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Abstract

Rydberg states of atoms or molecules are characterised by having a
highly excited valence electron. This leads to many exaggerated prop-
erties such as extended lifetimes and large susceptibilities to electro-
magnetic fields.

In Part I of this thesis we explore such properties, looking at the
ultra-strong driving regime of the Rabi model with Rydberg states,
observing coherent Rydberg atom and microwave field interactions.
Under ultra-strong driving simpler models break down, so Floquet
methods are used and show excellent experimental agreement. The
results presented are of importance for applications in the detection
and precise calibration of microwave fields and in fast quantum state
preparation for quantum information processing.

The appeal of Rydberg states with their unique properties has meant
that there has been an increased focus for applications in quantum
technologies such as for Rydberg state sensing. Part II of this the-
sis develops a coherent approach to this by performing interferometry
with Rydberg states of atoms. We demonstrate experiments that probe
dynamic and geometric phases in a Ramsey-type interferometer using
Rydberg states of helium.

A first experiment involves inhomogeneous electric-field gradients.
Forces are applied to create a half-loop Stern-Gerlach interferometer.
These experiments replicate approaches seen with atom-chip interfer-
ometers, resulting in coherent superpositions of spatially separated
momentum states. The experiment demonstrated here used low-ℓ
Rydberg states in order to overcome non-adiabatic losses seen in a
previous experiment using circular Rydberg states. Dispersive effects
fundamentally limited this approach. Future experiments aimed at
overcoming this dispersion could allow for a full-loop interferometer
that could be sensitive to inertial effects.

This inspired an experiment where the phase due to the motional-
Stark effect is measured in a Ramsey-type interferometer. The motional-
Stark phase is closely related to the He-McKellar-Wilkens geometric
phase, an electromagnetic dual of the Aharonov-Bohm phase. The
motional-Stark effect couples the external and internal motion of the
atom and under certain electro-magnetic potentials can lead to a non-
dispersive phase. The use of the motional-Stark phase for interferom-
etery presents some interesting future application including the imple-
mentation of an atom diode, performing accelerometry with Rydberg
states, and exploring topological effects in neutral atom systems.





Impact statement

In the last few decades, the field of Rydberg physics has seen a resur-
gence, pushing the field in many new and exciting directions from
molecular physics to quantum sensing, quantum simulation and be-
yond. This interest can be attributed to the many attractive features
of Rydberg states including enormous electric transition dipole mo-
ments in the microwave frequency range and strong tuneable long-
range dipole-dipole interactions. Furthermore, this can be credited
to advancements in experimental techniques, meaning Rydberg atoms
are now more readily prepared and manipulated.

The potential new research directions that are relevant to the work
presented in this thesis include: Quantum sensing, the realisation of
technologies that exceed the accuracy and remit of classical sensors,
and accelerometery, with potential applications for better understand-
ing the nature of gravity in anti-matter systems, and as an alternative
approach to cold-atoms for low sensitivity applications.

The research of this thesis makes the following contributions to their
associated fields of study:

1. Chapter 4: The limitations of models of atom-light interactions
involving Rydberg states are pushed as we explore the ultra-strong
driving regime. Standing alone, this result is useful as reference for
other researchers using these models. The effects such strong driving
can have on the structure of energy levels can have applications for
the deceleration and trapping of Rydberg atoms and molecules, with
applications in hybrid quantum computing.

2. Chapter 6: In this chapter I describe experiments of Stern-Gerlach
type interferometery with Rydberg states. Experiments of this na-
ture were first performed at UCL using circular states. These states
suffered non-adiabatic losses in the inhomogenous field gradients
used. In the experiments described here the experiments are re-
peated using low-ℓ states which are isolated from nearby states and
are not sensitive to adiabatic losses. We increase the approaches
robustness and therefore achieve much larger coherent separations
between the two paths. This has applications in an eventual full-
loop interferometer which would be sensitive to inertial effects. This
makes possible further experiments ultimately aimed at probing an-
timatter gravity with Rydberg positronium.

3. Chapter 7: Here I utilise the feature of large electric dipole mo-
ments of atoms in Rydberg states to perform a Ramsey-type inter-
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ferometer that is sensitive to the motional-Stark phase. Measure-
ments of this phase are difficult to measure with ground state atoms
due to their small electric dipole moments. The approach could al-
low for the realisation of a Rydberg state interferometer sensitive to
inertial effects. The geometric nature of the phase may make this
possible in a way which is dispersionless and applicable in situations
in which an atomic beam of atoms is used.
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1
Introduction to Rydberg states

They are floppy, fragile, and
huge.

Daniel Kleppner

1.1 Early Rydberg state experiments

Towards the end of the 19th century, observing the emission and
absorption spectra of atoms had given us the first glimpse of the quan-
tised nature of light. Each individual atomic element studied could be
associated with its own distinct pattern of wavelengths of light that
could be absorbed or emitted, known as its absorption or emission
spectrum. Johannes Rydberg was the first to pinpoint the relationship
between these lines, that represent intervals between energy levels, and
the inverse of their wavelengths.

Rydberg was investigating the spectral lines emitted by alkali el-
ements and found an empirical formula describing the separation of
wavelengths in atomic spectra, the general form being,

1

λ
= R

(
1

n21
− 1

n22

)
, (1.1)

where R is a constant that depends on the atomic species, n1 is the
principal quantum number of a lower energy level, and n2 is that of
the initial higher energy level in the transition [1]. This relationship
became known as the Rydberg formula.

Figure 1.1: Visualization of the Ly-
man, Balmer, and Paschen emission
series of the hydrogen atom, illustrat-
ing electron transitions between en-
ergy levels. The Lyman series con-
sists of transitions ending at the first
energy level (n = 1), the Balmer se-
ries ends at the second energy level
(n = 2), and the Paschen series ends
at the third energy level (n = 3). The
figure also highlights the high-energy
Rydberg states for each series, where
the electron transitions originate from
very high energy levels (n ≫ 1) and
approach the ionization limit. These
Rydberg states are marked by large
atomic orbitals and unique quantum
properties.

This was a significant advance as atomic emission spectra were pre-
viously understood only in terms of wavelengths – hiding the more fun-
damental energy-based relationship between the spectral lines. Here
Rydberg unified the many different series observed within a given
atomic species, as demonstrated in Fig. 1.1 for hydrogen, into a uni-
fied set of energy levels. The integer nature of the variables n in this
formula alludes to the quantum revolution to come in the following
decades.

The first physical model of the atom to successfully explain Ryd-
berg’s formula was the Bohr model of hydrogen. In this model, the
electron is viewed as a point particle orbiting in a central potential
whose value falls off as 1/r. The model is in close analogy with the
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celestial mechanics of planetary systems, where an electric field from
the positive core replaces the gravitational field, 1.2.

This model predicts quantised energy levels with energy En ∝ R
n2 ,

in agreement with the experimentally observed spectral lines. Despite
the successes of the Bohr approach in predicting spectral lines, there
is a conflict in the assumption of a classically rotating electric charge.
The rotating charge (i.e. electron) should radiate energy, causing it
to spiral inwards and have unstable orbits. Furthermore, this model
is insufficient to explain phenomena such as the Zeeman and Stark
splittings of spectral lines in magnetic and electric fields.

The Bohr-Sommerfeld model [2], an extension of the Bohr model
proposed by Arnold Sommerfeld, introduced the quantization of the ẑ
component of angular momentum, incorporating elliptical orbits along-
side the circular ones. For a given principal quantum number n, these
elliptical orbits exhibit energy degeneracy, which can be lifted in the
presence of external electromagnetic fields. This refinement allowed
the model to successfully explain the Stark and Zeeman effects by ac-
counting for the splitting of spectral lines under electric and magnetic
fields. However, while the Bohr-Sommerfeld model offered significant
advancements, it still falls short of a full quantum mechanical descrip-
tion, notably in its inability to explain electron spin and to provide
a fully accurate explanation of fine-structure effects requiring a more
comprehensive quantum framework.

a)

+
+

n = 1

n = 2

α0

b) n = 2, k = 2

n = 2, k = 1

+
+

Figure 1.2: Early quantum models of
the atom, such as the Bohr model and
its extension, the Bohr-Sommerfeld
model, provide valuable intuition for
understanding the properties of Ryd-
berg states. In a), the Bohr model
quantizes electron orbits in circular
paths around the nucleus, with en-
ergy levels inversely proportional to
the square of the principal quantum
number n. The Bohr radius, α0, rep-
resents the radius of the electron’s
orbit in the ground state. In b),
the Bohr-Sommerfeld model expands
on this by incorporating elliptical or-
bits and introducing an additional
quantum number, the radial quan-
tum number k. This extension re-
solves degeneracies in the energy lev-
els and provided an explanation of fine
structure phenomena, including Zee-
man and Stark shifts, where spectral
lines split in the presence of magnetic
and electric fields.

A critical insight from the Bohr model is good intuition for the
‘physical extent’ of an atom as the Bohr radius a0. This is the radius
of the orbit of the least energetic state of an idealised hydrogen atom
(comprised of an electron bound to an infinitely heavy positive point
charge), shown in Fig. 1.2. The radius of this orbit scales as r ∝ n2, and
for states with large n, this can result in orbits of many thousands of
Bohr radii. States of this type are called Rydberg states as Rydberg’s
formula provides a good account of their energies.

An atom in a Rydberg state appears to behave like a hydrogen
atom with some exaggerated properties. For example, due to the va-
lence electron spending most of its time far from the positive core,
these states possess significant electric dipole moments. The theoreti-
cal details behind these properties are discussed in Chap. 2. Another
such exaggerated property is the cross-sectional area, which scales as
n4, making Rydberg states have enormous volumes.

Many of these properties were explored experimentally in the first
half of the 20th century. For example, in [3], Amaldi and Segré exam-
ined the energy shifts of high-lying potassium (K) states in a dielectric
gas. Additionally, Jenkins and Segrè observed the quadratic Zeeman
shift in high-lying Rydberg states [4]. This shift arises as a second-
order effect, where the energy shift is proportional to the square of
the applied magnetic field, given by ∆E ∝ B2. Such second-order
interactions reflect the more complex coupling of the atom’s magnetic
moment to the external field beyond the linear Zeeman effect.

Interest in these exotic states declined over the next couple of decades,
until the discovery of Rydberg states in space. This led to increased
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interest in Rydberg physics, particularly for astronomical and plasma
physics [5]. The growing use of Dye laser systems in the 1970s is
the primary catalyst for many current research directions involving
Rydberg atoms. This made it feasible to optically excite particular
transitions and controllably populate certain Rydberg states in large
numbers.

Properties of Rydberg states made them valuable tools for exploring
several topics within quantum physics, particularly in quantum elec-
trodynamics. The large transition dipole moments of Rydberg states
combined with many Rydberg-Rydberg transitions in the centimetre
region of the electromagnetic spectrum make them appealing. The
interaction between a Rydberg atom and a microwave cavity, a field
known as cavity-QED has resulted in many interesting results.

Cavity-QED experiments use the highest angular momentum Ryd-
berg states in a given manifold, known as circular states. Due to an-
gular momentum transition rules, these only possess a single radiative
decay channel which can be suppressed by modifying the environment
to exclude the mode associated with this transition frequency. Klepp-
ner showed theoretically that the lifetime of an atomic state could
be enhanced by placing it in a wave-guide with dimensions tuned to
the emission frequency [6]. At this time, experimental interest and
schemes to excite these states were emerging [7][8]

This direction continued with a series of experiments exploring ever
more precise experiments exploring the interaction between atoms and
electromagnetic fields, resulting in many beautiful experiments by the
group of Serge Haroche. His pioneering work involved sending individ-
ual Rydberg atoms through a high-Q superconducting microwave cav-
ity, where the atoms would interact with a quantized electromagnetic
field. This allowed the detection of single photons and the observation
of phenomena like quantum superposition and entanglement[9], [10].
By using single atoms and controlling their interaction with single pho-
tons, Haroche’s experiments made critical advances in the understand-
ing of quantum mechanics and the nature of light-matter interaction,
culminating in his Nobel Prize in 2012 [11].

1.2 Applications of Rydberg states of matter and anti-matter

1.2.1 Quantum Sensing

Rydberg states exhibit a high sensitivity to external electric and mag-
netic fields, making them ideal candidates for precise field sensing [12],
[13]. The advent of tunable single-frequency diode lasers has signifi-
cantly enhanced the ability to excite specific energy levels, especially
in alkali atoms. This, in turn, has allowed for field sensing across a
broad frequency spectrum, ranging from MHz to THz.

The interactions of Rydberg states with both RF and static fields
are well-understood [14]. Off-resonant fields cause shifts in energy
levels, while on-resonant fields induce a splitting of resonances, as ex-
emplified by the Autler-Townes effect [15]. These effects provide a



20

detailed understanding of the external fields responsible for the ob-
served transitions, making Rydberg atoms effective tools for probing
electromagnetic environments.

The commercialization of Rydberg-based sensors is progressing rapidly.
Alkali atoms in vapor cells are emerging as promising mediums due to
their compact size and room-temperature operation [16], [17]. Notably,
recent advancements have enabled the detection of both the magnitude
and phase of external fields [18], broadening the practical applications
of Rydberg sensors in various domains, including telecommunications,
defence, and environmental monitoring.

1.2.2 Quantum information processing

Rydberg states have become a promising tool in quantum information
processing due to their strong dipolar interactions over micrometer
distances [19]. These interactions allow the implementation of quan-
tum gates, particularly using the Rydberg blockade mechanism. This
mechanism occurs when the excitation of one Rydberg atom prevents
the excitation of nearby atoms [20]. This phenomenon is critical to
quantum logic gate operations such as the Controlled-NOT (CNOT)
gate [21].

The qubit states used in such systems are typically the hyperfine
ground states, which are stable due to their weak quadratic Zeeman
shift and long lifetimes. Techniques like trapping atoms in optical
tweezers or lattices have become the primary methods for building
these systems [22], [23]. Rydberg states are also being utilized for
analogue quantum simulations, where arrays of Rydberg atoms are set
up to mimic and explore complex Hamiltonians [24].

Hybrid approaches, such as coupling Rydberg atoms to supercon-
ducting circuits, are another area of active research. This hybrid cou-
pling has already been demonstrated experimentally, combining the
unique advantages of Rydberg atoms and superconducting systems for
potential applications in quantum information processing [25], [26].

1.2.3 Rydberg optics and beam experiments

The large electric dipole moments of Rydberg states can be harnessed
to apply forces using inhomogeneous electric fields. The force expe-
rienced by an atom or molecule in such a field is determined by the
spatial gradient of the Stark energy shift, as described by the following
equation:

f = −∇EStark, (1.2)

where f represents the force applied to the atom or molecule, and
∇EStark is the spatial gradient of the Stark energy, which is the energy
shift experienced by the Rydberg atom due to the external electric
field. The negative sign indicates that the force is directed along the
gradient of decreasing energy.

This Stark-induced force can be used to decelerate and trap atoms
or molecules in states with static electric dipole moments [27]–[29].
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Such control over atomic or molecular motion is crucial in various
applications, including precision measurements, quantum simulations,
and the development of quantum technologies.

Rydberg states can be prepared in a wide range of atomic and molec-
ular species. Therefore deceleration and trapping of Rydberg states
with inhomogeneous fields gives experimental control over a wide range
of atomic and molecular species. This is particularly useful for such
species which can only be produced in fast-moving beams.

Figure 1.3: Experimental setup for
driving Rydberg state transitions us-
ing a co-planar wave-guide. The
co-planar wave-guide generates a mi-
crowave field, which couples to the Ry-
dberg states of the atoms, facilitating
control over their internal states [27].

High-resolution spectroscopy in Rydberg states is of interest for
studies of atom-surface interactions [30][31] and studies of ionisation
and disassociation [32]. The experiment of [30] that employed mi-
crowave spectroscopy techniques to probe stray electron fields close to
a surface is illustrated in Fig. 1.3. In many cases, the precision in these
types of experiments is limited not by the bandwidth of the laser but
by the interaction time [12].

Rydberg physics plays an essential role in the study of anti-matter
systems and studies of anti-gravity. Anti-hydrogen is the recombina-
tion of anti-protons and positrons [33], or anti-proton collisions with
positronium [34]. These high energy collisions result in excited Ry-
dberg states that will eventually decay to ground states that can be
trapped [35]. Methods to control them while still in the Rydberg
states would be desirable to improve ground state trapping efficiencies
in these experiments.

Positronium (Ps), an electron and anti-electron pair, has a very
fast decay rate in its ground state 1. In the Rydberg states, the spatial 1 The triplet ground-state has a life-

time of 142 ns [36]overlap between the two charges is reduced as the two constituent
particles orbit far apart, protecting the state from annihilation. The
fluorescence lifetimes are in the same range as those of ordinary matter
Rydberg states [37].

Positronium (Ps), particularly in its Rydberg state, holds significant
potential for antimatter gravity experiments due to its unique quantum
properties. However, one of the key challenges is the high velocity of
Ps atoms, which are typically produced by implanting pulsed positron
beams into silica targets. This process generates beams travelling at
speeds of around 105 m/s, making them difficult to decelerate and
manipulate for precise gravitational experiments.

Deceleration techniques originally demonstrated for Rydberg atoms
and molecules [38] could be adapted for Ps beams. By applying these
techniques, it may be possible to slow down and control the fast-moving
Ps beams, making them more suitable for sensitive antimatter gravity
studies. With this level of control, positronium becomes an excellent
candidate for investigating gravitational effects on antimatter [39], [40],
potentially paving the way for significant breakthroughs in this field.

The use of inhomogeneous fields has recently been extended to en-
able coherent manipulation of Rydberg states. In such systems, the
applied force is directly proportional to the electric dipole moment of
the atom. As a result, a coherent superposition of two Rydberg states
leads to a corresponding superposition of momentum states, creating
opportunities for interferometry experiments sensitive to inertial ef-
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fects. Recent experiments involving Rydberg helium atoms by Palmer
and Hogan [41] have started experiments in this direction. Chapter 6
of this thesis builds on these developments.



2
Properties of Rydberg States

Rydberg states, with their highly excited electron orbitals in states
with a large principal quantum number, exhibit exaggerated proper-
ties when compared to ground states. In this chapter, an emphasis
is placed on explaining several of these properties relevant to the re-
search conducted in this thesis. That is, the interactions of the states
with various configurations of electric field and their lifetimes. For a
more comprehensive look at the many wonderful properties of Rydberg
states, a good reference is Gallagher’s textbook [14].

2.1 Rydberg states of atoms

2.1.1 Hydrogenic Rydberg states

The Bohr and Bohr-Sommerfeld models, depicted in Fig. 1.2 could
not fully explain the properties of the hydrogen atom. A full descrip-
tion of the hydrogen atom was quickly determined in the 1920s using
the newly developed theory of quantum mechanics.

This radically new approach no longer considered the electron as a
well-defined point-like particle. Instead, the electron is seen as a cloud
of electric charge localized around a central positive core. The exact
solution for this charge density is found by solving the Schrödinger
equation using an inverse potential U(r) ∝ 1

r . For a single electron
moving in an inverse potential, this has the form

[∇2 +
1

r
]ψ(r, ϕ, θ) = Eψ(r, ϕ, θ), (2.1)

in atomic units, where ψ(r, ϕ, θ) is the electron wave function in spher-
ical coordinates and E is the eigenenergy of the state.

The solution to this equation is separable and may be written as
the product of a radial term, given by a Laguerre polynomial, and an
angular term, given by a spherical harmonic.

The energy eigenstates can be written as ψ(r, θ, ϕ) = Rnℓ(r)Yℓ,mℓ
(θ, ϕ).

These solutions are characterised using three quantum numbers: n, ℓ,
and mℓ. The principal quantum number n ≥ 1 is found by solving the
radial equation and is related to the radial extent of the electron. The
orbital quantum number 0 ≤ ℓ ≤ n − 1 represents the total orbital
angular momentum. The magnetic quantum number −ℓ ≤ mℓ ≤ ℓ is
the projection of the angular momentum along a directional axis.
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The energy of an eigenstate to first order is given by

En,ℓ,mℓ
= Eion − R

2n2
. (2.2)

Here, En,ℓ,mℓ
is the energy of the electron in a hydrogen atom, Eion

is the ionisation energy, which is the energy required to completely
remove the electron from the atom, and R is the Rydberg constant.

The predicted energies have the same form as those predicted by the
Bohr model; only the principal quantum number n is relevant. The
differences arise when considering the influence of external fields on
the energy levels. These can lift the symmetries and can lead to the
emergence of energies which are dependent on the ℓ and mℓ quantum
numbers.

The average spatial extent of the wave function is given by the
following expression:

⟨r⟩ = a0
2
[3n2 − ℓ(ℓ+ 1)], (2.3)

where ⟨r⟩ represents the expectation value of the radial position, and a0
is the Bohr radius. This equation demonstrates that the radial extent
of the wave function scales quadratically with the principal quantum
number n, as predicted by the Bohr model, but with an additional
term to account for the orbital angular momentum quantum number
ℓ.

The ℓ quantum number affects the shape of the wave function and
therefore its radial distribution. For low ℓ values, the electron’s prob-
ability density is more concentrated near the nucleus. As ℓ increases,
the centrifugal force can be seen to push the electron out from the nu-
cleus. The Bohr-Sommerfeld model depicted in Fig. 1.2 captures this
conceptually with quantum number k instead of ℓ. The n = 2, k = 1

orbit is less elliptical and has a broader spatial distribution compared
to the n = 2, k = 0 orbit.

Additionally, for each orbital angular momentum quantum num-
ber ℓ, the magnetic quantum number mℓ can take values from −ℓ
to +ℓ, allowing for 2ℓ + 1 orientations of the orbit. The magnetic
quantum number mℓ describes the projection of the electron’s angular
momentum along the z-axis, where mℓh̄ represents the z-component
of angular momentum. In external field-free conditions, mℓ does not
affect ⟨r⟩ as it only determines the orientation of the orbit about the
given axis. However this orientation of the orbit can have an impact
when an external field is applied, breaking the symmetry.

2.1.2 Non-hydrogenic Rydberg states

The presence of additional electrons and nuclei manifests as corrections
to the hydrogenic case. The additional particles in the core introduce
a new term in the potential energy of the valence Rydberg electron
Ucore ∝ 1

r4 . The influence of this term drops faster than that of the
hydrogenic 1

r Coulomb term, however, it does produce significant ef-
fects in regions closer to the core.
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The valence electron in a Rydberg state has large ⟨r⟩ and most of
the probability density is far from the core. This leads to a situation
where the equations for the hydrogenic case are nearly correct and only
a small correction is required. The correction is given by a phase shift
in the radial wave function at the boundary of the core. For states
with a higher probability density near the core (i.e., low-ℓ states), this
phase shift has a larger effect on the energy levels and other properties
of the states.

These non-hydrogenic shifts to the energy levels can be accounted
for by introducing a phenomenological quantum defect δn,ℓ, enabling
the hydrogenic equation for energy to still apply, such that

En,ℓ = Eion − R

(n− δn,ℓ)2
. (2.4)

Here, the principal quantum number n is modified into an effective
principal quantum number n∗ = n − δnℓ, where the defect δnℓ encap-
sulates the interactions with the core.

The experiments performed in this thesis make use of n = 0 and n =

1 Rydberg states of helium. These states have large quantum defects
in helium and we will collectively refer to them as low-ℓ states. Their
response to applied external electric fields is a tool used extensively
throughout these experiments. In the next section we will discuss
how the behaviour of these states differs from the equivalent states in
hydrogen.

2.2 Lifetimes of Rydberg states

It is important to consider the lifetimes of Rydberg states in order
to understand the limits of experiments involving them. The main
two decay mechanisms for Rydberg states are radiative emission and
black-body induced transitions.

The radiative decay rate Γfl is given by the sum of all Einstein A

coefficients for transitions to states lower in energy [42],

Γfl =
∑

nℓmℓ→n′ℓ′m′
ℓ

Anℓ→n′ℓ′ . (2.5)

The A coefficients can be calculated using Fermi’s golden rule,

Anℓ→n′ℓ′ =
ω3
nn′

3c3
ℓmax
2ℓ+ 1

R2
nl→n′l′ . (2.6)

where ωnn′ is the energy difference and Rnl→n′l′ is the radial transition
dipole moment between the states. There is no explicit dependence on
mℓ due to degeneracy of these states. The total decay rate is the sum
of all possible transitions obeying the selection rules.

An interesting feature of these coefficients is that while the nearby
transitions to Rydberg states possess large radial overlaps, and there-
fore transition dipole moments Rnℓ→n′ℓ′ , the energy difference ωnn′

is very small and so it is those transitions to low-lying levels which
dominate the spontaneous decay.
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At finite temperatures the presence of a black-body radiation (BBR)
field further reduces the lifetime of a state. The probability of a tran-
sition of a given frequency is related to the number of photons which
exist in the black-body radiation field of that frequency [43],

n̄ =
1

exp{(ω/kBT )} − 1
. (2.7)

Here T is the temperature, kB is Boltzmann’s constant, and ω is the
frequency of the photon.

