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1 Introduction

Superstring orbifolds compactifications are among the few examples where semi-realistic
physics emerges in a complete string description. By choosing an orbifold space to com-
pactify the superstring which do not preserve any of its original supersymmetries, one can
study quantum effects induced by the infinite towers of string excitations. This effects
are encoded by the string free-energy given by the (worldsheet) torus amplitude. This
amplitude is generically non zero after supersymmetry breaking, and plays the role of a
potential in the geometric string moduli. Quantum effects induced by supersymmetry
breaking include at times generation of closed string tachyons, and generically uplifting of
the string moduli. The presence of closed string tachyons in regions of the moduli space
induce a break-down of the analyticity of the free-energy, which signals the presence of
a phase transition involving the space-time background itself. This is a non-perturbative
process difficult to analyze except under very special circumstances. The non-tachyonic
cases are more under control, although afflicted by the problem of moduli stabilization.
Generically, the torus potential has runaway directions in the moduli space, pushing the
system towards its decompactification limits. There are however examples where some or
all the geometric moduli can be stabilized in local minima of the torus potential [1-3].

In order to obtain the potential in the string moduli one has to compute the torus
amplitude. This is given by an integral in the complex worldsheet torus parameter 7 over
a fundamental region F, (shown in figure 1) of the torus modular group I' ~ PSL(2,Z).
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Figure 1. The standard fundamental region F = {|7| > 1, —-1/2 <1y < 1/2} of the torus modular
group I' ~ PSL(2,Z) in the upper complex plane H.

For a Z,-orbifold with p prime integer the torus amplitude has the following structure!
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where ¢ = %77

, and d is the number of non-compact dimensions. ¢ is the orbifold operator
with a definite action on the superstring states belonging to Hy, x Hg. g generates the Z,
cyclic group (¢ =1), Zp ~ {{0,1,...,p — 1}, +(mod p)}.

In (1.1) we have used the following notation

_ 1 7 —c _Lo—¢
fii(1,7) = =g Stron s, <9 ghoe/?gho /24> : (1.2)
T

b7y

for the contributions from the j-twisted strings with the ¢’ insertion in the supertrace. All
the worldsheet fields in the j-twisted sector satisfy the boundary conditions

P(o +2m,t) = ¢/ ¢(0,t). (1.3)

The ¢' insertion in eq. (1.2) produces a twisting in the fields boundary condition along
the t-homology cycle of the worldsheet torus.

The modular transformations in (1.1), where T': 7 — 7+ 1 and S : 7 — —1/7, are
required to produce new terms which complete a modular invariant multiplet.? The action
of the generator S and 7" on the functions f; ;(7,7) is given by (mod(p))

S fij(r,7) — foji(T,T)
T : fi7j(7',77') - fi+j7j(7—777—)'

One can check that the set of p? —1 terms in the integral (1.1) form a modular invariant
multiplet. In fact, the set of transformations (S,TS,...,TP~1S) by acting on each of the

In Zn-orbifolds with non-prime N the structure of the torus potential is slightly more complicate, due
to terms invariant under the Zx cyclic subgroups. We will discuss the general form for every N later on.

2 fo.0(7,7) describes the closed string theory partition function before the orbifold compactification. If
the original string theory is supersymmetric then this term is identically zero.



T-invariant p — 1 terms f; o, generate a (p — 1)-dimensional T-invariant multiplet. Terms
in distinct multiplets are then connected by S transformations.
By performing a change of integration variable in (1.1) one can rewrite the torus

amplitude V), as follows

d’r
VpN_/ T<%+f1,0+...+fp1,0>. (1.4)
]:

p T2

where F, = F Uf;ll ST*(F). This new integration region is a fundamental domain for the
congruence subgroup Iy[p] C T', given by PSL(2,Z) matrices of the form

a b
<pc pd + k‘) ' (15)

with (pe,pd + k) := MCD(pc,pd+ k) = 1.

In the literature computation of the 7 integral over the region F, in (1.4) is usually
carried on by using the unfolding technique [4-11]. In toroidal orbifolds for a compactifica-
tion down to d-dimensions, lattice states given by the d-dimensional momentum quantum
number m and the d-dimensional winding number 77 are used to unfold the F,, domain.
These quantum numbers can be arranged to form a representation of a subgroup G of
GL(10 — d,Z). By computing the orbits of I'y[p] in G, the original integral (1.4) on the
domain F,, can be reduced to an integral over the strip S = [—1/2,1/2] x [0, 00) involving
as many terms as the number of independent orbits of I'g[p] in G. For a generic Zy this
method can be quite complicate to follow, and the tricks to be used to obtain the final
unfolded integral depend on the dimension of the subgroup G € GL(10—d,Z) [7, 11]. The
general method for unfolding the integration domain for a generic Zy orbifold is studied
in [10].

