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We propose a novel search technique for axions with a CP-violating monopole coupling gq to bulk
SM charges Q € {B, L, B— L}. Gradients in the static axion field configurations sourced by matter
induce achromatic circular photon birefringence via the axion-photon coupling g¢,. Circularly
polarized light fed into an optical or (open) radio-frequency (RF) Fabry—Pérot (FP) cavity develops
a phase shift that accumulates up to the cavity finesse: the fixed axion spatial gradient prevents a
cancellation known to occur for an axion dark-matter search. The relative phase shift between two
FP cavities fed with opposite circular polarizations can be detected interferometrically. This time-
independent signal can be modulated up to non-zero frequency by altering the cavity orientations
with respect to the field gradient. Multi-wavelength co-metrology techniques can be used to address
chromatic measurement systematics and noise sources. With Earth as the axion source, we project
reach beyond current constraints on the product of couplings jgge~ for axion masses mgy < 107° eV.
If shot-noise-limited sensitivity can be achieved, an experiment using high-finesse RF FP cavities

could reach a factor of ~ 10° into new parameter space for §ogg, for masses my < 107106V,

Introduction.—Axions! are compelling extensions to

the Standard Model (SM) that can address the strong
CP problem [1-3], behave as quintessence fields [4, 5] or
dark-matter (DM) candidates [6, 7], or simply be other
light degrees of freedom expected from UV theory [8, 9].

An axion ¢ generically couples to photons, £ D
—gmngl*:‘ /4, inducing circular photon birefringence [10—
13]. Oppositely handed photons propagating in a varying
axion field pick up light-frequency-independent (achro-
matic) phase shifts a4 of opposite signs, which depend
only on the difference A¢ in the axion field value at the
endpoints of the photon path: at = £g4,A¢/2. A large
body of literature exists on the phenomenology of this
effect in cosmological [14-40], astrophysical [25, 41-45],
and lab-based contexts [46-51].

In general, axions can also have monopole couplings gq
to bulk SM matter charges @: e.g., to baryon number B
via L D —gpoNN, where N is a nucleon field. Such cou-
plings source static axion field gradients around ordinary
objects, with a range 74 ~ 1/mgy set by the axion mass
mg. This scenario, while violating both CP and the ax-
ion shift symmetry, arises naturally for a QCD axion in
the presence of a nonzero strong © angle [52, 53|, and for
general axions has been invoked as an environmental ex-
planation for the (g —2), anomaly [54, 55]. A light axion
with such couplings may involve a mass tuning, but this
depends on the UV cutoff and other assumptions.

1 In this work, the term “axion” is used to refer to either the QCD
axion or axion-like particles (ALPs), as appropriate.

The presence of both couplings, g, and gg, is com-
monly referred to as the ‘monopole—dipole’ scenario. Of
course, independent constraints on both gg, and gg ex-
ist. Bounds on ge, arise from many phenomena [56—
68]: for example, astrophysical bodies could emit axions
which may also convert to photons in magnetic fields.
Axion—photon interconversion would also cause spectral
distortions of sources. The strongest bounds are g4y <
6 x 1073 GeV~! for mg < 107 eV [61]. Monopole
couplings gg induce fifth forces stringently constrained
by, e.g., tests of the weak equivalence principle [69-76]:
g S6x1072° for my S 1/Rg ~ 3x 107 eV [75], with
bounds on g7, and gp_ 1, being of similar magnitude.

In this paper, we propose an interferometric laboratory
experiment that we estimate to be capable of probing new
parameter space for the product of couplings ggge. The
idea is summarized in Fig. 1. A Michelson interferome-
ter with rigid, high-finesse Fabry—Pérot (FP) cavities of
length ¢ in its arms is set up such that those arms are fed
with light of opposite circular polarization. In the pres-
ence of a static axion field gradient sourced by nearby
matter, a time-independent, achromatic phase shift de-
velops between the two arms. A laboratory mass could
be the axion source, but the strongest accessible source
is generally Earth, which for Q = B gives a vertical sur-
face field gradient |V|g ~ 0.2eV? x g /(6 x 1072°) for
mg S 1/Rg (for Q@ = L or B — L, |V¢|g is smaller by
a factor of ~ 2). To be sensitive to this gradient, the
cavities should be oriented vertically.