The rate of BBR induced transfer to a given state is then given by
the Einstein A coefficient multiplied by the number of photons at that
frequency,

ΓBBR =
∑

nlmℓ→n′l′m′
ℓ

Γnℓ→n′ℓ′ =
∑

nlmℓ→n′l′m′
ℓ

Anl→n′l′

exp{(ωnn′/kBT )} − 1
,

(2.8)
where the sum is over all possible transitions allowed by selection rules.

Here it can be seen that rather than those transitions to low-lying
states, the dominant transitions are to states which are closer in energy.
This is due to the small occupation numbers of photons corresponding
to transitions to low-level states at room temperatures.

The total decay rate is then given by the sum,

Γdecay = Γfl + ΓBBR, (2.9)

Rydberg atoms for low-ℓ states in the absence of external fields can
enjoy surprisingly long lifetimes which scale as τdecay = 1

Γdecay
∝ n3.

2.3 Rydberg states in static electric fields

Although the Rydberg states of the atoms are electrically neutral, the
large separation between the valence electron and core leads to signif-
icant dipoles. Due to the large static and induced polarizabilities of
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Figure 2.1: Comparison of the Stark
maps for hydrogen (left) and helium
(right) around n = 50 with |mℓ| = 0.
In hydrogen (a), the energy levels ex-
hibit exact crossings due to the ab-
sence of quantum defects. However,
in helium (b), the interaction between
the Rydberg electron and the ionic
core causes the low-ℓ states (those
with small orbital angular momen-
tum and larger defects) to be sep-
arated from the rest of the mani-
fold. Additionally, in helium, the pres-
ence of these quantum defects leads
to avoided crossings at higher electric
field strengths, as opposed to the exact
crossings observed in hydrogen.
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Rydberg states, the application of static electric fields is a useful tool
for manipulating a number of their properties.

The effect of the applied field is computed by introducing a static
electric field to the Coulomb potential in the Hamiltonian for the va-
lence electron. Rather than a spherically symmetric potential, the
electron now moves in a field with cylindrical symmetry. The Hamil-
tonian for the system can be written as

H = H0 + F ẑ. (2.10)

Here, H0 represents the field-free potential and F ẑ represents a static
electric field along the z direction.

The energy shift in the eigenvalues of the Hamiltonian caused by
this field is called the Stark shift. The Stark shift due to this static
field is different for hydrogenic states (with no quantum defects) and
low-ℓ states in non-hydrogenic atoms with large quantum defects. This
we explore in the following section.

2.3.1 Hydrogenic atoms in static electric fields

Figure 2.2: Electric charge density in
the (ŷ, ẑ) plane for the valence elec-
tron in the n = 50 and mℓ = 0 state
of hydrogen. The figure shows the spa-
tial distribution of the electric charge
density under the influence of a static
electric field along the positive z axis.
The purple k = 49 state (a) is anti-
aligned with the field whereas the or-
ange k = −49 state (c) is aligned. The
black k = −1 state (b) is nearly sym-
metric. These electric charge distribu-
tions can be compared with the Stark
map for hydrogen shown in Fig. 2.1 to
understand how the energy of each of
these states behaves as a function of
electric field strength.

In hydrogen, the Hamiltonian associated with an applied static elec-
tric field can be solved analytically using parabolic coordinates. The
solutions are characterized by four quantum numbers: n, the princi-
pal quantum number; m, the azimuthal quantum number; and the
parabolic quantum numbers n1 and n2, which are subject to the con-
straint n = n1 + n2 + |m|+ 1.

The resulting eigenstates are labelled with the index k = n1 − n2,
which ranges between −(n−|m|−1) < k < (n−|m|−1) in increments
of two. The energy of these states to first-order perturbation is

En,m,n1,n2
= Eion − R

n2
+

3

2
nkea0F + . . . (2.11)

where e is the electric charge, a0 is the Bohr radius, and F is the
electric field strength.

In the presence of an electric field, the states exhibit linear energy
shifts µn,k = 3

2nkea0 because of their static electric dipole moments.
The direction of the shift depends on the value of k.

This can be understood by observing the distribution of the electric
charge density of the valence electron around the core, as shown in
Fig. 2.2. This figure shows the electric charge density in a 2D plane
centred on the nucleus of the atom. There is an electric field along
the ẑ axis. The states at the far edge of the manifold, k = ±49 for
the n = 50 manifold shown in Fig. 2.2, have electron charge heavily
concentrated on either side of the core.

This results in a dipole that is either energetically aligned or anti-
aligned with the field, resulting in either an increasing or decreasing
potential energy in the field. The k = −1 state, in the center of the
figure, has a more symmetrical charge distribution with respect to the
applied field axis. This state experiences very little energy shift as the
field is increased.
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The electric dipole moment scales with the principal number and
leads to large energy shifts. Additionally, the eigenvectors of the hy-
drogen atom in a homogeneous field comprise a mixture of states with
the same principal quantum number, which leads to no mixing between
different n manifolds – as states approach each other, they go through
exact crossings. This can be seen in Fig. 2.1 at around 6 V/cm. The
point at which the states between adjacent manifolds overlap in en-
ergy is the Inglis-Teller limit. In hydrogen these wavefunctions of these
states have no overlap so they undergo exact crossings.

Figure 2.3: Electric charge density in
the (ŷ, ẑ) plane for the valence electron
in the n = 50 and mℓ = 0 state of he-
lium. The figure shows the spatial dis-
tribution of the electric charge density
under the influence of a static electric
field F = 1 V/cm along the positive z
axis. Comparing the electric field dis-
tributions of each state with its equiv-
alent state in Fig. 2.2 highlights the
effect of the quantum defects on the
states. For ℓ = 49 (a) and ℓ = 25 (b)
with small quantum defects, the elec-
tron cloud density remains similar to
the hydrogenic case. However, for the
ℓ = 0 state with significant defect, the
state has an induced quadratic Stark
shift and the electron cloud density is
highly dependent on the field strength.

This occurs because of the conservation of the Runge-Lenz vector.
The symmetry is broken for non-hydrogenic atoms as the radial sym-
metry of the Kepler potential is broken by interactions with the core.
We explore the effects of this in the next section, where we discuss the
case of non-hydrogenic atoms.

2.3.2 Non-hydrogenic atoms in static electric fields

The effects of applied static electric fields differ for non-hydrogenic
states with quantum defects. A comparison of the effects of an electric
field on hydrogen and non-hydrogenic Rydberg states can be seen in
the Stark maps shown in Fig. 2.1.

The lowest ℓ states in helium have lower energy and are detached
from the other states in the manifold due to their non-zero quantum de-
fects. Additionally, non-hydrogenic states display a quadratic induced
dipole due to being separated from the manifold of Rydberg-Stark
states. The eigenstates at zero field no longer remain eigenstates as
the field strength increases. This results in the electron cloud density
changing as a function of electric field and becoming more polarized
at high field strengths.

At higher fields, the core interactions lead to avoided crossings where
states from adjacent manifolds are no longer uncoupled. The field value
for which the outermost Stark states from two consecutive n-manifolds
cross is called the Inglis-Teller limit. The Inglis-Teller field is given by
FIT = F0

3n5 , where F0 = 2hcR
ea0

. The quantum defects have broken a
symmetry isolating the n manifolds. The overlap between the states
wavefunctions becomes non-zero and they undergo avoided crossings.
This is shown in Figure 2.1 where the coloured lines that follow the
adiabatic energy of the ℓ = 0 and ℓ = 49 states no longer pass through
the states from the adjacent manifold.

The difference in the electron charge density for similar states can be
seen by comparing Fig. 2.2 with Fig. 2.3. Due to the ℓ = 49 and ℓ = 25

states being in the manifold of states with very small quantum defects,
their behaviour is very nearly hydrogenic. Comparing the electric field
distributions of these states in the external field with the equivalent
states for hydrogen (see Figure 2.2) shows this similarity.

The ℓ = 0 state has very different behaviour than the equivalent
k = −49 state in hydrogen. It exhibits a quadratic Stark shift rather
than a linear shift and its electric charge density becomes increas-
ingly polarized as the field strength increases. In zero electric field the
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state has no static electric dipole. Instead it acquires a dipole due to
the electric field. The scaling of the polarizability can be shown us-
ing perturbation theory. The second-order energy shift caused by the
coupling to the nearest state in energy En,ℓ with an allowed transition
(ℓ′ = ℓ± 1) is given by

∆E ∝ ⟨n, ℓ| er |n′, ℓ′⟩ ⟨n′, ℓ′| er |n, ℓ⟩
En,ℓ − En′,ℓ′

. (2.12)

The dipole moment terms ⟨n, ℓ| er |n′, ℓ′⟩ are proportional to n2 and
the energy difference between the states En,ℓ − En′,ℓ′ is proportional
to n−3 [14]. This leads to polarizabilities that scale as n7.

The low-ℓ states also have the desirable properties of being isolated
in energy from other states in the manifold due to their unique quan-
tum defects. This makes them less susceptible to non-adiabatic losses
in rapidly switched fields and makes them more robust to black-body
transitions. This is because they have fewer transitions available at
the energy of background photons.

2.4 Rydberg states in oscillating electric fields

The Hamiltonian describing a Rydberg atom in the presence of an
oscillating electric field can be expressed as

H = Hind +Hµ(t), (2.13)

where Hind = H0+Hint is the total Hamiltonian consisting of the bare
Hamiltonian H0 and any static interaction terms. The time-dependent
interaction Hamiltonian, Hµ(t) = Fosc cos(ωµt)ẑ, represents the inter-
action with an oscillating field.

As opposed to the static case, when the applied field is oscillating,
the shifts in the atomic energy structure are more complicated. The
effect produced by the oscillation on the energy level spectrum depends
on how close to resonance the field is with a transition between states,
and on the strength of the field itself.

For a state without near-resonant transitions at the driving fre-
quency, the effect produced is similar to the static case. These shifts
in the energy level are called dynamic/AC Stark shifts. This does not
induce transitions between states and results in a perturbation to the
energy level.

Whether the frequency of the driving field is larger or smaller than a
transition determines if this induces a positive or negative energy shift.
When the frequency of the oscillating field is greater than the nearest
transition ω > ω0, the field is said to be blue-shifted and experiences
a positive shift to its energy [14]. The alternative is a red-shifted state
when ω < ω0.

The tunability of these shifts make AC Stark shifts useful tools to
modify the energy levels of atoms in useful ways, such as nulling the
polarizability of a transition to reduce the effects of stray fields [44].

On resonance, the effect is much more extreme and can cause the
resonant energy level to split into two new levels that are separated
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by the strength of the driving field. This phenomenon is known as the
Autler-Townes effect [45]. The physics of the on-resonant case is dealt
with in detail in Chapter 4.

2.4.1 The Floquet formalism

One approach to solve the time dependence of the problem is to use
Floquet’s theorem. Floquet’s theorem states that for a Hamiltonian
that is periodic in time with period T , H(t) = H(t+T ), the eigenfunc-
tions, Ψκ, need not be periodic. However, they are of the form, Ψκ(t) =

eiϵκt/h̄Φκ(t). Here, Φκ(t) is the Floquet mode, a time-dependent su-
perposition of the field-free basis states, and has period T , Φκ(t+T ) =

Φκ(t).
Each Floquet mode has an associated time-independent quasienergy,

ϵκ, which is not uniquely defined, but has values ϵκ,q = ϵκ±qh̄ωd, where
q is an integer and ωd = 2πνd = 2π/T . In this context, the value of q
represents the number of photons contributing to the mode [46].

Using this method, a time-periodic Hamiltonian can be rewritten
in terms of the quasienergies and Floquet modes, i.e., H(t)Φκ(t) =

ϵκΦκ(t). The solutions are the eigenvalues of the matrix of the Floquet
Hamiltonian operator H(t) = H(t)− ih̄∂t. We will use the convention
that calligraphic H represents a matrix in the time-independent Flo-
quet basis.

The quasienergies ϵκ are not time-dependent, which means that
solving the Floquet Hamiltonian at a given time gives the quasienergies
at all times, making the problem time-independent.

The price to pay for losing this time dependence is that the once
finite-dimensional state space becomes infinite-dimensional. Although
the matrix H is infinite-dimensional, in practice, multiphoton interac-
tions beyond a certain photon number do not influence the dynamics
significantly, so the matrix can be truncated without loss of accuracy.

To transform from H to H, the photon number states must be
accounted for using an additional quantum number q, where −∞ <

q <∞.

HF =



. . .
Hind − h̄ωÎ Ĥµ 0

Ĥ†
µ Hind Ĥµ

0 Ĥ†
µ Hind + h̄ωÎ

. . .


(2.14)

where Ĥ0 corresponds to the time-independent Hamiltonian, and V̂ω

is the time-periodic component.
The matrices on the main diagonal are modified at each q level

with a diagonal qh̄ωÎ matrix. The larger state-space introduces an
additional Floquet sideband eigenstate at each value of q separated in
energy by h̄ω. Intuitively this can be seen as a dressed atom state space
where the energy of both the atom and electric field are accounted for.
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2.5 Numerical calculations of Rydberg state properties

In this section, the numerical methods employed to compute properties
of triplet Rydberg states of helium in static and oscillating electric
fields are explained. The code written for this purpose is archived on
GitHub at https://github.com/jdrtommey/rydprops.

The general form of the Hamiltonian to be solved numerically for
experiments performed in this thesis is

H = H0 +Hs +Hµ(t), (2.15)

where H0 is the field-free Hamiltonian, Ĥs = Ĥ⊥ + Ĥ∥ = Fxx̂ + Fz ẑ

represents the static electric field in both a parallel and perpendicular
direction, and Ĥµ(t) = Fosc cos(ωµt)ẑ is a linearly polarized microwave
field.

The Hamiltonian is written in the |n, ℓ,mℓ⟩ basis. In the presence of
a non-zero Hµ, this basis is expanded to include the Floquet sidebands
and becomes |n, ℓ,mℓ, q⟩.

In general, the process to construct and diagonalize these Hamil-
tonians will be described for the |n, ℓ,mℓ, q⟩ basis. However, when
Fosc = 0 V/cm, only the q = 0 state is required, and the problem
reduces to the single q = 0 block of the full Floquet Hamiltonian. The
block form of the diagonal matrix is shown in Eq. 2.16.

HF =



. . . ...
...

...
...

... . ..

. . . Ĥind − 2h̄ωÎ Ĥµ 0 0 0 . . .

. . . Ĥ†
µ Ĥind − h̄ωÎ Ĥµ 0 0 . . .

. . . 0 Ĥ†
µ Ĥind Ĥµ 0 . . .

. . . 0 0 Ĥ†
µ Ĥind + h̄ωÎ Ĥµ . . .

. . . 0 0 0 Ĥ†
µ Ĥind + 2h̄ωÎ . . .

. .. ...
...

...
...

... . . .



q = . . .

q = −2

q = −1

q = 0

q = +1

q = +2

q = . . .

(2.16)

Here, the sub-matrices illustrated by coloured blocks are in the
|n, ℓ,mℓ⟩ basis. The states are indexed by i and belong to state space
S of size |S|, which is the sum over all included states.

To extend this space into the |n, ℓ,mℓ, q⟩ basis, where q ∈ {−qbands, . . . , qbands}
denotes the number of additional bands, each state is mapped to the
extended space by assigning a new index a′ as

a′ = a+ (q + qbands)|S|. (2.17)

This formula shifts the original index a by multiples of |S| for each
q-band, ensuring a unique mapping of states from the original space
S to the extended space. In this way, the index i′ of any state in the
|n, ℓ,mℓ, q⟩ basis can be identified.

The orange block matrices represent terms of the Hamiltonian for
the time-independent interactions Hind = H0 + Hs. These matrices
represent interactions within a single q level, thus elements in these
blocks contain a Kronecker delta δq′,q in the full representation.

https://github.com/jdrtommey/rydprops


32

The purple blocks represent the interactions with the microwave
field. These elements couple states that are in adjacent q bands and
therefore will contain the delta function δq′,q±1.

Since HF is infinite-dimensional, a truncation must be performed
at a reasonable number of qbands sidebands. In general, the approach
taken was to iteratively increase the number of sidebands qbands until
convergence in the energy eigenstates of interest was achieved.

The size of these Rydberg state matrices can quickly become very
large. A space S consisting of all ℓ and mℓ up to a given n value
contains

|S| =
n−1∑
ℓ=0

(2ℓ+ 1) = n2 (2.18)

states. In [47], the eigenenergies of the n = 72 circular Rydberg state
(|Cn⟩ = |n, n− 1, n− 1⟩) are computed, requiring 5 manifolds and a
state space of |S| = 31, 555. Diagonalizing such matrices is expensive,
and in the case of the referenced study, retrieving the eigenvectors
proved intractable when diagonalizing the dense matrix.

Optimizations can be performed using sparse matrices to increase
the size of the state space |S| being explored and to improve the speed
at which the computations can be performed. Some such optimizations
are discussed in Section 2.5.3.

2.5.1 Calculating the matrix elements

From inspecting Equation 2.16, each of the orange and purple block
matrices needs only to be computed once, so that a large amount of
computational complexity can be avoided. The components of each
matrix can be solved in the |n, ℓ,mℓ⟩ basis, and if Fosc ̸= 0 and there-
fore qbands ̸= 0, they can be mapped to the |n, ℓ,mℓ, q⟩ basis, by dupli-
cating along the block off-diagonals following δqq′ for time-independent
elements.

The field-free Hamiltonian is diagonal with matrix elements

⟨n, ℓ,mℓ| Ĥ0 |n, ℓ,mℓ⟩ =
−RHe

(n− δn,ℓ)2
, (2.19)

which follows directly from Equation 2.4.
The remaining time-independent terms due to the Stark shifts Ĥs =

Fxx̂ + Fz ẑ can be solved by separating the integrals into radial and
angular components. The interaction with the electric field in either
direction is given by the matrix elements ⟨n′, ℓ′,m′

ℓ| z |n, ℓ,mℓ⟩ and
⟨n′, ℓ′,m′

ℓ|x |n, ℓ,mℓ⟩ respectively.
These terms are separated into radial and angular components using

z = r cos θ and x = r sin θ cosϕ, resulting in matrix elements

⟨n′, ℓ′,m′
ℓ, q

′|Hind |n, ℓ,mℓ, q⟩ = eFz ⟨n′, ℓ′| r |n, ℓ⟩ ⟨ℓ′,m′
ℓ| cos θ |ℓ,mℓ⟩ δq,q′δm′

ℓ,mℓ

+ eFx ⟨n′, ℓ′| r |n, ℓ⟩ ⟨ℓ′,m′
ℓ| sin θ cos ϕ |ℓ,mℓ⟩ δq,q′ .

(2.20)

The radial integrals are solved numerically using the Numerov method.
The angular components can be computed analytically [48].
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Accordingly, the total Hilbert space for the atom in the presence
of the field is spanned by basis states of the form |n, ℓ,mℓ, q⟩. In this
Floquet basis, the diagonal elements of the resulting matrix H0 for the
high Rydberg states in helium are

⟨n, ℓ,mℓ, q|H0 |n, ℓ,mℓ, q⟩ = − RHehc

(n− δn,ℓ)2
+ qhνd, (2.21)

where an additional energy term is present due to the number of pho-
tons of energy hνd in the mode.
Hµ is the interaction Hamiltonian with elements,

Hµ =
Fosc

2
⟨n′, ℓ′,m′

ℓ| z |n, ℓ,mℓ⟩ .

The factor of Fosc

2 arises due to time-averaging of the field strength.
It can also be seen that these matrix elements are the same as for
the static electric field H∥. Using Equation 2.17 and standard matrix
slicing operations, the terms in the matrix Hµ can be constructed
without recomputing this interaction Hamiltonian.

2.5.2 Calculating transition strengths and linewidths

The transition strength may be calculated by taking the overlap be-
tween the ground state and an eigenstate of the total Hamiltonian.
Written in the |n, ℓ,mℓ, q⟩ basis, each eigenstate of Htotal is a sum
over the basis states:

|ψ⟩ =
∑

n,ℓ,mℓ,q

cn,ℓ,mℓ,q |n, ℓ,mℓ, q⟩ , (2.22)

where cn,ℓ,mℓ,q is the coefficient (or amplitude) for the state |n, ℓ,mℓ, q⟩.
The transition dipole moment µfg = e ⟨g| r |ψ⟩ between |ψ⟩ and a

ground state is given by

µfg =
∑

n,ℓ,mℓ

cng,ℓg,mℓg,0⟨g, 0|µ|nf , ℓf ,mℓf , 0⟩δqf ,qg=0. (2.23)

Only the q = 0 states are included in this calculation and |g, 0⟩
is the groundstate . For the experiments performed in this thesis, the
ground state is the 2p state. The transition dipole moment between the
groundstate and any excited Rydberg state is therefore proportional
to the amount of nS and nD character in each state.

The result of combining the eigenvalues for the states with the rel-
ative coupling strengths is a stick spectrum from the ground state
via laser excitation. Plotting the relative magnitude of the transition
dipole moment from the ground state for each state as a function of
energy gives the excitation spectra. These simulations do not directly
estimate the line-width of each transitions. This therefore results in a
stick spectrum where each transition is infinitely thin.

In order to reproduce experimentally observed spectra, it is nec-
essary to introduce an energy linewidth to each transition. This is
achieved by convolving the stick spectrum with a Gaussian function
to match the broadened lines seen in experiments. In the experiments
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performed in this thesis, the linewidths of transitions are generally lim-
ited by the interaction time of the supersonic beam with the excitation
lasers, and are around 30–45 MHz [49].

2.5.3 Efficiently calculating the eigenspectra

We have seen that the state space S can become very large. This can
make retrieving the eigenvectors for all states in S very expensive. Ad-
ditionally, only a small number of the states required in S are likely to
be of experimental interest and within the frequency region accessible
by the excitation laser.

Thus, a large number of the eigenvectors are made redundant. In
order to diagonalize these matrices efficiently, sparse matrix techniques
are used. This is efficient because very few of the states in the state
space are directly coupled due to the selection rules of the interactions.

This can be seen using the example of a parallel electric interaction
within a single n manifold. The selection rules ∆ℓ = ±1 and ∆mℓ = 0

apply, and within each ℓ manifold there are 2ℓ + 1 states. Each of
these states only couples to a single state in an adjacent ℓ manifold,
resulting in 2ℓ+ 1 additional couplings.

The sum of all of these terms comes to 2
∑n−2

ℓ=0 (2ℓ+1) = 2(n− 1)2,
where the factor of 2 accounts for the transposed elements. This gives
a percentage of non-zero elements in the matrix H∥ of approximately

Percentage of non-zero elements = 2(n− 1)2

n4
× 100%, (2.24)

checking this for n = 50 shows that only ≈ 0.08% of the elements are
non-zero for the H∥ interaction matrix.

The calculations make use of the SciPy [50] wrapper around the
ARPACK [51] routine. This routine allows for a subset of eigenvalues
and eigenvectors to be found in the region of an estimated value.

As the field strength increases, states for which in zero field corre-
spond to a basis state |n, ℓ,mℓ⟩adi must be kept track of.

Computing the eigenenergy at each time-step would be computa-
tionally expensive. A solution is to instead precompute the eigenenergy
for a range of electric fields and store these in a look-up table. This re-
quires re-diagonalizing the Hamiltonian for a number of different field
strengths. With increasing strength of external fields, the number of
additional states which need to included in order to accurately com-
pute the energy increases. All of the eigenenergies other than the state
of interest are irrelevant in this case.

Additional tools were also written to adiabatically follow the state
of interest as the strengths of external fields were increased. At each
field-strength step, the eigenvalues and eigenvectors of the previous
step are used as a starting point, to predict the eigenenergy at the
next step of field strength. The eigenvalues are compared to ensure
that the correct state is tracked, even through avoided crossings. This
method ensures only a few eigenvalues and eigenvectors near the state
of interest need to be calculated at each step.
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Experimental methods

The experiments performed in both parts of this thesis make use
of pulsed supersonic beams of helium atoms. In this chapter we present
the general experimental apparatus. A more detailed account of as-
pects of this experimental setup can be found in the Ph.D. thesis of
Patrick Lancuba [52], who built the original apparatus.

3.1 Design of the apparatus

A schematic diagram of the experimental apparatus for the pulsed
supersonic beams is shown in Figure 3.1.

A pulsed supersonic beam of helium atoms in the metastable 1s2s 3S1

level is generated in a dc electric discharge at the exit of a pulsed valve
[53]. The beam, with a mean longitudinal speed of 2000 ± 50 m/s,
passes through a skimmer with diameter of 2 mm before entering a
region where an electric field is generated, to deflect and filter ions
created in the discharge.