Here we propose a different way for computing integrals over fundamental regions F,
of the congruence subgroups I'g[p] of the kind of (1.4). Instead of unfolding F, into the
strip S, we trade the integral over F, for a contour integrals over a (one-dimensional) curve
which is uniformly distributed in F,. Uniform distributions property of one-dimensional
curves in homogenous space with negative curvature has been extensively studied in the
mathematics literature [12-15] and quite general theorems have been obtained.

In appendix we give our proof of a uniform distribution theorem for H/T'o[N] hyper-
bolic spaces based on elementary function analysis. This theorem states that for every
congruence subgroup I'g[N] with fundamental region Fy in the upper complex plane H,
there is a (one-dimensional) curve which is dense and uniformly distributed in Fy. This
curve appears is the image in Fy of the infinite radius horocycle? in the upper hyperbolic
plane H.

A sequence of horocycles {hy, }nen converging to the infinite radius horocycle, (the real
axis), have their image curves {7y, }nen in Fy which tend to become uniform distributed

3 A horocycle in the upper hyperbolic plane H is a circle tangent to the real axis. In the infinite radius
limit a horocycle degenerates into the real axis.



in Fy for n — oo. Therefore* for enough regular function f(7,7)

m

i : T)= : d2—T T, T

where L(v,,) is the length of ~,, computed by the hyperbolic metric

JdrZ 1 dr2
L) :}{ ds:j{ M (1.7)

In eq. (1.6) the integral over a fundamental region Fy is normalized by the area A(Fy)
of the hyperbolic polygon Fy.

dridr

A(Fy) = /f . (1.8)

)

Since the limiting curve v in (1.6) is the image of the infinite radius horocycle (the
real axis) then for every enough regular I'g[N]-invariant function f?

&7 1/2
/ — (1,7) = A(Fn) lim dri f(7,7). (1.9)
Fn T2 2=0./_1/9

This result provides an alternative way for computing the torus amplitude (1.4), and
more generally the torus amplitude for every Zy orbifold, N € N.

The organization of the rest of the paper is the following: in the next section we start
by considering specific examples such as the Z4 and Zg orbifolds and illustrate in details
the construction of the modular invariant multiplets. Then we show the equivalence of the
modular integral for the torus amplitude to a 7 — 0 limit of the untwisted sector partition
functions, modified by coefficients depending on the dimensions of the cyclic subgroups of
Z4 and Zg. We then provide the general formula for the torus amplitude, valid for a generic
Zpn. The proof of the uniform distribution theorem is given in the appendix.

2 The torus amplitude for a generic Zy orbifold

2.1 The Z,4 case

For a Z, orbifold the torus amplitude has the following structure®

2
Vi~ /f d—;(l +S+T8)(1+ST°85) <f1,0 + %fzo + f3,0> : (2.1)

(b

4Equation (1.6) shows that the horocycle flow is ergotic on the hyperbolic space H/T'o[N].

5The regularity conditions on the function f are given in appendix. The same relation for functions
invariant under the full modular group I' ~ PSL(2,Z) integrated over a fundamental F has been used
in [16] to study the asymptotic cancelation among bosonic and fermionic closed string excitations in non-
tachyonic backgrounds, (see also [17-19]).

®In the following we omit the contribution to the free-energy from the uncompactified theory fo.0. This
contribution is zero if the original theory is supersymmetric. Otherwise in all the following formulae the
extra term % ff dj—zszo,o has to be added, where NN is the order of the Zy orbifold.



f1,0 and f3 o are I'g[4] invariant, while f o is invariant under the larger congruence subgroup
I'o[2] © Tol4].

Since (148 + TS +T2S + TgS)on = 2(f2,0 + foz2 + f2,2), the terms f; 2 and f32 are
obtained from f; g and f3 o through a ST?S transformation.