Crucially for this setup, the phase shifts in the interfer-
ometer arms accumulate linearly with cavity finesse F.
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FIG. 1. The proposed experiment. Vertically polarized (V)
light (optical or RF) is phase modulated and split into two
beams, which are passed through oppositely oriented quarter-
wave plates to become right- (R) and left- (L) circularly po-
larized, respectively. The circular polarizations are fed into
rigid, high-finesse FP cavities, where they accumulate a phase
shift from the axion field gradient sourced by a nearby mass
(e.g., Earth, or a small laboratory mass). Finally, the beams
pass back through the A/4-plates to become horizontally po-
larized (H) and are interfered at the beamsplitter. Signal de-
tection is via a carrier—sideband beat note at the dark port.

N

Photon helicity flips on reflection at each end of the cav-
ity; if uncompensated, this would cause the phase shifts
for outbound and return trips in the cavity to have oppo-
site signs, leading to a round-trip signal cancellation [47].
However, that sign change is exactly compensated for by
A¢ changing sign for trips in opposite directions in a
static field gradient. The signal thus does not cancel, and
can be boosted by working with high-finesse FP cavities;
e.g., those that operate at radio frequencies (RF) [77].

To address systematic issues, the static signal can be
modulated to finite frequency by rotating the cavity ori-
entations with respect to the gradient. We also propose
injecting multiple cavity-resonant frequencies to perform
cavity co-metrology and break possible degeneracies with
various chromatic systematic effects and noise sources.

Interferometric detection of axions is not a new idea.
A similar experimental proposal for probing axion DM
appears in Ref. [47]; see also Refs. [46, 48-51]. These pro-
posals are, however, tailored to search for the dominant,
temporal component of the DM axion gradient: |¢"|w ~
2 x 1073eV? ~ 103|V@|py. This is smaller than the
largest allowed spatial gradient from an Earth-sourced
axion, and does not have an intrinsic spatial direction-
ality. For slowly varying DM axion fields, my¢ < 1,
the latter fact leads to the round-trip signal cancellation
mentioned above [47]; to overcome this for a DM ax-
ion, additional optical elements inside the cavity are re-
quired [47], or alternative experimental designs must be
considered [48-51]. Moreover, a DM axion experiment
has a bandwidth limitation arising from the virialized
nature of DM [78-80]. Such a limitation is not present
for a static, sourced axion field gradient, for which noise

may thus be more efficiently averaged down.
Signal.—We consider the low-energy effective axion
model (we work in natural units; A =c=1)

Lione 1 2.2 9y
— (G + 9B-1)PNN — (§r — gB—1)0ee ,

where ¢ is the axion, F' (F) is the (dual) photon field-
strength tensor, N is a nucleon, and e an electron. Con-
sider an FP cavity of length ¢ and finesse F with its axis
aligned to local vertical on the surface of Earth. External
laser light with wavelength A (wavenumber k = 27 /)\) is
introduced to the FP cavity via the upper mirror. We
model the lower (upper) mirror to be perfectly (highly)
reflecting for light incident from the interior of the cavity,
and both mirrors to be lossless.

Ignoring transverse spatial gradients in the beam pro-
file, plane right (+) [respectively, left (—)] circularly po-
larized light incident on the exterior face of the upper
mirror is reflected from that mirror as left [respectively,
right] circularly polarized light with a phase shift e+
[e?~], where

TVAF? + 12 sin(2kl £ g4y AP) 5
(2F2 + 72) cos(2kl £ gy, A¢) — 2F2 @
where A¢ = ¢(lower) — ¢(upper) is the difference in the
axion field between the lower and upper mirrors.

