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We review recent developments in the physical implications of two loop quantization
strategies for the interior of a homogeneous dust cloud. The first is the loop quantization

with holonomies and the triads while the second is with holonomies and the gauge

covariant fluxes. Although both of the quantization schemes resolve the classical central
singularity regardless of the initial conditions, they also lead to a distinct phenomenology.

For the first loop quantization, we find that when the dust mass is larger than a threshold

value, both black hole and white hole would form and their evolution is symmetric with
respect to the bounce point, leading to black hole-white hole twins. In contrast, in the

second quantization, the evolution of the outermost dust shell is asymmetric with respect
to the bounce point, and as a result the black hole-white hole twins can never form. Even

in the situation when both black hole and white hole can form, the mass of the latter is

only 2/π of the mass of the former.
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1. Introduction

The singularity problem in the gravitational collapse results from the breakdown

of the classical theory of general relativity (GR) and can thus be resolved by quan-

tum gravity. Understanding the role of quantum gravity in determining the final

state of the collapsing stars can help provide insights on the fundamental questions

related with cosmic censorship conjecture and black hole evaporation. Because of

the quantization ambiguities in quantum theories, it is important to understand

if the physical predictions are robust against various quantization prescriptions.

In the following, we address this question for a collapsing dust cloud whose interior

spacetime is described by the Lemâıtre-Tolman-Bondi(LTB) metric and study two

quantization prescriptions in a loop quantum gravity (LQG) scenario.

To make the problem of a collapsing dust cloud more manageable, we further

assume a homogeneous evolution of the dust cloud in the marginally bound case.

We then make use of the techniques from LQG to quantize the interior of the

dust cloud. The loop quantization of the spacetimes with spherical symmetry dates

back to quantization of the interior of the Schwarzschild black hole.1–6 Later it

was extended to include both interior and exterior of the black hole7–13 as well

as the dynamical collapsing spacetime which is filled with a massless scalar or the

dust.14–18 All these studies focussed on the resolution of the central singularity

by incorporating quantum geometry effects via holonomies and/or inverse triad
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modification but not on comparaing the physics in different quantizations. Further,

none of the forementioned models have been directly derived from LQG. Therefore,

it is reasonable to ask whether the physical predictions in those models are robust

when further modifications from LQG are included in the dynamics. To answer this

question, we have studied two distinct quantization prescriptions for the interior

of a collapsing dust cloud and compared their physical implications.19 The first

quantization employs holonomy and triads while in the second quantization, in

addition to the holonomy corrections, we have also considered the contributions from

the gauge-covariant fluxes20 which have beenr ecently explored in the cosmological

setting.21–23 Our results have shown that although the resolution of the central

singularity is robust against different quantization strategies, the resulting dynamics

also exhibit distinctive features for each quantization ansatz. In particular, the first

quantization results in black hole-white hole twins while the second quantization

strategy generally leads to black hole-white hole asymmetry.

2. The classical dust shell model

The classical dust shell model describes the dynamics of the outermost shell of

a collapsing dust cloud. It is based on the LTB model which is obtained from a

spherically symmetric solution of Einstein’s equations in GR with non-rotational

dust as a matter source. The metric of LTB spacetime is given by

ds2 = −dτ2 +
(R′)2

1 + 2f
dx2 +R2dΩ2, (1)

where R is the areal radius, f(x) is the total energy of a unit mass at x and a prime

denotes derivative with respect to the radial coordinate x. Depending on the sign of

f , there are three distinct cases: the marginally bound case with f = 0, the bound

case with f < 0 and the unbound case with f > 0. In the following, we focus on

the marginally bound case. The corresponding Hamiltonian constraint for the LTB

dust model is explicitly given in terms of both canonical ADM variables and the

Ashtekar variables for a general inhomogeneous dust cloud in.24 The classical dust

shell model can then be obtained from the LTB model by a homogeneous reduction

where the energy density of the dust cloud is assumed to depend only on time.25

Thanks to the spherical symmetry and the homogeneity of the dust cloud interior,

one can integrate the classical Hamiltonian constraint of the LTB model along the

radial direction as well as the angular part and arrive at the Hamiltonian constraint

for the outermost dust shell which can be expressed in terms of a canonical pair

consisting of the radial components of the extrinsic curvature and the densitized

triad.19 It turns out that for the homogeneous dust collapse, the interior spacetime

is isometric to the spatially-flat Friedmann-Lemâıtre-Robertson-Walker (FLRW)

spacetime. As a result, the classical Hamiltonian constraint of the outermost dust

shell can be related with the one for the spatially-flat FLRW spacetime.19

For a complete description of thiS collapsing model, in addition to the dust

interior, one still needs to specify the exterior spacetime which is glued to the dust

interior at the boundary. We choose the exterior spacetime to be the generalized
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Vaidya spacetime26 so that it allows a non-vanishing effective dust pressure after

quantum geometrical effects are taken into account.14 The matching conditions are

worked out under the requirements that the first and the second fundamental forms

should be continuous across the boundary. In this way, it turns out that in the

marginally bound case the Vaidya mass which is the mass of the dust cloud as seen

by an outside observer differs from the mass function of the dust cloud by a factor

of 1/2G with G denoting the Newton’s constant.