By a change of integration variable, eq. (2.1) can be reduced to

A>T 1
Vir / 2 <f1,0 + §f2,0 + f3,0> ; (2.2)
Fa T2
where Fy is a fundamental domain for I'g[4]
3 .
Fa=FulJST(F)|JST*S(F). (2.3)
i=0

By using the uniform distribution of the infinite radius horocycle in F4 one can then
express the torus potential for a generic Z, orbifold (2.2) as the following 7 — 0 limit

1/2
Vi~6-Z lim
=0/ _1/9

drm (fl,o + %fz,o + f3,0> (7,7), (2.4)

where the factor 67/3 is equal to the invariant area of the fundamental region JFy of I'g[4].”
Notice in eq. (2.4) the presence of the factor 1/2 in front of f; . This is connected with the
invariance of this term under the larger congruence subgroup I'g[2]. In the general formula
to be given below for a Zy orbifold when N is not prime, rational coefficient will appear
in front of terms which are invariant under the cyclic subgroups of Zy. Before writing the
general formula we study in the next section the Zg example.

2.2 The Zg case

The torus amplitude is given by

d2
i~ [
F T3

5
<1 + Z T'S+(14+S+TS)T3S+(1+S+TS+ TQS)T4S> (f1,0+ f50)
=0

+ (14 S+ TS +T25)(fa0+ fa0) + (L+S+TS)fs0]- (2.5)

The above structure follows from the I'g[3] invariance of (f20 + fa,0), and the I'g[2]
invariance of f3.
The amplitude can be rewritten as

Ty (b

A d?r A
Ve ~ / —5(fr0+ f5,0) +/ —5(f2,0 + fa0) +/ —5 f30 (2.6)
Fe Fs T2 Fa

"The invariant area of a fundamental domain F of T' is 7/3, and it can be obtained by recalling that
the area A of an hyperbolic triangle is given by A = 7 — 23

i=1
covered by six fundamental regions of I' as shown in eq. (2.3).

«i, where «; are its internal angles. Fi is



By using uniform distribution property one can express the same amplitude as the
following limit

1/2

Ve ~12- 5 lim

1 1 1
dm (fl,O +-foo+ —fao+ S fao+ f5,0> ; (2.7)
T2—0 _1/2 3 4 3

where 127/3 is the hyperbolic area of a fundamental region of I'y[6].

2.3 Amplitude for a generic Zn orbifold

The analysis in the previous section for the Z4 and Zg orbifolds suggests the way for
obtaining a decomposition of a generic Zy torus amplitude as a sum of integrals over
fundamental regions of congruence subgroups I'ylg], 2 < ¢ < N. This decomposition
together with the theorem on uniform distribution® gives the following formula for the
torus amplitude in a non-tachyonic Zy orbifold

1/2 N-1
VN ~ 1211'1’10 / dTl Z A (fn(l)) fl,O(T, 7_-), (28)
72—0 J_1/9 —

where the integer numbers 0 < n(l) < N are solutions of the following equation®

l-n(l)=N, mod(N), (2.9)

and A(F,) is the area of the fundamental region JF, of the congruence subgroup I'o[r]'

which can be computed by

2

7,,2
AlFr) = mo(r)

G 1
> e (2.10)

(Fkr)=1n=0

In the last formula ¢(r) is the Euler totient phi-function, which counts the number of
integers k, 1 < k < r coprime with r, (k,r) = 1. Given the r decomposition in prime

factors r = pi' - ... - qu, ©(r) can be computed by the following Euler product
1
p(r)=T](1- 5 (2.11)
plr

where p|r indicates that p is a divisor of r.
In equation (2.9) if I is coprime with N, (I, N) = 1, then n(l) = N and ¢’ generates the
full Zy. If (I, N) > 1 then n(l) is the common factor between [ and N, n(l) < N, and g

8The theorem in the appendix gives a finite correction term 24% E?:Cgm ¢;B; in eq. A.7 in the presence of
divergences at the cusps of Fn. This divergences correspond to untwisted and twisted unphysical tachyons
in the orbifold partition function, i.e. states that are eliminated by level matching through 7 integration of
the partition function. If one compactifies all the space-time dimensions except 2, (d = 2) one recovers this
finite correction. Therefore in d = 2 in the torus amplitude this correction appears multiplied by 1/VOL(8),
where VOL(8) is the volume of the eight-dimensional compact space. This shows that this finite correction
vanishes in every orbifold compactification with d > 2.

9n(1) is the dimension of the cyclic subgroup of Zy generated by the element ¢!, when (I, N) > 1.

