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We develop a new approach to find asymptotic symmetries in general relativity as a modifi-
cation of the Lie-algebra-based approach proposed in T. Tomitsuka et al. [Classical Quan-
tum Gravity 38, 225007 (2021)]. Those authors proposed an algorithmic protocol to in-
vestigate asymptotic symmetries. In particular, their guiding principle helps us to find a
non-vanishing charge that generates an infinitesimal diffeomorphism. However, in order to
check the integrability condition for the charges, it is necessary to solve differential equa-
tions to identify the integral curve of vector fields, which is usually quite hard. In this paper,
we provide a sufficient condition of the integrability condition that can be checked without
solving any differential equations, avoiding the difficulties in the approach in the above ref-
erence. As a demonstration, we investigate the asymptotic symmetries on a Killing horizon
and find a new class of asymptotic symmetries. In 4D spacetimes with a spherical Killing
horizon, we show that the algebra of the corresponding charges is a central extension of
the algebra of vector fields.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction
The uniqueness theorem [1–3] states that every 4D stationary black hole solution to the
Einstein–Maxwell equations in general relativity is completely characterized by just three pa-
rameters, mass, angular momentum, and electric charge. On the other hand, Bekenstein [4]
proposed that a black hole has entropy proportional to its horizon area A, and Hawking [5]
showed that a black hole emits thermal radiation and has what we call Bekenstein–Hawking
(BH) entropy A/4G, where G denotes the gravitational constant. This suggests that the black
hole has a lot of microstates even though it can be characterized by the above three parameters.
What is the origin of such microstates?

So far, a great deal of effort has been devoted to explaining the origin of BH entropy. One
possible origin are the so-called asymptotic symmetries on a horizon. General relativity is in-
variant under diffeomorphisms. Sometimes, it is argued that diffeomorphisms are gauge trans-
formations in general relativity, which do not change the state of the system physically. If so,
the metrics connected by diffeomorphisms cannot be distinguished from each other and hence
diffeomorphisms may seem to have nothing to do with the origin of microstates.

However, not all diffeomorphisms generate gauge transformations. A way to judge whether
a diffeomorphism is not a gauge transformation is to check the value of the charge generating
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the transformation. If the value of the charge is modified by a diffeomorphism, then it is not
a gauge transformation since the original and transformed metrics can be discriminated. Such
a physical transformation generates microstates that may contribute to BH entropy. As is well
known, the value of a charge generating an infinitesimal diffeomorphism is given by an integral
over the boundary of a spacetime in general relativity. Thus, the asymptotic behaviors of a
diffeomorphism and the metric play a crucial role in identifying transformations that cannot
be gauged away. Such asymptotic symmetries of spacetimes have been investigated as a possible
origin of BH entropy, e.g., in Refs. [6–11].

Despite such importance, studies on asymptotic symmetries often take enormous effort. In
the conventional approach, we first specify the asymptotic behavior of the metrics near the
boundary and solve the asymptotic Killing equation. The set of all asymptotic Killing vectors
forms an algebra that generates a diffeomorphism. Next, we check whether the so-called inte-
grability condition is satisfied. If it is not, we have to go back to the beginning to get a well
defined charge. Even when the integrability condition is satisfied, there remains a possibility
that all the charges vanish for any metrics in question. In this case, since the metrics cannot be
discriminated by the values of the charges, the diffeomorphism can be gauged away. Thus, to
find non-trivial charges, we also have to restart the above protocol from the beginning. In this
sense, it is important but sometimes difficult to find an appropriate asymptotic behavior of the
metrics in the first step that results in non-trivial and integrable charges by trial and error.

As an alternative approach, the authors of this paper and a collaborator proposed the Lie-
algebra-based approach in Ref. [12]. In contrast to the conventional approach, in our approach,
we first pick up a pair of two vector fields such that the Poisson bracket of the charges gener-
ating infinitesimal diffeomorphisms along them does not vanish at a fixed but arbitrary metric
ḡμν , which we call the background metric. We then fix a Lie algebra A, which contains those
vector fields. Instead of metrics with an asymptotic behavior introduced by hand, we adopted a
set of metrics S that are connected to ḡμν by diffeomorphisms generated by A. The algebra of
the charges is non-trivial by construction as long as the integrability condition is satisfied since
there is a set of elements whose Poisson bracket does not vanish. In Ref. [12], we applied this
approach to the Rindler horizon and found the new symmetry that we call superdilatations.

Although the approach proposed in Ref. [12] may be powerful in finding asymptotic symme-
tries, there remain hard tasks that are required to check the integrability of the charges directly.
We need to solve differential equations to obtain all the diffeomorphisms generated by A and
identify S. Although there are examples of algebras A for which the differential equations can
be solved, e.g., those in Ref. [12], in general, it is quite difficult to solve the differential equa-
tions for a given A. In this paper, we propose a modification of the approach to overcome this
issue. A key ingredient is a sufficient condition for charges to be integrable, which can be checked
at the background metric ḡμν . This enables us to check the integrability condition without solv-
ing any differential equation. Since the algebra of integrable charges can be fully characterized
by calculating the value of the Poisson bracket at the background metric ḡμν , there is no need
to identify diffeomorphisms generated by A or S directly. As an explicit example, we investigate
the asymptotic symmetries on the Killing horizon with our approach. We find a new asymp-
totic symmetry composed of a class of supertranslations, superrotations, and superdilatations
in D-dimensional spacetimes with the Killing horizon. In particular, the algebra of the charges
in 4D spacetimes with a spherical Killing horizon is calculated explicitly, which is shown to be
a central extension of A.
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This paper is organized as follows: In Sect. 2, we briefly review the covariant phase space
method, which is adopted in this paper to construct the charges generating infinitesimal diffeo-
morphisms. In Sect. 3, we briefly review the Lie-algebra-based approach proposed in Ref. [12].
In Sect. 4, we provide a sufficient condition for the charges to be integrable. In Sect. 5, we find
a new symmetry on the Killing horizon by using our approach and investigate the algebra of
its charges. In Sect. 6, we present the summary of this paper. In this paper, we set the speed of
light to unity: c = 1.

2. Covariant phase space method
Let us briefly review the covariant phase space method developed in Refs. [13–19], which will
be adopted in the rest of this paper. This method enables us to investigate and construct the
algebra of the charges independently of the choice of a local coordinate system.

