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Abstract. We present a survey of the relations between infinite dimensional

integrals, both of the probabilistic type (e. g. Wiener path integrals) and of
oscillatory type (e. g. Feynman path integrals).

Besides their mutual relations (analogies and differences) we also discuss

their relations with certain types of partial differential equations (parabolic
resp. hyperbolic), describing time evolution with or without stochastic terms.

The connection of these worlds of deterministic and stochastic evolutions

with the world of quantum phenomena is also briefly illustrated. The sur-
vey spans a bridge from basic concepts and methods in these areas to recent

developments concerning their relations.

1. Introduction. Since the very beginning of classical mechanics of particles and
fields as a dynamical theory, through the work, say, from Galilei to Newton, resp.
from Euler, Huygens to Maxwell, a description in terms of ordinary differential e-
quations for particles, and respectively partial differential equations for fields, was
successfully developed. The contemporary version of this theory can be encom-
passed by the name “theory of classical dynamical systems”. Variational principles
and calculus (Euler, Lagrange, D’Alembert, Maupertuis, Hamilton, . . . ) coupled
with a better understanding of the geometry underlying the dynamics of such sys-
tems has led to the development of geometric mechanics, see, e. g., [85, 77].

The description of systems consisting of a large number of interacting components
led to introducing probabilistic methods of description even for systems that are in-
trinsically deterministic (thermodynamics, statistical mechanics, complex systems,
see, e. g., [25]).
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For the description of quantum phenomena, since the 20’s of last century, prob-
abilistic interpretations were used (starting from Born, see, e. g., [79]; see also, e. g.,
[59, 43] for contemporary discussions).

The necessity of using both deterministic (i. e. in the sense of classical analysis)
and probabilistic methods is also felt in areas like economics and social sciences.

Probabilistic methods are often used to take care of uncertainties in the evalua-
tion of data, in the finding of coefficients entering intrinsically deterministic equa-
tions or in the knowledge of external forces influencing a given system.

Infinite dimensional integrals have a strict connection with differential equations
and stochastic differential equations, as we shall illustrate in the present work. They
provide on one hand a natural way to connect equations to variational principles
and, on the other hand, they permit to create a close link between deterministic
and stochastic descriptions.

The rest of the present paper consists of three sections, one on the relations
between integrals, PDEs, and stochastic ordinary differential equations, followed by
a more specialized one on integrals associated with quantum fields and spaces of
maps, as described by PDEs and stochastic PDEs. The last section is devoted to
some remarks on the relations between classical and quantum dynamical systems.

2. Integrals and PDEs.

2.1. The finite dimensional case. In many problems of mathematics and their
applications one finds integrals or functionals associated with the finite dimensional
vector space Rn of the form

Iµ(f) :=

∫
f(x)µ(dx), (1)

where µ(dx) is a σ-additive measure on Rn, which is positive or complex-valued
and f is an element of a suitable class of complex-valued functions.

These integrals are well defined under some general assumptions on f resp. µ, and
are then continuous complex linear functionals. The continuity properties depend
on whether µ is positive resp. complex-valued. To stress this dependence one often
looks upon Iµ(f) as a continuous dualization 〈µ, f〉 between a space of functions and
a space of measures (in the case of complex-valued µ it can even be more convenient
to completely give up the interpretation of µ as a measure and rather look at µ as
an element in the dual space of functions in a suitable topology).

All this sounds a bit abstract, but we have simple cases in mind, the one of
“Lebesgue-type integrals”, where µ is σ-finite positive (or even, more particu-
larly, a probability measure), and f ∈ L1(Rn, µ) (the space of complex-valued
Lebesgue-integrable functions with respect to µ), and the one of oscillatory in-
tegrals, where µ is of the form µ(dx) = eiΦ(x)dx for some real-valued function Φ
satisfying Hörmander-type conditions (referring to the theory of finite dimensional
oscillatory integrals, see, e. g., [78, 10]). In the oscillatory case, absolute integrability
of f is not required (rather, it is replaced by the Hörmander conditions).