10See the appendix for a derivation of the formula for the area A(F;) of the fundamental region F;.



generates the cyclic subgroup Z,) C Zy. In this last case the untwisted terms fo(7,7),
are invariant under the congruence subgroup I'g[n(1)], with fundamental domain 7, ;). This
was the case for the unwisted terms which appeared dressed by fractional coefficients for the
Zy orbifold in eq. (2.4) and for the Zg orbifold in eq. (2.7). This fractional coefficients are
the ratios A(F,))/A(Fn) of the areas of the fundamental regions of 'g[n(l)] and T'g[NV],
which are rational numbers since every congruence subgroup is covered by a finite number
of fundamental regions of I'.
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A Uniform distribution of curves in the fundamental regions of the
Hecke congruence subgroups

For every integer N > 1, the congruence subgroup I'¢[N] C T is represented by matrices
in PSL(2,Z) with ¢ =0, (mod N). These matrices have the form

(“ b ) (A1)
Nc Nd+ k

with (N¢, Nd + k) = 1.

A Fundamental region of I'g[/N] on the hyperbolic upper plane Fy = H/T'y[N] is given
by the union of a fundamental region F of the full modular group I' with the images of
F through all the transformations in (I' — T'y[N])/T. Fu is an hyperbolic polygon whose
vertexes in z = oo and in points in Q U [—1/2,1/2] are called cusps, (the fundamental
region F» of I'g[2] is shown in figure 2.)

Here we prove that for every congruence subgroup I'g[N] C T, the image of the infinite
radius horocycle!! through T'g[N] transformations is uniformly distributed in the funda-
mental region Fy = H/T'g[N]. To this purpose we will show that for every regular enough'?
Iy[N] invariant function f(7,7)

1 f . 1/2 1 dTldTQ
dsf = lim drif — / 1, A2
L) S T =2 L ™ T A S .
where the upper plane H hyperbolic metric is given by
2 2
ds? = m (A.3)
72

A horocycle is a circle tangent to the real axis and contained in H. Every horocycle H of radius R has
an image curve yg under I'o[N] transformation fully contained in Fnx = H/I'o[N]. In the infinite radius
limit R — oo every horocycle degenerates to the real axis.

12Respecting the conditions of the theorem displayed below.



Figure 2. The region I U S U ST is a fundamental domain for T'y[2]

In eq. (A.2) v C Fy denotes the image curve of the infinite radius horocycle, and
L() denotes the hyperbolic length of a curve ~y

)
L(y) = j{ds _ }{ Vdri +drs (A.4)
v ¥ T2

e i) Let f(7,7) be a function invariant under I'o[N], finite over the fundamental domain
Fn of T'y[N], except possibly at the cusps of Fy, which include 7 = ico and points
inQnN[-1/2,1/2).13

e ii) Let the integral on Fy of f(7,7) be convergent

d2
‘ / LT b r,7)| < oo (A5)
Fn T2
e iii) f has the following Fourier expansion
ne(N) o
fla,q) = ; QTZZM'TZ- + regulars, (A.6)

where ¢ = e*™7 n.(N) is the number of cusps of Fy, and 7; the locations of the

cusps.
Then:
B2r 1/2 7 e
/ — f(r,7) = A(Fy) lim drf(7,7)+ 245 > ab;, (A7)
]:N 7'2 TQHO _1/2 3 7,:1

where in the above equation

A(Fx) 2N2 E: E: (A8)
N nN+l<: ‘
(kN =1 —0

13 Fx has cusps in Q N [—1/2,1/2] which are the images of the point 7 = oo through a finite number
of modular transformations {M;}i<; with the following property. For every M € I') M = MyM; for
My € Ty[N] and M; in the list {M;}i<;. When N = p is prime {M;};<r = {ST*}1<i<p—1 and the only
cusps of F), on the real axis is in 7 = 0, since STi(oo) = 0. When N is non-prime Fn has extra cusps on
the real axis in non-vanishing rational points inside [—1/2,1/2].



is the modular invariant area of the fundamental region Fy of T'o[N],'* and f; is the
number of fundamental regions of the full modular group I' in the tassellation of Fx which
have the same cusp 7;.'% In eq. (A.8) (N) is the Euler totient phi-function.'6

Proof. We consider the following I'g[N]-invariant auxiliary function

N—-1
N N k2
hn(m, R) = Z Z Z N S InN e+ (A.9)
(k,N) 1 m=—00 n=—00
By using Poisson resummation formula one can prove the following
|n7‘+m\2 > > _ xR |[nNT4+mN+E|?
553 emme st g S5 i, e
m=—0o0 Nn=—0o0 m=—0o0 nNn=—0o0

From the previous two relation by taking the limit R — 0 one obtains the following
identity