We here focus on the gravitational system without any matter field. The Einstein–Hilbert
action with the cosmological constant � is given by

S =
∫
M

dDxLEH, LEH :=
√−g
16πG

(R − 2�), (1)

where
∫
M dDx denotes the integral over a D-dimensional spacetime M and g and R are the

determinant of the metric gμν and the Ricci scalar, respectively. The variation of the integrand
is decomposed into two parts as

δLEH = −
√−g
16πG

(Gμν + �gμν )δgμν + ∂μ�μ(g, δg), (2)

where Gμν is the Einstein tensor defined by

Gμν := Rμν − 1
2

Rgμν, (3)

while � is called the pre-symplectic potential, which is defined by

�μ(g, δg) =
√−g
16πG

(
gμα∇βδgαβ − gαβ∇μδgαβ

)
. (4)

For an infinitesimal transformation of metric δξ gμν := £ξ gμν , where ξ is a vector field and £ξ

denotes the Lie derivative along it, we have

δξLEH = £ξLEH = ∂μ (ξμLEH) (5)

since LEH is a scalar density. Defining the Noether current

Jμ[ξ ] := �μ(g, £ξ g) − ξμLEH, (6)

Eqs. (2) and (5) imply that

∂μJμ[ξ ] =
√−g
16πG

(Gμν + �gμν )£ξ gμν (7)

holds. From this equation, one can see that if gμν satisfies the equation of motion, i.e., the
Einstein equations Gμν + �gμν = 0, the current is conserved:

∂μJμ[ξ ] ≈ 0, (8)

where ≈ denotes an equality that holds for any solution of the equation of motion. In fact, we
can decompose the current into two parts [18]:

Jμ[ξ ] = ∂νQμν [ξ ] + Cμ
ν ξν, Qμν [ξ ] := −

√−g
8πG

∇ [μξν], Cμ
ν :=

√−g
8πG

(
Gμ

ν + �gμ
ν

)
. (9)
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Here, the bracket [ , ] for indices denotes an anti-symmetric symbol that is defined by

A[μ1μ2···μd ] := 1
d !

∑
σ∈Sd

sgn(σ )Aμσ (1)μσ (2)···μσ (d ), (10)

where Sd is the permutation group and sgn(σ ) denotes the signature of σ ∈ Sd.
The Noether charge is defined as the integral of the current over a (D − 1)-dimensional sub-

manifold 
 in M and is given by

Q[ξ ] :=
∫




(dD−1x)μJμ[ξ ] ≈
∫




(dD−1x)μ∂νQμν [ξ ] =
∮

∂


(dD−2x)μνQμν [ξ ], (11)

where ∂
 is the boundary of 
. Note that the integral measure is given by

(dD−px)μ1···μp := εμ1···μpμp+1···μD

p!(D − p)!
dxμp+1 ∧ · · · ∧ dxμD, (12)

where εμ1···μD is the D-dimensional Levi–Civita symbol.
For any linear perturbations of the metrics δ1gμν and δ2gμν , the pre-symplectic current is

defined as

ωμ(g, δ1g, δ2g) := δ1�
μ(g, δ2g) − δ2�

μ(g, δ1g). (13)

The integral of the pre-symplectic current over 
 is called the pre-symplectic form, denoted
by

�(g, δ1g, δ2g) :=
∫




(dD−1x)μωμ(g, δ1g, δ2g). (14)

Let H[ξ ] denote the charge generating an infinitesimal transformation such that gμν �→gμν +
£ξ gμν for a vector field ξ . For a linear perturbation δgμν , it is known [15–19] that the variation
of the charge is given by

δH [ξ ] = �(g, δg, £ξ g) =
∫




(dD−1x)μωμ(g, δg, £ξ g). (15)

From Eqs. (2), (6), and (9), we get

ωμ(g, δg, £ξ g) ≈ δCμ
ν ξν + ∂νSμν

(
g, δg, £ξ g

)
, (16)

where Sμν(g, δg, £ξ g) is an anti-symmetric tensor defined by

Sμν
(
g, δg, £ξg

)
:= δQμν [ξ ] + 2ξ [μ�ν](g, δg)

=
√−g
8πG

(
− 1

2
δgα

α∇ [μξν] + δgα[μ∇αξ
ν] − ∇ [μδgν]αξα

+ ξ [μ∇αδgν]α − ξ [μ∇ν]δgα
α

)
. (17)

Therefore, if the generator H[ξ ] exists, its variation satisfies

δH [ξ ] ≈
∫




(
dD−1x

)
μ

δCμ
ν ξν +

∮
∂


(
dD−2x

)
μν

Sμν
(
g, δg, £ξg

)
. (18)

Assuming δgμν satisfies the linearized Einstein equations, the first term vanishes and we get

δH [ξ ] ≈
∮

∂


(
dD−2x

)
μν

Sμν
(
g, δg, £ξg

)
. (19)

This equation implies that the values of charges are characterized by the asymptotic behaviors
of the metric gμν , its perturbation δgμν , and the vector field ξ .
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Let us now investigate under what condition the charge exists. Given the formula for the
variation in Eq. (19), it must hold that

(δ1δ2 − δ2δ1)H [ξ ] = 0 (20)

for any variation δ1 and δ2 as the partial derivatives of a multivariable function commute. Since
it holds that

(δ1δ2 − δ2δ1)H [ξ ] = −
∫

∂


(dD−2x)μν

(
ξ [μδ1�

ν](g, δ2g) − ξ [μδ2�
ν](g, δ1g)

)
= −

∫
∂


(dD−2x)μνξ
[μων](g, δ1g, δ2g)

≈ −
∫

∂


(dD−2x)μνξ
[μ∂αSν]α(g, δ1g, δ2g), (21)

Eq. (20) is equivalent to ∫
∂


(dD−2x)μνξ
[μ∂αSν]α(g, δ1g, δ2g) = 0. (22)

Although this is a necessary condition for the charge to exist, it is also a sufficient condition
as long as the space of gμν has no topological obstruction [19]. Therefore, we call Eq. (22) the
integrability condition.

If the integrability condition is satisfied, the charge at a metric gμν can be evaluated by the
integral along a smooth path from a reference metric g(0)

μν to gμν in the space of metrics. More
precisely, by using an arbitrary one-parameter set of metrics gμν(λ) such that gμν (λ = 0) = g(0)

μν

and gμν(λ = 1) = gμν , the charge at gμν is evaluated as

H [ξ ] =
∫ 1

0
dλ

∫
∂


(dD−2x)μν (∂λQμν [ξ ](g, ∂λg) + 2ξ [μ�ν](g, ∂λg)), (23)

where we have set the reference of the charge H[ξ ] so that it vanishes at g(0)
μν . Since Eq. (20) is

satisfied, the charge in Eq. (23) is independent of the choice of path gμν(λ).

3. Review of the Lie-algebra-based approach
In this section, we review the approach developed in Ref. [12], where we proposed a guiding
principle that helps us to find a non-trivial algebra of the charges. This principle ensures the
existence of two elements in the algebra such that their Poisson bracket does not vanish. There-
fore, as long as the integrability condition of the charges is satisfied, the transformation gener-
ated by the algebra cannot be gauged away.

In order to investigate the asymptotic symmetries of a background metric ḡμν of interest with
the covariant phase space method, we have to specify (i) the set of metrics that includes ḡμν and
(ii) the set of vector fields that forms a closed algebra. In the following, they are denoted by S
and A, respectively. These sets must be chosen such that an element of S is mapped into itself
under any infinitesimal diffeomorphism generated by A. Note that only the asymptotic behav-
iors of the metrics and the vector fields are relevant for the charges. In prior studies, such as
Ref. [20], it is common to fix the algebra A as the set of vectors satisfying the asymptotic Killing
equation for a given S. This approach uses trial and error to find S such that the integrability
condition is satisfied and the charges form a non-trivial algebra.