For both types of integrals one has a theory of asymptotics in the following
sense: if, e. g., µ(dx) = eσΦ(x)dx (with σ = −1,Φ(x) ≥ 0 in the Lebesgue-type case,
and σ = i, Φ real-valued in the oscillatory-type case), replacing Φ by 1

εΦ, where ε
is a small real strictly positive parameter tending to zero, one has an asymptotic
expansion of Iµ(f) in ε (with control on remainders). The expansions go under the
name of “Laplace method” resp. “stationary phase method”. These are around
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the critical points of Φ, i. e. the points xc such that dΦ(xc) = 0 (d denoting
the derivative), but the concrete forms of expansions are different in both cases,
even if they have a localization principle in common which permits to sum up the
contributions coming from different critical points.

An interesting interplay of global and local properties comes to the picture when
Rn is replaced by some Riemannian manifold, see, e. g., [15]. In particular, a fruitful
connection arises with the theory of resolution of singularities of maps (catastrophe
theory) on the one hand see, e. g., [23, 41, 58, 48, 86], and with numerical methods
of computation of integrals on the other hand (these lead in turn to connections
with the classical moment problem and the summation of divergent asymptotic
expansions, see, e. g., [14]).

2.2. The infinite dimensional case. There are analogues of the integrals of the
form Iµ(f) for the case where Rn is replaced by some infinite dimensional space,
typically a separable real Banach space Γ. Interesting applications are found in
the study of partial differential equations of parabolic (typically: heat equation)
resp. hyperbolic type (especially: Schrödinger equation). In the abstract setting
one studies integrals Iµ(f) = 〈µ, f〉, defined as linear continuous complex-valued
functionals, and the suggestive notation is the one corresponding to equation (1),
the base space being now Γ rather than Rn.

2.2.1. The case of probability measures. Let us first consider the case where µ is a
probability measure on Γ. Historically, the first striking measure of this type which
was constructed is Wiener’s measure (or “Brownian motion measure”), where Γ is
the Banach space C(0)([0, t];Rd) of continuous maps γ(·) (“paths”) from the time

interval [0, t], t > 0, with values in Rd, for some d ∈ N, and such that γ(0) = 0. The
measure µ is heuristically a limit of measures of the form “const · e−Φ(γ)dγ”, with

Φ(γ) := 1
2

∫ t
0
|γ̇(s)|2ds, for γ of finite kinetic energy, i. e. γ in the Sobolev space

H1,2(Rn). dγ is heuristically of the form “const
∏
s∈[0,t] dγ(s)”.

Actually µ is heuristically the limit for N →∞ of the finite dimensional proba-
bility measures µN on RNd defined by:

µN (dx) = Z−1
N exp

−1

2

N−1∑
j=0

|xj+1 − xj |2

tj+1 − tj

 dx1 . . . dxN ,

with x = (xi)i=1,...,N ∈ RNd, xi ∈ Rd, x0 ≡ 0, t0 ≡ 0, ti = it
N for i = 1, . . . , N , and

ZN = (2π)N
d
2

N−1∏
j=0

(tj+1 − tj)
d
2 .

We remark that if we introduce the finite dimensional projection PN : Γ → RNd
such that PNγ := (γ(t1), . . . , γ(tN )), and define ΦN on PNΓ by

ΦN (PNγ) :=
1

2

N−1∑
j=0

|xj+1 − xj |2

tj+1 − tj
,

with xi := γ(ti), we have

µN (dx) = Z−1
N e−Φ(PNγ)d(PNγ),
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which makes the measure µN appear precisely as the projection of the above measure
µ on the finite dimensional space PNΓ. (For details on the rigorous construction of
the Wiener measure µ, see, e. g., [92, 31].)

Wiener’s measure is the basis of two fundamental relations:

a) the stochastic process of (mathematical) Brownian motion (or Wiener process,
on Rd): a family of random variables {Bt}t≥0, depending on time t ≥ 0 and
taking values in Rd, starting at time zero from the origin. The random variable
Bt is associated to µ in the sense that the probability that the process will
be found at time t > 0 inside a ball SR of radius R > 0 around the origin is
given by ∫

SR

1

(2πt)
d
2

e−
|y|2
2t dy;

b) the heat equation: the solution of the classical heat equation ∂u
∂t = ∆u with

u
∣∣
t=0

= u0, e. g. for u0 ∈ Cb(Rd) (the real-valued continuous and bounded

functions on Rd), is given by

u(t, x) = E (u0(Bxt )) , (2)

where Bxt := Bt + x, x ∈ Rd, with E standing for expectation (i. e. integral
with respect to the Wiener measure µ).

