaboration have intensified interest in black holes, allowing us to probe their
properties beyond theoretical models. Despite GR’s successes at cosmic scales, it faces
significant limitations when addressing quantum effects, topological defects, and certain
early-universe phenomena. For instance, GR does not inherently include quantum-scale
phenomena or high-energy structures, such as global monopoles, which are predicted by
symmetry-breaking mechanisms in various field theories [3,4]. These monopoles, arising
from phase transitions in the early universe, are characterized by a global monopole charge
(GMC) that affects spacetime geometry. The presence of the GMC meaningfully alters black
hole properties, influencing thermodynamic behavior, stability, and observable features
such as photon orbits and shadow boundaries [4–6]. Studying black holes with a GMC thus
offers a valuable connection between gravitational and particle physics, revealing possible
limitations of GR and suggesting pathways for developing modified gravitational theories.
In fact, topological defects like global monopoles are predicted by grand unified theories
and arise from the Kibble mechanism, which links defect formation to the breaking of
specific symmetry groups during cosmological phase transitions [7,8]. A global monopole,
resulting from the symmetry breaking of SO(3) to U(1), generates a unique gravitational
effect that can be modeled by a Schwarzschild-like metric with an additional GMC term.
This charge is connected to the symmetry-breaking energy scale and modifies spacetime by
introducing a deficit angle, which affects the paths of test particles and the bending of light.
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Furthermore, the monopole’s core mass can be negative or negligible, leading to a repulsive
gravitational effect that produces distinct features in black hole metrics. Additionally,
in modified gravity theories, the gravitational influence of global monopoles has been ex-
tensively studied, particularly in models that incorporate matter-curvature coupling [9–16].
A recent study [17] in nonminimally coupled gravity showed that interactions between
matter and geometry impart intriguing properties to global monopoles. In particular,
the nonminimal coupling yields a positive core mass for the monopole and affects its inter-
nal structure, including core size. This study also examined the possibility of a nonminimal
global monopole acting as an extra “hair” for a Schwarzschild black hole. By analyzing
geodesic motion and gravitational light bending in the weak coupling regime, the study
aimed to identify potential observational signatures of the GMC. This approach enables
constraints on the nonminimal coupling and GMC parameters, providing insights into the
symmetry-breaking scale. Recent work in Ref. [18] further investigated light propagation
in the vicinity of this black hole, proposing observational limits on spacetime parameters.

Building on this interest in the impact of GMC on black hole properties, this paper
examines the shadow of the rotating counterpart of this black hole. Analyzing the shadow
of rotating black holes is essential, as it reveals observational signatures that can help
differentiate various gravitational theories and enhance our understanding of spacetime
geometry, especially in the presence of exotic features like topological defects. To obtain
the rotating solution, we take the static metric introduced above as the seed and apply
a modified version of the Newman–Janis algorithm (NJA) [19] to generate the rotating
counterpart. This modified Newman–Janis algorithm (MNJA), as presented in Refs. [20,21],
is particularly effective when extended to theories beyond GR, offering improved accuracy
and stability in these contexts.

The paper is organized as follows: Section 2 provides an overview of the static black
hole solution with a weakly coupled GMC, covering its spacetime and causal structure.
In Section 3, we apply the MNJA step by step to derive the rotating counterpart of the static
black hole. Section 4 examines the causal structure of the resulting spacetime, including
horizon formation under varying black hole parameters, as well as the ergoregions and
their evolution in terms of the GMC and coupling constant. Section 5 introduces the
Lagrangian formalism and the Hamilton–Jacobi equation to study light propagation in
the black hole’s exterior geometry. Here, we derive equations of motion for null geodesics
and identify conditions for spherical photon orbits, mapping photon regions outside the
event horizon and demonstrating the effects of the GMC on these regions. This section also
parametrizes the celestial plane for an observer at infinity, enabling shadow boundary plots
for several cases and detailed analysis of their properties. To facilitate observational testing,
Section 6 introduces shadow observables and derives their mathematical expressions.
We use these to constrain the GMC and coupling constant based on EHT data for M87*
and Sgr A*. In Section 7, we calculate the black hole’s evaporation rate, considering
parameter constraints inferred from EHT data. Finally, we summarize our findings in
Section 8. Throughout this paper, we adopt natural units with G = c = 1 = Mpl and use a
sign convention of (−,+,+,+), with primes denoting differentiation with respect to the
radial coordinate.

2. Static Black Hole Solution with GMC in the Weak Coupling Regime
The generalized theory of gravity incorporating nonminimal matter–curvature cou-

pling is described by the action [22]

S =
∫

d4x
√
−g
{

1
2

f1(R) +
[
1 + α f2(R)Lm

]}
, (1)
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where Lm is the matter Lagrangian density, f1(R) and f2(R) are arbitrary functions of
the Ricci scalar, and α represents the interaction strength between f2(R) and Lm, effec-
tively measuring the nonminimal coupling strength. In Ref. [17], the specific choices
f1(R) = R/(8π) and f2(R) = R were considered. For these values, an upper limit of
|α| < 5 × 10−12 m2 was derived in Ref. [23] based on nuclear physics considerations at high
densities [24]. However, this limit is not applied in our study, as it pertains to environments
with extreme densities not relevant here. Notably, setting α = 0 directly recovers GR for
the above choices.

In Ref. [17], the matter Lagrangian density in Equation (1) was set as

Lm = −1
2

∂µ φa∂µ φa − 1
4

λ
(

φa φa − η2)2, (2)

which corresponds to symmetry breaking from SO(3) to U(1), giving rise to a global
monopole. Here, λ and η denote the Higgs field’s self-interaction constant and the symmetry-
breaking energy scale, respectively. The Higgs field is represented by an isotriplet of
scalar fields, φa = ηh(r)x̂a, where a = 1, 2, 3 and xa = {sin θ cos ϕ, sin θ sin ϕ, cos θ} in
Schwarzschild coordinates (t, r, θ, ϕ). The radial function h(r) satisfies h(0) = 0 and
h(∞) = 1. This symmetry allows us to consider the spherically symmetric line element

ds2 = −B(r)dt2 +
dr2

A(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, (3)

for analyzing the field equations. The metric functions B(r) and A(r) were derived in
Ref. [17] by solving the field equations with this metric ansatz. Here, we specifically
consider a weak matter–gravity coupling, where α f2(R) = αR < 1. Thus, we focus on
small values of α, satisfying the condition α < l2

0 , where l0 is a characteristic length scale,
approximately the black hole mass, M. In this weak coupling framework, the global
monopole is treated as a GMC for a black hole of mass M, and Ref. [17] provides solutions
for A(r) and B(r) as

A(r) ≈ 1 − γ − 2M
r

+
14αγ

r2 − 18αγM
r3 , (4)

B(r) ≈ 1 − γ − 2M
r

+
20αγ

r2 − 30αγM
r3 , (5)

where γ = 8πη2 represents the deficit solid angle. As a result, the spacetime resembles a
conical cosmic string with a one-dimensional topological defect. Consequently, this space-
time is asymptotically finite with a conical singularity, yet does not reduce to Minkowski
spacetime at infinity. The parameter α has dimensions of length squared, while γ is di-
mensionless. In the absence of the GMC (i.e., γ = 0), the Schwarzschild black hole (SBH)
solution is recovered. It is also important that η2 < 1, ensuring that the symmetry-breaking
scale remains below the Planck scale.