The atoms then enter a region defined by two copper electrodes, P1
and P2. These electrodes are rectangular plates measuring 100 mm
in length and 70 mm in width. They can be aligned either parallel or
at an angle to each other to produce homogeneous or inhomogeneous
electric fields, respectively. The electrodes are mounted on insulating
supports to allow for the application of voltages.

Then, within the region between the electrodes we photo-excite the
Rydberg states. Two co-propagating UV and IR laser beams intersect
the atomic beam. The UV laser is a frequency-doubled Toptica DL
Pro laser, stabilised to λuv = 388.975 nm to drive the 1s2s 3S1 →
1s3p 3P2 transition. The UV laser power in the interaction region is
approximately 8 mW. The IR laser is another Toptica DL Pro laser
diode laser operating tunable frequency around 788 nm, with a power
of approximately 1.5 W, which is necessary to saturate the transitions
to Rydberg states.

Both lasers were stabilised via wavemeters. The IR laser is tuned
in the region around 788 nm to drive 1s3p 3P2 → 1sns 3S1/1snd 3D
transitions, where n is the principal quantum number of the Rydberg
state. Both laser beams are focused to a waist of approximately 100 µm
at the interaction region. Following the Rydberg state photo-excitation
experiments are performed by applying combinations of control pulses.
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Figure 3.1: Schematic of the ex-
perimental apparatus used through-
out this thesis with key sections la-
belled. A supersonic beam of meta-
stable triplet Helium is created in a
dc electric discharge at the exit of
a pulsed valve. The atoms travel
through a skimmer and ion deflector
to collimate the beam. Excitation and
manipulation of the Rydberg states
is performed within the first pair of
electrodes, referred to as P1 and P2.
Within this region magnetic fields and
microwave control pulses can be ap-
plied. State-selective electric field ion-
ization is performed within the elec-
trodes E3 and E4.

These can take the form of voltages applied across P1 and P2, mi-
crowave pulses applied either directly to the plates or via a microwave
antenna. In this region, magnetic fields can be applied via current-
carrying wires coiled around the vacuum chamber transverse to the
beam direction.

After completion of the experimental scheme, the excited atoms
travel from P1 to P2 and enter the detection region of the apparatus
between the two parallel electrodes E1 and E2. When the atoms reach
the detection region a pulsed voltage is applied between electrodes E1

and E2 to induce state-dependent ionization.
Electrode E2 has an aperture to allow the ions or electrons to pass

through to the micro-channel plate (MCP) detector located behind
it. The resulting electric field ionises the excited Rydberg atoms and
accelerates them through an aperture in E4 to a micro-channel plate
(MCP) detector.

3.2 Pulsed supersonic beams of helium

In the experiments pulsed supersonic beams of helium atoms with a
repetition rate of 50 Hz were generated using an electromagnetic pulsed
valve. The valve is operated at 50 Hz as a consequence of heating. In
the limit where the mean free path of the atoms in the reservoir λ0 is
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much greater than the diameter of the reservoir opening D, the atoms
collide more frequently.

These collisions lead to adiabatic cooling of all degrees of freedom,
and the energy available to each atom is converted into kinetic en-
ergy in a directed flow [54], with the enthalpy mainly converted into
a directed mass flow with large forward velocities and small velocity
spreads. The translational temperature T (L) as a function of the dis-
tance L from the exit of the valve can be expressed as [55]

T (L) =
T0

1 + 1
2 (γ − 1)M(L)2

, (3.1)

where M(L) is the Mach number and γ = Cp/Cv is the ratio of the
heat capacity at constant pressure to constant volume.

The Mach number takes the form,

M(L) = A

(
L

D
−B

)γ−1

− C

(
L

D
−D

)1−γ

, (3.2)

where A = 3.26, B = 0.075, C = 0.61 and γ = 5/3 for a mono-atomic
gas. Figure 3.2 shows the dependence of the Mach number M on the
distance from the nozzle L.

The velocity distribution in the direction of propagation of the beam
can be obtained as [55],

a′fn(v) = Nnv
ne−(v−v̄z)

2/ξ, (3.3)

where ξ =
√
2kbT (L)/m, Nn is a normalization factor, and the mean

longitudinal velocity is given by v̄z = M(L)
√
γkbT (L)/m. This is

shown in the inset of Figure 3.2.
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Figure 3.2: Parameters for the su-
personic expansion in the experimen-
tal apparatus at temperature T0 =

365 K. Inset: The velocity distribution
at 600 mm from the nozzle.

With these equations, the velocity distribution in the experiments
can be calculated. The experiments carried out in this thesis use a
valve with a temperature T0 ≈ 365 K, with an exit aperture of D =

0.5 mm and a skimmer placed at a distance L ≈ 5 cm. The skimmer
has an opening diameter of 2 mm and collimates the supersonic beam.
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This results in atomic beams with longitudinal velocity distribu-
tions of Vz ≈ 2000±50 m/s. The velocity could be reduced by cooling
the valve. This velocity distribution agrees with that observed exper-
imentally using time-of-flight measurements in the apparatus [49].

3.3 Excitation to Rydberg States

In order to prepare Rydberg states via direct laser excitation, the he-
lium atoms must first be excited to the metastable 1s2s3S1 state. This
is achieved via an electric discharge at the exit of the valve [53]. Elec-
tric discharge is generated by applying a dc voltage of +240 V to a
metal tip located 1 mm away from the exit of the pulsed valve which
is grounded. The tip is located 1 mm ahead of the valve in the longi-
tudinal dimension and around 0.5 mm off the beam axis.

The metastable 1s2s3S1 level has a lifetime of ≈ 8000 seconds, much
longer than the ≈ 100 µs duration of the experiments so it can be con-
sidered as a effective ground state. The large electric fields required for
the discharge can heat the beam and reduce the shot-to-shot stability.
To allow for the discharge to be generated at low electric fields it is
seeded with electrons from a heated tungsten filament.

The tungsten filament is heated by applying a current of 2.6 A, this
causes the filament to emit electrons via thermionic emission. The
emitted electrons help initiate the discharge by providing seed electrons
for ionisation of the helium gas. The recombination of the generated
plasma allows the metastable 1s2s3S1 level to be populated.

Due to the selection rules of single-photon electric dipole transitions,
only states with low angular momentum can be reached by direct ex-
citation as ℓ′ = ℓ± 1. The excitation scheme used in the experiments
performed in this work with helium is shown in Figure 3.3. A two-
colour and two-photon scheme is used to reach the Rydberg states.

In this scheme, atoms that start in the metastable 1s2s3S1 level
are excited to the 1s3p3P2 state using a UV laser stabilised to λuv =

388.975 nm. A tunable IR laser around λ ≈ 788 nm completes the
scheme by exciting to ℓ′ = 0, 2 levels, 1s3p 3P2 → 1sns 3S1/1snd 3D.

The Stark shift, which was introduced in Sec. 2.3, is useful for excit-
ing a wider range of Rydberg states by mixing the field-free eigenstates.
The excitation scheme above can excite any Rydberg-Stark state which
has nS or nD character.

Figure 3.3: Excitation scheme from
the metastable triplet helium to Ry-
dberg states via a 2-photon UV/IR
transition via the intermediate 3p
state.

3.4 Manipulation of Rydberg States

The properties of Rydberg states can be finely tuned and controlled
using external fields. In our experiments, we manipulate the Rydberg
states within electrics P1 and P2 through the application of magnetic
and microwave fields.

In our setup, the magnetic field is generated using circular coils
placed on the outside of the vacuum chamber. The circular coils are
mounted externally to the vacuum chamber, with their axes aligned
parallel to the direction of the laser beams used for excitation.
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We calibrated the system using a Hall probe, to quantify the mag-
netic field strength along the beam axis in the excitation region be-
tween P1 and P2. The magnetic field was measured to be Bx =

B0 + βI, where B0 = −0.25 ± 0.25G is the stray magnetic field, I
is the applied current in the coils, and β = −1.31 ± 0.05G/A is the
proportionality factor.

Microwave fields are utilized to couple Rydberg states within the
atom, enabling both the exploration of energy level structures in the
presence of external microwave fields, and for coherent control in in-
terferometry schemes. Two different techniques were used to apply
microwave pulses.

The first used in the experiments in Part 1 employed capacitative
coupling of the microwave generator directly to electrode P1. This
setup generated a microwave field that is polarised along the direction
of the plates. The strength and frequency of the microwave field can
be precisely controlled by adjusting the voltage applied to the plates
and tuning the microwave source, respectively.

In the interferometry experiments in Part 2, a horn antenna located
outside the vacuum chamber was used to generate coherent pulses π
and π/2. Again, the antenna was directed to generate microwaves
polarised in the vertical direction as defined by P1 and P2.

3.5 Field ionisation of Rydberg states

Static electric fields can be used to alter the energy of Rydberg states
and manipulate their properties. They also allow for a state-selective
detection of individual Rydberg state populations, that is vital for the
experiments described. In this detection process, if a large enough
static electric field is applied, the valence electron is stripped away
from the atom, where the applied field depends on the state.

It is possible to determine the internal state of the atom by applying
an electric field between the ionisation threshold of the two states of
interest and then collecting the ionised electrons. An intuitive picture
of how the Rydberg state ionises can be made by observing the poten-
tial in which a valence electron resides when the combination of the
central Coulomb potential and the external electric field are applied.
This potential is shown in Figure 3.4.

Figure 3.4: A schematic showing
the combined potential energy of a
Coulomb and linear potential. In grey,
the original symmetric potential land-
scape and the applied Stark potential
is shown, the addition of the field re-
sults in the combined potential in red.
The saddle point shows the classical
energy at which a state would ionize.
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The asymmetry of this potential means the electron can only tunnel
out of the potential barrier on one side of the atom. For this tunnelling
to occur, the electron charge density must be localised near the saddle
point of the potential. The ℓ-mixed Rydberg Stark states with negative
Stark shifts lower their energy in the electric field, and have a more
concentrated charge distribution near the saddle point.

On the other hand, the ℓ-mixed Rydberg-Stark states with positive
Stark shifts have the opposite distribution of charge. The charge dis-
tribution is bunched up on the high potential side of the atom. With
lower electron charge density near the saddle-point, these states will
ionise in higher fields. This leads to varying rates of tunnel ionisation,
that depends on internal details of the state.

In the classical picture, once the energy of the state crosses the
saddle point, it will ionise. For a hydrogenic Rydberg-Stark state with
a negative Stark shift, the field at which this occurs while accounting
for its Stark shift is,

Fion =
2hcR

ea09n4
. (3.4)

On the other hand, in the quantum picture, there is no definite
field in which a state is bound. This makes it possible for states
whose energy is lower than the classical turning point to tunnel ionise.
The classical equation still gives a good estimate of the field at which
the outermost high-field-seeking Rydberg-Stark states will tunnel, this
comes out to be at a rate of 108 s−1.

The states on the other side of the manifold, the low-field-seeking
states, will experience a similar tunnelling rate at approximately twice
the field in Eq. 3.4. This equation gives a good estimate for the Ryd-
berg Stark states ionisation in hydrogen.

The dynamics are more complicated in non-hydrogenic atoms due
to the avoided crossings that start at the Inglis-Teller field. Even so,
this classical approach gives a good enough indication of the magnitude
of fields necessary and the concept remains the same. If the applied
electric field is increased slowly, different states still show this ioni-
sation for the different fields and therefore for non-hydrogenic atoms,
the state-selective detection method is still valid.

3.5.1 Performing the state-selective measurement

Once ionised, the charged particles can be accelerated towards a mi-
crochannel plate detector (MCP). The MCP detector used in these
experiments comprises an array of 106 miniature electron multiplier
tubes organized in a ’chevron’ configuration [56]. Each tube has a 10
µm diameter and 60:1 length-to-diameter ratio, with precise spacing
and an applied voltage of +1 kV. This setup enhances electron mul-
tiplication, enabling significant signal amplification, and allows detec-
tion of the electrons and ions of specific Rydberg states by adjusting
electrical potentials across the MCP plates [57].

The exact parameters depend on the Rydberg states being observed.
For example, a potential difference of 295 V was applied between E1
and E2 to detect the n = 105 Rydberg states in the experiments of
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Figure 3.5: Time-of-flight signal of
He+ ions detected by the MCP. The
ionising electric field is ramped over
time, resulting in a state-dependent
collection time. The total signal from
a given state can be integrated from
an oscilloscope trace. The trace can
either be from a single experimental
shot or averaged over a number of ex-
perimental runs. In this example, two
integration windows (purple and or-
ange) are placed in the time-windows
in which two different Rydberg states
are expected to be received. An ad-
ditional background window (black) is
recorded to be subtracted from these
windows.

Chapter 4. A much larger potential difference of 2.4 kV was used to
detector n = 55/56 states in the experiments performed in Chapter 6
and Chapter 7.

The voltage is applied to E1 with a rise time of approximately
800 ns. The timing of the voltage pulse is synchronised with the ar-
rival of the Rydberg atoms in the detection region, typically occurring
70 µs after the excitation lasers.

By increasing the amplitude of the electric field, we selectively ionise
Rydberg states with different principal quantum numbers n as a func-
tion of time. The ions or electrons produced by field ionisation are
accelerated toward the MCP detector, where they multiples before
hitting an anode and producing a measurable signal .

Figure 3.5 shows an idealised oscilloscope trace that demonstrates
the state-selective measurement of Rydberg states. It represents a
time-of-flight distribution of He+ ions after pulsed electric field ionisa-
tion. Integration windows are placed in time windows, where a state
or multiple states ionise.

The raw data can correspond to either a single or multiple oscillo-
scope traces. Using a LabView program, described in Ref [52], these
windows can be set and the raw data integrated. To perform this
integration of the signal, multiple time windows are integrated.

The black window in Figure 3.5 is a background measurement in
a region where no Rydberg ions are detected. After subtracting this
background from the recorded oscilloscope trace, the signal within the
other windows can be integrated.

This chapter summarises the techniques used for the creation, ma-
nipulation, and measurement of Rydberg states for the experiments
performed in both parts of this thesis. These experiments deviate
where the microwave pulses are applied, and the techniques used here.
In the later chapters we will go on to describe these.
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Ultra-strong driving of high-n Rydberg states

This chapter describes experiments observing coherent Rydberg
atom microwave field interactions in the ultra-strong driving regime.
The resulting experimental data are in excellent quantitative agree-
ment with the results of numerical calculations of the energy level
structure, and the spectral intensities for the atom in a microwave
field. These calculations make use of Floquet methods (Section 2.4.1),
and we compare this approach with simpler models that use the two-
level and rotating-wave approximations.

A two-level atom under the influence of a resonant or near resonant
oscillating electric field is a useful starting model to understand the
dynamics of atoms driven by oscillating electric fields. The solution
to the resulting time-dependent hamiltonian can be simplified under
certain conditions, to provide simpler models to describe the effects.

In this chapter, we solve for this problem, and the implications for
the population dynamics and energy level spectrum will be discussed.
These calculations are performed both with and without (in other
words, going beyond) a simplifying assumption called the rotating wave
approximation (RWA). We introduce the RWA and its connection to,
and representation in, the Floquet formalism will be made.

This work is original and has been published in [58]. The contents
of this section have been adapted and extended from this publication.

4.1 A two level atom in a near-resonant field

The time-dependent Hamiltonian for a two-level atom driven by a
linearly polarised electric field is composed of two parts given,

H(t) = H0 +Hint(t). (4.1)

The free Hamiltonian for the two level system H0 can be written in
terms of the Pauli-z σz matrix as,

H0 =
h̄ω0

2
σz. (4.2)

The energy difference between the two states is h̄ω0, and we sugges-
tively label the two states as |g⟩ and |e⟩. The interaction Hamiltonian
Hint(t) is the transition dipole between the two states,

Hint = −d · E(t), (4.3)
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where the electric field is monochromatic and expressed as E(t) =

Fosc cos(ωt). The dipole operator is given by d = ez. For simplicity
both the dipole and electric field can both be assumed to be polarized
along the ẑ axis.

The dipole operator can cause transitions between the two states
and can be represented by raising and lowering operators σ± defined
as σ+ = |e⟩⟨g| and σ− = |g⟩⟨e| as,

Hint(t) = h̄Ω0(σ+ + σ−) cos(ωt), (4.4)

where Ω0 = −d·Fosc
2h̄ is the Rabi frequency for the transition and ω is

the driving frequency.

4.1.1 Dynamics of a driven two level system in the rotating
wave approximation

The time evolution follows how the population dynamics as a function
of time are affected by the ratio of Rabi frequency Ω0 to transition
frequency ω0. This is numerically integrated and the plot is shown in
Figure 4.1 for Ω0 = Aω0, where A = 0.01, 0.1, 1.0.

Figure 4.1: Time evolution of a two
level atom in a resonant electric field
for an initial state |ψ(t = 0)⟩ = |0⟩.
Shown for three values of coupling
strength Ω0 at different percentages
of the transition frequency ω0. The
time is normalised for a full oscilla-
tion between |0⟩ and |1⟩. In the case
where Ω0 = 0.01ω0 the dynamics are
a smooth oscillation between the two
states. This corresponds to the regime
in which the rotating wave approxi-
mation can be applied without loss
of accuracy in the dynamics. In the
other two cases corrections due the ne-
glected terms in the RWA start to im-
pact the dynamics.

The three plots show the time evolution of a state initialised as
ψ(0) = |0⟩. The time evolutions are normalised to the time it takes to
complete a full oscillation from |0⟩ → |1⟩ → |0⟩. This amount of time
is related to the Rabi frequency, T = 2π

Ω0
.

When the Rabi frequency is of the same order of magnitude as the
transition Ω0 ≈ ω0, the evolution on the Bloch sphere shows oscilla-
tions about both the ẑ and ŷ axes. With the strength of the oscillation
about ẑ becoming more influential as the strength of Ω0 increases.

In the case where Ω0 ≪ ω0, here this occurs where A = 0.01,
the influence of the oscillations about ẑ is diminished. This leads to a
simpler dynamics being observed, a pure oscillation driving population
transfer between the two basis states. In this regime the rotating wave
approximation (RWA) applies, and Figure 4.1 provides an intuition of
how this assumption manifests.

The standard approach for applying the RWA to Equation 4.4 is
frame rotating at the transition frequency ω0, via the unitary U(t) =
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exp{iH0t/h̄} = exp
{
iω0

2 σzt
}

[59]. In doing so the interaction Hamil-
tonian is transformed as,

Hint′ =
h̄Ω0

2
(σ+e

i(ω0+ω)t+σ−e
−i(ω0+ω)t+σ+e

i(ω0−ω)t+σ−e
−i(ω0−ω)t)

(4.5)
where the identity cos(ωt) = 1

2

(
eiωt + e−iωt

)
has been applied. The

terms
σ+e

i(ω0+ω)t and σ−e
−i(ω0+ω)t

are fast oscillating terms (counter-rotating terms).
We can argue that since ω0+ω is much larger than the characteristic

time scale of the system, these terms oscillate very quickly and average
out to zero over time. Meanwhile, the terms,

σ+e
i(ω0−ω)t and σ−e

−i(ω0−ω)t

are slow oscillating (co-rotating terms), because ω0 − ω is small when
ω is close to ω0 (near resonance). Thus, the RWA approximation
amounts to keeping just these co-rotating terms, resulting in the Hamil-
tonian,

HRWA
int =

h̄Ω0

2
(σ+e

i(ω0−ω)t + σ−e
−i(ω0−ω)t). (4.6)

In this chapter we investigate the implications of keeping both the
full and approximated Hamiltonians on the energy-level spectrum of
the driven atom.

4.1.2 Autler-Townes splitting and Bloch-Siegert shifts

In the Floquet picture the time-dependent Hamiltonian Eq. 4.1 is con-
verted into an infinite dimensional Hamiltonian via methods detailed
in Sec. 2.4.1. This produces the distribution of eigenstates shown in
Fig. 4.2, where the different side-bands, q, are plotted along the x-axis.
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Figure 4.2: Energy-level structure for
a driven two-level system in the Flo-
quet picture of dressed atomic states,
computed with and without the RWA.
(RWA) Only the dominant first-order
perturbation theory coupling for each
state is shown. This results in an infi-
nite series of de-coupled sub-systems.
(non-RWA) All couplings are included
resulting in a infinitely coupled system
of dressed-states.

The Hamiltonian has couplings between states that differ in side-
band order by one. This leads to any single basis state being coupled
to an infinite number of states in the non-RWA system. The problem
may be simplified using perturbation theory under the assumption that
only coupling to the state nearest in energy is important. The coupling
which remains under these conditions is between |g, q⟩ → |e, q − 1⟩
states, i.e., the term where a photon is absorbed by a ground-state
atom promoting the atom into an excited state.

This can also be understood on an intuitive level. The coupling
from |g, q⟩ → |e, q + 1⟩, is where both the atom and the field gain
energy, and |e, q⟩ → |g, q − 1⟩ is where both the atom and the field lose
energy, both violate energy conservation. Therefore, by the Heisenberg
uncertainty principle these interactions can only be allowed for short
time periods.

The resulting Hamiltonian is a infinite series of 2-dimensional sub-
spaces that are simpler solved. The Hamiltonian for each pair of de-
coupled states is,

H/ℏ =

(
−∆

2 Ω0

Ω0
∆
2

)
.
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The solutions to these are superpositions of the |g, q⟩ and |e, q − 1⟩
states.

In resonance (∆ = 0), the solutions are two states given by |ψ⟩ =
1√
2
(|g, q⟩ ± |e, q − 1⟩), with eigenenergies equally spaced at,

Eλ/ℏ = ±Ω0

2
. (4.7)

These eigenstates contain an equal mixture of the two atomic states
and their energies are separated by the Rabi frequency. As the Rabi
frequency is linear in the strength of the applied electric field this
provides a direct method to measure the magnitude of electric fields.

In the context of spectroscopy, this splitting of eigenenergies is
termed the Autler-Townes splitting [45], and in a fluorescence spec-
trum it appears as three peaks known as the Mollow triplet [60]. By
measuring the Autler-Townes splitting of a pair of coupled levels, the
value of Ω0 can be directly measured, and then from Eq. 4.7 the electric
field strength can be determined.

The effects of the ignored fast rotating terms can cause deviations
from this idealised behaviour at larger coupling strengths. The inter-
action of the fully coupled system leads to deviations from this model
of Autler-Townes peaks showing a linear splitting with electric field
strength.

The perturbative correction to the model due to the non-energy-
conserving virtual couplings is called the Bloch-Siegert shift [61]. This
shifts the resonance condition for the system due to the neglected terms
in the RWA Hamiltonian. The correction takes the form,

δbs =
Ω2

0

4(ω0 + ω)
. (4.8)

The Bloch-Siegert shift and the AC-Stark shift are both shifts in the
energy of the states, but have different causes. The AC-Stark shift is
present even within the RWA, whereas the Bloch-Siegert shift is caused
by the non-energy conserving terms ignored by the RWA. This shift can
be observed as a slight deviation from linearity in the Autler-Townes
splitting as a function of electric field strength.

We can specify some approximate regimes of the dynamics of a
driven two-level atom based on Ω0 and ω0. In the weak-driving regime,
Ω0 ≪ ω0 and the RWA is a accurate representation of the system
dynamics. The strong-driving regime ranges from where the Autler-
Townes splitting is wider than the line-width of the transitions up-to
where the RWA corrected by the perturbative Bloch-Siegert shift can
explain the dynamics.

Then finally, we have the ultra-strong driving regime, where Ω0 ≥
ω0. Here the perturbative approach fails, and the coupling between the
atom and the field is strong, thus requiring a more complex description
of the dynamics.

4.1.3 Applications for ultra-strong driving of Rydberg states

Before we present the results for the ultra-strong driving regime, we de-
tail some applications that follows this exposition going beyond RWA.
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The direct link between Autler-Townes splitting and coupling strength,
Ω, makes quasi-two-level systems ideal electric field sensors. Rydberg
atoms contain transitions in the RF and MW frequency ranges, which
possess large electric dipole transition moments, making excellent mi-
crowave field sensors [62].

The large transition dipoles also mean that relatively weak electric
fields lead to coupling strengths for which the RWA may no longer
provide an accurate description of the dynamics. Therefore, an un-
derstanding of strong-field interactions is essential in determining the
limits of the dynamic range of sensors realized using this technique [63]. 50 100
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Figure 4.3: Figure showing the scal-
ing of the transition dipole moment (a)
and transition frequency (b) between
|n, 0, 0⟩ and |n, 1, 0⟩ states, i.e., s and p
states of the same n manifold in triplet
Rydberg helium. c) shows the electric
field strength Fosc required to achieve
the ultra-strong driving regime where
the Rabi frequency matches the tran-
sition frequency, Ω0 = ω0, for a reso-
nant driving field.

Strong coherent interactions of atoms with electromagnetic fields are
also of interest in areas other than sensing. In quantum computing,
resonant fields are routinely used to prepare quantum states via Rabi
flopping. Fast state preparation requires the use of stronger fields;
thus, they eventually approach the regime in which the RWA breaks
down [64].