This relation can also be stated by saying that the kernel of the semigroup
et∆, t ≥ 0, generated by ∆ (heat semigroup) is the transition semigroup for
the process Bt (to go from the origin at time zero to the position x at time t).

These relations have vast generalizations: the first one is the inclusion of a “potential
term” in the heat equation:

∂

∂t
u = ∆u− V u,

with the same initial condition u0, for say V ∈ Cb(Rd). In this case, the correspond-
ing semigroup is et(∆−V ) and the above formula on the right-hand side of equation
(2) is replaced by

u(t, x) = E
(

e−
∫ t
0
V (Bxs )dsu0(Bxt )

)
.

The right-hand side can be written as an integral with respect to µ, as follows:
u(t, x) =

∫
Γ
fdµ, where

f(γ) = exp

(
−
∫ t

0

V (γx(s))ds)

)
u0(γx(t)), (3)

γx(s) := γ(s) + x, for all s ∈ [0, t].
This formula has first been derived by Kac [80], it is called Feynman-Kac formula.
All these relations also extend to the case where ∆ is a quite general second

order differential operator (second order in the space variables, first order in the
time variables) on d-dimensional manifolds or some infinite dimensional spaces, see,
e. g., [106, 33, 31, 42, 67].

If the Laplacian ∆ on the right-hand side of the heat equation is replaced by the
second order elliptic operator L defined as

Lu(x) =
1

2
Tr[σ(x)σ(x)t∇2

xu(x)] + β(x) · ∇xu(x),

for smooth vector field β and matrix valued function σ, correspondingly, as for the
case of the heat equation, there are stochastic processes associated with such more
general parabolic PDEs. They are called diffusion processes Xt, with values in Rd
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(resp. in the “state spaces” to which the space variables in the PDE belong). They
satisfy Itô’s stochastic differential equations of the form

dXt = β(Xt)dt+ σ(Xt)dBt (4)

(with Bt the Brownian motion started at the origin). The presence of the “noise
term” σ(Xt)dBt can be looked upon as a “stochastization” of the deterministic
system described by the equation

∂

∂t
u(t, x) = β(u(t, x)).

An important role in the study of the relation between deterministic and stochastic
differential equations is played by small noise expansions (expansions in powers of
ε) of solutions for the case where σ in equation (4) is replaced by εσ, ε ≥ 0, i. e.

dXt = β(Xt)dt+ εσ(Xt)dBt, (5)

see, e. g., [36], [19], [27] and references therein. Important new developments concern
an analogue of the reduction theory in the presence of symmetries (well known in
the deterministic case, see, e. g., work by Gaeta and coworkers, [63, 64, 62] and by
De Vecchi, Morando, Ugolini [53, 54]), see [37].

2.2.2. The case of oscillatory integrals. The construction we sketched for a Wiener
measure µ and the corresponding integral Iµ(f) of probabilistic type has been ex-
tended to the case of functionals of the oscillatory type, where µ is replaced by a
complex-valued measure of the heuristic form “const · eiΦ(γ)dγ”, where Φ : H → C
is a function defined on a real separable Hilbert space H of the form

Φ(γ) =
1

2
|γ|2H −W (γ),

W being a (non-linear) map from H into C, satisfying some “regularity” and
“growth” assumptions. E. g., if W ∈ F(H) (the Banach algebra of complex-valued
functions on H which can be written as Fourier transforms of some complex-valued
measures on H of bounded total variation), then

Iµ(f) =

∫
H

e−
1
2 |γ|

2
HνW (dγ),

where νW is the complex-valued measure on H such that its Fourier transform is
precisely e−iW (γ) (which belongs to F(H)), see, [39, 88].

For other choices of W , a connection with analytically continued Wiener type
integrals can be found [44, 56].

This is all part of a general theory of infinite dimensional integrals coming from
projective systems of finite dimensional Lebesgue resp. oscillatory type, worked out
in [12]. Applications include the representation of solutions of Schrödinger equations
on Rd with potentials in the classes F(Rd) resp. certain homogeneous polynomials
of order larger than or equal to 4 [9, 11] (see also, for another approach, recent work
in [46]).