The black hole’s horizons occur where grr = 0, yielding three solutions:

r1 =
4

1 − γ

√
ζ2

3
cos

(
1
3

arccos

(
2ζ3

ζ2

√
3
ζ2

)
− 2π

3

)
+

2M
3(1 − γ)

, (6)

r2 =
4

1 − γ

√
ζ2

3
cos

(
1
3

arccos

(
2ζ3

ζ2

√
3
ζ2

))
+

2M
3(1 − γ)

, (7)

r3 =
4

1 − γ

√
ζ2

3
cos

(
1
3

arccos

(
2ζ3

ζ2

√
3
ζ2

)
− 2π

3

)
+

4M
3(1 − γ)

, (8)



Universe 2025, 11, 111 4 of 31

where

ζ2 =
M2

3
− 7α

2
(1 − γ)γ, (9)

ζ3 =
M2

27
+

Mα

24

(
27γ2 − 40γ + 13

)
γ. (10)

In Figure 1, the behavior of grr = A(r) is shown for various positive and negative values
of α with fixed γ. As illustrated, for α < 0 (Figure 1a), there are two positive roots of
grr = 0, indicating two horizons with 0 < r1 < r2 and r3 < 0. Here, r1 represents the
Cauchy horizon (r−) and r2 represents the event horizon (r+). For r > r+, observers
remain time-like, while in the region r− < r < r+, no time-like observers exist. For α ≥ 0
(Figure 1b), only one real horizon exists, r+, with a complex conjugate pair. The coupling
impact is minimal in this case, but the topological defect encoded by γ is significant,
as shown by the deviation from the SBH profile. For this paper, we restrict our study to
the outer communication domain, r > r+. Additionally, the surface of infinite redshift,
determined by B(r) = 0, provides insights into gravitational redshift effects. This surface
has three solutions, r4, r5, and r6, that mirror the forms of r1, r2, and r3, with ζ2 → ζ̃2 and
ζ3 → ζ̃3, where

ζ̃2 =
M2

3
− 5α(1 − γ)γ, (11)

ζ̃3 =
M3

27
+

5Mα

24

(
9γ2 − 14γ + 5

)
γ. (12)

These conditions define the interior and exterior surfaces of infinite redshift, rinf
in = r4 and

rinf
out = r5 for α < 0, while for α > 0, only one such surface, r5, exists.
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Figure 1. The radial profile of grr is plotted for γ = 0.3. Diagrams correspond to (a) α ≤ 0 and
(b) α ≥ 0, including the SBH case with γ = 1. Length units are in terms of M.

3. The MNJA and the Approximate Rotating Counterpart
In this section, we review the MNJA, which is applied for the generation of the

stationary black hole minimally coupled with the GMC. The method is essentially based
on the discussion provided in Refs. [20,21].
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By considering the relation

dt =
dr√

A(r)B(r)
+ du, (13)

for the advanced null coordinate u, one can recast the line element (3) as

ds2 = −B(r)du2 − 2

√
B(r)
A(r)

drdu + r2
(

dθ2 + sin2 θdϕ2
)

. (14)

This way, the null tetrad e(a) = (l, n, m, m̄), satisfying the conditions l ·m = n · n = m ·m =

l · m = n · m = 0 and l · n = −m · m̄ = −1, can generate the contravariant components of
the metric tensor, as

gµν = −lµnν − lνnµ + mµm̄ν + mνm̄µ. (15)

By relating the above expressions to the line element (14), we can set

lµ = δ
µ
r , (16)

nµ =

√
A(r)
B(r)

δ
µ
u − A(r)

2
δ

µ
r , (17)

mµ =
1√
2 r

(
δ

µ
θ +

i
sin θ

δ
µ
ϕ

)
. (18)

Now, by means of the complex transformations

r → r + ia cos θ, (19)

u → u − ia cos θ, (20)

on the coordinates, one gets the null tetrad basis vectors in the complex coordinate system as

lµ = δ
µ
r , (21)

nµ =

√
A

B
δ

µ
u − A

2
δ

µ
r , (22)

mµ =
1√
2Ψ

[
δ

µ
θ + ia sin θ

(
δ

µ
u − δ

µ
r

)
+

i
sin θ

δ
µ
ϕ

]
, (23)

in which we have performed the replacements

A(r) → A(r, θ, a), (24a)

B(r) → B(r, θ, a), (24b)

r2 → Ψ(r, θ, a), (24c)

in the expressions (16) and (17). It is then straightforward to recover the seed static
spherically symmetric spacetime metric (14) by imposing

lim
a→0

A(r, θ, a) = A(r), (25)

lim
a→0

B(r, θ, a) = B(r), (26)

lim
a→0

Ψ(r, θ, a) = r2. (27)

In the original NJA, as presented in Ref. [19], the functions A, B, and Ψ are derived through
the complexification of the radial coordinate. However, in the MNJA, this complexification
is not imposed. Instead, these functions are determined under specific criteria, which
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are governed by a particular form of the energy–momentum tensor. By applying the
expressions in (21)–(23) within the contravariant metric (15), we obtain

gµν =



a2 sin2 θ

Ψ
−1

2

[√
A

B
+

a2 sin2 θ

Ψ

]
0

a
2Ψ

−1
2

[√
A

B
+

a2 sin2 θ

Ψ

]
A +

a2 sin2 θ

Ψ
0 − a

2Ψ

0 0
1
Ψ

0

a
2Ψ

− a
2Ψ

0
1

Ψ sin2 θ


. (28)

Accordingly, the line element in the advanced null coordinates is rewritten as

ds2 = −Bdu2 − 2

√
B

A
dudr + Ψdθ2 − 2a sin2 θ

(√
A

B
−A

)
dudϕ + 2a sin2 θ

√
A

B
drdϕ

+ sin2 θ

[
Ψ + a2 sin2 θ

(
2

√
A

B
−A

)]
dϕ2. (29)

Now, to cast the above line element in the Boyer-Lindquist coordinates, we first perform
the global coordinate transformations

du = dt + χ1(r)dr, (30)

dϕ = dϕ + χ2(r)dr, (31)

which yields grϕ = 0 = gtr. However, this condition is not always satisfied in the original
NJA, as the functions χ1,2 may also depend on the polar coordinate θ. In such cases,
a complete differential on the right-hand side of Equations (30) and (31) cannot be obtained,
and as a result, the coordinates u and ϕ do not exist. Consequently, for rotating solutions
derived using the NJA, the separability of the Hamilton–Jacobi equation for null geodesics
holds only when χ1,2 are functions of r alone. This restriction makes it possible to express
the metric in Boyer–Lindquist coordinates, as discussed in Ref. [25]. The limitation of the
original NJA arises from the fact that the functions A, B, and Ψ are determined by the
complexification of the radial coordinate. In contrast, in the MNJA, these functions are
not identified through complexification. Nevertheless, based on the method proposed in
Ref. [20], by fixing

χ1(r) = −K(r) + a2

∆(r)
, (32)

χ2(r) = − a
∆(r)

, (33)

where ∆(r) = r2 A(r) + a2, and

K(r) = r2

√
A(r)
B(r)

, (34)

we can always recast the line element (29) in Boyer–Lindquist coordinates by considering
the definitions

A(r, θ, a) =
∆ − a2 sin2 θ

Ψ
, (35)

