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Abstract

Conformal Perturbation Theory and LLM Geometries

by

Alexandra Patrea Mathisen Miller

This dissertation will focus on various aspects of the AdS/CFT correspondence. Each

new result can be thought of as doing at least one of three things: 1) providing support

of the duality, 2) using the duality to learn about quantum gravity, and 3) helping to

further develop our understanding of the duality. The dissertation is divided into two

parts, each dealing with a different physical system.

In the first part, we derive universal results for near conformal systems, which we

have perturbed. In order to do this, we start by looking at the conformal correlation

functions and compute the corrections that arise when he hit the system with a new

operator. We were able to analyze what happens to the dual gravitational system under

such circumstances and see that our answers agree, providing support for the AdS/CFT

conjecture. These universal results also provided a previously lacking interpretation of

the universality of energy found in a quenching your system between the perturbed

and unperturbed set-ups. In order to perform these computations, we put our CFT on a

cylinder, which happens to be the boundary of global AdS. This provided an IR regulator

and we found that the remaining divergences were of the same form as one expects in

dimensional regularization. Following along these same lines, we further analyzed the

divergence structure of correlators in conformal perturbation theory. We found that

on the plane, the logarithmic divergences that show up can be understood in terms of

resonant behavior in time dependent perturbation theory, for a transition between states
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that is induced by an oscillatory perturbation on the cylinder.

In part two, we restrict to the set of LLM geometries, which are the set of 1/2 BPS

solutions to IIB supergravity. In our first work, we analyzed limitations of the duality,

showing that boundary expectation values are not enough to determine the classical

bulk geometry. Next, we used this system in order to learn about quantum gravity.

We first were able to show that a quantum superposition of states with a well defined

spacetime topology leads to a new state with a different topology. From this, we were

able to prove that for this set of states there cannot exist a quantum topology measuring

operator, bringing to doubt whether such an operator can exist in quantum gravity more

generally. Finally, we were able to advance our understanding of the dictionary itself

by reinterpreting these results in terms of the language of quantum error correction,

showing that questions about topology perhaps only make sense within a particular

(code) subspace of states.
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Chapter 0

Introduction

0.1 Scales in Physical Theories and the Road to Quan-

tum Gravity

One of the biggest open questions in physics today is: What is the correct theory of

quantum gravity? Two of the most fundamental and well tested theories in physics are

quantum mechanics and general relativity. In most cases, the effects of these two are

seen in very different settings. This is due to the fact they become important at very

different scales. In order to define and motivate the need for quantum gravity, I will start

by discussing this importance of considering the scale of your system when developing a

scientific theory.

Any physical theory has constants associated with it and these provide a scale where

the effects of the theory become important. The same physical system is often described

by multiple theories and which theory you use depends on the scale at which you probe

the theory. For instance, the proper equations needed to analyze the flow of water depend

on how closely you look at it. If you care about the dynamics of a river, you would use
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Introduction Chapter 0

the equations of fluid dynamics. But, if you want to zoom in on a droplet of water,

you will start to care about the fact that the water is actually made up of individual

H2O molecules and so will need to introduce more fundamental equations describing the

motion of the molecules. The size of H2O molecules is a constant that will help determine

which theory you will need to use. On length scales much longer than the size of the

molecules, you can take the continuum limit and use the equations of fluid dynamics,

but if you zoom in to length scales that are near the size of the molecule, you will need

to use a new set of equations.

Students first studying physics will generally start by learning Newton’s laws of clas-

sical mechanics, which work on every day human scales. But, if we want to understand

the many deep mysteries of the universe, we need to consider the physics of systems at all

scales. Furthermore, in the case of water, we considered zooming in to shorter lengths,

but this is not the only scale you might consider. Indeed, you can consider limiting cases

of any physical quantity you might discuss. Historically, there were three particularly

interesting limits that ended up leading to paradigm shifts in the way we understand

the world around us. The first was from considering objects moving very fast, near the

speed of light. In 1905, this led Einstein to propose the theory of special relativity [1],

which alters Newton’s laws for objects moving at these very high speeds and leads to very

unexpected phenomena, such as time dilation, length contraction, and recognizing the

speed of light as the universal speed limit. Ten years later, in 1915, Einstein took things

a step further and considered very massive objects. He again found that in this limit,

Newton’s laws simply don’t do the trick and a new theory is needed. This was his theory

of general relativity [2], which teaches us that very massive objects actually curve the

fabric of spacetime itself. And it is this curvature that causes, for instance, the planets to

orbit the Sun. Finally, around the same time, physicists were considering the behavior of

2



Introduction Chapter 0

objects at very small scales, which led to the development of quantum mechanics, which

comes with it a large array of surprises, such as the uncertainty principle, wave-particle

duality, and quantum entanglement.

In each of these cases, we learned that Newton’s Laws are not fundamental, but

instead are approximations that only work at everyday scales. It turned out that special

relativity, general relativity, and quantum mechanics are the more accurate descriptions

of the universe. A question you might ask is, how do you know when you need to use these

new theories and when can you use the classical approximations? With each theory there

is an associated constant of nature: special relativity uses the speed of light c, general

relativity has Newton’s gravitational constant G, and quantum mechanics has Plank’s

constant ℏ. And these constants set the scale at which the theory becomes important.

For instance, special relativity only becomes important when objects approach the speed

of light. At every day speeds, its effects are too small to notice.

We therefore found that by considering these limits, we were able to discover a more

accurate description of the universe. One might next wonder what happens if we consider

combinations of these limits. How do very fast large objects behave? Do we again need

a new theory in that case? Happily, this particular combination has already been solved.

When Einstein developed general relativity, he included special relativity in it. (That’s

why it is called special: it is the special case of relativity where we are in the limit of

flat spacetime). We might also want to consider systems with very fast objects probed

at very short distances, combining quantum mechanics with special relativity. This led

to the discovery of quantum field theory, which is used in describing the standard model

of particle physics, which predicts the phenomena seen at particle accelerators, such as

the LHC (Large Hadron Collider). Finally, one might want to consider the very massive

objects at very small distance scales. This is the regime of quantum gravity, where

3



Introduction Chapter 0

general relativity and quantum mechanics both become important.

One might wonder, usually massive objects are also large, while small objects have

a small mass. So, what are the physical systems quantum gravity will actually help us

describe? The answer is very dense objects. This leads us to black holes, which are the

densest objects in the universe. It is in these extreme places where general relativity alone

fails. And, again, it appears that there must be a more fundamental theory, a quantum

mechanical theory of gravity. As of today, we still do not know what the correct theory

of quantum gravity is. The work in this thesis was all done with the aim of trying to

help fill in pieces of the puzzle answering the question: What is the correct theoretical

description of the world where quantum mechanics and general relativity collide?

0.2 The Search for a Theory of Quantum Gravity

When classifying the forces of nature, there are four types we consider: electromag-

netic, weak, strong, and gravity. The first three of these are all well understood within

the framework of Quantum Field Theory (QFT). They are represented by force carrying

particles and so are well incorporated into the Standard Model. One might hope then

that quantum gravity is described by a graviton (the particle carrying the force of gravity)

and can also be understood using QFT. This, unfortunately does not work. Infinities ap-

pear and prevent you from extracting physically meaningful predictions. These infinities

are commonplace in QFT. However, there are usually only a finite number of them and

so they can be systematically removed. This process is referred to as renormalization. In

describing the graviton, we find that there are an infinite number of infinites that arise

and so renormalization is no longer sufficient. For this reason, it was discovered that we

need something new in order to describe quantum gravity.

4
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These infinities (divergences) generally have two physical origins: from either the very

short or the very long length scale. The infinites from short distances are referred to as

Ultraviolet (UV) divergences and come from the fact that we are including contributions

from infinite energy interactions, whereas those from the large scale are referred to as

Infrared (IR) and come from the fact that we integrate over infinite space.

String theory is a framework that treats fundamental particles as tiny vibrating strings

instead of as points in space. The finite size of particles softens the UV divergences and

so is a much better behaved theory. The fundamental constant of string theory is the

string scale and only near this scale will you be able to notice the stringy nature of

the particles. If you look at them at larger distances, then they will simply appear

to be points in space, reducing to our standard picture of a point particle. Originally,

string theory was written down in the late 1960’s in order to describe the strong force,

which governs the interactions of hadrons. But, it was eventually discarded in favor

of quantum chromodynamics. Today, it is believed that string theory may instead be

the correct framework for describing quantum gravity. This is in part because not only

does string theory allow for the existence of graviton, but its existence is required for

consistency. That is, all particles of the standard model have a spin associated with them.

This is simply one of their basic properties, just like their electric charge. For instance,

electrons have spin 1/2, whereas photons have spin 1. In 1965, Weinberg showed that

any massless spin 2 particle must be a graviton and such a particle arises naturally in

string theory, suggesting that it is a good candidate framework for quantum gravity.

Furthermore, there are two main requirements that we have for any possible theory of

quantum gravity: 1) that it is consistent with the postulates of quantum mechanics; and

2) that it agrees with the results of General Relativity in the classical limit. String theory

does both of these things.
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There is still a lot that we do not know about string theory, but much progress has

been made. And in 1997 [3], Juan Maldacena had a novel idea that completely changed

the way we look at the theory. He conjectured that type IIB superstring theory in

AdS5 ×S5 is dual to N = 4 Super-Yang-Mills, which lives in four spacetime dimensions.

In other words, he hypothesized that a particular supersymmetric form of string theory

(a theory of quantum gravity) is deeply mathematically related to a different theory that

does not contain gravity. This is an incredibly surprising, philosophically interesting,

and practically useful result. It says that any physical observable you can compute on

one side of the duality can be mapped to a result on the other side. To date, physicists

have worked on both sides of the duality to learn lessons about the other side. While

the conjecture has not yet been proven, there is a great deal of evidence for it and the

body of evidence seems to grow every day. All of the work in this thesis has approached

quantum gravity using AdS/CFT as a tool. As such, I will use the following section to

introduce some basic background of the duality.

0.3 AdS/CFT

Dualities are both remarkable and incredibly useful tools for science. A duality states

that one physical system can be described in two or more ways that often look incredibly

different, consisting of different interactions and degrees of freedom. This allows one to

look at the same physical system through very different lenses, providing new insights

and intuitions. These can be especially useful in the case of strong-weak dualities, where

one side is strongly coupled, while the other is weakly coupled. This is because we have

many more methods at our disposal for approaching weakly coupled theories. For two

theories to be truly dual, everything you can compute on one side must correspond to

6
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something on the other side, every degree of freedom must have a partner.

Gauge/Gravity dualities [3, 4, 5] are remarkable and useful for all the same reasons

listed above, and more. There are various motivations one might have for studying

them. Many prefer to work in the limit where one can learn about strongly couple

field theories. There the mapping is incredibly useful because the gravitational theory

reduces to classical gravity, which we know how to deal with, while the field theory side

is strongly coupled and this is therefore generally much more challenging. I, on the other

hand, prefer to use the duality in the other direction and the work of this thesis reflects

that. I prefer to use the duality in order to learn about quantum gravity, which we are

still far from completely understanding. We can compute observables in field theory,

which we have good intuition for and map them to the other side in order to learn about

quantum gravity.

The first example of a gauge/gravity duality was conjectured by Juan Maldacena

and said that type IIB string theory on AdS5 × S5 is dual to N=4 Super-Yang-Mills in

D = 4 [3]. It might seem surprising that a gravitational theory could be dual to one

without gravity and even more surprising that the two theories live in a different number

of spacetime dimensions. But, this amazingly is the case. This latter property is a result

of the holographic principle [6, 7, 8], which is due to the fact that the gravitational theory

is highly redundant and therefore should be able to be described by degrees of freedom

living in fewer dimensions.

Since this original example, many more examples of gauge/gravity dualities have

been studied, some with more success than others. There are an array of other examples

of AdS/CFT, as well as examples where the gravitational theory has other asymptotic

boundary conditions and correspondingly the field theory has other symmetries. For

instance, there are higher spin versions of AdS/CFT [9, 10, 11, 12]. And, with the goal

7
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in mind of developing a duality that describes our universe, there have been many efforts

to develop a dS/CFT duality [13, 14, 15, 16, 17, 18]. One of the primary differences (and

challenges) this duality has is that whereas in AdS/CFT the radial direction emerges

holographically, in dS/CFT the time direction is emergent, which is challenging to recon-

cile with unitary time evolution. Others have considered flat space holography [19, 20],

which rather than being dual to a conformal theory, has as its dual a BMS invariant field

theory. It is still an open question which CFTs (or more general gauge theories) have a

gravitational dual.

All of of the work in this thesis deals with quantum gravity on a spacetime with

asymptotically AdS boundary conditions and is dual to a conformal field theory. To give

you a feel for this, in the following sections, I will give brief introductions to the two

sides of the duality, as well as describe some of the pieces of the dictionary, and discuss

some of the recent advances of our understanding. For more thorough reviews of the

correspondence, see [21, 22, 23, 24, 25].

0.3.1 Classical Ads

One of the primary reasons why studying quantum gravity in Anti-de Sitter (AdS)

space is nice is because it acts like a finite sized box in that, though it is infinite in size, if

we send a signal to the boundary, it will return in finite proper time. For this reason, it is

a nice space in which to perform controlled experiments. This also means that boundary

conditions must be imposted in order to get a well-defined solution. That is, we do not

have a well-posed initial value problem in terms of information specified on a spacelike

slice (we will see later that these boundary conditions will be directly related to our dual

conformal theory). In order to get a better feel for AdS, let’s review the basic facts about

it. For a more thorough look, see any of the standard general relativity texts, for instance

8
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[26, 27, 28, 29]. Alternatively, most of the AdS/CFT reviews mentioned above give an

overview.

Anti-de Sitter (AdS) space is one of the three maximally symmetric solutions to

Einstein’s equations. The other two being Minkowski and de Sitter space. AdS is the

solution with a negative cosmological constant, whereas de Sitter has a positive constant

and Minkowski space has vanishing cosmological constant. It is invariant under SO(d+

1, 1). If we embed d + 1 dimensional Euclidean AdS space into Rd+1,1, it is given by a

hyperboloid:

−(X0)2 + (X1)2 + · · ·+ (Xd+1)2 = −R2, X0 > 0 (0.1)

We can define Poincare coordinates of AdS by taking

X0 = R
1 + x2 + z2

2z
(0.2)

Xµ = R
xµ

z
(0.3)

Xd+1 = R
1− x2 − z2

2z
(0.4)

where xµ ∈ Rd and z > 0. The metric in these coordinates is given by

ds2 = R2dz
2 + δµνdx

µdxν

z2
(0.5)

In these coordinates, we see that the z = 0 boundary is just Rd. And, if we move into

the bulk, each fixed z is simply another copy of Rd, which is scaled down as z increases.

For this reason, one can interpret moving into the bulk as an RG (renormalization group)

flow. These coordinates are often referred to as the Poincare Patch because they do not

actually cover the full AdS space. A second useful coordinate system (which will cover

9
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the full space) is given by

X0 = R cosh τ cosh ρ (0.6)

Xµ = RΩµ sinh ρ (0.7)

Xd+1 = −R sinh τ cosh ρ (0.8)

where Ωµ parameterizes a unit (d− 1) dimensional sphere. The metric is given by

ds2 = R2
[
cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2

d−1

]
(0.9)

This metric is often referred to as Global AdS because, unlike the Poincare Patch, it

covers the full space. It is conformal to a solid cylinder and therefore the AdS/CFT

correspondence is often drawn as a cylinder with the conformal theory living on the

boundary. Both this and the Poincare metric representations are fairly common in the

AdS/CFT literature, and which is more useful is generally decided on a case by case

basis.

0.3.2 Conformal Field Theory

A Conformal Field Theory (CFT) is a Quantum Field Theory (QFT) that is invariant

under local changes of scale:

g′µν(x
′) = Ω(x)gµν(x) (0.10)

10



Introduction Chapter 0

An example of such a transformation is a constant scale transformation, where Ω(x) = λ

is constant across all spacetime.

g′µν(x
′) = λgµν(x) (0.11)

This simply zooms in or out of your entire system (increasing or decreasing everything

uniformly). More generally Ω(x) can be a local scale transformation, which might zoom

in on some areas, but out in others. One can alternatively think of the set of conformal

transformations as being the set of angle preserving transformations. This a more liberal

constraint that that which leads to Poincare transformations, which only preserve the

norm of vectors. Notice the Poincare group a subset of the Conformal group, restricted

to the special case where Ω(x) = 1. The set of allowed transformations is therefore

enlarged and includes the usual translations, boosts, and rotations, as well as dilatations

and special conformal transformations (which can be though of as an inversion, followed

by a translation, and then another inversion). We see that the symmetry group of a

d-dimensional CFT is enhanced from that of a normal QFT to SO(d+1, 1). Notice that

this matches with the isometry group of AdS in (d + 1)-dimensions. When considering

the space of all allowed QFTs, the CFTs lie at critical points of the RG flow, where the

beta-functions vanish.

These are only the most basic defining properties of a CFT. Part I of this thesis

contains all of my work on conformal perturbation theory. So, I will begin that part

with a chapter, giving a more thorough introduction to some of the special properties of

conformal field theory.

11
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0.3.3 A few words about Strings and N = 4

The original example of and AdS/CFT duality said that type IIB string theory on

AdS5 × S5 was dual to N=4 Super-Yang-Mills in d = 4 spacetime dimensions. For

a full description of both sides of this duality, please see any of the aforementioned

gauge/gravity duality reviews or the original work itself. Here, I will only provide a few

words about what the two sides are.

First, the gravity side. There are five consistent superstring theories: type I, type

IIA, type IIB, Heterotic E8 × E8, and Heterotic SO(32). These all can only live in ten

spacetime dimensions can be related to each other via dualities (for instance, type IIA and

IIB can be related via T-duality). Both type II theories have maximal supersymmetry

(32 supercharges) and are theories of closed strings. They differ in that IIB is chiral,

while IIA is non-chiral. Both can also have D-branes as excited states and open strings

can be attached to them. The massless fields of IIB are: Gµν , GBµν , Φ, C, Cµν , Cµνλρ,

and two gravitini and two dilatini. In the low energy limit,

You might wonder why we are studying a supersymmetric theory when evidence of

supersymmetry in our Universe is yet to be found. One can certinaly study bosonic

string theory, but it contains a tachyon (a field with mass2 < 0), which causes a serious

instability. Moving to one of the supersymmetric theories removes this problem. Further-

more, we know that fermions exist in our universe and so we need a theory that contains

fermionic degrees of freedom anyway. For a more thorough introduction to string theory

more generally, some standard references are [30, 31, 32, 33, 34].

On the other side, we have N=4 super-Yang-Mills theory in d = 4 spacetime dimen-

sions with gauge group SU(N) and Yang Mills coupling gYM. This, matching the gravity

side, is a maximally supersymmetric theory. It is, of course, also conformal (thus, the

C in AdS/CFT). We already saw that the matching of the symmetries when we looked

12
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at AdS and CFT individually, in this example, both bosonic symmetries are extended to

the superconformal version. Part of why this original example is nice is because it has so

many symmetries. We now know many examples of gauge/gravity duals with much less

symmetry.

0.4 Conformal Perturbation Theory

In this section, I will provide an introduction to some of the basic aspects of Con-

formal Field Theory (CFT) in d > 2 spacetime dimensions that will be important in

understanding chapters one and two of this thesis. Perhaps the most important thing

you will need to know is that the one-, two, and three- point correlation functions of any

CFT are completely determined up to a set of constants. One can derive them by simply

enforcing the transformation properties of the operators in the correlator. By doing this,

for scalar primary fields, one finds

⟨ϕ(x)⟩ = 0 (0.12)

⟨ϕ1 (x1)ϕ2 (x2)⟩ =
δ∆1,∆2

|x1 − x2|2∆1
(0.13)

⟨ϕ1 (x1)ϕ2 (x2)ϕ3 (x3)⟩ =
C123

|x12|2a |x13|2b |x23|2c
(0.14)

where

2a = ∆1 +∆2 −∆3

2b = ∆1 +∆3 −∆2

2c = ∆3 +∆2 −∆1

(0.15)

13
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the ∆i are the operator dimensions, and the C123 are the structure constants (also known

as OPE coefficients). One can find similar expressions for descendants by simply taking

the derivatives, as well as for operators with spin. For higher point functions, you being

to have conformal invariants, so enforcing covariance of the operators is no longer enough.

That is, for four points, you can write the expressions

u =
|x12| |x34|
|x13| |x24|

v =
|x12| |x34|
|x14| |x23|

(0.16)

which alone are invariant under any conformal transformation and so an arbitrary func-

tion of these two can be included in the correlator without changing its transformation

properties. For instance, the four-point function can be expressed as

⟨ϕ1 (x1)ϕ2 (x2)ϕ3 (x3)ϕ4 (x4)⟩ = f (u, v)
4∏
i<j

|xij|γij (0.17)

where
∑

j ̸=i γij = −2∆i. Higher point functions have even more conformal invariants

that you can write down.

In chapters one and two, we start with a conformal theory in an arbitrary number of

spacetime dimensions and perturb it with an operator O of dimension ∆. That is, if call

the action of our conformal theory SCFT, then the perturbed theory will have an action

S = SCFT + α
∫
ddxO(x). The partition function is given by

Z =

∫
Dϕe−S =

∫
Dϕe−SCFT−α

∫
ddxO(x) (0.18)

We can compute an n-point partition function in the perturbed theory by

⟨ϕ1ϕ2 . . . ϕn⟩ =
∫

Dϕϕ1ϕ2 . . . ϕne
−SCFT−α

∫
ddxO(x) (0.19)

14
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We can Taylor expand the latter part of the exponential as

e−α
∫
ddxO(x) =

∞∑
n=0

(
−α
∫
ddxO(x)

)n
(0.20)

Our correlator can therefore be re-expressed as

⟨ϕ1ϕ2 . . . ϕn⟩ =
∫

Dϕϕ1ϕ2 . . . ϕne
−SCFT

∞∑
n=0

(
−α
∫
ddxO(x)

)n
(0.21)

= ⟨ϕ1ϕ2 . . . ϕn⟩CFT − α

∫
ddx ⟨ϕ1ϕ2 . . . ϕnO(x)⟩CFT +O(α2) (0.22)

We see, therefore, that the correlator in the perturbed theory can be written as a sum

over integrals of correlators in the unperturbed theory. And, because the unperturbed

theory is conformal, we know the form of the correlators, at least up to three-points.

Therefore, the work in computing the corrections is reduced to computing integrals.

0.5 LLM Geometries

The LLM Geometries are the set of 1/2 BPS solutions of type IIB supergravity. They

were first classified by Lin, Lunin, and Maldacena in 2004 [63]. Because of their high

degree of symmetry, we can make a lot of progress on both sides of the duality and

therefore they are an incredibly useful example of AdS/CFT. The supergravity solutions

can all be described by the metric

ds2 = − y√
1
4
− z2

(dt+Vidx
i)2+

√
1
4
− z2

y
(dy2+dxidxi)+y

(√
1
2
− z

1
2
+ z

)
dΩ2

3+y

(√
1
2
+ z

1
2
− z

)
dΩ̃2

3

(0.23)

15



Introduction Chapter 0

where i = 1, 2. Each solution is completely characterized by z(y, xi) (the vector V satisfies

a differential equation that ties it to z). The function z obeys a linear elliptic sourceless

PDE:

∂i∂iz + y∂y

(
∂yz

y

)
= 0 (0.24)

which requires a boundary condition at y = 0, which is often referred to as the LLM

plane. Non-singularity of the ten dimensional metric requires z = ±1
2
at this locus (this

forces only one of the two spheres to shrink to zero size, while the other stays finite).

From here, one can compute

z(x1, x2, y) =
y2

π

∫
z(w1, w2, 0) dw1 dw2

[(x1 − w1)2 + (x2 − w2)2 + y2]2
(0.25)

Notice that the integral is always convergent if z(w1, w2, 0) is bounded. Each non-singular

solution can be represented by a black and white coloring of the plane, where the two

colors are representing the two possible boundary conditions for the function z(x1, x2, 0).

The other side of the duality corresponds to the 1/2 BPS solutions of N=4 Super

Yang Mills. In this infinite N limit, this can be described by a free chiral boson on a

circle. In a Fock space representation, we can build all allowed states by an infinite set

of raising and lowering operators. We can alternatively work in a basis, where each state

is represented by an allowed Young Tableaux. The details of these two bases are given

in chapter four, section three.

0.6 Thesis Outline

All of the work contained in this thesis deals with doing at least one of three things:

providing support of the AdS/CFT correspondence, utilizes it as a tool for understanding
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quantum gravity, and/or advances our understanding of the duality. It is separated into

two parts, each dealing with a particular system. Part I includes my study of Conformal

Perturbation Theory, while Part II consists of my analysis of the LLM Geometries. Here,

I will discuss the system studied in each part and briefly review our primary findings

presented in each chapter.

There are two chapters in part I and both of them provide results within the frame-

work of conformal perturbation theory in an arbitrary number of spacetime dimensions

d. The results of each chapter are universal in that the initial conformal theory is not

specified; we only use the fact that it is conformal.

In chapter one, we consider perturbing the theory by a scalar operator of dimension

∆ (allowing it initially to be marginal, relevant, or irrelevant) and compute the first

order correction to the one-point function in such a set-up. We found that in trying to

compute this naively, one runs into both UV and IR divergences. By transforming our

system from the plane to the cylinder, we were able to tame the IR divergences, leaving

only those in the UV. We found that the divergence structure exactly matched what one

would find in a standard dimensional regularization scheme in QFT.

Exciting a scalar operator on the CFT is dual to exciting a scalar field in the bulk.

We computed the first order asymptotic behavior of such a field and, following the rules

of the AdS/CFT dictionary, were able to show that it agreed with the CFT result. In

this chapter, we also computed the energy in quenching between the perturbed and

unperturbed systems. What we found provided a deeper understanding of previous

results of [41, 42, 43, 44] in that in our set-up it was clear why the energy in such a

quench should be universal.

In chapter two, we again work within the framework of conformal perturbation theory

and analyze the divergence structure of corrections to various correlation functions one
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might encounter. Here we consider higher point functions and allow the deformation to

have a spacetime dependent scaling profile. In the special case of marginal deformations,

we related our our computations to time dependent perturbation theory on the cylinder

and noted that singularities could be reinterpreted as resonances that arise in time de-

pendent perturbation theory. The logarithmic enhancements in the plane computations

reflect the secular behavior for resonant perturbations in the cylinder.

Part II of this thesis utilizes the LLM Geometries. These are the set of half BPS

states of type IIB supergravity. Because of their high degree of symmetry, we are able

to perform computations on both sides of the duality and so this provides an incredibly

useful playground for both learning about the duality and using it to learning about

quantum gravity.

In chapter three, we delve into how much information is needed from the hologram

in order to learn about the bulk theory. We use the LLM Geometries as an example and

show that, in that case, the expectation values of the boundary theory do no provide

enough information to reconstruct the classical bulk solution. Indeed, multiple bulk

geometries can be associated with the same boundary expectation values. Furthermore,

these bulk geometries are not just a little different, but can be topologically distinct.

In chapter four, we use the fact that the example of the LLM Geometries is one

where we understand both sides of the duality well in order to learn about quantum

gravity. One of our primary findings was that one can superpose states with topologically

distinct spacetime geometries that will give rise to new states with a classical spacetime

dual, which has a completely different topology than any of the original spacetimes.

Specifically, we show that coherent states on the field theory side have topologically

trivial gravitational duals. But, one can superpose these coherent states and form new

states whose dual is again a classical geometry, but now has a non-trivial topology. From
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this, we were able to prove that there cannot exist a topology measuring operator for

this set of states, which suggests that one should not assume that such an operator

exists in quantum gravity more generally. We end the chapter by discussing alternative

ways to extract the topological information, including using entanglement entropy and

uncertainty. In order to show these things rigorously, chapter four has several sections

building up the technology for preforming computations. Along the way, we show that

the Murnaghan-Nakayama rule (which is a rule for determining characters in the theory

of finite groups) encodes the fermi statistics of our Hilbert space.

Finally, chapter five contains a re-examining of the findings of chapter four. We

show that questions about the topology of the gravitational dual to a field theory state

only have non-ambiguous answers within a particular (code) subspace of states. We

discuss how the language of code subspaces is natural for understanding the AdS/CFT

dictionary in this case, which supports many of the recent ideas by the community

regarding holographic code subspaces, such as in [122]. In order to do this, we went

beyond the infinite N limit of chapter four.

Note that Appendix D contains the short companion paper to the work included in

chapter four.

0.7 Permissions and Attributions

1. The content of Chapter 1 is the result of work in collaboration with David Beren-

stein, and have previously appeared in Physical Review D (Phys. Rev. D) [35]. It

is reproduced here with the permission of the permission of the American Physical

Society (APS), College Park, MD, USA. http://publish.aps.org/info/terms.

html.
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2. The contents of Chapter 2 and Appendix A are the result of work in collaboration

with David Berenstein [36].

3. The content of Chapter 3 is the result of work in collaboration with David Beren-

stein, and has previously appeared in The International Journal of Modern Physics

D [37]. It is reproduced here with the permission of the permission of World Sci-

entific. https://www.worldscientific.com/page/authors/author-rights.

4. The contents of Chapter 4, Appendix B, and Appendix C are the result of work in

collaboration with David Berenstein, and have previously appeared in The Journal

of High Energy Physics [38]. It is reproduced here with the permission of the

permission of the International School of Advanced Studies (SISSA). http://jhep.

sissa.it/jhep/help/JHEP/CR_OA.pdf.

5. The contents of Chapter 5 and Appendix E are the result of work in collabora-

tion with David Berenstein, and previously appeared in the Journal Classical and

Quantum Gravity [39]. It is reproduced here with the permission of the permis-

sion of the Institute of Physics (IOP). http://authors.iop.org/atom/help.nsf/

LookupJournalSpecific/WebPermissionsFAQ~**.

6. The content of Appendix D is the result of work in collaboration with David Beren-

stein, and previously appeared in Physical Review Letters [40]. It is reproduced

here with the permission of the permission of the American Physical Society (APS).

http://journals.aps.org/copyrightFAQ.html.
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Part I

Conformal Perturbation Theory
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Chapter 1

Conformal perturbation theory,

dimensional regularization, and

AdS/CFT

1.1 Introduction

Consider a conformal field theory in d dimensions perturbed by a relevant (scalar)

operator O of dimension ∆ < d. We are interested in evaluating the correlators of O in

the presence of the perturbation. The partition function is

Z = ⟨exp(−α
∫
ddxO(x))⟩ =

⟨
∞∑
n=0

1

n!

(
−α
∫
ddxO(x)

)n⟩
(1.1)

and the formal evaluation of correlators with the infinite sum in the equation above is

what is known as conformal perturbation theory. To begin with such a program, one can

22



Conformal perturbation theory, dimensional regularization, and AdS/CFT Chapter 1

compute the one point function of O(x) as follows

⟨O(x)⟩=
⟨
−α
∫
ddyO(y)O(x) + . . .

⟩
= −α

∫
ddy

1

|x− y|2∆
+ . . . (1.2)

The right hand side is infinite regardless of ∆. The divergence comes either from the

small distance UV regime, or from the long distance IR regime. This is because we have

to perform an integral of a scaling function. The problem seems ill defined until one

resums the full perturbation expansion. This is a very important conceptual point in

the AdS/CFT correspondence [3] where standard ‘experiments’ insert time dependent or

time independent sources for various fields on the boundary of AdS [5, 4] and these in

turn can be associated with sources for an operator such as O(x). Some of these results

have been argued to be universal in [41, 42, 43, 44], independent of the AdS origin of

such a calculation. We want to understand such type of results under a more controlled

setting, where we can use the philosophy of conformal perturbation theory to get finite

answers ab initio without a resummation.

A natural way to solve the problem above is to introduce a meaningful infrared

regulator, so that the only divergences that survive arise from the UV of the theory and

can then be handled via the usual procedure of renormalization. Such a natural regulator

is provided by the conformal field theory on the cylinder Sd−1 × R, which also happens

to be the conformal boundary of global AdS spacetime, rather than just the Poincaré

patch. The cylinder also is conformally equivalent to flat space and provides both the

radial quantization and the operator state correspondence. In this sense, we are not

modifying the AdS space in a meaningful way. However, a constant source for O(x) in

such a geometry is different than a constant source on the Poincaré patch.

In the rest of the paper we discuss the details of such a computation for two uni-
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versal quantities. These are the one point function of O(x), and the energy stored in a

configuration where we quench from α ̸= 0 to α = 0. We also explain how to deal with

general time dependent sources in the conformal field theory side for more general AdS

motivated experiments. Because we work with arbitrary d,∆, our results can naturally

be cast as a real space dimensional regularization formalism.

We find that the AdS answer, which is generally finite for the one point function,

matches this notion of dimensional regularization. The only singularities that arise are

those that one associates with logarithmic divergences. We are also able to match this

result to the CFT calculation exactly, where the calculation is more involved. We also

argue how to calculate the energy of the configuration and that having solved for the one

point function naturally produces the result for this other computation.

1.2 One point functions on the sphere

What we want to do is set up the equivalent calculation to (1.1) and (1.2), but where

we substitute the space R× Sd−1 in the integral. That is, we want to compute

⟨O(τ, θ)⟩ ≃
⟨
−α
∫
dd−1Ω′dτ ′O(τ ′, θ′)O(τ, θ) + . . .

⟩
= −αC∆ (1.3)

for τ a time coordinate on R and θ an angular position on the sphere. Because the

operator O is not marginal, α has units and we need to choose a specific radius for

the sphere. We will choose this radius to be one. Our job is to compute the number

C∆. Because the sphere times time as a space is both spherically invariant and time

independent, properties that are also shared by the perturbation, we find that the result

of equation (1.3) should be independent of both θ and τ . As such, we can choose to
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perform the angular integral by setting the point θ at the north pole of the sphere, so

that we only need to do an integral over the polar angle in θ′. We want to do this

calculation both in the AdS spacetime and in conformal field theory. We will first do the

AdS calculation and then we will do the conformal field theory calculation.

The AdS calculation

As described in the introduction, we need to compute the answer in global AdS

spacetime. We first describe the global AdS geometry as follows

ds2 = −(1 + r2)dt2 +
dr2

(1 + r2)
+ r2dΩ2

d−1 (1.4)

We need to find solutions for a perturbatively small scalar field ϕ with mass m and time

independent boundary conditions at infinity. Such a perturbation is a solution to the

free equations of motion of the field ϕ in global AdS. Such boundary conditions allow

separation of variables in time, angular coordinates and r. A solution which is time

independent and independent of the angles can be found. We only need to solve the

radial equation of motion. Using |g| ∝ r2(d−1) we find that we need to solve

1

rd−1

∂

∂r

(
r(d−1)(1 + r2)

∂

∂r

)
−m2ϕ(r) = 0 (1.5)

The nonsingular solution at the origin is provided by

ϕ(r) = A 2F1

(
d

4
− 1

4

√
d2 + 4m2,

d

4
+

1

4

√
d2 + 4m2;

d

2
;−r2

)
(1.6)

where A indicates the amplitude of the solution. We now switch to a coordinate y = 1/r

to study the asymptotic form of the field by expanding near y ≃ 0. In this coordinate
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system we have that

ds2 = −dt
2

y2
− dt2 +

dy2

y2(1 + y2)
+
dΩ2

y2
≃ −dt

2

y2
+
dy2

y2
+
dΩ2

y2
(1.7)

So zooming into any small region of the sphere on the boundary y = 0 we have an

asymptotic form of the metric that matches the usual Poincare slicing of AdS. In such a

coordinate system the asymptotic growth or decay of ϕ(y) in the y coordinate is polyno-

mial, proportional to y∆± and can be matched to the usual dictionary for a flat slicing,

where ∆± = d
2
± 1

2

√
d2 + 4m2. We have made the match ∆+ = ∆, the operator dimension

for irrelevant perturbations. For relevant perturbations we get a choice.

Reading the coefficients of this expansion has the same interpretation as in flat space:

one is a source and the other one is the response. Writing this as

ϕ(y) ≃ A(f+y
∆+ + f−y

∆−) (1.8)

we find that f+ = Γ(d/2)Γ(d/2−∆+)/Γ(1/2(∆−))
2, and f− is the same expression with

∆+ replaced by ∆−. We now use

∆ = ∆+ (1.9)

in what follows to distinguish between vev and source, although we will find the answer

is symmetric in this choice.

The relation between source and vacuum expectation value is then

f+ =
Γ(d

2
−∆)Γ(1

2
∆)2

Γ(∆− d
2
)Γ(d

2
− ∆

2
)2
f− (1.10)

We have artificially chosen ∆ = ∆+ over ∆− to indicate the vacuum expectation value
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versus the source as one would do for irrelevant perturbations, but since the expressions

for f+ and f− are symmetric in the exchange of ∆+ and ∆−, we can eliminate the dis-

tinction in equation (1.10). Notice that this relation seems to be completely independent

of the normalization of the field ϕ. We will explain how to get the correct normalization

later.

The conformal field theory computation

The basic question for the conformal field theory computation is how does one com-

pute the two point function on the cylinder. Since the cylinder results from a Weyl

rescaling of the plane, the two point functions are related to each other in a standard

way. The Weyl rescaling is as follows

ds2 = dx⃗2 = r2
(
dr2

r2
+ dΩ2

d−1

)
→ dτ 2 + dΩ2

d−1 (1.11)

which uses a Weyl factor of r2 (the rescaling of units is by a factor of r = exp(τ)). As

a primary field of conformal dimension ∆, O(x) will need to be rescaled by O(θ, r) ≃

r∆O(x) to translate to the new rescaled metric. For the two point functions this means

that

⟨O(τ1, θ1)O(τ2, θ2)⟩cyl =
exp(∆τ1) exp(∆τ2)

|x1 − x2|2∆
=

1

(exp[(τ1 − τ2)] + exp[(τ2 − τ1)]− 2 cos(θrel))
∆

(1.12)

where θrel is the angle computed between the unit vectors x̂1, x̂2 in standard cartesian

coordinates. If we choose x̂1 to be fixed, and at the north pole, the angle θrel is the polar

angle of the insertion of O over which we will integrate. Since the answer only depends

on the the difference of the times, τ2 − τ1, the end result is time translation invariant.
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Notice that we have used throughout conformal primaries that are unit normalized in

the Zamolodchikov metric.