Remark 1. Using formulae of such type one can express all quantities of quantum
mechanics by functionals Iµ(f) on spaces H of paths γ. Besides solutions of the
Schrödinger equation, describing the time evolution of the state of a non-relativistic
quantum particle, Feynman’s functionals Iµ(f) for suitable µ and f allow to express
mean values 〈x(t1), . . . , x(tn)〉 of products of position operators x(ti) at different
times in certain physical states. This is the Feynman approach to quantization. We
shall come back to this in Section 3 in a more general setting.
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In particular, in the case of Schrödinger equations with an electromagnetic field,
recent progress has been made for a representation in terms of a real time Feynman-
Kac-Itô formula (similar to the Feynman-Kac formula, but with the Feynman-Kac
functional replaced by exp(i

∫
A ◦ dγ), where A is the vector potential, the integral

being understood as a stochastic integral interpreted in Stratonovich’s sense), see
[4, 3]. Indeed, Feynman himself suggested Stratonovich integral for the correct
definition of the action functional containing the vector potential term [60] which,
in fact, in this way is gauge invariant [103].

A stationary phase method has been developed for a subset of such integrals,
yielding in particular applications to the study of the relations between classical and
quantum mechanics. In particular, one obtains a detailed asymptotic expansion of
the solution of the initial value problem for the Schrödinger equation in fractional
powers of Planck’s constant: under C∞ conditions (for the initial condition and the
potential, in the class F(Rd)) J. Rezende [101, 99, 100] even managed to have Borel
summability of this expansion. In the case of Hamiltonians H with potentials which
have a non-vanishing quadratic part (harmonic oscillators) perturbed by a (non-
quadratic) term belonging to F(Rd), a proof of a trace formula has been achieved

in [1, 16] in the form of an asymptotic series in fractional powers of ~ for Tr(e−i t~H)
in terms of periodic orbits of the corresponding underlying classical system (for all
values of times except for a discrete set). Such results play an important role in the
discussions concerning the relations between classical chaos versus quantum chaos,
see, e. g., [15, 45] and references therein.

Remark 2. Similar results can be obtained for the case where the Schrödinger
evolution is replaced by a corresponding parabolic evolution (heat equation with
potential), and vice versa; for this one assumes some analytic properties of the
potential and initial conditions and perform an analytic continuation in a suitable
parameter or variable, see, e. g. [44], [92], [102], [56], [105], [9, 11, 28, 29].

The particular replacing of the time t by an imaginary time plays an impor-
tant role in quantum field theory (“Wick rotation” from relativistic dynamics to
Euclidean dynamics, see Section 3 below). The basic quantities expressed by path
integrals will be the analogues of the correlation functions 〈x(t1), . . . , x(tn)〉 of the
quantum mechanical operators mentioned above (see, e. g., [104, 8]).

Remark 3. Partial differential equations which have higher order partial deriva-
tives with respect to space variables, like those of the form

∂u

∂t
= (−i)pα

∂p

∂xp
u+ V u, t ≥ 0, x ∈ R,

with α ∈ C, p ∈ N, can also be treated by functional integration methods of the
type described above, with the basic Hilbert space replaced by a suitable Banach
space B. This is contained in recent work by S. Mazzucchi [87] (see also, e. g.
[30, 12, 3, 4]). E. g. the Cahn-Allen-type equation

∂u

∂t
= −∆2u+ V u

(discussed e. g. in [81, 75]) is solved for an initial condition u0 ∈ F(R) and for
V ∈ F(R) by a linear continuous functional Iµ̃0

(f), with f as in (3), and µ̃0 a
heuristic measure associated with the Banach space of paths γ : [0, t] → R such

that
∫ t

0
|γ̇(s)|4ds < ∞ (although µ̃0 is heuristic, Iµ̃0 is a well-defined continuous

functional). See above references, in particular [87], for details.
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3. Integrals associated with quantum fields and spaces of maps. In the
previous sections we discussed integrals involving phase functions Φ which were
associated with spaces of paths with values in finite dimensional spaces like Rd (or
4− dimensional manifolds). In many other problems encountered in applications
functionals enter in the variational calculus pertinent to certain partial differential
equations. E. g. classical fields like χ(t, ~x) depending on time t ∈ R and space
~x ∈ Rσ, σ ∈ N, satisfying a wave equation of the form