B(r, θ, a) =
∆ − a2 sin2 θ

ρ4(r, θ)
Ψ, (36)
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where ρ2(r, θ) = K(r) + a2 cos2 θ. It can be verified that the above equations satisfy the
conditions (25)–(27). Now, the expressions (35) and (36), together with Equation (29), lead
to the new Kerr-like line element

ds2 =
Ψ
ρ2

{
−
(

∆ − a2 sin2 θ

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2 dθ2 + 2a sin2 θ

(
∆ − a2 − K

ρ2

)
dtdϕ

+ sin2 θ

[
ρ2 − a2 sin2 θ

(
∆ − a2(2 − sin2 θ

)
− 2K

ρ2

)]
dϕ2

}
, (37)

in the Boyer–Lindquist coordinates, with a = J/M, where J is the black hole’s angular
momentum, the spin parameter a is defined. Note that the function Ψ(r, θ, a) remains
unknown at this stage. However, there are criteria through which this function may be
determined. For instance, as stated in Ref. [21], the function Ψ satisfies the nonlinear
differential equation(

K + a2y2
)2(

3∂rΨ∂yyΨ − 2Ψ∂ryyΨ
)
= 3a2∂rKΨ2, (38)

where y ≡ cos θ. The above condition corresponds to the vanishing of the rθ-component of
the Einstein tensor, when the source is an imperfect fluid rotating about the z-axis. In the
special case of K = r2 (as in the cases of grr = −gtt for the seed static spherically symmetric
line elements), it can be verified that Ψ = r2 + a2y2 is a possible solution to Equation (38).
Hence, the Kerr black hole (KBH) can be obtained by letting γ = 0 in the metric functions
A(r) and B(r). However, since A(r) ̸= B(r) in the line element (3), the function Ψ cannot be
easily fixed. It is straightforward to check that for a = 0, the stationary metric (37) reduces
to the static one (3), in the case where Ψ = r2. On the other hand, it can be observed that
the function Ψ appears as a conformal factor in the stationary line element (37), and thus, it
neither affects the causal structure of the spacetime nor the evolution of the null geodesics
in the black hole’s exterior.

However, it is important to emphasize that, while the MNJA, as summarized here
and originally developed in Ref. [20], does not exhibit any evident pathologies, certain
inconsistencies may arise depending on how the method is applied to generate rotating
solutions [26]. Despite this, it should be noted that the global monopole in the matter
Lagrangian of the theory under investigation is presumed to be minimally coupled to
gravity. As a result, deviations from GR are expected to be minimal. Nevertheless, given
the complexity involved in deriving the final rotating solution through the aforementioned
steps, it must be acknowledged that the resulting solution is merely an approximation
of the true rotating solution. The rotating spacetime described by the line element (37)
contains the GMC, thus representing the exterior spacetime of a rotating monopole black
hole (RMBH). Moreover, as discussed in Ref. [27], the Hamilton–Jacobi equation for null
geodesics traveling in the resulting stationary spacetime obtained from the MNJA is always
separable. Consequently, the MNJA has been widely employed in the literature to generate
rotating solutions in Boyer–Lindquist-like coordinates from static black holes in both
general relativity and alternative gravity theories (see, for example, Refs. [25,27–43]).

In the next section, we will begin studying the rotating black hole described above,
focusing on the causal structure of the spacetime and the behavior of photons in its vicinity.
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4. Horizons and the Causal Structure
The black hole horizons are identified by the polynomial equation ∆ = 0, whose

discriminant is given by

D∆ ≡ Disc(∆ = 0) = −10976(1 − γ)γ3α3 + 4
[(

81(26 − 27γ)γ + 277
)

M2 − 588(1 − γ)a2
]
γ2α2

+
[
(95 − 81γ)a2M2 − 72M4 − 21(1 − γ)a4

]
γα + 4a4M2 − 4(1 − γ)a6. (39)

In Figure 2, the regions where D∆ ≥ 0 have been shown for both cases of α ≤ 0 and α > 0.
As can be observed from the diagrams, the case of α ≤ 0 distinguishes between a black
hole and a naked singularity through an extremal case where the two black hole horizons
merge. On the other hand, for α > 0, we never encounter a naked singularity, as the black
hole can have three horizons for certain values of α. By merging two of these horizons,
the black hole still retains an event horizon and a Cauchy horizon, which merge when
D∆ = 0, leaving the black hole with only one horizon for all other corresponding values of
α. Note that the values of the spin parameter a = aext, at which the horizons merge, can be
obtained from the equation D∆ = 0, which yields

aext =
1√
6

{t

2 3
√

2M4 + 2M2

(
486 3

√
2 α(1 − γ)2γ −

[
a0 − 2M6 + 2430α(1 − γ)2γM4 + 59049α2(1 − γ)4γ2 M2

]1/3)

+

(
2a0 − 4M6 + 4860α(1 − γ)2γM4 + 118098α2(1 − γ)4γ2 M2

)2/3

−84α(1 − γ)γ

(
a0 − 2M6 + 2430α(1 − γ)2γM4 + 59049α2(1 − γ)4γ2 M2

)1/3|

×
t

(1 − γ)

[
a0 − 2M6 + 2430α(1 − γ)2γM4 + 59049α2(1 − γ)4γ2 M2

]1/3|−1}1/2

, (40)

in which a0 = 9M2
√

3α(1 − γ)2γ
[
243α(1 − γ)2γ − 4M2

]3. For each fixed value of α and γ,
if a > αext holds, one can expect a naked singularity for α ≤ 0, and a one-horizon black hole
for α > 0. The conditions stated above can be observed in the behavior of the ∆ function
for fixed α and γ, as shown in Figure 3, where different values of the spin parameter have
been taken into account. As we can observe, for α ≤ 0, the equation ∆ = 0 has two real
positive roots when a < aext and one real positive root when a = aext. For a > aext, no
real positive roots exist. In the case of α > 0, as inferred from Figure 2b, there are two
distinct values for aext, namely aext1 and aext2 . When aext1 < a < aext2 , there are three real
positive roots for ∆ = 0, corresponding to a black hole with three horizons. At a = aext1

or a = aext2 , two of these roots coalesce, leaving two positive roots. When a < aext1 or
a > aext2 , the two remaining roots also merge, resulting in a black hole with a single horizon.
It is also informative to show, graphically, the behavior of the equation ∆ = 0 within both
scenarios of the α parameter. In Figure 4, we have plotted the profile of this equation for
different values of the α parameter, regarding changes in the spin parameter, when γ is
fixed. It can be directly inferred from the diagrams that, for α ≤ 0, the equation ∆ = 0 has
two real positive roots, which merge into a single point as the spin parameter increases,
corresponding to the EBH. In contrast, for α > 0, the equation ∆ = 0 yields three real
positive roots for small values of the spin parameter. As the spin parameter increases,
the number of real positive roots decreases, eventually leaving only one horizon for larger
values of the spin parameter.
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One can also calculate analytically the roots of ∆ = 0, which give

r1 =
4

1 − γ

√
χ2

3
cos

(
1
3

arccos

(
3χ3

χ2

√
3

χ2

)
− 4π

3

)
+

2M
3(1 − γ)

, (41)

r2 =
4

1 − γ

√
χ2

3
cos

(
1
3

arccos

(
3χ3

χ2

√
3

χ2

)
− 2π

3

)
+

2M
3(1 − γ)

, (42)

r3 =
4

1 − γ

√
χ2

3
cos

(
1
3

arccos

(
3χ3

χ2

√
3

χ2

))
+

2M
3(1 − γ)

, (43)

where

χ2 = − 1
12

[
3a2(1 − γ) + 42αγ(1 − γ)− 4M2

]
, (44a)

χ3 = − M
216

[
9a2(1 − γ)− 9αγ

(
27γ2 − 40γ + 13

)
− 8M2

]
. (44b)

Note that the correspondence of these roots to the black hole horizons depends strictly on
the sign of the α parameter. For α ≤ 0, when all roots are real, the black hole possesses a
Cauchy and an event horizon, which are determined respectively by r− = r2 and r+ = r3,
with the other root being negative, i.e., r1 < 0. As discussed before, the EBH occurs when
r− = r+, beyond which a naked singularity arises. On the other hand, for α > 0, there
exists an intermediate horizon r− = r1 < rin = r2 < r+ = r3 between the inner Cauchy
horizon and the event horizon, when the conditions are favorable. This horizon disappears
for a = aext1,2 , and finally, r− also disappears when the above conditions are not satisfied,
leaving a black hole with only one horizon r+.