Now we need to integrate over the angles and the relative time τ . Our expression for

C∆ reduces to the following definite double integral

C∆ =

∫ ∞

−∞
dτ

∫ π

0

dθ sind−2 θV ol(Sd−2)
1

2∆(cosh τ − cos θ)∆
(1.13)

= 21−∆V ol(Sd−2)

∫ ∞

1

du
1√

u2 − 1

∫ 1

−1

dv(1− v2)
d−3
2 [u− v]−∆ (1.14)

where we have changed variables to u = cosh τ and v = cos θ. For the integral to converge

absolutely, we need that 0 < 2∆ < d, but once we find an analytic formula for arbitrary

0 < 2∆ < d we can analytically continue it for all values of ∆, d. The volume of spheres

can be computed in arbitrary dimensions as is done in dimensional regularization, so we

also get an analytic answer for the variable d itself. Any answer we get can therefore be

interpreted as one would in a real space dimensional regularization formalism, where we

keep the operator dimension fixed but arbitrary, but where we allow the dimension of

space to vary. The final answer we get is

C∆ = π
(d+1)

2 21−∆

[
Γ(d

2
−∆)Γ(∆

2
)

Γ(d
2
− ∆

2
)2Γ(1

2
+ ∆

2
)

]
(1.15)

Divergences

On comparing the answers for the AdS and CFT calculation, equations (1.10) and

(1.15) seem to be completely different. But here we need to be careful about normaliza-

tions of the operator O in the conformal field theory and the corresponding fields in the

gravity formulation. We should compare the Green’s function of the field ϕ in gravity

and take it to the boundary to match the two point function one expects in the CFT
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dual. The correct normalization factor that does so can be found in equation (A.10) in

[45]. Naively, it seems that we just need to multiply the result from equation (1.15) by

Γ(∆)

2π
d
2 Γ(∆− d

2
+1)

and then we might expect

f+
f−

≃ Γ(∆)

2π
d
2Γ(∆− d

2
+ 1)

C∆. (1.16)

However, if we compare the ratio of the left hand side to the right hand side we get that

the ratio of the two is given by

f+
f−

(
Γ(∆)

2π
d
2Γ(∆− d

2
+ 1)

C∆

)−1

= 2∆− d = ∆+ −∆− (1.17)

Happily, this extra factor is exactly what is predicted from the work [46] (in particular,

eq. 4.24). See also [47, 48]. This is because one needs to add a counter-term to the action

of the scalar field when one uses a geometric regulator in order to have a well defined

boundary condition in gravity.

We see then that the gravity answer and the field theory answer match each other

exactly, for arbitrary d,∆ once the known normalization issues are dealt with carefully.

Now we want to interpret the end result C∆ itself.

The expression we found has singularities at specific values of ∆. These arise from

poles in the Γ function, which occur when (d/2 − ∆) is a negative integer. However,

these poles are cancelled when (d −∆)/2 is a negative integer, because we then have a

double pole in the denominator. For both of these conditions to be true simultaneously,

we need both d and ∆ to be even, and furthermore ∆ ≥ d. The origin of such poles is

from the UV structure of the integral (1.2). The singular integral (evaluated at x = 0)
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is of the form

Asing =

∫ ϵ

0

ddy y−2∆ ∝
∫ ϵ

0

dy yd−1−2∆ ≃
∫ ∞

1/ϵ

dp pd−1(p2 +m2)−g (1.18)

where g = d −∆ and in the last step we introduced a momentum like variable p = 1/y

and a mass m infrared regulator to render it into a familiar form for dimensional regu-

larization integrals that would arise from Feynman diagrams. Singularities on the right

hand side arise in dimensional regularization in the UV whenever there are logarithmic

subdivergences. This can be seen by factorizing p2 +m2 = p2(1 +m2/p2) and expanding

in power series in m2. Only when d − 1 − 2g − 2k = −1 for some non-negative integer

k do we expect a logarithmic singularity. In our case, with −g = ∆ − d, the condition

for such a logarithmic singularity is that −g = ∆ − d = −d
2
+ k, which is exactly the

same condition as we found for there to exist poles in the numerator of equation (1.15).

The first such singularity arises when ∆ = d/2. Beyond that, the integral in equation

(1.14) is not convergent, but is rendered finite in the dimensional regularization spirit.

Notice that this was never really an issue in the gravitational computation, since the

final answer depended only the asymptotic expansion of hypergeometric functions and

we never had to do an integral. The presence of singularities in gravity has to do with

the fact that when ∆+ − ∆− is twice an integer, then the two linearly independent so-

lutions to the hypergeometric equation near y = 0 have power series expansions where

the exponents of y match between the two. Such singularities are resolved by taking a

limit which produces an additional logarithm between the two solutions. We should take

this match to mean that the AdS gravity computation already knows about dimensional

regularization.

Another interesting value for ∆ is when we take ∆ → d. The denominator will have a
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double pole that will always render the number C∆=d = 0. This is exactly as expected for

a marginal operator in a conformal field theory: it should move us to a near conformal

point where all one point functions of non-trivial local operators vanish.

1.3 The energy of a quench

After concluding that the AdS and CFT calculation really did give the same answer

for a constant perturbation we want to understand the energy stored in such a solution.

This needs to be done carefully, because as we have seen divergences can appear. Under

such circumstances, we should compare the new state to the vacuum state in the absence

of a perturbation and ask if we get a finite answer for the energy. That is, we need to

take the state and quench the dynamics to the unperturbed theory. In that setup one

can compute the energy unambiguously.

We would also like to have a better understanding of the origin of the divergences

in field theory, to understand how one can regulate the UV to create various states we

might be interested in. For this task we will now do a Hamiltonian analysis. Although in

principle one could use a three point function including the stress tensor and integrate,

performing a Hamiltonian analysis will both be simpler and more illuminating as to what

is the physics of these situations. Also, it is more easily adaptable to a real time situation.

A Hamiltonian approach

The perturbation we have discussed in the action takes the Euclidean action S →

S + α
∫
O. When thinking in terms of the Hamiltonian on a sphere, we need to take

H → H + α

∫
dΩ′O(θ′) (1.19)
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and we think of it as a new time independent Hamiltonian. When we think of using

α as a perturbation expansion parameter, we need to know the action of
∫
dΩ′O(θ′) on

the ground state of the Hamiltonian O(θ′) |0⟩. This is actually encoded in the two point

function we computed. Consider the time ordered two point function with τ1 > τ2

⟨O(τ1, θ1)O(τ2, θ2)⟩cyl =
1

(exp[(τ1 − τ2)] + exp[(τ2 − τ1)]− 2 cos(θrel))
∆

(1.20)

=
∑
s

⟨0|O(θ1) exp(−Hτ1) |s⟩ ⟨s| exp(Hτ2)O(θ2)|0⟩ (1.21)

=
∑
s

exp(−Es(τ1 − τ2)) ⟨0| O(θ2) |s⟩ ⟨s| O(θ1) |0⟩ (1.22)

where s is a complete basis that diagonalizes the Hamiltonian H and we have written the

operators O(τ) ≃ exp(Hτ)O(0) exp(−Hτ) as corresponds to the Schrodinger picture.

The states |s⟩ that can contribute are those that are related to O by the operator-

state correspondence: the primary state of O and it’s descendants. When we integrate

over the sphere, only the descendants that are spherically invariant can survive. For a

primary O(0), these are the descendants given by (∂µ∂
µ)kO(0). The normalized states

corresponding to these descendants will have energy (dimension) ∆+2k, and are unique

for each k. We will label them by ∆+2k. We are interested in computing the amplitudes

A∆+2k = ⟨∆+ 2k|
∫
dΩ′O(θ′) |0⟩ (1.23)
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These amplitudes can be read from equation (1.21) by integration over θ1, θ2. Indeed, we

find that

∫
dd−1Ω⟨O(τ1, θ1)O(τ2, θ2)⟩cyl = 2−∆V ol(Sd−2)

∫ 1

−1

dv(1− v2)
d−3
2 [cosh(τ)− v]−∆(1.24)

= π
d
2 21−∆ cosh[τ ]−∆

2F̃1[
∆

2
,
1 + ∆

2
;
d

2
; cosh−2(τ)](1.25)

= M
∑

|A∆+2k|2 exp[(−∆− 2k)τ ] (1.26)

where τ = τ1−τ2 and 2F̃1 is the regularized hypergeometric function. From this expression

further integration over Ω1 is trivial: it gives the volume of the sphere V ol(Sd−1). We

want to expand this in powers of exp(−τ). To do this we use the expression cosh(τ) =

exp(τ)(1 + exp(−2τ))/2, and therefore

cosh−a(τ) = exp(−aτ)2a[1+exp(−2τ)]−a =
∞∑
n=0

2a exp(−aτ−2nτ)(−1)n
Γ[a+ n]

n!Γ[a]
(1.27)

Inserting this expression into the power series of the hypergeometric function appearing

in (1.25) gives us our desired expansion. Apart from common factors to all the amplitudes

A∆+2k (which are trivially computed for k = 0) we are in the end only interested in the

k dependence of the amplitude itself. After a bit of algebra one finds that

|A∆+2k|2 ∝
Γ[k +∆]Γ[∆− d

2
+ k + 1]

Γ[1 + ∆− d
2
]2Γ[k + d

2
]k!

(1.28)

and to normalize we have that

|A∆|2 = [V ol(Sd−1)]2 (1.29)
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For these amplitudes to make sense quantum mechanically, their squares have to be

positive numbers. This implies that none of the Γ functions in the numerator can be

negative. The condition for that to happen is that the argument of the Γ function in the

numerator must positive and therefore ∆ ≥ d
2
− 1, which is the usual unitary condition

for scalar primary fields. Also, at saturation ∆ = d/2 − 1 we have a free field and then

the higher amplitudes vanish Ak>0/A0 = 0. This is reflected in the fact that ∂µ∂
µϕ = 0

is the free field equation of motion.

We are interested in comparing our results to the AdS setup. In the CFT side this

usually corresponds to a large N field theory. If the primary fields we are considering are

single trace operators, they give rise to an approximate Fock space of states of multitraces,

whose anomalous dimension is the sum of the individual traces plus corrections of order

1/N2 from non-planar diagrams. In the large N limit we can ignore these corrections, so

we want to imagine that the operator insertion of O is a linear combination of raising and

lowering operators
∫
dΩO(θ) ≃

∑
A∆+2ka

†
2k+∆ + A∆+2ka2k+∆ with [a, a†] = 1. In such a

situation we can write the perturbed Hamiltonian in terms of the free field representation

of the Fock space in the following form

H+ δH =
∑

Esa
†
sas+α(

∑
A∆+2ka

†
2k+∆+A∆+2ka2k+∆)+O(1/N

2)a†a†aa+ . . . (1.30)

Indeed, when we work in perturbation theory, if this Fock space exists or not is im-

material, as the expectation value of the energy for a first order perturbation will only

depend on the amplitudes we have computed already. It is for states that do not differ

infinitesimally from the ground state that we need to be careful about this and this Fock

space representation becomes very useful.

When we computed using conformal perturbation theory abstractly, we were consid-

34



Conformal perturbation theory, dimensional regularization, and AdS/CFT Chapter 1

ering the vacuum state of the Hamiltonian in equation (1.30) to first order in α. We

write this as

|0⟩α = |0⟩+ α |1⟩ (1.31)

and we want to compute the value of the energy for the unperturbed Hamiltonian for

this new state. This is what quenching the system to the unperturbed theory does for

us. We find that

⟨0α|H |0⟩α = α2 ⟨1|H |1⟩ (1.32)

Now, we can use the expression (1.30) to compute the state |0⟩α. Indeed, we find that we

can do much better than infinitesimal values of α. What we can do is realize that if we

ignore the subleading pieces in N then the ground state for H + δH is a coherent state

for the independent harmonic oscillators a†2k+∆. Such a coherent state is of the form

|0⟩α = N exp(
∑

β2k+∆a
†
2k+∆) |0⟩ (1.33)

For such a state we have that

⟨H + δH⟩ =
∑

(2k +∆)|β2k+∆|2 + αβ2k+∆A2k+δ + αβ∗
2k+∆A2k+δ (1.34)

and the energy is minimized by

β2k+∆ = −α A2k+∆

2k +∆
(1.35)

Once we have this information, we can compute the energy of the state in the unperturbed

setup and the expectation value of O (which we integrate over the sphere). We find that
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⟨H⟩ =
∑

(2k +∆)|β2k+∆|2 = α2
∑ |A2k+∆|2

2k +∆
(1.36)

⟨O⟩ ≃
∑

2Ak+2∆β2k+∆ ≃ −2α
∑ |A2k+∆|2

2k +∆
(1.37)

so that in general

⟨H⟩ ≃ −α⟨O⟩
2

(1.38)

That is, the integrated one point function of the operator O over the sphere and the

strength of the perturbation is enough to tell us the value of the energy of the state. For

both of these to be well defined, we need that the sum appearing in (1.36) is actually

finite. Notice that this matches the Ward identity for gravity [41] integrated adiabatically

(for a more general treatment in holographic setups see [49]).

This is what we will take on next.

Amplitude Asymptotics, divergences and general quenches

Our purpose now is to understand in more detail the sum appearing in (1.36). What

we are interested in is the convergence and asymptotic values for the terms in the series,

that is, we want to understand the large k limit. This can be read from equation (1.28)

by using Stirlings approximation log Γ[t + 1] ≃ (t) log(t) − (t) in the large t limit. We

find that after using this approximation on all terms that depend on k, that

log(A2
2k+∆) ≃ (k +∆− 1) log(k +∆− 1) + (k +∆− d/2) log(k +∆− d/2)(1.39)

−(k + d/2− 1) log(k + d/2− 1)− k log(k) +O(1) (1.40)

≃ (∆− 1 + ∆− d

2
− (

d

2
− 1)) log k = (2∆− d) log k (1.41)
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So that the sum is bounded by a power law in k

∑ |A2k+∆|2

2k +∆
≃
∑ 1

kd+1−2∆
(1.42)

Again, we see that convergence of the sum requires 2∆ − d < 0. This is the condition

to have a finite vacuum expectation value of both the energy and the operator O. If we

consider instead the L2 norm of the state, the norm is finite so long as d + 2− 2∆ > 1,

that is, so long as ∆ < (d+ 1)/2. The divergence in the window d/2 ≤ ∆ < (d+ 1)/2 is

associated with the unboundedness of the Hamiltonian, not to the infinite norm of the

state.

In general we can use higher order approximations to find subleading terms in the

expression (1.41). Such approximations will give that A2k+∆ will have a polynomial

expression with leading term as above, with power corrections in 1/k. Only a finite

number of such corrections lead to divergent sums, so the problem of evaluating ⟨O⟩ can

be dealt with using a finite number of substractions of UV divergences. In this sense, we

can renormalize the answer with a finite number of counterterms. A particularly useful

regulator to make the sum finite is to choose to modify A2k+∆ → A2k+∆ exp(−ϵ(2k+∆)).

This is like inserting the operator O at time t = 0 in the Euclidean cylinder and evolving

it in Euclidean time for a time ϵ. Because the growth of the coefficients is polynomial in

k, any such exponential will render the sum finite. We can trade the divergences in the

sums for powers of 1/ϵ and then take the limit ϵ → 0 of the regulated answer. This is

beyond the scope of the present paper.

Notice that we can also analyze more general quenches from studying equation (1.34).

All we have to do is make α time dependent. The general problem can then be analyzed

in terms of linearly driven harmonic oscillators, one for each a†, a pair. Since the driving
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force is linear in raising and lowering operators, the final state will always be a coherent

state as in equation (1.33) for some β which is the linear response to the source. The

differential equation, derived from the Schrodinger equation applied to a time dependent

coherent state, is the following

iβ̇2k+∆(t) = (2k +∆)β2k+∆ + α(t)A2k+∆ (1.43)

The solution is given by

β2k+∆(t) = β2k+∆(0) exp(−iωt) + A2k+∆

∫ ∞

0

dt′α(t′)θ(t− t′) exp(−iω(t− t′)) (1.44)

with ω = 2k +∆ the frequency of the oscillator.

Consider the case that α only acts over a finite amount of time between 0, τ and

that we start in the vacuum. After the time τ the motion for β will be trivial, and the

amplitude will be given by

β2k+∆(τ) = A2k+∆ exp(−i(2k +∆)τ)

∫ τ

0

dt′α(t′) exp(iωt′) (1.45)

and all of these numbers can be obtained from the Fourier transform of α(t). Notice that

these responses are always correct in the infinitesimal α regime, as can be derived using

time dependent perturbation theory. What is interesting is that in the large N limit they

are also valid for α(t) that is not infinitesimal, so long as the O(1/N) corrections can still

be neglected. One can also compute the energy of such processes. In particular, so long

as ∆ < d/2, any such experiment with bounded α(t) will give a finite answer.

The simplest such experiment is to take α constant during a small interval τ = δt <<
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1. For modes with small ω, that is, those such that ωδt < 1, we then have that

β2k+∆(τ) ≃ A2k+∆αδt (1.46)

While for those modes such that ωδt > 1, we get that

|β2k+∆(τ)| ≃ α
A2k+∆

ω
(1.47)

When we compute the energy of such a configuration, we need to divide the sum between

high frequency and low frequency modes. The energy goes as

E ≃
∑

ω|β2k+∆|2 ≃
∫ 1/(2δt)

0

dkω|A2k+∆αδt|2 +
∫ ∞

1/(2δt)

dk
|αA2k+∆|2

ω
(1.48)

now we use the fact that |A2k+∆|2 ≃ k2∆−d and that ω ∝ k to find that

E ≃ |α|2(δt)d−2∆ (1.49)

which shows an interesting power law for the energy deposited into the system. One

can similarly argue that the one point function of O(τ) scales as α(δt)d−2∆: for the slow

modes, the sum is proportional to
∑
A2

2k+∆αδt, while for the fast modes one can argue

that they have random phases and don’t contribute to O(τ).

If we want to study the case ∆ ≥ d/2, divergences arise, so we need to choose an α(t)

that is smooth enough that the high energy modes are not excited in the process because

they are adiabatic, but if we scale that into a δt window, the adiabatic modes are going

to be those such ωδt > 10, let’s say. Then for these modes we take β ≃ 0, and then the

estimate is also as above. For ∆ = d/2, in an abrupt quench one obtains a logarithmic
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singularity rather than power law, coming from the UV modes. This matches the results

in [44] and gives a reason for their universality as arising from the universality of 2-point

functions in conformal perturbation theory. Essentially, the nature of the singularities

that arise is that the amplitudes to generate descendants are larger than amplitudes to

generate primaries, so the details of the cutoff matter.

Here is another simple way to understand the scaling for the one point function of the

operator O(τ). The idea is that we need to do an integral similar to
∫
ddxO(τ)α(x)O(x),

but which takes into account causality of the perturbation relative to the response. If

we only turn on the perturbation by a small amount of time δt, the backwards lightcone

volume to the insertion of an operator at τ = δt is of order δtd, and this finite volume

serves as an infrared regulator, while the two point function that is being integrated

is of order δt−2∆. When we combine these two pieces of information we get a result

proportional to δtd−2∆, which again is finite for ∆ < d/2 and otherwise has a singularity

in the corresponding integral. Similarly, the energy density would be an integral of the

three point function TOO ≃ δt−2∆−d times the volume of the past lightcone squared

which is again proportional to δt2d, giving an answer with the scaling we have already

found. The additional corrections would involve an extra insertion ofO and the volume of

the past lightcone, so they scale as δtd−∆, multiplied by the amplitude of the perturbation.

This lets us recover the scalings of the energy [44] in full generality.

A note on renormalization

So far we have described our experiment as doing a time dependent profile for α(t)

such that α(t) = 0 for t > τ . Under such an experiment, we can control the outcome of

the operations we have described and we obtain the scaling relations that we want. If

on the other hand we want to measure the operator O(θ) for some t < τ , we need to be
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more careful. This is where we need a better prescription for subtracting divergences. To

linear order in α(t), all UV divergences should be polynomial in the coupling constants

and their derivatives. Also, since we are working to linear order in α(t), these can only

depend on α(t) and it’s time derivatives. Another object that can show up regularly is

the curvature of the background metric in which we are doing conformal field theory.

That is, we can have expressions of the form ∂kt α(t)R
s appearing as counterterms in the

effective action. These are particularly important in the case of logarithmic divergences,

as these control the renormalization group.

For our purposes, we need to identify when such logarithmic divergences can be

present. In particular, we want to do a subtraction of the adiabatic modes (which do

contribute divergences) to the one point function of O(θ, t) at times t < τ . To undertake

such a procedure, we want to solve equation (1.43) recursively. We do this by taking

β2k+∆(t) = −α(t) A2k+∆

2k +∆
+ β1

2k+∆(t) + β2
2k+∆(t) + . . . (1.50)

where we determine the βi(t) recursively for high k by substituting β2k+∆(t) as above in

the differential equation. The solution we have written is correct to zeroth order, and we

then write the next term as follows

−iα̇(t) A2k+∆

2k +∆
= (2k +∆)β1

2k+∆(t) (1.51)

and in general

iβ̇n−1
2k+∆(t) = (2k +∆)βn2k+∆(t) (1.52)

This will generate a series in 1
(2k+∆)n

∂nt α(t), which is also proportional to A2k+∆. We then

substitute this solution into the expectation value of O(t, θ), where we get an expression
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of the form

⟨O(t)⟩ ≃
∑
k,ℓ

|A2k+δ|2
cℓ

(2k +∆)ℓ+1
∂ℓtα(t) ≃

∫
dk
∑
ℓ

1

k2∆−d
cℓ

(2k +∆)ℓ+1
∂ℓtα(t) (1.53)

The right hand side has a logarithmic divergence when 2∆− d+ ℓ = 0. Notice that this

divergence arises from the combination β + β∗, so the terms with odd derivatives vanish

because of the factors of i in equation (1.52). Thus, such logarithmic divergences will

only be present when ℓ is even. We need then that ∆ = d/2 + k, where k is an integer.

Notice that this is the same condition that we need to obtain a pole in the numerator

of the Gamma function in equation (1.14). We see that such logarithmic divergences are

exactly captured by dimensional regularization. As a logarithmic divergence, it needs to

be of the form log(ΛUV /ΛIR) = log(ΛUV /µ) + log(µ/ΛIR). In our case, the IR limit is

formally set by the radius of the sphere, while the UV is determined by how we choose

to work precisely with the cutoff. The counterterm is the infinite term log(ΛUV /µ), but

the finite term depends on the intermediate scale µ, which is also usually taken to be

a UV scale which is finite. This lets us consider the Lorentzian limit by taking a small

region of the sphere and to work with δt as our infrared cutoff: only the adiabatic modes

should be treated in the way we described above. Then the logarithmic term scales

as log((µδt))∂2∆−d
t α(t). These logarithmic terms are exactly as written in [44]. Notice

that after the quench, we have that α(t) = 0 and all of it’s derivatives are zero, so no

counterterms are needed at that time. We only need the pulse α(t) to be smooth enough

so that the state we produce has finite energy.
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1.4 Conclusion

In this paper we have shown how to do conformal perturbation theory on the cylinder

rather than in flat space. The main reason to do so was to use a physical infrared

regulator in order to understand the process of renormalization of UV divergences in a

more controlled setting. We showed moreover that the results that are found using AdS

calculations actually match a notion of dimensional regularization where the dimension

of the perturbation operator stays fixed. In this sense the AdS geometry knows about

dimensional regularization as a regulator. This is an interesting observation that merits

closer attention. In particular, it suggests that one can try a real space dimensional

regularization approach to study perturbations of conformal field theory.

We then showed that one could treat in detail also a time dependent quench, and not

only where we able to find the energy after a quench, but we also were able to understand

scalings that have been observed before for fast quenches. Our calculations show in what

sense they are universal. They only depend on the two point function of the perturbation.

The singularities that arise can be understood in detail in the Hamiltonian formulation

we have pursued, and they arise from amplitudes to excite descendants increasing with

energy, or just not decaying fast enough. In this way they are sensitive to the UV

cutoff associated to a pulse quench: the Fourier transform of the pulse shape needs to

decay sufficiently fast at infinity to compensate for the increasing amplitudes to produce

descendants. We were also able to explain some logarithmic enhancements for the vacuum

expectation values of operators during the process of the quench that can be understood

in terms of renormalizing the theory to first order in the perturbation. Understanding

how to do this to higher orders in the perturbation is interesting and should depend on

the OPE coefficients of a specific theory.
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Chapter 2

Log enhancements in conformal

perturbation theory and their real

time interpretation

2.1 Introduction

Since the advent of the AdS/CFT correspondence [3], the study of conformal field

theories 1 has advanced substantially, as one can solve difficult problems in the dual

gravity theory instead. Many of the results found this way are not particular to gravita-

tional theories: they are universal in conformal field theory. For example, in the study

of quenches, one can find the anomalous scaling of various dynamical expectation values

[43, 50]. This behavior can be understood from conformal perturbation theory, as shown

in [35]. In particular, in this last work, it was argued that many of the problems can be

handled by the use of dimensional regularization on the cylinder, where one leaves the

1This includes deformations away from the conformal fixed point.
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operator dimensions fixed, but integrates the angular variables in arbitrary number of

spacetime dimensions.

In this paper, we study corrections to various correlation functions in conformal per-

turbation theory, using dimensional regularization techniques. These results will be uni-

versal and can be applied to the gravitational theory via the AdS/CFT duality. Specif-

ically, we will analyze the divergence structure of these corrections and provide a novel

interpretation of their origin.

The general problem we are studying is that of a theory which has been deformed

away from a conformal fixed point by a scalar operator λ
∫
ddxf(x)OD(x) (the subscript

D standing for deformation). We consider relevant, marginal, and irrelevant operators

with dimension hD and work in arbitrary number of spacetime dimensions d. Notice, we

further allow the deformation to be spacetime dependent, including the function f(x)

and taking the constant λ to be our small parameter. Correlation functions in the new

theory take the form

⟨O1(x1) . . .ON(xN)⟩λ =
⟨
O1(x1) . . .ON(xN)e

λ
∫
ddxf(x)OD(x)

⟩
CFT

(2.1)

where the correlators on the left hand side indicate the path integral in perturbed theory,

while those on the right are in the conformal theory. One can expand the right hand side

to find

⟨O1(x1) . . .ON(xN)⟩λ = ⟨O1(x1) . . .ON(xN)⟩CFT

+ λ

∫
ddxf(x) ⟨O1(x1) . . .ON(xN)OD(x)⟩CFT +O(λ2)

(2.2)

We assume that the conformal field theory in question has a known set of operator

dimensions (a spectrum of conformal representations), and known three point functions.
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One then simply includes, for instance, the known form of the three point function

⟨O1(z)O2(w)O3(x)⟩CFT =
f123

|z − w|h1+h2−h3 |x− z|h1+h3−h2 |x− w|h2+h3−h1
(2.3)

and only needs to integrate to find the desired corrections.

However, these integrals can be tricky and are divergent. Consider, for instance,

the correction to the one point function when the theory is perturbed by a constant

deformation

⟨OD(0)⟩λ = λ

∫
ddx

|x|2hD
+O(λ2) (2.4)

where we have used the known form of the two point function in a CFT. This expression

diverges either at the origin (a UV divergence) or at infinity (an IR divergence), or both

if hD = d/2. Transforming the theory to the cylinder can provide an infrared regulator

(the size of the cylinder). The answer will then be IR finite, but there still might be

UV divergences. This is what was studied by the present authors in [35]. In that paper,

it was shown how to remove the divergences by using a modified version of dimensional

regularization, where d is varied, but the operator dimensions are fixed. This was shown

to be very similar to keeping d fixed and varying the dimensions of the operators: the

results were expressed in terms of gamma functions of linear combinations of d, hD.

Logarithmic divergences occurred at special values associated with the pole structure of

the gamma functions. This was also shown to be equal to the solution of the problem in

the gauge/gravity duality.

Let’s explicitly see how this IR divergence was tamed. To transform the operators

from the plane to the cylinder, one must introduce powers of the Weyl rescaling. That

is,

⟨O1 . . .ON⟩cyl = |x1|∆1 . . . |xN |∆N ⟨O1 . . .ON⟩plane (2.5)
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It was this additional factor that helped with the convergence of the integral. Interest-

ingly, one can alternatively think of this factor of as having come from having made the

deformation spacetime dependent, with a source that scales as f(x) = |x|hD−d

⟨O(z)⟩λ = λ

∫
ddxf(x)

1

|x− z|2hD
+O(λ2) = λ

∫
ddx

1

|x|d−hD
1

|x− z|2hD
+O(λ2) (2.6)

In this case, the infrared cutoff is provided by the fact that the profile of f(x) dies

sufficiently fast at infinity. (Note the additional factor of |x|d comes from the change of

measure associated to the Weyl rescaling transformation.)

In this work, we will consider various functions that make these integrals more con-

vergent and will discuss the physics of the divergences that remain. In particular, we

will see that the correlators have logarithmic enhancements and will show that some of

the singularities that appear in the process of evaluating the integrals with dimensional

regularization techniques can be understood in terms of secular (resonant) behavior in

time dependent perturbation theory on the cylinder.

The paper is organized as follows: We first consider three physically interesting master

integrals and analyze the divergences in the resulting expressions. Next, we study the

special case of marginal deformations. And finally, we relate our computations to time

dependent perturbation theory on the cylinder and see how the singularities can be

interpreted as secular resonances that arise in time dependent perturbation theory. The

poles and logarithmic enhancements in the plane computations end up reflecting the

secular behavior for resonant perturbations in the cylinder.
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2.2 Dimensional regularization master integrals

There are three integrals we will consider explicitly in this work. They are all gener-

ically of the form

I =

∫
ddx f(x)

|x− x1|α1 . . . |x− xN |αN
(2.7)

There is a vast array of literature on these Feynman integrals. For a general reference,

we suggest [51].

And, in fact, each of our computations have been performed in some form else-

where. We include the details for completeness and so that one may track the divergence

structure throughout the computation. It will be this structure that we are ultimately

concerned with.

As is standard practice in evaluating these types of integrals, we will find it to be

very useful to introduce Schwinger parameters, given by

1

|B|2a
=

1

Γ(a)

∫ ∞

0

dtta−1 exp(−t|B|2) (2.8)

2.2.1 Fourier transform of the two point function

The first integral we consider is

I∆ [⃗k; z] =

∫
ddx|z − x|−2∆ exp(ikx) (2.9)

Like in the previous work [35], this gives the first order correction to the one point function

in the presence of a deformation. However, rather than regulating by transforming to the

cylinder, here we introduce a source that is oscillating in position space f(x) ≃ exp(ikx).

These deformations can be studied in a dual gravitational theory, where they produce
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a lattice that breaks translation invariance 2 (see for example [53, 54]). Here, the IR

regulator is provided by the scale of the oscillations. The point is that for large distances,

the integral is oscillatory and mostly cancels, removing the possible infrared divergence.

The small dimensionless parameter is λ|k|∆−d << 1. This has already been computed in

other places [48, 55, 56].

We compute with varying d, keeping ∆ fixed. One can see that integral is UV

divergent if 2∆ ≥ d, but otherwise should converge. This is because the large radius

region is tamed by the oscillatory nature of the integral. In this sense, the momentum

scale cuts off the possible infrared singularity.

To perform the integral, we first write it in terms of a Schwinger parametrization

I∆ [⃗k; z] =
1

Γ[∆]

∫
ddx′

∫ ∞

0

dss∆−1 exp(−s|x− z|2) exp(ikx) (2.10)

The net result is that the integral becomes Gaussian in x, and can be done by the

usual rules of dimensional regularization. Shifting first the integration variable from x

to x′ = x− z, we get

I∆ [⃗k; z] =
1

Γ[∆]
exp(i⃗kz⃗)

∫
ddx′

∫ ∞

0

dss∆−1 exp(−s|x′|2) exp(i⃗kx⃗′) (2.11)

and then complete the square to find

I∆ [⃗k; z] =
1

Γ[∆]
exp(ik⃗z⃗)

∫
ddx′

∫ ∞

0

dss∆−1 exp(−s|x′|2) exp(−|k|2/4s) (2.12)

2One can also do this by adding random disorder [52], which we will not study.
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The Gaussian integral is trivially done in d dimensions, giving us

I∆ [⃗k; z] =

√
π
d

Γ[∆]
exp(i⃗kz⃗)

∫ ∞

0

dss∆−1s−d/2 exp(−|k|2/4s) (2.13)

Finally, we can change variables to s̃ = 1/s, so that

I∆ [⃗k; z] =

√
π
d

Γ[∆]
exp(i⃗kz⃗)

∫ ∞

0

ds̃s̃−∆−1s̃d/2 exp(−s̃|k|2/4) (2.14)

which we immediately recognize as a gamma function. The final answer is

I∆ [⃗k; z] =
Γ[d/2−∆]

Γ[∆]

√
π
d
exp(i⃗kz⃗)

(
|k|2/4

)∆−d/2
(2.15)

Generically, the UV divergences for ∆ > d/2 have been removed by analytic continuation.

The integral is always UV convergent for large enough d, if ∆ is kept fixed. This defines

a function of d,∆ that can be continued to values where the naive integral has a UV

divergence.

Notice that there is a singularity whenever ∆− d/2 is a non-negative integer. These

arise as poles in the gamma function. The singularity at ∆ = d/2 is exactly a logarithmic

divergence. For the other cases, the singularity is a subleading logarithmic divergence.

To get a finite answer in those cases, we need to add a counterterm. The counterterm is a

polynomial in k2, multiplied by 1/ϵ, where ϵ = d−d0 is the small parameter that deforms

the dimension d away from the dimension d0 of interest. Because it is polynomial in k2,

it is local. This is a contact term. We write the full expression as follows

⟨O(x)O(z)⟩ ≃ |z − x|−2∆ + bCT□∆−d/2δd(x− z) (2.16)
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The full final answer needs to be expanded in Taylor series in d− d0. This produces an

extra logarithm from

(|k|2)d0/2−d/2 ≃ 1− ϵ

2
log(k2/µ2) (2.17)

Combined with the pole in the gamma function we get an enhancement of the answer by

a logarithm, where we have introduced a renormalization group scale µ2 for dimensional

reasons. The µ2 lets us shift the finite part of the counterterm to be whatever we wish

it to be.

2.2.2 First order correction to the two point function

Another interesting profile is to consider a different scaling function as follows

f(x) ≃ 1/|x|α (2.18)

where we can choose γ to be real or complex. If we want f(x) to be real, we can also

take the real part of the expression. This leads to the same integral that appears when

considering a correction to the two point function of two different primary operators

O1(z),O2(w) in conformal perturbation theory. In this case, the infrared regulator is

provided by the distance between the operators.

If we consider two such primary operators O1, O2 of dimensions h1, h2 and a pertur-

bation of the field theory by a scalar operator OD(x), then the two point function Green

function for the operators is

⟨O1(z)O2(w)⟩λ =
δh1,h2

|z − w|h1+h2
+ λ

∫
ddx⟨O1(z)O2(w)OD(x)⟩CFT + . . . (2.19)

where OD(x) is the operator that perturbs away from the conformal fixed point. The

51



Log enhancements in conformal perturbation theory and their real time interpretation Chapter 2

Kronecker delta appearing in the expression can generically depend on spin labels of the

operators, and the direction vector between z, w. We will be interested in the simplest

setting where both O1,O2 are primary scalar operators (and so is OD, in order not to

break rotational symmetry). If h1 ̸= h2, the first term vanishes, as the two operators

then have a vanishing two point function in the conformal field theory. The fact that

the right hand side does not generically vanish beyond the leading order in conformal

perturbation theory will be referred to as operator mixing.

If we use the known form of the three point function in a CFT, we see that the integral

we wish to perform is

I[z, w, hD, d, h1, h2] =

∫
ddx

1

|x− z|h1+hD−h2 |x− w|h2+hD−h1
(2.20)

As can be seen, the integral diverges in the infrared if in the asymptotic |x| → ∞ region

we have that ∫ ∞

x0

ddx
1

|x|2hD
(2.21)

is divergent. The integral is infrared convergent if 2hD ≥ d.

Similarly, the integral is UV divergent for x ≃ z if h1 + hD − h2 ≥ d. The same is

true near x ≃ w if h2 − h1 + hD ≥ d, and these follow from keeping the most singular

terms near each one of the insertions of the operators.

Adding these two, we find that there is always a UV divergence if hD ≥ d. That

is, if the operator that performs the deformation OD(x) is marginal or irrelevant. The

divergences then need to be regulated before getting the correct (renormalized) physical

answer.

A standard procedure in the literature is to perform a geometric cutoff: do the inte-

grals until we are within a distance δx < Λ−1 (see for example [57, 58]). This is problem-
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atic at higher orders. These integrals can also be handled via dimensional regularization,

which is the procedure we will follow. Here we keep h1, h2, hD fixed, and evaluate the

integrals for a variable complex d. The integral is defined in the non-convergent region

by analytically continuing in d past the singularities.

We will now perform the integral. Again, we start with Schwinger parameterization,

which is valid for a ≥ 0. With this, we find

I[z, w, hD, d, h1, h2] =

∫
ddx

∫∞
0
dt1
∫∞
0
dt2t

(
∆h+hD

2

)
−1

1 t

(
hD−∆h

2

)
−1

2

Γ
(
h1+hD−h2

2

)
Γ
(
h2+hD−h1

2

) exp(−t1|x−z|2−t2|x−w|2)

(2.22)

where we have introduced ∆h = h1 − h2. The Schwinger parametrization is allowed as

long as both hD±∆h ≥ 0 and it is defined for other values of these quantities by analytic

continuation, contingent on the Γ function being evaluated at a non-singular value (the

singularities occur when 2(|∆h|−hD) is a non-negative integer). As we see, the net result

is that integral over x again becomes Gaussian.

It is convenient to change variables to t1 = ty, t2 = t(1 − y), so that dt1dt2 = tdtdy,

so that t = t1 + t2 as is usually done with Feynman parameters. We get then that

I[z, w, hD, d, h1, h2] =

∫
ddx

∫∞
0
thD−1dt

∫ 1

0
dyy

(
∆h+hD

2

)
−1
(1− y)

(
hD−∆h

2

)
−1

Γ
(
h1+hD−h2

2

)
Γ
(
h2+hD−h1

2

)
× exp(−ty|x− z|2 − t(1− y)|x− w|2) (2.23)

We now complete the square to do the Gaussian integral over x, to get that

I[z, w, hD, d, h1, h2] =

∫∞
0
thD−1dt

∫ 1

0
dyy

(
∆h+hD

2

)
−1
(1− y)

(
hD−∆h

2

)
−1

Γ
(
h1+hD−h2

2

)
Γ
(
h2+hD−h1

2

)
×
√
π
d
exp(−ty(1− y)|z − w|2)

td/2
(2.24)
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The Gaussian integral has been evaluated in an arbitrary number of (complex) dimensions

d by analytic continuation from positive integer dimension, as is standard in dimensional

regularization.

What we need to do now is understand the region of t, y plane that picks up the

singularities corresponding to x ≃ z or x ≃ w from passing from the equation (2.23) to

equation (2.24). Obviously, the Gaussian is convergent as long as t > 0, so all the UV

singularities are related to the region near t ≃ 0. In particular, t1 small is the UV region

of the singularity at z, and t2 near zero is the UV region near the singularity at w.

Upon integration in t, we get that

I[z, w, hD, d, h1, h2] =

∫ 1

0
dyy

(
∆h+hD

2

)
−1
(1− y)

(
hD−∆h

2

)
−1

Γ
(
h1+hD−h2

2

)
Γ
(
h2+hD−h1

2

) ×
√
π
d
Γ[hD − d/2]

[y(1− y)|z − w|2)](hD−d/2)

(2.25)

Pulling out the constants that do not need to be integrated further, we find

I[z, w, hD, d, h1, h2] =

√
π
d
Γ[hD − d/2]

Γ
(
h1+hD−h2

2

)
Γ
(
h2+hD−h1

2

)
|z − w|2hD−d

×
∫ 1

0

dyy

(
d+∆h−hD

2

)
−1
(1− y)

(
d−∆h−hD

2

)
−1

(2.26)

The dependence on |z − w| could have been guessed by dimensional analysis. This step

also leads to a Gamma function with a singularity at hD = d/2. This is the infrared

singularity that appears in the integral for large x.