In the Lie-algebra-based approach proposed in Ref. [12], an alternative method is adopted to
fix S and A; given an algebra A, we define S by

S := {
φ∗ḡμν

∣∣φ ∈ {all diffeomorphisms generated by A}} , (24)
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Fig. 1. A schematic picture of the set of metrics S defined in Eq. (24). Vector fields ξ and η are elements
of a Lie algebra A. All metrics in S are connected to the background metric ḡμν by diffeomorphisms
generated by A. For any metric gμν ∈ S, there exists a smooth path gμν(λ) from ḡμν to gμν . For any
tangent δgμν(λ) at a point gμν(λ) in S, there is a vector field χ ∈ A such that δgμν(λ) = £χgμν(λ).

where φ∗ denotes the pull-back. In this case, we need to choose A carefully so that the resulting
charges are integrable and form a non-trivial algebra. In the rest of this paper, the set S is always
defined by Eq. (24).

There are advantages to adopting the set S defined in Eq. (24). First, if ḡμν is a solution of
the Einstein equations, then any element of S automatically satisfies the Einstein equations. In
addition, a linearized perturbation δgμν is generated by an infinitesimal diffeomorphism and
can be written as

δgμν = £χgμν (25)

with a vector field χ ∈ A. In the following, the variation corresponding to such a perturbation
is denoted by δχ . This property is particularly important to find a candidate of A with the Lie-
algebra-based method, as we will see soon. A schematic picture of the set of metrics S is shown
in Fig. 1.

Now, let us review the key idea in Ref. [12], which is helpful to find A yielding a non-trivial
algebra of charges. The algebra is non-trivial if

∃ξ, η ∈ A, ∃gμν ∈ S, δηH [ξ ]

∣∣∣∣
gμν

�= 0 (26)

or, equivalently, {H [ξ ], H [η]}
∣∣∣
gμν

�= 0. From Eq. (17), Eq. (26) can be recast into

∃ξ, η ∈ A, ∃gμν ∈ S,

∫
∂


(dD−2x)μνSμν (g, £ηg, £ξ g) �= 0. (27)

The diffeomorphism associated with the algebra cannot be gauged away if Eq. (27) is satis-
fied. Otherwise, all the charges vanish for any metric, implying that the metrics in S cannot be
discriminated by the value of charges and that the diffeomorphisms generated by A may be
gauged away.

Note that it may be hard to check the condition in Eq. (27) directly since the set of metrics S
depends on A. Instead, we adopt a sufficient condition

∃ξ, η ∈ A,

∫
∂


(dD−2x)μνSμν (ḡ, £ηḡ, £ξ ḡ) �= 0 (28)
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as a guiding principle to fix A. More precisely, we first derive a formula for

∫
∂


(dD−2x)μνSμν (ḡ, £ηḡ, £ξ ḡ) (29)

for arbitrary vector fields ξ and η. Since Eq. (28) can be calculated at ḡμν , we need to spec-
ify neither S nor A at this point. By using this, we then fix two vector fields ξ and η so that
Eq. (29) does not vanish. We define A as a closed algebra containing η and ξ , which can be
obtained by calculating the commutators of ξ and η. The algebra A defined in this way trivially
satisfies Eq. (27) and hence the diffeomorphisms generated by A cannot be gauged away by
construction.

Of course, we also need to impose Eq. (22) to get integrable charges. This condition can be
recast into

0 =
∫

∂


(
dD−2x

)
μν

ξ [μ∂αSν]α (
g, £ηg, £χg

)
, ∀ξ, η, χ ∈ A, ∀gμν ∈ S (30)

where we have used Eq. (25).
For a given background metric ḡμν , Eq. (28) works as a guiding principle to find non-trivial

charges. However, there still remains a difficulty in finding integrable charges since we have to
choose ξ and η so that Eq. (30) is also satisfied, which requires trial and error. It often takes
an effort to check Eq. (30) for an arbitrary gμν ∈ S since we have to calculate the asymptotic
behaviors of gμν near the boundary. As a necessary condition, in Ref. [12], we adopted Eq. (22)
at the background metric, i.e.,

∫
∂


(
dD−2x

)
μν

ξ [μ∂αSν]α (
ḡ, £ηḡ, £χ ḡ

) = 0, ∀ξ, η, χ ∈ A (31)

before checking Eq. (30) directly. This condition can be checked relatively easily since we only
need the background metric ḡμν and the algebra A. The approach proposed in Ref. [12] can be
summarized by the following six steps:

Step 1 Fix a background metric ḡμν of interest.
Step 2 For the background metric, find two vector fields ξ and η satisfying Eq. (28). These

are the candidates generating non-trivial diffeomorphisms whose charges are integrable.
Step 3 Introduce the minimal Lie algebra A including ξ and η by calculating their commu-

tators. Check whether the integrability condition at the background metric, i.e., Eq. (31),
is satisfied for the algebra A as a necessary condition for Eq. (30). If it holds, go to the
next step. Otherwise, go back to Step 2.

Step 4 Construct the set S of metrics gμν that are connected to the background metric ḡμν

via diffeomorphisms generated by A.
Step 5 Check the integrability condition in Eq. (22). If it is satisfied, then go to the following

step. If not, go back to Step 2.
Step 6 Calculate the charges by using Eq. (23). Here, we fix the reference metric as the

background metric: g(0)
μν = ḡμν .

In our previous paper [12], we only considered vacuum solutions to the Einstein equa-
tion without the cosmological constant. We can easily extend the analysis to solutions with
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the cosmological constant. In this case, Eq. (27) is recast into

∃ξ, η ∈ A, ∃gμν ∈ S,

1
8πG

∫
∂


[
(2∇αημ∇αξ

ν − ∇αη
α∇μξν + ∇αξ

α∇μην ) − C μν
αβ ξαηβ + 4�

D − 1
ξμην

]
εμν �= 0,

(32)

where C μν
αβ := gμγ gνδCαβγ δ is the Weyl tensor and εμν := √−g(dD−2x)μν . Note that it can

be checked that Eq. (32) is equivalent to Eq. (39) in Ref. [12] if the cosmological constant �

vanishes.
In Step 2 of the above algorithmic protocol, Eq. (28) plays the role of a guiding principle

to find non-trivial charges. In addition, Eq. (31) in Step 3 helps to reduce useless calculations
on the charges that turn out not to be integrable. An advantage of the above algorithmic pro-
tocol is the fact that calculations in Steps 2 and 3 can be done by using only the background
metric ḡμν . By using this protocol, we found a new class of symmetries on a Rindler horizon
in Ref. [12], generating position-dependent dilatations in time and in the direction perpendicu-
lar to the horizon. We have termed such a transformation superdilatation. However, there still
remain the following hard tasks: In Step 4, it is necessary to identify all diffeomorphisms gener-
ated by vector fields in A to obtain S, which is usually difficult. Only after this step is completed
can the integrability condition be checked for all metrics in S in Step 5.

To overcome this issue, in the next section, we propose a sufficient condition for the charges
to be integrable, which can be checked at the background metric ḡμν . It enables us to find an
algebra A yielding non-trivial and integrable charges without explicitly calculating diffeomor-
phisms generated by A or the metrics in S. This is a key advantage of the new approach in
this article. To calculate the charges explicitly, we still need to identify A and S. However, since
the sufficient condition ensures that the charges are integrable, there is no possibility that the
efforts in calculating A and S are wasted.