It is important to emphasize that, in addition to horizons, stationary black holes
exhibit other hypersurfaces where static observers, whose world-lines are expressed as
u = (−gtt)−1/2ξt, cannot exist. Here, ξt represents the time-like Killing vector of the
spacetime, aligned with the time coordinate. These hypersurfaces are known as static limits,
where the observer’s four-velocity u becomes null. The radii of these static limits, rsl, can
be obtained by replacing a → a cos θ in the solutions (41)–(43). In this sense, we obtain
two hypersurfaces defined by the radii rsl+ and rsl− , which constrain the regions where a
static observer can exist. These surfaces obey the hierarchy rsl+ ≥ r+ ≥ r− ≥ rsl− . Thus,
the outer ergoregion is identified as r+ ≤ r ≤ rsl+ , while the inner ergoregion is identified by
rsl− ≤ r ≤ r−. Within these regions, no static observer can exist. Considering the Cartesian
coordinates x = r sin θ cos ϕ, y = r sin θ sin ϕ, and z = r cos θ, Figures 5 and 6 demonstrate
several examples of the ergoregions for negative and positive values of the α parameter,
respectively. According to the diagrams, for α < 0, the interior ergoregions become more
similar to those of the KBH as we reduce the γ parameter. However, the extremality
for the RMBH shows significant differences from that of a KBH. The same holds for the
corresponding naked singularity. When α > 0, the significant differences are more apparent
for the three-horizon black holes, as the interior ergosurface never forms inside the smallest
horizon. Once again, by decreasing the value of γ, the spacetime mimics the exterior
geometry of a KBH, which, in the examined cases, corresponds to a naked singularity.
For the cases of a < aext1 and a > aext2 , as demonstrated in Figure 3b, a one-horizon black
hole is formed, which is small for the former case and significantly larger for the latter case.
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Figure 2. The region plots of D∆ ≥ 0 (the colored areas) for γ = 0.3, showing the changes to a versus
α within this criterion. Panel (a) corresponds to the case of α ≤ 0, for which the region where D∆ > 0
corresponds to two positive and one negative real roots. Hence, the black hole has two horizons.
The dashed red curve corresponds to the extremal black hole (EBH), for which D∆ = 0, and the black
hole has only one horizon, as the positive roots become degenerate. Beyond this line, there will be
only one negative real root and two complex conjugate ones, leading to the appearance of a naked
singularity. In panel (b), where the α > 0 cases are considered, the region where D∆ > 0 again has
three real roots, which are now all positive. Therefore, the black hole will have three horizons in
this domain. The blue dashed line in this case again corresponds to D∆ = 0, providing a black hole
with two horizons, as two of the aforementioned real roots merge. This represents a different kind
of extremality, leaving a black hole with an outer and an inner Cauchy horizon. Beyond this limit,
where D∆ < 0, the black hole has only one horizon. The unit of length along the vertical axis is M.
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Figure 3. The radial profiles of the ∆ function plotted for γ = 0.3 and for (a) α = −0.4, where
aext = 1.348, and (b) α = 0.04, where aext1 = 1.029 and aext2 = 1.190. The dashed black curve
represents the profile for the KBH, i.e., for γ = 0, with a spin parameter of a = 0.5. The units of length
along the axes are in terms of the mass M.
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Figure 4. The behavior of the equation ∆ = 0 with respect to changes in the spin parameter plotted
for γ = 0.3 and different values of the α parameter. Panels (a,b) correspond to α ≤ 0 and α > 0,
respectively. The dashed lines indicate a point that is common to all the curves, characterized by
a = 1.189 and r = 1.286 in this case. The unit of length along the axes is in terms of the mass M.
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Figure 5. The shapes of the ergosurfaces in the z–x plane plotted for α = −0.4 and different values of
the spin parameter and the γ parameter. Cases (a–c) correspond to the black hole with two horizons
(the red dashed circles), case (d) to the EBH with only one horizon (the green circle) for which
aext = 1.348, and case (e) to a naked singularity. The unit of length along the axes is M.



Universe 2025, 11, 111 12 of 31

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

z

a = 1.15, γ = 0.3

(a)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

z

a = 1.15, γ = 0.1

(b)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

z

a = aext1 , γ = 0.3

(c)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

z

a = aext1+0.3, γ = 0.3

(d)

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x

z

a = aext1-0.3, γ = 0.3

(e)

Figure 6. The shapes of the ergosurfaces in the z–x plane plotted for α = 0.04 and different values
of the spin parameter and the γ parameter. The cases correspond to: (a) a black hole with three
horizons (the dashed red curves), (b) a black hole with the same parameters as in case (a) but with
γ = 0.1 (nearly naked singularity, similar to the KBH), (c) a black hole with two horizons (the
green curves), in accordance with a = aext1 = 1.029 in Figure 3b, (d) a one-horizon black hole for
a = aext1 + 0.3 (again a nearly naked singularity, similar to the KBH), and (e) a one-horizon black
hole for a = aext1 − 0.3. The unit of length along the axes is M.

Now that the spacetime structure of the RMBH has been studied in detail, beginning
in the next section, we turn our attention to the parametrization of null geodesics in the
exterior geometry of the black hole, which has been obtained within the MNJA, through
the method of separation of the Hamilton–Jacobi equation.

5. Separation of the Hamilton–Jacobi Equation and Null Geodesics
It has been shown in Ref. [25] that the stationary spacetimes obtained from the NJA,

in the case that they can be presented in Boyer–Lindquist-like coordinates, will also allow
separability of the Hamilton–Jacobi equation. For the case of A(r) = B(r), this separability
has also been studied in Ref. [20] in the context of the MNJA, and for the case of A(r) ̸= B(r),
this separability has been studied in Ref. [27]. There, the authors argue that although, due
to the complexity of (38), it is a formidable task to determine a general solution for Ψ when
A(r) ̸= B(r), this function, however, does not need to be identified explicitly in the study
of null geodesics, since the separability of the Hamilton–Jacobi equation is independent of
this function. In fact, the Hamilton–Jacobi equation is given by
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∂S

∂τ
+H = 0, (45)

in which S is the Jacobi action, τ is the affine parameter of the geodesic curves, and H is
the canonical Hamiltonian, expressed as

H =
1
2

gµν pµ pν, (46)

with p being the conjugate momentum covector, which is defined as

pµ =
∂S

∂xµ . (47)

In this manner, the constants of motion can be defined by exploiting the spacetime symme-
tries associated with the t and ϕ coordinates. These constants are given by E = −pt and
L = pϕ, where E represents the energy and L denotes the angular momentum of the test
particles. Consequently, we can adopt the ansatz

