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ABSTRACT: In the framework of a collisionless dark matter fluid which is non-minimally
coupled to gravity, we investigate the existence and properties of static, spherically symmetric
solutions of the general relativistic field equations. We show that the non-minimal coupling
originates an (anisotropic) pressure able to counteract gravity and to allow the formation of
regular, horizonless ultra-compact objects of dark matter (NMC-UCOs). We then analyze the
orbits of massive and massless particles in the gravitational field of NMC-UCOs, providing
some specific example and a general discussion in terms of phase portraits. Finally, we
study the gravitational lensing effects around NMC-UCOs, and effectively describe these
in terms of a pseudo-shadow.
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1 Introduction

Several astrophysical and cosmological evidences [1-12] have firmly established that baryons
only account for 16% of the total matter in the Universe, the rest being in the form of Dark
Matter (DM), a component which interacts mainly via gravity and only very weakly via
the other known forces. In the standard cosmological paradigm the latter is supposed to
have been already non relativistic at the epoch of decoupling between baryons and radiation,
and for this reason it is known as cold DM.

These properties of cold DM particles had profound consequences on the formation and
growth of perturbations: having non relativistic velocity dispersion they did not suffered
free streaming damping, contrariwise to, e.g., neutrinos; furthermore, being only weakly
interactive with the photon fluid, they did not experienced Silk damping either. As a result,
small perturbations in the DM density could start to grow before recombination, at an epoch
when baryons were still tightly coupled to the relativistic component thus smoothing out
their smallest perturbations.

Being so weakly interactive, on the one hand cold DM particles could not develop a
strong pressure to offset gravity and on the other hand they could not dissipate any angular
momentum preventing a runaway collapse to a pointlike attractor. Thus it is believed that,
contrariwise to baryons, they could not form static compact configurations, such as DM
stars or black holes, but rather loosely bound structures such as virialized halos. There DM
particles are supported in equilibrium by their random motions, which provide a pressure-like
component in the Vlasov (collisionless Boltzmann) equation proportional to their dispersion
velocity. After decoupling, baryons could fall in the already formed and virialized DM halos
where, as a consequence of many complex processes, were able to form cosmic structures
such as galaxies and galaxy systems. Therefore, each visible galaxy is surrounded by an
extended DM halo whose size and mass generally exceeds the one of luminous matter by
a few orders of magnitude (see reviews by [13, 14]).



Although the true nature of DM is still unknown, many candidates have been proposed,
ranging from ultralight particles with masses as small as 10~2! eV such as the axions emerging
from the solution to the strong CP problem [15, 16] or more generally axion-like particles [17],
to Massive Compact Halo Objects (MACHOs) with masses as large as 1071 M, such as
primordial black holes [18, 19]. In this huge mass range encompassing many orders of
magnitude, perhaps the most popular cold DM candidates have been Weakly Interactive
Massive Particles (WIMPs): elementary particles with masses in the 10 GeV to 100 TeV range
that interact through the weak interaction of the standard model. The interest in these kind
of particles is twofold: first, the existence of WIMPs is a natural prediction of many beyond-
standard model particle theories, such as Supersymmetry [20, 21]; second, the cosmological
DM density observed today can be explained naturally by their thermal relic abundance at
freeze-out [22]. This remarkable fact is referred in the literature as the WIMP miracle.

Moreover, the existence of WIMPs can be tested directly in experiments, looking for
signals in underground detectors produced by the scattering of DM particles off nuclei mediated
by the weak interaction. For spin-independent interactions, the leading bounds are from
one-to multi-tonne-scale liquid noble gas detectors, including XENON1T [23], PandaX-4T [24],
and LZ [25]. For DM masses m, ~ 20 — 100 GeV, the upper bound on the DM-nucleon cross
section is of the order o,y < 1047 cm?, slightly above the irreducible neutrinos background,
and much smaller than the cross section o, ~ 10736 cm? required by the WIMP miracle.
The missing signal from direct detection experiments provides the most stringent constraints
to date. These results seem to indicate that, at least for the range of mass considered, there is
little room left for a WIMP miracle, and that either DM particles have a very different mass, or
they interact with themselves and with the standard model ones with very different strengths.

On the other hand, the current constraints on the weak force for cold DM particles open
the captivating possibility of considering non-standard model interactions for particles in
the WIMP mass range. The addition of such an interaction could provide a mechanism
capable of generating the necessary pressure to sustain a stable gravitational equilibrium,
thus substantially altering the picture described above in which compact DM configurations
are not possible. Nonetheless, we expect these effects to become relevant at sufficiently high
densities to avoid contradiction with the standard cold DM model on large cosmological
scales. An order of magnitude estimate can be obtained by requiring the mean free path
Amfp = My /py0yy Of the DM particles to be of the same order of the curvature radius
(expressed, e.g., by the inverse of the square root of the Ricci scalar) R. = ¢ (STFG,OX)_l/ 2,
This leads to the definition of a threshold density
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above which the putative interaction may start to have macroscopic gravitational effects.
Assuming a mass m, ~ 100GeV and a cross section 1074 cm? < oy, < 10736 cm? leads
to a threshold density of 10?2 g/cm?® < py,/ < 10'% g/em?®, much larger than the universal
background, and to length scales 10% cm < R,/ < 102 cm, typical of stars or massive compact

objects. Note that such high densities for DM are not pertaining to currently virialized halos,
but could have been attained in the early universe or during the halo virialization phase.