∂2

∂t2
χ = ∆χ− v′(χ)

(“non-linear Klein-Gordon equation”), with ∆ the Laplacian with respect to ~x and
v′ the derivative of a real-valued function v on R, arise from a variational principle
with action functional

Φ(γ) =

∫ [
1

2
|γ̇(s, ~x)|2 − 1

2
|∇γ(s, ~x)|2 − v(γ(s, ~x))

]
dsd~x,

s ∈ R, ~x ∈ Rσ, with γ in a space Γ of maps from R× Rσ into R.
Hence it is natural (following Feynman’s approach which we briefly described in

Section 2) to look at an associated functional (integral) of the form

Iµ(f) =

∫
Γ

f(γ)µ(dγ)

with µ(dγ) = “eiΦ(γ)dγ”.
In analogy with the case of a non-relativistic particle discussed in Section 2

this should express the quantization of the model. For f of the form f(γ) =∏n
i=1 γ(ti, ~xi) one would then interpret Iµ(f) as expressing “correlation functions”

for a field γ (the analogue quantities to the correlation functions 〈x(t1), . . . , x(tn)〉
mentioned in Section 2).

In principle these correlation functions should describe relativistic quantum fields
(looked upon as quantized fields, associated with the above classical non-linear field
equation). In analogy with the procedure relating the Schrödinger equation to the
heat equation, one can associate to the functionals describing relativistic quantum
fields corresponding functionals with imaginary time, “Euclidean quantum fields”,
described by heuristic probabilistic measures of the form

µ(dγ) = µE(dγ) = “const · e−ΦE(γ)dγ”

(E for “Euclidean”), with

ΦE(γ) =

∫ (
1

2
|γ|2 +

1

2
|∇γ|2 + v(γ)

)
(s, ~x)dsd~x.

For v ≡ 0 both Iµ(f) and IµE (f) are well-defined (at least as tempered distributions
,in the case of f of the above form) and describe relativistic resp. Euclidean quantum
“free fields” (the Euclidean ones are called Nelson’s free fields and µE is realized as
Gaussian mean zero measure on S ′(Rd) with covariance operator given by (−∆ +
m2)−1, see [94] and, e. g., [102] ). For v 6≡ 0 both constructions of Iµ resp. IµE
have severe problems, still unsolved for σ = 3. For IµE one knows constructions,
via renormalization of the interaction term, only for σ ≤ 2 and for special v (of
polynomial and exponential, trigonometric type for σ = 1, and, for σ = 2, for a
fourth order polynomial type, the φ4

3-model, see, e. g., references in [8, 66, 73, 70,
74]).
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Remark 1. The construction of Iµ itself in these cases is indirect, by analytic
continuation, see [39] for first steps (with regularized interaction terms).

It would be interesting to further develop methods to cope with these problems.
In particular a rigorous Laplace or stationary phase method for such functionals
could bring some new light into the relation between classical and quantum fields
and possibly lead to a new constructive approach of non-trivial models (classical
non-linear relativistic fields with fourth order power interaction are non-trivial also
for σ = 3).

Remark 2. A further probabilistic construction of µE is possible by looking at
infinite dimensional processes (random fields) which have µE as potential invariance
measure. This was originally suggested in a paper by Parisi and Wu [98], and is
known as “stochastic quantization method”. For models corresponding to the above
phase function ΦE one looks at an SPDE (“stochastic quantization equation”) of
the form

dXτ =
[(

∆Rσ+1 −m2
)
Xτ − v′(Xτ )

]
dτ + dBτ , τ ≥ 0,

with dBτ a Gaussian space-time white noise. Such equations have received a lot of
attention, both in physics and mathematics, see e. g. [55, 13, 52].

Recently, new methods have been introduced which have lead to much progress
concerning in particular the stochastic quantization equation for models like φ4

3-
model (corresponding to σ = 2 and v(y) = λy4, y ∈ R), see, e. g. [73, 70, 89, 8].