—ﬂn’rm 2
Sk X ST N
SD —

—1m=—00on=—00
By using the previous identity one therefore has

[ - [ Dy Y S e
Fn 7'22 ©(N) R—0 Fy T4 ’ Moo ne—60 (kN1
(A.12)
Let us decompose nN = (Nr+s)Nc and mN +k = (Nr+s)(Nd+ k") where Nr+s =
(nN,mn + k) and therefore (N,s)=1 with 1 < s < N —1. Nc and Nd + k' are therefore
coprime (N¢, Nd+ k') = 1.
With the above decomposition (A.12) becomes

d2
/ —;—f(Ta 7_—) =
Fn T2

N-1 00 N-1 2
1 . 77TR2(NT‘+S)2W
oy [ DI IE e )
‘P(N) E—0 FN (37 y=17=—00¢,d€Z (k,N)=1

M A(Fn) is of the form N(N)w/3 where N(N) is an integer. This follows from the fact that Fx can
be covered by finite number of fundamental domains of the full modular group I' with invariant area
A(F) = w/3. Each tile corresponds to the image of F through modular transformations in the set I' =T [N].
For N prime there are N + 1 tiles, ¢(p) = p + 1 for prime p.

5For example in Fa: B(1 = 00) = 1, and B(r = 0) = 2, as shown in figure 2.

16 (1) counts how many numbers k, 1 < k < N are coprime with N, (k, N) = 1. Given the decomposition

in prime factors N = pi' - ... p;', ¢p(N) can be computed by the following Euler product
1
SD(N) = H 1-- )
p
p|N

where p|N indicates that p is a divisor of N.



Notice at the exponent the images of 79 under I'g[N] transformations. In fact, under
a generic I'g[N] transformation given by a matrix with lower row (N¢, Nd + k), 1o is

mapped to
72

7 \Ner + Nd + k[

(A.14)

Moreover, since left multiplication by T, g € Z of a generic I'g[N] matrix leaves its

lower row invariant

/ /
raf @ b 1gq b a b ’ (A.15)
Nc Nd+ k 01 NcNd+k: Ne Nd+ k

the set of I'g[N] matrixes at the exponent in (A.13) form twice!” a representation of
Lo[NJ/T.

For a given c,d and k we call M, g

a b
M = A.16
Ok (Nc Nd + k) ’ (4.16)

the matrix which maps 7 € Fy into a point M. 4,7 € S — Fn, where § = [-1/2,1/2] x
[0, 00).

By changing integration variable 7 — M kT in the generic term in the r.h.s. of (A.12)
one finds

d2 77rR2(N'r+s)2 NerdNdtk|2 d2 7TF(N’I‘+S)2R2
/ Clp(rr)e nrm INOTENERRE / Sl Ae Mmoo (AIT)
Fn T2 Me,qk(Fn) T2

The union of all the {M, 4} span twice the coset I'o[N]/T, and therefore

FnU U Me a1 (Fn) (A.18)
c,d,k
is a double tassellation of the strip S = [—1/2,1/2] x [0, 00), whose tiles are an infinite set

of fundamental regions of I'g[N].
Thus by changing integration variable 7 — M;CllkT term by term in the r.h.s. of
eq. (A.13), one should recover

7rR2(Nr+s)2

d2 d 1/2 N-1 o0
/f ;f(rq-) Ein,oRQ/ TQ/ dri f(7,7) Z Z e NZry
N

T
2 1/2 SN):lr —00

)

TFRQ(NT+S)

N—-1 [e’s)
2
- 1 2 N2
L(Sl(Tg)) R1£n>0R/ dTg?élm dsf(r,7) E E e 2

(s.N)=1 7=
(A.19)

where S'(72) is the circle S'(ro) = {-1/2 <z < 1/2, y =1} C H/T.

" Twice, since in (A.15) there is an identification k ~ N — k which follows from the fact that the modular

group and all its congruence subgroups are projective.

,10,



Notice that the length of S*(7s), L(S'(m2)) = 1/7 becomes infinite as 7 — 0 due to
the hyperbolic metric ds = /dr? + d72 /72 of H.

In the Laurent expansion iii) for f, the simple poles in the cusps ¢ = 0 and on some
points of the circle |¢| = 1 may spoil eq. (A.19). This is best seen for a divergence at the
cusp ¢ = 0, (7 = i00). In fact, the integral of f on the region (figure 1) F C Fy which
extends to 7 = oo is convergent only with the prescription to perform the 7 integral first,
which eliminates 1/q.