We now get, upon performing the integral over the last remaining variable, that the

full answer is

I[z, w, hD, d, h1, h2] =

√
π
d
Γ[hD − d/2]

|z − w|2hD−dΓ
(
h1+hD−h2

2

)
Γ
(
h2+hD−h1

2

) Γ (d+∆h−hD
2

)
Γ
(
d−∆h−hD

2

)
Γ(d− hD)

(2.27)
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This is the correct answer as long as the two gamma functions in the numerator have a

positive argument. This in particular requires that d > hD. In other regions, the result is

defined by analytic continuation in d, first evaluated at large d, and then we bring down

d to the physical dimension of interest.

This final answer is very similar to the answers one gets from regular dimensional

regularization of Feynman diagrams in field theory. Indeed, the integrals that have been

done are of the same type. Here the improvements in the answer are obtained by taking

large d first. This is because we are not allowing the dimension of the operators to change

as we change d. Thus, marginal operators become relevant as we take d large and keep

the dimension of the deformation hD fixed.

Singularities in the final answer occur when hD ± ∆h − d is an even non-negative

integer. These appear as poles of the gamma function. There is also a pole in the

denominator that occurs if hD − d is a non-negative integer. In all other cases, where

there are no singularities, we have obtained a finite answer. This is the dimensionally

regularized answer for the correction to the two point function.

In terms of the α, β variables, this integral is given by

I[z − w,α, β, d] =
πd/2Γ

(
d−α
2

)
Γ
(
d−β
2

)
Γ
(
1
2
(−d+ α+ β)

)
(z − w)−α−β+d

Γ
(
α
2

)
Γ
(
β
2

)
Γ
(
d− α

2
− β

2

) (2.28)

2.2.3 First order correction to the three point function

To get a correction to a three point function, we usually need to integrate a four point

function of the form

⟨O1(ω1)O2(ω2)O3(ω3)⟩λ =
∫
ddy⟨O1(ω1)O2(ω2)O3(ω3)OD(y)⟩ (2.29)
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in the vast majority of the cases, such four point functions are not known exactly.

If one does perturbation theory with operators that are polynomials in a scalar field,

or in the example of string scattering amplitudes in flat space, the integrals one needs to

perform reduce to a finite number of integrals of the type

I[−→ω , α1, α2, α3, d] =

∫
ddx

1

|x− ω1|2α1|x− ω2|2α2|x− ω3|2α3
(2.30)

The precise details of the integral evaluation can be found in the appendix A. The

techniques are similar to the ones used before, but in general the answer is not particulalry

simple.

It turns out that a similar integral is also obtained if we are working on a correction of

a two point function where we have added some position dependence to the deformation.

We will study this particular case in detail later on.

2.3 Marginal deformations

It is interesting to analyze the special case of marginal deformations, where hD =

d in equation (2.31). In that case, we find the following: there is always a pole in

the denominator at hD = d. This means that unless the numerators are singular, the

answer actually vanishes. This is expected from the usual rules of unitary conformal field

theories. Two point functions of primary operators of different dimensions should vanish

at a conformal fixed point.

For a singularity in the numerator to occur we require that ∆h is an even integer.

There are two cases of interest. When ∆h ̸= 0 and the special case where ∆h = 0. Let

us first analyze the case where ∆h ̸= 0, but still an even integer. In that case we find
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that the answer is equal to

I[z, w, hD, d, h1, h2] =

√
π
d
Γ[hD − d/2]

|z − w|2hD−dΓ
(
∆h+hD

2

)
Γ
(
hD−∆h

2

) Γ (d+∆h−hD
2

)
Γ
(
d−∆h−hD

2

)
Γ(d− hD)

(2.31)

If we keep hD fixed and analytically continue in d we find that only one of the two

numerators can become singular. The answer in the limit is of the form

lim
ϵ→0

Γ[ϵ/2−m]/Γ[ϵ]× finite = finite (2.32)

and this suggests that there could be finite mixing.

However, because in this case we have that ∆h = 2m, the operators O1(x) and

□mO2(x) have the same dimension. It is easy to see that we can modify O1 with a finite

counterterm O1− c□mO2 that removes the mixing. In this sense, this is no different that

∆h ̸= 0 and we see the absence of mixing. Such a term can be interpreted as a contact

term in the OPE. It is also in this case, when the dimension hD is even, that there can

also be an extra pole in the denominator that arises from the Schwinger parametrization

of the denominators. This can produce a double pole in the denominator and makes the

end result vanish.

Now, only the special case where ∆h = 0 and the operator is marginal remains to be

studied. The limit looks like

lim
ϵ→0

Γ[ϵ/2]Γ[ϵ/2]/Γ[ϵ] ≃ 4/ϵ+ finite (2.33)

In this case we produce a universal logarithm. This is a correction to the anomalous
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dimension of the operator O1. It depends only on the OPE coefficient

hD(y)O1(x) ≃ f11D|x− y|−hDO1(x) + . . . (2.34)

but not on the dimension of the operator h1. In that sense, the integral we have to

perform is always universal.

2.4 Position and time dependent perturbations

As described in the introduction, the second master integral that we evaluated in the

previous section can also be interpreted in terms of a position dependent excitation on

the cylinder. To see this, we convert the variables from the integral to the natural ones

on the cylinder.

To first order, the correction to the one point function on the cylinder in the presence

of a deformation with an f(x) = eiωτ factor is given by

⟨OD(Ω
′, τ ′)⟩cyl = λ

∫
cyl

dd−1Ωdτ expiωτ ⟨OD(Ω, τ)OD(Ω, τ
′)⟩cyl (2.35)

where τ is the natural euclidean time coordinate on the cylinder and ω is a complex

variable. When ω is real we have a bounded and oscillating perturbation of the conformal

field theory on the cylinder.

Using the fact that in radial quantization we have τ ≃ log r, and that to convert to
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the punctured plane we need extra factors of |r|−hD to be inserted, we get that

∫
cyl

dd−1Ωdτ expiωτ ⟨O(Ω, τ)O(Ω, τ ′)⟩cyl =

∫
ddx|x|iω+hD−d|y|hD⟨O(x)O(y)⟩(2.36)

=

∫
ddx|x|iω+hD−d|y|hD 1

|x− y|2hD
(2.37)

This can be written as

∫
cyl

dd−1Ωdτ expiωτ ⟨O(Ω, τ)O(Ω, τ ′)⟩cyl = I(|y|, α, β, d)|y|hD (2.38)

provided we identify

α = −hD − iω + d, β = 2hD (2.39)

in the master integral (2.28). The result is then given by

πd/2Γ
(
1
2
(d− 2hD)

)
Γ
(
1
2
(hD − iω)

)
Γ
(
1
2
(iω + hD)

)
zhD+iω

Γ (hD) Γ
(
1
2
(d− iω − hD)

)
Γ
(
1
2
(d+ iω − hD)

) (2.40)

This has the expected Euclidean time dependence. Notice that this has singularities

where

iω = ±(hD + 2k) (2.41)

and k an integer. This is natural, as when we go from Euclidean to Lorentzian signature in

a Wick rotation, we should make ω = iω̃ imaginary in order to obtain a real frequency ω̃.

This then corresponds to driving the field theory on the cylinder with a time dependent

source at frequency ω̃. At the values of ±ω̃ = hD + 2k we obtain resonances. These

happen exactly at the energies of the spherically invariant excitations of the scalar O on

the cylinder (see [35] for a description of driving the conformal field theory in Hamiltonian

mechanics).
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The exponent is also given by

iω − hD + hD = iω (2.42)

as one expects from the translation properties of the integral in the cylinder coordinates.

The way we deal with the resonance in this case is to analytically expand in ω̃ at the

required frequency and keep the first subleading term. This gives the usual secular growth

of the resonance as t exp(iω̃t).

This response can also be obtained from the AdS dual following similar steps to those

found in [35]. We need to solve the differential equation for the radial coordinate

− 1

rd−1
∂r((1 + r2)rd−1∂rϕ(r) +m2f(r) + ω̃2/(1 + r2)ϕ(r) = 0 (2.43)

This is in a coordinate system where

ds2 ≃ −dt2(1 + r2) + dr2(1 + r2)−1 + r2dΩ2 (2.44)

The problem of the asymptotic shape near r → ∞ ends up ends up being controlled

by the asymptotic expansion of the hypergeometric function

ϕ(r) ∝ 2F1

(
(d− hD − w̃)

2
,
(hD − w̃)

2
,
d

2
,−r2

)
(2.45)

with the usual relation between the mass in AdS and the dimension of the operator

m2 =
√
h2D − dhD. This produces the correct ratio of the Γ functions. The factors of π

etc, are explained in detail in [35].

We can also notice that from this result we can recover the Fourier transform of the
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two-point function in equation (2.15). The idea is simple. If we take ω → ∞ in equation

(2.40), we are driving the theory in the cylinder with a Euclidean time dependence

that is oscillatory and that has a wavelength that is much smaller than the size of the

cylinder. In this limit, we would expect that if we zoom in to the region where we have

the operator, the infrared cutoff scale induced by the driving of the field theory is at

a higher energy than the infrared cutoff provided by the geometry. This second cutoff

should become invisible, up to ”finite size” corrections. To take the limit, we use Stirlings

approximation for the gamma functions that depend on ω, Γ(γ) ≃ exp(γ log γ − γ).

We find this way that in the limit the answer becomes

⟨OD(τ)⟩ =
πd/2Γ

(
1
2
(d− 2hD)

)
Γ (hD)

exp(iωτ)× F (ω) (2.46)

where

F (ω) = exp γ1 log γ1−γ1+γ2 log(γ2)−γ2−γ3 log(γ3)+γ3−γ4 log(γ4)+γ4)+O(1/γ) (2.47)

where the γi are the various ω dependent variables that appear as arguments in the

Gamma functions. A straightforward evaluation shows us that

F (ω) = exp((d− 2hD) log(2) + (2hD − d) log(ω)) =

(
ω2

4

)hD−d/2

(2.48)

and this matches the Fourier transform with all the factors of two and normalization

factors on the nose.

We can go one step further. We can also consider the case where we compute a

correction to a two point function in the presence of a position dependent perturbation
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with a radial profile. This is handled by the integral

⟨O1(x1)O2(x2)⟩ω ≃ f12D

∫
ddx

|x|iω+hD−d

|x− x1|∆h+hD |x− x2|−∆h+hD
(2.49)

where we have used the same convention for the profile as in equation (2.37), so that it

corresponds to an oscillating driving of the cylinder after the conformal rescaling that

places the origin at the infinite past. This gives rise to a more complicated integral. But,

in the special case where either x1 = 0 or x2 = 0, it takes the same form as the simpler

master integral we have already evaluated.

What is important for us, is that this modifies the exponents in the usual three point

function as follows

∆h+ hD → ∆h+ hD − iω − hD + d = ∆h− iω + d (2.50)

keeping the other one, hD −∆h, fixed.

The ω dependent gamma factors end up being given by

Γ
[
hD−iω

2

]
Γ
[
iω−∆h

2

]
Γ
[
d+∆h−iω

2

]
Γ
[
d−hD+iω

2

] (2.51)

when we choose x1 to be at the origin.

One set of poles in the numerator occur when ω̃ = −iω = 2k−∆h. This again can be

interpreted as a resonance. After all, putting the operator O1 at the origin puts the field

theory in the vacuum of the representation of the conformal group associated to O1 (the

lowest weight state), which is spherically invariant. This is an immediate consequence of

the conformal rescaling that takes the plane to the cylinder. This has energy h1 relative to

the usual vacuum. Because we are integrating with a spherically invariant perturbation
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profile, the states that are generated need to be spherically invariant. We can think of

this as an amplitude in the cylinder Hamiltonian theory of the form

∫
dτ exp(iω̃τ)

∑
k

sk ⟨O2, 2k, τ2| OD(τ) |O1, 0,−∞⟩ (2.52)

where the ground state of the O1 representation is converted into a sum of states in the

O2 representation by the action of the perturbation. The coefficients sk appear from

how the operator O2 at a particular radial time excites the individual states. This is

explained in [35]. Since |O1, 0,−∞⟩ is an eigenstate of the radial Hamiltonian, we can

choose the initial time to be anywhere we want, and we can make that coincide with the

lower end of the integration in the variable τ .

Here, spherical symmetry of the initial state and the perturbation guarantees that the

operator O2 can only destroy spherically invariant states. These can only have energies

h2 + 2k with k an integer. In this sense, we can schematically write

OD ≃ a†D + f12D
∑

fka
†
2,ka1,0 (2.53)

where the fk are determined by the conformal symmetry (this is related to the conformal

block structure of the OPE between the representations O1,O2,OD, it basically describes

how descendant amplitudes are related to the primary amplitudes). The gamma function

pole happens exactly at resonance for a transition between a state with energy h1 and a

state of energy h2 + 2k. The resonance in this case is constructive interference between

the perturbations at different times. Again, in time dependent perturbation theory such

resonances produce secular behavior (linear growth in time), which becomes a logarithm

after passing from the cylinder to the plane.
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Let us explain this. The usual formula for time dependent perturbation theory is

|f⟩ = P exp

(∫
iVint(t)dt

)
|i⟩ (2.54)

where V is in the interaction picture. This has a natural time dependence of exp(i(wf −

wi)t) for a transition between states of energies labeled by their frequencies wi, wf . If we

add to the problem an external time dependence at frequency ω we get that the driving

of the transition oscillates at a shifted frequency ω−∆w. This gives us a linearly growing

transition in time if ω −∆w = 0, this is the secular term in perturbation theory. In our

case the frequency of the final state is any of the spherically invariant descendants of O2

There is a second pole. This one does not depend on ∆h. Instead, it corresponds to

the topology for a transition of the form

⟨OD, 2k, τ | O2(τ2) |O1,−∞⟩ (2.55)

where the secular behavior is produced because it has a time dependence that exactly

cancels the time dependence of ⟨OD, 2k, τ | in the Schrödinger picture. This is why ω

ends up with the other sign in the pole of the gamma function.

Using the results of appendix A, we can actually solve the full problem without

restricting to putting one of the operators at the origin. This way we obtain the full

correction to the two point function on the cylinder. We will now show that many of

the singularities in the final answer have the same interpretation. The idea is to do an

integral of the form

I ≃
∫
ddx

1

|x− w0|2a|x− w1|2b|x− w2|2c
(2.56)
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with 2a = (d− hD)− iω, 2b = hD +∆h, 2c = hD −∆h. The answer is then given by

N
∫ ∞

0

dt
(√

t
)d/2−2

3∏
j=1

Ω
−at+d/2+aj
j Kd/2+aj−at

(√
2tΩj

)
(2.57)

where at = a1 + a2 + a3 and N is a normalization factor given by

N =
πd/22at−d

Γ [a1] Γ [a2] Γ [a3] Γ [d− at]
(2.58)

which is non-singular. The functions K are modified Bessel functions. It is convenient

to change variables to x ∝
√
t.

There are two types of singularities that can show up. Some of them result from

integration over the variable x, and others result from the normalization of the modified

Bessel function, whose expansion is as follows

Kν(x) ≃ xν2−1−νΓ[−ν](1 +O(x2)) + 2−1+νx−νΓ[ν](1 +O(x2)) (2.59)

The singularities all arise from the x ≃ 0 region. At large x, Kν(x) ≃ exp(−x) ×

power law, so the x→ ∞ limit of the integral is convergent.

Singularities in the integral arise when d/2−1±ν1±ν2±ν3 is a negative integer [59],

where the ν are the labels of the Bessel function. But notice that when we compute, we
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find that

a2 + a3 = hD (2.60)

2at = (d− hD)− iω + 2hD (2.61)

= d+ hD − iω (2.62)

d/2 + a1 − at = d/2− hD (2.63)

d/2 + a2 − at = iω/2 + ∆h/2 (2.64)

d/2 + a3 − at = iω/2−∆h/2 (2.65)

so only two of the labels of the Bessel functions depend on ω and ∆h, and not the third.

When we take the combinations ±ν2±ν3, either the dependence on ∆h or the dependence

on ω cancels, so the singularities in ω that arise from the integrals do not depend on ∆h,

which is what we are seeking to find.

Thus, the singularities we want to analyze must arise from the normalization factors

of the modified Bessel functions. These are in the Γ factors. Poles will arise whenever

±(iω/2±∆h/2) are integers. That is the same as writing

iω = ±∆h± 2k (2.66)

Half of these singularities are transitions where a descendants of the first operator (in the

initial state) is excited at a resonant frequency with descendants of the second operator.

The point is that the first operator not being at the origin produces a linear combination

of the lowest energy state in the representation and it’s descendants. Any one of which

could be the one in resonance. The second set of singularities arises from reversing the

order of the operators (thinking of O2 as generating the initial state, rather than O1).
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Both are generally required because in the Euclidean answer we can interchange the order

of the operators without encountering a singularity. Again, spherical symmetry of the

perturbation forces the state generated byO1 to have the same angular quantum numbers

as the state annihilated by O2 (or viceversa). This is what produces a difference that

is twice an integer, rather than just an integer. After all, states with the same angular

momentum that are descendants of a single state, differ in their energies by twice an

integer.

The upshot is that the poles in ω that depend on ∆h can always be interpreted in

terms of resonant transitions.

67



Part II

LLM Geometries
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Chapter 3

Reconstructing spacetime from the

hologram, even in the classical limit,

requires physics beyond the Planck

scale.

Understanding how quantum mechanics and gravity can be made compatible is one of the

thorniest problems in theoretical physics. This is especially true in light of the black hole

information paradox [60]. One of the main claims of the AdS/CFT correspondence [3] is

that it provides a definition of quantum gravity for spacetimes that are asymptotically of

the form AdSd+1 ×X in terms of a quantum field theory in d-dimensions that resides on

the boundary of the AdS geometry. In this setup, the information paradox is resolved in

principle: the quantum field theory of the boundary does not violate quantum mechanics.

We do not yet understand how the paradox is resolved in terms of the geometric variables

of gravity.
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The boundary theory is often referred to as the hologram, while the full higher di-

mensional geometry is called the bulk. A rather important open problem in the study

of this duality is the problem of reconstruction: how to derive the geometric data of the

bulk spacetime from the hologram. The hope is that if we understand this procedure suf-

ficiently well, we might finally understand what was the wrong assumption in the original

calculation by Hawking.

Here, we will discuss how much information is needed from the hologram in order

to reconstruct the bulk spacetime, specifically when the spacetime is a classical solution

of gravity. This problem is well understood near the vacuum state. Fields in the AdS

spacetime are in one to one correspondence with certain families of local operators on

the boundary [4]. The expectation values of these operators are related to the behavior

of the solutions of the classical fields as they approach the boundary. Very small classical

excitations in the bulk imprint themselves on these expectation values of the hologram

in a way that makes it possible to reconstruct the bulk solution from the expectation

values in a perturbative expansion [61, 62].

Does this work beyond a perturbative argument? In this essay, we will argue that the

answer to this question is generically no. The way we will argue for this outcome is with

a very concrete counter-example, where we can see the failure explicitly. We will then

argue that there is a mechanism in the quantum field theory that provides the additional

data necessary to reconstruct the spacetime, but that this data is hidden in modes that

lie beyond the Planck scale from the point of view of the vacuum geometry.

The counter-example can be constructed in the maximally supersymmetric theory

with excited states that preserve as much supersymmetry as possible. The complete set

of these solutions has been classified by Lin, Lunin and, Maldacena [63] and we will refer

to them as LLM geometries. What makes this example special is that we also understand
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the complete set of such states in the dual field theory [64, 65], so we can understand the

problem in detail not only in the geometric space of classical solutions, but also in the

Hilbert space of the quantum theory.

The LLM geometries are completely specified by a single function z(w, w̄, y), which

must obey a known differential equation. They are regular and horizon free. Geometric

regularity forces z(w, w̄, 0) to take one of two possible values, ±1/2. This can be repre-

sented by a two-coloring of the complex w, w̄ plane. A single round disk will give rise

to the AdS5 × S5 spacetime. These patterns have fixed area and are identical to the

configuration space of a fixed amount of incompressible liquid in two dimensions.

The coloring can be described by a step function ρ(w, w̄) that takes the value one in

the region of one color and is zero otherwise. Given ρ(w, w̄), the solution for z is

z(w, w̄, y) =
1

2
− y2

π

∫
ρ(w′, w̄′)d2w′

(|w − w′|2 + y2)2
(3.1)

The boundary of the LLM geometries is located in the region where r2 = (y2 +

ww̄) → ∞ and z → 1/2 − N(r2 − ww̄)/r4 + O(1/r4). Indeed, z admits an expansion

in powers of w/r2, w̄/r2, 1/r2. The expressions that arise are linear in the moments

Mm,n =
∫
ρ(w, w̄)wnw̄md2w of ρ(w, w̄). As shown in the works [66, 67] (see also [68]

for how to use some higher moments as conserved charges with which to distinguish

quantum states), the problem of computing expectation values of fields on the boundary

can be reduced to studying a particular set of these multipole moments. Conversely, in

this essay, we will see if it is possible to determine ρ from only a subset of the moments.

To see that this is a reasonable possibility, consider a small deformation of the lowest

energy state, which is represented by a circular disk of radius r0 =
√
N (as shown in the

left figure of 3.1). We want the edge to be slightly deformed, so that in polar coordinates
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θ θ

Figure 3.1: An example of a single droplet, versus a multi-droplet geometry, deformed
away from a setup of concentric circles. Notice that a ray starting from the origin
intersects various deformations of the edges.

the edge of the droplet can be described by a radial function r(θ) = r0 + δr(θ). In these

coordinates, w = r exp(iθ) and because ρ is just a step function, we can integrate along

the radial direction to get

M0,m =

∫∫
ρ(r, θ)rm exp(−imθ)rdrdθ (3.2)

= Nδm,0 +

∫
dθrm+1

0 δr(θ) exp(−imθ)dθ +O(δr2) (3.3)

We see that to linear order, the moments Mm,0 become exactly the Fourier modes of

δr(θ). HigherMn,m are also linear in these Fourier modes, so they are redundant. We now

see why it is reasonable to think that the subset of moments M0,m might be sufficient to

calculate the function z and hence the full geometry: we need only to perform the inverse

Fourier transform to build the geometry. This procedure fails in general geometries.

Consider now the coloring illustrated on the right of figure 3.1, which shows a droplet

excitation with a deformed disk and annulus that are concentric. We can quantify the

deformations by a set of functions, δri(θ) for each edge. One can then repeat the calcu-

lations that ended up with the Fourier coefficients (3.3). However, in this case one would
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immediately see that the M0,m would only capture a particular linear combination of the

three δri. This problem increases as one considers geometries with more droplets. We

find then that it is impossible to reconstruct the geometry from the knowledge of this

restricted data.

We can also compute the Mn,m for the multi-droplet geometry and find that to lin-

earized order they give a different linear combination of the Fourier modes of δri. So, in

general, to reconstruct the bulk we would need roughly one of the Mn,m for each mode

of δri. Classically, the state can have an arbitrary number of such circles, so to solve the

problem in the general case, we would need all of the Mn,m. This is the same as knowing

the function z (and therefore the full geometry) at the start. To reconstruct spacetime,

we need to know it already. We find that reconstruction in the general case is not only

hard, but it is ambiguous: many geometries can have the same classical boundary data.

This is a counterexample to bulk reconstruction in the sense of [61], because some fluc-

tuations in the bulk are not coupled linearly to the expectation values that are available

on the boundary.

Now, we will discuss the implications of this observation for the full quantum problem,

rather than just the classical problem. The difficulty in reconstructing the interior is not

on first figuring out if the state preserves supersymmetry. The condition we need to

satisfy is that the charge of the state under one of the rotations of the sphere is equal

to the energy of the state. Both of these are readily measured on the boundary. The

problem really lies in that we need more modes than are available on the vacuum to

describe the excited state of the multi-edge droplet picture in figure (3.1), one mode for

each of the Fourier modes of δri(θ). Where do these modes come from?

To better understand the physics of the boundary, we need to use the dictionary

[4]. The single-particle states that preserve this amount of symmetry are massless in
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ten dimensions. The list of modes can be read off from a table [69, 70]. Because these

modes preserve a large amount of supersymmetry, they can be followed from families of

operators in the free field theory limit of the boundary theory as we increase the strength

of interactions. This physics is determined by the eigenvalues of a single matrix degree of

freedom in the quantum field theory [65]. Let us say there are N such eigenvalues. This

means that we only need to know up to N invariants of the matrix to compute them.

This was argued to be a form of the stringy exclusion principle [71]. These eigenvalues,

when properly quantized, actually determine quantum droplets of incompressible fluids

in two dimensions. The counting of excitations of the ground state droplet give a single

tower of states that stops at mode N . This has fewer degrees of freedom than the classical

gravitational theory, where the tower has no end, but notice in the latter case we had

assumed that N → ∞ first.

Here is where the physics of the Planck scale enters. A particle with momentum of

order the Planck scale is not a mode with momentum n = N , but it is at much smaller

values, around n = N1/4. The vast majority of the modes that are required to describe

the field theory data for such a supersymmetric state lie beyond the Planck scale.

To describe the degrees of freedom of the additional edges of the droplets, we need to

borrow supersymmetric modes from the UV somehow, as these are the only other modes

that preserve the correct amount of supersymmetry. It is now becoming clear why it was

not possible to reconstruct the bulk with the classical theory: the physics responsible

for the new modes of the geometry is way above the cutoff. In the strict classical limit,

where N approaches infinity, this cutoff was sent to infinity first!

A natural question is how something that started its life at short wavelengths (high

energies) became effectively a mode that is present in the long wavelength limit of the

theory in the excited state. The way this must happen is that the map in equation (3.3)
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is non-linear. A non-linear combination of modes adds the frequencies and wavelengths

of the linear fields. To get a long wavelength (low frequency), there must be negative

contributions as well as positive ones. The negative contributions in frequency indicate

that the state is not in the ground state, but in an excited state. Bound states of large

positive and large negative energy will have the required characteristics.

That such bound states play an important role implies that the modes are organized

in a non-trivial way in the quantum wave function. This requires the right type of entan-

glement between the different UV modes. This entanglement allows one to change the

topology of spacetime creating a droplet configuration with multiple edges. These multi-

edge geometries actually have different topologies of the spacetime [63], thus realizing

some of the ideas of Van Raamsdonk where topology changes of spacetime are related to

entanglement [72]. It is natural to speculate that this is more generally true in gravity

and that this paves a way to resolve the paradox of Hawking [60]. Transplanckian modes

are doing something important.
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Chapter 4

Superposition induced topology

changes in quantum gravity

4.1 Introduction

4.1.1 The Question: Can topology be measured by an operator

measurement in quantum gravity?

The AdS/CFT correspondence [3] has provided a detailed model of quantum gravity

in terms of a dual quantum field theory. This has been an incredibly helpful tool, shedding

light on several puzzles of quantum gravity. For instance, it has shown that the black hole

information paradox [60] is soluble within a quantum mechanical framework (at least in

principle). It is natural to ask what else the AdS/CFT correspondence tells us about

quantum gravity. The careful reframing of the Hawking paradox in terms of information

theory, resulting in the AMPS paradox [73], suggests that our ideas about quantum

gravity might need rather large modifications in the presence of black hole horizons. The
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correspondence supplies a method for rigorously analyzing these questions. We can ask

if basic assumptions about the nature of gravity are actually valid or not. We will focus

in particular on the problem of measuring the topology of a spacetime. Specifically,

our question is: In the context of the AdS/CFT correspondence, can we determine the

topology of a spacetime via a simple quantum mechanical operator measurement or

instead does it require some other procedure?

Classically, spacetimes with different topologies can often be characterized by different

topological invariants, which can be computed via, for instance, the Gauss-Bonnet theo-

rem and its generalizations. Our current semiclassical understanding of quantum gravity

suggests that some states will be represented by a sum over states whose spacetimes are

topologically distinct. This should lead to a picture of spacetime that microscopically

has the attributes of a spacetime foam [74]. This semiclassical quantization of gravity

suggests that the metric and the topology are observables.

The simplest example of topology change in the AdS/CFT correspondence arises from

the Hawking-Page phase transition for black holes in AdS [75]. This can be understood as

a confinement/deconfinement phase transition in gauge theory [76]. Here, the transition

leads to a new topology of spacetime, certainly in the Euclidean field theory. However,

one can argue that this change is hidden behind the horizon if one considers the real

time dynamics of a black hole. The Einstein-Rosen bridge of the maximal extension of

the AdS black hole geometry connects to another region of spacetime that is completely

hidden behind the horizon of the black hole and is not accessible to an observer on the

boundary of AdS space in finite time measurements. More precisely, it is expected that

the eternal black hole in AdS is equivalent to the field theory double of the thermal state

[77], so the other asymptotic boundary of the spacetime corresponds to a copy of the

degrees of freedom of the first field theory that is completely independent of the original

77



Superposition induced topology changes in quantum gravity Chapter 4

theory, except for the fact that the state in the double field theory is entangling the two

copies of the field theory. In this sense, the topology change requires the addition of a

hidden sector to the original field theory.

On the other hand, a true topology change that is not hidden behind a horizon can

be obtained when studying bubbling solutions in AdS [63]. In this case, it is possible

to show that various spacetime topologies can be supported by the same boundary field

theory. Indeed, it is even possible to argue that the bubbles can be tiny and almost

indistinguishable from perturbative excitations of the geometry. The multi-bubbling

solutions can sometimes be interpreted as spacetime foam. A natural question to ask

is if we can measure the geometry (and even more coarsely, the macroscopic topology)

uniquely, for sufficiently smooth configurations and their superpositions, or if the notion

of geometry and topology is highly dependent on the state that we are studying. That

is, is the topology of spacetime a quantum observable in this minisuperspace model?

As the full theory is a complete quantum mechanical system, we can consider arbitrary

superpositions of geometries (with the same or different topology). Under the naive rules

of semiclassical quantum mechanics, one could argue that there should be a “topology

measuring” operator that distinguishes the different topologies, so that one could in

principle divide the Hilbert space into superselection sectors that are eigenstates of the

topology operator. However, Van Raamsdonk has suggested that topology and geometry

arise from quantum entanglement [72]. In that case, it would be impossible to produce

such a topology measuring operator. For example, entanglement of a factorization of the

Hilbert space can be obtained from superpositions of states, each of which has no such

entanglement. These could all have fixed topology, while the new superposed state could

be a state with a different topology. In the case studied by Van Raamsdonk, this was

associated with the double field theory interpretation of the black hole geometry [77],
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but one might imagine that this could be applicable more generally [78]. This program

for understanding geometry goes under the “ER=EPR” banner. One can also ask if the

topology changes due to entanglement always require black hole horizons.

The main difficulty in being precise about this idea is that models of holographic

quantum field theories where this could be analyzed tend to be too complicated to un-

derstand how to evaluate entanglement properties of most states, except perhaps for very

special states like the field theory double. This is also beyond the Ryu-Takayanagi setup

[79], as that setup assumes a single background geometry: it is not known how to make

it compatible with superpositions of (macroscopically distinct) states.

4.1.2 The Set-up: The set of half BPS states in N = 4.

In this paper, we work in a venue that is free from black hole horizons, in a setup

where a complete description of the quantum states that contribute to the phenomenon

can be understood in excruciating detail: the corresponding states have been completely

classified in the dual field theory and a complete basis for the states is known. The field

theory in question is the theory of a chiral free boson in two dimensions. Here, it arises

as a limit of the minisuperspace of half BPS states in N = 4 SYM, though it can also

appear in many other holographic duals in a similar limit fashion. The supergravity dual

configurations that correspond to smooth horizonless geometries with various topologies

are well known and have been classified completely by Lin, Lunin and Maldacena [63].

They can be classified by black and white colorings of the plane, with some restrictions

on the area of the colored regions that enforce the Dirac quantization condition. We

will call these the LLM solutions. If one quantizes the solutions around the ground state

droplet (a circular disk, which corresponds to the AdS5 × S5 spacetime), one gets chiral

edge excitations of the droplet [80]. We want to analyze this system in in a limit where
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these edge excitations are described by a free field, this is the infinite N limit. In this

work, our calculations will all be in this limit.

This free field theory is interpreted as an effective closed string theory that is UV

complete from the point of view of quantum mechanics: we do not need any information

from outside the free chiral boson system to compute quantum mechanical amplitudes

and probabilities. The main reason for requiring the theory to be free is that it provides us

with a canonical factorization of the full Hilbert space in terms of a mode decomposition

of the free field. This makes it possible to compute the entanglement and uncertainty

properties of the different modes, which will ultimately relate to the topology of the

associated LLM geometry.

To address various technical issues that are required to make the arguments more

forceful and precise, the theory of the chiral boson is constructed in a novel way by

considering only the combinatorics of the symmetric group. This is an abstraction of the

description of the state dynamics of in the N = 4 SYM dual that is necessary in order

to be able to take the free field limit. This construction is independent of the gravity

realization, but we can ask to what extent the gravity picture is forced on us and in

particular, if the combinatorial construction suggests to us a particular notion of locality.

We start with the idea that there are two natural basis for states. The first basis

is what we would call the multi-trace basis in a matrix model. It can be thought of

as being built from conjugacy classes and we will often refer to it as the closed string

basis. The second is the set of characters of a matrix in representations of the group.

As this can be built by irreducible representations, we can also represent these states

by Young diagrams. We will often refer to this basis as the D-brane basis. The first

one is approximately orthogonal from large N arguments [4]. The second one is exactly

orthogonal by direct computation [64] in N = 4 SYM, and also when used in the study
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of 2D Yang Mills theory [81]. These can be described entirely in terms of group theory

without any reference to matrices. This property allows a limit that can be interpreted

as the exact N = ∞ limit of a matrix model and we can show directly that it corresponds

to a free field theory. This is the limit where we will work in this paper.

4.1.3 The Answer: No, topology cannot be determined via a

single operator measurement in this model.

In this paper, we argue that the topology of spacetime in quantum gravity cannot

be measured by an operator. The main argument has been presented by us already in

[40]. But, here we provide all the computational details. In that work, it was explained

how the topology of simple classes of states ends up encoded in the uncertainty and

entanglement of various variables, echoing the observation of Van Raamsdonk. These

computations are not simple operator measurements. Instead, we showed how one can

extract the topological information of a large class of interesting states, including some

that are not fully classical, but have an interpretation as a state a few excited quanta on

top of a classical background.

The argument for the non-existence of a topology measuring operator follows from

considering a particular generating series of states in the D-brane basis and their precise

description in the string basis, an effective notion of locality emerges naturally, giving

rise to a local field theory on a circle that is the chiral boson quantum field theory. That

is, the circle on which the chiral boson theory lives on is deduced from the combinatorics

of the symmetric group. It turns out that the simplest such multi-D-brane generating

series can be shown to be exactly given by a coherent state of the chiral boson. In this

sense, the natural D-brane states are completely classical solutions of the free field theory
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and end up being associated with the same topology as the vacuum (that is, the same

topology as AdS5 × S5, which has trivial topology).

We will then show that there are other bubbling solution states that can be interpreted

geometrically as states with a topology that is macroscopically very different from each

of the coherent states. These states will correspond to Young tableaux states in the field

theory. Recall that coherent states are over-complete, so we can get any other state by

superposing them. In particular, we can superpose them to form one of these states with

a different classical topology. From this, it follows that there cannot be any quantum

observable (in the sense of projectors in a Hilbert space) that can distinguish the two

collections [40].

What we show instead is that the new bubbling states have an effective dynamics

for nearby states whose collective dynamics is given by multiple chiral bosons, so that

the states correspond to a new classical limit of the field theory. We will call these

collective modes the IR (infrared) fields, while the original chiral field will be called the

UV (ultraviolet) field theory. A similar statement about multiple chiral bosons is found

in the work [82] as a suggestion for the dynamics around special sets of configurations,

although one can already intuitively understand this from the original work [63]. Here we

explain how this works in detail in a way that lets us go beyond simple Young diagram

reference states. The work we do is aimed at being able to do computations. Our work

makes it possible to understand how an effective cutoff in these multiple chiral bosons is

generated dynamically by the state. We also develop the tools that allow us to explore

what happens when we move beyond the cutoff.

The effective dynamics of these collective fields is subject to a stringy exclusion prin-

ciple, and the UV field modes are in the vacuum well beyond this exclusion regime. The

notion of new topology and geometry only makes sense for these states (and coherent
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excitations of their collective dynamics) when we study their physical properties at low

and intermediate scales. They can be regarded as semiclassical states (superpositions of

quantum excitations around a vacuum) for high energy observables. This is similar to

the study of multi-throat configurations. We are also able to study in detail the amount

of entanglement of the UV theory modes, essentially mode per mode, and to use that to

characterize the topology of the new classical limits we need to compute other quantities

in the quantum theory that end up being non-linear in the wave-function of the configu-

ration. These are related to measuring how classical the state is (uncertainties), and how

entangled the state is from a canonical preferred factorization of the full Hilbert space of

states.

Perhaps more important than the statement that topology is not an operator, is the

fact that it can still be computed from the wavefunction of the system for states that

are sufficiently classical. One can check that effective field theory makes sense in the

vicinity of such states, although the cutoff required to make sense of effective theory

was out of reach to the techniques used in that paper. This paper provides the technical

details that are required to explore these ideas in a controlled setting without making any

approximations: we can analyze a complete description of the states that were studied

in [40] as well as other states that were not covered there. With this information we

can explore the physics of the cutoff directly. This way we will find that the computed

value of the topology varies as we vary the cutoff. In this sense, the topology that we

will assign to spacetime depends on choices that we make. These choices are physical:

a cutoff is usually related to the limits of an experimental setup. In the right double

scaling limit, one should see that all cutoffs can be pushed to infinity and that the usual

classical picture of gravity is correct.

The main goal of this paper is to desctibe a situation where the topology of spacetime
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can be well understood in what turns out to be a free field theory model of quantum

gravity. That is, we will show that the topology of spacetime can already be argued to

change in a regime where physics should be perturbative. An advantage to having a

setup in free field theory is that there will be a mode expansion, which will provide us

with various ways of factorizing the Hilbert space in a canonical way. This factorization

makes it possible to compute entanglement entropies that have a physical meaning.

4.1.4 The Outline

The paper is organized as follows. In section two, we review LLM geometries, which

are dual to half BPS states in N = 4 SYM. These are the geometries we will study

throughout the paper. In section three, we build up the technology used to perform most

of our calculations. This comes from analyzing the Hilbert space formed by considering

conjugacy classes and irreducible representations of the symmetric group. This Hilbert

space describes the free chiral boson in one dimension, which is also known to be equiva-

lent to the space of half BPS states when N → ∞ (where we will work). In section four,

we show how to build D-branes using both the conjugacy class basis and the irreducible

representation basis. To go between these basis, one needs the characters of the group.

So, in section five, we introduce the Murnaghan-Nakayama rule, which provides a useful

way to compute these characters. Further, we explain how our Hilbert space can also be

used to describe free fermions and show how the Murnaghan-Nakayama rule encodes the

fermi statistics.

In section six, we get to the real meat of the paper. Here, we study various states

whose duals form classical geometries. We show that one set of these come from coherent

states of the raising and lowering operators in our oscillator bases. However, we show

that these are not the only states that give rise to classical geometries and further, the
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new states have a different topology than the coherent states. We argue by contradiction

that this leads to the fact that there cannot be a topology measuring operator in this

set-up. In section seven, we show how uncertainty measurements can provide a method

to compute topology in not one, but several measurements. We then discuss states that

should not be thought of as having a classical dual. Further, we analyze how to make

progress studying more complicated geometries with folds. Finally, in section eight, we

discuss a second method for determining topology, this time from entanglement entropy

calculations.