S =
m2

2
τ − Et + Lϕ +Sr(r) +Sθ(θ), (48)

for the Jacobi action, in which m is the test particles’ mass. By applying this ansatz, along
with the definitions given in (46) and (47), and the line element in (37), the Hamilton–Jacobi
Equation (45) yields

− 1
Ψ∆

[
E
(

K + a2
)
− aL

]2
+

p2
θ

Ψ
+

1
Ψ sin2 θ

(
aE sin2 θ − L

)2
+

∆ p2
r

Ψ
= −m2. (49)

For null geodesics, it is naturally m = 0, and hence, the conformal factor Ψ does not
contribute. Accordingly, we can infer the equation

∆ p2
r −

1
∆

[
E
(

K + a2
)
− aL

]2
= −

[
p2

θ +
1

sin2 θ

(
aE sin2 θ − L

)2
]
≡ K, (50)

where we have separated the r-dependent segment of the equation from the θ-dependent
part, using a constant K defined as

K = Q + (aE − L)2, (51)

with Q representing Carter’s constant [44]. Based on this method, the equations for pr and
pθ are obtained as

p2
r =

1
∆2

[
E
(

K + a2
)
− aL

]2
− 1

∆

[
Q + (aE − L)2

]
, (52)

p2
θ = Q + a2E2 cos2 θ − L2 cot2 θ. (53)

As we can see from the above equations, the Hamilton–Jacobi equation is fully separable for
null geodesics in the line element (37). It is important to highlight that the NJA admits the
separability of the Hamilton–Jacobi equations only if the rotating spacetime’s line element
can be written in Boyer–Lindquist-like coordinates. In the context of the MNJA, however,
this separability always holds for null geodesics. Now, since pµ = gµνuν = gµν(dxν/dτ),
with the help of Equations (52) and (53), we can write the full set of equations of motion for
null geodesics as follows:



Universe 2025, 11, 111 14 of 31

Ψ
dt
dτ

=
E
∆

[(
K + a2

)2
− a2∆ sin2 θ − a

(
K + a2 − ∆

)
ξ

]
, (54)

Ψ
dr
dτ

= E
√

R(r), (55)

Ψ
dθ

dτ
= E

√
Θ(θ), (56)

Ψ
dϕ

dτ
=

E
∆ sin2 θ

[(
∆ − a2 sin2 θ

)
ξ + a sin2 θ

(
K + a2 − ∆

)]
, (57)

where

ξ =
L
E

, (58a)

η =
Q

E2 , (58b)

are the gauge-invariant constants of motion, and we have also defined

R(r) =
(

K + a2 − aξ
)2

− ∆
[
η + (a − ξ)2

]
, (59a)

Θ(θ) = η + cos2 θ

(
a2 − ξ2

sin2 θ

)
. (59b)

It is essential to rely on the conditions R(r) ≥ 0 and Θ(θ) ≥ 0 for the null trajectories to
exist in the exterior geometry of the black hole.

5.1. Orbits of Constant Radius and the Photon Regions

In curved spacetimes, understanding particle and photon trajectories involves analyz-
ing their radial motion. For light rays, this analysis centers on the radial equation of motion,
leading to different types of orbits, such as deflecting, captured, and spherical (critical)
orbits. Spherical photon orbits, in particular, represent paths where the radial coordinate
remains constant, skimming the black hole’s horizon. These orbits are critical because they
determine whether a photon escapes or plunges into the black hole, and they are inherently
unstable, forming an infinite sequence of photon rings that define the black hole’s shadow.
In static spacetimes like Schwarzschild, these orbits are planar; however, in rotating black
holes, frame-dragging creates a photon region where spherical orbits become non-planar.
This region, bounded by the innermost and outermost circular orbits, defines the photon
orbits, as extensively studied in KBH solutions (see Refs. [45–47]). Research on these or-
bits and their observational significance has expanded significantly in Kerr and Kerr-like
spacetimes (see Refs. [40,48–62]).

In fact, spherical photon orbits at a given radius rp are determined under the criteria
R(rp) = 0 = R′(rp) [50]. Exploiting the form given in Equation (59a), these equations
provide the sets of solutions

ξp =

(
K + a2

a

)
rp

, (60)

ηp = −
(

K2

a2

)
rp

, (61)

and

ξp =

(
K + a2

a
− 2K′∆

a∆′

)
rp

, (62)

ηp =

(
4∆(K′)2

(∆′)2 − 1
a2

[
K − 2K′∆

∆′

]2
)

rp

. (63)
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These equations determine the critical impact parameter for light rays on constant-r or-
bits. However, it is clear from Equation (61) that ηp < 0, which leads to a non-physical
result. Thus, we disregard the solutions in (60) and (61) and instead consider those in
Equations (62) and (63) as the critical constants of motion for spherical photon orbits. No-
tably, for planar orbits with θ = π/2, one can infer from Equations (56) and (59b) that
ηp = 0. This result allows us to use Equation (63) to obtain the radii of planar circular
photon orbits. For the RMBH spacetime, given the complexity of the metric functions (4)
and (5), this equation results in a polynomial of the fifteenth order, rendering the radii of
planar photon orbits analytically intractable. However, numerical solutions can be used to
determine the radii of prograde and retrograde planar circular orbits, rp− and rp+ , respec-
tively, which define the inner and outer boundaries of the photon region. The photon region
is characterized by the condition Θ(θ) ≥ 0 for spherical photon orbits, using the critical
impact parameters in Equations (62) and (63) in the angular potential (59b). By solving
for the radii with ηp = 0, we illustrate examples of the photon regions forming around
the RMBH, as shown in Figures 7 and 8, for various parameter values as exemplified in
Figures 5 and 6. In these diagrams, in addition to the radii of planar orbits r0, we have
also shown the radii of polar orbits, which indicate the spherical orbits for photons with
no associated angular momentum. These photons traverse the entire polar angle, passing
through the poles without any change in the azimuthal angle. The radii of such orbits
are thus obtained by solving the equation ξp = 0 using the expression in Equation (62).
As observed from the diagrams, photon regions can form within rp− for both cases, as these
regions are bounded by the black hole’s event horizon. Notably, photon regions can also
form inside the event horizon (see, for example, Ref. [52]), with these regions bounded by
the radii of circular orbits within the black hole. When a naked singularity forms for α < 0,
these regions replicate, generating photon regions of decreasing size as they approach the
singularity. For black holes with α > 0, interesting features emerge, as the interior photon
regions (those within rp− ) vary in size and can form distinct branches, each containing a
separate spherical polar orbit.