It should be noted that the algebra of charges can be identified without calculating the values
of the charges explicitly. In fact, the Poisson bracket of the charges satisfies

{H [ξ ], H [η]} = H
[
[ξ, η]

]+K (ξ, η), (33)

where [ξ , η] is a commutator of ξ , η and K(ξ , η) is a constant dependent not on gμν but on ḡμν

(see, e.g., Ref. [21]). Evaluating the left-hand side of Eq. (33) at the background metric ḡμν , we

get K(ξ , η) since it is always possible to make the values of charges H [χ ]
∣∣∣
ḡμν

at the background

metric ḡμν vanish for all χ ∈ A. If K(ξ , η) can be absorbed into charges by shifting them by
constants, then the algebra of the charges is isomorphic to A. If not, the algebra of the charges
is a central extension of A. Therefore, we can fully characterize the algebra of charges itself
without calculating the diffeomorphisms generated by A explicitly, overcoming the difficulties
in the approach in Ref. [12].

4. Integrability condition
In this section, we provide a sufficient condition for the charges to be integrable. This condi-
tion can be checked at the background metric, implying that we can obtain integrable charges
without calculating the family of metrics S directly.
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Given an algebra A, the integrability condition that the second line in Eq. (21) equals zero is
recast to ∫

∂


(dD−2x)μνξ
[μ(x)ων](g, £ηg, £χg; x) = 0 ∀ξ, η, χ ∈ A, ∀g ∈ S, (34)

where we have used Eq. (25); S is the set of metrics defined in Eq. (24) and ων(g, δ1g, δ2g; x) is
given by

ων (g, δ1g, δ2g; x) =
√−g(x)
16πG

(
gνα(x)

(
gρσ (x)gβγ (x) − 2gρβ (x)gσγ (x)

)
+ 2gνγ (x)gρ[α(x)gσ ]β (x) + gνρ (x)gαβ (x)gσγ (x)

)
δ[1gρσ (x)∇γ δ2]gαβ (x)

(35)

for a solution gμν of the Einstein equations and linearized perturbations δ1gμν and δ2gμν satis-
fying the linearized Einstein equations. To check whether Eq. (34) is satisfied directly, we need
the asymptotic behavior of the integrand near the boundary ∂
. By using the well known
duality between a diffeomorphism and a coordinate transformation of tensor fields (see Ap-
pendix A for details), we derive a formula to calculate the asymptotic behaviors under certain
assumptions that will be made below.

First we introduce our set-up and several assumptions to derive the sufficient condition for the
charges to be integrable. We fix a D-dimensional background spacetime (M, ḡ) and a Cauchy
surface 
. For notational simplicity, we fix a specific coordinate system ψ : M → RD in such a
way that the Cauchy surface is characterized by t = const. and that its boundary is specified by
ρ = 0, where we have defined

ψ (p) = (y0(p), y1(p), yM (p)) = (t, ρ, σ M ) (M = 2, . . . , D − 1). (36)

Let H denote the union of the boundary for all t:

H := {p ∈ ∂
t for some t} (37)

or, equivalently,

H = {p ∈ M|y1(p) = 0}. (38)

In this set-up, the integrability condition evaluated at the background metric is given by∫
∂


(dD−2y)μνξ̄
[μ(y)ων](ḡ, £η̄ḡ, £χ̄ ḡ; y) =

∫
ψ (∂
)

dσ 2dσ 3 · · · dσ Dξ̄ [t (y)ωρ](ḡ, £η̄ḡ, £χ̄ ḡ; y)

= 0 ∀ξ̄ , η̄, χ̄ ∈ A. (39)

We assume that any diffeomorphism generated by A does not map a point in the outside (resp.
inside) of {
t}t to a point in the inside (resp. outside) of {
t}t. Then, the ρ-component of the
vector fields generating the diffeomorphisms must vanish on the boundary. Thus, we impose
the following condition on the asymptotic behaviors of the vector fields:

∀ξ ∈ A, ξ t (y) = O(1), ξρ (y) = O(ρ ), ξM = O(1) (ρ → 0). (40)

Let us assume that

∀η, χ ∈ A, ωt (ḡ, £ηḡ, £χ ḡ; y) = O(1), ωρ (ḡ, £ηḡ, £χ ḡ; y) = O(ρ ),

ωM (ḡ, £ηḡ, £χ ḡ; y) = O(1) (ρ → 0) (41)
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hold. Under these assumptions, we get

∀ξ̄ , η̄, χ̄ ∈ A, ξ̄ (y)[μων](ḡ, £η̄ḡ, £χ̄ ḡ; y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 O(ρ ) O(1) · · · · · · O(1)
O(ρ ) 0 O(ρ ) · · · · · · O(ρ )
O(1) O(ρ ) 0 O(1) · · · O(1)

...
... O(1)

. . . . . .
...

...
...

...
. . . . . . O(1)

O(1) O(ρ ) O(1) · · · O(1) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(42)

Since Eq. (39) is clearly satisfied when Eq. (42) holds, Eqs. (40) and (41) are a sufficient condition
for Eq. (39) to hold.

Next we further show that Eqs. (40) and (41) are a sufficient condition for the charges to be
integrable at an arbitrary metric, i.e., Eq. (34). Fix a diffeomorphism φ: M → M generated by
A. The integrability condition (34) at g = φ∗ḡ is written as∫

∂


(dD−2x′)μνξ
[μ(x′)ων](g, £ηg, £χg; x′) = 0 ∀ξ, η, χ ∈ A, (43)

where we have adopted another coordinate system ϕ, which is related to ψ by

ϕ = ψ ◦ φ : p ∈ M �→ ϕ(p) = (x′0(p), . . . , x′D−1(p)). (44)

By using Eqs. (A6), (A8), (A13), and (A14), we have

ξ [μ(x′(p))ων](g, £ηg, £χg; x′(p)) = ξ̄ [μ(y(φ(p)))ων](ḡ, £η̄ḡ, £χ̄ ḡ; y(φ(p))), (45)

where the vector field ξ̄ is defined by ξ̄ := (φ∗)−1ξ . On the other hand, for the algebra A whose
elements satisfy the asymptotic condition in Eq. (40), we have

x′(y) = (O(1),O(ρ ),O(1), . . . ,O(1)) (ρ → 0). (46)

See Appendix B for proof. The integral measure in Eq. (43) is explicitly calculated as

(dD−2x′)μν

∣∣∣
∂


= 1
(D − 2)!2!

εμνα2···αD−1e
α2

M2
· · · eαD−1

MD−1
dσ M2 ∧ · · · ∧ dσ MD−1 (47)

where eα
M := ∂x′α

∂σ M . By using Eq. (46), the asymptotic behavior of eα
M is given by(

e0
M, e1

M, e2
M, . . . , eD−1

M

) = (O(1),O(ρ ),O(1), . . . ,O(1)) (ρ → 0) (48)

for any M = 2, 3, …, D − 1. By using Eqs. (45) and (47), the left-hand side of Eq. (43) is
proportional to∫

φ(∂
)
ξ̄ [μ(y)ων](ḡ, £η̄ḡ, £χ̄ ḡ; y)εμνα2···αD−1e

α2
M2

· · · eαD−1
MD−1

dσ M2 ∧ · · · ∧ dσ MD−1 . (49)

From the asymptotic behaviors of the coordinates in Eq. (46), any point in H is mapped into it-
self by a diffeomorphism φ generated byA. Therefore, the integral region φ(∂
) corresponds to
the limit of ρ → 0. Note that, since εμνα2···αD−1 is anti-symmetric under the change in its indices,
the integrand in Eq. (49) vanishes except for the contributions coming from the contractions
of indices where one of (μ, ν, αM2, . . . , αMD−1 ) is ρ. Such a contribution is always O(ρ ) since
Eqs. (42) and (48) hold. Thus, we finally get

Eq. (49) ∝ lim
ρ→0

∫
φ(∂
)

O(ρ )dσ 2 · · · dσ D−1 = 0 (50)

and conclude that Eq. (40) is also a sufficient condition for the integrability condition to be
satisfied at any metric gμν in S.