4.2 Droplet geometries and the limits of semiclassi-

cal reasoning

Half BPS states inN = 4 SYM for U(N) gauge group (at weak coupling) are described

exactly by the Hilbert space of N free fermions in a harmonic oscillator potential [64,

65]. The dynamics is fully solvable and all the states can be counted. In the study of

the AdS/CFT correspondence, the dual geometries have also been completely classified

[63]: they are described in terms of incompressible droplets on a two plane. This is a

semiclassical description of the phase space dynamics of the free fermions, which can also

be associated with the study of the integer quantum hall effect on a plane [65] (indeed,

the description that bosonizes small edge excitations of the droplets has been known

previously [83]). One can work backwards from supergravity solutions to argue for the

free fermion description [84, 80], but the analysis becomes convoluted when the droplets

reach the minimal quantum size of ℏ. Indeed, there is more than one path to obtain

certain solutions, especially the ones that have different topologies and it is not clear

how the system takes care of over-counting in the supergravity regime (see for example
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[85]). This is taken care of by the “matrix model” realization of the dynamics. That is,

the dual holographic CFT explains how to take care of the overcounting.

What is clear is that the over-counting is in some sense handled by a stringy exclusion

principle [86]. This idea was used to argue that BPS states bubble into giant gravitons

[71]. In the case of giant gravitons, the stringy exclusion principle is stated by saying that

trace modes become dependent for finite size matrices. In a sense, this gives a hard bound

on the number of modes that are available to us and turns the effective dynamics of the

traces into an interacting theory. This is mainly the statement that there are constraints

related to over-counting, so that there is no unconstrained free field theory description

of the system. The map of the states between the AdS and the CFT took much longer

to sort out, especially since the discovery of the dual giant gravitons [87, 88]. This was

sorted out eventually in [89, 64], and the geometric interpretation came out later [65, 63].

There is a set of natural questions that can be asked.

1. What is the set of states that can be accurately described by (semiclassical) droplet

geometries?

2. How is the stringy exclusion principle implemented in detail for these different

droplet geometries?

3. Are there topology measuring operators?

4. Is there a limit of the system where the full dynamics of all the states is an uncon-

strained free field theory?

5. Are interactions necessary for understanding the topology changes?

The last question only makes sense if the answer to the fourth question is affirmative.

Indeed, all questions become more interesting if the answer to the fourth question is
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affirmative. This is because in that case one would have a UV complete free theory

in the gravity variables, rather than the N free fermion description. This would mean

that there is no intrinsic stringy exclusion principle in the dynamics, and such a stringy

exclusion principle would only appear effectively on particular solutions of the theory.

Moreover, it is not clear that one can obtain a topology change in such a free theory.

One is used to thinking about free theories as having a unique classical limit. A topology

change would indicate that there is more than one possible classical limit. The main

goal of the paper is to argue that the answer to question 4 is YES, that the answer to

questions 3, 5 is NO, and to produce detailed partial answers for questions 1 and 2. In

particular, we will construct the multi-droplet dynamics from first principles around a

preferred collection of states, in which the details of the stringy exclusion principle can

be understood.

4.2.1 Review of LLM geometries

We will start the analysis with a review of the salient features of the LLM solutions

in supergravity [63] that we need. The solutions that preserve half the supersymmetries

in N = 4 SYM preserve an SO(4)× SO(4)×R bosonic symmetry of SO(4, 2)× SO(6).

The extra R symmetry is split evenly between the SO(2, 4) and the SO(6). A geometry

with those symmetries has the form

ds2 = − y√
1
4
− z2

(dt+Vidx
i)2+

√
1
4
− z2

y
(dy2+dxidxi)+y

(√
1
2
− z

1
2
+ z

)
dΩ2

3+y

(√
1
2
+ z

1
2
− z

)
dΩ̃2

3

(4.1)

where i = 1, 2. The two copies of dΩ2
3 and dΩ̃2

3 are three-spheres that realize the

SO(4)×SO(4) symmetry. The metric is completely characterized by z(y, xi): the vector
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V satisfies a differential equation that ties it to z. The function z obeys a linear elliptic

sourceless PDE:

∂i∂iz + y∂y

(
∂yz

y

)
= 0 (4.2)

and requires a boundary condition at y = 0. This locus is called the LLM plane. Non-

singularity of the ten dimensional metric requires z = ±1
2
at this locus (this forces only

one of the two spheres to shrink to zero size, while the other stays finite). From here,

one can compute

z(x1, x2, y) =
y2

π

∫
z(w1, w2, 0) dw1 dw2

[(x1 − w1)2 + (x2 − w2)2 + y2]2
(4.3)

Notice that the integral is always convergent if z(w1, w2, 0) is bounded. This is guaranteed

by the non-singularity condition. We can represent the areas of ±1/2 as a two coloring

of the LLM plane. The area of each one of the two colored regions is quantized in

fundamental units [63]. The topology of the spacetime that arises from each two-coloring

is directly related to the topology of the diagram. The vacuum solution will be AdS5×S5.

We will see that this is associated with a solid disk in the LLM plane. We will refer to

this as a state with trivial topology. We will see that there are excited states with

trivial topology, which are represented by wiggles on the disk and states with non-trivial

topology, which can result from rings or additional disks, etc.

This is a complete description of all the LLM solutions. We are interested in taking a

limit where the areas of the regions with z = ±1/2 are both infinite. Moreover, we want

the edge between the two areas to be compact. There are two ways to do so. Each of

them has their own advantages.

The first way to do so is to consider a half filled plane, with two regions. Naively,

this is the plane wave geometry with an infinite edge. To obtain the compact edge we
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perform a periodic identification with a translation along the edge. This is done without

distorting the geometry above. The disadvantage is that the asymptotic behavior of the

geometry is not the one of AdS5 × S5 geometry any longer.

The second way to do so is to consider the strict N → ∞ limit of excitations of

AdS5 × S5 with finite energy. Since the edge of the droplet grows in size like
√
N in

fundamental units of the LLM area quanta, all the features of the solutions get compressed

in the radial direction. To see the topological features, we need to rescale the coordinates

to keep the coordinates of objects on the edge finite, even if the distance is effectively

shrinking. This does not affect the topology of the configuration, but it distorts the

geometry. We will study both of these. The reason is that both of them give rise to the

same Hilbert space of states, even if they correspond to very different sets of geometries

in ten dimensions.

4.2.2 Periodic LLM solutions

First, we will just study the LLM solutions that are periodic, with an infinite black

and white area after the periodic identification.

We will be particularly interested in solutions that are independent of one of the

LLM plane variables. These are stationary and represent states that do not evolve

under Hamiltonian evolution. In the semiclassical limit, these are eigenstates of the

Hamiltonian.

In the geometry represented by (4.3), we can choose that variable to be w2. Then we

have that

z(x1, x2, y) =
y2

2

∫
z(w1, 0, 0)dw1

[(x1 − w1)2 + y2]3/2
(4.4)

where z(w1, 0, 0) will alternate between values of −1/2, 1/2 in regions, and we will also
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assume that x2 is a periodic coordinate. The master integral we need is

∫ b

a

dw1

[(x1 − w1)2 + y2]3/2
=

1

y2

[
(b− x1)√

(b− x1)2 + y2
− (a− x1)√

(a− x1)2 + y2

]
(4.5)

This will give us the contribution for a region a to b where z = +1
2
(a z = −1

2
region will

simply have an overall sign difference). Notice the 1/y2 that appears here will cancel the

numerator in (4.4). Our vacuum will be the solution with

z0(w1, w2, 0) = θ(w1)−
1

2
(4.6)

for which

z(x1, x2, y) =
x1

2
√
x21 + y2

(4.7)

The excited solutions will be determined by requiring that the domain where

∆z(w1, w2, 0) = z0(w1, w2, 0)− z(w1, w2, 0) ̸= 0 (4.8)

has compact support (remember we have imposed that w2 is periodic), and that moreover

∫
[z0(w1, w2, 0)− z(w1, w2, 0)] dw1 dw2 = 0 (4.9)

We can understand the first condition by realizing that

z(x1, x2, y) = z0(x1, x2, y) +
∑
images

y2

π

∫
D

−∆z(w1, w2, 0) dw1 dw2

[(x1 − w1)2 + (x2 − w2)2 + y2]2
(4.10)

where D is the finite support where the two can differ. To implement the periodicity

of w2, we need to sum over images under discrete translation in x2 (as indicated in the
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sum). The infinite sum goes as 1/x31 asymptotically at large x1, rather than the naive

1/x41. This is due to the sum over images, which is clear for translation invariant solutions

in equation (4.4). Let us explain this fact.

The sum can be performed explicitly, by writing the sum over images in detail

z(x1, x2, y) = z0(x1, x2, y) +
∞∑

n=−∞

y2

π

∫
D

−∆z(w1, w2, 0) dw1 dw2

[(x1 − w1)2 + (x2 − w2 − 2πn)2 + y2]2
(4.11)

and where we have taken the period to be 2π (this is a convenient choice).

∞∑
n=−∞

y2

π

1

[(x1 − w1)2 + (x2 − w2 − 2πn)2 + y2]2

= i
y2 [cot(φ) + cot(−φ̄)]

4(2π)((w1 − x1)2 + y2)3/2
− y2

16π

[csc2(φ) + csc2(φ̄)]

((x1 − w1)2 + y2)
(4.12)

where

φ =
(w2 − x2) + i

√
(w1 − x1)2 + y2

2
(4.13)

We would like to see how this expression behaves asymptotically, at large x1. Let’s look

at the expression one term at a time. The terms of the form csc(a + ib) will decay

exponentially fast, beating out the polynomial in x1, which multiplies them. So, these

terms can be dropped. The cotangent pieces, however, can be re-expressed using

cot(a+ ib) =
1− i tan a tanh b

tan a+ i tanh b
(4.14)

and again, as b → ∞, we find that tanh(b) → 1 up to exponentially suppressed terms.

We then get that

z(x1, x2, y) → z0(x1, x2, y) +

∫
D

−∆z(w1, w2, 0)y
2 (2)

4(2π)((w1 − x1)2 + y2)3/2
dw1dw2 (4.15)
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Notice that this matches (4.4) when we make ∆z(w1, w2, 0) independent of the second

variable, and integrate over the range (2π).

This implies that z(x1, x2, y) and z0(x1, x2, y) have the same asymptotics at finite y

and x1 → ±∞ up to order 1/x31, while the second condition improves the match to a

higher order. Expanding the expression asymptotically in powers of x−1
1 we find that

∆z(x1, x2, y) = −y2
∫
D
∆z(w1, w2, 0) dw1 dw2

(
1

4πx31
+

3w1

4πx41
+O(x−5

1 )

)
(4.16)

This shows how the first term vanishes with the condition (4.9). This is a coordinate

choice: the coordinate x1 is only well defined up to translation invariance, as moving the

origin of x1 changes the domain where ∆z ̸= 0.

The next term is the first subleading term of the gravity solution and its coefficient

can be interpreted as the energy (see also the similar analysis in [90])

E ∝
∫
D
∆z(w1, w2, 0)w1 dw1 dw2 (4.17)

This is positive, because ∆z ≥ 0 for w1 > 0 and ∆z ≤ 0 for w1 < 0. We see that

compactness of D gives rise to a finite energy. The area quantization condition forbids

us from trying to place smaller droplets very far away without incurring a large energy

cost. In principle, it is possible to produce finite energy configurations if we allow a

droplet to have a thinning finger whose width decreases as it tries to reach infinity: these

will inevitably become smaller than Planck size features in the metric and we should be

worried about using those solutions in the semiclassical regime.

This set of solutions is interpreted as a set of droplets for an incompressible fluid on

the x1, x2 plane (we can choose z(x1, x2, 0) = 1/2 as the liquid, and the other region as an

absence of liquid). The first equation tells us that we have a finite energy solution, and the
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second one says that the number of liquid particles is conserved. The semiclassical Dirac

quantization condition requires that the areas of the individually connected (compact)

regions with z(w1, w2, 0) > 0 and z(w1, w2, 0) < 0 both be quantized. Each different

droplet topology corresponds to a different spacetime topology. Our set of semi-classical

coherent states will be droplet geometries that satisfy all of these properties. In the

particle/hole language, we have both an infinite number of particles and vacancies. This

tells us that there are no upper bounds on the energy of either a single particle being

moved into the vacancy region, or for a vacancy being moved into a particle region. These

are “giant gravitons” and “dual-giant gravitons.” Saying that there is no upper bound

on any of their energies is roughly stating that there is no stringy exclusion principle.

Once we have these semiclassical states, we can build a Hilbert space by taking

superpositions of these geometries. Notice that coherent states are usually over-complete,

so the set of solutions by itself does not tell us how this completion is supposed to work

in practice. This is what the dual gauge theory actually accomplishes. Once we resolve

this problem of what the correct theory is, we can reconstruct the geometric states and

ask questions about quantum gravity.

As discussed previously, we are also particularly interested in geometries that have

an extra translation symmetry. The translation symmetry comes from the lack of depen-

dence on the periodic variable x2. The black and white pattern is therefore represented

by a black and white pattern on a cylinder that is rotationally invariant. The area of a

(finite) droplet is then the size of the periodic variable 2π times the height of the region.

This is quantized. Therefore any such configuration is described by a set of integers:

the ordered heights of the regions. These alternate between the two colors. Since the

basic configuration has the bottom half of the cylinder filled and the top half empty, the

configurations must be asymptotically colored in the same way. This means that there
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are as many finite white regions as there are finite black regions. This can be represented

as in the figure 4.1.

n

n

n

n

1

2

1

2

~

~

Figure 4.1: Periodic LLM solutions are characterized by strips. The quantities
n1, ñ1, n2, ñ2 . . . are quantized and can be taken to be integers.

It is worth noticing that no additional information than the integers ni, ñi is required.

This is because condition (4.9) gives an equation for the ground state level relative to

the strip configuration. This level is obtained by requiring that the area in black above

the ‘zero level’ is equal to the area in white under the ’zero level’. There is only one

such level. The important point for us is that the (translationally invariant) geometry is

determined by the collection of integers n1, ñ1, . . . . These are all unconstrained integers.

In that sense, we should think of the geometry as being free from a ’stringy exclusion

principle’ that would limit the integers somehow.
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4.2.3 Zooming onto the edge

Now, consider the case where we take N → ∞, while keeping the energy fixed, of an

LLM geometry that asymptotes to AdS5×S5 (in the dual field theory we are considering a

state with finite scaling dimension, but N → ∞). We will also require that the geometry

has an extra symmetry, this time of rotations around a center of the geometry in polar

coordinates. The corresponding solutions are given by concentric rings in black and

white. Since the area of the droplet is N , when we scale N → ∞ the area becomes

infinite. It is also important to understand that the energy of the solution is given by

[63]

E =
1

2

∫
D
z(w, w̄, 0)w w̄ d2w − 1

2

∫
D0

z0(w, w̄, 0)w w̄ d
2w (4.18)

where the domain D is the region of the droplet covered in black. We would like to

measure the energy relative to that of the ground state, which is why we subtract off the

integral over the ground state black droplets (we label this D0). We can check that the

full integral is over the region where ∆z ̸= 0, like in the previous subsection. The region

D0 is a circular droplet centered around the origin with radius r ≃
√
N in fundamental

units. Because the radius of the droplet scales with N , the values of w, w̄ where z differs

from z0 also scale in the same way. We also want to keep the areas of small subdroplets

fixed and of order one. To understand these configurations, it becomes convenient to

change coordinates to a variation of angular polar coordinates y = r2/2−r20/2, θ that are

centered near the edge of the droplet, so that dy dθ ≃ r dr dθ = d2w is the natural area

element. This means that we do the change of coordinates in a way that preserves the

area measure. In this way, quantization of the circular area droplets is given immediately

by requiring that the black and white rings have quantized y sizes. This change of

coordinates was sketched in [40], but with most of the details on scaling of coordinates
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ommitted. This is depicted pictorially in the figure 4.2.

Figure 4.2: Pictorial description of the change of coordinates (w, w̄) → (y, θ). The
change of variables is area preserving.

Because the area of the new region is required to have the same area as the original

droplet, one can check readily that
∫
D z(w, w̄, 0) r

2
0 d

2w −
∫
D0
z0(w, w̄, 0) r

2
0 d

2w = 0.

This way we find that the energy is given also by a simple expression

E ∝
∫
D̃
∆z(y, θ) y dy dθ (4.19)

This is very similar to equation (4.17) if we identify the two sets variables w1 → y,

w2 → θ. The advantage is that now we can take N → ∞, keeping y fixed and the areas

fixed. Indeed, we find that the description of the droplets that survive the limit become

identical to the pictorial representation in figure 4.1, even though the ten dimensional

geometries are very different.

What needs to be understood is that the variable y being of order one implies that

2y ≃ r2− r20 = (r0+ δr)2− r20 ≃ 1. This means that δr ≃ 1/
√
N . In practice, this means

that in order to take the limit we have zoomed onto the edge of the droplet. In the y

coordinates taking N → ∞ is trivial, but in the regular polar coordinates r, the shift

in the radial coordinate scales as 1/
√
N relative to the edge. From the point of view of

the topology of the configurations, it should not matter how we scale the coordinates.
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Topology is after all a very coarse feature.

However, from the point of view of geometry (which includes distances), the features

that we are trying to zoom in to are typically smaller than the Planck scale. The main

reason for taking the limit is that at finite N , the negative y coordinate has a finite

depth of order N . When we take N → ∞ we remove this constraint and can work on the

cylinder. This means that the numbers ni, ñi are unconstrained and there is no stringy

exclusion principle. What is important for us is that in this limit the corresponding

modes of the supergravity theory become free [76]. This is because the energy is of order

one rather than N2.

It is important to understand that taking this limit at the level of geometries for

different topologies is suspect. In a free limit of a quantum field theory we would expect

that the classical solutions that survive would be related to coherent states of a field.

These would be solutions where the edge of the droplet is deformed, but there is no

topology change. It is natural to ask if both of these types of solutions can be thought of

as allowed classical limits simultaneously in the supergravity theory or not. This is not

resolved directly within the supergravity theory.

The claim that topology cannot be measured by an operator in [40] depends on

this assumption being true. If both types of ”classical limits” survive in the quantum

theory with different topology, then the fact that coherent states are complete means

that states with the new topology (different than the ground state) can be made by

superposing coherent state geometries. The coherent states are expected to all have

trivial topology. This means that one can induce a topology change (of different classical

limits) by superposition of solutions in one (trivial) topological class. The main goal of

the paper is to explain how this works in detail in the Hilbert space of states of the free

theory that arises from the N → ∞ limit of half BPS states of the N = 4 SYM theory.
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A particularly important claim of the LLM setup [63] is that these concentric ring

solutions are a complete basis of states for the Hilbert space of BPS states in N = 4

SYM. That is because these solutions can be put into 1-1 correspondence with Young

tableaux. The Young tableaux states are a complete basis of states of the dual N = 4

SYM theory [64]. Such classification of states has been exploited in many setups (see

for example [91, 92]). It is important to notice that most of these will have topological

features on scales that are much shorter than the AdS planck scale. The typical such

solution should not be treated as classical objects in these extreme situations.

4.3 A Hilbert space from group theory

4.3.1 Irreducible representations and conjugacy classes

As is well understood in the theory of orbifolds, twisted sector states for closed strings

are assigned conjugacy classes of the group [93, 94]. Similarly, D-brane charges are

associated with representations of the group [95]. Here we will use this fact to develop

technology that we will use for the remainder of the paper. We will start by first describing

how to go back and forth between irreducible representations and conjugacy classes in

general. These will ultimately form two bases in our Hilbert space. In section 4.3.2, we

specifically discuss the symmetric group, which will allow us to build a Fock space where

we can create multi-string states. The Hilbert space we build will be exactly that of the

free chiral boson in one dimension (exactly as desired in the infinite N limit). In this

limit, the Hilbert space will be factorizable. This will, for instance, later provide a clear

way to compute entanglement entropies.

In the study of finite groups, one can use character tables to go from conjugacy classes

to projectors on representations [96]. These two sets are in one to one correspondence
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with each other, and there is a linear map between the vector spaces that they generate

at the group algebra level. This linear map can be promoted into a change of basis in a

Hilbert space, so that one furnishes a model where D-branes can be understood as linear

combinations of strings. This is a model where a D-brane is thought of as a soliton for a

(closed) string theory: the D-brane state can be written directly in terms of string states.

In this toy model, we start from nothing but the group, so we might want to think of

this procedure as orbifolding the theory of a target space which is a point. Our goal is

to eventually apply this procedure to the symmetric group, where additional structures

are present and to connect this information with the study of matrix models.

The idea is rather simple. Consider a finite group Γ, with elements σ, and the usual

transform in the group algebra

PR =
1

|Γ|
∑
σ∈Γ

χR(σ) σ (4.20)

where R labels the irreducible representations of Γ. The object PR is a projector in

the group algebra that projects into the irreducible representation R and χR(σ) is the

character of σ in the irreducible representation R. Because the characters only depend on

the conjugacy class of σ, we can convert this sum into an equation relating the conjugacy

classes and the projectors themselves

PR =
1

|Γ|
∑

[σ]∈Conj[Γ]

χR([σ]) dσ [σ] (4.21)

where dσ is the degeneracy of the class (number of elements in the class), and this defines

[σ], which is simply the average over the elements of the class.

Now, we can promote this equation to an equation in a (finite) Hilbert space of states,
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where we have two basis: one furnished by strings (conjugacy classes), and another

one labeled by irreducible representations R, which we call the D-branes. Again, these

are labels that we add to the two basis to reiterate the classification properties of the

corresponding objects in orbifold theories. We thus write

|[R]⟩ = 1

|Γ|
∑

[σ]∈Conj[Γ]

χR([σ]) dσ |[σ]⟩ (4.22)

and treat both the [R] and the [σ] as non-zero elements in a Hilbert space. One can

expect that strings associated with different conjugacy classes are orthogonal to each

other (they are different twisted sectors), and that different D-branes are also orthogonal

to each other (they have different D-brane charges). Therefore, we require that

⟨[σ]|[σ′]⟩ = δ[σ],[σ′] f[σ] (4.23)

⟨[R]|[R′]⟩ = δ[R],[R′] g[R] (4.24)

This is a non-trivial set of orthogonality conditions: it is not guaranteed that they can

be made compatible. The inverse transformation, relating the conjugacy classes and the

representations is

|[σ]⟩ =
∑
[R]

χR([σ
−1]) |[R]⟩ (4.25)

where we use the characters of the conjugacy class of the inverse elements. Remember

that χR([σ
−1]) = χR([σ])

∗. Using the conjugacy class of the identity (which has the

identity as its only element), we find

⟨[id ]|[R]⟩ = χR([id ])

|Γ|
f[id ] (4.26)
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Now, expressing the vector |[id ]⟩ in terms of the inverse function (4.25), we find that

∑
[R′]

χR′([id ]) ⟨[R′]⟩ [R] = χR[id ]g[R] (4.27)

Comparing the two expressions, we find that

g[R] =
1

|Γ|
f[id ] (4.28)

so the norm of the kets associated with the representations is independent of the repre-

sentation.

Similarly, we can now apply this information to the trivial representation △, which

is such that χ△([σ]) = 1 for all [σ]. We find that

⟨△⟩ [σ] =
∑
[R]

χR([σ]) ⟨△⟩ [R] = χ△([σ]) ⟨△⟩△ = g△ (4.29)

Writing |△⟩ in terms of the class vectors, we find

⟨△⟩ [σ] = dσ
|Γ|
χ△[σ]

∗f[σ] =
dσ
|Γ|
f[σ] (4.30)

Putting these two together we get that

f[σ] = g△
|Γ|
dσ

(4.31)

So, we find that the representations are all normalized to the same value (which we can

choose to be equal to one) and the class function kets are proportional to the inverse of

the degeneracy of the class.
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Since we only used the kets |△⟩ and |id⟩ to normalize everything, we need to check

consistency. This is straightforward. The orthogonality of representation kets becomes

equivalent to the orthogonality of the rows of the character table. The orthogonality of

the conjugacy classes ends up being related to the orthogonality of the columns of the

character table (see [96], pp 17, exercise 2.21).

4.3.2 Fock space from the symmetric group

At this point, this can be thought of as a curiosity. The reason is that as written,

this exercise should be thought of as a first quantized setup. Single string states can

be reshuffled via a “Fourier transform” into single D-brane states. We have made no

mention of multi-string states.

This all changes when we consider the symmetric group Sn. As argued in [97, 98],

the conjugacy classes of the symmetric group should be associated with multi-strings,

rather than single strings. Similarly, one can imagine that the representation theory left

hand side should be generically associated with multiple D-branes, rather than a single

D-brane. In essence, when we consider the symmetric group, the theory should be for all

practical purposes second-quantized. This becomes precise when we consider the more

general object generated by the symmetric group Sn for all values of n

H = ⊕n≥0HSn (4.32)

with the Hilbert space constructed as above. We can now also add (multi-) strings to

a configuration. Consider a conjugacy class in Sn and a group element g1 ∈ Sn that

represents it. Similarly, consider another conjugacy class and a group element g2 ∈ Sm

that represents it. There is a natural embedding of the product of symmetric groups into
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a larger symmetric group µ : Sn × Sm → Sn+m. Here the Sn+m acts as permutations of

a set of n +m elements and the Sn acts only on the first n elements, while the Sm acts

only on the last m elements. This gives a natural element of Sn+m for the two group

elements, namely µ(g1 × g2) ≃ µ(g1 × 1) ◦ µ(1× g2). Now, it is important to notice that

this defines a unique conjugacy class in Sn+m which is irrespective of the representatives

g1, g2 that were chosen. This is done as follows.

A group element of Sn can be written in a cycle presentation of permutations of the

set {1, . . . n}. As is well known, the conjugacy classes are in one to one correspondence

with the lengths of the cycle decomposition. A conjugacy class thus gives a partition of

n =
∑

swss where we have ws cycles of length s. We do this for g1, so that [g1] ≃
∏

s[s]
ws ,

where we pick the cycles of length [s] as generators, and similarly for [g2] ≃
∏

s[s]
w′

s . With

this we find that

[g1]⊗ [g2] ≃
∏
s

[s]ws+w′
s ≃ [g1 ⊗ g2] ≃ [g2]⊗ [g1] (4.33)

which shows that the cycle decomposition is irrespective of the elements of the class that

we pick. We also find that the product of conjugacy classes is commutative, and the set

is generated by the primitive cycles of length [s]. We will call [s] := ts so that the set

of states can be thought of as (a particular completion of) the set of polynomials in an

infinite set of variables {ts}. The decomposition of the Hilbert space into the different

HSn can be thought of as being graded by n, and the grading is additive on the product

we defined. The product operation we defined is just the product of polynomials when

extended linearly. The degree of [s] is s. We will call this function for a monomial the

energy of the state. A conjugacy class associated to the monomial tw1
1 . . . twk

k will be said

to have w1 particles of energy 1, w2 particles of energy 2, etc.
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The most important question for us is to address is how we are going to relate the

inner products of the different HSn to each other. There are two routes we can take. The

first route is to declare that the irreducible representations of all the symmetric groups

have norm equal to one. This can be twisted by the energy, so an irreducible of energy

n has norm |T |n ≃ exp(E log(|T |)). A second route is to assume that the norm of a two

particle state, where the two particles have different energy, is the product of the norms

of the corresponding single particle states. This is a factorization condition. This will be

shown to be equivalent to the first route after a computation.

To do a computation, we need to find both the dimension of the symmetric group

|Sn| = n! and also the number of elements in a conjugacy class dσ (remember we have

labeled these as
∏

s[s]
ws ≃ tw1

1 . . . twk
k with

∑
k wkk = n). The number of elements of a

conjugacy class of the symmetric group is known to be given by

dσ =
n!∏

k wk!k
wk

=
|Γ|∏

k wk!k
wk

(4.34)

from equation (4.31), we find that

||tw1
1 . . . twk

k ||2 = n ⟨[σ]⟩ [σ]n = n ⟨△⟩△n

|Γ|
dσ

= n ⟨△⟩△n

∏
k

wk!k
wk (4.35)

So, if we choose n ⟨△⟩△n = |T |n, the right hand side becomes equivalent to a norm on a

bosonic Fock space where to each tk we assign a raising operator of norm squared k|T |k.

That is, we associate a raising and a lowering operator pair (a†k, ak), with commutation

relations

[ak, a
†
k] = k|T |k (4.36)

with all others vanishing. Obviously, the simplest choice is to take |T | = 1. The raising
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operator acts by multiplication by tk, namely a†k → tk, and the adjoint acts by k∂tk . The

inner product can be computed using

⟨g⟩ f =

∫ ∏
k

dtkdt̄k exp

(
−
∑
k

tk t̄k
k

)
ḡ(t̄)f(t) (4.37)

where the normalization factor of the measure is such that

⟨1⟩ 1 = 1 (4.38)

If we take the factorization condition instead, we find that

|tatb| = ab a ⟨△⟩△a b ⟨△⟩△b = ab a+b ⟨△⟩△a+b (4.39)

for all a, b with a+ b constant. This would suggest that

a ⟨△⟩△a b ⟨△⟩△b = a+b ⟨△⟩△a+b (4.40)

but this only seems to work if a ̸= b and a, b ̸= 0.

With this, one can show that it works for all a, b. Consider 2 ⟨△⟩△2. By the

naive factorization condition, it is independent of 1 ⟨△⟩△1. From here, we can form

3 ⟨△⟩△3 = 2 ⟨△⟩△2 1 ⟨△⟩△1 uniquely, and similarly 4 ⟨△⟩△4 = 3 ⟨△⟩△3 1 ⟨△⟩△1 =

2 ⟨△⟩△2 1 ⟨△⟩△2
1. When we get to 5 ⟨△⟩△5, there is a consistency condition

5 ⟨△⟩△5 = 3 ⟨△⟩△3 2 ⟨△⟩△2 = 4 ⟨△⟩△4 1 ⟨△⟩△1 (4.41)

= 2 ⟨△⟩△2
2 1 ⟨△⟩△1 = 2 ⟨△⟩△2 1 ⟨△⟩△3

1 (4.42)
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Clearing out the common terms, we find that 2 ⟨△⟩△2 = 1 ⟨△⟩△2
1, and one can then

easily show that we get n ⟨△⟩△n = 1 ⟨△⟩△n
1 for all other n.

4.3.3 Physical Interpretations

The Hilbert space we have constructed is the Hilbert space of a chiral boson in one

dimension (again, this is theory we get when we consider the infinite N limit, and so is

what we wanted). We have a single oscillator of energy k and left moving momentum

k for each k. This is natural considering that in the computation of elliptic genera one

builds an extra chiral circle [97]. We have the momentum modes of the chiral boson field

theory, but we still need to argue that there is preferred notion of a local field that also

arises from this construction. This will be taken up in the next section.

One should also remember that there is a straightforward relation between a chiral

boson field theory and edge states in a quantum hall droplet [83]. The relation uses the

theory of symmetric polynomials in many variables to go from traces to Schur polynomi-

als. The Schur functions are associated with representations of the symmetric group Sk

(described by Young tableaux) , and one can directly write these in terms of free fermions.

The same combinatorics appears in the study of half BPS states in N = 4 SYM [64] and

the representation of the physics in terms of droplets and fermions was explored in de-

tail in [65]. Surprisingly, the description of half BPS geometries in the gravity dual of

N = 4 SYM is also in terms of droplets: a droplet configuration with specified shape

corresponds to a particular solution of the supergravity equations of motion [63], as we

described in the pervious section. It has also been argued recently that similar physics

might control a wide class of AdS/CFT dual configurations when one studies elements

of the chiral ring that are extremal [99]. It was this particular observation that led us to

try to understand the problem using group theory of the symmetric group without any
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particular matrix model in mind. The map that realizes this correspondence assigns

Tr(Z̃ℓ) ≃ tℓ (4.43)

where Z̃ can be either an elementary matrix valued field (like in N = 4 SYM), or a com-

posite matrix field (this would be common in toric field theories or some simple orbifolds).

The main reason that this works is that to any conjugacy class of the symmetric group

one naturally associates a multi-trace object constructed from the permutation itself.

This was critical in the computations of [64] that show that Schur functions associated

with different Young tableaux are orthogonal. Here we have reversed the arguments:

assuming orthogonality of Young tableaux and conjugacy class states leads to a unique

consistency condition that gives precisely a free chiral boson. Thus, in this setup, we

do not have any non-trivial three point functions: we are strictly in the N = ∞ limit.

The free fermions that realize the correspondence for the free field that we have here are

associated with a system of free fermions for a Cuntz oscillator. The Cuntz oscillator

algebra is defined by

β† |n⟩ = |n+ 1⟩ (4.44)

usually with β |0⟩ = 0. For us, we have an infinite sea of fermions, so all we require is that

the set of |n⟩ is labeled by integers (both positive and negative). We set by convention

the Fermi-sea energy at n = 0. The Cuntz oscillators appear repeatedly also in the study

of open spin chain dual states to open strings in the AdS/CFT correspondence [100] and

their coherent states are especially important to describe the ground state energies of the

corresponding open spin chains [101, 102]. What we have described here corresponds to

the strict N = ∞ limit of the corresponding matrix models.

In a certain sense, the picture we have been advocating above is building a bridge
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between matrix string theory and an abstract version of a (holomorphic) matrix model,

in a vein similar to [103], but with very few states to consider. The picture we have is

greatly inspired by the observation that requiring orthogonality of the Young tableaux

states and a large N counting for correlators, at leading order in N produced a result

where the norm of Young tableaux states is independent of the shape of the tableaux

and only depends on the number of boxes [99]. Here we have even removed the large N

counting hypothesis and replaced it by the weaker orthogonality of multi-string states.

The fact that the harmonic oscillators that are constructed in this fashion have the

correct statistics to correctly describe quantum fields in one dimension is derived from

the compatibility of the two basis of states and the Fourier transform that relates them

to each other.

4.4 D-brane creation operators and constructing lo-

cal fields

4.4.1 The D-brane

It is instructive now to consider the simplest (trivial) representation of the symmetric

group, which we have labeled [△]n in the previous section. This is associated with a

Young tableaux with n boxes and only one row. Using our polynomial formulation, we

have that

|△⟩n =
∑

−→ω ∈ p(n)

∏
k

1

kwkwk!
(tk)

wk (4.45)

where p(n) := {−→ω |
∑

k kωk = n} are the partitions of n and we have used the fact that

all characters are one for the trivial representation. We also have included the explicit
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value of the degeneracy of corresponding conjugacy classes in the sum, extracted from

equation (4.34). Notice that this is an equation relating states. In the raising/lowering

operator notation, this state would have been created by

|△⟩n =
∑

−→ω ∈ p(n)

∏
k

1

kwkwk!
(a†k)

wk |0⟩ (4.46)

which would be equivalent. From here we find that

Λn |△⟩n =
∑

−→ω ∈ p(n)

∏
k

(
(Λk)

k
tk

)wk 1

wk!
(4.47)

We notice that apart from the constraint
∑

k kwk = n, the right hand side represents a

series expression for an exponential function. It is convenient to sum over n and consider

a generating series for these representations, so that we can write

|△; Λ⟩ =
∞∑
n=0

Λn |△⟩n =
∞∑
n=0

∑
−→ω ∈ p(n)

∏
k

(
(Λk)

k
tk

)wk 1

wk!
= exp

(∑
k

Λk
tk
k

)
(4.48)

The trivial representations of each Sn correspond to the totally symmetric representations

of the group U(N) with n boxes (as shown below), and have an interpretation as a single

dual giant graviton [64]. That is, it has an interpretation as a single D-brane in an

AdS5 × S5 geometry.

|∆⟩n = . . . n (4.49)

Here, we find that when we move away from thinking of Λ as formal parameter,

and rather think of it as an actual c-number, the right hand side can be interpreted as

a coherent state of the harmonic oscillators represented by tk. We will now push the
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idea that a special generating series of interesting objects should be more than a formal

expression and actually have physical meaning. The reason this is a coherent state is

that it is an exponential of a linear combination of raising operators. We still need to

find the range of Λ that is appropriate for this expression.

We can consider the norm of the state

⟨△; Λ⟩△; Λ =
∑
n

(Λ̄Λ)n =
1

1− Λ̄Λ
(4.50)

and we see that it is convergent for |Λ| < 1. This can be similarly obtained from the

exponential and the gaussian measure (4.37). The proof is instructive. Consider

⟨△; Λ⟩△; Λ =

∫ ∏
k

dtkd̄tk exp

(
−
∑
k

tk t̄k
k

)
exp

(∑
k

Λ̄k
t̄k
k

)
exp

(∑
k

Λk
tk
k

)
(4.51)

=

∫ ∏
k

dtkd̄tk exp

(
−
∑
k

(tk − Λ̄k)(t̄k − Λk)

k

)
exp

(∑
k

ΛkΛ̄k

k

)
(4.52)

where to arrive at the second line we completed the square. Shifting the integration

variables, we find that

⟨△; Λ⟩△; Λ = exp

(∑
k

ΛkΛ̄k

k

)
= exp(− log(1− ΛΛ̄)) =

1

1− ΛΛ̄
(4.53)

where we have recognized the Taylor series for log(1−x) in the exponential. If we didn’t

already know that the |△⟩n were orthonormal, the coefficients in the Taylor series that

appear in (4.50) after expanding in (4.53) would have shown that.

The fact that this generating series produces a coherent state for the oscillators is

important in more than one way. First, it shows that the D-brane can be thought of as a

“soliton” of the free field theory: a non-dissipating solution of the classical equations of
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motion. This is how, in the weak string limit, a D-brane can be thought of as a localized

classical source for string fields, where away from the D-brane location one has a solution

of the classical equations of motion. This is usually encoded in how different boundary

states overlap by considering how closed strings propagate from one boundary state to

the other [104]. Another example where D-branes decay into string fields can be found

in [105].

Since this D-brane state is a coherent state, it is an eigenstate of the lowering operators

represented by (tk)
† ≃ k∂tk . We find that for these states

⟨ak⟩∆;Λ = ⟨(tk)†⟩∆;Λ = Λk, ⟨a†k⟩∆;Λ = ⟨tk⟩∆;Λ = Λ̄k (4.54)

This behavior is expected from the collective coordinate treatment in setups at finite N

[106, 99]. In these other approaches, the coherent states in question are described in

terms of Slater determinants of coherent states for generalized oscillator algebras.

The states we have found are also of minimal uncertainty for all the oscillators. This

will become important when we try to describe other classical limits later in the paper.

The next thing that is interesting to compute is the average energy per oscillator in

each one of these states. This is captured by

⟨Ek⟩∆;Λ = ⟨ktk∂tk⟩∆;Λ = (ΛΛ̄)k (4.55)

so that the expectation value of the energy is

⟨E⟩∆;Λ =
∑
k>0

(ΛΛ̄)k =
ΛΛ̄

1− ΛΛ̄
(4.56)

the energy carried by the state is large in the limit where |Λ| → 1, but in this limit the
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state becomes non-normalizable. It makes sense to consider states near this limit, where

Λ ≃ (1−ϵ)1/2 exp(iγ) with ϵ infinitesimally small and acting as a cutoff. In that case, the

energy per oscillator degree of freedom goes to one, but this means that each oscillator

has on average low occupation number

⟨N̂k⟩∆;Λ→exp(iγ) = ⟨Ek⟩∆;Λ→exp(iγ)/k = 1/k. (4.57)

The excitations are then still a coherent state for all oscillators, and if we cut off the

degrees of freedom in the UV, we find a finite energy lump determined by the cutoff.