Since almost the only certain thing about DM is that it couples with gravity, a nat-
ural choice for this interaction is a non-minimal coupling with the gravitational field, i.e.
Oyx — Oyg- Non-minimal interactions are commonly introduced in the analysis of scalar
fields in gravitational settings due to their generation in the renormalization group flow
or their presence in scalar-tensor theories [26-28], and they can always be recast as self-
interactions [29]. In addition, sufficiently small values of o,, suggest the intriguing possibility
that the non-minimal coupling with gravity could have a universal nature, being present
also for standard model particles, but that for the latter it would be non relevant because
its strength is outclassed by the other interactions. On the other hand, lacking any other
stronger interactions, the non-minimal coupling would be effective for cold DM particles.

In this work, however, we consider a model in which the non-minimal coupling acts on
the DM fluid rather than fields, to avoid assumptions on the precise nature of DM particles.
The idea of such a non-minimal coupling is not completely new, and different models have
been considered in the literature. In particular, a series of papers [30-33] has investigated
the properties of non-minimally coupled fluids, and their effects on the background evolution
of the Universe at late times and on the growth of cosmic structures, while another series
of papers [34-36] has shown that a Newtonian version of this model can naturally explain
the appearance of cores in the innermost part of DM halos within dwarf galaxies. Even
though the aforementioned models share a similar structure with the one presented in this
work, it must be stressed that the scales involved are completely different: around kpc for
the cores of DM halos and several Mpc for the growth of cosmological perturbations, as
opposed to the scales ~ 10'° cm we expect. As such, while a Newtonian approximation is
appropriate for the models discussed previously, the length and velocity scales considered
in the present work require a full relativistic treatment.

The plan of the paper is as follows: in section 2 we introduce the specific model under
analysis and its equations of motion; in section 3 we solve the equations in the case of regular,
static and spherically symmetric solutions, and argue that their main properties allow us
to interpret them as Ultra Compact Objects (UCOs); in section 4 we present the geodesics
of UCOs spacetimes, with a particular focus on the appearance of a pseudo-shadow due
to extreme lensing effects; finally, in section 5 we summarize the results, and discuss the
possible astrophysical implications of these solutions.

2 Non-minimally coupled dark matter

In the present work we investigate an effective model in which cold DM, characterized as a
pressureless fluid, is non-minimally coupled with the spacetime curvature. In the relativistic
action this is realized by adding a term that involves the contraction of the Einstein tensor
(representing the local curvature) with the DM stress energy tensor Thy, = pc®utu”, where
u* is the fluid velocity. The total action of the theory then reads
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where the first term is the Einstein-Hilbert Lagrangian and Lpy; denotes the DM Lagrangian.
As for the non-minimal coupling term, we consider a perturbative-like construction where



Ty = (2/v/=9) 6 (/=9 Lbm)/ 69y is the DM stress-energy tensor of the minimally coupled
theory. In [37] the authors have shown that for a barotropic fluid the Lagrangian £ = —pc?
leads to the desired energy momentum of a perfect fluid, provided the conservation of particle
number V,(pu*) = 0 applies. As we will see below, this equation fails to be valid once
the DM becomes non-minimally coupled with gravity, hence it is not clear how to select a
suitable DM Lagrangian from which 75y, = pc? u” u” can be derived. This fact, although
being problematic at conceptual level, is irrelevant in the present context since the DM
Lagrangian does not appear explicitly in the field equations, which we will consider a valid
effective description of a non-minimal coupling.

To complete the interaction Lagrangian we include the characteristic length L required
for the correct dimensionality, and ¢ = £+ 1 which is a dimensionless ‘polarity’ parameter.
The length L can be seen as the macroscopical manifestation of the cross section to mass
ratio o4/m, and, as we will make clear in the next section, it will completely determine
the scales of the solutions. The polarity parameter € is instead related with the nature of
the non-minimal interaction. It has been shown that in a model with many similarities [34],
the choice ¢ = —1 leads to stable cored configurations for DM halos, while the opposite
choice leads to very cuspy inner shapes. In the present context of ultra-compact objects
we initially considered both possibilities, but found that the case ¢ = +1 always generates
singular solutions, with the emergence of wormhole-like effects; as our focus is on regular
configurations, we will set ¢ = —1.