It is important to note that, for a distant observer, the photons residing within the
photon regions (i.e., photons on spherical orbits) form the innermost photon rings, as they
complete numerous half-orbits around the black hole before reaching the observer (for
further discussion, see Refs. [63–65], as well as the foundational works in Refs. [66–68]).
These photons thus play a key role in defining the true boundary of the shadow (or the
critical curve), which will be explored in the next subsection.
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Figure 7. The photon regions around the RMBH in the z–x plane (indicated by orange areas) plotted
for α = −0.4 and various values of the spin parameter and the γ parameter, consistent with the
configurations shown in Figure 5. The blue dashed circles represent the radii of exterior planar
photon orbits, denoted as rp∓ . The white dashed circles correspond to a radius of r0, while the
central black disk has a radius of r+. The panels display the following values: (a) r+ = 2.812,
rp− = 4.024, rp+ = 6.263, and r0 = 4.777; (b) r+ = 1.610, rp− = 2.518, rp+ = 4.620, and r0 = 3.083;
(c) r+ = 1.043, rp− = 2.044, rp+ = 4.057, and r0 = 2.471; (d) r+ = 1.870, rp− = 3.866, rp+ = 6.620,
and r0 = 4.483. Panel (e) illustrates the photon regions around a naked singularity, bounded by blue
curves corresponding to rp− = 3.804 and rp+ = 6.915, which are comparable to the exterior photon
regions for black holes. In this case, smaller photon regions are enclosed by black dashed circles with
radii (from largest to smallest) rp1 = 2.985, rp2 = 1.366, rp3 = 1.118, rp4 = 0.843, and rp5 = 0.672.
For this example, r0 = 4.215. The units along the axes are given in terms of M.
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Figure 8. The shapes of the photon regions around the RMBH in the z–x plane (depicted in orange)
plotted for α = 0.04 and various values of the spin and γ parameters, following the configurations
provided in Figure 6. Only one of the values for r0 has been considered and is displayed. The panels
display the following values: (a) r+ = 1.729, rp− = 2.810, rp+ = 5.849, and r0 = 2.658; (b) r+ = 1.610,
rp− = 2.210, rp+ = 4.511, and r0 = 2.127; (c) r+ = 2.100, rp− = 2.810, rp+ = 5.454, and r0 = 3.742;
(d) r+ = 0.128, rp− = 2.810, rp+ = 5.775, and r0 = 2.234; and (e) r+ = 2.510, rp− = 3.883, rp+ = 5.116,
and r0 = 2.881. The unit of length along the axes is expressed in terms of M.

5.2. The Black Hole Shadow

The study of light propagation around black holes holds significant importance in
astrophysics, especially given the insights enabled by advances in observational astronomy.
Photons on unstable orbits in the gravitational field of a black hole either fall onto the
event horizon or escape to infinity. To a distant observer, those that escape appear as a
bright photon ring that bounds the black hole shadow [46,69–71]. In particular, Luminet’s
1979 optical simulation of a SBH and its accretion [71] provided detailed insights into
photon rings formed in the highly warped regions around black holes. These insights
helped scientists refine the shadow of rotating black holes within their respective photon
rings. Subsequently, mathematical techniques to determine the size and shape of a KBH’s
shadow were developed by Bardeen [46,47], later expanded upon by Chandrasekhar [45],
and further generalized (see Refs. [52,72–76]). These methods enabled rigorous analytical,
numerical, and observational studies across various black hole spacetimes in general
relativity and alternative theories of gravity [25,27,39,42,43,77–106]. As a result, black hole
shadows have become essential in understanding light propagation near event horizons.
Recent studies have also explored correlations between black hole shadow properties and
fundamental parameters, including thermodynamic quantities [107,108].

Historically, various definitions have been proposed in the literature to describe the
visual characteristics of black holes. Synge introduced the concept of the escape cone [69],
while Zeldovich and Novikov referred to the cone of gravitational radiation capture [109].
Bardeen, Chandrasekhar, and Luminet further popularized terms like the optical appearance
of black holes and black hole image, which are now widely used to describe how black holes
appear visually [45,47,71,110]. The term black hole shadow, introduced by Falcke, Melia,
and Agol [111], specifically refers to the dark region within the apparent boundary of the
black hole, which is sometimes termed the photon ring [55,112] or the critical curve [113] (see
Ref. [114] for further historical insights). In the context of the current study, the shadow is
supposed to be bounded by the innermost light rings that represent lensed images of the
luminous background.
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Technically, in order to identify the shape of the black hole shadow, one might construct
a celestial two-dimensional plane that spans the black hole’s image in the eyes of a distant
observer. For the case of the RMBH, since the spacetime is asymptotically finite, it is
convenient to identify the celestial plane by means of the celestial coordinates [73]

X = lim
ro→∞

(
−r2

o sin θo
dϕ

dr

∣∣∣∣
(ro ,θo)

)
, (64)

Y = lim
ro→∞

(
r2

o
dθ

dr

∣∣∣∣
(ro ,θo)

)
, (65)

for an observer located at the point (ro, θo), where ro is the observer’s radial distance to the
black hole, and θo is the observer’s inclination angle. Exploiting the equations of motion
(55)–(57), one can derive the celestial coordinates for an observer at infinity. From the
expressions (4) and (5), it is evident that at infinity A(ro) = B(ro) = 1− γ, and hence, using
the definitions (64) and (65), the celestial coordinates are obtained as

X = −
ξp(rp)

sin θo
− aγ sin θo

1 − γ
, (66)

Y = ±
√

ηp(rp) + a2 cos2 θo − ξ2
p(rp) cot2 θo , (67)

which, as expected, incorporates the conical parameter γ. Obviously, for γ = 0, the above
coordinates resemble those for asymptotically flat spacetime (such as for KBH) given in
Ref. [45]. To demonstrate the critical curves, it is also convenient to locate the observer on
the equatorial plane by setting θo = π/2, and hence, the celestial coordinates that will be
used for plotting the shadow boundaries take the form

X = −ξp(rp)−
aγ

1 − γ
, (68)

Y = ±
√

ηp(rp) . (69)

Note that at each point on the critical curve in the celestial plane, one can consider a
circle centered at the origin, whose radius Rc can be calculated by using the expressions in
Equations (62) and (63) in the celestial coordinates (66) and (67), which yields

R2
c = X2 + Y2

=
1

2(1 − γ)2

a2
(

3 − 2γ + (1 − 2γ) cos(2θo)
)
+ 4(1 − γ)K −

8(1 − γ)K′∆
(

∆′ − (1 − γ)K′
)

(∆′)2


rp

. (70)

Now, considering the critical constants in Equations (62) and (63), we take rp as the curve
parameter and generate the shadow boundaries in the X–Y plane. In Figure 9, several
examples of the critical curves have been plotted for the RMBH with different spin param-
eters, while the parameters α and γ are also considered to be varying in some examples.
As indicated by the diagrams, for a fixed value of α, increasing the γ parameter signifi-
cantly enlarges the shadow compared to that of a KBH. Notably, for positive values of
α, the critical curves can resemble those of a Kerr naked singularity; however, here they
correspond to RMBHs with either one or two horizons rather than to naked singularities.
This is a distinctive feature of the RMBH spacetime, suggesting that high-spin RMBHs
may manifest through unclosed photon rings. In these cases, photon regions do not form
in the conventional sense, implying that the constants of motion ξ and η, as given by
Equations (58a) and (58b), do not permit a peak in the gravitational effective potential for
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photons approaching from all distances. Consequently, for certain black hole parameter
values, the number of spherical photon orbits is reduced, with no solutions for rp under
these conditions. In such scenarios, the majority of photons are either deflected toward
an observer at infinity, forming alternative photon rings, or are deflected onto the event
horizon and captured. Thus, the unclosed shadow boundaries correspond to a small subset
of innermost unstable photon trajectories that reside on spherical orbits. Although previ-
ous studies have demonstrated that the shadows of KBHs and Kerr naked singularities
may be indistinguishable to distant observers, it has also been shown that photon rings
for black holes and naked singularities can exhibit observational differences [67,115–119].
For the RMBH, however, as inferred from the critical curves, unclosed photon rings do
not necessarily correspond to naked singularities. This is further evident from the shadow
diagrams for positive values of α, which confirm that no naked singularities are present in
the spacetime.
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Figure 9. Cont.
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Figure 9. The shape of the critical curves for the RMBH with θo = π/2, corresponding to the
following criteria: (a–d) fixed values for the α and γ parameters with varying values of the spin
parameter, (e,f) fixed values for the spin and α parameters with different curves corresponding to
varying γ parameter values, and (g,h) fixed values for the γ and spin parameters with different
curves representing varying α parameter values within both negative and positive domains. The unit
of length along the axes is M.