The failure of the state to be normalizable is due to the infinitude of modes that can be

excited, not to any one oscillator mode going bad on its own. Also, the amplitudes for

the different modes are phase correlated. This is important. The reason is that we want

to build a field out of the oscillators ak, a
†
k. The geometry where the fields live should be

on a circle (we have argued that we have the degrees of freedom of a chiral boson in the

previous section).

4.4.2 Field of the brane

The finiteness properties and phase correlations we have found suggest that we can

think of the field generated by the D-brane state as being a classical profile everywhere

except at the position of the brane itself. We will use this intuition to argue that there

is a preferred linear combination of the oscillators that gives nice properties for the field

profile in the limit we want. We will posit that the field operator take the following

hermitian combination as an ansatz

ϕ̂(θ) =
∑
k>0

fk[ak exp(−ikθ) + a†k exp(ikθ)] (4.58)
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where fk is a set of positive numbers. At this stage, we are simply making an educated

guess as to the form of the operator. Later, we will find that it is consistent with all

expectations and declare it to have been the correct choice. Although we could have

added phases to fk, the phase correlation of the modes suggest that we set all the phases

equal to each other. Scale invariance of the chiral boson suggests that we take fk ≃ 1/|k|α

for some exponent α which is yet to be determined. Replacing the expectation values

from (4.54) and taking the limit, we find that the profile associated with the D-brane is

given by

ϕ(θ) = ⟨ϕ̂(θ)⟩∆;Λ=exp(iγ) =
∑
k>0

fk[exp(ik(γ − θ)) + exp(−ik(γ − θ))] (4.59)

The phases give (maximal) constructive interference at θ = γ, which we will call the

position of the D-brane. This is why it is important to choose all phases as we did: it

produces the maximum possible constructive interference of the profile at a point. This

is tantamount to saying that we have localized the peak as much as possible. Everywhere

else, the phase sums can cancel enough that the result is finite. Taking fk = 1/|k|α, the

result can be written in terms of Polylog functions. We will now argue that if we instead

choose fk = 1, the answer becomes extremely simple, and we should therefore choose

this value. This choice will have preferable geometric consequences. We find

ϕ(θ) = ⟨ϕ̂(θ)⟩∆;Λ=exp(iγ) =
∑
k ̸=0

exp(ik(γ − θ)) = 2πδ(γ − θ)− 1 (4.60)

That is, the field away from the position of the brane becomes constant and has an

exactly flat shape in the tail of the D-brane. We will promote this property to the reason

why we make this choice for the field. This is a geometric condition. Because the field
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does not have a mode at k = 0, it is required that

∫ 2π

0

dθ ϕ(θ) = 0 (4.61)

which is verified readily. This is actually true for any choice of the fk, subject to conver-

gence at |Λ| < 1. For the particular choice we made, we have a quantization condition on

the area under the δ-function distribution, which is 2π. The energy can also be written

simply in terms of ϕ(θ). More precisely

E[ϕ] =

⟨∑
k

a†kak

⟩
=

⟨
1

2π

∫
dθ

(
1

2
: ϕ̂(θ)2 :

)⟩
=

1

2π

∫
dθ

(
1

2
ϕ(θ)2

)
(4.62)

where we use the normalization of the modes in (4.36) with |T | = 1. This shows that

the choice for the field coefficients in equation (4.58) is also determined by being able to

write a local expression for the energy: a single integral of the field and a finite number

of its derivatives. The rightmost term in (4.62) is the classical contribution to the energy

for a smooth ϕ(θ).

There is a second natural choice for a field. This is the field that is obtained by

considering |Λ| = 1 and looking for the combination of modes that appears in the expo-

nent of (4.48). The idea is that when we declared the generating function (4.48) to be

singled out by our representation basis and the convergence properties, the limit defined

a preferred combination of modes.

It is convenient to call this field χ and define it to be

χ̂(θ) =
∑
k>0

1

ik
exp(ikθ) a†k + c.c (4.63)
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The factor of i in the denominator is a convention we choose, which gives

|△; Λ → exp(iγ)⟩ = : exp(iχ(γ)) : |0⟩ (4.64)

One easily finds that the field χ and the field ϕ are related by

∂θχ(θ) = ϕ(θ) (4.65)

so that locality in the sense of χ (in terms of the smooth variable θ) ends up being

equivalent to locality in the sense of ϕ. Indeed, the field χ is what we would usually call

the free boson and the field ϕ is the associated current. The local energy is the standard

stress tensor for the chiral boson. This matches the derivations in [83] very well.

The field : exp(iχ(θ)) : is usually thought of as a fermionic field written in the

bosonized language (see [31], pp 11, eq. 10.3.10).

4.4.3 The anti-brane and its field

The other natural representation of the symmetric group is the alternating represen-

tation. This representation is also one dimensional, and the character counts how many

transpositions (modulo 2) are in a group element. For a cycle [s], the sign assigned to it

is

sign[s] = (−1)s−1 (4.66)
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This is multiplicative, meaning that sign[a ◦ b] = sign[a]sign[b] . When we consider the

equivalent of equation (4.67), we get that the sum over characters is

|▽⟩n =
1

|Γ|
∑

[σ]∈Sn

χ▽([σ])dσ|[σ]⟩ =

∣∣∣∣∣∣
∑

−→ω ∈ p(n)

∏
k

1

kwkwk!
((−1)k−1tk)

wk

⟩
(4.67)

where we used the multiplicative rule on the right hand side. We have labeled the states

with ▽ instead of △. In the language of Young diagrams, this representation corresponds

to a single column with n boxes.

|▽⟩n =

...

(4.68)

This also corresponds to a totally antisymmetric representation of U(N) with n indices.

These states correspond to giant graviton states [89] in the AdS/CFT correspondence.

We now want to do a similar generating function to the one in (4.48) for these states.

Consider the following

|▽,−Ω⟩ =
∑
n

Ωn |▽⟩n (4.69)

=
∑
n

∑
−→ω ∈ p(n)

Ωn
∏
k

1

kwkwk!
((−1)k−1tk)

wk (4.70)

=
∑
n

∑
−→ω ∈ p(n)

∏
k

1

wk!

(
Ωk

k
(−1)k−1tk

)wk

(4.71)

=
∑
n

∑
−→ω ∈ p(n)

∏
k

1

wk!

(
−(−Ω)k

k
tk

)wk

(4.72)

= exp

(
−
∑
k

(−Ω)k

k
tk

)
(4.73)
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where we have made a sign convention choice in how we wrote Ω in the generating series,

versus how we wrote it in the previous state. We find that with this convention

|▽,Λ⟩ = exp

(
−
∑
k

Λk
tk
k

)
(4.74)

so that in the same limit as before we have that

|▽; Λ → exp(iγ)⟩ =: exp(−iχ(γ)) : |0⟩ (4.75)

which is the other fermion field. The natural notion of locality derived from the states

|△; Λ⟩ and |▽; Λ⟩ are the same. It is now trivial to show that for these new solutions

⟨ϕ̂(θ)⟩▽;Λ=exp(iγ) = −
∑
k ̸=0

exp(ik(γ − θ)) = −2πδ(γ − θ) + 1 (4.76)

There is also a symmetry that sends △ ↔ ▽. This is ‘particle-hole’ duality and is

implemented by χ(θ) → −χ(θ), and ϕ(θ) → −ϕ(θ). In some finite matrix models built

from microscopic fermionic degrees of freedom, this can be implemented exactly [107].

We will call the two families of operators

B±,Λ = exp

(
±
∑
k

Λk
tk
k

)
(4.77)

acting on any state the D-brane creation operators. That is, up to including : exp(±iχ(γ)) :,

which is non-normalizable.
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4.4.4 Multiple brane states

Consider acting with a D-brane creation operator on a state that already has one

D-brane. At the level of the oscillator representation of states, this is straightforward.

We can write

B+,Λ1B+,Λ2 |0⟩ = exp

(∑
k

(
Λk1 + Λk2

) tk
k

)
(4.78)

We easily find that this is also a classical state, which results from the superposition of

the two profiles of the individual D-branes. The classical field is characterized by

⟨(t†k)⟩∆,Λ1;∆,Λ2 = Λk1 + Λk2 ⟨tk⟩∆,Λ1;∆,Λ2 = Λ̄k1 + Λ̄k2 (4.79)

and

⟨ϕ̂(θ)⟩∆,Λ1;∆,Λ2 = 2ℜe
(

Λ1e
−iθ

1− Λ1e−iθ
+

Λ2e
−iθ

1− Λ2e−iθ

)
(4.80)

Similarly, we can write

B+,Λ1B−,Λ2 |0⟩ = exp

(∑
k

(
Λk1 − Λk2

) tk
k

)
(4.81)

⟨ϕ̂(θ)⟩∆,Λ1;▽,Λ2 = 2ℜe
(

Λ1e
−iθ

1− Λ1e−iθ
− Λ2e

−iθ

1− Λ2e−iθ

)
(4.82)

Notice that if we take Λ1 = Λ2 in the second profile, the fields cancel. This tells us that

the two types of D-brane states annihilate one another into the vacuum 1.

We will now use the D-brane basis (the basis using irreducible representations of Sn),

to better understand how these generating functions behave. We will use Young tableaux

to compute the multi-brane states. The correct multiplication table is governed by the

1The more precise version of this cancellation is that the OPE expansion of the two fermion fields
contains the identity
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Littlewood-Richardson coefficients [64] (see also the discussion in [99]). Remember that

|∆⟩n is associated with a tableaux with n boxes in a row. These are the objects that

appear in |△,Λ⟩. We want to compute

B+,Λ1B+,Λ2 |0⟩ =
∑
n,m

Λn1Λ
m
2

. . . n × . . . m (4.83)

The multiplication of two of these objects is similar to addition of angular momentum in

U(2), so that

. . . n × . . . m (4.84)

= . . .︸ ︷︷ ︸
n+m

+ . . .

︸ ︷︷ ︸
n+m−1

+ · · ·+ . . . . . . . . . n

. . . m
(4.85)

where we assume n ≥ m in the second line, but we can also have the opposite ordering

in which case we exchange n,m. We see that all states have only two rows in their

Young diagrams. We will group together all diagrams with two rows of lengths r and

s with r ≥ s. To find the coefficient of these, we need to consider the decomposition

r + s = n + m, such that |n − m| ≤ s and to sum over these possibilities. When we

perform this sum we obtain

Λr1Λ
s
2 + Λr−1

1 Λs+1
2 + · · ·+ Λs1Λ

r
2 =

Λr+1
1 Λs2 − Λs1Λ

r+1
2

Λ1 − Λ2

(4.86)

That is, we can write identically that

(Λ1 − Λ2)B+,Λ1B+,Λ2 |0⟩ =
∑
r≥s

∣∣∣∣∣∣∣
Λr+1

1 Λs1

Λr+1
2 Λs2

∣∣∣∣∣∣∣ . . . . . . . . . r

. . . s
(4.87)
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where the coefficients are very easily written in terms of determinants. This suggests that

the full set of states with two classical D-branes acting on the vacuum can be interpreted

as a set of fermionic wave functions (Slater determinants), as long as we multiply them

on the left by a Vandermonde determinant made from the Λ parameters. The point is

that the complexity of the coefficients of the tableaux in equation (4.87) is very small.

Notice that even though r ≥ s, this implies that r + 1 > s, so the Slater determinants

never vanish, unless we have that Λ1 = Λ2 (this is trivial in the left hand side, as the

full ket is multiplied by Λ1 − Λ2). Notice that if both D-brane states are normalizable,

so is their product. The same arguments work for the product of various D-brane states,

but the combinatorics of multiplying the Young tableaux are more complicated. The

simplest way to understand it is through the relation between free fermions and formal

matrix models for a generalized oscillator (this is described in [99]).

We can also compute the norm of the state to obtain

||(Λ1 − Λ2)B+,Λ1B+,Λ2 |0⟩ ||2 =
∑

r≥s

∥∥∥∥∥∥∥
Λr+1

1 Λs1

Λr+1
2 Λs2

∥∥∥∥∥∥∥
2

=
∑

r≥s ||Λ
r+1
1 Λs2 − Λs1Λ

r+1
2 ||2

=
∑

r≥s ||Λ
r+1
1 Λs2||2 +

∑
s≥r ||Λr1Λ

s+1
2 ||2

−
∑

r≥s Λ
r+1
1 Λs2Λ̄

s
1Λ̄

r+1
2 −

∑
s≥r Λ

r
1Λ

s+1
2 Λ̄s+1

1 Λ̄r2

=
∑

r,s ||Λr1Λs2||2 − Λr1Λ
s
2Λ̄

s
1Λ̄

r
2

= 1
1−||Λ1||2

1
1−||Λ2||2 −

1
1−Λ1Λ̄2

1
1−Λ2Λ̄1

where we have relabeled r, s in some of the sums in the second line, and next we add and

subtract the r + 1 = s and s + 1 = r contribution to obtain unrestricted sums that can
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be evaluated explicitly on the last line. This expression is equal to

||(Λ1 − Λ2)B+,Λ1B+,Λ2 |0⟩ ||2 = || |∆,Λ1⟩ ||2|| |∆,Λ2⟩ ||2 − ⟨∆,Λ2⟩∆,Λ1 ⟨∆,Λ1⟩∆,Λ2

(4.88)

after we recognize the result (4.50) and we think of Λ, Λ̄ as independent variables. This

results in the typical norm for two-particle states in fermion systems: the product of the

norms minus the exchange contribution.

The multiplication rules for two B− operators will give a similar result, but with

Young tableaux with two columns, rather than two rows. This follows from the ϕ→ −ϕ

symmetry, which flips tableaux along the main diagonal. The other example with two

branes is what happens when we multiply B+,Λ1 and B−,Λ2 . This is the most interesting

example because one can get a cancellation between the two. It is instructive to see how

this comes about from multiplying the corresponding Young tableaux, as follows

. . . n × ...

m

= . . . n
...

m

+ . . . n
...

m

(4.89)

and to each of these we associated the coefficient Λn+,1(−Λ−,2)
m. Now, we only get two

possible tableaux on the right hand side. If we fix the Young diagram to have r boxes

on the first row and s boxes on the first column, we get by summing over possibilities

Λr1(−Λ2)
s−1 + Λr−1

1 (−Λ2)
s = Λr−1

1 (−Λ2)
s−1(Λ1 − Λ2), except in the case of no boxes,
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where we get 1. That is, we find that

B+,Λ1B−,Λ2 |0⟩ = 1 +
∑

r≥1,s≥1

Λr−1
1 (−Λ2)

s−1(Λ1 − Λ2)
. . . r

...

s

(4.90)

and now the right hand side simplifies if we divide by (Λ1 − Λ2) (rather than when we

multiply by it). If we compute the norm of the state (when dividing by (Λ1 − Λ2)) we

get that ∣∣∣∣∣∣∣∣B+,Λ1B−,Λ2 |0⟩
Λ1 − Λ2

∣∣∣∣∣∣∣∣2 = 1

||Λ1 − Λ2||2
+ | |△,Λ1⟩ |2| |▽,Λ2⟩ |2 (4.91)

and apart from the first term, it shows that the two types of fermionic “particles” are

distinguishable. In this setup, when Λ1 → Λ2, the first term develops a pole. That is,

the 1 dominates the norm of the state, but this can be subtracted if we are careful, and

then we can get a smooth two particle state in the limit.

Formally, when we consider a state |ψ⟩, which results from applying various B±

operators, we can identify the expectation values as supertraces of a complex supermatrix

⟨ψ| ak |ψ⟩ =
∑

Λk+i −
∑
j

Λk−j = Str


Λ+

k ... 0

. . . . . . . . . . . . .

0
... Λ−

k

 = Str[Λk] (4.92)

where we identify the different values Λ+,− with the corresponding eigenvalues. The

values of Λ are then interpreted as collective coordinates for the D-brane states. The

interesting prefactor of the wave functions where we multiply by

∏
i<j

(Λ+,i − Λ+,j)
∏
i<j

(Λ−,i − Λ−,j)
∏

(Λ+,i − Λ−,j)
−1 (4.93)
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is a super-Vandermonde determinant.

4.5 Free fermions and the Murnaghan-Nakayama rule

We see that it is rather helpful to be able to go from the conjugacy class basis to the

representation basis efficiently. Therefore it makes sense to understand how to compute

the characters χR(σ) more precisely in order to be able to make progress. The main

tool to do so is the Murnaghan-Nakayama rule, as described in appendix B. This gives

a recursive way to compute the characters of the symmetric group. We will now see

that this rule is essentially encoding the fact that the tableaux states correspond to free

fermions.

We will prove this fact now. To do so, let us analyze the main result of the appendix,

where the Murnaghan-Nakayama rule can be rewritten as an operator equation in the

Hilbert space of states

s∂ts |R⟩ =
∑

hooks of length s

(−1)fhook |R̃hook⟩ (4.94)

where fhook is the number of rows spanned by the hook, minus one, and R̃hook is the

Young tableaux R with the skew hook corresponding to the hook that has been singled

out removed. A skew hook is a set of boxes at the edge of the tableaux whose removal

produces an allowed tableaux, and they are in one to one correspondence with regular

hooks (see appendix B).

Remember that s∂ts ≃ as is the lowering operator of the mode s in the Fock space.
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This equation above can also be read as follows

⟨R̃| as |R⟩ = (−1)fhook (4.95)

or taking adjoints

⟨R| a†s |R̃⟩ = (−1)fhook (4.96)

where |R̃⟩ is a particular diagram appearing in the sum with one hook removed. For

instance, consider the state corresponding to the representation given by

|R⟩ = (4.97)

We could apply the lowering operator a3. Equation 4.94 gives

a3 = − (4.98)

We could then dot this with the state given by

|R̃⟩ = (4.99)

And we find

⟨R̃| a3 |R⟩ = −1 = (−1)1 (4.100)

as expected.

We will now show how this arises using free fermion intuition. Proving equation (4.95)

is equivalent to proving equation (4.94), which in turn gives a proof of the Murnaghan-

Nakayama rule.
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We need to think of what a†s is doing in terms of the eigenvalue representation (the

fermions in Matrix models). The idea is that to each eigenvalue of an infinite matrix we

associate a Cuntz oscillator pair βℓβ
†
ℓ = 1 (which commute with each other for different

ℓ) and we will treat these eigenvalues as Fermions (see [99] for details on how to build

fermionic systems from general oscillators). The operator

a†s =
∞∑
ℓ=0

(β†
ℓ )
s = Tr((β†)s) (4.101)

is a trace of the powers of the raising operator β† thought of as a matrix. The ground

state of the multiple particle system • is defined by the Slater determinant

• ≃ lim
N→∞

|−1/2⟩ |−3/2⟩ . . . |−(2N − 1)/2⟩antisymm (4.102)

where we have set the Fermi sea at energy zero, and all the (infinite tower of) negative

energy states are occupied. If all the |j⟩ are orthonormal, the procedure of antisym-

metrization gives a normalization factor in front of the state with an N = ((N +1)!)−1/2

to obtain a normalized state. This is common to all states in what follows. Pictorally,

we will represent our ground state as

bc
bc

bc
bc

bc

b

b

b

b

b

(4.103)

Notice we have chosen to label the energy of each particle at half integers, rather
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than filling the Fermi sea to zero and having the particles occupy integer energies. We

did this because it makes the particle/hole duality more explicit and symmetric. This is

simply a convention and everything would follow in the same way if all particle energies

were shifted by 1/2, as it is always energy differences that are measured.

A complete basis of states is given by

|{n}⟩ ≃ lim
N→∞

|n1⟩ |n2⟩ . . . |nN⟩antisymm (4.104)

with n1 > n2 > n3 > · · · > nN , half integers, and for all sufficiently large j we require

that nj = −2j−1
2

.

We will now show how to go directly from one of these states to a Young tableaux

representation, which we will associate with it. Consider the numbers given by rj =

nj −n0
j = nj − (1

2
− j), e.g. r1 = n1 − (−1

2
), r2 = n2 − (−3

2
). These numbers will give the

differences between the particles excited positions and their ground state position. We

can check easily that ri − ri+1 = ni − ni+1 − 1 ≥ 0, since the ni are strictly decreasing

integers and moreover that ri = 0 for sufficiently large i. We assign to this set a Young

diagram with rows of length r1, . . . rs for all the rk that are different from zero. This

is an allowed tableaux because the integers are non-increasing. Details of the pictorial

representation of this assignment can be found in appendix C. We can clearly invert this

map, because knowing ri is equivalent to knowing the ni. Now, instead of |{n}⟩ we use

the tableaux |R̃⟩.

Now we act with a†s = Tr((β†)s) on |R̃⟩ and get that

a†s |R̃⟩ ∝ lim
N→∞

N∑
ℓ=1

|n1⟩ |n2⟩ . . . |nℓ−1⟩ |nℓ + s⟩ |nℓ+1⟩ . . . |nN⟩antisymm (4.105)
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If the state has two of the nj equal to each other, the antisymmetrization procedure will

remove the term from the sum. Now, we need to check if the new state has the ns in

decreasing order or not. If it does not, we need to reshuffle the ns, by moving the nℓ+s

to the left until we get a proper order. We do this by transposition of nearest neighbors,

moving nℓ + s as we go along. Each such transposition is an exchange of two fermions,

so it costs a factor of (−1). The sign we get is (−1)#transpositions.

As an example of how this works, we would have

a†2

(
|5/2⟩ |3/2⟩ |−1/2⟩ |−7/2⟩ |−9/2⟩ . . . |nN⟩antisymm

)
= |9/2⟩ |3/2⟩ |−1/2⟩ |−7/2⟩ |−9/2⟩ . . . |nN⟩antisymm

− |7/2⟩ |5/2⟩ |−1/2⟩ |−7/2⟩ |−9/2⟩ . . . |nN⟩antisymm

+ |5/2⟩ |3/2⟩ |−1/2⟩ |−3/2⟩ |−9/2⟩ . . . |nN⟩antisymm

− |5/2⟩ |3/2⟩ |−1/2⟩ |−5/2⟩ |−7/2⟩ . . . |nN⟩antisymm

(4.106)

Notice the second and fourth terms have negative signs because we had to perform

one transposition on each to find a state with the proper ordering. Notice also that we

dropped all terms that would have had two ni’s that are equal to each other and so would

go away upon antisymmeterization. Now we want to think about how the transpositions

affected the Young diagrams these states correspond to.

Because various of the ni have been moved to the right, we find that for these that

have moved we get that nnew
i+1 = nold

i , so rnewi+1 = nold
−1+i − (−i) = roldi + 1. That is, in the

Young diagram we have moved the row i to the i + 1 row and added one extra box to

the right (this is equivalent to moving the corner of the row one to the right and one

down). There is still the one that got moved to the left. This one row was moved upward
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by #transpositions, and each such transposition makes the corresponding row we are

tracking shorter by one (this is the opposite of the +1 to the right that we have found

for the others). The net effect is that we have added just s boxes to the Young diagram

and gotten a normalized state for each ℓ that is allowed. That is, we get that

a†s |R̃⟩ =
∑
hooks

(−1)#transpositions |Rallowed⟩ (4.107)

The motion to the right and down produces a skew hook of length s added to the original

tableaux (we just color in the new boxes in a different color than those of R̃). The sign

we find is the same sign that is assigned by the Murnaghan-Nakayama rule. The number

of transpositions is the number of rows that have changed minus one!

As a simple example consider a†5 .

What does this correspond to in the Fermi sea picture of appendix C? We have 5

units of energy we are adding and there are several options we have for where to put

them. The state we are starting with is

bc
bc

bc

bc

bc

b

b

b

b

b

(4.108)
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We could imagine giving all the energy to the already excited particle. This gives

bc
bc

bc

bc

bc
bc
bc

bc

bc

b

b

b

b

b

(4.109)

which we know corresponds to a totally symmetric diagram with 8 boxes.

However, we could have made a different choice and excited the top particle out of

the fermi sea. This would give

bc
bc

bc

bc

bc
b

b

b

b

b

(4.110)

Notice that to get to this position, we had to pass the already excited particle (we had to

perform a transposition), and therefore had to pick up a minus sign. We find, then, that

the negative sign, which previously was simply a part of the MN rule, actually encodes

the exchange statistics of fermions.

Carrying on, we we could imagine exciting the second particle from the fermi sea, but
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we know this should not be allowed by the Pauli exclusion principle:

bc
bc

bc

bc
bc

b

b

b

b

b

(4.111)

If we think about this in terms of Young tableau, we see that this would have corresponded

to a diagram that is not allowed. Specifically, it would have corresponded to something

of the form

(4.112)

We know that this is not an allowed diagram and that fact encodes the exclusion principle.

The end result is that

a†5 = − + − + (4.113)

The outcome of this computation is that

⟨R| a†s |R̃⟩ = (−1)#transpositions = (−1)fhook (4.114)

as we wanted to prove. Moreover, the sign of the Murnaghan-Nakayama rule is nothing
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other than the Fermi statistics. The boxes colored in blue are exactly the skew hooks that

can be added to the original tableaux. These are always at the border of the tableaux

such that adding them produces an allowed tableaux.

The upshot is that rather than trying to compute the χR(σ) directly, we compute the

action of the ts and its adjoints on the basis of Young tableaux (the D-brane basis). This

algebraic action is simple and will let us establish a lot of facts in the next sections.

4.6 Multi-edge geometries: new classical limits with

different topologies

In this section we will think of the classical field ϕ(θ) as a displacement of the geomet-

ric interface between two fluids, made of particles and holes. This is the main viewpoint

in treating the system as a set of free fermions as exemplified in the description of the

quantum hall effect [83]. This is a geometric interpretation that also appears naturally

in studying bubbling solutions [63], where the two fluids in question arise as the two

possible values of a function on a plane that give rise to a regular BPS geometry in ten

dimensions. Some of the treatment here follows the previous work by the authors [40].

Let us start with a simple identity for the classical energy of a configuration, where

we use

E[ϕ] =
1

2π

∫
dθ

1

2
ϕ(θ)2 =

1

2π

∫
dθ

[∫ ϕ(θ)≥0

0

h dh−
∫ −ϕ(θ)>0

0

(−h) dh

]
(4.115)

That is, we introduced and auxiliary field h and divided the coordinate θ into the

regions ϕ(θ) ≥ 0 and the regions ϕ(θ) < 0. This makes sense in the classical theory for

smooth functions, but not quite in the quantum theory. The first region is associated
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with moving particles into spaces that had been occupied by holes, and the second one

is associated with moving holes where there were particles. Both particles and holes are

conserved because
∫
ϕ(θ) dθ = 0. We want to associate a function with this change of

occupation, that takes the value +1 when particles occupy a hole state, and takes the

value −1 when holes occupy previously occupied particle states. The function should

otherwise vanish. This function is the relative density of particles with respect to the

ground state ρ̃(θ, h) = ρ+(θ, h)−ρ0+(θ, h). It can also be symmetrically constructed from

the hole density with few modifications. The energy can then be expressed as

E[ϕ] =
1

2π

∫∫
ρ̃(θ, h)h dh dθ (4.116)

Notice that this formula is very similar to (4.17). The main difference is that in (4.17)

one is allowed to have arbitrary regions with ρ ̸= 0, while in (4.116) we have a description

not only with fixed topology, but also with a unique height for the boundary between

holes and particles for each θ. The field ϕ is given by

ϕ(θ) = −
∫
dh h ∂hρ̃(θ, h) (4.117)

This uses the fact that ρ can be written as Heaviside step functions whose derivative is a

delta function, precisely at the height of the droplet. The contribution at h = 0 vanishes.

Alternatively, we can integrate by parts to find that

ϕ(θ) =

∫
ρ̃(θ, h) dh (4.118)
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and the conservation of particles and holes can be expressed as

∫∫
ρ̃(θ, h) dθ dh = 0 (4.119)

Basically, we are expressing the states as pictures on a two dimensional cylinder. We

will use this identity together with previous observations (particularly equation (4.60))

to understand how new classical limits can appear from different quantum states that

are not classical in the oscillator representation.

4.6.1 Fixed energy single D-brane state

Let us start with a single D-brane state, but instead of considering the coherent states

(4.48), we want to consider a state of the form |△⟩n for a fixed n: a single D-brane with

fixed energy, and we want to think of it formally as a superposition of non-normalizable

states |△, exp(iγ)⟩ by doing a Fourier transform. The state |△⟩n is an eigenstate of the

momentum operator, so it is translation invariant. Because the state is a superposition

of classical states, it is not a classical state with respect to the usual variables a†k, ak any

longer. For example, it does not factorize into a product of coherent states because it

has a fixed energy and it is not in the vacuum. Indeed, it is possible to show that in this

state ⟨ak⟩ = ⟨a†k⟩ = 0, yet the energy is not zero (as one would conclude for coherent

states). The naive classical state we would associate with this profile is the ground state.

Because in the end the corresponding state is not a coherent state, we will be interested

eventually in characterizing to what extent it violates the properties of the coherent state.

For example, if a state has minimal uncertainty then it is a coherent state. Conversely, a

non-trivial uncertainty serves as a measure of how much the state differs from a coherent

state. Similarly, a coherent state is a product state ( a pure state mode per mode).
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Entanglement between the modes measures to what extent the mode per mode quantum

state is not pure. We will take the problem of measuring these later in the paper.

What we want to do is we want to find an alternative classical description of this

particular state so that when we insert the right value of ρ̃(θ, h) in equation (4.116), we

get the right energy. We want to declare that this state can be classical as well, even if

it is not a coherent state. Our goal is to come up with a prescription for how to do this

consistently.

Moreover, we want the relative density to be translation invariant, so ρ̃ is independent

of θ. To be classical, it should take the same prescribed nominal values from before ρ̃ =

+1,−1, 0. In principle, a value in between can be obtained from statistically averaging

states (a density matrix state rater than a pure state). Those will not be treated as

classical states but as statistical states. Here, we want the state to be pure, so no

averaging should be performed.

Now, let us look precisely at (4.60). The idea behind building the new classical

solution is that acting with a D-brane state lowers the level of ϕ by a prescribed amount:

−1 in our conventions, and the area under the delta function is identified with the amount

of area that a single D-brane (particle) occupies. We need to move this occupied area

somewhere else, but we want to leave the lowering of the level interface exactly as the

−1 demands: this is after all the classical field everywhere else away from the δ function

distribution. Because of translation invariance, we should add horizontal strips with

ρ̃ = 1 to the picture in order to conserve area. Since we are acting with a single D-brane,

this horizontal strip should be connected (a single object), and of width one because

of area conservation. We are building this picture by hand, but we are inspired by the

description of states in [63]. To match the energy of the state, there is only one place

where we can put the strip: the topmost edge of the strip should be at height n.
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n

0 2π

Figure 4.3: The black and white LLM plane drawing corresponding to a D-brane with
fixed energy n.

If we use equation (4.118), we find that the field ϕ(θ) vanishes, just as expected from

the expectation values of the quantum state. However, when we analyze it from the point

of view of (4.117) we realize that the expectation value of the field vanishes by adding

three contributions

ϕ =

∫
dh h (δ(h− n)− δ(h− n+ 1) + δ(h+ 1)) = n− (n− 1)− 1 (4.120)

one from each of the edges of the ρ density. That is, we should think of the field ϕ(θ)

essentially as becoming a multi-valued function of θ, and the expectation value of the

field is obtained by summing over these values with signs. We have gone from one well

defined classical edge to three. This should be thought of as a topology transition. Notice

that the superposition of states that gave rise to the state we want can be performed

for finite values of Λ as well. In this interpretation, superpositions of classical coherent

states with one topology can give rise to a topology change.

Notice that this new state is macroscopically different from each of the states that is

used to make it, even statistically. For example, all the coherent states have ρ̃(θ, h) ≥ 0

strictly non-increasing as a function of h when h ≥ 0. So when we take a classical

statistical average of these states, this property should still hold. The new ρ̃ does not
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have this property.

If for all original classical states we assign the same topology where the edge is a

circle, then we find that there is no operator measurement in the Hilbert space that can

distinguish the strip from the coherent states [40]. The argument is by contradiction. It

proceeds as follows:

Suppose first that all coherent states are associated with a fixed (trivial) topology.

Imagine now that such an operator exists. The operator should be such that all states

with a trivial topology have the same eigenvalue. We can imagine building one such

operator if we simply count the total number of edges to characterize the topology. We

then get the same number for all coherent states: 1 (because they are described by a single

height function), and so we are describing the identity operator. The strip topology state

is a superposition of these, so the operator should evaluate to 1 as well, which clearly

fails to count the number of edges appropriately. Therefore, there is no such topology

measuring operator.

This means that topological type should be associated with details of a particular

classical approximation of a state, and not with measurement of an operator. Notice that

at this stage we have made no reference to entanglement as a source for topology changes

[72, 78]. We are also stating that the set of classical states is even more overcomplete

than regular coherent states. That there might be an overcompleteness that exceeds the

standard overcompleteness of coherent states has been hinted at in [108] for situations

involving the interior of a black hole. It was also argued there (following [109]) that

gravitational physics requires state dependence, which implies that gravitational physics

can not be encoded in operators. These works, in some sense, already assume that the

ER = EPR conjecture is true [78], so that non-trivial entanglement measures a topology

change. As is well known, entanglement is not an operator measurement in Hilbert space,
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although it can be computed in simple enough setups.

Back to our main discussion, since the strip state is not a coherent state, one can

presume it is a state with larger uncertainty on each oscillator. We can actually compute

these uncertainties using the techniques developed in section 4.5. We will see later that

the spirit of (4.120) can be made precise for a large number of quantum states in the

field theory, and the microscopic quantum field ϕ can be written as a sum with signs

of other effective fields that appear as quantizations of small deviations away from a

particular multi-strip configuration that should be thought of as a ‘ground state’ classical

configuration with a coherent state excitation of its collective coordinates.

Let us finish analyzing this one configuration at a large but finite energy n. The

Young diagram describing the state has n boxes and is completely horizontal.

|∆⟩n = . . . n (4.121)

We can evaluate the expectation values of the mode number operators Es = a†sas, N̂s =

s−1a†sas by the Murnaghan-Nakayama rule (see appendix B) in a straightforward fashion

n ⟨∆| a†sas |∆⟩n = n−s⟨∆|∆⟩n−s =

 1 if s ≤ n

0 Otherwise
(4.122)

so the average energy per mode is constant up to mode n where it cuts off abruptly. The

average occupation number per mode s is 1/s, exactly as in equation (4.57). This shows

why the state is a very close approximation to a regularized ”fermion field state.”

It also makes sense to ask which of the states |∆,Λ⟩ is the best approximation to
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|∆⟩n. The normalized probability amplitude to go from one to the other is

n⟨∆|∆;Λ⟩ = Λn
√
1− ΛΛ̄ (4.123)

So that

|n⟨∆|∆;Λ⟩|2 = (Λ̄Λ)n(1− ΛΛ̄) (4.124)

This is maximized for

ΛΛ̄ =
n

n+ 1
(4.125)

For this value of ΛΛ̄, we would find that the energy of the best coherent state approx-

imation to the state to be exactly n, the energy of the state. For large n, the size of

the overlap is of order (en)−1 where e is Euler’s constant. It is also easy to check the

equations as = as1 for these states, just as expected from the fact that all the coherent

states that can be superposed to obtain the state satisfy them.

This means that the state |∆⟩n should be thought of as an overlap of order n approx-

imately orthogonal coherent states. That is roughly the number of states that would be

needed to get the probabilities
∑

i |n⟨∆|∆;Λi⟩| to add up to order one: what we need in

order to say that we closely approximate the state |∆⟩n.

One can use this result to state that a superposition of a large number of states in

quantum gravity might have very different properties (even different topology) than any

of the individual states that make up the system. This is a result that has been argued

quite effectively in [110], where the goal was to show that entanglement entropy can be

thought of as an operator for a sufficiently small superposition of classical states, but not

when we take the limit.

One can do a similar analysis with a single hole state of fixed energy |▽⟩n and the
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results are very similar.

Now, we can also evaluate the quantities

n ⟨∆| asa†s |∆⟩n = ⟨(as − ⟨as⟩)(a†s − ⟨a†s⟩)⟩ = s+ ⟨a†sas⟩ = s+ 1 (4.126)

for s ≤ n. These can be thought of as the net quantum uncertainty of the solution

(including the ground state uncertainty, which is s). This shows that the state has low

uncertainty (mode per mode) and can therefore be interpreted classically.

4.6.2 More general one stripe geometries

Now we will turn our attention to other states that have a similar interpretation.

These are ”translation invariant condensates of branes”. The idea is to look at states

whose Young diagram looks as follows

|□L,M⟩ =
. . .L...

. . .. . .
...

M . . .
(4.127)

That is, a rectangular Young diagram with L columns and M rows.

We can visualize this state in the fermion picture (assuming L > M) as follows

bc
bc

bc

bc

bc
b

b

b

b

b
M
{

M
{

}
(L−M)

(4.128)

where there is a gap of size L between the filled sea and the excitation, and then the
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excitation has width M (this corresponds to M filled states). This is natural from

identifications in the figure 8 of [63]. These states are also translation invariant and

share many of the properties of the previous state |△n⟩, which would correspond to

|□n,1⟩. The natural identification with states in the droplet picture is to extend the

representation (4.128) to a stripe configuration where the holes and filled states become

extended on an interval (0, 2π). The gap between the filled regions is of width L, and the

filled top region is of width M . The corresponding LLM droplet picture is shown below.

M
{

M
{

}
(L−M)

0 2π

Figure 4.4: The black and white LLM plane drawing corresponding to a rectangular
Young tableaux with L×M boxes.

Since these states are of fixed energy and a†s, as change the energy, we also have that

⟨as⟩LM = ⟨a†s⟩LM = 0. Again, if this were a classical state in the usual classical limit

of regular coherent states we would find that it should correspond to the vacuum. We

want to interpret this state also as a classical state, with a black and white pattern as

described. The configuration now has three edges: one at the very topmost of the most

excited state, one (anti-) edge where the gap ends, and one more edge where the infinitely

deep sea ends. We use the labeling edge for an edge where the filled states are below and

the empty states above. We will use the label anti-edge for the opposite set, where the

empty sites are below and occupied sites are above. The energy of this state is LM .

What we call the field ϕ again becomes multi-valued, with one contribution from each
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(anti-) edge. The vanishing of the (zero mode of the ) field is governed by adding three

contributions

ϕ =

∫
dh h (δ(h− L)− δ(h− (L−M)) + δ(h+M)) = L− (L−M)−M (4.129)

very similar to (4.120).

4.6.3 Excitations of striped geometries

In general, we expect that we could start with one of these translationally invariant

striped geometries and deform each edge independently, As shown schematically below.

0 2π

Figure 4.5: A schematic depicting possible independent deformations of each edge of
an LM state.