The self-interacting nature of DM non-minimally coupled with gravity can be seen
rigorously through a disformal transformation into the Einstein frame, which turns the
action (2.1) into

Snmo —/ d'z /=3 [16 e (P, Guw) + G (p )ﬁDM] ) (2:2)

that is a minimally coupled fluid with non-trivial self-interactions. A less rigorous, but
more intuitive way to understand this self-interaction is by truly employing a perturbative
construction with B = RO + €R(1), Loy = E( ) T+ z-:ﬁ(l) and eL? = eeL?; the action
then takes the form

Qo= [ e VT | B+ £ (23
Sxic = / dhz =g _167rGR(1) + Lhy + 6L2G$}T(OW] -
- /M d*z /=5 -167rGR(1) + LS + 87 G elPTOT “’W} : (2.4)
where in the last line we used the 0"'-order Einstein equations. While this construction

effectively shows the self-interacting nature of the non-minimal coupling, having a 7}, T*" term
in the action, we will consider the action (2.1) in its completeness to address non-perturbative
effects of this coupling.



2.1 Equations of motion and effective stress-energy tensor

The equations of motion can be easily derived by variation of the action (2.1). In doing so it
is convenient to recall the expressions for the variation of the Einstein tensor

0G =V V(# 5gl,)a — §D OGuv — ig BV(#V,,) dgap+

1 1
= 5R0Gu — 5 g (R + 9% 0 = V* V) bgap, (2:5)

and that of the stress energy tensor for a pressureless fluid as reported in [38], where it has
been shown to be independent on the choice of the particular form of the fluid Lagrangian,

v 1 v
0TEy = iTSM (uauﬁ — gaﬁ) 89ap- (2.6)

Then a straightforward calculation yields the field equations for the gravitational field sourced
by the non-minimally coupled DM fluid
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Equation (2.7) reveals a very peculiar feature of the present model: gravity is generated
not only by the DM energy density, but also by its variation in space and time. Because of
this occurrence, the DM stress energy tensor is no longer conserved; in fact, by taking the
covariant divergence of equation (2.7) and using the Bianchi identities, one finds

V. TH 4 el {ZVM(RK T — RN, Ton — VY Ry T,
R ThY
=~V | 5 (Th = 0" Tom) + 222 Rap Tog | ¢ = 0. (2.8)
2 Tom
This fact has profound consequences, which can be best understood by introducing the notion
of an effective stress energy tensor. Equation (2.1) has the form of the Einstein field equations
of General Relativity sourced by an effective energy tensor G* = kThy, 4. Clearly the
latter is not that of a pressureless fluid; instead, it features both a radial and a tangential
pressure, and thus it can be written in the most general form as [39]

Thyt ot = (Peft +DLeft ) U +pLe " + (e — DLt ) KK (2.9)

where k,, is a space-like unit vector orthogonal to the fluid velocity, k, k" = +1, k,u* = 0, peg
is the DM effective energy density, and pj|cfr, PL eff are the pressures parallel and perpendicular
to the vector k,. These quantities have a dynamical nature, meaning that they emerge as
the result of the non-minimal coupling of the original DM fluid with the gravitational field;
as such, they depend on the particular form of the metric solution of the field equations.
Once a metric has been specified, the values of the energy density and pressures can be
found by comparison of (2.7) with (2.9), and are given by the trace and the projections of
the effective stress energy tensor on the vectors u* and k*.



In view of the above, the meaning of equation (2.8) is manifest: it expresses the con-
servation of the effective stress energy tensor 7 SK/LQH, while the NMC with gravity prevents
the original tensor T}Y; to be conserved, as an effective pressure component emerges. In
particular, the projection of (2.8) onto the fluid velocity u* is a continuity equation for the
DM fluid; the projection on surfaces orthogonal to it yields the relativistic Euler equation,
where a dynamically-generated force emerges, implying a deviation of the DM fluid from the
geodesic motion. All that suggests the remarkable possibility that the DM fluid can settle in
a hydrostatic equilibrium configuration where, to use a Newtonian language, the pressure
gradient balances the gravitational attraction. This motivates us to look for static solutions
of equation (2.7) in a spherically symmetric configuration.

3 Ultra-compact objects of NMC DM

We look for a static, spherically symmetric, asymptotically flat and regular solution of
equation (2.7). In terms of the time ¢t measured by a static observer at infinity, the areal
coordinate r, and the angular coordinates 6 and ¢, the ansatz for the metric can be written
in full generality as

_2GM(<r)
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The metric depends on two unknown functions, namely the Newtonian potential ®(r), and
the cumulative mass distribution M (< r). The latter can be identified with the Misner-Sharp
mass, that is the combined total energy of the fluid and gravitational field inside a sphere of
radius r. Another unknown is represented by the density distribution of the DM fluid in the
hydrostatic equilibrium configuration p(r). Altogether one has to deal with 14 equations: 10
field equations and 4 conservation equations (2.8), but the form of the metric and the general
covariance of the theory imply that 11 of them are either identically zero or equivalent to
the remaining 3, thus leaving just 3 independent equations for 3 unknowns.