3. Loop quantization of the dust shell model with holonomy and

triad variables

The loop quantization of the dust shell model is based on the classical Hamiltonian

constraint of the outermost dust shell which is expressed in terms of the Ashtekar

variables.19 Due to the quantization ambiguities, there are different quantization

prescriptions which can result in distinct effective dynamics. Since the interior of a

homogeneous dust cloud is isometric to a spatially-flat FLRW spacetime, one can ap-

ply techniques developed in loop quantum cosmology (LQC)27 in a straightforward

way. After quantizing the outermost dust shell by employing holonomies and the

triads with the µ̄ scheme,28 we find that the classical central singularity is resolved

and replaced with a bounce which takes place at a fixed maximum energy density

in the Planck regime. Meanwhile, the collapse of the dust cloud is succeeded by a

re-expansion after the bounce point. The formation of the trapped surfaces during

the contraction and the expansion of the dust cloud depends solely on the initial

dust mass. There also exists a threshold dust mass M∗ below which no black hole or

white hole can form during the evolution of the dust cloud. On the other hand, when

the initial dust mass is larger than M∗, a dynamical black hole can form during the

collapse of the dust cloud and correspondingly a white hole can form during the

re-expansion of the dust cloud. The evolution of the black hole and the white hole is

always symmetric with respect to the bounce point and in particular the mass of the

black hole is the same as the mass of the white hole. Moreover, right at the bounce,

the trapped surfaces vanishes and the Vaidya mass becomes zero which implies that

an asymptotic flat Minkowski spacetime emerges at the bounce point due to the

quantum repulsive force. This repulsive force is also reflected by a negative effective

pressure near the bounce point when the energy density is in the Planck regime.

4. Loop quantization of the dust shell model with holonomy and

gauge covariant flux variables

Apart from the holonomy and triad quantization, we also study the physical conse-

quences of using holonomy and the gauge covariant fluxes20 which is motivated from

the need to go beyond symmetry reduced triads in to obtain an effective Hamilto-

nian with loop quantum modifications from LQG using suitable coherent states.

Its physical implications have been explored for the spatially-flat FLRW model

recently.21–23 This quantization strategy leads to distinct dynamical evolution of

the outermost dust shell as compared with the one discussed in the last section.
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In particular, although the classical central singularity is resolved and replaced

with a quantum bounce which also takes place in the Planck regime, the formation/

evolution of the black hole and the white hole is no longer symmetric with respect

to the bounce point. Due to quantum gravity effects there exist two characteristic

dust masses M1 and M2 (M1 < M2). When the initial dust mass is less than M1,

no trapped surfaces can form during the entire evolution of the dust cloud. On the

other hand, when the initial dust mass lies between M1 and M2, only a black hole

can form during the collapse of the dust cloud. Finally, when the initial dust mass

is larger than M2, both black hole and the white hole can form. In the last case,

we find the evolution of the black hole and the white hole is not symmetric with

respect to the bounce point and in particular the effective mass of the white hole is

only 2/π of the one for the black hole and the black hole always outlives the white

hole in the proper time. This asymmetry is due to the difference in the classical

limits of the pre- and post-bounce regimes of the effective dynamics. As a result,

black hole-white hole twins do not exist in this quantization strategy.

5. Summary

The gravitational collapse of a homogeneous dust cloud provides a platform to test

different loop quantizations and investigate their resulting physical implications. We

find even in this simple setting, quantization ambiguities can lead to very distinct

phenomenological effects. In particular, we have studied two quantization strate-

gies in this context, the one employing holonomies and triads and the other using

holonomies and gauge covariant fluxes. Although in both cases, the central singular-

ity is resolved and replaced with a quantum bounce, there are qualitative differences

between two quantization prescriptions. In the former, when the dust mass is larger

than the threshold mass, there are black hole-white hole twins. While in the latter,

a black hole and white hole twin system is not possible and the the mass of the

white hole is only 2/π of the mass of the black hole because of quantum gravity

effects. Further, there can be situations in which only black hole forms during the

collapse of the dust cloud.

We wish to thank Jahnvi Verma and Anzhong Wang for discussions. This work is

supported by the DFG-NSF grants PHY-1912274 and 425333893, and PHY-1454832

and PHY-2110207.
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