Recall that the energy is given by

E[ϕ] =
1

2π

∫∫
ρ̃(θ, h)h dh dθ (4.130)

Further, let us recall that ϕ ≃ h on the edge, while ρ̃ = 1, 0,−1. We want to consider small

deformations of each height, keeping the local density at nominal values, and the area

of each region fixed. This is formalizing the idea that the field ϕ becomes multivalued,

with ϕ(θ) the height at each (anti) edge. The total field sums over these contributions
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ϕ(θ) = ϕ1(θ) + ϕ2(θ) − ϕ̃1(θ). Here, we indicate the fields in order from the top down,

with ϕ̃ representing the anti-edge fields. To keep the area of each region fixed, we require

that for each field
∫
dθ δϕi =

∫
dθ δϕ̃i = 0, and we can substitute in the energy as an

area integral to find that

E[ϕ] =
1

2π

∑
i,j

∫
dθ

(ϕi + ϕ̃j)

2
(ϕi − ϕ̃j) =

1

2π

∑
i,j

∫
dθ

1

2
((δϕi)2 − (δϕ̃j)2) +ELM (4.131)

We find that the energy splits into a (local) sum over fluctuations of each edge indepen-

dently, but the ones associated with ϕ̃ have a negative sign. This is an indication that

the reference state |□L,M⟩ is not the ground state. The fields ϕ̃ can be thought of as

ghosts (in the sense of negative energy states, not negative norm states). In the paper

[82], such states are called counter-gravitons. The fields ϕ(i) and ϕ̃(i) will be the collective

excitations of the configuration.

What we have done is formalize the suggestion of [82] that makes ϕ decompose linearly

into pieces that work on each (anti-)edge independently. Now, we can take the Fourier

transform to obtain the mode decomposition, as in [40].

We find that

a†s = b(1)†s + b(2)†s − c(1)s (4.132)

where the b(i) are excitations of the edges, and the c(i) modes are excitations of the

anti-edges. We need to explain this equation. The mode a†s increases the energy by s

units. This is the equation of motion of the mode a†s. The modes b
(1)†
s , b

(2)†
s also increase

the energy by the same amount (which is equal to the momentum of the mode). The

lowering mode for excitations of the anti edge destroys (−s) units of energy, so it acts

in the same way to increase the energy. This is the only way to make the equations

consistent with energy conservation and with a linear expression for the modes a†s in
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terms of the collective excitations of the state |□LM⟩. As long as we can show that the

b, c have the correct commutation relations, we find that the equation (4.132) indicates

that the UV fields (those that are canonical modes of the chiral free field) are related by a

Bogolubov transformation to the collective fields (which we are calling the IR theory). It

is not a complete Bogolubov transformation, because such transformations preserve the

number of oscillators. The linear transformation can be completed to a full Bogolubov

transformation if we add additional orthogonal fields to the as that are made of linear

combinations of the b, c modes (we will expand on this idea in the next section).

The important point is that equation (4.132) is an approximation to the fluctuations

about the state. It is clear that if the fields ϕ(i) get too large that the edges will collide

changing the topology. Our purpose right now is to actually derive this transformation

from first principles by analyzing the physics of the state |□LM⟩ independent of the

geometric intuition. We want to show that the decomposition can actually be derived

from the combinatorial structure of the full Hilbert space of states.

The reference vacuum state |□LM⟩ is defined by b |□LM⟩ = c |□LM⟩ = 0. We will call

an excitation a classical configuration if it is a coherent state excitation of the low lying

modes of b(i) and c(i), assuming that they have canonical commutation relations. This

can be derived semiclassically by following [80], but again, it does not explain what to do

when the ϕ get large, so the commutation relations are approximately true on a sector

of low amplitude.

Our goal now is to construct the operators b, c explicitly in the quantum theory and

show that they have the correct (canonical) commutation relations when acting on a

particular subspace of the Hilbert space of states, so that the equation (4.132) is indeed

a Bogolubov transformation. To do this, the results of section 4.5 and appendix B are

essential. This is the point where we are able to improve the discussion in [82] substan-
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tially because we will have no guesswork. Moreover, we will be able to understand the

cutoffs in field space implicitly and to study the cutoff dependence of various quantities.

The idea is to consider nearby excited states relative to |□L,M⟩, where, by nearby, we

mean young tableaux states that differ from |□L,M⟩ by a few boxes. This is depicted in

equation (4.133).

|R⟩ =

L

...
. . .. . .. . .. . .. . .

...

M

(4.133)

The states |R⟩ are those that differ from the reference state |□L,M⟩ by adding (few) boxes

in the corners marked by blue and green, and removing (few) boxes in the corner marked

by red. Each of these can be done independently at large L,M . What this means is that

the Hilbert space of nearby states factorizes into

Hnearby ≃ Hblue ⊗Hgreen ⊗Hred (4.134)

Now, each of Hblue,Hgreen,Hred can be written as a small Young diagram. For Hblue and

Hgreen this is pretty obvious. For Hred all we need to do is rotate the empty corners

marked in red by (180)o and we get a proper Young diagram.

Relative to the reference state, the Young diagrams with blue and green boxes will

have norm one, and so will the diagram with antiboxes. This is special to the original

theory being described with Young diagrams states that all have the same norm 2. Now,

we can do the Fourier transform from Young diagrams to a Fock space description with

2This is easy to modify for theories of generalized free fermions as in [99] because the norms will
factorize for each different color of Young diagram. See also [111] and references therein for how to
compute energies of excitations in the special case of N = 4 SYM. This is not essential for this paper.
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canonical raising and lowering operators. This is essentially due to the uniqueness of

the relations discussed in section 4.3. For each of these, we can apply the results of the

previous section and the appendix B. We find that

⟨R| a†s |R̃⟩ = (−1)fhook (4.135)

as long as the skew hook is an allowed transition from R̃ to R with s boxes. We have a

similar expression for the other colored operators. The one difference for the red boxes is

that as the red diagram is growing, the original Tableaux is being chipped away, but this

is done by a skew hook that is at the interface of the red tableaux and the reference state:

it is also an allowed skew hook of length s for the complement of the red tableaux. These

are the operators that we have identified as b
(i)†
s and b

(i)
s , and for the antiboxes these are

the c(i)†, c(i) operators. Because the Hilbert spaces factorize we obtain the following exact

commutation relations

[b(i)s , b
(j)†
t ] = δijsδst (4.136)

[c(i)s , c
(j)†
t ] = δijsδst (4.137)

and all other commutators vanish. These commutation relations are true only when

evaluated in states that are sufficiently close to the reference state, so that the boxes and

anti-boxes do not interfere with each other. This is implicit in the full discussion, but

it is worth emphasizing that these equations are not true for arbitrary excitations of the

original system, only so in the effective field theory of nearby configurations. The extreme

value where they could be right would be halfway along the reference state sides, so it is

only for labels that are less than L/2,M/2, and total differences of energies that are much
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less than LM . Beyond this scale we would claim that the modes become related to each

other and there are fewer independent states. These give relations between the operators

at high order. We call such transitions, where the number of states is reduced relative to

the very naive counting of independent free fields, the stringy exclusion principle for the

collective dynamics in the same sense as [86, 71].

We will label the nearby states as follows

|□LM +R1 −R1̃ +R2⟩ ≃ |R1⟩ ⊗ |R2⟩ ⊗ |R1̃⟩ (4.138)

in a way that makes it clear that we are adding and substracting Young diagrams from

each corner as is appropriate to the nature of the corner.

From here, one can easily check that the following is true

as |□LM +R1 −R1̃ +R2⟩ =
∑
hooks

(−1)fhook |R̃⟩ (4.139)

where R̃ differs from the original state by removing a skew hook of length s. These can

only be removed from either of the Ri, or added to the Rĩ. These are the only places

where small hooks can be subtracted (or added). This means that

as |□LM +R1 −R1̃ +R2⟩ =
∑

(−1)fhook |R̃1⟩ ⊗ |R2⟩ ⊗ |R⟩1̃ (4.140)

+
∑

|R1⟩ ⊗ (−1)fhook |R̃2⟩ ⊗ |R⟩1̃ +
∑

|R1⟩ ⊗ |R2⟩ ⊗ (−1)fhook|R̃1̃⟩

This translates to

as = b(1)s + b(2)s + c†(1)s (4.141)

so we get what we want in equation (4.132) up to a sign for c†s. Following the discussion
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in section 4.4 this sign can be changed by a particle-hole transformation, which is a

symmetry of the algebra of the raising and lowering operators that we have constructed.

The choice we make is a convention that needs to be established, and this is used to

match better our geometric intuition. There is no deeper meaning to it.

We have proven what we set out to: the UV modes can be written as a linear super-

position of the collective modes of the configuration (the infrared modes) when acting on

nearby states. Moreover, the collective modes ave canonical commutation relations. It is

the presence of these collective modes that lets us know for sure that we have changed

the topology. Their number dictates the number of edges (anti-edges).

4.7 Topology from uncertainty measurements

Now, we can further evaluate how non-classical these states are from the point of view

of the original a†s, as oscillators, by computing quantities that appear in (4.126). That is,

we want to compute

⟨asa†s⟩LM = ⟨a†sas + s⟩LM (4.142)

Using the MN rule, the ⟨a†sas⟩ are evaluated by counting all the skew hooks of length

s (this is the same as the number of hooks of length s, see appendix B). One can easily

see that each hook has its corner on a diagonal band, as in equation (4.143).

|□LM⟩ ≃ (4.143)

so we get that for low s (that is, s ≤ min(L,M))

⟨asa†s⟩LM = 2s (4.144)
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For simplicity we will assume that L ≥M , so that the first place where things change is

at s =M +1. At this point the diagonal bands are of constant lengthM . Things change

again when we want very large hooks at s = L, where the available diagonal bands start

shrinking. We get the answer

⟨asa†s⟩LM =



2s if s ≤M

M + s if L ≥ s ≥M

M + L if L+M ≥ s ≥ L

s Otherwise

(4.145)

We can also write this equation equivalently in terms of the average occupation per mode

Ns =
a†sas
s
. It is convenient to do this in two different (equivalent) ways so that

Ñs = ⟨Ns + 1⟩LM =



2 if s ≤M

M/s+ 1 if L ≥ s ≥M

(M + L)/s if L+M ≥ s ≥ L

1 Otherwise

(4.146)

and

⟨Ns⟩LM =



1 if s ≤M

M/s if L ≥ s ≥M

(M + L)/s− 1 if L+M ≥ s ≥ L

0 Otherwise

(4.147)

the number Ñs can be computed for more general multi-strip geometries for low s using
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the Bogoliubov transformation. It is given by

Ñs = ⟨asa†s⟩multi−stripe/s ≃
1

s

∑
i

⟨b(i)s b(i)†s ⟩multi−stripe = nedges (4.148)

while

Ns = ⟨a†sas⟩multi−stripe/s ≃
1

s

∑
i

⟨c(i)s c(i)†s ⟩multi−stripe = nanti−edges (4.149)

We can draw a few consequences from these equations.

First, since the numbers Ns are generally of order one, the states that we have con-

sidered so far have very low uncertainty in the fluctuations, comparable in size to the

usual quantum uncertainty of the ground state. That uncertainty is multiplied by an

integer for low s. In this sense, they should be regarded as being classical, because un-

certainties are of typical quantum size. This integer that we get is exactly the number

of edges. In this sense, the number of edges is measurable in the size of the quantum

fluctuations of the UV modes of the theory (those that are given a priori without any

reference to the particular state). It is important that there are a large number of modes

for which this number is the same. This means that with a simultaneous measurement of

various quantities that commute with each other we can do enough statistics to compute

the topology (without destroying the full information of the state, but already knowing

that the state is a rectangular tableau). We measure the topology by census-taking and

finding consensus.

This is where the size of L,M actually start mattering. At roughly the same place

where the stringy exclusion principe becomes important (at modes of order L,M) the

numbers that effectively measure the topology of the state start changing.

In the large L,M limit, the number Ns becomes a continuous function of the rescaled
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parameters x = s/M (or s/L) and interpolates smoothly between nedges for x << 1

and 1 for large x. This can be interpreted as the effective number of edges at the scale

associated with x. In this sense, the measurement of topology is energy dependent. Since

the energy goes like E ≃ L2 at least for the square tableau, the stringy exclusion energy

scales as L ≃
√
ELM and can be effectively very high.

4.7.1 Coherent states of edge oscillators

We can now consider general classical coherent states of the b, c oscillators and as

we have said above, we will think of these as new classical configurations. The coherent

state is defined by the equations

(bs − ⟨bs⟩) |CohLM⟩ = 0 (4.150)

and similar for the c. These belong the small Hilbert space for sufficiently small shifts

(the tails at high occupation number will have negligible probability). The subscript LM

is to indicate that this is a coherent state relative to the b, c oscillators of the LM state.

When we set out to compute the numbers Ns as above, they will depend greatly on

the properties of the state we pick. The occupation number itself is not robust against

taking general coherent states. What we mean by this is that we can change it by a

large fraction (even in a lot of modes). However, consider the following operators that

are shifted by a c-number

as − ⟨as⟩ =
∑
i

b(i)s − ⟨b(i)s ⟩ −
∑
j

(c(j)†s − ⟨c(j)†s ⟩) (4.151)

Because the b, c operators shifted by a c-number still satisfy the canonical commutation
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relations (the shift is an automorphism of the algebra of b, c operators), then we can

repeat the calculations we did before including these shifts.

We find that for these states the same computation that we did before holds with the

shifted oscillators. That is, we find that

1

s
⟨|as − ⟨as⟩|2⟩CohLM

= nedges (4.152)

We can measure the number of edges if we measure the uncertainty, not the number oper-

ator itself. The expectation value of the number operator is the same as the uncertainty

if the shift vanishes, but the uncertainty is not in general the number operator.

This means that to measure nedges, we end up evaluating a non-linear function of the

wave function. This is because the shift ⟨as⟩ depends on the state! In a certain sense

this should not be a surprise. We already argued that the topology cannot be measured

by an operator, because all coherent states relative to the trivial vacuum (AdS5 × S5) of

the chiral boson are of the same topology. But a non-linear function of the wave function

is not an operator measurement. It is something that can be computed in quantum

mechanics, and that moreover can be recovered with a set of observations on the system

with different variables that do not commute with each other: a polynomial function

involving the number operator and the expectation values of the raising and lowering

operators. Once we measure the expectation values of the field ⟨ϕ(θ)⟩ we can recover the

shifts we need. Given these shifts, we can evaluate an effective number operator for the

shifted variable. This is a protocol for measuring the topology. It just cannot be done

with one single observation.

Notice also that at least in this example, even though we can measure the topology

with a few observations for low energy modes (from the UV point of view), measuring the
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values of L,M themselves requires getting to the scale of the stringy exclusion principle

(although the product LM is readily measured by the energy). This is not expected to

persist in more general circularly symmetric LLM geometries, because the corresponding

generalized effective Bogolubov transformation has coefficients that depend on L,M,N

[82] (the details of this operation are beyond the scope of the present paper). This issue

of indistinguishability of states based on simple measurements of the energy has also been

alluded to in [66, 67], but it is also important to understand that the problem persists

if we only have the expectation value of the UV fields and the energy. To reconstruct

the classical geometry we need the expectation values of all of the b, c modes, not just

the a modes. The a modes are the naive classical data needed on the boundary of AdS

to specify the classical fields associated to ϕ in the bulk. The collection of a modes is

the list of ‘single particle’ supergravity modes that can be excited. This description does

not take into account that the field ϕ is effectively multi-valued. This has been discussed

recently in the work by the authors of the present paper in [37], where it is argued that

it gives an example where bulk reconstruction from classical boundary data fails (in the

sense of [61, 62]). It is not clear at this stage if this is special to LLM states, or applicable

in more general settings (formally, it works in all cases where the states are the large N

limit of the extremal chiral ring [99]). This needs to be investigated further.

Indeed, following [67] we can consider more general operators of the low momentum

modes (of the UV theory) and we find

⟨a†sas1 . . . asm⟩LM = 0 (4.153)

with m > 1. This result is easily obtained by using the Bogolubov transformation and

Wicks theorem with respect to the vacuum of the b, c oscillators and it’s true as long as
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s < M . What this means is that there are no obvious correlations between the low lying

modes, nor any quantum correlation that can be used to measure L,M directly without

going to high energy.

Another question that can be asked is how close this |□LM⟩ state is to a regular

coherent state of the free chiral boson. A rough estimate of a similar overlap to (4.124)

suggests that

| ⟨□LM⟩ Λ⃗|2 ≃ 1

LM
≃ exp(−M logL) (4.154)

which is exponentially suppressed at large M,L. This means that the new classical state

is very far from any one traditional classical state. Alternatively, we can say that the

state |□LM⟩ can only be approximated well by an exponentially large superposition of

classical states.

On taking double scaling limits in L,M , the new classical reference state is essentially

orthogonal to all other standard classical states of the chiral boson theory and should

not be thought of any longer as a Schrödinger cat state, but a classical state in its own

right. This classical state has different topology than the standard classical states and

this automatically implies that it has a different geometry. This is the sense in which

these new states represent different classical limits of the chiral free boson theory. In

particular, the existence of fluctuation fields δϕ(i), δϕ̃(i) with a well defined action on

the small Hilbert space of the corners defines a semi-classical quantization on top of the

classical state and can be used to argue that one can do effective and unitary quantum

field theory in the background of the state |□LM⟩.
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4.7.2 Beyond classical states

If we consider a semiclassical state (the classical coherent of the b, c oscillators state

with a few excitations of the b, c quanta), our consensus measurement can still be used to

get to the topology. The point is that the few extra quanta can only affect a few of the

modes for these measurements. The majority will have the same value of the uncertainty

as before, and the majority vote will win.

Consider now a very different type of state: the thermal state at temperature T >> 1.

This is a stand-in for the typical state of high energy. A lot of the physics associated

with this state in the LLM setup has been addressed in [91]. For us, the energy per mode

is equal to T for low enough modes, up to the cutoff scale (of order T ), but the state also

satisfies ⟨as⟩ = 0. This means that the occupation number per mode is Ns ≃ T/s and is a

rapidly varying function with s. For us this means that the effective topology that counts

the number of edges in the geometry is varying rapidly with scale: the state should not

be thought of as a classical geometric state with a fixed topology (the topology can not

be measured and have a meaningful answer in the consensus part of the test).

We can also consider the triangular diagram of equation 131 in [91], given by tableaux

of the typical form

|R2step⟩ = (4.155)
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with L rows. It is easy to check that there are no hooks with a length that is a multiple

3. That is, there are no hooks of length 3k for every k. So, we find that Ñ3k = 0 for

all k. This would suggest that the topology is that of the vacuum. However, when we

consider other modes we find that

⟨a†sas⟩ ≃ ⟨a†1a1⟩ = L (4.156)

where L is the number of hooks of length 1, so again the energy per mode that is not a

multiple of three is roughly fixed, but the effective number of edges varies wildly and we

fail to find consensus. Now the number of edges is not even a smooth function for the

rescaling parameter x ≃ s/L. It is only states that have few corners that are deemed

sufficiently geometrical, to the extent that one can fix their topology by checking that Ns

is independent of s for all s that are small (below a suitable stringy exclusion principle

energy).

These states fail to be classical also in that any attempt to produce oscillators like

the b, c oscillators fails because the naive stringy exclusion principle is very small: the

equivalent of the red corners can at most remove one or two boxes before interfering with

the addition of boxes in the anti-corners. In a sense, this is seen in that the edge of the

tableaux is rough (very jagged) rather than a straight line.

These other examples show that the geometric states |□LM⟩ are essentially charac-

terized by having low, but on average essentially constant, occupation number per low

momentum (energy) mode of the UV theory. Also, the different modes must be very

correlated to each other in order to be able to find fluctuation fields like the b, c systems

above that implement the required partial Bogolubov transformation from the collective

dynamics to the UV modes.
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4.7.3 Geometries with folds

Thus far, we have primarily considered only a couple classes of states: coherent states

and striped (i.e. LM) states. These are nice because we know how to write them down in

terms of oscillators and/or young tableaux, which we know how to deal with. Of course,

there are many other possible geometries in the full set of LLM states. There is a general

class that is particularly tricky, so we will touch on this class here. These are the states

that wrap in such a way that their number of edges that is a function of θ. For instance,

the state drawn in figure 4.7.3.

0 2π

Figure 4.6: An example of a state with a number of edges that is dependent on θ.

If one were to do a local measurement of one of these states, then one would expect to

find that the number of edges that varies with location. Here, we would like to determine

if there is a way to compute nedges(θ) from uncertainty computations. Notice that here

we do not have an obvious candidate for the state in terms of Young tableaux. Instead

we expect the state to be complicated in that basis. The reason to say so is that such

geometries also arise in the study of the c = 1 matrix model [112] and in that case

they result from Hamiltonian evolution of more standard coherent states. But already

coherent states superpose a lot of Young tableaux, and such evolution would scramble

a lot of the phases between the different basis elements. The fact that such states exist
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point to the non-triviality of the classical limit in the c = 1 matrix model.

The local commutation relation of our field operator can be computed using
[
ak, a

†
j

]
=

kδk,j. We find

[
ϕ̂ (θ) , ϕ̂ (θ′)

]
=
i (2π)

2
[∂θδ (θ

′ − θ)− ∂θ′δ (θ
′ − θ)] (4.157)

As before with striped states, we will want to decompose our operators into pieces that

act on each edge or anti-edge. Here, we will do this as follows

ϕ̂ (θ) =

nedges(θ)∑
I=0

ϕI (θ)−
nanti−edges(θ)∑

J=0

ϕ̃J (θ) (4.158)

where, as before, the tilde refers to operators that act on an anti-edge. Also note the

operator-denoting hats are dropped on the edge fields for notational convenience. We see

that unlike before, this decomposition is θ-dependent. That is, the range the indices run

over depends on theta, just as the number of edges does.

It is easy to see that these subfields should obey the same local commutation relations

as the field ϕ̂(θ) with signs that depend on if the field is at a regular edge or an anti-edge

[
ϕI (θ) , ϕJ (θ′)

]
=
i (2π)

2
[∂θδ (θ

′ − θ)− ∂θ′δ (θ
′ − θ)] δIJ (4.159)

and [
ϕ̃I (θ) , ϕ̃J (θ′)

]
= −i (2π)

2
[∂θδ (θ

′ − θ)− ∂θ′δ (θ
′ − θ)] δIJ (4.160)

These signs ensure that the commutation relations of the field ϕ̂(θ) are preserved. One

way to understand this is that the coefficient of the commutation relation of the ϕ field

can be understood as the anomaly coefficient of the chiral boson. If we normalize this

coefficient to one for ϕ, then we find that the ϕI have anomaly equal to one, and the
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ϕ̃J have anomaly minus one. The fact that there is one more ϕI than ϕ̃J locally is the

statement that the combined effective field theory of the ϕI , ϕ̃J has the same anomaly as

the UV theory of ϕ. In this sense, the effective field theory near our reference states has

anomaly matching between the UV representation and the collective degrees of freedom.

Now, we will call δϕ the quantum field relative to the background field. That is, we

call

δϕI = ϕI − ⟨ϕ̂I⟩ (4.161)

and similar for ϕ̃J and ϕ̂.

To proceed further, we can consider breaking our field into raising and lowering oper-

ator pieces for each of the indices δϕ̂ = δϕ+ + δϕ− as was done in the multi-edge regular

geometry by Fourier transforms. Our problem in this case is that we do not know the

vacuum state. In the standard multi-strip geometries this is achieved by requiring that

in the translationally invariant multi-strip geometry, the Fourier modes of the operators

for the edge modes are raising/lowering operators depending on if the mode adds or sub-

tracts energy relative to the reference state, with a provision that changes the assignment

for anti-edges relative to edges. This is demonstrated for the strip geometries with the

explicit construction based on the Young diagram representation of states. Here we have

to choose a vacuum, because the multi-fold geometries are not translation invariant. We

would still want the raising/lowering operators of the field ϕ to be locally in the same

decomposition as for multi-edge states and the lowering operators of the ϕ̂I , ϕ̂J to act

trivially on the reference states.

Combing this with our edge/anti-edge decomposition, we make the approximation

that

δϕ+(θ) ≃
nedges(θ)∑
I=0

δϕI+(θ)−
nanti−edges(θ)∑

J=0

δϕ̃J−(θ) (4.162)
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where we know that the lowering operator on anti-edges adds energy, so should be grouped

with the raising operator piece. We will call this the Local Multi-Edge approximation

(LME approximation). Notice that this is a statement about raising and lowering opera-

tors relative to the state, so we have subtracted the classical value of the fields and only

included the fluctuation piece. This is important because we want to compute the un-

certainty in the measurement relative to the classical state (we did a similar step on the

multi-edge geometries when we argued that the shift by the field vevs is an automorphism

of the Weyl algebra).

Notice that the splitting into raising and lowering operators is not really local. How-

ever, it can be approximately local under some circumstances: as long as the region over

which the splitting is done is much larger than the typical wavelength of the fields con-

sidered, the approximation makes sense. This means that the vacuum is very similar to

the multi-edge setups locally on length scales that are small relative to where the folds

begin and end. The finite size corrections should depend on the separation between the

folds.

To proceed further, we start by convoluting the field operator ϕ̂ with a test function

f(θ) to build a new operator

ϕ̂f =
1

2π

∫ 2π

0

f (θ) ϕ̂ (θ) dθ (4.163)

Our goal is to use these operators to estimate uncertainties and correlators with particular

choices of f . The role that f plays is to select the correct wavelengths of the modes. If

we are worried about the details where the folds are located, we can take f to be nearly

vanishing near these regions, but we will not do so here.

It will turn out that the operators given by ϕ̂f , ϕ̂g with f = eimθ and g = e−ikγ is just
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what we need. Notice that, in a more familiar form, this is simply

ϕ̂eimθ ϕ̂e−ikγ = ama
†
k (4.164)

Now, let’s try to compute the expectation value of this for a folded state, which we will

call |fold⟩.

⟨fold| ϕ̂eimθ ϕ̂e−ikγ |fold⟩ = 1

(2π)2

∫
dθ dγ eimθe−ikγ ⟨fold| ϕ̂(θ)ϕ̂(γ) |fold⟩ (4.165)

We can break this up into its raising and lowering pieces

=
1

(2π)2

∫
dθ dγ eimθe−ikγ ⟨fold|

(
ϕ+(θ) + ϕ−(θ)

) (
ϕ+(γ) + ϕ−(γ)

)
|fold⟩ (4.166)

Because of our choice of sign for the exponentials of f and g, if we actually write out the

raising and lowering pieces, we find that upon integration, ϕ+(θ) and ϕ−(γ) will vanish,

leaving

=
1

(2π)2

∫
dθ dγ eimθe−ikγ ⟨fold|ϕ−(θ)ϕ+(γ) |fold⟩ (4.167)

We can now expand this in terms of pieces that act on each edge and anti-edge

=
1

(2π)2

∫
dθ dγ eimθe−ikγ ⟨fold|

nedges(θ)∑
I=0

ϕI−(θ)−
nanti−edges(θ)∑

J=0

ϕ̃J+(θ)


×

nedges(θ)∑
I=0

ϕI+(γ)−
nanti−edges(θ)∑

J=0

ϕ̃J−(γ)

 |fold⟩

(4.168)

Here, if we zoom in on any small region in θ, we imagine that the folded state will look

like a striped state. So, locally, we expect that these operators will act on the folded
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state, just as they would on a young tableaux state, giving

≃ 1

(2π)2

∫
dθ dγ eimθe−ikγ ⟨fold|

nedges(θ)∑
I=0

(
ϕI−(θ)ϕI+(γ)

)
|fold⟩ (4.169)

We notice now that we can write this as

=
1

(2π)2

∫
dθ dγ eimθe−ikγ ⟨fold|

nedges(θ)∑
I=0

[
ϕI(θ), ϕI(γ)

]
|fold⟩ (4.170)

This, again, only works in this way because of the sign of the exponentials in f and g,

causing some of the terms to vanish upon integration. Others vanish because as you

zoom in the state will look like a vacuum young tableaux state. Finally, we can use the

known commutation relation, giving

=
1

(2π)2

∫
dθ dγ eimθe−ikγ ⟨fold|

nedges(θ)∑
I=0

i (2π)

2
[∂θδ (γ − θ)− ∂γδ (γ − θ)] δII |fold⟩

(4.171)

Again, remember the decomposition is location dependent, with the index I running over

each edge at each location. We see then that summing over δII simply gives the number

of edges at each location.

=
1

(2π)2

∫
dθ dγ eimθe−ikγ ⟨fold| i (2π)

2
[nedges(γ)∂θδ (γ − θ)− nedges(θ)∂γδ (γ − θ)] |fold⟩

(4.172)

Integrating by parts off the delta functions onto the exponentials gives

=
(m+ k)

2(2π)

∫
dθ ei(m−k)θnedges(θ) (4.173)
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Recalling that the original operator was equivalent to ama
†
k, we find

⟨fold| ama†k |fold⟩ ≃
(m+ k)

2(2π)

∫ 2π

0

dθ ei(m−k)θnedges(θ) (4.174)

So, we see that these matrix elements give the Fourier transform of the number of edges.

Notice that if we had done the same computation starting with f = e−imθ and g = ikγ,

everything would have followed similarly, leading to

⟨fold| a†mak |fold⟩ =
(m+ k)

2(2π)

∫ 2π

0

dθ ei(m−k)θnanti−edges(θ) (4.175)

The LME approximation also produces the following two results:

⟨a†ka
†
m⟩fold = ⟨akam⟩fold = 0 (4.176)

which result from no mixing between raising and lowering operators of the same collective

fields.

As a consistency check, we get that

⟨fold| a†mak |fold⟩ = (⟨fold| ama†k |fold⟩)
∗ (4.177)

and that

⟨fold| a†mak |fold⟩ = ⟨fold| aka†m |fold⟩ (4.178)

for m ̸= k, which follows because nanti−edges = nedges − 1, so they have the same Fourier

coefficients for the non-constant mode.

As a check of this proposal, we can evaluate it in the case of the multi-strip geometries.

We would then expect this to agree with our previous result for young tableaux states.
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Here, we would find a constant number of edges, giving

⟨YT| ama†k |YT⟩ =
(m+ k)

2(2π)

∫ 2π

0

dθ ei(m−k)θnedges = mδm,knedges (4.179)

as computed previously. And similarly for the anti-edge calculation.

The upshot of the computation is that we can argue that n(θ) is encoded in the

expectation values of ⟨fold| (am−⟨am⟩)(a†k−⟨a†k⟩) |fold⟩. These are non-trivial correlations

between the modes of the field, valid for modes m that are larger than the inverse of the

separation between the folds (measured with respect to 2π). A pre-requisite for a state

to have a non-trivial topology is that n(θ) ̸= 1 someplace. This means that at least one

of these correlators (generalized uncertainties) is different than the ones in the vacuum.

If n(θ) is non-constant, then some correlators with m ̸= k must be non-vanishing.

A test to determine if a state could in principle be geometric is that since the Fourier

coefficients only depend on m− k, there has to be a large degree of consistency between

the correlations of the different modes. That is, even for semiclassical states with multi-

edges, one can build a consensus measurement of n(θ): most of the modes that should be

identical (with the proper normalization dependent onm, k) and determine the consensus

measurement of the Fourier transform of n(θ), but again, it is not a single operator

measurement on the Hilbert space of states that produces the result.

At this stage we do not have a clear understanding on how to incorporate the finite

size corrections. They should be small for short wavelengths. We should also expect

that there are additional small corrections to the LME approximation related to how

the transitions from one value of n to another are handled. At this stage the LME

approximation is not systematic and is used instead to set a benchmark for how such

correlations should behave. This issue needs to be studied further and is beyond the
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scope of the present paper.

Notice that eventually we also run into trouble at high frequencies, because we expect

there to be a local bound on the momentum. In the Young tableaux case this occurs when

the hooks at different corners start interfering with each other. A similar phenomenon

should appear locally at each location of θ and should indicate a local stringy exclusion

principle.

4.8 Entanglement measurements of topology

The particular model we have studied, as a quantum mechanical theory is a free field

theory. The Hilbert space is a Fock space with a natural set of raising and lowering

operators (a set of commuting algebras), and we can think of this Fock space as having

a canonical product structure

Htot ≃ H1 ⊗H2 ⊗ · · · ⊗ H∞ (4.180)

where the Hilbert space basis is defined by kets that have have all but finitely many

oscillators in the ground state. The Hilbert space itself is the L2 completion of states

made from this basis. We use the monicker H∞ to indicate the infinite product for all

sufficiently large Hn. Because we have this canonical factorization structure, it is possible

to take a pure state in H and find a reduced density matrix for each of the modes, ρ̂1, ρ̂2

etc, or for more modes grouped together ρ̂ij, ρ̂ijk etc. It is the structure under this class

of factorizations that we will try to understand for the states studied in the previous
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section. The total Hamiltonian is

Ĥ =
∑
s

a†sas =
∑
s

sN̂s (4.181)

We will aim to measure the entanglement entropies for each of these density matrices to

characterize the state. The idea is to understand the entanglement structure of the state

and to try to use that structure to measure the topology of the geometry etc. In a sense,

this is putting to flesh the idea that entanglement can be the source of geometry a la

Van Raamsdonk [72]. It is unclear how to implement this calculation as a calculation of

entanglement entropy in gravity by a minimal surface [79]. This is mainly studying the

momentum space entanglement in the quantum field theory (in [113] this information is

related to the Wilsonian effective action ).

Consider a state that is an energy eigenstate of the full Hamiltonian (e.g. |□⟩LM ,

which has energy E = ML). We can decompose any such state, singling out the jth

oscillator, to find the reduced density matrix. If we do this, we can write the state as

follows

|ψ⟩ =
∑
n

ξn |n⟩j ⊗ |wn⟩ (4.182)

where |wn⟩ includes occupation information about all the other oscillators. We can now

use

Ĥ |ψ⟩ =
∑
n

ξnĤ |n⟩k ⊗ |wn⟩ =
∑
n

ξn(n+
∑
k ̸=j

kN̂k) |n⟩j ⊗ |wn⟩ = Eψ |ψ⟩ (4.183)

We see the unevaluated part of the Hamiltonian
∑

k ̸=j kN̂k acts only on |w⟩n. When we

dot this with j ⟨ñ|, we find that the states |wn⟩ are different eigenstates of a Hermitian
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operator. ∑
k ̸=j

kN̂k |wñ⟩ = (Eψ − ñ) |wñ⟩ (4.184)

As such, they are orthogonal and can be made orthonormal. The reduced density matrix

for ρj can be obtained from tracing with any orthonormal basis and we choose the |w⟩n

themselves. We find then that the reduced density matrix is diagonal in the energy basis

ρ̂j =
∑
n

|ξn|2 |n⟩j j ⟨n| =
∑
n

pn |n⟩j j ⟨n| (4.185)

where the pn are the probabilities to find the state |ψ⟩ has the jth oscillator with occu-

pation n upon a measurement of N̂j. Our goal is to compute the coefficients 1 ≥ pn ≥ 0,

and therefore the entropy

sj = −
∑
n

pn log pn (4.186)

for each mode j.

We will start by considering the state |△⟩n, for simplicity. The idea is that we can

compute quantities like

n⟨∆|a†k1 ak1|∆⟩n = 1 (4.187)

if k ≤ n. Otherwise it vanishes. This also can equivalently be written as an+1
1 |△⟩n = 0

because there are no states with negative energy. This in particular implies that pk = 0

for k > n so we only have to determine finitely many of the pk. This results trivially

from applying the Murnaghan-Nakayama rule in operator form repeatedly.

Because this number is only made of expectation values of operators that act on H1,

the complete information is encoded in the density matrix ρ̂1. This equation can be

written as

tr(ρ̂1a
†k
1 a

k
1) = 1 (4.188)

166



Superposition induced topology changes in quantum gravity Chapter 4

One can easily evaluate the matrix elements of the operator in the number basis

a†k1 a
k
1 |j⟩ =

j!

(j − k)!
|j⟩ (4.189)

The equation (4.188) reads
n∑
j=0

pj
j!

(j − k)!
= 1 (4.190)

for all 0 ≤ k ≤ n and together with pj = 0 for j > n is a complete linear system so all

of the pj can be determined. The first of these equations is tr(ρ̂1) = 1. The second one

is ⟨N̂1⟩ = 1. We can preform the same computation for the other modes, say the jth.

Computing ρ̂j leads to
[n/k]∑
l=0

p
(j)
l

l!

(l − k)!
= 1/jk (4.191)

which can be solved to give us the probabilities, p
(j)
l (the probability for the jth oscillator

to have occupation l).

Now, let us consider |□LM⟩ states. Again, the simplest way to understand reduced

density matrices starts by understanding that the density matrices ρ̂j are diagonal in the

occupation number basis. So, our job is to compute

⟨a†kj akj ⟩LM = tr(ρ̂ja
†k
j a

k
j ) (4.192)

and to use these equations to compute the elements of ρ̂j. It will prove helpful to use

our partial Bogoliubov transformation (4.132). From

aj = b
(1)
j + b

(2)
j − c

(1)†
j (4.193)

where, recall that each piece now acts on a particular edge or anti-edge. The computations
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can be performed for small enough k (below the stringy exclusion principle) by using Wick

contractions of the c oscillators only

⟨a†kj akj ⟩LM ≃ b,c ⟨0|
(
c
(1)
j

)k (
c
(1)†
j

)k
|0⟩b,c (4.194)

where we explicitly write the LM state as the vacuum state for the b
(I)
j and c

(J)
j oscillators.

This can be computed and gives

b,c ⟨0|
(
c
(1)
j

)k (
c
(1)†
j

)k
|0⟩b,c = k!jk (4.195)

for small enough k. At larger k eventually we find that acting with too many aj kills the

state, and that generically the equation (4.195) is an upper bound for the quantities we

want. For the case of more edges, we get a similar answer

c ⟨0|

(
nedges∑
I=0

c
(I)
j

)k(nanti−edges∑
J=0

c
(J)†
j

)k

|0⟩c = k!jknkanti−edges (4.196)

This is because now there are nanti−edges c fields. We write this set of equations as

nanti−edges∑
J=0

pj
j!

(j − k)!
= k!nkanti−edges (4.197)

Notice, we have the same equation for each oscillator. This can be seen easily from

writing it in terms of canonical normalization oscillators, rather than oscillators with

the field theory normalization that was computed in equation (4.36), and this is exact

below the stringy exclusion principle. After the stringy exclusion principle is crossed we

do not understand sufficiently well how the values on the right hand side taper off and

eventually vanish.
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This suggests that a good approximation to the entropies can be had if we don’t

impose the stringy exclusion principle at all, assuming that for sufficiently high values of

k the elements of the density matrix are already sufficiently suppressed that their con-

tribution to the entanglement entropy is negligible when we make them slightly smaller.

To solve (4.197) when we don’t have bounds, we consider a (thermal) partition func-

tion given by

Z[x] =
∞∑
j=0

xj (4.198)

where we are saying pj ∝ xj. Consider acting with xk∂kx on Z[x]. We get

xj∂kxZ[x] =
∞∑
j=0

xkj(j − 1) . . . (j − k + 1)xj−k =
∞∑
j=0

j!

(j − k)!
xj (4.199)

which is of the form we want. To normalize the answer, we should divide by the sum of

the non-normalized p and we get that the following should be true

N
∑
j=0

pj
j!

(j − k)!
= Z[x]−1xk∂kxZ[x] = k!nkanti−edges (4.200)

with N the normalization. Now, the sums are straightforward to compute, and give

Z[x]−1xk∂kxZ[x] = (1− x)xkk!
1

(1− x)k+1
= k!