In particular, choosing the ¢t and rr components of (2.7) and the r component of (2.8),
we obtain a system of first-order ordinary differential equations in (M, p) and a trivial equation
for ®. For the numerical integration will be useful to rescale the variables as

AL A
r— L, M(<r)— RM(< x), p(r) — mp(x), (3.2)

using which we can write the system of equations in (]\Zf , D) as
px)
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P(a) =

The equation for the gravitational potential can be directly integrated in terms of M’ or of p as:
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where @ (or Py = Py —In 47) is an integration constant to be set by the boundary conditions
(see below). Once the equations (3.3) are solved, the effective energy density and radial
pressure are given by

) p(z) X . Aradp?(x) — M(< x) [1 = p(a)]”
eff\L) = T > r\T) = P|ef\T) = ) 3.5
peii(@) = 72505 Pr(®) = Pjjen(e) S [1— ()] (3-5)
while the tangential pressure has the more involved expression
pu(x) = b en(a) 1 {5M2<< o)+
t = Pleff = - ~
6473 {471'.%' - M(< x)}
~ 2 — 7% p*(x) — [4 —222] p 2
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Note that the condition p(z) = 1 defines a critical density p. = ¢?/87 G L? for which the
radial pressure and the effective energy density diverge. We have solved equations (3.3)
numerically with initial conditions M(0) = 0, p(0) = po. As it is evident from the first
equation, in order for M’ to be well behaved near the origin pg € [0, 1] must apply. We thus
obtain a continuous family of solutions differing by the central value of the density, with
po = 1 (that is p(0) = p.) representing the limiting one.

We identify the boundary of the compact object Ry with the radius where the effective
radial pressure drops to zero, so that no net radial force acts there. For » > R, we have
matched our solutions with the Schwarzschild metric, since the theory must reduce to
General Relativity where the DM stress energy tensor vanishes. Note that in more realistic
situations the UCQOs are expected to live in an ambient DM environment, but the idealized
solution considered here is a good approximation as long as the density in the interior is
orders of magnitude higher than that outside. For the range of densities considered in this
work, the latter condition is certainly met if UCOs live inside DM halos, where the average
density is = 200 x p., where p. is the critical density of the Universe. The normalization
of the potential (3.4) is chosen such that ®(R;) = 11n {1 - wgi(Rin)}, and we have set
M(< r) = M(< Rp) and p(r) = 0 for r > R,. However, note that the density drops to
zero from a finite value at Rp; physically this can be interpreted by stating that, beyond
Ry, the DM particles can diffuse freely from the equilibrium configuration, thus reducing
drastically the value of the local density.

An alternative choice would be to define the boundary as the minimum radius R, at which
the density attains zero, i.e. p(Rx) = 0. However, since R, > Ry, we have p,(Ry) < 0, so that
the DM fluid would feel an attractive pressure at R,, making its identification as a boundary
ill defined. This ambiguity is not present in General Relativity, where the equilibrium
configuration of a spherically symmetric star is found by solving the Tolman-Oppenheimer-
Volkoff equations: the form of the latter implies that, for any reasonable equation of state
of the matter fluid, the density and pressure approach zero at the same radius, making the
identification of the boundary straightforward. In our model, since gravity is generated not



only by the DM density but also by its radial variations, the equation of state for the effective
stress energy tensor is far from trivial and no simultaneous roots of p and p, are present.

It is interesting to notice that the choice of boundary R} ensures that the potential ® is
of class C'', while the derivative of the mass M’(< r) has a discontinuity at the boundary due
to the sudden drop of density. We have checked that having instead identified the boundary
with R, would have resulted in a mass function of class C'! and a discontinuous derivative
of the potential ®. In particular, it is not possible to make both components of the metric
to be of class C' over the entire domain. However, a discontinuity in the derivative of the
potential would have much deeper consequences on the physical structure of the spacetime.

The extrinsic curvature &, (r) for a surface of constant radius has a discontinuity at the
surface Ry, while it remains continuous using the boundary Rp; this discontinuity is inherited
by the expansion and shear tensors for a congruence of geodesics, which at the physical level
means that nearby free-falling particles would perceive a jump in their relative velocities, that
is an infinite relative acceleration.While the choice of boundary R} removes such divergences,
the relative accelerations of nearby geodesics, as well as invariant contractions of curvature
tensors, will have a jump at the boundary. These jumps are unavoidable because they
result from the drastic change in gravitational interaction caused by a hard boundary on
the extent of the non-minimal coupling. In a realistic setting we expect the non-minimal
interaction to diminish smoothly in such a way that the energy density and the curvature
tensors get regularized. Nonetheless, we accept and interpret these discontinuities as an
effective description for a very sharp falloff in the interaction.

3.1 Properties of the NMC-UCOs

In figure 1 we illustrate the density p(r), the cumulative mass M (< r), the metric components
g} and —gy, the effective radial pressure p,.(r), and the temporal component of the extrinsic
curvature —r(r) for a surface of constant radius. The colormap refers to the different
solutions parametrized by the value of the central density, with the limiting solution with
po = 1 highlighted by the dashed black line.

First of all we notice from the top-left panel that there is no solution for pg < 1/4; this
minimum central density is the one for which the central radial pressure

. po(4po—1)
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is zero and the solution becomes trivial. For smaller central densities it is not possible to
define the boundary Rp without introducing a negative energy density for the fluid, which is
unphysical for a standard DM framework. Being left only with the possibility of the ill-defined
boundary R,, we argue that central densities po < 1/4 are not sufficient to sustain a stable
solution. The density range of the solutions is therefore extremely small, with central values
po € 0.25,1] and values at the boundary p(Rp) € [0.25,~ 0.422]. In fact, these solutions
are present only at a precise scale and have a particularly steady density in their interior,
suggesting a physical process well-localized in the density domain.