The approach adopted in this paper is summarized in the following four steps:
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Step 1 Fix a background metric ḡμν of interest.
Step 2 For the background metric ḡμν , find two vector fields ξ and η with the asymptotic

form in Eq. (40) satisfying Eq. (28). These are the candidates of the vector fields that
generate non-trivial diffeomorphisms whose charges are integrable.

Step 3 Introduce the minimal Lie algebra A including ξ and η by calculating their commu-
tators. Check whether Eq. (41) holds. If it does, go to the next step since the charges are
integrable. Otherwise, go back to Step 2.

Step 4 Investigate the algebra of the charges for A via Eq. (28).

A crucial difference between the approach in Ref. [12] and the one proposed in this paper is
the step where we check the integrability condition. In Ref. [12], we checked whether Eq. (22)
holds for candidates of vector fields satisfying Eq. (28). This step takes some effort since we need
to calculate all the diffeomorphisms generated by the algebra of the vector fields. Furthermore,
these efforts may be wasted since the charges sometimes turn out not to be integrable. In con-
trast, in our new approach, we adopted Eq. (41) as a sufficient condition for the charges to be
integrable, which can be checked at the background metric. It is much easier to check Eq. (41)
than Eq. (22) since we do not need to identify the diffeomorphisms generated by the algebra of
the vector fields.

As a demonstration, we investigate asymptotic symmetries on Killing horizons in the follow-
ing section. Adopting our approach, we find that a class of supertranslation, superrotation, and
superdilatation yields a non-trivial and integrable algebra of charges with a central extension.

5. Asymptotic symmetries on a Killing horizon
Let us investigate the asymptotic symmetries at a Killing horizon of a spacetime with our new
approach developed in the last section. We will find a new class of asymptotic symmetries and
show that the algebra of the corresponding charges is a central extension of the algebra of
vector fields generating the transformations of the symmetries.

Step 1 Here, we adopt the following D-dimensional metric as the background metric:

(ḡμν ) =

⎛
⎜⎜⎜⎝

−κ2ρ2 + O(ρ4) O(ρ4) ftψρ2 + O(ρ4) ftAρ2 + O(ρ4)
O(ρ4) 1 + O(ρ2) O(ρ4) O(ρ3)

ftψρ2 + O(ρ4) O(ρ4) fψψ + O(ρ2) O(ρ2)
ftAρ2 + O(ρ4) O(ρ3) O(ρ2) �AB + O(ρ2)

⎞
⎟⎟⎟⎠ (ρ → 0)

(51)

in the coordinate (t, ρ, ψ , θA) for A = 3, …, D − 1, where all the coefficient functions
ftψ , ftA, fψψ and �AB depend on θA while κ is a constant. We assume that the coefficient
functions and κ are fixed so that the metric satisfies the Einstein equations. This class of
metrics contains important spacetimes, e.g., de Sitter spacetime and the Kerr spacetime.
It is known that the asymptotic behavior of the metric near the Killing horizon located at
ρ = 0 is given by Eq. (51) and that the Cauchy surface is characterized by t = const. [11].

Step 2 Next we consider two vector fields ξ and η, which have asymptotic forms given by
Eq. (40):

ξμ = (X t (t, ψ, θA) + O(ρ ), X ρ (t, ψ, θA)ρ + O(ρ2), X ψ (t, ψ, θA)

+ O(ρ ), X A(t, ψ, θA) + O(ρ )), (52)
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ημ = (Y t (t, ψ, θA) + O(ρ ),Y ρ (t, ψ, θA)ρ + O(ρ2),Y ψ (t, ψ, θA)

+ O(ρ ),Y A(t, ψ, θA) + O(ρ )) (53)

as ρ → 0, where all coefficients are arbitrary functions of t, ψ , and θA. For the metric
(51) and vector fields (52) and (53), our guiding principle in Eq. (32) can be calculated as
follows:

1
8πG

∫
∂


2
√

� fψψ

κ

[
1
2
∂tY ρ∂tX t + DMY M

(
κ2X t − ftNX N + 1

2
∂tX ρ

)
+ ∂A ftψX ψY A

+ (∂B ftA − ∂A ftB) X AY B − (X ↔ Y )

]
dσ 2 · · · dσ D−1 �= 0 (54)

where M, N = 2, …, D − 1 and DM denotes the covariant derivative on the (D − 2)D
hypersurface characterized by t = const. and ρ = const.
In Ref. [12], we investigated the following set of vector fields:

ξ t = tT1(xM ) + O(ρ2), ξρ = O(ρ2), ξM = O(ρ2), (55)

ηt = O(ρ2), ηρ = tT2(xM )ρ + O(ρ2), ηM = O(ρ2), (56)

where T1, T2 are arbitrary functions of xM, which generate superdilatations. This is one
of the sets satisfying Eq. (54). On the other hand, for given functions T(xM) and VM(xN)
of xM, the vector fields defined by

ξ t = T (xM ) + O(ρ2), ξρ = O(ρ2), ξM = O(ρ2), (57)

ηt = O(ρ2), ηρ = O(ρ2), ηM = V M (xN ) + O(ρ2) (58)

also satisfy Eq. (54). In fact, this set of vector fields generates a well known class of trans-
formations called supertranslations and superrotations. See Appendix C for a comment
on the integrability of the charges for this algebra. As a first trial, let us analyze a simple
algebra containing the above two known cases, which is given by

ξ t = F1(xM ) + tG1(xM ) + O(ρ2), ξρ = (H1(xM ) + tJ1(xM ))ρ + O(ρ2),

ξM = KM
1 (xN ) + O(ρ2), (59)

ηt = F2(xM ) + tG2(xM ) + O(ρ2), ηρ = (H2(xM ) + tJ2(xM ))ρ + O(ρ2),

ηM = KM
2 (xN ) + O(ρ2), (60)

in the rest of this section, where Fi(xM), Gi(xM), Hi(xM), Ji(xM), and KM
i (xN ) are arbitrary

functions of xM.
Step 3 For an arbitrary set of vector fields with asymptotic behavior in Eq. (53), the pre-

symplectic current at the background metric given in Eq. (16) can be calculated as

ωt (ḡ, £ηḡ, £ξ ḡ) ≈ ∂M

(
−

√
� fψψ

2κρ

[
∂tX M (

∂tY t − DNY N) − (X ↔ Y )
]) + O(1),

(61a)
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ωρ (ḡ, £ηḡ, £ξ ḡ) ≈ −
√

� fψψ

κ
∂t

(
1
2
∂tY ρ∂tX t + DMY M

(
κ2X t − ftMX M

+ 1
2
∂tX ρ

)
+ ∂A ftψX ψY A + (∂B ftA − ∂A ftB) X AY B − (X ↔ Y )

)

+ ∂M

(√
� fψψ

κ

[(−κ2Y t + ftNY N − ∂tY ρ
)
∂tX M − (X ↔ Y )

])

+ O(ρ ), (61b)