For a cavity near longitudinal resonance, ¢ = £,, + Af
with £, =nA/2 (n=1,2,...) and |Al| < £, and in the
combined limits a4 < 1 and F > 1, the phase shifts are

2F
a4+ = 7 (QkAf + g¢,yA¢) . (3)

tanayL =

For two cavities both run near resonance and driven
with oppositely handed light, a static differential phase
shift Aa = ar — a— = Aay + Ay develops, where

4F
4
Aay = iz k(AL — AL, (5)

and where A/, are the offsets from resonant length for
the cavities driven with -handed light. The axion signal
Aoy is a static, achromatic phase shift between the cavi-
ties, while a differential length fluctuation of the cavities
causes a chromatic phase shift Aay = Aay(N).

To estimate A¢, we adopt a simplified model for Earth
(radius Rg ), ignoring its internal structure and approxi-
mating it as a homogeneous, spherically symmetric body
with baryon and lepton charges satisfying B ~ 2L =~
Mg/ pa, where Mg is the mass of Earth and p, is the
atomic mass unit. In this setup, the on-resonance axion-

induced differential phase shift is
F M@ fefmw
—————U(myl Rg,mygd) ,
e (R 1 el Mot mad)

(6)

Aay = Jagsry



where d is the distance between the surface of Earth and
the lower mirrors of the FP cavities (we take d = 10 cm
throughout), o = g5 + %@B—L +§1.), and

3e Y
Y3

U(z,y,2) = — (y coshy — sinh y)

><Z/+Z B e’ @)
T 1+z/(y+2)

U accounts for ¢(r) being sourced dominantly by those
parts of Earth within the axion-field range r4 [74, 81], and
for the full r-dependence of ¢(r). If £,d < Rg, we have
Aayg x (mg)™™ with n = 0 for my S 1/Rg, and n =1
for 1/Rgy S mgy Smin[1/¢,1/d]. If d < £, then n = 2 for
1/0 <mg S 1/d. For mg 2 1/d, Aag oc e=™e4,

We envisage standard dark-port operation for the
Michelson interferometer [82]: carrier-signal phase mod-
ulation creates sidebands displaced from FP cavity res-
onance that do not pick up a phase shift, whereas the
carrier is tuned to FP cavity resonance and experiences
the signal phase shift. Access to a linear signal is achieved
in the beat note of the carrier and the sidebands at the
beamsplitter, which can be mixed down for readout.

The signal at Eq. (6) is static, but if the orientation of
the cavities is rotated from vertical about their midpoint
at an angular frequency 2, the signal is modulated up to
finite frequency: Aay — Aay - f(t), where, for { < Rg,
sinh [%"’é cos (Qt)}

sinh (mTM)
Were the cavities instead modulated at a frequency 2 by
an angle +£6, from vertical, Qt — 6y cos(Qt) in Eq. (8).

For sufficiently light axions (mg < 1/AU ~ 1078 eV),
one could additionally search for the sub-leading ax-
ion gradient sourced by the Sun at Earth, |Vé|o ~
107%eV? x gp/(6 x 107%) for mg < 1/(AU), that mod-
ulates direction at the period of a synodic day.

One can also consider using a small, laboratory mass
to source a (much smaller) axion field gradient. For cavi-
ties in radial orientation around a homogeneous spherical
source of radius R (with the nearest mirror of each FP
cavity a distance d from the source surface), the signal
is given by Eqgs. (6) and (7) with replacements Rg — R
and Mgge /e — Bgs + Ly, + (B — L)§p—r. Other
source geometries give similar results, up to geometrical
factors. Importantly, in this setup, the cavities can be
oriented horizontally, with modulation of the signal to
non-zero frequency achieved either by moving the source
mass (cf. Ref. [83]), or by rotating the cavities about a
vertical axis (cf. Ref. [71]). This may have technical ad-
vantages over vertically oriented cavities being rotated
about a horizontal axis to achieve modulation of the sig-
nal from the fixed, vertical Earth-sourced field gradient.