In particular, the small range of the rescaled central density po(z) and mass M (z) implies
that these objects cannot be relevant for the behavior of entire DM halos. In fact, in principle
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Figure 1. Radial profiles of UCOs solutions: density p(r) (top left), cumulative mass M (< r) (top
right), metric component ¢g"" (middle left), metric component —g;;, extrinsic curvature component
—ky (bottom left), and effective radial pressure p,.(r) (bottom right). The various solutions are
parameterized by the allowed values of the central density p(0), as specified by the color scale. The
dashed black line highlights the limiting solutions featuring the maximal value of the central density.



the value of L could be rescaled by orders of magnitude up to galactic length scales; however,
this would lead to a correspondent rescaling of the physical mass and central density of
the object. Taking, for instance, L ~ 3 x 10%? cm =~ 30 kpc, corresponding to the radius of
the core of the Milky Way halo [40], would result in M ~ 106 M, while the estimated
virial mass of the entire halo is only M ~ 10'2 M. At the same time the density of the
object would amount to p ~ 107'% g/cm?, compared to the estimate of p ~ 10723 g/cm?
for the Milky-Way core [40].

The radial density profile shows that the solutions grow in size with the central density
up to po ~ 0.47, after which they start to shrink until they reach the limiting solution.
On the other hand, the top-right panel shows that the total mass M (< Rp) reaches a
maximum at gy ~ 0.66, after which it starts to decrease; interestingly, the mass of the
limiting solution is almost the same as that of the one with the maximum radius. The
mass-radius relation for these object will then follow a curve similar to the one of strange
stars [41], where at low densities they have small masses and radii increasing concurrently
with the central density, while denser objects have larger masses and radii which instead
decrease with the central density.

The metric components shown in the middle panels have familiar profiles, with the
notable exception for the presence of corners in the radial component g"" due to our choice
of the boundary. As discussed before, this behavior at the physical level translates in
sudden changes of particle accelerations due to the discontinuous change in density, while
the differentiability of the temporal component gy guarantees that they maintain continuous
relative velocities. This is explicitly shown by the continuity of the extrinsic curvature
displayed in the bottom-left panel, which in fact indicate that there is no localized stress-
energy tensor on the surface. We stress that the UCO solution does not feature any horizon

since the ¢"" component never vanishes.

As the central density approaches the critical value, the temporal component of the
metric reduces its central value up to zero for the limiting solution. The vanishing of g¢ can be
interpreted in a Newtonian sense as an infinite gravitational potential ®, and in a relativistic
sense as an infinite redshift for a photon emitted in the origin and measured at spatial infinity

©(0) _ 1. In both cases we can state that for the limiting solution the gravitational field
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in the origin is so intense that an infinite amount of energy is required to leave it. Such a
strong gravitational attraction has to be balanced by an equally strong radial pressure, which
is in fact shown to diverge for the limiting solution in the bottom-right panel, in agreement
with (3.7). The divergence of the effective pressure, which by definition corresponds to the rr
component of the Einstein tensor, indicate that the solution becomes singular. However, this
singularity does not have to be interpreted as an exotic naked singularity but rather as a limit

for static solutions before gravitational collapse, as the Buchdahl limit in General Relativity.

Nonetheless, the presence of extreme curvatures suggests that we are in a very strong
gravity regime. In figure 2 we show some relevant length-scales which indicate that the
compactness of the solutions is close to the typical size of a black hole mimicker, especially
when one approaches the limiting solution. In particular, in red we show the radius in mass
units, which approaches the size of the light ring (i.e. the radius where a circular orbit for
photons is allowed) of the Schwarzschild solution R = 3 GM/c?, and in the inset we show
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Figure 2. Relevant physical length-scales of UCOs solutions: boundary radius R}, (red) and light rings
(orange; dashed for the inner and solid for the outer); these are measured in units of total mass M of
the UCO, and are plotted as a function of the UCO central density p(0) defining the various solutions.
The grey shaded area displays the typical size of spherically symmetric regular black hole solutions
(e.g., black hole mimickers) in general relativity. The inset displays the compactness parameter
o0 =1-2G M/c* Ry, (green); the dotted line is the limiting value of the density 7% L* p(0) =0.25

C2

below which no physical solution exists.

the compactness parameter 0 = 1 — 2GM (< Ryp) /c® Ry, which goes from 1 at pyp = 1/4 to
~ 1/3 at pp = 1. Such a high compactness leads to the formation of two light rings, as usual
for very compact regular solutions, of which the larger describes unstable circular photon
orbits and the smaller stable ones (we will explain the definition of light ring in the next
section). Finally, we can conclude that our choice of naming these solutions Ultra-Compact
Objects is thus justified.