Experiments extending to the few or single-photon regimes in super-
conducting circuits have led to realizations of the ultra-strong coupling
regime of the quantum Rabi model, which is of interest to quantum in-
formation processing and for probing unexplored regimes of QED [65].

The use of strong off-resonant dressing fields have been investigated
as a method to polarizability-null both low- and high-angular momen-
tum Rydberg states, to decrease their sensitivity to stray static electric
fields [66]. Microwave-based decelerators and traps operating in the
strong driving regime [67] are of interest for the preparation of cold
samples of Rydberg atoms and molecules.

4.2 Ultra-strong driving of high n Rydberg states

In these experiments investigating the ultra-strong driving regime of an
atom interacting with a microwave field, we use low-ℓ Rydberg states
in helium with principal quantum number n = 105. These states are
ideal for this purpose because the quantum defects lead to the s and
p states being isolated from the manifold of Rydberg-Stark states.

Furthermore, the exaggerated scaling of Rydberg state properties
allow for strong transition dipole couplings between states with small
transition frequencies. Consequently, a Rabi frequency equal to the
transition frequency, Ω0 ≈ ω0, is achievable at small electric field
magnitudes. The scaling of these properties is shown in Figure. 4.3.

The n = 105 manifold has desirable properties for this type of ex-
periment. The transition between the ℓ = 0 and ℓ = 1 levels at
n = 105 is at ω0 = 2π × 1.304 GHz, with a transition dipole moment
of d = e ⟨105, 1, 0| z |105, 0, 0⟩ = 8965.70 ea0. This results in a Rabi
frequency, Ω0 = E0d

ℏ , at fields on the order of 0.1 V/cm, approaching
the transition frequency Ω0 ≈ ω0.
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Figure 4.4: Schematic of the appara-
tus used in the experiments to study
the effect of ultra-strong driving of a
Rydberg transition in triplet helium.
A pulsed supersonic beam was gener-
ated at the exit of a pulsed valve. This
beam was then collimated by a skim-
mer. Rydberg photoexcitation by a 2
photon UV/IR transition took place
between copper plates P1 and P2 un-
der the influence of a microwave field
applied directly to the plate P2, reso-
nant with the |105, 0, 0⟩ → |105, 1, 0⟩
transition. The excited atoms are di-
rected to the region between plates E1
and E2 for detection by pulsed electric
field ionisation. This figure has been
modified from [58]

4.2.1 Experimental procedure

A schematic diagram of the experimental apparatus is shown in Fig 4.4.
A pulsed supersonic beam of helium atoms in the meta-stable 1s2s 3S1

level was generated in a dc electric discharge at the exit of a pulsed
valve [53]. The beam with a mean longitudinal speed of 2000±50 m/s,
passed through a skimmer with a 2 mm diameter before entering a
region where an electric field was generated to deflect and filter ions
created in the discharge.

The atoms then entered a region defined by two parallel 70×105 mm
copper plates, P1 and P2, separated by 13 mm in the z dimension. In
this region, two co-propagating UV and IR laser beams intersected
the atomic beam. The UV laser was stabilised to λuv = 388.975nm
to drive the 1s2s 3S1 → 1s3p 3P2 transition. The IR laser was tuned
in the range from 785.1669 to 785.1710 nm to drive the 1s3p 3P2 →
1s105s 3S1/1s105d 3D transitions, and probe effects of the microwave
field to the energy-level structure of the atom [68].

IR laser photo-excitation spectra recorded in the experiment al-
lowed for probing of the Autler-Townes splitting [45] of the 1s3p 3P2

→ 1s105s 3S1 transition in the presence of a 1.280 GHz microwave field
tuned close to resonance to the 1s105s 3S1 → 1s105p 3P transition at
1.304 GHz. This particular microwave frequency was chosen to exploit
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a resonance in the microwave circuit between the signal generator and
electrodes in the apparatus. The microwaves were applied directly to
the plate P2 via a capacitative coupling. This is in contrast to the
later experiments in which a microwave antenna placed outside the
chamber was used as shown in Figure 3.1

Following Rydberg state photo-excitation, the excited atoms trav-
eled out between P1 and P2 and into the detection region between E1
and E2. During this 65 µs period of free flight, the microwave source
was operated in pulsed mode to minimize losses by multi-photon mi-
crowave ionization. It was switched on 10 µs before the velocity class of
those atoms selected for detection reached the photo-excitation lasers,
then switched off 10 µs later.

Unless stated otherwise, for all experiments static offset potentials
of V2 = ±12.5 mV were applied to P1 and P2 to compensate stray
electric fields in the z direction between these electrodes. When the
atoms reached the detection region, a pulsed voltage of +295 V was
applied to electrode E1, while E2 was maintained at 0 V. The result-
ing electric field ionized the excited Rydberg atoms and accelerated
the ions through an aperture in E2 to a micro-channel plate (MCP)
detector.

4.3 Results

We present results where the effects of ultra-strong microwave driving
on the triplet Rydberg states in helium with n = 105 were investigated.
The first set of experiments were performed in the regime for which
Ω ≪ ω0, to calibrate the microwave field intensity in the excitation
region of the apparatus. This was extended to the regime in which
Ω ≈ ω0 and over a more extensive spectral range to investigate the
breakdown of the two-level approximation, and the breakdown of the
rotating wave approximation (RWA) in this system.

The results of all experiments performed were compared to the re-
sults of calculations carried out using the Floquet methods described
in Sec. 2.4.1. The weak spin-orbit couplings in high-n Rydberg states
scales as n−3 and give rise to energy level splittings of < 100 kHz for
the Rydberg states with n = 105 studied here [49]. This means the
Schrödinger equation associated with this Hamiltonian can be solved
for in a |n, ℓ,mq⟩ basis.

4.3.1 Microwave field strength calibration

Rydberg states are used as microscopic antennae for low-frequency
electromagnetic fields [63]. This sensitivity is exploited in this first set
of experiments to calibrate the 1.280 GHz microwave field strength in
the photo-excitation region of the apparatus.

The Autler-Townes splitting of the 1s3p 3P2 → 1s105s 3 S1 transition
upon weak microwave driving, i.e., when Ω ≃ 40 MHz ≪ ω0 = 2π ×
1.304 GHz was measured. In this regime the atom–microwave-field
interaction can be described within the RWA. The relationship between
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Figure 4.5: Measured (continuous
curves) and calculated (dashed curves)
spectra of the 1s3p 3P2 → 1s105s 3S1

transition in the presence of a
1.280 GHz microwave field. The spec-
tra were recorded for a range of dc
electric fields as indicated on the ver-
tical axis. Figure taken from [58]

the Autler-Townes splitting and microwave field strength is given by
the generalised Rabi frequency Ω =

√
Ω2

0 +∆2.
Measurements of this Autler-Townes splitting for a fixed value of

Fosc are displayed in Fig 4.5. The relative frequency on the horizontal
axis in this figure is displayed with respect to the zero-field 1s3p 3P1

→ 1s105s 3S1 transition frequency.
In recording the data in Fig. 4.5, a resonance in the microwave

circuitry at 1.280 GHz, which lies 24 MHz below ν0, was used to en-
hance the microwave field strength in the laser photo-excitation re-
gion. Because of this detuning, the laser spectrum of the transition
to the Autler-Townes split (1s105s 3S1) level in zero dc electric field
seen in the middle of Fig. 4.5 exhibits an asymmetric intensity distri-
bution. The relative amplitude of the peaks depends on the detuning,
∆. Since ∆ < 0, the lower frequency Autler-Townes component has
more S-character and therefore a higher spectral intensity.

To study the effects of detuning the microwave field from the 105s→105p
atomic transition frequency, the measurements were also performed in
a range of applied dc electric fields. As the dc offset electric field was
adjusted, the 105s→105p transition undergoes a quadratic Stark shift.
This causes the atomic transition to move through resonance with the
fixed-frequency microwave field.

The resonance condition, for which ∆ = 0, occurs for Fz = 131

mV/cm. This can be seen from the corresponding spectra of the
Autler-Townes splitting indicated in Fig 4.5. As |Fz| approaches 131
mV/cm in these data, the spectral intensity distribution of the Autler-
Townes components becomes increasingly symmetric as the applied dc
field approaches this value.
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The two spectral features have equal intensity when |Fz| = 131
mV/cm while for larger values of |Fz| the detuning ∆ is positive,
and the asymmetric spectral intensities of the Autler-Townes peaks
invert. Under these conditions, the higher frequency components ex-
hibit greater S-character and hence intensity in the spectra.

The experimental data in Fig. 4.5 are compared to the results of
numerical calculations (indicated by the dashed curves). These cal-
culations rely on the methods described in Sec. 2.4.1 with a basis of
states for which n = 105, 0 ≤ ℓ ≤ 6, −ℓ ≤ mℓ ≤ ℓ and −5 ≤ q ≤ 5,
and for which the only free parameter was a single scaling factor used
to convert the output of the microwave source to Fosc.

Thus by performing a global fit to all of the experimental data in
Fig. 4.5, the field strength at the position of the atoms in the experi-
ment was determined to be 3.1 ± 0.5 mV/cm. This field corresponds
to a microwave intensity in the laser photo-excitation region of the
apparatus of 1.3×10−8 Wcm−2 and was generated when the output
power of the microwave source was -26.5 dBm (2.2 µW).

4.3.2 Ultra-strong microwave driving

Figure 4.6: (a) Experimentally
recorded, and (b) calculated spectra
of transitions from the 1s3p 3P2 inter-
mediate level to Rydberg states with
ns and nd character in the presence
of a νd = 1.280 GHz microwave field.
The microwave field strength for
which each spectrum was recorded
is indicated by the vertical offset in
each case. The thin grey curves in
both panels represent the calculated
Floquet quasi-energy level structure
in the presence of the microwave field.
Figure taken from [58]

Laser spectra recorded for microwave source output powers from
-26.5 dBm to +9 dBm, hence microwave field strengths, Fosc, in the
photo-excitation region of 3.1 to 150 mV/cm are displayed in Fig 4.6(a).
For the weakest microwave fields employed, the asymmetric intensity
distribution of the Autler-Townes components of the transition to the
1s105s 3S1 level is clearly seen close to the zero frequency detuning.
This can also be seen in the results of calculations performed for the
corresponding microwave field strengths in Fig. 4.6(b).

To aid in the interpretation of the experimental data, the calculated
energy-level structure indicted by the thin grey curves in Fig. 4.6(b) are
also overlaid on the experimental data in Fig. 4.6(a). As the microwave
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field strength is increased towards 50 mV/cm, the separation between
the two Autler-Townes components, which corresponds to the Rabi
frequency, Ω, increases approximately linearly.

Close to 50 mV/cm, an additional feature appears, indicated by
the broad vertical grey bar, at a relative frequency of +400 MHz.
This spectral feature is detuned by -νd from the interval between the
1s3p 3P2 level and the 1s105d 3D levels.

For values of Fosc greater than 50 mV/cm in Fig. 4.6(a), the field-
dependent change in the Autler-Townes component of the transition
to the 1s105s3S1 level (that is shifted to negative relative frequency)
deviates from a linear dependence on the microwave field strength.
Other spectral features also appear in these higher microwave fields,
e.g., additional peaks can be seen at +1250 MHz. These additional
features correspond to the transition to the 1s105d 3D levels, which
undergo an ac stark shift in the microwave field.

In general there is very good quantitative agreement between the ex-
perimental data and the results of the calculations over the full range
of microwave field strengths seen in Fig. 4.6. These simulations re-
quired a larger basis than those in Fig. 4.5 and contained all states for
which 103 ≤ n ≤ 107, 0 ≤ ℓ ≤ 8, −ℓ ≤ mℓ ≤ ℓ and −10 ≤ q ≤ 10. Dis-
crepancies occur between the calculations and the experimental data
for the highest values of Fosc.

To identify the origin of the discrepancies, test calculations were
performed with larger computational bases and the effects of the dia-
magnetic interaction of the atoms with the microwave field included.
These did not yield an improved agreement between the experimental
and calculated data. It is concluded that a reduction in the spectral
purity of the microwave field at high operating powers was the most
likely cause of the observed discrepancies.

4.4 Analysis

Figure 4.7: Dependence of the
Autler-Townes splitting of the
1s3p 3P2 →1s105s 3S1 transition
on the strength of the 1.280 GHz
microwave field. The splittings
determined from the experimental
data in Fig. 4.6 are indicated by blue
points. Figure taken from Ref. [58].
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The Autler-Townes splittings of the spectra shown in Fig. 4.6 aid
in evaluating ranges of validity of simplified models of the atom–
microwave-field interaction. It is seen that the Autler-Townes model
is applicable for a two-level system within the RWA, however as seen
in Fig. 4.6(b) levels other than the |105s⟩ and |105p⟩ states must con-
tribute to the spectra particularly for higher values of Fosc.

An assessment of the applicability of the RWA and few-level approx-
imations in simplifying the description of the Rydberg-atom–microwave-
field couplings can be made from an analysis of the Autler-Townes
splitting of the transition to the |105s⟩ state.

Comparisons between the experimentally measured
1s105s 3S1 →1s105p 3P Rabi frequencies, determined from the Autler-
Townes splitting of the 1s3p 3P2 →1s105s 3S1 transition are displayed
in Fig. 4.7 as blue dots, under-laid are theoretical models of either
two- or three-level systems with and without the RWA.

The three-level model includes the 105d state. This state has a
quantum defect of δ105,2 = 0.00289 and frequency νd = 1676.7 MHz
relative to the 105s level. The 105p→ 105s transition dipole moment
is dp,d = 8497.37 ea0.

The energy levels for this three-level system in the Floquet picture
are shown in Fig. 4.8. When all couplings are included, the system is
complicated and requires an infinite number of states to fully compute
the result of the couplings. By including only the dominant coupling
between 105s ↔ 105p and the dominant coupling between 105p ↔
105d states, the system can be reduced to a set of decoupled three-level
Hamiltonians. In the weakest fields this can be justified by considering
the detuning of each level.

Figure 4.8: Energy level structure for
a driven three level system, consisting
of the 105s, 105p and 105d states of
helium with mℓ = 0. The dressed
states are shown in the Floquet pic-
ture with the q quantum number rep-
resenting the relative number of pho-
tons in the resonant microwave field.
non-RWA) Only the dominant first or-
der perturbation theory coupling for
each state is shown. These correspond
the the energy-conserving interactions
analogous to those shown in Figure
4.2. RWA) All couplings are indicted
by arrows.

Consider the |105p, q = 0⟩ level, coupled to the |105s, q = ±1⟩ and
|105d, q = ±1⟩ states. First order perturbation theory shows that,

|105p, q = 0⟩ = Σn=s,dΣq=±1
dn,p

En − Ep + qℏω0
. (4.9)

The transition dipole moments associated with the couplings are sim-
ilar at ds,p = 8965.69 ea0 and dp,d = 8497.37 ea0. The detuning of
each side-band determines the relative weight of the perturbation.

The state with the smallest detuning is the |105s, q = +1⟩ level,
which is only detuned by 2π ×−24 MHz. This is the level that is in-
cluded in the RWA model. The next nearest state is the |105d, q = −1⟩
level, which is detuned by 2π×−908 MHz. The other two coupled lev-
els are detuned by 2π × 1652 MHz, 2π × −2584 MHz these are the
|105d, q + 1⟩ and |105s, q − 1⟩ levels respectively.

Under the assumption that only the first two couplings have an
impact on the dynamics, each |105p, q⟩ state is coupled to |105s, q + 1⟩
and |105d, q − 1⟩ states. These couplings are shown in Fig. 4.8 RWA),
indicating that each state is only coupled to two other states. In
analogy with the two-level system, this is considered the three-level
RWA model for the analysis of the experiment. This is due to only the
energy conserving terms where the absorption/emission of a photon is
paired with the energy conserving transition in the atom.



56

Name States included
Two-Level RWA |105s, q = 0⟩ , |105p, q = −1⟩
Two-level |105s⟩ , |105p⟩ with −10 ≤ q ≤ 10

Three-Level RWA |105s, q = 0⟩ , |105p, q = −1⟩ and |105d, q = −2⟩
Three-Level |105s⟩ , |105p⟩ and |105d⟩ with −10 ≤ q ≤ 10

Many-Level 103 ≤ n ≤ 107, 0 ≤ ℓ ≤ 8, −ℓ ≤ mℓ ≤ ℓ and −10 ≤ q ≤ 10.

Table 4.1: Models used for comparison
of Autler-Townes splitting.

The Autler-Townes splittings in five different models are shown in
Fig. 4.7. These five models and the states they include are described
in Table. 4.1. In the weak driving regime, i.e., for microwave field
strengths below Fosc ≈ 50 mV/cm (Rabi frequencies ≲ ω0/2), the
approximately linear increase in the observed Autler-Townes splitting
as the microwave field strength is increased, suggests that the RWA and
two-level approximations remain valid. Beyond Fosc ≈ 50 mV/cm, the
two-level RWA model begins to deviate from the experimental data.

The Autler-Townes splittings and hence the Rabi frequency ob-
tained from these three-level models remain in good qualitative agree-
ment with the experimental data up to Fosc ≃ 80 mV/cm. For field
strengths beyond this, the three-level RWA model that predicts a lin-
ear increase in the Autler-Townes splitting, breaks down, while the
experimental data begins to converge toward a splitting Ω/2π = νd.
However, the non-RWA calculations do reflect the observed splitting
up to the final measured data point, and only deviates from the full
calculation at the highest microwave field strengths.

A notable difference that can be seen between the RWA and non-
RWA models is the saturation of the Autler-Townes splitting. The
eigenenergies of the states surrounding the |105s, q = 0⟩ state are shown
as a function of Fosc for the two and three level models in Fig. 4.9.

Figure 4.9: Energy level structure of
models consisting of n = 105 states
in helium. a) Two level model and b)
three level model.

In the non-RWA models at high powers, side-bands which meet
result in avoided crossings. Under ultra-strong driving, these avoided
crossings lead to an energy-level structure dominated by integer multi-
ples of the drive frequency. The RWA decouples the levels that undergo
these avoided crossings.
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The neglected coupling means that instead of undergoing avoided
crossings, the energy levels continue to diverge as they cross states of
other side-bands. The saturation of the Autler-Townes peaks seen in
the experimental data is therefore concluded to be a signature of the
breakdown of the RWA.

From the data in Fig. 4.7 it can be seen that the two-level ap-
proximation is valid up to the regime in which Ω/2π ≃ 0.5νd. In this
strong driving regime, it is possible to investigate the role of the Bloch-
Siegert shift in the atomic resonance frequency on the measured Rabi
frequency [61], [69].

This Bloch-Siegert shift represents a higher-order correction to the
transition frequency of a pure two-level system that occurs under
strong resonant driving. To identify corrections from the Bloch-Siegert
shift in the experimental data in Fig. 4.6, calculations were performed
to determine the non-RWA contributions to the Autler-Townes split-
ting in the two-level system.

The results of this calculation are shown in Fig. 4.10. In this figure,
the energy-level splitting calculated within the RWA is subtracted from
the results of each calculation. Hence, for all driving field strengths,
the change in the Autler-Townes splitting obtained for the pure two-
level system in the RWA is zero (dashed line).

Figure 4.10: Calculated deviation of
the Autler-Townes splitting in weak
microwave fields from that obtained
within the RWA shown as a dotted or-
ange curve. The dotted purple curve
shows the results for a two level system
including terms ignored in the RWA,
obtained numerically with −10 ≤ q ≤
10. The black solid curve shows
the expected shift including additional
Rydberg states.

The difference in the Autler-Townes splitting obtained for a pure
two-level system that includes interactions beyond the RWA is indi-
cated by the dotted line. From this it can be inferred that the Rabi fre-
quency, and hence the Autler-Townes splitting, should decrease from
that predicted by the RWA when the Bloch-Siegert shift becomes sig-
nificant.

However, it can be seen from the continuous black curve in Fig. 4.10
that in the calculations performed by determining the eigenvalues of
the complete multi-level Floquet Hamiltonian with −10 ≤ q ≤ 10,
the Autler-Townes splitting is observed to increase in weak fields up
to 15 mV/cm. This is similar to the observations Ref. [70], where the
asymmetry of Autler-Townes peaks was used to determine the resonant
frequency of an ultra-strongly driven quantum well.

In this work, ac-Stark shifts arising from the off-resonant coupling to
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a third level were found to be dominant over the Bloch-Siegert shift.
In the case of interest here, we conclude that under the conditions
for which the measurements reported were performed, the two-level
approximation breaks down before the RWA does, masking the effect
of the Bloch-Siegert shift.

4.5 Applications for microwave deceleration and trapping

Figure 4.11: (a) Energy level shift of
the triplet |105s⟩ state of He in the
presence of a 1.280 GHz microwave
field. (b) Corresponding potential en-
ergy distribution for this atom near
the 0.10 V/cm (dashed curve) or
0.175 V/cm (dotted curve) intensity
maximum of a single node of this field.
(c) and (d) Phase space acceptance of
a trap based on the two potentials in
(b).

The ultra-strong Rydberg-atom-microwave-field interactions reported
here can be exploited in the realization of microwave decelerators and
traps for cold Rydberg atoms and molecules. Such devices are of partic-
ular interest in hybrid cavity QED experiments with atoms in circular
Rydberg states and superconducting microwave circuits[30], [71], and
in experiments with cold Rydberg positronium atoms.

This approach to deceleration and trapping takes advantage of the
force on an atom or molecule in a spatially inhomogeneous microwave
field, f = −∇W , where W is the potential energy of the atom in the
field. Forces of this kind accelerate samples with positive (negative)



59

energy shifts in the presence of the microwave field towards regions of
low (high) field strength. The corresponding states are then referred
to as low-field-seeking [LFS] (high-field-seeking [HFS]).

From the data in Fig. 4.6 the LFS or HFS character of a particular
field-free energy level can be inferred, e.g., the 1s105s 3S1 level in the
presence of a strong near-resonant microwave field, can be selected
by the appropriate choice of the detuning of the microwave field from
resonance. Accordingly, this approach to decelerating and trapping
Rydberg atoms and molecules is particularly versatile and applicable
to a wide range of states, including non-degenerate states, which are
purely HFS in static electric fields, i.e., low ℓ Rydberg states in non-
hydrogenic atoms and molecules, or circular states.

Microwave decelerators have recently been implemented for ground-
state polar molecules [67]. In these devices, the field distribution in a
cylindrical microwave resonator is used and detuned below resonance
to prepare and decelerate HFS ammonia molecules. To determine the
phase space acceptance and optimal mode of operation of a decelerator
for He atoms in the very high n Rydberg states considered here, numer-
ical particle trajectory calculations for a microwave trap based on the
parameters of the experiments reported in Sec. 4.3.1 were performed.

As in Sec. 4.3.1, the detuning of -24 MHz of the microwave field from
the atomic transition frequency determined that atoms prepared in the
|105s⟩ state were HFS. The adiabatic evolution of the resulting driven
1s105s 3S1 level in the applied microwave field is shown in Fig. 4.11(a).
Detuning selection plays an important role in negating non-adiabatic
population transfer when atoms traverse regions of low field strength.

In a resonant field, these states would be degenerate, and a signifi-
cant population could change state in the region of zero microwave field
strength and then be ejected from a trap. As a result, control over the
microwave frequency provides both the ability to choose which free-
field state is addressed and also provides a method to protect this
selected state from non-adiabatic losses.

Fig. 4.11(b) shows the potential energy of a He atom in the |105s⟩
state over the full length of the trap, i.e., for a half wavelength of
the standing microwave field, for the two maximum field strengths
highlighted by the points in Fig. 4.11(a). The blue dotted line corre-
sponds to a maximum field strength of 0.10 V/cm; in this situation,
the trap has a single minimum located at its center where the field am-
plitude is greatest. The dashed red curve corresponds to a maximum
field strength of 0.175 V/cm for which the state has gone through an
avoided crossing and become LFS (see Fig. 4.11(a)). This results in a
trap for which two minima form, located on either side of the center.

This non-monotonic evolution of the atomic state energy allows for
tunable trap geometries using only the amplitude of the field. The
phase space acceptance of these two traps are shown in Fig. 4.11(c) and
Fig. 4.11(d), respectively. The maximum speed of the atoms which can
be trapped in these traps is ∼ 10 m/s, which corresponds to a transla-
tional temperature of 10 mK. The depth of the trap is directly related
to the energy shift of the state in the microwave field. This represents
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the maximum kinetic energy that an atom can have without escaping
from the trap. Additional calculations (not shown) indicate that for
the |50s⟩ and |50p⟩ states, the frequency shift of the corresponding
turning point is ≃ 4 GHz for νd = 12.15 GHz with Fosc ≃ 5V/cm,
giving a trap depth of around 300 mK.