In a sense these models also clarified questions of universality below the critical
dimension, for several models, also of other semilinear type, both in the parabolic
and hyperbolic case, for the latter see, e. g. [69].

Typical of equations associated with relativistic (and Euclidean) invariant models
are the local singularities arising from the joint requirements of geometric invariance
properties and the quantum character of the models. These “stability condition-
s” are expressed in particular by the requirement of having a lower semibounded
Hamiltonian. If only one of these requirements is relaxed, hen , by similar methods
interesting models with interaction can indeed be constructed, see [21, 7, 22].

Less singular SPDEs arise in other areas, including hydrodynamics [20], neuro-
biology [19], oceanography [76], mathematical finance [26].

Remark 3. In lower dimensional geometry / topology other types of models, as-
sociated S(P)DEs and measures have been studied, e. g. models involving gauge
fields like Yang-Mills fields, see, e. g. [57, 68, 24] for σ ≤ 2, and Chern-Simons
fields for σ = 3. The latter is described by a linear functional of the above form
Iµ(f) =

∫
Γ
f(γ)eiΦ(γ)dγ, where Γ is a space of connection 1-forms on the principal

fiber bundle over a 3-dimensional manifold M , with compact structure Lie group
G . Φ is the Chern-Simons action functional:

Φ(γ) =
k

4π

∫
M

Tr

(
γ ∧ dγ +

2

3
γ ∧ γ ∧ γ

)
,

k is a non-zero real constant, γ a g-connection 1-form, g being the Lie algebra
of G. The function f(γ) is a product of n holonomy operators. From this model
topological invariants arise [106]. This has been worked out analytically for M = R3

[34, 84, 35], and M = R× S2, M = S1 × S1 × S1 ([72, 71]).
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Let us also mention work on the construction of unitary representations of the
group of mappings from a manifold to compact Lie groups given in terms of prob-
ability measures. The underlying processes can be looked upon as group-valued
analogues of Euclidean quantum fields. See, e. g., [5, 38].

4. Remarks on the emergence of quantum structures in classical dynam-
ical systems. In recent years the beautiful area of geometric mechanics has been
enriched by the inclusion of stochastic terms in the dynamical equations. This o-
riginated from work coming from different directions. One approach was started by
Bismut (see references in [42]) and continued more recently by Camı́, Ortega and
others, see, e. g., [82].

In recent work initiated by D. Holm, a natural noise is shown to arise in con-
nection with variational principles for stochastic fluid dynamics [76], see also [40]
(where the idea of coadjoint motion on level sets of momentum maps is used to
discuss noise and dissipation in rigid body motion). The consideration of natural
geometric noises for SPDEs arise also in work by Holm on non-linear stochastic
PDEs of Born-Infeld type [65] and in work by Flandoli for a general class of (P)DEs
[61]. Let us also mention another early connection with stochastic Navier-Stokes
equations, the noise there being so chosen as to preserve natural invariant measures
for the corresponding deterministic Euler equations, [17, 47]. All this work can be
looked upon as opening up the way for the development of the new area of stochas-
tic geometric mechanics, see also the outcome of the CIB 2015 Semester Program
[18].

Finally, let us remark on some intriguing developments connected with stochas-
tic processes inspired by quantum mechanics. Nelson [95] introduced a process
for the treatment of a non-relativistic quantum particle and a random field as an
alternative approach to relativistic quantum fields [94], but he also presented a
Euclidean approach to the study and construction of relativistic fields [93] which
greatly influenced constructive quantum field theory. Inspired by the work of Feyn-
man and Kolmogorov, J. C. Zambrini [107, 51] developed a Euclidean approach to
Schrödinger processes looked upon as Bernstein processes where a couple of forward
and backward processes, suitably connected, are considered. C. Léonard [83], on one
hand, and Cresson and Darses [49, 50] managed in a way to connect Nelson’s and
Zambrini’s work.

Ideas related to stochastic dynamics as inspired by the attempts of understanding
the emergence of quantum mechanical effects from classical systems has also given
birth to work on stochastic models for the formation of planetary systems.