6. Shadow Observables and Constraints from the EHT
In this section, we begin by characterizing the shape of the black hole shadow through

key observables, which we then apply to the RMBH to analyze the behavior of these
observables specific to this black hole. Finally, we use these observables as tools to compare
with EHT data to constrain the black hole parameters.

Recently, numerous studies have explored the deformation and distortion of black
hole shadows (see, for instance, Refs. [87,98,112,120–125]). Following these approaches,
the shadow can be characterized by the following features:

(i) The areal radius Ra, which quantifies the size of the black hole shadow, is defined as

Ra =

√
As

π
, (71)

in which As is the area enclosed by the critical curve, given by

As = 2
∫

Y(r)dX(r) = 2
∫ rp+

rp−
Y(r)X′(r)dr, (72)

where the radii of planar orbits rp± are determined from the equation Y2(rp) = 0.
(ii) The shadow deformation Ds, which describes the shadow’s asymmetry, is given by

Ds =
δY
δX

=
Yt − Yb
Xr − Xl

=
2Yt

Xr − Xl
, (73)

where the subscripts t, b, l, and r denote the top, bottom, left, and right extremities
of the shadow, as illustrated in Figure 10, which depicts the geometric form of an
oblate shadow.
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Figure 10. Schematic of an oblate shadow of a rotating black hole (solid blue curve) contrasted with a
fully circular shadow (dashed red curve) used as reference, in X–Y coordinates. The reference circle
intersects the points (Xb, Yb), (Xr, 0), and (Xt, Yt).

For simplicity, we assume Yb = −Yt, justifying the factor of 2 in Equation (72) due to
the shadow’s reflectional symmetry along the X-axis.

(iii) The fractional deviation parameter δs, which measures the deviation of the shadow’s
diameter from that of the SBH, is defined as

δs =
R̄sh

3
√

3
− 1, (74)

where

R̄2
sh =

1
2π

∫ 2π

0

[
(X − Xc)

2 + (Y − Yc)
2
]
dψ, (75)

represents the average radius of the shadow, with (Xc, Yc = 0) locating the geometric
center of the shadow, where Xc = (Xr + Xl)/2. Additionally,

ψ = arctan
(

Y
X − Xc

)
, (76)

is the angular position of points on the shadow boundary relative to the center.

Note that Xr and Xl are identified as X(rp±), while the top end Yt corresponds to Y(rt),
where rt is determined from the condition dY/dX = 0. Considering the celestial coor-
dinates in Equations (66) and (67), along with the expressions in (62) and (63), the latter
condition leads to the equation

2
(

a2s2
o − ∆

)
K′ +

[
a2
(

1 − s2
o

)
+ K

]
∆′ = 0, (77)

where so ≡ sin θo. In Figure 11, we present the behavior of the areal radius, the deformation,
and the deviation as functions of the α parameter for two different inclination angles.

Note that the discontinuous curves in the diagrams correspond to the discontinuous
photon rings (as illustrated in some examples in Figure 9). In these cases, the celestial
coordinates X and Y cannot be computed as real quantities, typically because the light
rays fail to orbit stably around the black hole (see the discussion in the previous section).
As observed from the diagrams in Figure 11a,d for each fixed γ-parameter, the areal radius
smoothly decreases within its continuous value domain as the α-parameter increases.
Furthermore, an increase in the spin parameter leads to a reduction in the areal radius,
which is consistent with the expected behavior for classical Kerr-like black holes in GR.
Conversely, for a fixed γ-parameter, an increase in the α-parameter results in a rise in
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the deformation, with a larger deformation for faster-rotating black holes. By comparing
panels (b) and (e) of Figure 11, we can observe that for the same parameter values, a higher
inclination angle leads to an increase in the deformation. Finally, as shown in Figure 11c,f,
the deviation parameter is always positive, indicating that the average shadow radius of
the RMBH is larger than that of the SBH and decreases rapidly as the α-parameter increases.
However, the positivity of δs also implies that as the spin parameter increases, the deviation
diminishes. This trend is evident in the diagrams for both inclination angles and is in
agreement with the behavior of the areal radius demonstrated in Figure 11a,d.
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Figure 11. The α-profiles of Ra, Ds, and δs are plotted for γ = 0.3 and different values of the spin
parameter. The inclination angle for the panels in the first row is 17◦, while for the second row, it is
30◦. The unit of length for Ra is M.

6.1. Constraints from the M87* Observations

The EHT observational results from the shadow images of M87* revealed the areal
radius and deformation of the shadow, respectively, as 4.31M ≤ Ra ≤ 6.08M and
1 ≤ Ds ≤ 1.33 [1]. Furthermore, it has been shown that the spin parameter of M87* is
approximately a = (0.9 ± 0.05)M [126]. Following the discussion in Ref. [127], we assume
θo = 17◦. Considering the spin parameter of M87* mentioned above, we observe from
Figure 11a,b that the values of Ra for the corresponding curve do not lie within the range
observed for M87*. This suggests that the γ-parameter should be smaller. In Figure 12a, we
have plotted the areal radius and the deformation as functions of α for the spin parameter
of M87* within its 1σ and 2σ uncertainties, where the γ parameter has been fixed to 0.05.
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Figure 12. Values of Ra and Ds within the 1σ (bright color) and 2σ (dark color) uncertainties of the
spin parameter of M87*, plotted for γ = 0.05. The unit of length along the Ra axis is M.

As observed from the behavior of Ra, the value γ = 0.05 places the domain of confi-
dence within an acceptable range regarding the M87* observations. However, considering
the range of Ra covered within the 2σ uncertainty, it can be concluded that this parameter
will still lie within the confident domain of M87* observations if the chosen value of γ is
doubled. Thus, we infer that the γ parameter performs best within the range 0 ≤ γ ≲ 0.1.
Furthermore, the physically reliable range of α within these data is −0.2 ≲ α ≤ 0, which can
also be regarded as its observational constraint. Therefore, the negative branch of α holds
more astrophysical significance. These constraints have been tested for the deformation
in Figure 12b. Note that the range of Ds in diagrams Figure 11b,e for γ = 0.3 is already
within the acceptable ranges, particularly for a = 0.9M. However, we see that for γ = 0.05,
the results are still acceptable. Hence, we can confidently adopt the new domain for γ as
asserted above, since it respects the validity of Ra within the observational data.

6.2. Constraints from the Sgr A* Observations

The parameters of Sgr A* observed by the EHT are specified by the Very Large Tele-
scope Interferometer (VLTI) and Keck observatories. These observations have constrained
the areal radius and the fractional deviation peculiar to Sgr A* as 4.5M ≤ Ra ≤ 5.5M
and −0.17 ≤ δs ≤ 0.01 by VLTI, and 4.3M ≤ Ra ≤ 5.3M and −0.14 ≤ δs ≤ 0.05 by
Keck [2]. Furthermore, the inclination angle determined by the EHT was approximately
θo < 50◦ for two classes of models used in simulations. For this purpose, two different spin
parameters, a = 0.5M and a = 0.94M, were applied to satisfy a series of EHT constraints in
the general relativistic magnetohydrodynamic (GRMHD) simulations. On the other hand,
recent analysis of Sgr A* suggests that its spin should be a = (0.9 ± 0.06)M [127]. This
value is taken into account in this subsection to constrain the parameters of the RMBH.
Additionally, a reliable inclination of 30◦ is assumed. In Figure 13, we have plotted the
behavior of Ra and δs for the RMBH, considering the spin parameter of Sgr A* within its 1σ

and 2σ uncertainties.
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Figure 13. Values of Ra plotted for γ = 0.05 and δs plotted for γ = 0.036 within the 1σ (bright color)
and 2σ (dark color) uncertainties of the spin parameter of Sgr A*. The unit of length along the Ra axis
is M.