As a final remark, we briefly discuss the stability of our UCO solutions. A rigorous
treatment of this issue would require a numerical integration of the equations for time-
dependent perturbations, which is postponed to future works. Nevertheless, we can gain
some insight into linear stability by considering the behavior of test fields. Specifically, the
wave equation for a test field of spin s = 0, 1, 2 can be reduced to an equation for a scalar
function 94(r) with form [42]

20hg(r
Tl 2 - V)] wntr) =0, (3.8)
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in terms of the effective potential

)

1—s 2GM (< r) (1+28)GM(<r)—rGM'(< T)} 0(0+1)
— p2¢(r) _ !
Vs(r)=e { r {1 c2r ] {gb (r)+ r(c?r—2GM(<r)) + r2
(3.9)
in the above the test fields have been decomposed as W(t, 7,6, ) = e~ Yy, (6, @) ¥s(r) /7,

and 7* in equation (3.8) is the tortoise coordinate defined by r* = [dre (")

2GM (<r)] /2
==
mode with positive imaginary part. A simple argument for stability [43] can be inferred from

The test fields are unstable if there exists an exponentially growing

the positivity of the potential V(7). In a regular spacetime the tortoise coordinate domain can
be extended from [0, 00) to (—o0, 00), and the positivity of the potential Vi(r) ensures that the
operator _dj% + Vi (r) is positively definite in the Hilbert space of square integrable functions
L2(r*,dr*). The positivity of the eigenvalues, in turn, implies the absence of growing modes.

Coming to our UCO solutions, the potential is always positive for a s = 1 field, and for a
s = 2 field when ¢ > 1. However, tensor perturbations with £ = 0,1 are generally regarded as
redefinitions of mass and angular momentum, and are not typically considered in the stability
analysis. For a scalar field (s = 0) the potential is always positive for ¢ > 1, but for £ = 0 it
requires po = 0.59. All in all, this preliminary analysis suggests then that the most compact
objects are stable against linear perturbations. Note, however, that the presence of a stable
light ring could lead to long-lived decaying modes and nonlinear instability effects [42], but
these require a detailed analysis which is much beyond the scope of this paper.

4 Orbits around NMC-UCOs

To have insight into the physical nature of NMC-UCOs, we analyze both the timelike and null
geodesics of their spacetime. As a matter of fact, geodesics analysis is particularly instructive
in this case, as we expect both massive and massless test particles to interact with the DM fluid
mainly through the gravitational field rather than through the direct NMC, therefore following
its geodesics. As such their motion is described by the Lagrangian for a free falling particle

1 1 2GM(<r)] "

1 .
Ly = -gui'i’ = —3 22 242 4 3 1

1 .
5 f2+5r2¢2, (4.1)

c2r

where a dot denotes differentiation with respect to an affine parameter A along the trajectory,
and without loss of generality we have assumed the motion to take place on the plane 6 = /2.
Differentiation of (4.1) with respect to A yields the geodesic equation

B4 Th i3 =0, (4.2)

implying that the Lagrangian itself is constant along the trajectory. Thus we can restrict
to consider the simpler first order equation

ol 2GM(< )\t 5 52
n=—c€ 2¢()E2+(1_C2r> T2+7"727 (43)

where the energy F, the angular momentum j, and the parameter 7 are the first integrals
of motion associated to the invariance of the Lagrangian under time translations, rotations
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in the considered plane, and reparametrizations of the affine parameter along the particle
trajectory, i.e.:

ot ’
j=%r 2, (4.4)
¢

J— . -V
N = gu I

Specifically, n = 0 applies to massless particles while, if A is chosen to be the proper time

along the trajectory, n = —1 applies to massive ones. Equation (4.3) can be recast as
2GM (< 2
;2 _ (1 _ 2( 7“)) (e_sz B _ LQ i 77) , (4.5)
cAr r

2GM(
2GM(<r)

being horizon-less and regular at the origin, our solution has 1 — == 7,<T) > 0 in all of space,

implying that a photon and a massive particle can propagate only in those regions where
202 I
e “YE° — 3 > —n, (4.6)

with equality corresponding to a turning point with » = 0. In particular, a radial geodesic
starting at rg, having 7 = 0, will fall through the center of the UCO re-emerging on the

2¢(r) is a monotone increasing function of the radius and E = ¢2®(10)

opposite side, since e
holds. On the other hand, if j # 0 a centrifugal barrier is present, preventing the particle
to reach the center.