The regular spacing of planets was discussed in work by Kepler (1595), dynamical
considerations based on the hypothesis of formation of them from a protosolar
nebula arose in work by Descartes (1644), V. Wolf (1726), Kant (1755), Lambert
(1761), Laplace (1796), and induced in particular the emergence of various versions
of what is now known as Titius-Bode Law, see, e. g. [96]. One of them gives
rn = 4 + 3 ·2n, where rn is the distance of the centers of planet n from the center of
the sun, n = −∞ standing for Mercury, 0 for Venus, 1 for Earth, 2 for Mars, 3 for
Ceres, 4 for Jupiter, 5 for Saturn, 6 for Uranus, 7 for Neptune, 8 for Pluto (Ceres,
Uranus, Neptune and Pluto were unknown at the time, 1766, of the first publication
of the Titius-Bode Law). Laws of this type have gained renewed interest in recent
years, due to the discovery of “exoplanets”.

A stochastic model which can be brought in connection with laws of the Titius-
Bode type has been introduced in [2], based on the observation that in a symmetric



132 SERGIO ALBEVERIO AND SONIA MAZZUCCHI

diffusion process with drift term of gradient type confinement phenomena can occur,
due to the formation of different ergodic components, in correspondence with hy-
persurfaces where the density of the invariant measure vanishes, see also [92, 91, 6].
This and similar models have been further explored in various other contexts, see
[97, 49]. A. Truman and coworkers have obtained very interesting results on the
dynamics of planetesimal formation in an original nebulous cloud and asymptotic
convergence of their orbits to circular resp. elliptic orbits. For this an analogue
of semi-classical analysis for the original stochastic model has been developed, in
which a different regime for “inner” resp. “outer” planets is observed (see, e. g.,
references in [90]).

In astrophysics another model introduced by Shandarin and Zacharov is to de-
scribe distribution of matter into clusters within galaxies. The model is based on
Burgers’ equation, and has been studied in [32] with random initial distributions,
and, more recently, in [90].

The formation of (analogues of) quantum effects and structures in the large,
starting from stochastic equations (connected with certain stochastic variational
problems) seems to be a fruitful topic for future investigation and clarification of
the complexity of relations between classical, stochastic and quantum systems. The
field of stochastic geometric mechanics is an ideal framework to investigate such
questions.
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mer School held in Saint-Flour, 2010, École d’Été de Probabilités de Saint-Flour. [Saint-Flour

Probability Summer School].

[62] G. Gaeta, Erratum for “Symmetry of stochastic non-variational differential equations” [Phys.
Rep., 686 (2017), 1–62] [ MR3670079], Physics Reports. A Review Section of Physics Letters,

713 (2017), 18pp.

[63] G. Gaeta, Nonlinear Symmetries and Nonlinear Equations, vol. 299 of Mathematics and its
Applications, Kluwer Academic Publishers Group, Dordrecht, 1994.

[64] G. Gaeta, Symmetry of stochastic non-variational differential equations, Physics Reports. A
Review Section of Physics Letters, 686 (2017), 1–62.

[65] F. Gay-Balmaz and D. D. Holm, Predicting uncertainty in geometric fluid mechanics, ArXiv

preprint, 1806.10470v1.
[66] J. Glimm and A. Jaffe, Quantum Physics – A Functional Integral Point of View , 2nd edition,

Springer-Verlag, New York, 1987.

[67] M. Gordina and T. Laetsch, A convergence to Brownian motion on sub-Riemannian mani-
folds, Transactions of the American Mathematical Society, 369 (2017), 6263–6278.

[68] L. Gross, C. King and A. Sengupta, Two-dimensional Yang-Mills theory via stochastic dif-

ferential equations, Annals of Physics, 194 (1989), 65–112.
[69] M. Gubinelli, H. Koch and T. Oh, Renormalization of the two-dimensional stochastic nonlin-

ear wave equation, Transactions of the American Mathematical Society, 370 (2018), 7335–

7359.
[70] M. Gubinelli, P. Imkeller and N. Perkowski, Paracontrolled distributions and singular PDEs,

Forum of Mathematics. Pi , 3 (2015), 75pp.
[71] A. Hahn, White noise analysis and the Chern-Simons path integral, in Let us Use White

Noise, World Sci. Publ., Hackensack, NJ, 2017, 155–189.
[72] A. Hahn, The non-abelian Chern-Simons path integral on M = Σ × S1 in the torus gauge:

A review, ArXiv preprint, 1805.00248v1.