4.6 Conclusions

We have observed coherent Rydberg-atom–microwave-field interactions
in the ultrastrong-driving regime for which Ω ∼ ν0. The experimental
data are in excellent quantitative agreement with the results of numer-
ical calculations of the energy-level structure and spectral intensities of
the atom dressed by the microwave field. These were performed using
Floquet methods and comparisons were made with simplified models.

These simpler models within the two-level and rotating-wave ap-
proximations demonstrate that for the Rydberg states used in the ex-
periments, these approximations are valid provided Ω ≲ 0.5ν0. The
results presented are of importance for applications of Rydberg atoms
in the detection and precise calibration of microwave fields.

The thorough understanding of the energy-level structure of high
Rydberg states in the ultrastrong-driving regime obtained in this work
has allowed an evaluation of microwave trapping schemes for the con-
finement of cold Rydberg atoms and molecules. The trap depths that
are expected to be achieved in such devices, based on the parameters
of the experiments reported here, are appropriate for applications in
hybrid quantum information processing and the preparation of cold
samples of Rydberg atoms and molecules.
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5
Interferometers and Rydberg atom interferometry

5.1 Origins of atom interferometry

Over the past 150 years, numerous types of interferometers have been
developed. Examples like the Mach-Zehnder interferometer, split a
single wave source into two physically separated paths, which are then
brought back together. The measurement of the relative phase δϕ be-
tween the two paths contains information about differences in their
lengths or the media through which they propagate. Others, such
as Young’s double-slit experiment, split a single wavefront into multi-
ple point sources. The specifics vary depending on the type of wave
involved and the quantity being observed, but fundamentally, these
interferometers convert phase differences into measurable quantities.

The use of interference as a scientific tool originates from studies on
the nature of light. This enduring question preoccupied many great
thinkers throughout the Classical, Islamic Golden, and Renaissance
ages. For centuries, the general consensus was that light consisted of
particles. However, in the 17th century, Young’s demonstration of the
interference of light [72] provided strong evidence that light behaves as
a wave. Further proof was provided by Fresnel, who unified Young’s
findings with Huygens’ wave theory of light.

Accepting light as a wave necessitated the existence of a medium
through which it propagates, analogous to how water waves propa-
gate through water and sound waves through air. This hypothetical
medium, called the luminiferous aether, was theorized to permeate the
entire universe. However, the properties of the aether and how it in-
teracted with moving bodies remained open questions in the second
half of the 19th century.

Interferometry was the key tool for probing the aether. If light
waves travelled through the aether, then the Earth’s motion through
the aether would affect the speed of light in different directions, lead-
ing to measurable phase differences in an interferometer. Fizeau was
the first to design such an experiment in 1851, using light propagation
in moving water [73]. Later, in the 1880s, Michelson and Morley pi-
oneered highly precise interferometers using a rotating design. Their
experiments found no difference in the speed of light due to Earth’s
motion through the aether, ultimately disproving its existence and set-
ting the stage for tests of special relativity [74].
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Around this time, physics was undergoing a major upheaval, with
the classical intuition being challenged by new experimental findings.
Key developments included Planck’s introduction of quantized energy
levels to explain black-body radiation [75] and Einstein’s proposal of
light quanta (photons) to explain the photoelectric effect [76]. These
ideas led to the formulation of quantum mechanics and the acceptance
of wave-particle duality.

In 1924, de Broglie postulated the wave-like nature of matter, intro-
ducing the concept that particles have an associated wavelength, now
known as the de Broglie wavelength [77]. This wavelength is given by

λ =
h

p
, (5.1)

where h is Planck’s constant and p is the momentum of the particle.
This groundbreaking idea established that particles exhibit wave prop-
erties, showing their de Broglie wavelengths are inversely proportional
to their momentum.

Soon after this conjecture, experimental evidence of matter-wave
behaviour emerged. In 1927, Davisson and Germer observed the diffrac-
tion of electrons scattered off nickel crystals [78], and independently,
Thomson observed electron diffraction through a celluloid film [79].
These experiments confirmed the wave nature of particles and marked
the beginning of matter-wave interferometry.

These techniques eventually led to the development of the electron
biprism [80] in the 1950s, enabling the recreation of Young’s double-slit
experiment with electrons [81]. This also allowed for tests of quantum
mechanical effects such as the Aharonov-Bohm effect [82] via electron
wave interference [83], [84].

In parallel, the development of interferometry with atoms was pro-
gressing. In 1922, Stern and Gerlach performed an experiment demon-
strating that the angular momentum of atoms is quantized [85]. In
their experiment, a beam of silver atoms was passed through an in-
homogeneous magnetic field, resulting in the deflection of the atoms
based on their magnetic moments, as illustrated in Figure 5.1.

Figure 5.1: The experiment performed
by Stern and Gerlach in 1922 to de-
flect silver atoms via an inhomoge-
neous magnetic field. (a) shows a
schematic of the experiment, and (b)
shows the results taken from [85]; the
splitting of the beam (right) was the
first demonstration of the quantiza-
tion of the magnetic moment, specif-
ically probing the spin angular mo-
mentum of electrons (spin- 1

2
particles)

within the atoms.

This experiment provided direct evidence of the quantization of an-
gular momentum, specifically the electron’s spin angular momentum.
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According to classical physics, the magnetic moment of an atom could
take any orientation, and so, one would expect a continuous distri-
bution of deflections. However, the observed discrete splitting of the
atomic beam confirmed that the magnetic moment, and thus angular
momentum, is quantized.

Rabi modified this apparatus in 1938 [86]. Rabi realized that an os-
cillating magnetic field on resonance could induce transitions between
different magnetic sublevels mℓ in a coherent manner [87]. Applying
this additional oscillating field in the Stern-Gerlach apparatus, he de-
veloped a method to measure transition frequencies between quantized
energy levels. This forms the basis of magnetic resonance spectroscopy,
and remains relevant for present-day atom-based interferometers.

Ramsey further refined this technique by splitting the interaction
with the oscillating magnetic field into two separate regions [88]. By
separating the interaction regions, an interferometer was formed where
the frequency of the oscillating field acted as a reference clock against
the atomic transition frequency. This method greatly increased the
precision of spectroscopic measurements and is known today as Ram-
sey interferometry.

An alternative perspective on the Ramsey interferometer is to com-
pare it with the Mach-Zehnder interferometer. While the Mach-Zehnder
interferometer uses beam splitters to separate and recombine two paths
in real space, the Ramsey interferometer uses oscillating fields to sep-
arate and recombine paths in the internal quantum state space of the
atom, effectively forming an interferometer in the spin- 12 Hilbert space.

Serge Haroche utilized the Ramsey technique to perform experi-
ments probing the interaction between light and matter [89]. These
experiments used highly excited Rydberg states of atoms with tran-
sitions in the microwave frequency range. By passing beams of these
atoms through high-Q microwave resonators configured to produce a
Ramsey interferometer, the few-photon [90] and single-photon regimes
could be explored.

Performing interferometry with atoms is appealing because their de
Broglie wavelengths are significantly shorter than those of photons in
optical interferometry. Shorter wavelengths correspond to higher mo-
mentum particles, which can lead to increased sensitivity to certain
physical effects. Specifically, the phase shift accumulated in an inter-
ferometer scales inversely with the de Broglie wavelength. Therefore,
using atoms with shorter de Broglie wavelengths allows the interfer-
ometer to probe smaller spatial scales and detect finer variations in
potentials or inertial forces.

Furthermore, atoms are massive particles, inherently sensitive to in-
ertial forces such as accelerations and rotations, as well as gravitational
potentials. This sensitivity enables atom interferometers to perform
precise measurements of inertial effects, making them invaluable in
applications like gravimetry, seismology, and inertial navigation [91],
[92]. The ability to measure gravitational acceleration with high ac-
curacy has profound implications for geophysics and the detection of
gravitational anomalies.
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Another significant advantage is the ability to coherently manipu-
late the internal states of atoms. Atoms possess rich internal struc-
tures with discrete energy levels that can be precisely controlled using
electromagnetic fields, such as lasers and microwaves. This control
allows for the creation of superposition states, and ability to impart
controlled momentum transfer allowing the implementation of sophis-
ticated interferometry schemes that probe fundamental quantum phe-
nomena [93]. The manipulation of internal states enhances the versa-
tility of atom interferometers, enabling them to measure a wide range
of physical effects.

Atom interferometers can be configured to operate in different regimes,
providing versatility in measurement capabilities. External-state in-
terferometers manipulate the atomic motion, making them highly sen-
sitive to inertial effects, while internal-state interferometers focus on
the internal quantum states, allowing for precise measurements of en-
ergy differences due to external fields. Mixed interferometers combine
both approaches for simultaneous sensitivity to multiple effects [94].
This flexibility enables atom interferometers to be tailored to specific
measurement objectives across various scientific disciplines.

In summary, the inherent properties of atoms, including their short
de Broglie wavelengths, mass, and internal structures, confer signifi-
cant advantages in interferometry. These advantages enhance phase
sensitivity, enable precise measurements of inertial and gravitational
effects, and allow for versatile configurations tailored to specific mea-
surement needs.

5.2 Types of atom interferometry

Since the pioneering experiments of the 1990s, advancements in atom
cooling and trapping have increased interferometer interrogation times
and phase sensitivities. Matter-wave interferometers, which exploit
the wave nature of atoms, are sensitive to the trajectory of spatially
separated wave packets. Because atoms are massive particles, they are
well suited for use as gravimeters and accelerometers. More recently,
there has been a shift in focus toward translating these experiments
from the laboratory to practical real-world applications [95].

In this section, we discuss the broad categories of atom interfer-
ometers, categorizing interferometers based on how they manipulate
atomic states and what physical effects they measure. We distinguish
between external-state, internal-state, and mixed (external and inter-
nal) atom interferometers.

5.2.1 External-state atom interferometers

External-state atom interferometers manipulate the atomic wave pack-
ets in real space by altering their external degrees of freedom—such
as position and momentum—without changing their internal energy
states. By focusing solely on the external paths of the atoms, these
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interferometers become inherently sensitive to inertial effects like ac-
celeration and rotation. This sensitivity arises because inertial forces
directly influence the atoms’ trajectories, leading to measurable phase
shifts when the paths are recombined.

Atoms

Detector 1

Detector 2
BS1 BS2

M1

M2

Figure 5.2: Abstract external-State
Atom Interferometer: Atoms are split
into spatially separate paths using
beam splitters and mirrors. The paths
recombine before detection.

In these interferometers, laser pulses act as beam splitters and mir-
rors, employing mechanisms like Bragg diffraction to impart momen-
tum to the atoms through photon recoil while keeping their internal
states unchanged [96], [97]. Bragg pulses coherently scatter the atoms,
changing their momentum without altering their internal energy lev-
els. This selective manipulation allows the atoms to accumulate phase
differences based solely due to external influences along their paths,
effectively exposing them to inertial effects.

A prominent example is the Mach-Zehnder interferometer imple-
mented with Bragg pulses. In this setup, atoms undergo a sequence
of laser pulses. First a π/2 pulse to coherently split the atomic wave
packet into two spatially separate paths, then a π pulse to redirect
(or ”mirror”) the paths, and a final π/2 pulse to recombine them—all
achieved without changing the internal state of the atoms. Since the in-
ternal states remain unchanged throughout this process, any observed
phase shift upon recombination is attributed entirely to differences in
the external paths caused by inertial forces like gravity or acceleration.

The phase shift ∆ϕ due to an acceleration a is given by:

∆ϕ = 2keff aT
2 (5.2)

where keff is the effective wave vector of the Bragg pulses, and T is
the time between pulses. This quadratic dependence on time makes
external-state interferometers exceptionally sensitive to inertial forces.
By manipulating only the external degrees of freedom, these interfer-
ometers maximize their exposure to inertial effects, enabling precise
measurements of external forces acting on the atoms during their free
evolution.

External-state atom interferometers using Bragg diffraction have
achieved remarkable sensitivities. Ground-state matter-wave interfer-
ometers with interrogation times on the order of seconds have reached
nanogravity (ng) sensitivities in laboratory settings [91], [98]. Such
high sensitivity is crucial for applications in precision measurements
of gravity, rotational sensing for navigation systems, and tests of fun-
damental physics.
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By exclusively altering the external paths and keeping the inter-
nal states unchanged, external-state atom interferometers effectively
couple to inertial effects. This characteristic distinguishes them from
other types of interferometers and highlights their unique capability
to probe inertial forces with high precision.

5.2.2 Internal-state atom interferometers

|g⟩

π/2 Pulse

1√
2
(|g⟩+ |e⟩)

π/2 Pulse

Measurement

Figure 5.3: Internal-state atom inter-
ferometer: Atoms remain in the same
spatial path but transition between
internal states using coherent pulses.
The phase difference accumulates due
to energy differences between states.

Internal-state atom interferometers rely on manipulating the inter-
nal quantum states of atoms without significantly altering their exter-
nal motion. These interferometers are sensitive to energy differences
between internal states, which can arise from interactions with elec-
tromagnetic fields or other perturbations. The Ramsey interferometer
is a classic example of this type.

In a Ramsey interferometer [88], two coherent oscillating fields drive
transitions between internal states, creating a superposition. The
phase difference accumulates due to energy differences during the free
evolution between pulses. This phase difference is then mapped onto
measurable populations in the internal states upon application of the
second pulse.

Internal-state interferometers are ideal for precision spectroscopy
and measurements of energy shifts due to interactions with fields. They
form the basis of atomic clocks, where the precise measurement of the
transition frequency between two internal states of an atom is used
as reference to define the second [99]. For instance, caesium atomic
clocks utilize the hyperfine splitting of the ground state of caesium-133
atoms to maintain precise time standards [100].

Serge Haroche’s experiments with Rydberg atoms in microwave cav-
ities [89] are a notable example of internal-state interferometry. By
using highly excited states and precise control over the interaction
with single photons, these experiments explored fundamental aspects
of quantum electrodynamics and quantum information. The ability
to control and measure the quantum states of Rydberg atoms allowed
for the demonstration of quantum entanglement and the observation
of decoherence processes at the quantum level.

Moreover, internal-state interferometers have been employed to study
fundamental physics, such as tests of quantum electrodynamics, mea-
surements of atomic polarizabilities, and investigations of parity vi-
olation [101]. The sensitivity to internal energy shifts makes these
interferometers powerful tools for probing interactions that affect the
atomic energy levels.

Advancements in laser technology and cooling techniques have sig-
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nificantly enhanced the capabilities of internal-state interferometers.
Developments in laser stabilization and narrow-linewidth lasers have
improved the coherence times and spectral resolution achievable in
these systems [102]. Additionally, the use of ultracold atoms trapped
in optical lattices has minimized Doppler and recoil effects, leading to
optical lattice clocks with unprecedented precision [103].

Applications of internal-state interferometers extend beyond time-
keeping. They are employed in precision measurements of fundamen-
tal constants, such as the fine-structure constant and the electron-to-
proton mass ratio [104]. Furthermore, they serve as sensitive probes
for detecting minute external fields, making them valuable in fields like
magnetometry and gravitational sensing [105].

5.2.3 Mixed atom interferometers

|g⟩
π/2 Pulse|g⟩

|e⟩

π Pulse |e⟩

|g⟩

π/2 Pulse

Measurement

Figure 5.4: Mixed atom interferome-
ter: Atoms undergo both spatial split-
ting and internal state transitions,
combining the sensitivities of external
and internal interferometers.

Mixed atom interferometers combine both internal and external
state manipulations. They involve transitions between internal states
accompanied by momentum transfers, allowing simultaneous sensi-
tivity to both potential energy differences and inertial effects. The
Ramsey-Bordé interferometer is a prominent example of this type.

The Ramsey-Bordé interferometer [94], [106] utilizes four traveling-
wave laser pulses to manipulate the atoms. The laser pulses drive
two-photon Raman transitions between internal states, imparting mo-
mentum kicks to the atoms due to photon recoil. This creates spatially
separated wave packets in different internal states.

In the Ramsey-Bordé interferometer, the accumulated phase differ-
ence includes contributions from both the internal state energies and
the external motion of the atoms. The interferometer is sensitive to
both inertial effects and energy shifts due to interactions with external
fields. This hybrid approach enables versatile measurements, allowing
the interferometer to probe effects that purely internal or external
interferometers cannot.

For example, the phase shift in a Ramsey-Bordé interferometer due
to acceleration is given by [94]

∆ϕ = (k1 + k2)aT
2, (5.3)

where k1 and k2 are the wave vectors of the two photons involved in
the Raman transition, a is the acceleration, and T is the time be-
tween pulses. The interferometer is also sensitive to energy differences
between the internal states, which can be affected by external fields.

Advancements in cooling and trapping techniques have enabled the
use of ultracold atoms in these interferometers, increasing interrogation
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times and enhancing sensitivity. Bose-Einstein condensates (BECs)
have been utilized to achieve high-contrast interference patterns [107].

In mixed atom interferometers, the coupling of internal state tran-
sitions with momentum transfer allows inertial effects to be read out
from the internal state phases. When atoms undergo transitions be-
tween internal states while receiving momentum kicks, any inertial
forces acting on the atoms during their propagation cause phase shifts
that are imprinted onto the internal state populations. This contrasts
with external-state interferometers, where inertial effects are measured
through changes in the external paths without altering internal states.

In the Ramsey-Bordé interferometer, the final populations of the
internal states after recombination depend on the accumulated phase
difference, which includes contributions from both the internal energy
differences and the inertial effects experienced due to the atoms’ mo-
tion. Therefore, by measuring the internal state populations, one can
infer both the inertial effects and any potential energy shifts affecting
the internal states.

This dual sensitivity enhances the interferometer’s versatility. While
external-state interferometers are primarily sensitive to inertial effects
like acceleration and rotation, and internal-state interferometers are
sensitive to energy differences due to interactions with external fields,
mixed interferometers can simultaneously probe both types of effects.
This makes them powerful tools for precision measurements, such as
tests of fundamental constants, measurements of gravitational accel-
eration, and exploration of quantum electrodynamics effects.

Mixed atom interferometers have been employed in various preci-
sion measurement experiments. For example, they have been used to
measure the fine-structure constant [108] and to test the equivalence
principle [109]. Advancements in laser technology and cooling tech-
niques have facilitated the use of ultracold atoms and Bose-Einstein
condensates in these interferometers, leading to longer interrogation
times and improved coherence [110]. The ability to manipulate both
internal and external degrees of freedom provides greater control over
the interferometric processes, enhancing sensitivity and enabling new
experimental possibilities.

5.3 Rydberg atom interferometry

Rydberg atoms, characterized by their high principal quantum num-
bers, possess large electric dipole moments and polarizabilities. These
properties make them highly sensitive to electric fields and suitable for
exploring new regimes in matter-wave interferometry.

Serge Haroche and colleagues pioneered the use of Rydberg atoms
in internal-state interferometry [89]. In their experiments, beams of
Rydberg atoms interacted with high-Q microwave cavities, forming
a Ramsey interferometer. The atoms underwent transitions between
Rydberg states induced by microwave fields, allowing for precise ma-
nipulation and measurement of their internal quantum states. This
internal-state Ramsey interferometry enabled the exploration of fun-
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damental quantum phenomena, such as the interaction between light
and matter at the single-photon level [90].

Building upon these foundations, researchers have investigated the
coupling between the internal states of Rydberg atoms and their ex-
ternal motion. The large electric dipole moments of Rydberg atoms
lead to significant state-dependent forces when they are subjected to
inhomogeneous electric fields. In such fields, different internal states
experience different accelerations due to the spatial variation of the
potential energy associated with the Stark effect. This mechanism
is analogous to the Stern-Gerlach effect, where particles with mag-
netic moments are deflected by inhomogeneous magnetic fields based
on their spin states.

The use of state-dependent accelerations introduces a coupling be-
tween the internal and external degrees of freedom of the atoms. This
coupling allows for the implementation of interferometry schemes where
the phase accumulation depends on both internal state dynamics and
external motion. Specifically, when Rydberg atoms traverse an inho-
mogeneous electric field, the differential accelerations between states
lead to spatially separated paths, enabling the observation of interfer-
ence effects that are sensitive to both internal state transitions and
external forces.

However, practical implementations of such interferometers with
neutral atoms have historically faced challenges, notably the Humpty-
Dumpty effect [111]. This effect refers to the difficulty in maintaining
coherence due to the dispersion of atomic wave packets under inhomo-
geneous forces. The spatial separation of the internal states can lead
to which-path information becoming accessible to the environment,
resulting in decoherence and the degradation of interference patterns.

Modern experimental techniques have addressed these challenges
by utilizing precise control over electric fields and employing methods
to preserve coherence. Palmer and Hogan here at UCL have recently
demonstrated matter-wave interferometers using electric field gradi-
ents acting on highly excited Rydberg states of helium [41]. They
performed a half-loop interferometer experiment using circular Ryd-
berg states, where the primary phase shifts were due to the Stark effect
rather than inertial effects. Although non-adiabatic transition losses
limited the experiment, their work demonstrated the feasibility of us-
ing Rydberg atoms and electric fields to manipulate atomic trajectories
in interferometry schemes.

In subsequent experiments, that are detailed in Chapter 6, we repli-
cated the interferometry scheme of Palmer and Hogan using low an-
gular momentum (ℓ) Rydberg states instead of circular states. By
employing low-ℓ states, we managed to overcome the non-adiabatic
transition losses that previously limited the coherence of the interfer-
ometer. The low-ℓ states experience different Stark shifts and forces
compared to circular states, allowing for improved control over state-
dependent accelerations.

Despite successfully mitigating non-adiabatic losses, the experiment
was limited by dephasing across the atomic beam due to residual in-
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homogeneities in the electric field and variations in atomic velocities.
This dephasing led to a reduction in the contrast of the interference
fringes, highlighting the need for precise control over both the atomic
ensemble and the external fields.

The coupling between internal and external degrees of freedom in
Rydberg atom interferometry opens avenues for creating interferome-
ters sensitive to both inertial effects and internal state dynamics. In
Chapter 7, we explore interferometry schemes that exploit this cou-
pling via the motional Stark shift. The motional Stark shift arises when
atoms move through an electric field, leading to velocity-dependent
energy shifts in the internal states. By designing interferometry se-
quences that utilize these shifts, we can create interferometers that
are sensitive to both inertial forces (through external motion) and po-
tential energy differences (through internal state transitions).

This approach allows us to probe effects that are inaccessible to
ground-state atom interferometers or traditional internal-state inter-
ferometers. By carefully controlling the electric fields and the interfer-
ometry sequence, we can achieve precise measurements while mitigat-
ing the effects of environmental noise and decoherence. Understand-
ing the interplay between internal and external dynamics in Rydberg
atoms is crucial for advancing the capabilities of atom interferometry
and exploring fundamental quantum phenomena.

5.4 Modelling a Rydberg-atom interferometer

5.4.1 Atom interferometers near the classical limit

Matter-wave interferometry differs fundamentally from optical inter-
ferometry due to the quantum nature of atoms, which exhibit both
wave-like and particle-like properties. Calculations of the phase differ-
ence in a matter-wave interferometer is more complex because multiple
contributing factors must be considered, such as kinetic and potential
energies, and interactions with external fields.

In optical interferometry, the phase difference ∆ϕ between two
paths is directly related to the optical path length difference ∆L and
the refractive index n by ∆ϕ = kn∆L, where k = 2π/λ is the wave
number of the light with wavelength λ. In matter-wave interferome-
try, however, the phase difference arises from the difference in action
S along the paths, given by the integral of the Lagrangian L:

S =

∫ tf

t0

L(x, ẋ, t) dt, (5.4)

where t0 and tf are the initial and final times of the interferometry
sequence, x is the position, and ẋ is the velocity of the atom.

Different techniques for calculating the difference in action between
paths include Wigner function methods [112] and representation-free
approaches based on the Feynman path integral [113]. In this thesis, we
adopt a semi-classical approach based on the Feynman path integral.
This is valid when the action satisfies S ≫ h̄, where h̄ is the reduced
Planck constant.
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In the semi-classical approximation, the evolution of the atomic
wave packet is determined by the expectation values of position ⟨x̂⟩ and
momentum ⟨p̂⟩, which follow classical trajectories. The time evolution
of these expectation values is governed by Ehrenfest’s theorem:

d

dt
⟨x̂⟩ = ⟨p̂⟩

m
,

d

dt
⟨p̂⟩ = −

Æ
∂Ĥ

∂x̂

∏
,

(5.5)

where m is the mass of the atom, Ĥ(x̂, p̂, t) is the Hamiltonian opera-
tor, and the angle brackets denote expectation values.

These equations are analogous to Hamilton’s equations in classi-
cal mechanics, describing the motion of a classical particle under the
influence of a potential. This approximation holds when variations
in the Hamiltonian are small over the spatial extent of the atomic
wave packet, ensuring that all components acquire the same phase
shift within the experimental sensitivity.