Reach.—A projection for the reach of this experi-
ment to the axion signal requires understanding vari-

m¢€<<1
—

fit) = cos(Q). (8)

ous stochastic noise sources and confounding systematics,
and in some cases mitigating the latter.

Photon shot noise statistically limits interferometer
sensitivity. Suppose we integrate coherently for a time 7;
the expected number of photons arriving at the inter-
ferometer beamsplitter, where the interference pattern is
observed, is N, = Py7/w, where Py ~ TP /(2F) is
the average power incident on the beamsplitter if P,y is
the circulating FP cavity power, and w = 27/ is the
angular frequency of the light. The phase uncertainty
is then ~ 1/\/K We estimate that the signal-to-noise
ratio (SNR) for shot noise is

2 Py T

S1\I]~:{shot ~ o F

AO% . (9)
For all our projections, we take 7 = 300days and fix
P.ov = 1MW, adjusting P, depending on F.

In distinct contrast to an architecture optimized for
gravitational-wave detection, the mirrors at the ends
of the FP cavities in our proposal should be attached
rigidly to a structure instead of being isolated; a high
mechanical-resonance frequency for this support struc-
ture will suppress radiation-pressure noise. Modeling the
cavity system as being embedded in a rigid block of mass
M with fundamental vibrational frequency wyi,, we can
estimate the SNR due to radiation pressure noise as

T M wsib T
PCanB

SNR,aq ~ 5 Aozd, . (10)
We take the block to be cubic, with side-length £y, con-
stant density peay ~ 8g/cm?®, and sound speed ¢, ~
6km/s, and we estimate wyip ~ TCs/lsys.

For a cavity system at finite temperature there will also
be thermal vibrational noise leading to fluctuating cavity
lengths. Taking the same cavity-system model as above,
we use the fluctuation—dissipation theorem to estimate

s TMQvibWS-b AO%
SNR.ip, ~ — AL , 11
PR\ T WF (11)

where Ty is the system temperature and Qi is the
mechanical-resonance quality factor. We assume cryo-
genic operation, Tyys ~ 4K, and take Quip ~ 103. Ther-
mal readout noise for an RF system (estimated via the
Dicke radiometer equation) is subdominant.

If both cavities are embedded in the same rigid struc-
ture, some common length-fluctuation noise could cancel
(see also Ref. [47]), increasing both SNR;,q4 and SNRy.

The total SNR may be estimated as

1 1
—_— = —_— . 12
(SNRyot)? Z (SNR;)? (12)
In Fig. 2, we show SNRy, = 1 (dashed lines) and
SNRshot = 1 (solid lines) reach estimates for the prod-
uct of couplings gpge, for three different experimental
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FIG. 2. Projected reach curves at SNR of 1 for various exper-
imental architectures: (1) Earth as a source and a laser-based
cavity search (purple); (2) Earth as a source and an RF-based
cavity search (orange); and (3) a laboratory source and an
RF-based cavity search (blue). Dashed lines are limited by
vibrational noise at finite temperature [Eq. (11)]; solid lines
take into account only shot noise [Eq. (9)]. The scaling with
mg is explained below Eq. (7). Parameters are discussed in
the text; see also Tab. I. The dark-grey region is ruled out by
fifth-force constraints on gg [69-76], and various astrophysi-
cal constraints on ge, [58-67]. The light-grey shaded region
would be excluded were the axion also the DM [84-90]. Above
the dotted green line, an axion mass tuning may be required,
assuming A = 10 TeV and g4+ fixed at current limits.