Since in the limit 79 — oo the exponential factor in (A.12) behaves as

nR2 2
— nNT+mN-+k P22
e N27,2‘ I ~ e TR*n TQ, (A20)

the integral in the first line of the following equation
o0

[ e o [ Dpen Y Y o
—f(r,7) = im T, T e =
7'22 QD(N) R—0 Fn ’7'22 fN)=1

m=—0o0 Nn=—00 ( ,

9 1/2 7rR2(Nr+s)2
= | d d - M (A21
RILHOR / 7'2/ T f(7,T) Z Z 2 )

1/2 =] r=—00

is actually absolutely convergent for 79 — oo for large enough R > Ry, (the asymptotic
factor (A.20) for R large enough cancels the exponential growing factor 1/|q| = €2™™ in
the Fourier expansion of f(7,7) allowed by condition iii)).

However, in order to take the limit for R — 0, one needs equation (A.21) to hold until
R > 0 and not just for R > Ry. The validity of eq. (A.21) on the full semi-axis R > 0 can
be checked by considering eq. (A.21) for complex R.

By using Poisson resummation formula on the first line of of (A.21), one can rewrite

this equation in the following equivalent way

d> 1 2 pd . o m2
/ S f(r7) = lim R _3/T2f(7ﬁ) > ermikmINgamimnri (25 4n2R2)

Fn T2 PN) B=0" ry 75 (k,N)=1 m,n
7\'R2(N7"+s)2

) 1/2 N-1 o) B
= 1 d g E Nirp |
RILHOR / / T f(7,T) e 2

1/2 (s,r)=171=—00

(A.22)

The function in the first line of (A.22) is analytic in the complex variable R on a region
where the integral converges as well as all its R-derivatives. A breakdown of analyticity in
R happens whenever in the Fourier expansion of the full integrand function there is a point
R = R where a term non-exponentially suppressed for 75 — oo appears. By taking enough
R-derivatives one would find a divergence in the integral for 75 — oo in such a point.'8

8This situation is formally equivalent to the lack of analyticity for the free-energy in a compactification
that happens whenever for a certain value of a modulus a massless state appears. In that case this is a
signal of a a possible phase transition, in the present case a lack of analyticity in R may invalidate eq. (A.21)
for small R.
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Since the factor at the exponent in the first line of (A.22) for both m and n non-zero

satisfies

m2
577 +n%R? > 2|mn| > 2, (A.23)

indeed terms proportional to 1/¢ in the Laurent expansion for f do spoil analiticity in the
point R =1, and invalidate (A.21) for 0 < R < 1.

In order to avoid this problem we regularize the f(7,7) at the cusps in a I'g[/N] invariant

way. For example at the cusp 7 = oo we regularize f — fo as follows

fool@,@) = £(4,0) — oI (q), (A.24)

where J(g) is the Klein modular invariant function with Laurent expansion

1 1 <
J(q) = = + 196884 + 21493760¢* + ... = = + > _ ang". (A.25)
q q n=1

For a simple pole at a cusp 7; € QN [~1/2,1/2], f is regularized for ¢ — **7 by
fr(4,@) = f(4,9) — Bicid (). (A.26)

Since J(g) has a simple pole at the cusp 7 = co, by modular invariance it has simple
poles in all the images of 7 = oo through modular transformations. In particular J(q) has
simple poles in all the rational points in [—1/2,1/2].

Moreover, J(q) being holomorphic in ¢, it gives zero when integrated in 71 on the inter-
val [—1/2,1/2]. Therefore it doesn’t contribute to the integral along the one-dimensional

curve, while its contribution over a fundamental domain of F is

d2
/ “J(r) = —24% (A.27)
F T3
Moreover, since
1/2
/ drnJ(r) =0 (A.28)
—-1/2

19

for every 7o, the J integral over F receives'” contribution only from the region N = F —

[—1/2,1/2] x [1,00)
27_ 27— T
/]:d_2j(7) :/Nd_zj(f) = —243. (A.29)

T T

Interesting enough, from the string theory point of view X is the subregion of F where
level matching is not enforced. This is a peculiar characteristic of string theory, since in
field theory the proper time integration domain would have a rectangular shape.