ωM (ḡ, £ηḡ, £ξ ḡ) ≈
√

� fψψ

2κρ
∂t

(
∂tX M (

∂tY t − DNY N) − (X ↔ Y )
)

+ ∂N

(
−

√
� fψψ

κρ

[
∂tY M∂tX N − (X ↔ Y )

]) + O(1) (61c)

for ρ → 0.
The components of the commutators of the vector fields in Eqs. (59) and (60) are calcu-
lated as

[ξ, η]t = (
F1G2 − G1F2 + KM

1 ∂MF2 − KM
2 ∂MF1

) + t
(
KM

1 ∂MG2 − KM
2 ∂MG1

) + O(ρ2)

[ξ, η]ρ = {(
F1J2 − J1F2 + KM

1 ∂MH2 − KM
2 ∂MH1

)
+ t

(
G1J2 − J1G2 + KM

1 ∂MJ2 − KM
2 ∂MJ1

)}
ρ + O(ρ2)

[ξ, η]M = (
KN

1 ∂NKM
2 − KN

2 ∂NKM
1

) + O(ρ2) (62)

for ρ → 0. Thus, let us define the closed algebra A′ including ξ , η as

A′ := {
V = (

F (xM ) + tG(xM ) + O(ρ2), ρ
(
H (xM ) + tJ(xM )

)
+ O(ρ2), KM (xN ) + O(ρ2)

)}
. (63)

In this case, since we have

ωt (ḡ, £ηḡ, £ξ ḡ) = O(1), ωρ (ḡ, £ηḡ, £ξ ḡ) = O(1),

ωM (ḡ, £ηḡ, £ξ ḡ) = O(1) (ρ → 0) ∀η, ξ ∈ A′ (64)

from Eqs. (61a)–(61c), Eq. (41) is not satisfied. Thus, A′ is not suitable for our purpose.
From Eq. (61b), it immediately turns out that if we impose an additional condition

DMKM = 0, (65)

then we get ωρ (ḡ, £ηḡ, £ξ ḡ) = O(ρ ) and hence Eq. (41) is satisfied. This condition in
Eq. (65) means that we pick up only a divergenceless part in superrotation. Since

DM
(
KN

1 ∂NKM
2 − KN

2 ∂NKM
1

) = DMKN
1 DNKM

2 − DMKN
2 DNKM

1

+ KN
1 DMDNKM

2 − KN
2 DMDNKM

1

= KN
1 RLNKL

2 + KN
1 DNDMKM

2

− KN
2 RLNKL

1 − KN
2 DNDMKM

1

= 0,
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holds, the algebra

A := {
V = (

F (xM ) + tG(xM ) + O(ρ2), ρ
(
H (xM )

+ tJ(xM )
) + O(ρ2), KM (xN ) + O(ρ2)

) | DMKM = 0
}

(66)

is closed. Therefore, instead of A′, we hereafter adopt A. Since Eqs. (28) and (41) are
satisfied for A, the charges are integrable and form a non-trivial algebra.

Step 4 Let us investigate the algebra of charges for A. For simplicity, in the following, we
will analyze

(ḡμν ) =

⎛
⎜⎜⎜⎝

−κ2ρ2 + O(ρ4) O(ρ4) ftθρ
2 + O(ρ4) ftφρ2 + O(ρ4)

O(ρ4) 1 + O(ρ2) O(ρ4) O(ρ3)
ftθρ

2 + O(ρ4) O(ρ4) A + O(ρ2) O(ρ2)
ftφρ2 + O(ρ4) O(ρ3) O(ρ2) A sin2

θ + O(ρ2)

⎞
⎟⎟⎟⎠ (67)

as ρ → 0 in the coordinate system (t, ρ, θ , φ) (0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π ) for D = 4. In this
case, the induced metric on the horizon is given by ds2|∂
 = A(dθ2 + sin2

θdφ2), where A
> 0 is a parameter describing the area of the horizon.
Functions characterizing an element in A in Eq. (66) can be expanded as follows:

F (θ, φ) =
∑
lm

almYlm(θ, φ), G(θ, φ) =
∑
lm

blmYlm(θ, φ), (68)

H (θ, φ) =
∑
lm

clmYlm(θ, φ), J(θ, φ) =
∑
lm

dlmYlm(θ, φ), (68)

KA(θ, φ) = − 1
sin θ

εAB∂B�(θ, φ), �(θ, φ) =
∑
lm

elmYlm(θ, φ), (68)

where

Ylm(θ, φ) = (−1)m

√
(2l + 1)

4π

(l − m)!
(l + m)!

Pm
l (cos θ )eimφ (71)

is the spherical harmonics, Pm
l (cos θ ) are the associated Legendre polynomials, and

εθφ = −εφθ = 1, (72)

εθθ = εφφ = 0. (73)

All the independent generators are listed as

J (t,0)
lm = Ylm∂t, (74a)

J (t,1)
lm = tYlm∂t, (74b)

J (ρ,0)
lm = ρYlm∂ρ, (74c)

J (ρ,1)
lm = tρYlm∂ρ, (74d)

J (R)
lm = 1

sin θ

(
∂θYlm∂φ − ∂φYlm∂θ

)
, (74e)
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where we have omitted O(ρ2) in each component of the generators since it does not affect
the algebraic structure nor the calculation on the constant term K(ξ , η) in Eq. (33). Their
commutators are calculated as

[
J (t,0)

lm , J (t,0)
l ′m′

] = 0,
[
J (t,0)

lm , J (t,1)
l ′m′

] =
∑

Gl ′′m′′
lml ′m′J (t,0)

l ′′m′′ , (75a)

[
J (t,0)

lm , J (ρ,0)
l ′m′

] = 0,
[
J (t,0)

lm , J (ρ,1)
l ′m′

] =
∑

Gl ′′m′′
lml ′m′J (ρ,0)

l ′′m′′ , (75b)

[
J (t,0)

lm , J (R)
l ′m′

] = −
∑

Cl ′′m′′
lml ′m′J (t,0)

l ′′m′′ , (75c)

[
J (t,1)

lm , J (t,1)
l ′m′

] = 0,
[
J (t,1)

lm , J (ρ,0)
l ′m′

] = 0, (75d)

[
J (t,1)

lm , J (ρ,1)
l ′m′

] =
∑

Gl ′′m′′
lml ′m′J (ρ,1)

l ′′m′′ , (75e)

[
J (t,1)

lm , J (R)
l ′m′

] = −
∑

Cl ′′m′′
lml ′m′J (t,1)

l ′′m′′ , (75f)

[
J (ρ,0)

lm , J (ρ,0)
l ′m′

] = 0,
[
J (ρ,0)

lm , J (ρ,1)
l ′m′

] = 0, (75g)

[
J (ρ,0)

lm , J (R)
l ′m′

] = −
∑

Cl ′′m′′
lml ′m′J (ρ,0)

l ′′m′′ , (75h)

[
J (ρ,1)

lm , J (ρ,1)
l ′m′

] = 0, (75i)

[
J (ρ,1)

lm , J (R)
l ′m′

] = −
∑

Cl ′′m′′
lml ′m′J (ρ,1)

l ′′m′′ , (75j)

[
J (R)

lm , J (R)
l ′m′

] =
∑

Cl ′′m′′
lml ′m′J (R)

l ′′m′′, (75k)

where the structure constants Gl ′′m′′
lml ′m′ and Cl ′′m′′

lml ′m′ satisfy the following relations:

YlmYl ′m′ =
∑
l ′′m′′

Gl ′′m′′
lml ′m′Yl ′′m′′, Gl ′′m′′

lml ′m′ = Gl ′′m′′
l ′m′lm, (76)

1
sin θ

(
∂θYlm∂φYl ′m′ − ∂φYlm∂θYl ′m′

) =
∑
l ′′m′′

Cl ′′m′′
lml ′m′Yl ′′m′′, Cl ′′m′′

lml ′m′ = −Cl ′′m′′
l ′m′lm. (77)

From Eq. (54), we find that there are two non-vanishing Poisson brackets evaluated at the
background metric. One of them is{

H
[
J (t,1)

lm

]
, H

[
J (ρ,1)

l ′m′
]} ∣∣∣

ḡ
= A

8πGκ

∑
l ′′m′′

Gl ′′m′′
lml ′m′

∫ 2π

0

∫ π

0
Yl ′′m′′ sin θdθdφ, (78)

while the other is{
H

[
J (R)

lm

]
, H

[
J (R)

l ′m′
]} ∣∣∣

ḡ
= A

8πGκ

∑
l ′′m′′

Cl ′′m′′
lml ′m′

∫ 2π

0

∫ π

0
2∂φ ftθYl ′′m′′dθdφ. (79)

By using these formulas, let us investigate whether the algebra of the charges is a central
extension of the algebra of the vector fields. For the latter Poisson bracket in Eq. (79),
shifting the charge by a constant as

H ′[J (R)
lm

]
:= H

[
J (R)

lm

] + A
8πGκ

∫ 2π

0

∫ π

0
2∂φ ftθYlmdθdφ, (80)
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Eq. (79) can be rewritten as{
H ′[J (R)

lm

]
, H ′[J (R)

l ′m′
]} =

∑
l ′′m′′

Cl ′′m′′
lml ′m′H ′[J (R)

l ′′m′′
]
. (81)

This redefinition of the charge does not affect other Poisson brackets. On the other hand,
for the former one in Eq. (78), we may redefine

H ′[J (ρ,1)
lm

]
:= H

[
J (ρ,1)

lm

] + A
8πGκ

∫ 2π

0

∫ π

0
Ylm sin θdθdφ, (82)

so that Eq. (78) is recast into{
H

[
J (t,1)

lm

]
, H ′[J (ρ,1)

l ′m′
]} =

∑
l ′′m′′

Gl ′′m′′
lml ′m′H ′[J (ρ,1)

l ′′m′′
]
. (83)

However, since
{

H [J (ρ,1)
lm ], H

[
J (R)

l ′m′
]} ∣∣∣

ḡ
= 0, this redefinition affects another Poisson

bracket in such a way that{
H ′[J (ρ,1)

lm

]
, H

[
J (R)

l ′m′
]} = −

∑
l ′′m′′

Cl ′′m′′
lml ′m′H

[
J (ρ,1)

l ′′m′′
]

= −
∑
l ′′m′′

Cl ′′m′′
lml ′m′

(
H ′[J (ρ,1)

l ′′m′′
] − A

8πGκ

∫ 2π

0

∫ π

0
Yl ′′m′′ sin θdθdφ

)

(84)

holds. Thus, these constants cannot be absorbed into the generators by redefinition. They
are calculated as

Klml ′m′ :=
{

H
[
J (t,1)

lm

]
, H

[
J (ρ,1)

l ′m′
]} ∣∣∣

ḡ
= A

8πGκ

∫ 2π

0

∫ π

0
sin θYlmYl ′m′dθdφ

= A
8πGκ

(−1)m
∫ 2π

0

∫ π

0
sin θYlmY ∗

l ′(−m′ )dθdφ

= A
8πGκ

(−1)mδl l ′δm(−m′ ). (85)

Summarizing the above arguments, we finally get the following charge algebra:{
H

[
J (t,1)

lm

]
, H

[
J (ρ,1)

l ′m′
]} =

∑
l ′′m′′

Gl ′′m′′
lml ′m′H

[
J (ρ,1)

l ′′m′′
] + A

8πGκ
(−1)mδl l ′δm(−m′ ); (86)

others are isomorphic toAin Eqs. (75a)−(75k) except for Eq. (75e). (87)

Since A �= 0, the algebra of the charges is a central extension of A. Equations (86) and
(87) are the main results in this section.

6. Summary
In this paper, we have developed a new approach to investigate asymptotic symmetries by modi-
fying the protocol proposed in Ref. [12] by the authors of this paper and a collaborator. The key
ingredient of our approach is making use of Eqs. (28) and (41) to find the algebra A of vector
fields that generates transformations of asymptotic symmetries with non-trivial and integrable
charges. As we have seen in Sect. 4, Eq. (41) provides a sufficient condition for the charges to
be integrable, which can be checked at the background metric. This is a significant difference
between the modified approach and the original one in Ref. [12], which saves the efforts of cal-
culating all the diffeomorphisms generated by A required in the latter approach. As mentioned
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in Sect. 3, the Poisson brackets of the charges can be calculated at the background metric and
hence the algebra of the charges can be fully identified without calculating the diffeomorphisms
generated by A explicitly.

In Sect. 5, as a demonstration of our approach, we have investigated asymptotic symmetries
of spacetimes with the Killing horizon with metrics in Eq. (51). We found that a new algebra of
supertranslations, superrotations, and superdilatations in Eq. (66) yields a non-trivial algebra
of integrable charges. It is proved that, for the algebra in Eq. (66), we have to eliminate the
rotationless part of superrotations to obtain integrable charges. As a particular example, for (1
+ 3)D spacetime with metrics in Eq. (67), we explicitly calculated the algebra of charges, which
is shown to be a central extension of the algebra of the vector fields.

It should be emphasized that our approach can be applied to any spacetime as long as we
consider the diffeomorphisms that do not shift the boundary on which charges are defined. In
particular, as we mentioned in the introduction, microstates classified by asymptotic symme-
tries on a horizon are a possible origin of the Bekenstein–Hawking entropy. Our algorithmic
approach is powerful for listing such asymptotic symmetries. The discovery of new asymp-
totic symmetries will lead to a better understanding of the nature of gravity and the spacetime
structures, as the asymptotic symmetries in anti-de Sitter spacetime found in Ref. [20] led to the
development of the AdS/CFT correspondence [22].