architectures, using the optical or open RF cavity in-
terferometer parameters shown in Tab. I: (1) Earth as
the axion source, with the optical interferometer setup;
(2) Earth as the axion source, with the RF interferome-
ter setup; and (3) a small laboratory-mass axion source
(radius R = 1m, density p = 8g/cm?), with the RF
interferometer setup. In making these projections, we
set g = gp—r = 0; current constraints and signal-
reach estimates for cases with these couplings non-zero
are broadly similar to those for gg, up to O(3) numer-
ical factors. Note that the lab-sourced axion gradient
in case (3) is far weaker than that for Earth, |Vo|s.c(r =
R) ~2x1077|Vé|g for mgRe < 1; it is also significantly
weaker than the naturally modulating solar source, but
the latter is only detectable for my < 10718 eV. For a ho-
mogeneous source, Aag x pR for myR < 1; tradespace
thus exists to optimize for lab-source size and/or density.

Fig. 2 also shows where the axion bare mass may
need to be tuned against the quantum correction ém? ~
G5A?/(87%), where A is a UV cutoff scale, to maintain a
light axion, assuming that g4, is fixed at current bounds.

Discussion.—The achromatic axion phase shift can
be distinguished from chromatic noise arising from dif-
ferential cavity-length fluctuations. Running each cav-
ity with multiple cavity-resonant frequencies of light
simultaneously could thus suppress chromatic back-

TABLE I. Experimental parameters, as defined in the text,
assumed for the optical or open radio-frequency (RF) Fabry—
Pérot interferometer reach projections. We adopt as parame-
ters for the RF system those demonstrated in Ref. [77].

Parameter Optical RF
w/2m 1/(1064 nm) 51 GHz
F 10* 4.6 x 10°
£ [m] 1 0.027
lsys [m] 1 0.3

grounds; this differs from a GW detector, where the sig-
nal is degenerate with a differential length fluctuation.
Such multi-frequency ‘co-metrology’ techniques (cf., e.g.,
Refs. [91, 92]) could allow the mitigation of vibrational
and radiation-pressure noise backgrounds for the signal
to the level of the shot-noise floor; we thus also show
reach projections in Fig. 2 limited by shot noise only.
Further investigation of this technique is warranted.

We also note that there is a potential systematic for the
measurement: cavities have a degree of intrinsic circular
birefringence; see, e.g., Refs. [93-95]. This strongly mo-
tivates signal modulation: only variations in the cavity
birefringence properties at the modulation frequency €2
are then relevant (including possible changes in stress-
induced birefringence were the cavities to be rotated
in Earth’s gravitational field). Moreover, the multi-
frequency techniques noted above would also assist in
breaking degeneracy with the signal, as intrinsic birefrin-
gence will be chromatic. Additionally, running the cav-
ity at multiple different lengths ¢ could break degener-
acy between our signal Aoy o< £, and any ¢-independent
phase shift due to mirror coatings or abnormalities. How-
ever, because cavity birefringence depends in detail on
the properties of the optical or RF elements in the cav-
ity, we defer study of this issue to future technical work.

In addition to the open RF FP cavities we considered
in this work, another possible experimental architecture
would use closed superconducting radio-frequency (SRF)
cavity resonators (see, e.g., Refs. [96, 97]) in the interfer-
ometer arms. However, finite machining tolerances of the
cavity walls appear to limit the fidelity with which op-
posite circular polarizations propagate without mixing,
limiting the usable cavity finesse to well below that at-
tainable for the highest-Q SRF cavities [F = (wpsp/wn )@,
where @ is the cavity quality factor, wygg is the cavity free
spectral range, and w,, is the cavity resonance frequency].

In this paper, we have proposed a novel interferometric
experiment to search for static axion field gradients. Pro-
vided that shot-noise-limited sensitivity can be reached,
an approach exploiting open, high-finesse RF FP res-
onators could allow the exploration of ~ 6 orders of mag-
nitude of new parameter space beyond current limits on
the product coupling joge, for mg < 10710V,
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