9The value —247/3 of the integral of J over the region F was computed in [20, 21].
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Since eq. (A.19) is valid for fup to R = 0, one change of integration variable 7o — R27
and finally compute the R — 0 limit

&1 dry ds < N X neves?
P Ao [T e B o
/fN 3 (7,7) Rﬂo S1(R2ry) L(ST(R?72)) (SN)”ZOO
N-1 00
1 ds ~ o0 ‘rr(Nr+s)21
= ——— lim 7]‘7'7_')/ dx e N2
P(N) 50 Jor(r2) L(S(R?)) w0, (s%:lrz_:oo
2N2 N-1 o0 1 1 -
= —— | lim ————— d T
mo(N) | )Mz;; (Nn+ )2 | oo L(SY(R2)) fil(m) sf(r,7)
9 N2 N—-1 oo 1 /1/2 ~
= Z ———— | lim dr f(7,7).
2 —>
mp(N) (s N1 5 (Nn+5)2 | =0 ) 19
(A.30)
By using
d*r - d*r T neldd)
— f(7,7T) :/ — f(r,7) — 24— ci i, (A.31)
/}—N 7_22 FN 7—22 3 ZZ;
and
1/2
/ drJ(t) =0, (A.32)
—~1/2
one finally recovers
N2 N-1 oo 1/2 71_nc(N)
= li d T 24— iDi,
/FN N = 3 Y e ) i, [ s o > e

(A.33)
which proves the theorem.
The numerical factor in front of the limit in (A.30), when N is prime N = p is given by

00 p—1 oo
Z Z Nn+s - ZZ Nn+s
(sp) 1n= 0 s=1n= 0

- M(iz o)

2 e m
__ Tfp_ 5(1-) X m-reg (s

p n=1

(p+ 1)m/3 is the invariant area of the region F, since F, = F U Uf:_ol ST (F), for prime
p. Therefore one expects for generic N the following series to compute the area of the
fundamental region of Fy

2 — 0o
A(F) = 2N Z > WP T (A.35)




For every positive integer N, I'o[N] C I', and therefore F = H/I' C Fny = H/I'¢[N].
Indeed, the fundamental region Fy is tassellated by a finite number N (N) of fundamental
regions of I', each region with invariant area /3.

Therefore from eq. (A.35) one obtains the number of F-tiles N(N) € N needed to

cover Fn
2 N—

[y

A(Fy) 6N
A(F) — w2p(N)

> 1
N(N) = L (A.36)
(s.N)=1 nZ:o (Nn + )2

The sequence {N(N)}n starts with
(1,3,4,6,6,12,8,12,12, 18,12, 24, 14, 24, 24, 18, 36, 20,36, . . . }.

N(N) drops down in correspondence of prime numbers, N'(p) < N(p — 1) for p prime. In
fact the congruence subgroups for prime numbers are larger then the non-prime adjacent
ones, and this difference becomes more relevant for large N.

References

[1] C. Angelantonj, M. Cardella and N. Irges, An Alternative for Moduli Stabilisation,
Phys. Lett. B 641 (2006) 474 [hep-th/0608022] [SPIRES].

[2] M. Dine, A. Morisse, A. Shomer and Z. Sun, ITA moduli stabilization with badly broken
supersymmetry, JHEP 07 (2008) 070 hep-th/0612189] [SPIRES].

[3] C. Angelantonj, C. Kounnas, H. Partouche and N. Toumbas, Resolution of Hagedorn
singularity in superstrings with gravito-magnetic fluzes, Nucl. Phys. B 809 (2009) 291
[arXiv:0808.1357] [SPIRES].

[4] B. McClain and B.D.B. Roth, Modular invariance for interacting bosonic strings at finite
temperature, Commun. Math. Phys. 111 (1987) 539 [SPIRES].

[5] K.H. O’Brien and C.I. Tan, Modular Invariance of Thermopartition Function and Global
Phase Structure of Heterotic String, Phys. Rev. D 36 (1987) 1184 [SPIRES].

[6] H. Itoyama and T.R. Taylor, Supersymmetry Restoration in the Compactified
0(16) x O(16)-prime Heterotic String Theory, Phys. Lett. B 186 (1987) 129 [SPIRES].

[7] L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to
gauge coupling constants, Nucl. Phys. B 355 (1991) 649 [SPIRES].

[8] P. Mayr and S. Stieberger, Threshold corrections to gauge couplings in orbifold
compactifications, Nucl. Phys. B 407 (1993) 725 [hep-th/9303017] [SPIRES].

[9] D.M. Ghilencea, H.P. Nilles and S. Stieberger, Divergences in Kaluza-Klein models and their
string regularization, New J. Phys. 4 (2002) 15 hep-th/0108183] [SPIRES].

[10] M. Trapletti, On the unfolding of the fundamental region in integrals of modular invariant
amplitudes, JHEP 02 (2003) 012 [hep-th/0211281] [SPIRES].