To understand what happens at the turning point, we look at the radial component

of the geodesic equation (4.2) with 7 = 0:

F = (1 _2GM(< T>> e (1@ E? - pe?] . (4.7)

c2r r

This implies that a particle will experience an attractive or a repulsive force at the turning
point depending whether (1 —r ®')E? — ne2® is below or above 0 there. This condition is of
particular interest in the case of massless particles, where it reduces to whether r ® is above
or below 1, with no dependence on the energy. In particular, if there exist one or more radii
Ry, such that Ry ®'(R),) = 1, then a photon with energy and angular momentum satisfying
E/|j| = e®@) /Ry, will move on a circular orbit there: a radius with this property is known
as a ‘light ring’. A detailed numerical analysis of the solution reveals that for a central value
of the normalized density less that pg < 0.85 no light rings exist, while for higher densities two
of them appear: an external one which describes unstable circular orbits and an internal one
which describes stable orbits. The stability of the orbits is manifest if we recall that r ® — 0
at large distances, and then circular orbits close to the external light ring will experience a
repulsive force on the outside and an attractive one on the inside, while close to the internal
light ring they will experience repulsive force on the inside and attractive on the outside. For
this reason, close to the internal light ring bounded photon orbits are possible. Although the
light ring position R), < R}, is internal to the boundary of the UCO, this name is appropriate
since the object is made of DM and hence is ‘transparent’ to radiation.
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Figure 3. Relevant examples of orbital trajectories for massless (magenta) and massive (green) parti-
cles around an UCO solution with central density po = 0.95. Top diagram show the trajectories in polar
coordinates, bottom diagrams illustrate the radial position of the test particle as a function of proper
time. The dashed grey lines displays the position of the boundary, dotted grey lines that of the inner and
outer light rings. Left diagrams refer to an unbound orbit, middle diagrams to a loose bound orbit for
massive particles, and right diagrams to a tigthly bound orbit for both massless and massive particles;
the values of the energy parameter E, of the angular momentum j, of the starting radial coordinate rg
and the average proper period (T") of the orbit are reported (polar initial angle is assumed to be null).

In figure 3 we showcase some relevant examples of orbital trajectories for massless
and massive test particles in the gravitational field of the UCO, obtained by solving the
orbital equation

o 5 (4.8)

(dr>2 _ 2 [1 B 2GM(<7“)} <r26—2¢]?22 +777; _ 1)

J J
with different initial conditions rq, and different values of the energy E and angular momentum
7. Top diagrams show the trajectories in polar coordinates, magenta for massless and green
for massive particles. The average orbital proper time is also reported. Bottom diagrams
show instead the radial position of the test particle as a function of proper time (for massive
particles), or of the affine parameter along the trajectory (for massless ones). Left diagrams
refer to an unbound orbit, middle diagrams to a loose bound orbit for massive particles
(note the pericenter precession), and right diagrams to a tightly bound orbit for both kind
of particles. To ease the visualization, the boundary of the UCO and the light rings are
also displayed in all diagrams as continuous and dashed grey lines, respectively. Note that
proper times are of the order of L/c even for massive particles, typical of ultra-relativistic
motion; this copes with the very high compactness of the UCO.
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Figure 4. Orbital portraits diagrams for the UCO solution with central density gy = 0.95, slightly
below the maximal value. Left panel refers to a massless and right panel to a massive test particle. The
radius 7 at the radial inversion point(s) with 7 = 0 is shown as a function of the angular momentum
j (z-axis) and of the energy parameter E (color-scale) of the test particle. The dashed black line
highlights the portraits for £ = 1. Note that in both the panels, the scale of the y-axis starts linear at
the bottom and then becomes logarithmic at the top.

4.1 Orbital portraits

While figure 3 makes clear and intuitive what are the possible orbits in UCO spacetimes, it
is far from giving a complete picture. Toward this purpose, in figure 4 we show the orbital
portraits diagrams for an UCO solution with a central density near the maximum value,
high enough to develop light rings. We show the radius r at the radial inversion point(s)
with 7 = 0, as functions of the angular momentum (z-axis) and of the energy parameter
(color-scale) of the test particle. Left panel refer to a massless and right panel to a massive
test particle. The dashed black line refers to the case F = 1, appropriate e.g. for a particle
starting at rest from infinity. In both panels, the scale of the y-axis starts linear at the
bottom and then becomes logarithmic at the top.

The number of intersections between a colored curve (corresponding to a given energy
E) and a vertical line (corresponding to a specific value of the angular momentum j5) hints to
the nature of the possible orbits. In fact, such intersections highlight the different radii r at
which motion inversion with 7 = 0 can occur. When only one intersection is present (e.g., for
both massive and massless particles at high j), the particles will reach a minimum radius
with zero radial velocity, and then they will be pushed away by the centrifugal barrier and
reach spatial infinity. When there are two intersections (e.g., for massive particles with £ <1
and j/cL < 2), a bound orbits is possible between a maximum and minimum radius. Finally,
when there are three intersections (this can be clearly seen for massive particles with £ ~ 1
and j/cL =~ 1.8), two kind of motion can occur: if the orbit starts from a large radius, then the
particle will encounter the external inversion point and will be pushed away to spatial infinity;
contrariwise, if the orbit starts between the two internal turning points, it can be bounded.
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Figure 5. Pseudo-shadow of the UCO solution with central density po = 0.95. Left panel illustrates
a ray-tracing simulation, with the observer at the black spot on the right and an illuminated screen
assumed at © = —oo. Solid lines are light rays traced back in time from the observer with different
impact parameters j/E: in the remote past, cyan rays hit the illuminated screen at £ = —oo, and
hence can be seen by the observer; orange rays are instead deflected back to x = 400 and are precluded
to vision. Dashed grey lines displays the position of the boundary, dotted grey lines that of the inner
and outer light rings. Right panel is a polar plot illustrating the face-on view of the UCO from
the observer position: as a consequence of gravitational lensing, a multiple photon ring structure is
originated around the typical radii (¢?/G)r ~ 1.8 —4 —5 M.