As inferred from the left panel, the values of the areal radius lie within the observa-
tional data derived from VLTI and Keck, with γ = 0.05 as the upper limit. This indicates
that larger values of γ would violate the observational constraints. Therefore, this suggests
that, while the α parameter can still respect the domain −0.2 ≲ α ≤ 0, the γ parameter
should be less than 0.05. This is also consistent with the behavior of δs within Sgr A* obser-
vations, as for the chosen value of γ = 0.036, the fractional deviation becomes δs ≈ 0.05,
which is the upper limit of this parameter according to the Keck observations. Hence, to be
consistent with the Sgr A* observations, the γ parameter should lie within the domain
0 ≤ γ ≲ 0.036. Notably, this range just covers a portion of the acceptable values constrained
by the M87* observational data. Thus, we can infer that the Sgr A* observations impose
more stringent constraints on the parameters of the RMBH.

Based on these constraints, in Figure 14, we have plotted the shadow of the RMBH,
considering the values for the α and γ parameters that are in agreement with both the M87*
and Sgr A* observations, as discussed above.
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Figure 14. The shadow boundary of the RMBH plotted for α = −0.2, γ = 0.03, a = 0.96, and θo = π/2
compared to the shadow of a KBH for the same spin parameter. The unit of length along the axes
is M.
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As we can see, within the observational constraints, the shadow radius of the RMBH is
slightly larger than that of a KBH. Furthermore, in contrast to the oblateness of the shadow
of a fast-rotating KBH, the shadow of a fast-rotating RMBH exhibits sharpness. This is
an important feature of the weakly coupled GMC in the spacetime of the RMBH, which
manifests itself in the peculiar shape of the shadow.

7. The Energy Emission Rate
From the quantum mechanical perspective, on the black hole’s event horizon, particles

can be created and annihilated, and those with positive energy can escape the event horizon
by tunneling. This process sets black holes into radiation, which may eventually cause them
to evaporate. Black hole evaporation occurs due to Hawking radiation, a quantum effect
in which black holes emit thermal radiation, gradually losing mass and energy over time
until they eventually vanish [128]. At high energy levels, Hawking radiation is typically
emitted within a finite cross-sectional area, denoted as σl . For distant observers positioned
far from the black hole, this cross-section gradually approaches the shadow cast by the
black hole [129,130]. It has been shown that σl is directly linked to the area of the photon
ring and can be mathematically represented as [130–132]

σl ≈ πR̄2
sh. (78)

Accordingly, the energy emission rate of the black hole can be expressed as

Ω ≡ d2E(ϖ)

dϖ dt
=

2π2σl

eϖ/T+
H − 1

ϖ3 ≈
2π3R̄2

shϖ3

eϖ/T+
H − 1

, (79)

where ϖ is the emission frequency, and T+
H = κ/2π is the Hawking temperature at the

event horizon, where

κ =
∆′(r)

2(a2 + r2)

∣∣∣∣
r+

, (80)

is the surface gravity at the event horizon. It is straightforward to verify that for a zero
spin parameter (i.e., a = 0), this quantity reduces to κ = A′(r+)/2, which is the surface
gravity of the event horizon for static black holes. In Figure 15, some examples of the
behavior of Ω versus changes in the frequency ϖ are plotted for the RMBH, with black
hole parameters taken within the observationally accepted domains, as identified in the
previous section. As observed from the diagrams, the larger the γ parameter, the higher
the energy emission rate for all values of the coupling constant α. Hence, the GMC results
in a faster-evaporating black hole. It is also observed that faster-rotating black holes emit
less energy. Consequently, for higher spin parameters, the profiles of the RMBH resemble
those of the KBH. Furthermore, as the observer’s inclination increases, the energy emission
rate decreases. According to the diagrams, we can infer that the largest emission rate for
the RMBH corresponds to the lower limit of the spin parameter, the upper limit of the
coupling constant, and the upper limit of the GMC. However, note that such cases exhibit
significantly lower energy emission rates than the KBH.
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Figure 15. The profiles of the energy emission rate with respect to changes in the frequency ϖ

for three different cases of the spin parameter, the α parameter, and the γ parameter within the
accepted observational constraints and for two different inclinations compared to the energy emission
rate for the KBH for the same spin parameters.

8. Summary and Conclusions
In this study, we analyzed the shadow properties of a rotating black hole with a weakly

coupled GMC, i.e., the RMBH, which is derived by applying MNJA from the seed static
spacetime. We showed that the GMC, by creating a deficit angle, modifies the black hole’s
causal structure, photon regions, and shadow observables, while general relativity remains
the background theory. Our findings reveal that the combined influence of the GMC and
rotation produces distinct shadow features, which could potentially differentiate the RMBH
from the Kerr-like black holes of GR. Our shadow analysis demonstrated how both the
GMC and the weak coupling constant modify the size, circularity, and shape of the shadow,
resulting in deviations that may be detectable in astrophysical observations. The investi-
gation of critical curves in the shadow showed that, for specific values of the GMC and
coupling parameters, certain photon trajectories remain open, especially under high-spin
conditions. These open photon rings indicate incomplete spherical photon orbits, forming
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unique shadow boundaries for rotating black holes with GMC. Such characteristics may
provide observable signatures that help distinguish the RMBH from the KBH. Moreover,
using shadow observables, including the areal radius Ra and the shadow deformation
parameter Ds, we constrained the GMC parameter γ and weak coupling constant α by
comparing theoretical shadow predictions with observational data from the EHT for M87*
and Sgr A*. This analysis restricted the GMC parameter to 0 ≤ γ ≲ 0.036 and the weak cou-
pling constant to −0.2 ≲ α ≤ 0. These constraints provide important experimental limits
on the parameter space for black holes with GMC, offering insights into the symmetry-
breaking scale associated with global monopoles in astrophysical scenarios. We further
examined the black hole’s energy emission rate, observing that higher values of the GMC
correspond to increased emission rates, suggesting a faster evaporation process. Our anal-
ysis indicates that emission rates are inversely related to the spin parameter, with higher
rotation leading to a reduced emission rate. Additionally, observers at larger inclination
angles experience decreased emission rates, suggesting that inclination angle and rotation
significantly influence the black hole’s energy profile. In conclusion, our study underscores
the potential of black hole shadow observations as a tool for testing nonminimal coupling
theories and detecting topological defects like global monopoles. By constraining the GMC
and coupling parameter, our results also provide a potential phenomenological test for
nonminimal gravity. Future research may extend this analysis by exploring additional
shadow observables, such as asymmetry or lensing rings, or by examining the behavior of
GMC in stronger coupling regimes. Such investigations could further clarify the role of
symmetry-breaking mechanisms and topological defects in shaping black hole spacetimes,
providing valuable insights into modified gravity and early-universe physics.
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