The semi-classical approach remains valid even for interferometers
with macroscopic arm separations (up to half a meter) and long inter-
rogation times (on the order of seconds) [98]. Within this approxima-
tion, the total phase difference ∆ϕ acquired in an interferometer can
be expressed as the sum of three terms [114]:

∆ϕ = ϕlaser + ϕprop + ϕsep. (5.6)

The term ϕlaser is the phase difference acquired due to interactions
with the control pulses. This phase is significant in optical interfer-
ometers where lasers with wavelengths in the 400–800 nm range act
as rulers, but it is negligible in our microwave-driven Rydberg inter-
ferometer, because the wavelengths involved are much larger than the
spatial separations of the atomic states.

The propagation phase ϕprop contains the difference in action be-
tween the two arms of the interferometer. It is given by:

ϕprop =
1

h̄
(S1 − S2) =

1

h̄

(∫ tf

t0

L1(t) dt−
∫ tf

t0

L2(t) dt

)
, (5.7)

where the subscripts 1 and 2 label the two arms of the interferom-
eter, and Li(t) is the Lagrangian for arm i, defined as:

Li(t) =
1

2
m⟨ẋi(t)⟩2 −Wi(t). (5.8)

Here, ⟨ẋi(t)⟩ is the velocity along arm i, and Wi(t) is the potential
energy, which may depend on the internal state |ni, ℓi,mℓi⟩ and posi-
tion ⟨xi(t)⟩. The potential energy Wi(t) includes any Stark or Zeeman
shifts due to electromagnetic fields at the atom’s location.

The separation phase ϕsep is proportional to the separation between
the two arms at the time of the final beam splitter and is given by:

ϕsep =
1

h̄

(
⟨p1(tf )⟩+ ⟨p2(tf )⟩

2

)
(⟨x2(tf )⟩ − ⟨x1(tf )⟩) . (5.9)
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This phase term disappears for a closed-loop interferometer where
the paths recombine perfectly at the final beam splitter (⟨x1(tf )⟩ =

⟨x2(tf )⟩). However, it must be considered in interferometers where
the paths do not fully recombine, such as the half-loop interferometer
discussed in Chapter 6.

5.4.2 Ramsey-Hahn Rydberg atom interferometry

The experiments in Chapters 6 and 7 utilize a Ramsey-Hahn type
interferometry scheme with Rydberg atoms. In this scheme, two Ry-
dberg states |n1⟩ and |n2⟩ form a pseudo-spin system manipulated
using resonant microwave pulses. In all interferometric experiments
demonstrated in this thesis the |56s⟩ and |57s⟩ states are used. Time-
dependent static electric fields are applied which modify the internal
energies of the states and may induce forces. In total three microwave
pulses with durations π/2, π and π/2 are applied to coherently control
the atom.

At time t = 0, considered to be immediately after a first π/2 pulse,
an atom in the interferometer is in the state,

|ψ(t = 0)⟩ =
1√
2

[
|n1(0)⟩|p1(0)⟩+ |n2(0)⟩|p2(0)⟩

]
, (5.10)

where |ni(t)⟩ and |pi(t)⟩ represent the internal Rydberg state with
principal quantum number n, and the external momentum state in
arm i, respectively. After a time t′, the state of the atom evolves to

|ψ(t = t′)⟩ = 1√
2

[
e−iϕ1(t

′)|n1(t′)⟩|p1(t′)⟩+ e−iϕ2(t
′)|n2(t′)⟩|p2(t′)⟩

]
,(5.11)

where ϕi is the phase accumulated in arm i and is given by ϕi =∫ t′

0
Li(t, n)dt, where the Lagrangian is a function of the internal state

of the arm.
At time t = tπ, the internal Rydberg-state population is inverted

upon the application of a π rotation on the Bloch sphere.

n1(t) =


56, 0 ≤ t < tπ + Tπ/2

57, tπ + Tπ/2 ≤ t < tf,

and

n2(t) =


57, 0 ≤ t < tπ + Tπ/2

56, tπ + Tπ/2 ≤ t < tf.

After the application of the second electric field pulse, the interfer-
ometry sequence is completed at time t = tf, with a final π/2 rotation
of the internal Rydberg state population on the Bloch sphere. This
final π/2 pulse leads to a superposition of each internal Rydberg state
with each of the final momentum states such that

|ψ(t = tf)⟩ =
1

2

¶
e−iϕ1(tf) [|56⟩+ |57⟩] |p1(tf)⟩+ . . .

e−iϕ2(tf) [|56⟩ − |57⟩] |p2(tf)⟩
©
. (5.12)
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Rydberg state-selective detection, implemented in the experiments
by pulsed electric field ionization, was realised in the calculations by
the application of the measurement operator M̂ = |n⟩⟨n| ⊗ I, where I
is the identity over momentum states.

The probability of finding the atom in state |56s⟩ is given by:

P56s = |⟨56s|ψ(t = tf )⟩|2 =
1

2
[1 + cos (∆ϕ)] . (5.13)

Similarly, the probability of finding it in state |57s⟩ is:

P57s = |⟨57s|ψ(t = tf )⟩|2 =
1

2
[1− cos (∆ϕ)] . (5.14)

Here we have ∆ϕtot(tf) = ϕ2(tf) − ϕ1(tf) + ϕrm, which is the to-
tal phase difference between the two arms, making sure to include
the separation phase. The contrast C reflects the spatial overlap of
the wavepackets in each arm of the interferometer at time tf, i.e.,
⟨p1(tf)|p2(tf)⟩.

C =
∣∣∣¨ψ(1)

spatial(tf )
∣∣ψ(2)

spatial(tf )
∂∣∣∣ . (5.15)

In our semi-classical approach, we assume C = 1. More comprehensive
treatments that include the effects of wave packet overlap can be found
in the literature [115].

In the following chapters we present results of investigations of Ryd-
berg state interferometry, and we make use of these calculation tools.





6
Longitudinal Stern-Gerlach interferometry
with low-ℓ Rydberg states

This chapter presents results in investigations of Rydberg state
interferometry with helium atoms in low-ℓ Rydberg states. This orig-
inal work is published in [116]. The contents of this section have been
adapted and extended from this publication.

6.1 Background

For atoms or molecules prepared in coherent superpositions of Rydberg
states with different static electric dipole moments, or static electric
dipole polarizabilities, the methods of Rydberg-Stark deceleration can
be exploited to generate coherent superpositions of momentum states
for Rydberg state interferometry. This type of electric Rydberg-atom
interferometry was first demonstrated for atoms prepared in coherent
superpositions of circular Rydberg states [41].

Circular Rydberg states have long fluorescence lifetimes, and pairs
of circular states that differ in their value of the principal quantum
number n, by 1 can act as quasi-two-level systems with long coherence
times and strong single-photon electric dipole transitions at microwave
frequencies. However, the non-adiabatic evolution of these states in
the fast-pulsed electric fields applied for interferometry imposes limi-
tations on the achievable displacement of the momentum components
for which interference fringes can be observed.

Figure 6.1: Interference fringes ob-
tained in Stern-Gerlach type interfer-
ometery experiments with circular Ry-
dberg states of triplet helium. The pri-
mary loss of signal as the voltage is
increased is from non-adiabatic losses.
The figure shows the loss of popula-
tion as the time τg to ramp up the
voltage to Vgrad is decreased. Experi-
ments in this section aim to overcome
these non-adiabatic losses by using
low-ℓ Rydberg states. Figure taken
from [41].

This chapter presents results of experiments in which these limi-
tations are circumvented through the use of atoms in superpositions
of low-ℓ states. This has allowed for the observation of the coherent
evolution of atomic momentum components with displacements of up
to 0.75 nm, i.e., ∼ 5 times larger than in previous experiments with
circular Rydberg states. This provides evidence for the viability of
matter-wave interferometery with Rydberg states.

The dimensions of the atoms used in these experiments, as given
by the spatial extent of the Rydberg electron charge distribution, are
∼ 500 nm. These exhibit induced electric dipole moments of up to
9450 D. These large dimensions and electric dipole moments offer op-
portunities for tests of quantum mechanics through studies of deco-
herence and wave-function collapse.



78

These experiments implement a half-loop scheme in which the mo-
mentum states are coherently split, but are not fully brought back
together. The idealised case of this is shown in Figure 6.2. The two
paths return to the same velocity at the end of the scheme, but with
a constant separation. This configuration limits the sensitivity of the
interferometer to inertial forces due to the separation phase cancelling
the phase accumulated by the kinetic energy [117][114]. The phases
seen in our scheme are instead primarily the result of the Stark phases
accumulated by the atoms as they pass through the region of inho-
mogenous electric field.

The experiments explore the challenges associated with performing
matter-wave interferometery in supersonic beams of Rydberg states.
These challenges include, maintaining coherence between superposi-
tions of Rydberg states in the presence of force generating electric-field
gradients, and understanding and controlling the de-phasing across a
beam of atoms due to the finite temperature of the beam and in-
homogeneities in the apparatus. Understanding and mitigating such
challenges will be required to eventually implement a full-loop scheme
where the spatial path of the two arms are recombined.
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Figure 6.2: Idealised half-loop Stern-
Gerlach type interferometer. Two pe-
riods of constant acceleration sepa-
rated by a pulse π. This configuration
results in the two paths travelling at
the same velocity but with a constant
separation.

The realisation of such a closed full-loop interferometer would allow
for sensitivity to inertial effects via the Kennard phase [118]. This
phase is accumulated due to the acceleration of the atomic paths and
is strongly dependent on the period of time, ∆ϕ ∝ T 3, over which the
interferometry scheme is implemented [115], [119].

6.2 Experimental procedure

A schematic diagram of the experimental apparatus is shown in Fig 6.3(a).
The excitation and interferometry region occur between a pair of

copper electrodes labelled E1 and E2 in Figure 6.3(a). These elec-
trodes were 70 mm wide and 105 mm long in the dimensions x and
z, respectively, and orientated in a wedge configuration that increases
linearly along the beam path. At the end closest to (furthest from)
the skimmer, they were separated in the y dimension by 11.5 mm
(29.7 mm).

Between E1 and E2 the atoms were excited to the 1s56s 3S1 (|56s⟩)
Rydberg level using the 1s2s 3S1 → 1s3p 3P2 → 1s56s 3S1 two-color
two-photon laser photoexcitation scheme [68]. This was driven by co-
propagating CW laser radiation at wavelengths of λUV = 388.975 nm
and λIR = 786.736 nm for each step, respectively.

After laser photoexcitation, the Rydberg atoms were subjected to a
π/2−π−π/2 Hahn-echo sequence of microwave pulses which coherently
transferred population between the |56s⟩ and 1s57s 3S1 (|57s⟩) levels.
The |56s⟩ → |57s⟩ transition was driven on resonance as a single-colour
two-photon transition at a microwave frequency of ω56s 57s/2 = 2π ×
18.530 975 GHz. In the time intervals between the microwave pulses,
pulsed voltages were applied to E1 to generate spatially inhomogeneous
electric fields at the position of the atoms and exert state-dependent
forces on them.
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Figure 6.3: (a) Schematic of the exper-
imental apparatus showing the wedge
shaped plates in the longitudinal di-
rection of the beam. (b) Sequence of
microwave and voltage pulses applied
to perform electric Rydberg-atom in-
terferometry.

The complete sequence of microwave and voltage pulses employed in
the experiments is depicted in Figure 6.3(b). At the time t0, a pulsed
potential was applied to E2 to tune the atoms into resonance with the
frequency-stabilised laser beams and populated the |56s⟩ level. This
pulsed potential had a rise time τe = 370 ns and was maintained at its
maximal amplitude for a time Te during which the atoms were excited.

The value of Te determined the spatial extent of the ensemble of
Rydberg atoms excited in the z dimension. Te was set to either 800
or 1800 ns, such that the excited ensemble was prepared with a length
in the y dimension of ∼ v0 Te ≃ 1.6 or ≃ 3.6 mm, respectively. This
gave a controllable parameter to test the effect of dephasing on the
interference fringes.

To implement the interferometry scheme, at time t0+td, where td ≃
2400 ns, a first π/2 pulse of microwave radiation, tuned to resonance
with the two-photon |56s⟩ → |57s⟩ transition, was applied for a time
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Tπ/2 ≃ 150 ns. Following the application of this first π/2 pulse, to
prepare the atoms in an equal amplitude coherent superposition of
Rydberg states, a first electric-field gradient pulse was generated at the
position of the atoms by applying a pulsed potential with amplitude
Vgrad to E2.

This pulsed potential had rise and fall times τg = 130 ns, and a
duration Tg. After Vgrad was switched back to 0 V, the π pulse in the
Hahn-echo sequence was applied at the time t0 + td + Tπ/2 + 5000 ns.
This pulse had a duration Tπ ≃ 2Tπ/2 and was followed by a second
electric-field gradient pulse with identical values of Vgrad, τg and Tg to
the first. A final π/2 microwave pulse was applied 1000 ns after the π
pulse to complete the interferometry sequence.

In ideal conditions, the microwave pulses would be equally spaced
rather than the asymmetric 5 µs and 1 µs that were used in the exper-
iment. This would allow for a better cancellation of spurious phases
due to stray fields. However, the purity of the microwave field con-
strained the positions within the wedge where a good coherence of
the Rabi pulses could be achieved. Furthermore, the primary aim of
this experiment of proving the coherence of low-ℓ Rydberg states for
interferometery schemes the purity of the Rabi pulses was prioritised.

After applying the final π/2 microwave pulse, the atoms travelled
for ∼ 60 µs to the detection region in the apparatus between E3 and
E4. A slowly-rising pulsed potential was then applied to E3, while E4
was maintained at 0 V to generate a time-dependent electric field that
ionised the Rydberg atoms. The resulting electrons were collected on
an MCP detector.

6.3 Numerical model

To model the experiments presented in this chapter, we perform nu-
merical simulations using the semi-classical approach outlined above.
The simulations aim to capture the dephasing across the atomic beam.
This is achieved by simultaneously simulating a bunch of atoms and
calculating the averaged probability across the bunch.

The simulation begins with the initialization of an ensemble of
atoms, with position and velocity distributions matching those of the
experimental atomic beam. The initial positions y(ti) and velocities
ẏ(ti) are sampled from probability distributions representing the spa-
tial and momentum spreads. The velocities are sampled from a Gaus-
sian distribution where ẏ(ti) = 2000± 50 m/s.

The propagation distance of the atoms during the excitation time
Te was significant, i.e., (v0 Te > 1 mm), compared to the waist of the
focused laser beams used for Rydberg state photoexcitation (∼ 100 µm
FWHM). So, the initial longitudinal position of each atom at the time
t = Ti of the first π/2 microwave pulse of the interferometry sequence
was generated by random sampling from a uniform distribution of
excitation times between t = 0 and t = Te.

This gave y(ti) = ylaser + ẏ(ti − te). Here te is the excitation time
of the atom and is sampled from a uniform distribution between 0 <
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ℓ δ56ℓ δ57ℓ

0 0.296 6669 0.296 6665
1 0.068 3553 0.068 3554
2 0.002 8896 0.002 8897
3 0.000 4469 0.000 4469
4 0.000 1269 0.000 1269
5 0.000 0486 0.000 0486
6 0.000 0230 0.000 0230

Table 6.1: Quantum defects, δnℓ, of
the triplet Rydberg states in helium
with n = 56 and 57. The defects are
calculated from theoretical terms us-
ing a Ritz expansion [120]. These the-
oretical defects in Helium are in excel-
lent agreement with experimental ob-
servations [49].

t < Te. The position of the laser within the wedge is given by ylaser =

3.5± 0.5 cm.
At time ti, each atom is prepared in the initial Rydberg state

1√
2
(|56s⟩ + |57s⟩). The time evolution is simulated over discrete time

steps δt using the Runge-Kutta algorithm. At each time step, we com-
pute the forces acting on the atoms, and phases due to external electric
fields. The force on an atom in internal state |ni⟩ is given by:

Fni
(t) = − ∂

∂y
Wni

(yi(t), t) , (6.1)

where Wni is the state dependent potential energy for state ni =

56s/57s, and ∂
∂yWni

is the spatial gradient of the potential energy.
In the wedge-shaped electrode structure used to generate the in-

homogeneous electric fields here [see Figure 6.3(a)], the electric field,
E(y, t), on the axis of propagation of the atomic beam is

E(t, y) =
V (t)

d(y)
+ F(y − ycancel) (6.2)

where V (t) is the applied voltage and d(y) is the separation of the
plates at the location of the atom. F(y − ycancel represents a residual
position-dependent stray electric field in the apparatus. This stray
field is included to account for the stray fields due to the electrode
surfaces.

The |56s⟩ and |57s⟩ states used in the experiments have fluores-
cence lifetimes in excess of 130 µs, The electric dipole polarizabilities,
and more generally, the complete Stark shifts of these levels, which
were used in all interferometry calculations, were obtained from the
eigenvalues of the Hamiltonian matrix for the atom in the presence of
an electric field as shown in Figure 6.4. The Hamiltonian was diag-
onalised at 1000 field strengths between 0 and 2.9 V/cm and stored
in a lookup table to be linearly interpolated in the simulations. The
quantum defects for the triplet states with ℓ ≤ 6 are given in Table 6.1.

The positions and velocities are updated according to,

ẏi(t+ δt) = ẏi(t) +
Fni

(t)

m
δt,

yi(t+ δt) = yi(t) + ẏi(t)δt.

(6.3)

Where the force in the y direction is updated at each time step from
the potential energy of each state. The index i accounts for the two
paths through the interferometer.
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The propagation phase ϕi(t) is updated at each time step using the
Lagrangian:

ϕi(t+ δt) = ϕi(t) +
1

h̄

(
1

2
mẏi(t)

2 −Wn(t) (yi(t), t)

)
δt. (6.4)

The effects of the microwave pulses are applied at the appropriate
times (tπ, tf ) by updating the internal states and swapping the indices
of the potentials and forces accordingly.

To account for experimental averaging, the simulation is performed
over 200 atoms with initial conditions sampled from the random distri-
butions. Variations in initial positions, velocities, and field fluctuations
lead to phase dispersion, which can reduce the contrast of the inter-
ference fringes. The probabilities P|56s⟩ and P|57s⟩ are averaged over
the ensemble to obtain the expected measurement outcomes.

Several assumptions are inherent in the simulations. The semi-
classical approximation assumes that the atomic wave packets remain
localized, and quantum dispersion effects are negligible. Decoherence
mechanisms such as collisions or spontaneous emission are neglected.
Control pulses are assumed to be instantaneous and perfect unless
experimental imperfections are explicitly modelled. The gravitational
effects may be negligible compared to electromagnetic forces and are
thus ignored.
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Figure 6.4: Energy level structure of
the triplet Rydberg states in helium
with n = 56 and 57.

6.4 Results

With the interferometer apparatus and pulse sequence optimised as
described, pairs of electric field gradient pulses with equal rise and
fall times of τg = 130 ns, and equal duration of Tg = 72 ns were
generated by applying pulsed potentials to E1 [see Figure 6.3(a)]. By
adjusting the amplitudes, Vgrad, of these pulses interference fringes
could be observed via observation of the population of the |57s⟩ state.

The continuous purple curve in Figure 6.5(a) shows the results of
such a measurement. The interference fringes seen in this figure reflect
the change in the total phase difference between the interferometer
arms, ∆ϕtot(tf), as Vgrad was adjusted. The reduction in the period of
the fringes as |Vgrad| increases is a consequence of the quadratic Stark
shifts of the |56s⟩ and |57s⟩ states.

For all values of Vgrad in this figure, the electric field experienced by
the atoms remained below the Inglis-Teller field in which the |57s⟩ state
crosses the manifolds of ℓ-mixed hydrogenic Stark states in Figure 6.4.
Up to ∼ 15 interference fringes are observed for values of Vgrad < 0.

For previous experiments performed with circular Rydberg states
[41], non-adiabatic transitions between internal states caused by the
fast switching of the gradient fields limited maximal atomic wavepacket
displacements, before being limited by population loss. These non-
adiabatic dynamics led to a loss of population, and hence a loss of
signal, from the quasi-two-level system composed of the pair of circular
states as the value of |Vgrad| was increased.

It is evident from the convergence of the |57s⟩ population in Fig-
ure 6.5(a) toward 0.5 for values of |Vgrad| close to 4.25 V that these
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Figure 6.5: (a) Measured (contin-
uous curve) and calculated (dashed
curve) Rydberg-atom interference pat-
tern for Tg = 72 ns and τg =
130 ns. The parameter Vgrad in-
dicated on the horizontal axis rep-
resents the amplitude of the pulsed
potentials applied to electrode E1
to generate the pulsed electric field
gradients in the interferometer (see
text for details). (b) The calculated
dynamic, ∆ϕdynamic(tf), (continu-
ous black curve), Stark, ∆ϕStark(tf),
(dashed orange curve), and separa-
tion, ∆ϕseparation(tf), (dash-dotted
purple curve) phase differences at the
interferometer output that contribute
to the interference pattern in (a). (c)
The corresponding calculated spatial
separation between the classical paths
of least action at the interferometer
output.

non-adiabatic losses do not occur in the present experiments. This
is because the |ns⟩ Rydberg states remain energetically isolated from
all other higher-ℓ Rydberg states over the full range of electric fields
experienced by the atoms during the interferometry sequence.

The contrast decreases at higher values of |Vgrad|, and the mecha-
nism leading to this is dispersion in the phase across a beam of atoms,
not population loss from the |56⟩ and |57⟩ states. Comparison of the in-
terferogram in Figure 6.5(a) with the results of the calculations demon-
strates this. This decoherence directly reflects the phase space prop-
erties of the ensemble of Rydberg atoms, i.e., the longitudinal velocity
spread and the spatial extent in the y dimension.

To account for the offset of the centroid of the interferogram to
Vgrad ≃ +0.4 V, the residual stray electric field, F(z) in Equation 6.2,
is required to have a non zero gradient. The cancellation of the average
stray field in the experiment is not commensurate with the minimisa-
tion of the field gradient, to which the Rydberg-atom interferometer
is sensitive. The calculated interference pattern in Figure 6.5(a) was



84

obtained by fitting a stray electric field gradient of dFstray/dz
= −22.5 mV/cm2.

This stray field gradient is the cause of the more rapid phase accu-
mulation for Vgrad < 0 than for Vgrad > 0 in the experimental data.
The individual contributions from the dynamic, Stark and separation
phase differences to ∆ϕtot(tf) in the calculated interferogram are dis-
played in Figure 6.5(b).

The dynamic phase accumulated due to the kinetic energy of the two
paths perfectly cancels with the separation introduced to account for
the semi-classical model used to describe the half-loop interferometer.
The remaining phase is therefore the Stark phase accumulated as the
atoms are exposed to different electric fields during each of the two
force pulses.
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Figure 6.6: Microwave spectra of the
two photon |56s⟩ → |57s⟩ transition
recorded at times td, td + 2.0 µs, and
td + 4.0 µs after laser photoexcita-
tion, to probe residual uncompensated
stray electric field gradients over a dis-
tance of ∼ 8 mm along the axis of
propagation of the atomic beam be-
tween E1 and E2.

Microwave spectroscopy of Rydberg-Rydberg transitions allows for
a confirmation of the magnitude of the stray field gradient. The lon-
gitudinal profile of the stray field was determined by performing this
at selected times after the laser photoexcitation. These spectra of the
two-photon |56s⟩ → |57s⟩ transition were recorded using single pulses
of microwave radiation with durations of 2 µs and are displayed in
Figure 6.6.

The absolute transition frequencies in these measurements are af-
fected by Doppler shifts in the fast-moving pulsed supersonic beam,
on the order of +100 kHz. However, across this set of spectra, the
measured two-photon transition frequency shifts by ∼ +60 kHz. The
|56s⟩ → |57s⟩ transition exhibits a quadratic Stark shift toward lower
frequency with increasing electric field strength.

The observed shift toward higher transition frequencies at later
times after laser photoexcitation indicates that the uncompensated
stray electric field between E1 and E2 reduces toward the end of these
electrodes closest to the detection region. At that end, the separation
between the electrodes in the y-dimension is greatest, and the atoms
are furthest from the electrode surfaces and the source of residual stray
fields [121], [122].

Comparison of the experimentally measured transition frequencies
in Figure 6.6 with the calculated Stark shifts of the |56s⟩ and |57s⟩
states yielded a mean residual uncompensated stray field gradient be-
tween E1 and E2, on the axis of propagation of the atomic beam, of
dFstray/dz ≃ −20 ± 5 mV/cm2. This is consistent with the residual
gradient of -22.5 mV/cm2 obtained by comparing the measured and
calculated interference patterns in Figure 6.5.

In performing the numerical simulations of our experiments, our
primary objective was not to produce precise quantitative predictions
of the interference patterns. Instead, the simulations were designed
to explore the impact of dephasing mechanisms on the observed inter-
ference fringes, particularly at higher voltages where dephasing effects
become more pronounced.