Of course, it should be noted that there may be asymptotic symmetries that cannot be found
in our approach since Eqs. (28) and (41) are sufficient conditions for the charges to be integrable
and form a non-trivial algebra. Nevertheless, we expect that the approach proposed in this paper
will helpful in finding new asymptotic symmetries, as demonstrated in the example in Sect. 5.
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A. Duality between a diffeomorphism and a coordinate transformation of tensor fields
We here give a brief review of the duality between a diffeomorphism and a coordinate transfor-
mation of tensor fields. Let M and N be D-dimensional manifolds. We consider a C∞ map φ:
M → N and the pull-back g = φ∗ḡ. We take charts (U, ϕ) around p ∈ U⊂M and (V, ψ) around
q = φ(p) ∈ V⊂N. Each coordinate system is denoted by

ϕ(p) = (x0(p), . . . , xD−1(p)) (A1)

ψ (q) = (y0(q), . . . , yD−1(q)). (A2)

The components of the metrics g and ḡ are related as

gμν (x(p)) = ḡρσ (y(q))
∂yρ

∂xμ

∂yσ

∂xν
, (A3)

where g|p = gμν(x(p))dxμ|p⊗dxν |p and ḡ|q = ḡρσ (y(q))dyρ
∣∣
q ⊗ dyσ |q. Since ψ◦φ is a smooth

function M → RD, we can introduce a new coordinate system around p ∈ M:

ψ ◦ φ(p) = (x′0(p), . . . , x′D−1(p)). (A4)

From Eq. (A3), the metric g satisfies

ḡμν (y(q)) = gμν (x′(p)), (A5)
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where.g|p = gμν(x
′
(p)).dx

′μ|p⊗dx
′ν |p. This means that the components of ḡ|q ∈ T ∗

q N ⊗ T ∗
q N in a

coordinate system ψ : N → RD are equal to the components of g|p ∈ T ∗
p M ⊗ T ∗

p M in another
coordinate system ψ ◦ φ : M → RD. Note that√

−ḡ(y(q)) =
√

−g(x′(p)) (A6)

also holds, where g(x
′
(p)) and ḡ(y(q)) are the determinants of the metrics.

In general, for the pulled-back (r, s)-tensor T = φ∗T̄ , we have

T μ1···μr
ν1···νs

(x(p)) = T
ρ1···ρr

σ1···σs
(y(q))

∂xμ1

∂yρ1
· · · ∂xμr

∂yρr

∂yσ1

∂xν1
· · · ∂yσs

∂xνs
(A7)

T
μ1···μr

ν1···νs
(y(q)) = T μ1···μr

ν1···νs
(x′(p)). (A8)

Equation (A8) shows the duality between the active viewpoint, i.e, a diffeomorphism, and the
passive viewpoint, i.e., a coordinate transformation, on an arbitrary tensor. We can show

φ∗(∇χ̄T )
∣∣

p = ∇χT
∣∣

p (A9)

where χ̄ ∈ Tφ(p)N, T ∈ TpM⊗r ⊗ T ∗
p M⊗s is an arbitrary (r, s)-tensor and we have defined

χ := φ∗χ̄ ∈ TpM, T := φ∗T ∈ TpM⊗r ⊗ T ∗
p M⊗s. (A10)

Since

φ∗(£χ̄ ḡ)
∣∣∣

p
= £χg

∣∣∣
p

(A11)

holds, we get

φ∗(∇ χ̄£ξ̄ ḡ)
∣∣∣

p
= ∇χ£ξ g

∣∣∣
p
, (A12)

where g = φ∗ḡ ∈ T ∗
p M ⊗ T ∗

p M and ∇ and ∇ denote covariant derivatives compatible with ḡ
and g, respectively. As a consequence, each component satisfies

(£χ̄ ḡ)μν (y(φ(p))) = (£χg)μν (x′(p)) (A13)

(∇ χ̄£ξ̄ ḡ)μν (y(φ(p))) = (∇χ£ξ g)μν (x′(p)). (A14)

B. The asymptotic behavior of x
′
(y)

In this appendix, we show that for the algebra A whose elements satisfy Eq. (40), Eq. (46) holds.
Let us fix a vector field in A such that

ξμ(y) := (O(1),O(ρ ),O(1), . . . ,O(1)) (ρ → 0) (B1)

and consider its integral curve defined by

ϕ
μ

ξ ;λ(y) := exp[λξ ]yμ :=
∞∑

n=0

λn

n!
ξ nyμ, (B2)

where the action of ξ n on a function of yμ is recursively defined as

ξ n f (y) = ξ n−1ξμ(y)∂μ f (y) (n = 1, 2, 3, · · · ), (B3)

ξ 0 f (y) = f (y). (B4)

Defining

ϕ
μ

ξ ;λ,n(y) := λn

n!
ξ nyμ, (B5)

we will show the following proposition:
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Proposition 1. For any n ∈ N, it holds that

ϕ
μ

ξ ;λ,n(y) = (O(1),O(ρ ),O(1), . . . ,O(1)) (ρ → 0). (B6)

Proof. We show the claim by mathematical induction with respect to n. For n = 0, Eq. (B6) is
clearly satisfied. Assuming that Eq. (B6) is satisfied for n = k, we have

ϕ
μ

ξ ;λ,k+1(y) = λ

k + 1
ξϕ

μ

ξ ;λ,k(y)

= λ

k + 1
ξα∂α(O(1),O(ρ ),O(1), . . . ,O(1))

= (O(1),O(ρ ),O(1), . . . ,O(1)), (B7)

where we have used Eq. (B1) and the assumption for n = k in the last line. Therefore, Eq. (B6)
also holds for n = k + 1, concluding the proof. �

Since the integral curve generated by ξμ is given by

ϕ
μ

ξ ;λ(y) =
∞∑

n=0

ϕ
μ

ξ ;λ,n(y), (B8)

we have

ϕ
μ

ξ ;λ(y) = (O(1),O(ρ ),O(1), . . . ,O(1)). (B9)

Next consider the map φ
μ
ξ (y) := ϕ

μ

ξ ;λ=1(y). In general, diffeomorphisms generated by A and
connected to the identity transformation are given by a product of such maps, i.e.,

(φξ (1) ◦ φξ (2) ◦ · · · ◦ φξ (N ) )(y) (B10)

for some N and vector fields ξ (1), ξ (2), …, ξ (N). Let us analyze the asymptotic behavior for N =
2. For two vector fields(

ξ (i)
)μ

(y) = (O(1),O(ρ ),O(1), . . . ,O(1)) (i = 1, 2) (B11)

as ρ → 0, we have

(φξ (1) ◦ φξ (2) )μ(y) = (O(1),O(ρ ),O(1), . . . ,O(1)). (B12)

Repeating the same argument, it is shown that the asymptotic behavior of a general diffeomor-
phism φ generated by A is given by

φμ(y) = (O(1),O(ρ ),O(1), . . . ,O(1)) (B13)

for ρ → 0. Therefore, the asymptotic behavior of the corresponding coordinate transformation
x

′
(y) is also given by

x′(y) = (O(1),O(ρ ),O(1), . . . ,O(1)). (B14)

C. Supertranslations and superrotations
The commutators of vector fields defined in Eqs. (57) and (58) are calculated as

[ξ, η]t = (
V M

1 ∂MT2 − V M
2 ∂MT1

) + O(ρ2),

[ξ, η]ρ = O(ρ2),

[ξ, η]M = (
V N

1 ∂NV M
2 − V N

2 ∂NV M
1

) + O(ρ2) (C1)

as ρ → 0. As a closed algebra including ξ , η, let us adopt

A := {
V = (

T (xM ) + O(ρ2),O(ρ2),V M (xN ) + O(ρ2)
) | T,V M

are arbitrary functions ofxM}
. (C2)
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From Eqs. (61a)–(61c), for any ξ, η ∈ A, we have

ωt (ḡ, £ηḡ, £ξ ḡ) = O(1), ωρ (ḡ, £ηḡ, £ξ ḡ) = O(ρ ), ωM (ḡ, £ηḡ, £ξ ḡ) = O(1) (C3)

as ρ → 0. Therefore, the corresponding charges are integrable.
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