(
x

1− x

)k
(4.201)

so that the equations are solved if

nanti−edges =
x

1− x
(4.202)
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or equivalently

x =
nanti−edges

1 + nanti−edges

(4.203)

We should take this to mean that the moments of the density matrix ρ̂j are identical to

those of a thermal density matrix for all low enough moments. This means that the two

density matrices should be very similar. In the thermal density matrix the large pk are

exponentially suppressed. Indeed, the thermal density matrix is the one that maximizes

the entropy if we fix the number operator ⟨N̂⟩, so at worst we get an upper bound for

the entanglement entropy mode per mode.

Let us try to explain this. At first sight, this seems strange. The reason why having an

approximately thermal density matrix is strange is that the state we started with |□LM⟩

has a supergravity dual that is free from horizons. However, notice that the method of

computing the moments based on (4.132) starts from a partial Bogolubov transformation

where three modes b(1,2) and c1 are mixed. We can find the other two linear combination

of modes that gives rise to a full Bogolubov transformation. Use for example

d†s =
1√
2
(b(1)†s − b(2)†s ), e†s =

√
2c†s −

(
b
(1)
s + b

(2)
s√

2

)
(4.204)

We can compute the moments of the distribution in two different ways. In one, we use

the oscillator basis b, c and the vacuum |0⟩bc to get the answer. In the other way, we

integrate out the fields e, f in the vacuum |0⟩bc and compute a density matrix for the a

modes directly. This Bogolubov transformation generically produces a squeezed state,

and integrating the d, e modes gives rise to a Gaussian density matrix 3. This Gaussian

density matrix is not pure, but thermal, as is typical in gravitational computations [60].

3This is explained for example in [114] and references therein, where this statement follows from a
simple generalization of eq. 40, and see also appendix B
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Notice that this density matrix is not computed directly in the full Hilbert space H, but

is rather computed in the small (nearby) Hilbert space from equation (4.134)

Hnearby ≃ Hblue ⊗Hgreen ⊗Hred (4.205)

which is readily generalized to the other more general multi-edge solutions.

What is interesting is that the factorization of the full Hilbert space induces a factor-

ization in the nearby Hilbert space. This is because the algebra of observables a†, a acts

simply on Hnearby. That is, the operators do not take the states out of Hnearby when we

use simple observables made of few such a below the stringy exclusion principle.

Indeed, this factorization structure and the corresponding quasi-thermal structure

of the state persists even when we consider coherent states of the b, c modes. These

can be obtained by a shift in the algebra of the b, c fields. This is an automorphism of

the algebra. Similarly, the answer is simple in terms of the shifted modes as − ⟨as⟩ =∑
b
(i)
s − ⟨b(i)s ⟩ − (c

(i)†
s − ⟨c(i)†s ⟩) that appeared in equation (4.151) and similar for the d, e

modes. Integrating out the d, e modes or the shifted d, e modes gives the same result.

The density matrix for the shifted a modes will still be Gaussian, and the entanglement

entropy of ρ̂1 does not change: it is independent of the choice of basis in which we perform

the computations. This entropy will only depend on the expectation value of the (shifted)

occupation number. Since this will be roughly the same for all modes below the stringy

exclusion principle, we find that after a straightforward computation

si = (nedges log(nedges))− nanti−edges log(nanti−edges) (4.206)

and we can measure nedges by consensus of the entanglement entropies of the different

modes. This is not too different from the analysis in the previous section.
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An additional interesting fact we observe is that in the small Hilbert space, the differ-

ent a modes arise from integrating out different d, e modes. The density matrices ρ̂ij, ρ̂ijk

etc. are factorized! This means that there is no mutual information between the different

modes as for sufficiently small s. One expresses this by saying that there is no entan-

glement between the modes as. The entanglement occurs between these low-momentum

modes and very high momentum modes (at or beyond the stringy exclusion principle).

We can say that these geometries arise from a special kind of UV-IR entanglement, but

that there is no IR-IR entanglement contributing to the geometry.

Indeed, to the naive classical holographic observer that can only measure simple

combinations of the low a modes, the information of the d, e modes is almost completely

hidden (except for the total energy and that they act to purify the state). This suggests

that for these backgrounds the reconstruction procedure [61, 62] will fail to construct

excitations of the d, e modes, which are clearly contributing to bulk fields of supergravity

modes. The precise way in which this could happen in these geometries is very interesting

but is also beyond the scope of the present paper. A partial answer has been discussed

in [37].

Another interesting calculation to do is to understand how big an overlap between a

state like |□LM⟩ and a general coherent state of the free field theory can be. The best

way to estimate this is to realize that the mode per mode entropy bounds how much

overlap there is mode per mode. As coherent states are factorized between the modes,

we get rather easily that

| ⟨□LM⟩Coh|2 << exp(−
L∑
i=1

si) ∼ exp(−Ls1) (4.207)

which is exponentially suppressed in the dynamically generated cutoff. This means that
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when we think of the states |□LM⟩ and other multi-edge geometries they are always an

exponentially large superposition of coherent states around the trivial geometry. This is

important in other setups with black holes [110].

4.8.1 Entanglement measurements of Geometries with folds

We can do a similar analysis of the entanglement entropy, mode per mode, for the

geometries with folds. On a first pass, because of the LME approximation, for a single

mode we find that the uncertainty of each mode is given by

⟨(ak − ⟨ak⟩)(a†k − ⟨a†k⟩)⟩ =
k

2π

∫ 2π

0

n(θ)dθ = knav (4.208)

with the average number of edges denoted by nav. Moreover we have that ⟨(a†k−⟨a†k⟩)2⟩ =

0.

The state for mode k results from a Bogolubov transformation of the collective modes

with a shift. Integrating out the ’orthogonal’ modes, the result is a regular thermal state

for the shifted mode k. Such a thermal state is completely determined by the nav. The

entanglement entropy of such a mode is

sk = (nav) log(nav)− (nav − 1) log(nav − 1) (4.209)

so again, mode per mode, the entanglement entropy of a single mode is constant and

measures the average number of edges over θ. This again makes it possible to measure

nav by a consensus measurement on semiclassical states (those that differ from a folded

geometry by a finite number of collective excitations).

Now, we also find that the LME approximation implies that there are non-trivial
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correlations between the different modes. Therefore the density matrix does not factorize

anymore. This implies that there is mutual information between the different collections

of modes that one can produce. This is determined uniquely by the Fourier transform of

n(θ). Studying the detailed structure information of all of these correlations is beyond

the scope of the present paper.

We should note that as is usual with entanglement entropy (mode per mode) and mu-

tual information between modes, one can do unitary transformations on each of the sub-

factors without changing the answer. A particularly interesting unitary is exp(iαsa
†
sas/s),

which rotates the (shifted) s oscillator by a phase αs. These unitaries preserve the en-

tanglement entropy mode per mode, but they modify the correlators as follows

⟨ama†k⟩ → ⟨ama†k⟩ exp(i(αk − αm)) (4.210)

etc. Now the phase of the correlation ⟨ama†k⟩ should match the phase of ⟨am+wa
†
k+w⟩,

but generically these unitaries do not do that, however, the mutual information of the

factorization is not changed. This means that a simple unitary operator destroys the

’uncertainty measurement’ of geometry without changing the entanglement entropy mea-

surement. This indicates that the entanglement entropy measurement of topology is much

weaker than the uncertainty measurement of topology: states that are (clearly) non ge-

ometric would pass the entanglement entropy consensus measurement of topology, but

not the uncertainty measurement tests.

Notice also that if nav = 0, then the state is a coherent state: a minimum uncertainty

packet in each of the Hilbert spaces and the entropy for each sub-Hilbert space for a mode

k or any collection of them is zero. In general this implies that the other correlators should

vanish. This means that there are inequalities between the generalized correlators that
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need to be satisfied. Violations of these inequalities should in general lead to ‘negative

probabilities’: violations of unitarity. Some examples of such violations can be understood

in generalized half-BPS solutions of type IIB supergravity that have closed time-like

curves [115, 116]. Studying these inequalities would also be very interesting, but again,

this is beyond the scope of the present article.

4.9 Discussion

We have discussed topology changes in the set of LLM geometries and their dual

realization. We focused on a particular simple limit where the full mini-superspace of

half BPS geometries is quantum mechanically given by a free theory: the free chiral

boson.

We found that since the coherent states of the free chiral boson are overcomplete,

any state in the quantum theory can be written as a superposition of this class of states.

These coherent states all have the same ‘trivial topology’ as the vacuum. It is curious that

one can construct states with different topology (also known as bubbling solutions) just

by superposing states with a trivial topology, and the new topologically distinct states

are macroscopically very different from any of the states that we are superposing. The

overlaps between the new state and the elements of the overcomplete basis of coherent

states are all exponentially suppressed. We state this by saying that topology changes can

be triggered by superposition. This is a superposition of an exponentially large number

of states, not a naive Schödinger cat state that superposes just two distinct geometries.

A simple, yet deep, consequence of this fact is that topology can not be measured

by a single operator measurement. That is, the Hilbert space of states does not admit

an orthogonal decomposition into different topological types. So if topology cannot be
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measured by an operator, it seems reasonable that finer geometric information might

suffer the same fate. This puts into question how (a seemingly unitary) effective field

theory of gravity can be compatible with this non-operator property.

To understand the physics of our example, it became important to understand the

physical states in more than one basis of vectors for the Hilbert space of states. The set of

wave functions can be written either in an oscillator basis for the chiral modes, or in terms

of a Young Tableaux basis (the free fermion realization of matrix models). We carefully

developed the dictionary between them, which is a generalized Fourier transform. An

important result is that the set of raising and lowering operators of the free chiral boson

act simply on the Young tableaux basis. We were able to show that this action encodes

the Murnaghan-Nakayama rule for evaluating characters of the symmetric group, and

the sign that is needed for this rule is supplied by Fermi statistics.

Armed with these tools we were able to show that topology changes are characterized

by two important properties. First, a local field in the free field chiral boson becomes

effectively multivalued so that in the simplest case

ϕ(θ) = ϕ1(θ) + ϕ2(θ)− ϕ̃1(θ) (4.211)

The total field, which in our case can be identified with the charge current density,

can be written effectively as contributions from edges of the droplet distribution. This

decomposition is valid only for nearby states to a reference state with a different topology

from the vacuum. The important result for us is that the fields ϕ1,2 and ϕ̃1 on the subspace

of nearby states states are each given by a chiral free boson, and they all commute with

each other. The ϕ̃ field has negative energy states rather than positive energy. When

we mode expand, this decomposition is a partial Bogolubov transformation. This result
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puts into firmer footing observations that have been made in [82], where we can also

extend the ideas straightforwardly to fairly general coherent states.

On the face of it, this dynamical generation of new degrees of freedom is a violation

of the Zamolodchikov c-theorem. A theory with central charge c = 1 in the UV flows to

a theory which is seemingly of central charge c = 3 in the IR. It is better to write this

central charge as follows cIR = (2, 1), where we are indicating by the decomposition the

fact that the first two act to increase the energy, and the other set of oscillators acts to

decrease the energy. This is the signature of the energy as a quadratic form, similarly as

is done with spacetime dimensions. It is the fact that we can lower the energy around

the new vacuum that allows the violation of the c-theorem: the vacuum of the new state

is not stable. This property essentially arises from trying to do effective field theory in

a very special non-vacuum state. Notice that cUV = 2 − 1, so something similar to an

index is preserved in the flow, indeed we found that this is the chiral anomaly of the

system. The positive energy bosons carry anomaly one, and the negative energy bosons

carry anomaly (−1).

The second property of the solutions with new topology is that they are characterized

by having low uncertainty mode per mode in the mode expansion of the field ϕ. In

this sense, the states can be said to be classical. We found that this uncertainty can

be used as an order parameter to measure the topology. One can also similarly use

the entanglement entropy of these modes to characterize the topology. The type of

measurement that gets the topology is either an uncertainty measurement or an entropy

measurement. Numerically, this results from measuring several quantum observables

that don’t commute with each other. We use this information to form an algebraic

combination of the measurements that can be used to measure the topology. This ends

up being a non-linear measurement on the wave functions. To offset the possibility
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that one or a few of the new modes is excited in a non-classical state, the non-linear

measurement needs to be performed on a large number of modes. The majority rule

decides the topology by what we have termed a consensus measurement.

It is clear that this can be generalized beyond the simple stripe geometries we con-

sider for more intricate bubbles. The multi-valuedness should then be thought of on a

local basis in the coordinate θ, and the partial Bogolubov transformation should also be

thought of in terms of a local expansion. We did a partial analysis of this setup with

an approximation that describes the state as a locally multi-edge geometry. we observed

that within this approximation one could find that generalized correlators encoded the

fourier transform of the number of edges.

Also, the partial Bogolubov transformation makes it clear that the set of nearby states

is somewhat compatible with effective field theory. The effective quantum fields are the

new collective modes ϕI , ϕ̃J . They exist on a neighborhood of the reference state. These

collective fields do not stretch all the way to the UV. They have an effective cutoff given

by the stringy exclusion principle, which depends on the details of the reference state.

Because these modes only exist relative to some reference background they should be

thought of as being background dependent. This seems to get around the problem of

geometry being quantized by operators in a semiclassical approximation: the operators

that are needed to do so are state dependent in a way that depends weakly on the state,

which is not too different from the background field method.

To bubble or not to bubble

Given that we can trigger changes in topology by superposition and that we can get

all possible topologies this way, we can argue that thinking of a quantum gravity theory

as a sum (or path integral) over all topologies is at best ambiguous.
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There are cases where this sum over topologies is absolutely correct. For example, in

the topological string one can sum over topologies associated with crystal melting [117].

In that case, each shape of the melted crystal is a different topology. The limit shape

of the crystal is the geometry of the string at large distances. The partition function

depends on a probe brane and there is a parameter a that describes how far the probe

brane is from the crystal. At large a, the molten crystal can be ignored. For a ≃ 1 one

gets the quantum corrected stringy geometry, and for a ≃ gs one is in the quantum foam

regime.

We can form an analogy with this setup. The basis of Young tableaux states is a

complete basis of states. Each of these is topologically distinct in the naive classical

supergravity approximation. The reason for this is that even though one might have the

same spacetime topology for two configurations (same number of disks), one should also

count the quantized flux through each cycle as topological data (this can not be deformed

by small amounts, but only by integers, due to the Dirac quantization condition). In this

basis, any state is in principle a superposition of an infinite number of distinct topologies

that can be measured. This is not a complete set of all the possible topologies, only

those that can be realized by rotationally invariant configurations. One can expect that

for sufficiently classical states, like those that are close to our reference states, one can

define an average (coarse-grained) topology that only counts the big corners, but not

the small indentations of corners (these are small semiclassical excitations around the

reference state). The distinction between geometry and excitations about a geometry

depends on energy (this replaces the parameter a of the topological string). Our consensus

measurement of topology necessitates a discussion of where we set the stringy exclusion

principle. Unless we already know the state, this is not known a priori. Indeed, in our

discussion in this paper, this is usually state dependent. When we try to go to lower
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energies for the probes, the geometry appears to bubble more, while when we go to much

higher energies than the stringy exclusion principle dictates, the topology looks trivial.

In our case, this is tied to how entangled the different long wavelength modes of the

oscillators are to the UV degrees of freedom in the free chiral boson. We can not discuss

this entanglement without first defining what we mean by long wavelength versus short

wavelength.

On the other hand, we can also define the theory entirely in terms of classical coherent

states of the trivial topology as we argued in this paper. This is a different partition of

unity (a different choice of basis states for the Hilbert space). In this case, the definition

of topology depends on the precise superposition of states that we take. More precisely,

it is contingent on our ability to find a reasonable nearby space of excitations to a given

reference state that can be associated to small deformations of a classical geometry. This

is a background dependent formulation of the dynamics, similar to how one treats the

background field method. What is curious is that the existence of the new topologies

implies that there is more than one classical limit of the free chiral boson field theory.

This is to be understood in a double scaling limit.

In a certain sense, what we should be doing instead is to argue that the topology

is not meaningful on its own: all versions of topology that we have discussed so far

should be allowed at the same time, but most of them will not be useful descriptions

of the system. This is very familiar when we think about dualities in field theory and

string theory. Different duality frames are more or less useful depending on the size of

particular cycles, or in the strength of certain coupling constants. The prescription that

is more classical and permits us to get results with the least effort should be the preferred

duality frame. In this sense, we should argue that at least some aspects of topology in

the study of bubbling solutions correspond to a choice of duality frame. The frame that
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most easily describes a configuration should be preferred. When we move away from

simple configurations maybe none of the descriptions is useful on their own, but there we

have a picture of a duality web where as we move between configurations, we get natural

transitions in the topology of spacetime without any apparent singularity.

What is obvious is that if we want to have it both ways, we are double counting.

This has implications for the fuzzball proposal [118] (see also [119]) and the counting of

states in those geometries. It might be the case that in these other setups all different

geometries and topologies are superpositions of more basic coherent states with a fixed

topology. Understanding this intriguing possibility is beyond the scope of the present

work.

Decoding the hologram

A natural question to ask is to what extent, given a state with a different topology

than the vacuum of AdS5×S5, is one able to recover the geometry from naive holographic

data on the boundary. The techniques that usually permit one to do so are elaborations

on the Fefferaman-Graham expansion of the metric, extended to other fields [4]. A

hologram would give us the solutions for the vacuum expectation values of single trace

operators in the boundary, and that data should be useable to decipher the geometry of

the solution.

As noticed in [67], this data seems to be insufficient to understand the geometry of

circularly symmetric solutions of supergravity, as there is some ambiguity in how to do

that. For us, this data is given by the expectation values of the modes of the chiral

boson. For standard coherent states around the vacuum topology, this data is sufficient

to reconstruct the coherent state.

For solutions around a geometric circularly symmetric solution with non-trivial topol-
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ogy, it was first noticed in [82] that the excitations of the mode expansion of the ”trace”

modes on the UV theory (the free chiral boson) decompose into linear combinations of

modes at each edge. In this paper, we have proven this result and argued that the partial

Boguliubov transformation can be completed to a full Boguliubov transformation. We

have also seen that the long wavelength modes of the mode expansion of the chiral boson

of the UV theory act simply on these geometric states, and only a subset of the nearby

Hilbert space is accessible by these actions. This is a general property of having a partial

Boguliubov transformation. If we restore factors of N , and we have a solution with many

annuli and energy of order N2, the wavelength of the modes of the chiral boson become

dependent at energies of order N (this is the stringy exclusion principle scale). More

precisely, they fail to be planar at energies of order
√
N (see for example [120]), which

are still larger than the naive Planck scale N1/4.

A naive low energy observer would probe wavelengths up to the order of the Planck

scale. When extended to the boundary, the modes would all have long wavelengths

with respect to the stringy exclusion principle. The other modes of the Boguliubov

transformation become invisible and have to be treated as being traced over. We cannot

decode the hologram with the naive boundary data. This is true even if we have measured

the approximate radii of the circular droplets. In essence, we only measure a linear

combination of the geometric modes, and the other linear combinations are not accessible

to the holographic observer at infinity. The modes that are visible are effectively in a

generalized thermal state mode per mode and they are very entangled with the UV

modes.

This suggests that the reconstruction of local fields in the bulk from the boundary,

a la [61], is generically suspect in a low energy approximation for states with non-trivial

topologies. This setup ignores the information of the transplanckian modes and the
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underlying UV theory, which at this scale is not really geometric in the classical sense

any longer. If one acts with these types of mode operators of very high energy, one

disturbs the underlying geometry by either adding a D-brane or making excitations that

make the droplets meet with each other. A fluctuation this large is non-local any longer.

Also, entanglement by itself is a very coarse description of the state and is not neces-

sarily very useful. Although we have been able to realize horizon free geometries, where

measuring the momentum space entanglement can be used as an order parameter to de-

scribe the topology, and we realize precisely some ideas in [72] in a different context, the

precise set of states for which we get such a geometry are not uniquely determined by

this information. It is the construction of the modes that describe the fluctuations to the

nearby states to a reference state that actually represent the full details of the physics.

Final remarks

One of the main conclusions of this paper is that even though we have a complete

Hilbert space of states in which quantum mechanics is valid, the measurement of topology

is not the result of an operator measurement. If topology is measured classically by

integrating out a density made of polynomials of the curvature of the metric over the

manifold, as we expect for gauge invariant operators in gravity, the fact that the topology

cannot be measured by an operator seems to indicate that the metric (even modulo

gauge invariance issues) is also not described by an operator. In our construction, the

metric fluctuations around a sufficiently classical state exist relative to that state, but

the construction of such operators does not extend to the full phase space of the theory.

The generic state is non-geometric, but the semiclassical analysis is valid where it should

be. This seems to be one of the properties that we need in order to claim that spacetime

is emergent and not fundamental.
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The holographic modes at infinity always exists. In our case, they are the mode

expansion of the free chiral boson. These (boundary) modes give an approximation to

something that looks geometric in a Fefferman-Graham expansion. However, the modes

in the interior do not necessarily exist as operators. They might only be constructible

around particular classical configurations. The proposal we have for this phenomenon is

inherently non-linear: the modes that may exists in a superposition of states, do not exist

in any one of the states that we are superposing. This emergence of modes depends on the

entanglement of the soft modes with the UV and with each other. A non-linear proposal

for quantum mechanics defining the physics inside of the horizon has been put forward

by Papadodimas and Raju [121]. This proposal depends crucially on this entanglement,

and essentially only on this entanglement (the state is pure but typical, so the details

of the state are fairly random). For us, the entanglement of the modes is clearly not

enough. The modes that we build are all outside the horizon and their existence depends

on the state being just right.
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Chapter 5

Code Subspaces for LLM

Geometries

5.1 Introduction

The existence of gauge/gravity dualities [3, 4, 5] is remarkable and with each passing

day we discover a new piece to their puzzle. Part of why these theories are so mysterious

is because they often have non-intuitive and surprising properties that seem to lead to

paradoxes. One of these was recently resolved by Almheiri, Dong, and Harlow [122].

The puzzle they addressed was that a local field at a point in the bulk should have

vanishing commutators with fields that are spatially separated from them, including the

boundary. A point in the center of global AdS would be spatially separated from the

boundary at t = 0 (they belong to the same Cauchy slice) and would therefore have

to commute with all local operator insertions on the boundary. Such a field should act

trivially on the Hilbert space of states, and yet, be encoded as a non-trivial operator on

the boundary. That is, bulk information seemed to be non-localized in the boundary
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theory in an unexpected way. Their resolution was that though this might seem strange,

it is not an entirely new phenomenon and in fact has a very nice interpretation in terms

of quantum information theory. The idea is that the holographic correspondence acts

as a quantum error correcting code. The commutation properties that are required are

true in a subspace of the Hilbert space called the code subspace. It is this restriction

to the code subspace that makes it possible to have the vanishing commutators in an

effective sense, rather than as a statement on the full Hilbert space of states, where such

properties are forbidden by quantum field theory theorems. Since their original work,

there has been much progress in reinterpreting gauge/gravity dualities as holographic

codes (for instance [123, 124, 125]). In this paper, we will push the idea further. We

find that the language of code subspaces is a natural home for effective field theory and

further, this can be seen explicitly within the framework of the LLM geometries [63].

In standard quantum information theory, if one wants to encode a message, one

utilizes a Hilbert space of states larger than is necessary. One then constrains allowed

messages to a particular subspace, the code subspace. For instance, one might use a few

qubits to send a one qubit message, this provides a larger Hilbert space to work with and

allows the messenger to choose whatever subspace they like to work within. In [122], the

authors defined a set of code subspaces in AdS/CFT to be those formed as the linear

span of

|Ω⟩ , ϕi(x) |Ω⟩ , ϕi(xi)ϕj(x2) |Ω⟩ , . . . (5.1)

where the ϕi(x) make up some finite set of local bulk operators, which can be realized in

the CFT with the Hamilton-Kabat-Lifschitz-Lowe reconstruction of bulk operators [61].

Almheiry et al. take |Ω⟩ to be the ground state of the system (though they say one
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could also consider other semiclassical background states, as we will do explicitly). The

quantum error correcting properties of the gauge/gravity duality code make it possible

to have a realization of the fields ϕ in the code subspace that commute with operators

on the boundary, as long as one restricts the evaluation to states that belong to the code

subspace.

In this work, we start by discussing effective field theory around a given classical

background. We consider the Hilbert space accessible to an experimenter, which can be

built by acting on the background state with some set of effective fields, in a way similar

to equation (5.1). That is, we want to construct a space similar to the code subspace of

vacuum AdS, within the confines of effective field theory and show that this has a lot of

desirable properties for addressing more general questions of quantum gravity. Because

an experimenter will not have access to infinite energy, they cannot act with all fields

in the theory, but rather they are constrained by some cutoff (both in momentum and

occupation number). It will turn out that the details of what cutoff is appropriate for

each background will depend on the particular background under consideration. That

is, the formulation of effective field theory is state dependent in relation to the reference

state that we choose to expand from. We observe that the space built in this way exactly

matches the structure of the code subspace defined in [122] and we expand on this fact.

This is also very similar to how the Hilbert space of nearby states is built around black

hole states in the work of Papadodimas and Raju [121, 126], by starting with a reference

state. We discuss this philosophy in section 5.2.

In the rest of the paper, we deal specifically with the example of the LLM Geometries,

which are dual to the half-BPS states of N = 4 SYM. This is a very useful setup to work

with as it is a place where we understand both the geometric description [63] and the

field theory Hilbert space well [64, 65]. In fact, most of the exact computations turn
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out to be combinatorial in nature [38] (see also [127]). In section 5.3, we build some

necessary technology to do computations. We show that there are two convenient bases

for describing the set of half-BPS states: one that can be classified by Young diagrams

and one built by taking traces of powers of a matrix Z. In this section, we provide the

details of these two bases, describing how to go between them and computing their inner

products. These will be the tools we need both for the remainder of this work, and to

help generalize some constructions that were carried out in our previous work [38] for

finite N .

The states are dual to the set of half-BPS states in type IIB supergravity: the LLM

geometries. Each geometry in this set can be classified by a black and white coloring of

the plane. We consider the set of concentric ring configurations, because they are dual

to states that are simple to describe in terms of Young diagrams [63, 90]. Although in

principle other such geometries could be analyzed, the control of the states in the field

theory dual is poor and relies on approximations. With the concentric configurations,

we can make exact statements in the Hilbert space of states. These states dual to

concentric rings will be the background states upon which we build our code subspaces.

The nearby states that make up the subspace are built by acting with effective gravity

field perturbations on each edge of the rings, which causes them to deform. With a bit

of work, we are able to write down these fields explicitly so that we can build the states

as in (5.1) in a way that is suitable for our purposes. This is the content of section 5.4.

By only considering the geometric description, the aforementioned cutoffs are not

immediately clear and although in principle one should be able to derive them, it takes a

considerable amount of effort. So, instead, in section 5.5, we go back to the representation

of the states in terms of Young diagrams, where things become clearer. The well behaved

concentric ring configurations correspond to diagrams with few corners. The effective
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fields are build out of modes that act only in a particular corner of the diagram and one

can reproduce directly the supergravity analysis entirely with combinatorial techniques.

These techniques have been developed in various papers for different settings (see [120,

82, 106, 38, 127] and references therein).

In section 5.6, we undertake the problem of understanding the cutoff. The cutoff

is provided by constraining the excitations so that they do not simultaneously affect

multiple corners of the diagram and by requiring that they are sufficiently planar. This

corresponds to each field only acting on a single edge of the concentric rings and having

small energy, although the energy of an individual quantum can be much larger than the

Planck scale1. We can write these excitations in terms of modes that act in a particular

corner of the Young diagram and from these build a Fock space representation.

In section 5.7 we expand on some of our previous work [38, 40], where we compute

the topology of the states within a given code subspace. Previously, we were in the strict

N → ∞ limit, but here we go beyond that, taking N to be large, but finite. As before, we

find that we can extract the topological information from entanglement and uncertainty

calculations, though it requires more work: a number can not be guessed any longer from

a single mode, but it requires many modes instead. Here we also find a close connection

with the recent work of Balasubramanian, et. al. [128], who showed the existence of

entanglement shadows in the LLM geometries. We find that similarly, the extrapolate

dictionary seems to stop at the outermost anti-edge of the concentric ring diagrams. This

is the second edge starting from the outside going inward in the radial direction of the

LLM plane and it is the same place where the entanglement shadow begins.

Finally, in section 5.8 we consider the overlap that can occur between different code

subspaces. We look specifically at an example where you start with two different back-

1The energy of an individual quantum can scale like N1/2, rather than N1/4
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ground states and add particular excitations to each, which results in having prepared

two identical states from the viewpoint of Young diagrams, but whose construction indi-

cates that they should be assigned different metric operators. We discuss the ambiguities

that arise because of this fact, which in particular obscures one’s ability to write down a

globally well defined metric operator.

5.2 Code subspaces and effective field theory

In this section, we will discuss doing effective field theory around some classical back-

ground. We will consider the constraints put on an experimenter in this set-up and will

show how what we end up with matches previous definitions of code subspaces.

Let us start by assuming we are given a quantum state |B⟩ that is dual to a clas-

sical background for a field or gravitational theory. Eventually we will analyze a field

theory with a gravitational dual, using the gauge/gravity duality. Here, the state |B⟩

will correspond to a classical background in the bulk, rather than the boundary theory.

Though |B⟩ is a classical background, we need to be careful, because in the quantum

theory the quantum fluctuations can never be zero. Instead, we should think of |B⟩ as a

coherent state, where (effective) quantum fields have minimal uncertainty relative to the

background. We also want to be careful because we will often have a cutoff to account

for. For instance, if |B⟩ is a ground state for a gapped system, |0⟩, the cutoff might

be in the energy available to us. This will restrict us in two different ways. First, it

will require that the only modes that can be excited are long wavelength fluctuations

(of small enough energy) and further, we will be restricted in the occupation number of

any one such mode, so that the energy cutoff also imposes an amplitude cutoff for any

one mode. Generally, this could be configuration dependent if for example, the gap for
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some additional excitation depends on a vacuum expectation value. This is common in

supersymmetric field theories when we have a moduli space of vacua.

In analyzing this system, we might want to understand what a Hilbert space of nearby

states to the background |B⟩ would look like. The state |B⟩ belongs to a Hilbert space of

states H that defines the full quantum theory. It is tempting to consider the set of states

|ψ⟩ ∈ H such that they differ from |B⟩ by a small amount, ϵ inside the Hilbert space

| |ψ⟩− |B⟩ | < ϵ. There are many problems with this prescription, and we will enumerate

a few of them in what follows. First, the set of states |ψ⟩ is not a linear subspace of H:

we cannot do quantum mechanics restricted to the nearby states. Secondly, the set of

such states |ψ⟩ makes no mention of the cutoff nor to the effective fields.

We want to define the set of nearby states to be those that can be generated from

|B⟩ by the action of the effective fields, and so that it is also a linear space. That

is, we want the set of nearby states to be a Hilbert space in its own right: a Hilbert

space where an experimenter can act and make observations, and in principle make

predictions for those observations as well, within the constraints that would be imposed

by the apparatus and how it acts in effective field theory. Such sub-Hilbert spaces can be

thought of as code subspaces: the set of observables of the experimenter is constrained

to lie in the code subspace. At the technical level, the idea will be to first decompose the

fields ϕi(x) = ⟨ϕi(x)⟩B +
∑

λ fi,λ(x)a
†
i,λ+

∑
λ f

∗
i,λ(x)bλ,i into raising/lowering operators of

approximate wavelength λ. We need to include the b modes to allow for the possibility

that the field ϕi is complex, otherwise we have b ≃ a†. For brevity, we will take the

field to be real. We also need to require that the a, a† approximately satisfy the Weyl

commutation relations. To impose a cutoff, we state that the set of λ is restricted. We

also impose that |B⟩ is annihilated by the lowering operators a. This second condition

is what defines the state operationally to be effectively a coherent state.
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We make use of the modes of the fields ϕi(x) acting on |B⟩ to generate new states

|(i1, λ1), . . . (ik, λk);B⟩ =
∏
j

a†ij ,λj |B⟩ (5.2)

for some such collection of pairs (ij, λj). We can think of this state as the background

state |B⟩ with some finite number of cutoff respecting excitations turned on. We will

call our cutoff Λ. Usually, we interpret Λ as a UV cutoff in effective field theory around

a ground state, so that energies (frequencies) ω of individual excitations are bounded

above by ω ≤ Λ. Here, we are constrained so that our set of excitations collectively stay

below Λ. The cutoff Λ should not be in general thought of as simply a fixed shortest

wavelength, nor as just an upper bound on the energy. It can also be dependent on

position and on the differing modes. In the work [122], the cutoff is implicit in the sense

that we do not form a black hole. In the work of Papadodimas and Raju, the cutoff is

described by not having too many actions on the reference state [126]. This is again an

implicit cutoff.

We will call the Hilbert space

HB,Λ = Span(|(i1, λ1), ...(ik, λk);B⟩ |{(i1, λ1), ...(ik, λk)} ≤ Λ) (5.3)

the code subspace associated with the background |B⟩ and the cutoff Λ. This will be

sometimes abbreviated to Hcode. This is in accordance with the definition of code sub-

space found in the work of Almheiry, Dong, Harlow [122] on quantum error correction

and it also matches the effective description of states generated from a reference black

hole state in the work of Papadodimas and Raju [126, 108]. This also matches the defi-

nition of the nearby Hilbert space of states in our previous work [38]. The advantage of
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using the language of code subspaces is that it makes three items automatic. First, it is

a Hilbert space, so that we can do quantum mechanics inside Hcode. Secondly, effective

fields act simply on it. Finally, there is an explicit cutoff Λ, so this does not need to be

repeated again and again: it is part of the definition of the code subspace itself.

If the state |B⟩ is an excited state (not a ground state), one can in principle find

many states that have a similar energy to |B⟩ but that are not generated in this way.

One should think of the code subspace HB,Λ as the set of states that is accessible to

an experimenter who can control the excitations of the fields ϕi below the cutoff. In

this sense, this is the natural home for effective field theory. As an experimenter builds

a better experiment, the cutoff might change and more states can become available.

However, the effective field theory description might break down. This is not a failure

of quantum mechanics, but of the simplified description of the Hilbert space of available

states that the experimenter can access.

With this definition, the fields ϕi have been given to us, at the very least in an implicit

form, as well as the mode expansion. In general, we could expect that there are non-

linear field redefinitions to worry about, as they might generate states that do not belong

to the code subspace. We also have to worry that under time evolution the states might

exit the code subspace. As long as we can stay comfortably inside Hcode for some fixed

amount of time we will be content. To do so we will also include a temporal cutoff in the

time during which experiments can be performed. The second problem is not obviously

an immediate issue if |B⟩ is an energy eigenstate, but the problem will kick in as soon as

we act on the state. We do not address these issues directly for general setups, rather,

we will leave these issues implicit in the definition of Λ itself, thinking of it as a set of all

the necessary cutoff information.

One might think that this is overly pedantic. The purpose of this paper is to show that
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this structure is the only sense in which one can do effective field theory in a particular

subsector of a gravitational theory. It will turn out that different code subspaces will

generically be incompatible. That is, assume that a state belongs to two such code

subspaces |ψ⟩ ∈ HB,Λ,HB′,Λ′ . The topology of |B⟩, |B′⟩ and the number of (effective)

fields might differ substantially to the point where even though the state |ψ⟩ is well

defined, we cannot say what topology it has (the one of |B⟩ or |B′⟩) nor the number of

fields. More importantly, one code subspace might recycle a field of another code subspace

nonlinearly into many fields. What this will mean is that the physical answer to many

(interpretational) questions can only be answered inside the different code subspaces, but

not in the full Hilbert space H.

Our goal in the rest of the paper will be to explain how to construct a particular

collection of code subspaces explicitly, including the effective fields and the cutoff and to

show precisely how they are incompatible.

5.3 The action of traces on Young tableaux

We will now consider a particular set-up, where we can study effective field theory

explicitly. The half-BPS states of N = 4 SYM on the sphere are in one to one corre-

spondence with the gauge invariant local operators that are build out of polynomials of

a single scalar field Z(x) (which we will take to be in the adjoint in the adjoint of U(N)).

This space is converted into a Hilbert space via the operator state correspondence that

is available in conformal field theories. We write the map as follows O → |O⟩. For us to

understand the Hilbert space of states, we need to determine the norms of states. The

norms of states that correspond to local operators come the Zamolodchikov norm of the
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operator, obtained from the two point function as follows

⟨O†(x)O(0)⟩ = ⟨O⟩O
|x|2∆O

(5.4)

What we need now is the complete list of operators in a basis that is suitable for com-

putations. This problem was solved in [64], where it was noted that a Schur polynomial

basis was orthogonal (this is based on the fact that characters of Z in irreducible rep-

resentations of U(N) are orthogonal) and where their norms were computed. However,

there is another basis made of string states, which are traces, that is also useful and can

be used to define the supergravity fields of AdS5 × S5. It is the traces that are used to

define the extrapolate dictionary of AdS/CFT [4]. Thus, it is necessary to study both

basis to get to the complete physical description. For this section we follow mostly the

results obtained in [64, 38] where the main results are proved in detail. The new result we

find is to compute the actions for Young Tableaux states that are normalized according

to the results of [64] rather than the N → ∞ limit discussed in [38].

There are two natural ways to construct gauge invariant operators from a matrix Z.

One of them is to take traces of powers of Z, Tr(Zm) and to consider the set of linear

combinations of multi-traces of Z. The other is to think of an N × N matrix Z as an

element of GL(N,C). Then we can take the character of Z in some representation of the

group GL(N,C), R, and denote the result as χR(Z). The latter are classified by Young

diagrams.

These two bases of gauge invariant operators generate the same linear space and can

be related to each other algebraically, the details can be found in [64]. For example,

the fundamental representation, with Young Tableau □, can be related to Tr(Z) via its
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character as

χ□(Z) = Tr(Z). (5.5)

To write the relationship for other states, we need a few more definitions. Let [σ] be

a conjugacy class of Sn. The conjugacy class of [σ] is in one to one correspondence with

group elements σ of the same cycle decomposition, where there are nj([σ]) cycles of length

j, so that n =
∑

j jnj([σ]). See appendix E for details on how the cycle decomposition

is obtained from a group element. To each such cycle, we associate the trace Tr(Zj), so

that to the element [σ] we can associate the monomial in the traces

[σ] →
∏
j

(Tr(Zj))nj([σ]). (5.6)

If R is represented by a Young diagram with n boxes, which we indicate by Rn, then

χRn(Z) =
1

n!

∑
[σ]∈Conj[Sn]

χR([σ])dσ
∏
i

(Tr(Zi))ni([σ]) (5.7)

where dσ is the number of elements of the conjugacy class, χR([σ]) is the character of σ

in the representation of the group Sn with the same Young diagram as Rn (these are in

one to one correspondence via Schur-Weyl duality). This explains how to write the basis

χR(Z) in terms of traces. The map is invertible (the fact that the relationship between

conjugacy classes and representations is invertible is true for any finite group, see [129]).