[11] E. Kiritsis, C. Kounnas, P.M. Petropoulos and J. Rizos, String threshold corrections in
models with spontaneously broken supersymmetry, Nucl. Phys. B 540 (1999) 87
[hep-th/9807067] [SPIRES].

[12] H. Furstenberg, The Unique Ergodicity of the Horocycle Flow, in Recent Advances in
Topological Dynamics, A. Beck ed., Springer Verlag Lecture Notes, 318 (1972) 95.

— 14 —


http://dx.doi.org/10.1016/j.physletb.2006.08.072
http://arxiv.org/abs/hep-th/0608022
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0608022
http://dx.doi.org/10.1088/1126-6708/2008/07/070
http://arxiv.org/abs/hep-th/0612189
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0612189
http://dx.doi.org/10.1016/j.nuclphysb.2008.10.010
http://arxiv.org/abs/0808.1357
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.1357
http://dx.doi.org/10.1007/BF01219073
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA,111,539
http://dx.doi.org/10.1103/PhysRevD.36.1184
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D36,1184
http://dx.doi.org/10.1016/0370-2693(87)90267-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B186,129
http://dx.doi.org/10.1016/0550-3213(91)90490-O
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B355,649
http://dx.doi.org/10.1016/0550-3213(93)90096-8
http://arxiv.org/abs/hep-th/9303017
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9303017
http://dx.doi.org/10.1088/1367-2630/4/1/315
http://arxiv.org/abs/hep-th/0108183
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0108183
http://dx.doi.org/10.1088/1126-6708/2003/02/012
http://arxiv.org/abs/hep-th/0211281
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0211281
http://dx.doi.org/10.1016/S0550-3213(98)00713-5
http://arxiv.org/abs/hep-th/9807067
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9807067

[13] S.G. Dani and J. Smillie, Uniform distribution of horocycle orbits for Fuchsian groups,
Duke Math. J. 51 (1984) 185.

[14] M. Ratner, Distribution rigidity for unipotent actions on homogeneous spaces,
Bull. Amer. Math. Soc. (N.S.) 24 (1991) 321.

[15] M. Ratner, Raghunathans topological conjecture and distributions of unipotent flows,
Duke Math. J. 63 (1991) 235.

[16] D. Kutasov and N. Seiberg, Number of degrees of freedom, density of states and tachyons in
string theory and CFT, Nucl. Phys. B 358 (1991) 600 [SPIRES].

[17] D. Kutasov, Some properties of (non)critical strings, hep-th/9110041 [SPIRES].

[18] K.R. Dienes, M. Moshe and R.C. Myers, String theory, misaligned supersymmetry and the
supertrace constraints, Phys. Rev. Lett. T4 (1995) 4767 [hep-th/9503055] [SPIRES].

[19] K.R. Dienes, Modular invariance, finiteness and misaligned supersymmetry: new constraints
on the numbers of physical string states, Nucl. Phys. B 429 (1994) 533 [hep-th/9402006]
[SPIRES].

[20] G.W. Moore, Atkin-Lehner symmetry,
Nucl. Phys. [Erratum ibid. B 299 (1988) 847] B 293 (1987) 139 [SPIRES].

[21] W. Lerche, B.E.W. Nilsson, A.N. Schellekens and N.P. Warner, Anomaly cancelling terms
from the elliptic genus, Nucl. Phys. B 299 (1988) 91 [SPIRES].

,15,


http://dx.doi.org/10.1215/S0012-7094-84-05110-X
http://projecteuclid.org/euclid.bams/1183656870
http://dx.doi.org/10.1215/S0012-7094-91-06311-8
http://dx.doi.org/10.1016/0550-3213(91)90426-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B358,600
http://arxiv.org/abs/hep-th/9110041
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9110041
http://dx.doi.org/10.1103/PhysRevLett.74.4767
http://arxiv.org/abs/hep-th/9503055
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9503055
http://dx.doi.org/10.1016/0550-3213(94)90153-8
http://arxiv.org/abs/hep-th/9402006
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9402006
http://dx.doi.org/10.1016/0550-3213(87)90067-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B293,139
http://dx.doi.org/10.1016/0550-3213(88)90468-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B299,91

	Introduction
	The torus amplitude for a generic mathbb Z(N) orbifold
	The mathbb Z(4) case
	The mathbb Z(6) case
	Amplitude for a generic mathbb Z(N) orbifold

	Uniform distribution of curves in the fundamental regions of the Hecke congruence subgroups