[73] M. Hairer, A theory of regularity structures, Inventiones Mathematicae, 198 (2014), 269–

504.
[74] T. Hida, H-H. Kuo, J. Potthoff and L. Streit, White Noise–An Infinite Dimensional Calculus,

Kluwer (2013).
[75] K. J. Hochberg and E. Orsingher, Composition of stochastic processes governed by higher-

order parabolic and hyperbolic equations, Journal of Theoretical Probability, 9 (1996), 511–

532.

[76] D. D. Holm, Variational principles for stochastic fluid dynamics, Proceedings A, 471 (2015),
20140963, 19pp.

[77] D. D. Holm, T. Schmah and C. Stoica, Geometric Mechanics and Symmetry, vol. 12 of
Oxford Texts in Applied and Engineering Mathematics, Oxford University Press, Oxford,

http://www.ams.org/mathscinet-getitem?mr=MR2016604&return=pdf
http://dx.doi.org/10.1214/aop/1068646370
http://www.ams.org/mathscinet-getitem?mr=MR885561&return=pdf
http://dx.doi.org/10.1007/BF01208957
http://dx.doi.org/10.1007/BF01208957
http://www.ams.org/mathscinet-getitem?mr=MR574173&return=pdf
http://dx.doi.org/10.1007/BF01197701
http://dx.doi.org/10.1007/BF01197701
http://www.ams.org/mathscinet-getitem?mr=MR3631396&return=pdf
http://dx.doi.org/10.1007/s00220-017-2857-2
http://dx.doi.org/10.1007/s00220-017-2857-2
http://www.ams.org/mathscinet-getitem?mr=MR0405513&return=pdf
http://dx.doi.org/10.1002/cpa.3160270205
http://www.ams.org/mathscinet-getitem?mr=MR3183945&return=pdf
http://dx.doi.org/10.1007/978-3-642-30690-7
http://www.ams.org/mathscinet-getitem?mr=MR2796837&return=pdf
http://dx.doi.org/10.1007/978-3-642-18231-0
http://www.ams.org/mathscinet-getitem?mr=MR1326373&return=pdf
http://dx.doi.org/10.1007/978-94-011-1018-1
http://www.ams.org/mathscinet-getitem?mr=MR3670079&return=pdf
http://dx.doi.org/10.1016/j.physrep.2017.05.005
http://www.ams.org/mathscinet-getitem?mr=MR887102&return=pdf
http://dx.doi.org/10.1007/978-1-4612-4728-9
http://www.ams.org/mathscinet-getitem?mr=MR3660220&return=pdf
http://dx.doi.org/10.1090/tran/6831
http://dx.doi.org/10.1090/tran/6831
http://www.ams.org/mathscinet-getitem?mr=MR1015789&return=pdf
http://dx.doi.org/10.1016/0003-4916(89)90032-8
http://dx.doi.org/10.1016/0003-4916(89)90032-8
http://www.ams.org/mathscinet-getitem?mr=MR3841850&return=pdf
http://dx.doi.org/10.1090/tran/7452
http://dx.doi.org/10.1090/tran/7452
http://www.ams.org/mathscinet-getitem?mr=MR3406823&return=pdf
http://dx.doi.org/10.1017/fmp.2015.2
http://www.ams.org/mathscinet-getitem?mr=MR3588087&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3274562&return=pdf
http://dx.doi.org/10.1007/s00222-014-0505-4
http://www.ams.org/mathscinet-getitem?mr=MR1385409&return=pdf
http://dx.doi.org/10.1007/BF02214661
http://dx.doi.org/10.1007/BF02214661
http://www.ams.org/mathscinet-getitem?mr=MR3325187&return=pdf
http://dx.doi.org/10.1098/rspa.2014.0963
http://www.ams.org/mathscinet-getitem?mr=MR2548736&return=pdf


136 SERGIO ALBEVERIO AND SONIA MAZZUCCHI

2009, From finite to infinite dimensions, With solutions to selected exercises by David C. P.
Ellis.
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[83] C. Léonard, A survey of the Schrödinger problem and some of its connections with optimal

transport, Discrete and Continuous Dynamical Systems. Series A, 34 (2014), 1533–1574.
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