To achieve this, we fitted the simulations to the experimental data
presented in the main figure (Figure 6.5), where dephasing is mini-
mal at low values of Vgrad and the coherence of the atomic ensem-



85

ble is well maintained. By adjusting parameters within their exper-
imental uncertainties—such as the residual stray electric field gradi-
ent dFstray/dy, the initial longitudinal velocity spread ∆vy, and the
spatial extent of the Rydberg atom ensemble LRy—we obtained a
good agreement between the simulations and the experimental data
at low voltages in Figure 6.5. These parameters were set to ẏ =

2000 ± 50,m/s, ylaser = 35 ± 5,mm, dFstray/dy = −20 ± 5,mV/cm2,
and F0 = ylaser ± 1,mm.

With these parameters established and kept fixed, we then varied
experimental parameters such as the excitation time Te and the electric
field gradient pulse duration Tg to see how well the simulations cap-
tured the dephasing effects observed in the subsequent experiments.
By maintaining the same simulation parameters, we could directly as-
sess the influence of these experimental variations on the coherence
properties of the interferometer.

The next section presents these experiments, where we systemat-
ically adjusted Te and Tg to investigate their impact on interference
fringe contrast. Comparing the experimental results with the simula-
tions using the fixed parameters allowed us to observe how dephasing
arising from factors such as the increased spatial extent of the atomic
ensemble and prolonged exposure to inhomogeneous electric fields af-
fects the interference patterns.

This approach provides valuable insights into the coherence prop-
erties of the interferometer and the dominant sources of decoherence.
By focusing on how well the simulations capture the dephasing under
varying experimental conditions, we can better understand the lim-
itations of the current interferometer setup and identify avenues for
improving its performance in future experiments, without relying on
exact predictions of the experimental outcomes at all voltage levels.

6.4.1 Dephasing experiments

The effect of the spatial extent of the ensemble of Rydberg atoms in the
y dimension on the coherence length was investigated by adjusting the
value of Te, the laser photoexcitation pulse duration. An interferogram
recorded for Te = 800 ns, i.e., with LRy ≃ 1.6 mm, and values of
Vgrad ≥ 0 is displayed in Figure 6.7(a). This experiment uses the same
set of parameters as Figure 6.5.
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Figure 6.7: Measured (continuous
purple curves) and calculated (dashed
orange curves) Rydberg atom interfer-
ence patterns recorded for Tg = 72 ns,
τg = 130 ns and values of Vgrad ≥ 0 af-
ter laser photoexcitation of (a) a short,
LRy ≃ 1.6 mm, ensemble of Rydberg
atoms when Te = 800 ns, and (b)
along, LRy ≃ 3.6 mm, ensemble of Ry-
dberg atoms when Te = 1800 ns.

The experiment in Figure 6.7(b) was recorded with a longer pho-
toexcitation pulse of Te = 1800 ns, i.e., with LRy ≃ 3.6 mm. It is
otherwise identical to Figure 6.7(a). It can be seen that for the longer
bunch of atoms the contrast of the interference fringes reduces more
rapidly as the value of Vgrad increases, indicating a reduction in the
longitudinal coherence length.

The reduction in the contrast of the interference fringes is also ap-
parent in the results of the calculations. This is a consequence of the
dependence of the electric field between E1 and E2 on the position in
the y dimension, and the effect this has on the Stark phase differences
within the ensemble of excited atoms.
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The inhomogeneity of the electric field leads to different Stark shifts
and forces on atoms at the front and back of the excited ensemble.
Thus the range of values of ∆ϕtot(tf) accumulated across the ensemble
is increased for a longer initial distribution of atoms, and increased
dephasing ensues.

The rapid fluctuations, with a periodicity of ∼ 0.1 V, seen across
the interference pattern in Figure 6.7(b) is attributed to the spatial
inhomogeneity of the microwave field and the effect this has on the
fidelity of the microwave pulses across the ensemble of Rydberg atoms.
Because of the inhomogeneity of this field in the y dimension, ideal
π/2 and π pulses can only be implemented for compact ensembles of
excited atoms that are well localized at the time of the application of
each pulse.

By increasing the spatial extent of the ensemble of Rydberg atoms,
the set of microwave pulses used no longer yielded ideal π/2 and π

rotations on the Bloch sphere for every atom. This results in a beat-
ing effect in the final Rydberg-state population superimposed on the
primary interference fringes.

Further information on decoherence in the interferometer was ob-
tained by performing experiments with electric field gradient pulses
with a fixed amplitude but increasing duration. These measurements,
presented in Figure 6.8, provide insight into the increased exposure of
the atoms to the interferometer’s electric fields.

For these measurements, Te = 800 ns, and data was recorded for
Vgrad = 2 and 1 V. The results are displayed in Figure 6.8(a) and
(b), respectively. The dependence of the contrast of the interference
fringes in Figure 6.8 on the value of Tg is similar to that observed in
the calculations.

The calculations performed do not account for decoherence that
depends on the value of Vgrad, i.e., decoherence arising from electric
field noise. The more strongly polarized atoms in Figure 6.8(a) with
Vgrad = 2 V may be more sensitive than those in Figure 6.8(b). This
suggests that decoherence caused by laboratory electric field noise does
not significantly impact the performance of the interferometer over
the time-scales, and for the fields and field gradients used in these
experiments.
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Figure 6.8: Measured (continuous
blue curves) and calculated (dashed
red curves) Rydberg-atom interference
patterns recorded by adjusting the
electric field gradient pulse duration
Tg, for τg = 130 ns, and (a) Vgrad =

2 V, and (b) Vgrad = 1 V. In each case
Te = 800 ns.

6.5 Conclusions

We have performed electric Rydberg-atom interferometry with he-
lium atoms prepared in coherent superpositions of the 1s56s,3S1 and
1s57s,3S1 low-ℓ Rydberg states. This work demonstrates a advance-
ment over previous experiments employing circular Rydberg states,
where non-adiabatic internal state dynamics led to substantial popu-
lation loss and limited the achievable spatial separations of the atomic
wavepackets. By utilizing low-ℓ states, we have minimized such non-
adiabatic losses, allowing for the observation of interference fringes at
larger momentum displacements—up to a maximal spatial separation
of approximately 0.75 nm between the atomic momentum components.
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A key focus of these experiments was to understand the dephas-
ing mechanisms across the atomic beam that lead to decoherence in
Rydberg-atom interferometry. Through careful comparison of exper-
imental results with numerical simulations, we have identified that
stray electric field gradients and inhomogeneities in the initial phase
space distribution of the atoms are primary contributors to the degra-
dation of interference fringe contrast due to dephasing. By investigat-
ing the effects of the spatial extent of the Rydberg atom ensemble and
the duration and amplitude of the applied electric field gradients, we
have gained valuable insights into how to control and mitigate these
dephasing effects.

Understanding and overcoming these sources of decoherence is cru-
cial for the development of high-fidelity matter-wave interferometers
using Rydberg atoms. The improvements demonstrated here, particu-
larly in minimizing non-adiabatic losses and characterising dephasing
mechanisms, represent important steps towards the realization of a
full-loop interferometer with Rydberg atoms. Such a full-loop interfer-
ometer would enable the recombination of spatially separated atomic
paths, making the interferometer sensitive to inertial effects through
the Kennard phase and enhancing its applicability for precision mea-
surements.

Future work could focus on implementing strategies to further re-
duce stray electric field gradients, such as designing electrode configu-
rations that keep the atoms further away from surfaces, and employing
transverse geometries to exploit lower velocity spreads in the force-
exerting direction. These enhancements could lead to greater control
over phase dispersion across the atomic ensemble, improving the co-
herence length of the interferometer.

Ultimately, the ability to perform matter-wave interferometry with
Rydberg atoms in a full-loop configuration opens up exciting possi-
bilities for fundamental physics experiments. For example, measuring
the acceleration of Rydberg atoms in Earth’s gravitational field could
provide new insights into quantum gravity effects. Extending these
techniques to work with Rydberg positronium atoms could enable tests
of antimatter gravity, probing fundamental symmetries in nature.

In summary, our experiments have advanced the understanding
of dephasing in Rydberg-atom interferometry and demonstrated sig-
nificant improvements over prior approaches using circular Rydberg
states. These developments pave the way toward the realisation of
full-loop matter-wave interferometers with Rydberg atoms, which show
great promise for future precision measurements and fundamental tests
of quantum mechanics.





7
Sensing motional-Stark phases via Rydberg states

This work is original and has not yet been published.

7.1 Background

The experiments of the previous chapter demonstrated the fea-
sibility of implementing a full-loop Stern-Gerlach interferometer with
low-ℓ Rydberg states. The dispersive nature of the dynamic kinetic
and Stark phases present the next challenges that would need to be
controlled for the practical implementation of such an interferometer.

Each atom in the excited bunch will have a different initial velocity;
thus, even if all atoms experience the same forces, they will not experi-
ence the same phase shifts. This would make controlling the dispersive
nature of a hot beam challenging. Additionally, the large sensitivity
to electromagnetic fields makes any inhomogeneities within the inter-
ferometer lead to dispersive effects across the beam of Rydberg states.

This chapter presents a different approach using a different phase
term arising from the motional-Stark effect. It is shown that this phase
can be non-dispersive in certain configurations of external electric and
magnetic fields.

The phase arises from the motion of the electric dipole through
a magnetic field. In this configuration, there is a coupling between
the internal dynamics and the external motion of the center-of-mass
(COM) of the atom. The large electric dipole moments unique to
Rydberg states make exploiting this phase possible in a way that is
not realistic with ground-states of atoms.

In this chapter, we describe an experiment to coherently measure
the motional-Stark phase in Rydberg. We comment on how, under spe-
cific configurations of electromagnetic potentials, the motional-Stark
phase can be identified with the He–McKellar–Wilkens (HMW) geo-
metric phase, which is a close analogue of the more famous Aharonov–
Bohm phase.

The sequence of electric pulses used is identical to those in Chap-
ter 6 except for the inversion of a voltage pulse and the presence of a
homogeneous magnetic phase. This inversion has opposite effects on
the static and motional Stark phases. It causes the static Stark phase
to cancel but doubles the motional-Stark phase. Finally, we discuss
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potential applications of this phase including a description of an inter-
ferometery sequence that could be sensitive to inertial effects without
velocity dispersion.

7.2 The motional-Stark effect

The interaction of systems of particles with static electric and mag-
netic fields can lead to complex interactions between the center-of-mass
motion of the system and their internal dynamics [123]. The interac-
tion between the system of particles and the electromagnetic fields can
modify the momentum of the particles in interesting ways.

For electrically neutral systems, all components of the pseudomo-
mentum commute. This condition allows the system to be pseudo-
separated. In effect, the Schrödinger equation can be reduced over
only the internal coordinates, but with a parametric dependence on
the eigenvalue of the pseudo-momentum, K = P − |e|

c B × r where B is
the magnetic field, r is the vector between the particles and represents
the dipole, and P is the canonical momentum.

For a neutral-atom this allows for the same solutions to the Hamil-
tonian as discussed in Chapter 2, except an additional term where
the external motional introduces a Stark potential. In this way, the
external motion of the system of particles and the internal dynamics
become coupled. Exploiting this coupling to use an internal state in-
terferometer to extract information about the external motion is the
focus of this chapter.

The term that couples the internal and external dynamics is an
effective electric field that is proportional to the pseudo-momentum,
where the electric field experienced by the particles is

Etot = E +
h̄

Mc
K × B. (7.1)

Here Etot is the total electric field, E is the external electric field and
M is the mass of the dipole. This is the origin of the motional-Stark
effect, first identified by Lamb [124] for a hydrogen atom moving in a
magnetic field. This leads to the interpretation of the motional-Stark
effect as being due to an additional electric field experienced by the
atom in the rest frame of the COM, and hence a modified Stark shift.

7.2.1 Motional-Stark phase in crossed electric and magnetic
fields

The energy shift due to the motional-Stark effect will induce a phase
shift in the atom. These phases have some interesting and unique
properties compared to the dynamic phases discussed in Chapter 6.

As shown previously, an atom moving in a magnetic field experiences
an additional electric field due to the cross product of its velocity vector
and the magnetic field, Etotal = E + v × B. The general Lagrangian
for an induced electric dipole moving in external fields is given by,

L =
m

2
v 2 − α (E + v × B)

2
, (7.2)
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where the state is assumed to have a quadratic induced polarisability
α, an assumption which holds for low-ℓ Rydberg states in small electric
fields far below the Inglis-Teller limit.

Consider a static crossed configuration of electric and magnetic
fields. The directions of the electric and magnetic fields can be taken
along the ẑ and x̂ axes, respectively, i.e., E = (0, 0, Ez) and B =

(Bx, 0, 0). To simplify the algebra, the particle is assumed to travel
perpendicular to both fields, that is, v = (0, vy, 0). The Lagrangian
may therefore be expanded such that

L =
m

2
v2y − α (Ez + vyBx)

2

=
m

2
v2y − α

(
E2

z + v2yB
2
x + 2EzvyBz

)
=
(m
2

− αB2
x

)
v2y − α

(
|Ez|2 + 2EzvyBx

)
.

(7.3)

This can be viewed as the Lagrangian for a particle with a modified
mass m′ = m − 2αB2

y , where for realistic parameters of the magnetic
field, the change in mass is negligible.

For example, the 56s state of helium, which has a mass of 4.002 amu,
has polarisability α = 2.179GHz/(V/cm)2. Even in a magnetic field
of 100G, this results in a mass modified by 10−6 amu. The next term
in the Lagrangian is the static Stark energy shift, α|Ez|2. This phase
term is independent of the orientation of the dipole with respect to
x̂. The final term in the Lagrangian is relevant to the motional-Stark
phase,

LmS = −2αEzvyBx. (7.4)

This is the phase term due to the motional-Stark effect. Firstly, it is
proportional to the sign of Ez. Reversing the direction of the electric
field will reverse the direction of the dipole and therefore the phase.
Secondly, the term in the Lagrangian is proportional to the velocity
vy. This dependence results in an interesting property that can be seen
by integrating the phase with respect to time. The resulting phase is
proportional to the distance travelled along the ŷ direction.

ϕmS =

∫ t

0

−2αExBy

h̄
vy dt

=

∫ y

0

−2αExBy

h̄
dy

=
−2αExByL

h̄
,

(7.5)

where L =
∫ t

0
vydt is the total distance the atom travels in the crossed

fields. The time dependence can be absorbed within an integral over a
distance, which hints at the underlying geometric nature of this phase.

The properties of this phase within our apparatus will contrast with
the static Stark phase. This can be seen by considering the idealised
case in which an atom flies into a region defined by two plates of length
L within which there is a crossed configuration of electric and magnetic
fields. The static Stark phase will be proportional to the amount of
time that the atom spends within the plates.
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In the ideal case, this will result in a phase ϕstark = −αE2
z t =

−αE2
z

L
vy

, where t is the time taken to traverse the plates. This is
dispersive as a slower atom will take longer to traverse and in doing
so acquire a larger phase as it spends more time with an electric field
induced energy shift. The motional Stark phase however only has a
dependence on the length of the region of crossed fields, and therefore
no matter what speed an atom traverses the region it will acquire the
same phase making it non-dispersive in velocity.

7.3 Scheme for measuring centre-of-mass velocity via the
motional-Stark phase

As seen so far, the motional-Stark phase has a different structure to
the static-Stark phase. These differences can be used to isolate the
motional-Stark phase in an experiment using the same Ramsey-Hahn
sequence of microwave and voltage pulses as performed in Chapter 6.
The only difference being the need to invert one of the applied voltage
pulses, thus creating a region of homogeneous electric field to cause
the cancellation of the static-Stark phase.

The static Stark effect is given by W = α|E|2, i.e., it is only depen-
dent on the magnitude and not the direction of the electric field. The
motional-Stark effect is coupled to the direction of the electric field as
this determines the direction of the induced dipole d = 2αE. Inverting
the direction of the applied electric field will result in reversing the
sign of the motional-Stark phase but not the static Stark phase. The
two arms will acquire identical static Stark phases, but non-identical
motional-Stark phases.

This results in a total phase shift which is coupled to the velocity
of the atom. From Equation 7.5, the motional-Stark phase acquired
by a dipole in our configuration of electric and magnetic fields is pro-
portional to the distance it travels in the y direction, y = vytp, where
vy is the velocity in the y direction and td is the duration of the dipole
inducing electric pulse.

The phase acquired by an atom during a period in the Ramsey-Hahn
scheme, that is for states with polarisability µi is,

ϕi =
1

h̄

[(m
2

− αiB
2
x

)
v2yT − αi

(
E2

zT + 2EzvyBxT
)]

(7.6)

In the period after the π pulse the internal state will have changed
resulting in a new polarisability αj . The electric field direction can
change direction, this is indicated by ± where + corresponds to the
voltage pulses both being positive and − corresponds to the second
pulse being negative. The resulting total phase in the arm for each
case is given by,

ϕi→j,± =
1

h̄

[(m
2

− αiB
2
x

)
v2yT − αi

(
E2

zT + 2EzvyBxT
)]

+
1

h̄

[(m
2

− αjB
2
x

)
v2yT − αj

(
E2

zT ± 2EzvyBxT
)]
. (7.7)
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In the other arm of the interferometer the atom begins with αj

that swaps to αi after the π pulse. The total phase at the end of
the interferometery sequence in the second arm is ϕj→i,±. The total
phase difference between the two arms will therefore be δϕ = ϕi→j,±−
ϕj→i,±. From inspecting the form of the phase difference both the
kinetic energy terms and the static Stark terms will cancel out leaving
only,

δϕ± =
1

h̄
[(αj − αi)(2EzvyBxT )∓ (αj − αi)(2EzvyBxT )] . (7.8)

If the two voltage pulses are oriented in the same direction the
motional Stark phases will cancel. If the two voltage pulses are oriented
in opposite directions the total motional-Stark phase will sum and
result in,

δϕ− =
1

h̄
4(αj − αi)EzvyBxT. (7.9)

The phase difference is proportional to the difference between the
two states polarisabilities and the centre-of-mass velocity of the atom.
In essence, this interferometric scheme acts as a ’speed camera’ for the
atom, using the coupling between the internal and external degrees of
freedom to imprint a phase due to the external motion onto an internal
state interferometer.

Conceptually this scheme is sensitive to inertial accelerations with-
out requiring the generation of large forces to split the atoms into
seperate paths. The basic idea can be seen in a thought experiment
where an atom is placed motionless in crossed electric and magnetic
fields. If there is an acceleration g and one waits a time Twait before
starting the interferometric sequence, then the average speed of the
center-of-mass motion will be v0 + gTwait at the start of the interfer-
ometer. By performing the interferometer as a function of wait-time,
the effects of the acceleration would lead to an observable shift in the
phase.

7.4 Connection to the He–McKellar–Wilkens phase

Geometric phases play a fundamental role in quantum mechanics, they
concern the phase evolution of a system that arises solely from its ge-
ometrical properties in parameter space, independent of the dynami-
cal evolution. This concept extends beyond the traditional dynamical
phases associated with energy evolution, offering deeper insights into
the topological and geometric nature of quantum systems.

7.4.1 Geometric phases

Quantum systems can acquire a geometric phase when its parameters
are varied cyclically and adiabatically, causing the system to traverse
a closed loop in parameter space. Unlike dynamical phases, which
depend on the energy and time, geometric phases depend only on the
path taken through the parameter space and the geometry of that
path.



94

The most well-known example of a geometric phase is the Berry
phase, introduced by Michael Berry in 1984. The Berry phase arises
when a quantum system remains in its instantaneous eigenstate while
its Hamiltonian is varied slowly around a closed loop. Mathematically,
the Berry phase γ is given by the integral of the Berry connection A
around the closed path C:

γ =

∮
C

A · dR, (7.10)

where A = i⟨ψ(R)|∇R|ψ(R)⟩ and R represents the set of parameters
defining the Hamiltonian.

7.4.2 The Aharonov–Bohm phase

A quintessential example of a geometric phase is the Aharonov–Bohm
(AB) phase, predicted by Yakir Aharonov and David Bohm in 1959
[82]. The AB phase demonstrates that even in regions where the elec-
tromagnetic fields are zero, the potentials themselves can influence the
quantum phase of charged particles.

Consider a charged particle, such as an electron, moving in a region
devoid of both electric and magnetic fields (E = B = 0). Suppose there
exists a magnetic flux Φ confined within a solenoid that the electron
encircles. Although the electron does not experience a local magnetic
field, the presence of the vector potential A outside the solenoid im-
parts a phase shift to the electron’s wavefunction. The AB phase ϕAB

is given by:
ϕAB =

e

h̄c

∮
C

A · dr =
eΦ

h̄c
, (7.11)

where the integral is taken around a closed loop C encircling the
solenoid. This phase shift has been experimentally verified and under-
scores the physical significance of electromagnetic potentials in quan-
tum mechanics, independent of the fields.

Figure 7.1: (a) Schematic showing
four possible configurations to observe
topological phases using electromag-
netic charges and dipoles. Here, e is an
electric charge, m is a magnetic dipole,
g is a magnetic monopole, and d is an
electric dipole. (b) Transformations
of the He–McKellar–Wilkens case to
account for magnetic monopoles be-
ing non-physical. Figure adapted from
Ref. [125].

The Aharonov-Bohm phase is not the only geometric phase associ-
ated with moving particles. Soon after it was identified the Aharonov-
Casher phase was theorized. This is the phase acquired by a magnetic
dipole moving in an electric field. When the magnetic dipole takes a
closed path around a charged wire, within specific geometric consider-
ations (that is the particle moves so that the wire exerts no force), it
can acquire a path and velocity independent phase.

The Aharonov-Casher effect was first shown in 1989 by neutron in-
terferometry [126]. The velocity independence of the phase was verified
in an atomic beam experiment in 1993 [127] using Ramsey interferom-
etry within a modified geometry, where the atom effectively passes
one way around the wire in a superposition of states with different
magnetic dipole moments.

7.4.3 The He–McKellar–Wilkens Phase

The He–McKellar–Wilkens (HMW) phase is a geometric phase that
serves as the electromagnetic dual to the Aharonov–Bohm phase and
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Aharonov-Casher phases. While the AB phase arises from the interac-
tion of a charged particle with an electromagnetic potential, and the
AC phase from a magnetic dipole around a line of electric charge, the
HMW phase emerges from the interaction of a neutral particle pos-
sessing a permanent electric dipole moment with magnetic monopoles.

A key difference between the HMW/AC phases and the AB phase
is that while the AB phase occurs in a region without electromagnetic
fields, the HMW/AC phases occur via a direction interaction between
the particle and the fields. The configuration of these fields is such
that they do not exert a net force on the particle, ensuring that the
particle’s trajectory remains unaffected by classical forces. Instead,
the particle acquires a purely geometric phase.

The HMW phase is given by,

ϕHMW =
1

h̄c2

∮
C

(d × B) · dr, (7.12)

where the integrand has an identical form to that of the motional-
Stark phase identified previous. In fact this connection was quickly
identified [125]. The HMW phase is motivated out of considerations
of electromagnetic duality from previously identified geometric phases,
but physically it is the result of the motional-Stark effect. Although
a phase due to the motional-Stark effect is present in any situation
where an electric dipole moves through a magnetic field, the conditions
required to replicate the HMW require a number of conditions on the
electromagnetic potentials.

7.4.4 Experimental schemes to measure the HMW phase

Despite the absence of magnetic monopoles, experimental schemes
have been proposed and implemented to measure the HMW phase by
engineering specific electromagnetic field configurations that emulate
the necessary line of magnetic monopole [128].

The first suggested scheme is that of Wilkens [129] in which atoms
are polarised by an electric field and subjected to different magnetic
fields on the two arms. The suggestion was to use a pierced sheet of
ferromagnetic material. The technical difficulty of implementing this
set-up resulted in this never being explored experimentally, but high-
lighted the feasibility of constructing the necessary field conditions.

Wei et. al. [130] suggested a set-up in which an atom interferom-
eter is used where the two paths pass either side of a charged wire.
The charged wire will induce opposite electric dipoles in the two arms
and create the necessary HMW phase in the presence of a common
homogenous magnetic field.

The first experimental realisation of the HMW was conducted in
an experimental apparatus that took inspiration from the method of
Wei et. al., and used a Mach-Zehnder interferometer. A supersonic
beam of lithium atoms with a velocity of ⟨v⟩ ≈ 1065 m/s are Bragg
diffracted and pass either side of a grounded septum to produce regions
with opposite polarisation in the two paths [131]. This experiment
produced phase shifts ϕHMW on the order of milliradians.
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The authors of this study comment on how convenient it would be to
use a Ramsey style interferometer [128] as it common in measurements
of the Aharonov-Casher phase [127]. The difficulty with such a mea-
surement for the HMW case is the lack of quasi-degenerate states with
opposite electric dipole moment in ground-states. A method for detect-
ing the HMW phase using excited hydrogen-like states was proposed
by [125] using the quasi-degenerate n = 2 excited states of hydrogen.