4.2 UCO’s pseudo-shadow

A century after the pioneering observation of gravitational light deflection during a solar
eclipse that provided the first smoking-gun test of General Relativity, in 2019 the Event
Horizon Telescope (EHT) Collaboration published the first ‘image’ of a BH [44]. In fact, the
light rays passing close to a BH can be deflected very strongly and even travel on circular
orbits in correspondence of the light rings. This strong deflection, together with the fact that
no light comes out of a BH, allows the latter to be imaged as a dark disk in the sky, known as
‘BH shadow’. For a Schwarzschild black hole the size of the shadow is rg, = 3v3 M ~ 5.2 M
(e.g., see [45] for a derivation and an extended discussion on black holes’ shadows).

The NMC-UCOs do not feature an horizon and, being composed of DM, are completely
transparent to light rays; nevertheless, the notion of a shadow in a wide sense can be
introduced also for them. The left panel of figure 5 shows a ray-tracing simulation, with the
observer positioned on the black spot at the extreme right of the plot and an illuminated
screen assumed at x = —oo. Solid lines represent light rays from the observer traced back in
time for different impact parameters j/E. Light rays stemming from the observer are divided
into two classes: those that in the remote past hit the illuminated screen at x = —oo can be
seen by the observer and are highlighted in cyan; orange rays are instead deflected back to
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x = 400 and not reaching the illuminated screen are precluded to vision. The right panel
is a polar plot illustrating the face-on view of the UCO from the observer position. This
originates a pseudo-shadow at = 5.2 M, close to the size of that for a Schwarzschild black hole.
Inside it, a multiple photon ring structure around the typical radii (¢?/G)r ~ 1.8 —4—5M
emerges, as generically expected for horizonless compact objects [46].

In principle, if close enough so as to avoid resolution problems, a NMC-UCO could be
spotted via the distinctive features of its pseudo-shadow in EHT-like data. However, one
problem could be that in a gas rich environment, like our galaxy, these objects could have
accreted baryons, subsequently collapsing into a standard singular black hole. Even though a
detailed study of the accretion and collapse of NMC-UCOs will be postponed to a future
work, a very simple calculation shows that the horizon will exit the boundary once the UCO
has accreted half of its original mass. Assuming Eddington accretion this will happen within
a few e—folding times. However, if one of these objects had formed in (or migrated to) a
region particularly devoid of baryons, such as a globular cluster, the possibility to observe
it today would increase significantly. If detected, NMC-UCOs would represent a unique
opportunity for the understanding of the interplay between DM and gravity.

5 Discussion and conclusions

In this work we have presented a general relativistic action featuring a non-minimal coupling
between the stress energy tensor of a collisionless DM fluid and gravity. The latter could be
described in terms of a scattering cross section between DM particles and gravitons which,
if sufficiently small, opens the intriguing possibility that the non-minimal coupling with
gravity could be present also for standard model particles, but that for the latter its strength
would be outclassed by the other interactions.

We have shown that the non-minimal coupling originates an anisotropic effective pressure
able to counteract gravity and to support the otherwise collisionless DM fluid into static,
spherically symmetric configurations. Investigating the properties of such configurations,
we have found that they are horizonless, non singular ultra-compact objects (NMC-UCOs),
with a very limited range of allowed central densities. We have also analyzed the orbits of
massive and massless test particles in the gravitational field of NMC-UCOs, providing some
specific examples of both bound and unbound orbits and a general discussion in terms of
phase portraits. Finally, we have implemented a basic ray-tracing simulation to study the
gravitational lensing effects around NMC-UCQOs. We have effectively described these in terms
of a pseudo-shadow that makes connection with what is usually done in the context of black
holes. If observed, the peculiar light pattern around NMC-UCOs could constitute a clear
signature for the detection of such exotic objects.

A caveat concerns the densities required to form NMC-UCOs, that ultimately depend
on the magnitude of the lengthscale parameter L appearing in the relativistic theory; in
particular for L ~ 10'° cm one finds densities p ~ 107 g/cm?® and masses of astrophysical
interest M ~ 10*My. However, such high densities, necessary to make the non-minimal
coupling to kick in, are considerably higher that the average ones occurring within virialized
DM halos. Nevertheless, the possibility remains that the necessary conditions could have
been met during the early fast and violent collapse of a DM halo or in the early Universe. In
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the latter instance, the environmental conditions could be prone for a copious production
of horizonless NMC-UCOs that, at variance with primordial black holes, will not suffer
evaporation-related issues and thus may potentially survive till much later cosmic times.
In a forthcoming paper we plan to study the collapse of NMC-UCOs, and to investigate
whether they could have some astrophysical relevance as primordial gravitational wells for
the early formation of supermassive black hole seeds.
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