Metastable H
Atoms

Atom
Source

Metastable H
Atoms

Magnet

L

N

S

B

Detector

Figure 7.2: Adapted from Ref. [125].
Scheme proposed by Dowling et. al.
to measure the HMW phase via Stark
quenching in a metastable excited
beam of Hydrogen. The inset figure
shows a series of transformations that
allows for the non-physical magnetic
monopole field to be replaced by a
constant magnetic field between two
poles. The experiment in this chapter
can be seen to make a similar transfor-
mation in order to measure the HMW
phase.

In this scheme the magnetic field produced by a line of monopoles
is replaced by a constant magnetic field. The HMW phase acquired is
related to the length of the region of magnetic field, L, and given by
ϕHMW = dBL

h̄c , and the dipole of the states used is given by d = 3a0e,
where a0 is the Bohr radius.

This is the same transform employed by Sangster et. al [127] in
measuring the AC phase. Inset to the figure shows the steps of the
transformation. The dipole moving each side of the magnetic field
with the same dipole can be replaced by it traversing the same path
but in opposite dipole states. The circular path along a magnetic
field line can then be replaced by a linear path through a region of
homogenous magnetic field. In this way the exotic conditions that
demand a magnetic field generated by a line of magnetic monopoles,
can be replaced by a conventional magnetic field, that can be produced
by a pair of bar magnets or by a pair of Helmholtz coils.

This scheme requires hydrogen-like states which can be prepared in
quasi-degenerate superpositions of opposite dipole. Our experiments
use low-ℓ Rydberg states with non-zero quantum defects isolating them
from the degenerate manifold of Rydberg states. A connection can be
made between the two set-ups and it is possible to view our scheme,
via an additional transformation, as a measurement of the difference
in HMW phase of two states. The process to make this transformation
is shown in Figure 7.3.

The diagram on the left hand side shows the conventional set-up of
dipoles traversing a line of magnetic monopoles. In the first part of
the scheme the atom traverses the monopoles in a state with dipole
d = d57. The paths then cross over and traverse an identical line of
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Figure 7.3: Schematic showing the
transformation used in the experiment
to observe motional-Stark phases.
The paths of the two arms are indi-
cated by different coloured lines. (a)
Shows the paths taken by an atom
in the idealized HMW configuration
assuming the existence of magnetic
monopoles. The atom traverses a line
of monopoles in one orientation with
a dipole moment d̂1. The atom then
traverses the same region of magnetic
field except now in a state with a dif-
ferent dipole moment d̂2. The total
phase is given by ϕmS(d̂1) − ϕmS(d̂2)
due to the paths crossing over, result-
ing in the difference of the motional-
Stark phases. In (b), the configura-
tion is mapped to account for the non-
existence of magnetic monopoles. (c)
Shows the configuration used in the
experiment, in which the order of the
paths is swapped, and so the two arms
traverse the same region of space ex-
cept both arms have their dipole mo-
ments oriented in the same direction
at the same time.

magnetic monopoles but with each arm passing the opposite side of
the monopoles. The result of this will be a phase difference between
the two arms of δϕ = ϕHMW;57 − ϕHMW;56.

Applying the Sangster-Hinds transformation amounts to straighten-
ing out the paths and inverting the direction of dipoles which traversed
around one side of the monopole field. This is shown in the diagram
where the paths are now identical and through regions of homogeneous
magnetic field. Any dipole which traversed anti-clockwise as the figure
is viewed has been inverted.

The result of this transformation is two sequential measurements of
a HMW phase for the individual dipoles. The final step in transform-
ing this into a form that resembles the experiment described in this
chapter is to observe that, since the experiment occurs in a region of
homogeneous electric and magnetic fields, and the phase is only related
to the distance traveled by the atom in the state, we swap the order
in which the atom traverses the fields.

In path 2 of the Sangster-Hinds scheme, the atom traverses the
region of magnetic field in − |57s⟩ before being swapped to + |56s⟩.
By swapping the order of the dipoles in this path the atom traverses
the region in + |56s⟩ before − |57s⟩. The same total phase is acquired
in both arms in these two schemes, but importantly, the new scheme
does not require a superposition of two states with opposite dipoles.

The result is essentially an observation of the HMW phase but for
a virtual state with a dipole given by d′ = d57 − d56 and giving rise to
a phase ϕHMW =

2d′Bvyt
h̄c , where t is the time spent by the arms in the

crossed field in each state. The massive dipole moments available in
Rydberg states mean this ’virtual dipole’ can be orders of magnitude
bigger than the dipoles available with ground-state atoms and allows
for a measurement of the HMW phase using a pure Ramsey-type in-
terferometer.
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Figure 7.4: (a) The difference in
the magnitude of the induced electric
dipole moments of the 56s and 57s
states in He as a function of electric
field. (b) Rydberg Stark map for the
n = 56/57 manifolds. The two-photon
18.530990 GHz transition between the
56s and 57s states is shown. (c) Visu-
alisations of the electric field density of
the valence electron at the three points
highlighted in (b). When the direction
of the electric field is reversed so does
the electric field density of the state.

7.5 Experimental observation of the motional-Stark phase

7.5.1 Experimental apparatus

A schematic diagram of the experimental apparatus is shown in Fig-
ure 7.5. The neutral-atom beam enters the excitation and interferom-
etry region between a pair of parallel copper electrodes separated by
a distance s = 1.48± 0.01 cm.
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Figure 7.5: (a) Schematic of the ex-
perimental apparatus. The apparatus
is the same as used in the experiments
of Chapter 6 with the addition of mag-
netic coils outside the chamber to pro-
duce a region of homogenous mag-
netic field. (b) Sequence of applied
microwave and voltage pulses used to
perform motional-Stark phase inter-
ferometry. Inverting the second volt-
age pulse applied to P2 allows for the
cancellation of the static-Stark phase
but the enhancement of the motional-
Stark phase.

The atoms are excited to the 1s56s 3S1 (|56s⟩) Rydberg state us-
ing the 1s2s 3S1 → 1s3p 3P2 → 1s56s 3S1 two-color two-photon laser
photoexcitation scheme. After laser photoexcitation, the Rydberg
atoms are subjected to a π/2–π–π/2 Hahn-echo sequence of microwave
pulses, which coherently transfer population between the |56s⟩ and
1s57s 3S1 (|57s⟩) states via a two-photon transition at a frequency of
ω56s 57s = 2π × (2× 18.530 990)GHz.

In the time intervals between microwave pulses, a potential differ-
ence is applied across the electrodes to generate homogeneous electric
fields at the atoms’ position. The time evolution of the potential differ-
ences is characterized by a rise and fall time tr = 100 ns and a duration
at their maximum of tt = 1000 ns (see Figure 7.5b). With the plates
P1 and P2 placed parallel, the quality of the microwave field meant it
was possible to perform equally spaced Rabi pulses in time.

The durations of the Rabi pulses were 60 ns, 105 ns and 65 ns respec-
tively. The homogeneous electric field induces state-dependent elec-
tric dipole moments d̂56/57 = 2α56/57E, where α56(57) = 7.615(8.623)±
0.001×10−29 J m2/V2 werecomputed numerically using Numerov meth-
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ods outlined in Chapter 2. The maximum electric fields employed in
this experiment are 0.135 V/cm and the ℓ = 0 are well described by
a quadratic energy shift up to this field strength. The magnitude of
the effective electric dipole moment d̂′ = d̂57 − d̂56 as a function of
electric field up to the Inglis-Teller limit is shown in Figure 7.4(a),
demonstrating the magnitude of d′ that is possible.

The uniformity of the applied voltage pulse was checked and found
to be accurate to within 0.5%. Current-carrying coils wrapped around
the outside of the vacuum chamber allow magnetic fields to be applied
along the x̂ axis, perpendicular to both the beam direction (ŷ) and the
axis of polarisation of the atoms (ẑ).

The magnetic field was measured using a hall probe after the ex-
periment was completed by opening up the chamber and placing a
hall probe in the location of the experiment within the plates. The
magnetic field as a function of applied current was found to be Bx =

B0 + βI, where B0 = −0.25 ± 0.25G is the stray magnetic field, I is
the applied current in the solenoids, and β = −1.31± 0.05G/A is the
proportionality factor.

7.5.2 Numerical model of the experiment

To simulate these experiments, a simplified numerical Monte-Carlo
model is used to capture the essence of the motional-Stark effect as
a function of varying the current to the magnetic coils. The total
phase in each arm ϕi, can be separated into the combination of the
HMW phase and other phases independent of the applied current, (e.g.,
microwave pulses, small dynamic phases, static Stark effect etc.). This
quantity is ϕi(I) = ϕmS;i(I) + ϕO;i.

Since ϕO;i is independent of the magnetic field, it can be treated
as a free parameter in the model and fitted to the experimental data.
The motional-Stark phase in each arm is calculated from Equation 7.5
as,

ϕmS;i(I) =
2(B0 + βI)vy

ℏ

∫ tf

0

αi(t)

(
E0 +

V (t)

s

)
dt, (7.13)

Here, the magnetic field is assumed to be Bx = B0+βI, the dipole in
arm i is given by di = 2αi(t)(E0+

V (t)
s ), where αi(t) is a step function

between α56/57 at time tπ and V (t) corresponds to the voltage pulse
used. In the perfect limit where there are no stray fields E0 = B0 = 0

and V (t) is a perfect step function, the total phase will be given by
Equation 7.9, and would also constitute a measurement of the HMW
phase for a virtual dipole.

To address the imperfections present in the experimental setup,
Monte Carlo simulations were conducted. All initial parameters were
sampled from random distributions, e.g., the voltage trace V (t) is
varied shot-by-shot to include the slight asymmetries introduced be-
tween the two voltage pulses Vmax;p1 and Vmax;p2. The total phase as
a function of the applied current in is then given by ϕtotal;1/2(I) =

ϕmS;1/2(I) + ϕO;1/2.
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All other possible phases arising from e.g. microwave pulses, dy-
namic phases, static Stark effects are accounted for by the term ϕO.
This term is assumed to be independent of the magnetic field, and
a free parameter to be fit to the experimental data. The probability
of measuring each of the Rydberg states as a function of current I is
given by P56/57(I) =

1
2 ± cos(δϕmS(I)− δϕ0).

7.5.3 Experimental results

The experiments shown in Figure 7.6 demonstrate the phase evolution
for Vmax = 0.2V under two configurations of voltage pulses. Panel
(a) shows the configuration of opposite-direction electric field pulses,
which lead to a significant motional-Stark phase. The experimental
periodicity of the fringes is in good agreement with the model outlined
above.

As the applied current to the coils is increased, the population of
the |57s⟩ state oscillates, indicating a full 2π phase accumulation due
to the motional-Stark phase. Panel (b) has both electric field pulses
orientated in the same direction, inducing dipole moments with similar
orientations in each half of the measurement sequence.

Under ideal experimental conditions, there should not be any phase
accumulation with the pulses orientated in the same direction, as the
motional-Stark phase should cancel out. What is actually observed
is a small variation in the observed |57s⟩ population as a function of
magnetic field.
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Figure 7.6: (a) Results of experiment
using the pulse sequence shown in Fig-
ure 7.5 (inset). (b) Experiment re-
peated without inverting the direction
of the second voltage pulse.
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The largest source of uncertainty lies in the symmetry of the ap-
plied voltage pulses. This results in slightly different induced dipole
moments in each half of the measurement sequence, i.e., before and
after the π pulse, resulting in a small but observable motional-Stark
phase shift.

Another possible source of slight asymmetry is the homogeneity of
the magnetic field. The experiments take place over ≈ 4mm inside the
plates; precise measurements mapping out the exact magnetic field
distribution could reveal slight inhomogeneities which show up as un-
cancelled phases.

The uncancelled phases in the experiments indicated the conditions
are not quite perfect in the sense of representing a measurement of the
He-McKellar-Wilkens phase, as that would rely on the atoms travers-
ing an identical region of electric and magnetic fields to allow for
the transformation from the Sangster-Hinds set-up to the equivalent
Ramsey-Hahn.

The motional-Stark phases observed here are, however, orders of
magnitude larger than those observed in Ref. [131] and large enough
to be easily discerned from small phase shifts due to other sources. This
result shows the ease with which the HMW phase could be measured
in Rydberg states compared to the intricate and carefully controlled
experiments performed with ground-states.

More relevant and important for our goals in Rydberg-state inter-
ferometery, the experiments are successful in demonstrating control-
lability between the motional and static Stark phases by the simple
inversion of a voltage pulse. We have demonstrated the ability to
isolate the motional-Stark phase from the static-Stark phase and po-
tential application of it’s geometric properties are considered in the
next section.

The magnitude of the motional-Stark phase is varied by changing
the magnitude of the induced dipole moments, as shown in Figure 7.7.
In each of the panels, an up-down sequence of voltage pulses is ap-
plied with varying Vmax values. The magnitude of the resulting phase
accumulation can be seen to decrease as the magnitude of the dipole
moments decreases.

The observed periodicity of each set of fringes is in excellent agree-
ment with that predicted by the model. The bottom panel shows the
phase accumulated in the case where the atoms are not polarised and
shows no phase accumulation indicating the insignificance of the Zee-
man shift and supporting that the uncancelled phase in Figure 7.6 is
due to motional-Stark effects.

Much greater phase accumulation could be achieved by polarizing
the atoms more strongly. In these experiments, the maximum applied
voltages were Vmax = 0.2V, which produces an electric field around
Fmax ≈ 0.135V/cm. The magnitude of the difference in dipole mo-
ments is d̂′ ≈ 50D. This value is far from the magnitude of 800D,
which could be achieved below the Inglis–Teller limit field.

Additionally, the magnetic fields used reached ≈ 10G. The strength
of the magnetic fields applied were limited due to the effect the mag-
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netic field had on the collection efficiency of the MCP. Careful experi-
mental design would eliminate this impact and allow for much greater
magnetic fields to be used.
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Figure 7.7: Series of experiments per-
formed with configuration of voltage
pulses to enhance the motional-Stark
phase. The magnitude of the electric
field, and hence induced electric dipole
moments, were varied. (a) Vmax =

0.20V. (b) Vmax = 0.15V. (c)
Vmax = 0.10V. (d) Vmax = 0.05V.
(e) Vmax = 0.0V.

7.6 Accelerometery via the motional-Stark phase

In this section, we present one potential application for this scheme, ac-
celerometry via the motional-Stark phase. The experiments of Chapter
6 demonstrated the necessary control over Rydberg states with inho-
mogeneous electric fields to create a Stern-Gerlach type interferometer.
A full-loop version of this would be sensitive to inertial effects.

Those experiments demonstrated the challenges of dephasing aris-
ing from velocity dispersion across the Rydberg beam. The Humpy-
Dumpty effect [111] also highlights the additional challenge of ade-
quately controlling the inhomogeneous field gradients to recombine
the arms of the interferometer.

This demonstration of the motional-Stark phase allows for a poten-
tial alternative approach to sense inertial effects. The motional-Stark
effect arises from the coupling between the internal and external dy-
namics of the dipole in the magnetic field. This allows, in principal, for
an internal state interferometer to be sensitive to centre-of-mass mo-
tion. Additionally, due to the structure of the motional-Stark phase,
this approach does not rely on large physical path differences and in-
homogenous field gradients like in a Stern-Gerlach type interferometer.

In this section, an experiment using the motional-Stark phase is
discussed that could be sensitive to gravitational accelerations. By
coherently repeating the experiment performed in this chapter either
side of a period of free-fall, a dispersionless phase proportional to the
acceleration could be observed. This is essentially a coherent exten-
sion of the free-fall thought experiment briefly discussed at the end in
Section 7.3.

In that thought experiment, one waits a variable amount of time Tw
before performing the interferometery sequence shown in this chapter.
This allows time for a gravitational acceleration to modify the velocity,
v(Tw) = v0 + gT , and introduce a term in the phase difference δϕ ∝
v(Tw). Performing a series of independent experiments as a function of
Tw the effect of gravity can in principle be observed. This experiment
would be dispersive in initial velocity.

The dispersion could be overcome by putting the free-fall between
two regions of crossed electric and magnetic field. Motional-Stark
phases are generated in these regions by using the pulse sequence
demonstrated in this chapter. If the voltage pulses, or the initial atom
states in the second region, are reversed, the phase accumulation will
also be reversed. This results in the motional-Stark phase proportional
to the initial velocity v0 to cancelling out.

However, an acceleration in the intervening Tw will result in all the
atoms travelling further in the second region of crossed fields. As this
acceleration will be the same for all atoms in the beam this distance
will be identical. The leads to a residue phase difference is only related
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to the acceleration, resulting in total phase which is dispersionless with
respect to the initial velocity. Thus, all atoms will acquire an identical
total motional-Stark phase.

Such a scheme has an additional advantage that the Rydberg states
can be allowed to free-fall in a field-free environment allowing the ef-
fect of gravity to accumulate with minimal background noise. As Ry-
dberg states are incredibly sensitive to external fields this is a very
advantageous property given that the weak effect of gravity requires
experiments with large free-fall times. This also removes the require-
ment of maintaining crossed fields throughout the whole beam path of
the experiment. Instead small, well controlled regions of crossed fields
can be maintained.

ϕi/ħ ≈ (d1-d2)BvTd

Tw

ϕi/ħ ≈ (d2-d1)B(v+gTw)Td

π π

v
B

d

δϕtotal/ħ = 2(d2-d1)BTwTd g

ϕj/ħ ≈ (d2-d1)BvTd ϕj/ħ ≈ (d1-d2)B(v+gTw)Td

Td Figure 7.8: Proposed coherent free-fall
experiment using the sequence of volt-
age and microwave pulses performed
in this chapter. A free-fall period
under gravity of Tw occurs between
two regions of crossed magnetic and
electric fields. The fields are config-
ured where the magnetic field is along
the beam axis which is perpendicular
to the direction of gravity. Within
these regions a motional-Stark phase
proportional to the velocity v, is im-
printed onto a coherent superposition
of two dipole states. The pulse se-
quence in the second region is config-
ured to reverse the phase accumulated
in the first region. If there is an accel-
eration g within the free-fall period Tw
the phases will not fully cancel lead-
ing to a dispersionless phase difference
δϕtotal ∝ g.

The described scheme is shown in Figure. 7.8. At T = 0 the
motional-Stark sequence is performed to imprint information about
the initial velocity onto the phase. This results in the dispersive phase
δϕ ∝ v, where ϕi ≈ (d1 − d2)BvTd, where to simplify the analysis we
assume Tw ≫ Td and the phase differences due to g within the regions
of crossed fields are small compared to the phase shift due to the initial
velocity at the start of the crossed field region.

The atom is then allowed to free-fall under gravity for a time Tw. In
this time period the arms acquire no additional phase difference. The
atom then undergoes the reverse of the motional-Stark phase sequence.
If there is no acceleration, the cancellation will be perfect, and no
phase difference will be recorded. If there is an acceleration during the
time Tw this will be measurable. This scheme has the advantage of
being non-dispersive in velocity, as the phase due to the initial velocity
cancels leaving only a phase term proportional to the acceleration δϕ =

2h̄(d1 − d2)BTwTdg.

7.7 Future directions

There are a number of further potential directions for experiments that
make use of the motional-Stark effect with Rydberg states. Incoherent
Rydberg atom and molecule optics has been demonstrated with deflec-
tors, traps, and beam splitters. The coupling of the internal dynamics
to the external motion via the motional-Stark phase could open up
avenues to explore coherent optical components.
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The dynamic phase is dependent on the speed of the atom, while
the motional-Stark phase depends on the velocity. Atoms travelling
in opposite directions at the same speed acquire an identical dynamic
phase and an opposite motional-Stark phase. The Stark shift, which
generates the force for the dynamic phase shift, depends on the mag-
nitude of the electric field, while the motional-Stark phase depends on
both the magnitude and direction of the electric field.

One interesting application could therefore be the implementation
of an atom diode. This is analogous to a conventional diode, where
an atom in a given state will propagate only in a single direction.
These have been demonstrated via optical pumping with ground-state
atoms [132], [133] and are inherently non-coherent. Lepoutre et al. [131]
commented that a similar, but coherent, diode effect could be achieved
with the motional-Stark phase.

An atom passing through a region in which the dynamic phase is
biased to impart a π/2 phase shift. This phase would be imparted
irrespective of the direction of approach of the atom. The motional-
Stark phase is biased to provide an additional π/2 phase, where atoms
travelling in opposite directions will acquire π/2 ± π/2 phase. The
net result of this is that atoms travelling in one direction will switch
internal states, while atoms travelling the other way will remain in
their initial state.

The necessary geometric phase shifts to implement a Rydberg-atom
diode have been demonstrated in this chapter, and the necessary dy-
namic phase shifts in Chapter 6. This effect has been proposed as a
means of cooling and trapping neutral atoms [134]. It would be inter-
esting to determine the region of applicability and utility of this for
Rydberg states.

The quantisation of the orbit of a charged particle in a uniform
magnetic field is known as Landau quantization [135]. The dynamics
of neutral systems of particles in electromagnetic fields can lead to
interesting coupling between the dipole moments and fields. An ana-
logue of Landau quantisation for a magnetic dipole has been described
in Ericsson et al. [136]. This required an electric field configuration in
which the magnetic dipole interacts with an electric field such that no
torque is introduced but the Aharonov–Casher phase is still present.
The equivalent Landau–He–McKellar–Wilkens quantisation has also
been theorised for an electric dipole [137].
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Conclusions

In this thesis we present results of experiments exploring the in-
teractions of Rydberg helium atoms in states of low-ℓ, with large elec-
tric dipole polarisabilities, and electromagnetic potentials.

In Part I, highly-excited atoms in states with principal quantum num-
bers n > 100 were used to probe the regime in which the strength of
the rate of resonant driving of a two-level system is on the order of
the transition frequency. The validity of various approximate models
were probed by comparing the resulting energy spectra with the re-
sults of numerical calculations. These experiments demonstrated the
applicability of the numerical techniques up to driving strengths that
are beyond the commonly used rotating wave approximation.

By applying large enough driving fields, the polarizability of states
can be modified via Floquet engineering. These experiments were ini-
tially conducted with the aim of exploring different trapping mech-
anisms for beams of atoms and molecules in Rydberg states. The
findings were that such a mechanism could provide a trap depth ap-
propriate for applications in the preparation of cold samples of Rydberg
atoms and molecules. This has applications in the analysis of Rydberg-
state sensing of RF electric fields and for rapid state preparation and
manipulation.

In Part. II, the direction of research extended into exploring co-
herent effects related to the external motion of Rydberg states in
beams. Incoherent atom optics components such as deflectors and
beam-splitters have previously been demonstrated for Rydberg atom
beams. It is also possible to apply these force generating components
to coherent superpositions of states with different electric dipole mo-
ments, resulting in coherent superpositions of momentum states.

The experiment of Section 6 was a continuation of this line of
research, that began with [41]. Here an electric analogue of Stern-
Gerlach interferometry was performed with circular states in helium.
The non-adiabatic losses seen in those experiments were overcome in
the present work by using low-ℓ states that are well separated from
the manifold of Rydberg-Stark states. This allowed for the mitigation
of non-adiabatic losses in the force generating ramped electric fields.
COM-separations on the order of .75 nm ≈ 15λdB were achieved, which
is much larger than had previously been seen.
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The new limiting factor of these experiments was the dispersion of
phases across the beam in our apparatus. The fast moving nature
of the atoms and the dynamic phases due to both the kinetic energy
and internal energy resulted in large dispersion across the bunch of
atoms. The simple geometry of the interferometer used in both this
experiment and the circular state experiment could be improved to
achieve larger separations and sensitivities.

In the future, the spatial variation in the electric field generating
the forces could be modified to remove the spatial dependence of the
electric field gradient along the axis of interest. The use of the trans-
verse component of velocity in a beam could also allow for greater
coherence, as the beam is much colder in this direction.

A primary motivation for interferometry with Rydberg beams is the
eventual application to beams of positronium. This poses problems in
the form of much larger velocities and also the lack of low-ℓ states,
due to the hydrogenic nature of Ps. More work would therefore be
required to design and evaluate Stern-Gerlach type interferometers for
Rydberg states, so as to be useful for observations of accelerations not
suffering from dispersion.

In Chapter 7, the unique properties of Rydberg states were lever-
aged to observe the motional-Stark effect in a Ramsey-type interfer-
ometer. This was possible by measuring the difference between the
motional-Stark phase for states with two different induced electric
dipole moments. The coupling of the external motion into an inter-
nal state interferometer has some interesting future directions. The
dipole-directional dependence could result in novel atom optics com-
ponents such as diodes, that only allow transmission of a given Rydberg
state in one direction. It has potential for use in interferometers using
fast moving beams where established atom cooling methods are not
possible. As this phase is non-dispersive under the appropriate config-
uration of electromagnetic potentials, we propose a scheme to use the
motional-Stark phase to measure accelerations. More research would
need to be performed to determine if such an accelerometer could be
of use for measurements of gravity with positronium, or a potential
approach for low-accuracy warm atom based accelerometers in vapour
cells.
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