The result of this inversion is

(Tr(Zi))ni([σ]) =
∑

[R]∈Reps[Sn]

χR([σ
−1])χR(Z) (5.8)

which was shown in [38].
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In what follows, we will define the variables tℓ = Tr(Zℓ), and we will label the

representations of R directly in terms of Young diagrams. The length of the cycle ℓ will

be called the degree of tℓ, and the number of boxes of a Young diagram n will be the

degree of the Young diagram. With this convention we have that [σ] →
∏

i t
ni([σ])
i . The

sum
∑

ℓ nℓℓ = n, so we have that the degree of each of the monomials is equal to the

degree of the Young diagram, and acting with an extra trace Tr(Zℓ) will be multiplication

by tℓ. Acting with tℓ on χR(Z) (by multiplication), will have degree deg(R) + ℓ and can

be expressed in terms of the basis of the χR̃, with deg(R̃) = deg(R) + ℓ.

For example, we can take the state

(6, 4, 2, 1) = (5.9)

where we label R = (6, 4, 2, 1) by the length of the rows of the Young diagram and we

think of the Young diagram as the gauge invariant operator χR(Z) itself. Now, we want

to act with one of the tℓ, and see what linear combination of representation characters

we get. The answer is actually simple.

We will do the particular example of t4(6, 4, 2, 1). Acting with t4 will give us the
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following result

t4 =

• • • •
−

•
• • •

(5.10)

− •
• • • − • •

• •
+ •

•
• •

(5.11)

− •
•
•
•

(5.12)

where we have indicated with circles the extra boxes that are attached to the original

Young diagram R. The action on any given Young diagram is given by applying the

following rules [38]:

1. The original Young diagram sits inside the added boxes.

2. The set of new extra boxes are arranged in a pattern where they all touch each

other and give rise to a proper diagram when combined with the original.

3. The set of new boxes snake around the edge of the old diagram (this means that

no square pattern set of 2× 2 boxes can be found in the new boxes). Sets of boxes

with this property are called skew-hooks.

4. The coefficients are all ±1. The sign is determined by how many rows the new

boxes cover: +1 if the new boxes sit in an odd number of rows, and (−1) if it is

even.
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5. The sum is over all possible ways of attaching a skew hook of the right length (in

this case four, as we acted with t4) to the original Young diagram.

We can write these conditions as follows

tℓ χY (Z) =
∑

h∈Skew hooks of length ℓ

(−1)H(h)−1χY+h(Z) (5.13)

where the symbol H(h) indicates the height of the hook (the number of rows it subtends).

Also, the length of a skew hook, |h|, is the number of boxes it has.

As we have argued, the space of gauge invariant operators is endowed with a metric,

the Zamolodchikov metric. This is a positive definite metric and is identified with the

Hilbert space norm in the quantum theory on the cylinder. The norm for each Young

diagram state |Y ⟩ can be evaluated as follows. We first label the boxes of the diagram,

adding one as we go to the right and subtracting one as we go down

(6, 4, 2, 1) =

+0 +1 +2 +3 +4 +5

−1 0 +1 +2

−2 −1

−3

(5.14)

That is, to each box in position (i, j) (the label i refers to the column, and the label j

refers to the row of the box) we associate the number i− j. The norm is then computed

as follows:

⟨Y ⟩Y = α#boxes
∏

(i,j)∈boxes

(N + i− j) (5.15)

where α is a normalization constant for the matrix field Z. Also, different Young tableaux

are orthogonal. This was deduced in [64]. To simplify matters, we choose α = N−1. Then

199



Code Subspaces for LLM Geometries Chapter 5

we have that

⟨Y ⟩Y =
∏

(i,j)∈boxes

(
1 +

i− j

N

)
(5.16)

so that the large N → ∞ limit is simple and all the norms for each Young tableaux state

are equal to one. We are interested in a finite but large N .

Now, since the Young diagram states are orthogonal, we can consider a dual basis for

the Young diagrams |Y̌ ′⟩, so that we have the relation

⟨Y̌ ′⟩Y = δY,Y ′ (5.17)

and it is easy to see that

|Y̌ ⟩ = |Y ⟩ / ⟨Y ⟩Y (5.18)

Using this dual basis, we can write the action (5.13) as follows

⟨Y̌ + h| tn |Y ⟩ = (−1)H(h)δ|h|,n (5.19)

where again, |h| is the number of boxes in the skew hook h and |Y + h⟩ refers to a state

|Y ⟩ with an added hook h. If we choose the basis to be orthonormal, we find that

⟨Y̌ + h| tn |Y ⟩ =
√

⟨Y ⟩Y√
⟨Y + h⟩Y + h

⟨Ŷ + h| tn |Ŷ ⟩ (5.20)

where we are using |Ŷ ⟩ to represent an orthonormal state (as opposed to the state in the

dual basis, which has a down check instead of a hat). So the action in the orthonormal
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basis is represented by

⟨Ŷ + h| tn |Ŷ ⟩ = (−1)H(h)δ|h|,n

√
⟨Y + h⟩Y + h√

⟨Y ⟩Y
= (−1)H(h)δ|h|,n

∏
(i,j)∈boxes of h

√(
1 +

i− j

N

)
(5.21)

And the adjoint action is

⟨Ŷ − h| t†n |Ŷ ⟩ = (−1)H(h)δ|h|,n

√
⟨Y ⟩Y√

⟨Y − h⟩Y − h
= (−1)H(h)δ|h|,n

∏
(i,j)∈boxes of h

√(
1 +

i− j

N

)
(5.22)

With this formula, we now have the main computational tool we need for the rest of

the paper. It should be noted that if we take the limit where i, j are finite and N → ∞,

the set of Young tableaux states all have trivial norm and the coefficients for the action

of the traces are all ±1. In this case, the half BPS states are described exactly by a c = 1

left-moving chiral boson in 1 + 1 dimensions.

5.4 Defining the code subspaces for concentric con-

figurations.

Let us consider a particular case of an LLM geometry that is time independent and

that is therefore an eigenstate of the Hamiltonian of the N = 4 SYM theory on the

S3 × R boundary. The LLM geometries are described by droplet configurations on the

plane, and as they are time evolved they rotate uniformly about an origin in the LLM

plane. The ground state is described by a disk, and the rotation center is located exactly

at the center of the disk. For another configuration to be similarly time independent,

the droplet configuration must be invariant under rotations around such an origin. This

results in a droplet configuration that is described by a set of concentric rings. Because
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the configurations are time independent, they have an extra isometry symmetry in the

supergravity description. This extra symmetry is exactly the rotation of the configuration

around the origin. This is a diffeomorphism that does not vanish at infinity and is realized

as a proper symmetry of the configuration. This is the symmetry associated with either

time translation or to being an eigenstate of the R-charge.

A particular example of a geometry is visualized in figure 5.1. The radii of the

boundaries are labeled as follows r1 > r̃1 > r2 > r̃2 > . . . , from the outermost boundary

inwards. We will call these edges and anti-edges, depending on if they are labeled with

an ri or a r̃i, that is, if they go from black to white (edges) or if they go from white

to black (anti-edges) when tracing a straight line from the origin. This is in accordance

with the convention established in [38]. The important geometric parameters are the

1

1

2

2

r

r
r r
~ ~

Figure 5.1: A circularly invariant LLM geometry. The radii are labeled by r, r̃, de-
pending on if they go from black region to white region, or viceversa, starting from
the outside and going inwards.

radii r1, r̃1, . . . which are necessary to uniquely identify the geometry. We will assume

that we are working at fixed large N , and that the disk representing the ground state

has been normalized to have radius equal to one. We will also assume that the ri, r̃i are
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of order one. The area of the black region is given by

A = π
∑
i

(r2i − r̃2i ) = π (5.23)

which is the same as the area of the unit disk. This gives us one relation between the

radii.

The energy of the state (geometry) is given by

E ∝ N2

(∑
i

r4i − r̃4i

)
−N2 (5.24)

As long as the radii are moderately spaced, the solution is weakly curved and effective

field theory is valid. Small deformations of the geometry that preserve the supersym-

metry can be characterized by having the ri, r̃i vary with the angle around the origin

as follows ri(θ) = ri + δri(θ), r̃i(θ) = r̃i + δr̃i(θ) with δr, δr̃ << 1 and more precisely,

we require that the configuration is fairly smooth so that the wiggles are not too pro-

nounced. This is what we mean by long wavelength fluctuations. This is depicted in

figure 5.2. Larger deformations will have either short wavelength (rougher edges), or

larger amplitude resulting in more pronounced creases.

From the point of view of supergravity, it is obvious that to each of the radii ri, r̃i

we can associate a function of one variable θ that preserves the supersymmetry of the

configuration and that therefore the effective field theory – restricted to the half-BPS

states– is now described by many functions of θ. Since each ri, r̃i can be in principle

deformed independently of the others, we have to associate an effective field with each

such (anti-) edge. Each such field should result in a left chiral field ϕi(θ), ϕ̃i(θ), just like

the single edge of the ground state results in such a field.

In the limit where the δri, δ̃ri << 1, we can expand the area of the regions to linear
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1

1

2

2

r

r
r r
~ ~

θ

Figure 5.2: A slightly deformed circularly invariant LLM geometry. The radii are now
given by ri(θ), r̃i(θ)

order in these deformations. We get that the areas of the regions are given by one of the

two expressions (the left for black regions and the right for white)

Ai =
1

2

∫
dθ(r2i (θ)− r̃2i (θ)), Ãi =

1

2

∫
dθ(r̃i(θ)

2 − ri+1(θ)
2) (5.25)

and to leading order in fluctuations we get that the variations in the area are given by

δAi =

∫
dθ(riδri(θ)− r̃iδr̃i(θ)), δÃi =

∫
dθ(r̃iδr̃i(θ)− ri+1δri+1(θ)) (5.26)

Because the areas are quantized in natural units due to Dirac quantization condition, we

need to require that the δAi = δÃi = 0, and this implies that

∫
dθδri(θ) =

∫
dθδr̃i(θ) = 0 (5.27)

We infer that the fluctuations have a Fourier expansion with the zero mode missing for

each fluctuation.
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For quantization, we also need the Poisson bracket between the δri(θ). This was

calculated in [130]. One can derive it from the Hamiltonian and locality in θ. Basically,

we need that

{H, δri(θ)} = ṙi(θ) = −∂θri(θ) (5.28)

and similarly for δr̃i. Since the energy function is the Hamiltonian, the Poisson bracket

is as follows

{δri(θ), δrj(ϕ)} =
δij

N2rj(θ)2
∂ϕδ(θ − ϕ) (5.29)

whereas for the other variables we find a sign change

{δr̃i(θ), δr̃j(ϕ)} = − δij
N2r̃j(θ)2

∂ϕδ(θ − ϕ) (5.30)

that follows because the Hamiltonian for the δr̃ is actually negative definite. The cross

term vanishes.

We interpret the prefactor in front of the derivative of the delta function as an effective

notion of the Planck constant ℏ for the corresponding background field determined by

the geometric data. As is usual in the AdS/CFT correspondence, ℏ scales as 1/N2, and

this is the normalized Newton constant 2.

With these conventions, the canonically normalized fluctuating fields ϕC , and ϕ̃C

depend on the values of the geometric parameters ri, r̃i, as follows

ϕCi (θ) = Nriδri(θ) =
N

2
δ(r2i (θ)) (5.31)

and similarly for ϕ̃C . The Fourier modes of the ϕC , ϕ̃C will have canonical commutation

2Notice that if we scale r, δr by the same scale factor to remove the 1/N2 pieces, we find that the
normalized value of the radius R then scales as R ≃

√
N , and the area of the disk is proportional to N .
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relations, such that

ϕCi (θ) =
∑
n

ϕCi,n exp(inθ) (5.32)

and

{ϕCi,n, ϕCj,m} = nδijδn,m (5.33)

whereas for the ϕ̃ we get a sign change

{ϕ̃Ci,n, ϕ̃Cj,m} = −nδijδn,m (5.34)

One can then show that the ϕCn , ϕ̃
C
n are either raising or lowering operators with energy

n,−n respectively (the C̃ fluctuations reduce the energy).

Now that we have our canonical mode fields, we can define the code subspaces as in

section 5.2. We just take the concentric ring background configuration and act with the

raising operators ϕC−n, ϕ̃
C
m a finite number of times, with a cutoff on n,m and the number

of raising operators acting on the reference state, which is specified by the radii, and the

quantization condition that all the lowering modes of the effective edge fields are in their

ground state. The precise details of the cutoff are yet to be specified, and the result

should be understood to be a leading order approximation in a large N expansion, so

there might be 1/N corrections that need to be studied more carefully.

Notice that the definition of the code subspace is fairly straightforward, but the

determination of the effective modes took some work. It also assumes a particular action

of the modes of the fields on the reference state and by relying heavily on the classical

analysis in gravity, we do not have a direct access to how the cutoff should be correctly

implemented.

A second issue that needs attention is to make sure that the code subspace that
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we have defined this way is compatible with the holographic boundary operator actions.

That is, we want to show that acting with the operators that preserve the supersymmetry

and that are realized in the boundary does not take us out of the code subspace. To do

this, we need to notice that the boundary operators measure the multipole moments of

the droplet distribution. These can be written as follows

ϕn ≃
∫
ρ(r, θ) [r exp(−iθ)]n rdrdθ (5.35)

where ρ is the region of the plane that is filled. After some manipulations where we do

the radial integral first [37], these modes are written as follows

ϕn =
1

n+ 2

∫ ∑
i

[ri(θ) exp(−iθ)]n r2i (θ)− [r̃i(θ) exp(−iθ)]n r̃2i (θ)dθ (5.36)

To linearized order we have that ri(θ) = ri + δri(θ), so we find that

ϕn =

∫ ∑
i

[
rn+1
i δri(θ) exp(−inθ)− r̃n+1

i δri(θ) exp(−inθ)
]
dθ (5.37)

which in terms of the canonical fields becomes

ϕn = N−1
∑
i

[
rni ϕ

C
i,n − r̃ni ϕ̃

C
i,n

]
(5.38)

The factor of 1/N in the prefactor is to be thought of as
√
ℏ, which is the standard size

for quantum fluctuations. In this sense, we should remove it and the normalized operator

for boundary insertions should be given by

ϕ̂n =
∑
i

[
rni ϕ

C
i,n − r̃ni ϕ̃

C
i,n

]
(5.39)
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With these conventions we have that for the ground state where r1 = 1 and all other

ri, r̃i vanish, we have that

ϕ̂n = ϕC1,n (5.40)

Since the field ϕ̂ is in general clearly a linear combination of operators in the code sub-

space, it belongs to the code subspace. To go beyond linearized order, we need to normal

order the expressions. The non-linear terms that are generated will be polynomials in

ϕCi,n and ϕ̃Ci,n suppressed by additional powers 1/N .

What we want to do now is reproduce these same results without relying on the semi-

classical description, but directly in terms of the matrix variables. What is important

for us is that the concentric circle configurations have a simple description in terms of

Young tableaux [63]. Therefore it is possible to analyze the physics of the cutoff in terms

of the trace variables as in section 5.3. This will permit us to describe the cutoffs better

and to verify directly the expression (5.39). This can be understood as a test of the LLM

geometry map. We will tackle this problem in the next section.

5.5 Code subspaces in the Young tableaux formalism

As is by now well understood, concentric ring classical configurations in the LLM

plane correspond to Young tableaux with only a few corners (see [90] for more details).
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A typical such Young tableaux looks as portrayed in the diagram (5.41)

. . . M1

...

. . . L1

. . . M2

...

. . . L2

...

(5.41)

where the length of the long rows are of size M1,M2, . . . , and the depth of the columns

is L1, L2, . . . . With these conventions, the empty corners to the right of the Mi (concave

corners) have coordinates given by

(i, j) ∈ {(M1 + 1, 1), (M2 + 1, L1 + 1), . . . (Mk + 1, Lk−1 + 1)} (5.42)

Similarly, the convex corners of the edge of the tableaux are given by the coordinates

(i, j) ∈ {(M1, L1) . . . (Mk, Lk)} (5.43)

We will call this state the reference state |Ω⟩. It is around this state that we want to

build an effective field theory of the LLM states that mirrors the gravity construction.

To such a tableaux with widely spread out corners we can associate a Hilbert space of

small fluctuations. These are additional small tableaux that can be attached to each

corner. In the young diagram depicted in (5.44), we see an example of adding a small

tableaux to the concave corner depicted with the symbol + and also a tableaux that
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is substracted from the convex corner and depicted with the symbol −. This idea was

originally sketched in [82], but was not fully realized at the time. It was implemented in

the strict N → ∞ limit in [38] and better estimates for various quantities were obtained

in [127].

Here we have a full implementation of the details at finite N .

. . . + +
+.. .

. . .

−
− −

(5.44)

It is easy to see that we can define a small Hilbert space for each corner. This Hilbert

space is the set of small Young tableaux (whose sides are much smaller than the sides of

the big tableaux with few corners). There will generically be two types of corners: the

ones that have + boxes, and the ones that have − boxes. These correspond to the two

types of corners of the reference tableaux. For convenience, we will label them with the

(i, j) values of the first corner that we can add or substract, and each of these corner

Hilbert spaces will be called H(i.j). By construction, we find the small Hilbert space of

states relative to the reference state |Ω⟩, which we will call the code subspace, can be

decomposed as follows

Hcode|Ω⟩ =
∏
k

H(Mk+1,Lk−1+1) ⊗
∏
k

H(Mk,Lk) (5.45)

As of yet, we have not specified the size of the factors of code subspace. We will proceed

to do this later. What we need to do right now is to understand in a little more detail
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the H(i.j) factors. The idea is that each of these is characterized by a Young diagram.

There are two cases to consider: the + subspaces and the − subspaces.

Let us begin with the + subspaces. These are labeled by H(Mk+1,Lk−1+1). What we

are interested in to begin with are the factors associated with adding and substracting

boxes, as in equation (5.22). We will use new sets of relative labels to the reference corner

(∆i,∆j) = (i−Mk, j − Lk−1). In this way the square root factors from before read

(
1 +

i− j

N

)1/2

→
(
1 +

Mk − Lk−1

N
+

∆i −∆j

N

)1/2

≃
(
1 +

Mk − Lk−1

N

)1/2

(5.46)

in the limit where N is large and the ∆i,∆j are of order one.

When we add a skew hook with s boxes to a Young diagram that belongsH(Mk+1,Lk−1+1),

we would associate the factor

(
1 +

Mk − Lk−1

N

)s/2
(5.47)

and we need to identify this with an action as we would have in equation (5.39). The

correct identification to have a match is that

rk =

(
1 +

Mk − Lk−1

N

)1/2

(5.48)

With this, we find that

r2k = 1 +
Mk − Lk−1

N
(5.49)

so that the Mk, Lk−1 are clearly geometric. To have rk of order one, we need Mk, Lk−1

to be of order N . For convenience, we add L0 = 0 so that the uppermost corner can

be treated uniformly with the others. This is very similar to equations obtained in
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[111] (which generalize previous results in [131]), where it was argued that one needs to

replace N by an effective N to account for anomalous dimension computations for giant

magnon states. The techniques used in those papers use the technology of restricted

Schur polynomials, rather than the skew hook representation of the actions of traces.

The idea now is that to each such corner we will assign a set of variables tk,ℓ :=

tMk,Lk−1,ℓ labeled by an integer ℓ, such that they act as traces in the small Young tableaux

alone. That is, we write is as follows

⟨Ŷk + h| tk,n |Ŷk⟩ = (−1)H(h)δ|h|,n (5.50)

where Yk is the small Young tableaux in the corner.

Now we need to do something similar with the convex corners. The beginning setup

is the same, starting at the (Mk, Lk) corner but now we are substracting boxes. The

relative coordinates will now be given by

(∆i,∆j) = (Lk − j,Mk − i) (5.51)

so that they are both positive. Notice that we have switched the i, j labels in the definition

of the left. With this convention we get that the corresponding square root factor is still

of the form

(
1 +

i− j

N

)1/2

=

(
1 +

Mk − Lk
N

+
∆i −∆j

N

)1/2
−→
N→∞

(
1 +

Mk − Lk
N

)1/2

(5.52)

where both ∆i and ∆j appear with the same sign as before. Notice that ∆i increases as
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we go up the diagram, and ∆j increases as we go to the left. This way we find that

r̃2k = 1 +
Mk − Lk

N
(5.53)

What this means is that the vertical direction in the − tableaux should be thought of

in a similar way to the horizontal direction in a + tableaux, and similarly the horizontal

direction in the − tableaux should be thought of as the vertical direction in a + tableaux.

That is, the conventions for the tableaux are reflected. We now want to introduce t̃k,ℓ

variables that act only in convex corners. To get an equation that works as (5.50), we

need to modify it to look as follows

⟨Ŷk̃ + h| t̃k,n |Ŷk̃⟩ = (−1)W (h)δ|h|,n (5.54)

where instead of measuring the height of the skew hook, we measure the width of the

skew hook in the − boxes. For hooks with an odd number of boxes, the vertical and

horizontal parity coincide. Whereas for skew hooks with an even number of boxes, they

are opposite. This means that relative to the usual conventions, we have set up t̃ℓ to act

as −tℓ for ℓ even. It is more convenient to have t̃ℓ to have a uniform negative sign in all

actions. This is done by changing signs in the definition of Yk̃ → (−1)#boxesYk̃. That way

both even and odd t̃k,ℓ act with a minus sign relative to the usual convention.

We can now ask how tℓ acts on a state in the code subspace. It is straightforward to

show that in general we can write

tℓ ≃
∑
k

(
rℓk tk,ℓ − r̃ℓk t̃

†
k,ℓ

)
(5.55)

which is an equation that seems identical to equation (5.39). The minus sign for the t̃
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variables is the minus sign that we just introduced. This is part of the definition of how

the Ỹ diagrams should be understood.

Because the different tk, t̃k act on different subfactors of Hcode, they automatically

commute. Moreover, they also commute with each other’s adjoints. The only non trivial

commutation relations are between tk and their own adjoint, or between t̃k and their

adjoints. To get a good match we need to show that the tk, t̃k variables should have

canonical commutation relations. This was proven in our previous work [38] for tableaux

without restrictions. Since the tableaux are restricted in size, this cannot be true for

general states. After all, the representation of a harmonic oscillator algebra is always

infinite. This is the first formal cutoff we encounter. The commutation relations that we

need

[t†k,ℓ, tk,m] = ℓ δℓ,m (5.56)

should be valid inside the factor of the code subspace, but only when sandwiched between

states in the code subspace. If the tk,ℓ take us out of the code subspace, then we need to

define their action. The bounds are implicit in that the small tableaux have small sizes,

and the definition of their limits is still to be determined more carefully. Here we see

that the language of the code subspace is helping us to understand that the commutation

relations we need are valid in a restricted subspace of the Hilbert space, and they can

be arbitrary outside. The language of these relations automatically assumes that we are

inside the code subspace. This is also the way the code subspaces do their work in [122].

Now, by construction we have that multiplication by the tk,ℓ, t̃k,ℓ act as raising opera-

tors in the small factors. Since tℓ adds boxes and t̃k,ℓ substracts them, t̃ℓ is more similar

to t†ℓ. That is why we need to write the equation (5.55) with daggered operators for the

t̃ variables.
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For convenience, since multiplying by tk,ℓ is like a raising operator and their adjoint

is like a lowering operator, we will rewrite the equation in a more standard Fock space

language. We do this by stating that

tk,ℓ → b†k,ℓ (5.57)

t̃k,ℓ → c†k,ℓ (5.58)

t†k,ℓ → bk,ℓ (5.59)

t̃†k,ℓ → ck,ℓ (5.60)

These identifications are valid inside the code subspace. The b, c oscillators have canonical

commutation relations. The action of tk,ℓ becomes

tℓ =
∑
k

(
rℓkb

†
k,ℓ − r̃ℓkck,ℓ +O(1/N)

)
(5.61)

and we ignore the 1/N corrections when we match to supergravity. Now it is clear that

(5.61) is identical in form to (5.39). Where the field modes have canonical commutation

relations, just like the supergravity modes do. This implements the requirements of

equation (5.39) exactly. That is, the code subspace in the Young tableaux basis can be

put into correspondence exactly with the code subspace in supergravity.

Moreover, we have seen that there is an implicit cutoff on the size of the small

tableaux. This is not immediately apparent in the supergravity construction where one

is formally taking the limit N → ∞ first. To argue for the cutoffs, one needs to follow

[71] and argue that a type of stringy exclusion principle (similar to [86]) is responsible for

a cutoff on the number of modes and their amplitudes. To proceed further, we need to

understand the implicit cutoffs explicitly and explore the physics that is beyond classical
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supergravity.

5.6 Cutoff physics in the Young tableaux formalism

The first step in the process of understanding the cutoff is to describe when the

linearization implied by equation (5.55) is correct. In essence, we want to understand

how when multiplying by tℓ, the subleading terms in N in the expression (5.46) or (5.52)

accumulate when we vary ℓ and take ℓ large. This limit will give us a UV cutoff on the

effective modes beyond which non-linearities matter.

The idea is that the products on each skew hook will be of the form

| ⟨Ŷk + h| tℓ |Ŷk⟩ | =
α+ℓ∏

k=α+1

(
r2m + k/N

)1/2
= rℓm exp(

∑
k

log(1 + k/(Nr2m))) (5.62)

and we will look at cases where rm is of order 1 and k << N . The term in the exponential

can be further approximated by

∑
k

k/(Nr2m)) = O(ℓ2/(Nr2m)) (5.63)

We want these corrections to be small for each skew hook, which means that we want in

general ℓ2/(Nr2m) << 1. That means that we should have the label ℓ scaling at most as

ℓ < ϵN1/2 where ϵ is a small number (this is the same scaling that is observed in studies

of the BMN string [120], that ends up being a special case of the LLM geometries: the

vacuum geometry). For us it is a choice that tells us how big of an error we should allow.

A similar (slightly weaker) limit is obtained from three point functions [132] (see also

[133] and references therein for earlier work on the exact three point functions).

That is, the code subspaces associated with the corners have a bound on the size of
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skew hooks. We also want the bound to apply to excited states, so all the ∆i and ∆j

should also fit in this bound. In essence, the allowed Young tableaux on each corner

is essentially a tableaux that fits in a square of order
√
N ×

√
N around each corner.

If the Li,Mi are well separated from each other, the different tableaux on each corner

cannot interfere with each other, because the horizontal or vertical difference between

the corners is of order N . Since such a small tableaux has energy that is equal to the

number of boxes in the tableaux, this means that the excitation energy above (below) the

reference state is bounded and of order at most N . This is subleading in the supergravity

description, because the energy of the supergravity solutions is of order N2, but it is also

a typical energy of a single giant graviton whose scale is of order the AdS radius. This

limit where the linear structure starts breaking down is due to 1/N corrections given by

interactions of the local string excitations (as perceived by the extrapolate dictionary).

Remember that the Planck scale quanta are associated to energies of order N1/4. An

energy of order N1/2 is roughly the energy of a Planck sized object that has been boosted

by an ultra-relativistic factor of γ ≃ N1/4. This means that the physics of these modes

does not break down at the Planck scale, but at much higher energies and the notion of

(local) Lorentz invariance for single particle states should be well respected at energies

of order the Planck scale itself. Since the total size of the circle associated with the edge

of the droplet is of order N1/4lP , the Lorentz contraction obtained from a boost of N1/4

gives an effective circle of size ℓP (similar boost arguments have been used to describe

matrix black holes [134]). In essence, the physics is breaking down when for a boosted

object at the Planck scale, the Lorentz contracted circle on which it is moving is of order

the Planck length.

Our description of the cutoff is that the allowed Young tableaux need to fit inside a

square of size wi × wi where each wi scales as N1/2. We can restrict the action of the
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b, c modes so that if a skew hook falls outside these squares we get zero. This would

modify the canonical commutation relations between these modes only for tableaux that

are nearly filling the allowed squares. Also, the restriction in depth is similar to the

restriction that representations for SU(M) vanish if their associated Young tableaux

have a column of length larger than or equal to M . This restriction makes traces of

length larger than or equal to M dependent non-linearly on the smaller traces (these are

the Mandelstam relations and they are closely related to the Cayley Hamilton relation,

see for example [135]). The additional b, c modes become (non-linearly) redundant when

we hit this bound. The maximal bound on ℓ for each of the b, c modes is fixed by the

size of the square regions, and all small Young tableaux states can be generated from the

action of b, c, modes with these cutoffs (as long as we act by zero when we get out of the

confining boxes).

5.7 Uncertainty and entropy

In our previous work [38] we argued that in the strict N → ∞ case one could calculate

the topology of LLM geometries by measuring the uncertainty and the entropy of the

mode expansion for the tℓ actions on the corresponding Young tableaux state. Our

purpose now is to understand how the answer changes when we take N finite, or more

precisely, when we take N to be very large and the L,M scale with N . In this way,

we can take equation (5.39) or equivalently (5.61) and compute the uncertainties for the

actions by traces. The result is very simple, by using Wick’s theorem in the b, c oscillators

(this is the original technique we used in [40], with the understanding that the tails of

distributions contribute a very small amount). This is combinatorially equivalent to
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computing directly with the Young tableaux [38, 127], and we get the following answers

⟨t†stm⟩Ω = sδsm
∑
i

r2mi ≡ sδsmSm (5.64)

⟨tmt†s⟩Ω = sδsm
∑
i

r̃2mi ≡ sδsmS̃m (5.65)

for the reference state |Ω⟩, where we have defined the quantities Sm, S̃m on the right hand

side as the result of the computations.

For the previous case studied by us, the answers are given by specializing to ri = r̃i = 1

for all i, in which case we would immediately get the number of edges and anti edges by

computing these expectation values.

What we see in this case is that now the answer on the right hand side is geometric.

We get an algebraic sum of the powers of the ri, or the powers of the r̃i. These are

symmetric functions of the ri or the r̃i respectively. If there is a finite number of these

given by Nedges, Nanti−edges, we will find that there are algebraic relations between them.

The first order for a non-trivial relation will be exactly when we have enough variables

on the left hand side above to be able to compute the ri by solving for the roots of a

polynomial. To obtain the coefficients Ai of the polynomial equation from the Sm, one

uses Newton’s equations given as follows

A1 + S1 = 0 (5.66)

2A2 + S1A1 + S2 = 0 (5.67)

... (5.68)

nAn + S1AN−1 + · · ·+ SN−1A1 + Sn = 0 (5.69)

Once we pass the point where we have saturated the number of the different ri, the
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corresponding An will vanish: the rest of the putative ri, r̃i would vanish 3.

In this sense, it is possible to get the topology for a concentric LLM geometry. One

can follow a similar argument for coherent states of the b, c oscillators, only as long as

the notion of coherent states fits nicely within the cutoffs of the code subspace that were

discussed in the previous section. In this sense, the deformations away from circularity of

the droplets are of subleading order in N . The easiest way to see this is that a classical

shape deformation should typically cost an energy of order N2, but the cutoff windows

we have discussed only allows for changes in energy of order N .

Going a little bit further in comparison to our previous work, we notice that as long

as we ignore the cutoffs, we can think of tℓ ∝ a†ℓ and t†ℓ ∝ a as raising and lowering

operators themselves. To go from the b, c oscillators to the a oscillators we are writing a

partial Bogolubov transformation (we have less a’s than b and c combined).

An important question is what is the normalization of the oscillators. This can be

used to compute the expectation value of the number operators. This can be done by

computing the commutator as follows

⟨[t†ℓ, tℓ]⟩Ω = ℓ
∑
i

r2ℓi − ℓ
∑
i

r̃2ℓi = ℓ(Sℓ − S̃ℓ) = ℏeff (5.70)

and on the right hand side we identify this with an effective ℏ in the commutation relation.

The expectation value of the number operator evaluated on the reference state |Ω⟩, which

defines our vacuum, is then

nℓ = ⟨N̂ℓ⟩Ω =
⟨tℓt†ℓ⟩Ω
ℏeff

=
⟨a†a⟩Ω
[a, a†]

=
S̃ℓ

Sℓ − S̃ℓ
(5.71)

3The Si are also Schur polynomials related to the totally antisymmetric representation for a matrix
with eigenvalues ri or r̃i.

220



Code Subspaces for LLM Geometries Chapter 5

Similarly we have that

nℓ + 1 = ⟨N̂ℓ + 1⟩Ω =
Sℓ

Sℓ − S̃ℓ
(5.72)

From these expectation values we can assign an entropy to the linear mode aℓ. This

is the entanglement entropy of the mode a in the vacuum Ω, and since the vacuum is

obtained by a partial Bogolubov transformation, we get that the reduced density matrix

for the modes a, a† look thermal (they are a Gaussian state). This entropy is given by

sℓ = (nℓ + 1) log(nℓ + 1)− nℓ log(nℓ) (5.73)

which is again dependent on the geometric radii ri, r̃i.

The meaning of this entropy is clear in the N → ∞ limit where we are analyzing an

effective field theory, but at finite N it is more problematic because of all the cutoffs.

The main problem is that the Hilbert space itself does not factorize. We want to use this

number as an entropy also at finite N , so we need a way to interpret it as an entropy.

One way to think about this entropy is that since the modes a, a† act simply on the

code subspace, they should induce an (approximate) factorization in the code subspace

itself, but not the full Hilbert space. Indeed, these modes commute with the other modes

so long as one is close to the reference state. What we can do now is to assign an entropy

to an algebra A acting on the reference state Ω. The idea is that we need to produce a

representation of the algebra by acting on Ω with the elements of the algebra, as follows

HA ≃ Span{OΩ}, where the O ∈ A. This is what gets around having a factorization of

the full Hilbert space.

If we think of the state Ω as a general state for A, we would get that Ω =
∑

|n⟩ |ñ⟩

where the label n runs over all possible states in the representation of A and A does not

act on ñ (here neither n nor ñ are normalized nor orthogonal). If we have a factorization
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of the algebra in the algebraic sense, the |ñ⟩ would be a representation of the commutant

of A in the algebra of operators in the full Hilbert space.

This procedure induces a reduced density matrix for the A factor such that all the

expectation values for A are reproduced

tr(ρAO) = ⟨Ω| O |Ω⟩ (5.74)

and we can associate the entropy sℓ with this density matrix. For example, if A is the

algebra of a spin 1/2 representation at one site in a spin chain (the set of Pauli matrices)

, this density matrix would coincide with the reduced density matrix for the set of states

on that site.

If the algebra A acts in such a way that no element of the algebra annihilates the

state, there is a second copy of A, A∗ that acts on HA and commutes with A. This

second copy can be thought of as the thermal double of A (this is the Tomita-Takesaki

theory, as discussed in [126]). Roughly speaking, the state will look as follows

∑
n

ζn |n⟩ |ñ⟩ (5.75)

where the ζn are a collection of numbers and the |n⟩ enumerate the possible states for the

algebra A that diagonalize the density matrix, while the |ñ⟩ would be the representation

of the elements of the double copy. If we have an infinite algebra like the Weyl algebra of

the harmonic opscillator and its unique infinite dimensional unitary representation, we

might fall outside the code subspace where our analysis is valid. To avoid the infinite size

representation and to fit the algebra inside the code subspace, we just need to truncate

to states whose occupation number is bellow a cutoff induced by the code subspaces

themselves. For us, the associated density matrix we need is diagonal in the oscillator
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basis (this is because ⟨a2⟩ = ⟨(a†)2⟩ = 0 and of the fact that the state is Gaussian), so

we truncate it

ρ ≃
∑

n<nmax

|ζn|2 |n⟩ ⟨n| (5.76)

If we had a more complicated state this might not be possible. To reiterate, we are trying

to show how a notion of entropy fits the number in (5.73) at finite N and in the presence

of cutoffs. For the states at hand, as long as the ζn → 0 sufficiently fast (which is usually

true in an approximately thermal state), if the algebra is truncated or not becomes a

moot point: the entropy is going to be dominated by the ζn where n is small anyhow.

In the case above, we think of the representation space of A∗ as a purification of ρ, so

the A∗ should be associated to the purification inside Ω for the generators of the oscillator

algebra a, a†. Because we have a partial Bogolubov transformation, we can compute this

purification directly in terms of modes of the effective oscillators, rather than abstractly.

The idea is as follows. Consider the two effective oscillators given by

B†
n =

1√
Sn

∑
rni b

(i)†
n (5.77)

C†
n =

1√
S̃n

∑
r̃ni c

(i)†
n (5.78)

It is easy to check that these oscillators are normalized, and that the state |Ω⟩ is the

ground state for the B,C oscillators. From these oscillators it follows that

tn =
√
SnB

†
n −

√
S̃nCn (5.79)

and now it looks like part of a Bogolubov transformation between only two modes.
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Normalizing the mode of the left hand side, which we will call a†n, we need to take

a†n :=
tn√
ℏeff

=
1√

Sn − S̃n
(
√
SnB

†
n −

√
S̃nCn) = cosh(γn)B

†
n − sinh(γn)Cn (5.80)

and similarly for its adjoint. The mode a†n is entangled with the mode

d†n = cosh(γn)C
†
n − sinh(γn)Bn (5.81)

that acts as the purification of the an mode. Indeed, the B,C oscillators can be recovered

from a, d, and the ground state is a pure state of the B,C modes. It is easy to check

that the state |Ω⟩ in the a, d basis is a squeezed state between the the a, d modes. When

tracing over d we get a thermal density matrix for a, whose entropy is determined by the

expectation value of the number operator: it maximizes the entropy given the constraint.

What is important for us is that the modes B, C for moderately large n are concen-

trated on the outermost edge of the concentric circle configuration, and the outermost

anti-edge. That is, most of the weight of the B,C oscillators is concentrated on the

modes at r1 and r̃1 respectively b(1), c(1). The amplitudes for the other modes are expo-

nentially suppressed in n. What this means is that for generic modes, the extrapolate

dictionary can not penetrate beyond the geometric locus characterized by r̃1. By the

Tomita -Takesaki analysis of [126], we can generate the states |n⟩a |m⟩d from the state

|Ω⟩ by acting with a alone. In practice, this means we can recover the algebra of the d

modes with an ensemble by having the reference ground state.

Notice that the extrapolate dictionary seems to stop exactly at the outermost anti-

edge. This was also suggested by the work of [128], which argued that there was an

entanglement shadow in these geometries (a region where extremal Ryu-Takayanagi sur-

faces [79] can not penetrate) and that the extremal surface that can enter the deepest
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stops exactly at this place.

In practice what this means is that the information inside the region of the outermost

anti-edge is inaccessible. One can equally say that it is protected from quantum errors

generated by acting with the extrapolate dictionary. This information is encoded in the

modes b, c that are orthogonal to B,C.

Overall, the finite N picture is similar to what we found before in [38, 40]. The

topology can be deduced from the uncertainties, although the procedure is more com-

plicated. Also the entropy of the extrapolate dictionary modes is maximal given those

uncertainties. Similar arguments can be used when we shift the reference ground state

to a coherent state of the b, c modes that fits comfortably inside the code subspace.

5.8 Obstructions to having a globally well defined

quantum metric

So far, we have found ourselves with a cutoff that is of order
√
N on the modes, and

we have assumed that the spacing between the radii is of order one. From the point

of view of Young tableaux, this is a situation where the lengths of the horizontal or

vertical edges of the reference state are of order N . Our goal now is to push ourselves to

a situation where we make some of these edges small enough so that the cutoff of
√
N

is already too large. That is, we want to take Mi −Mi+1 or Li − Li+1 to be of order
√
N themselves. The idea now is to understand to what extent it is possible for us to

define a metric operator in these setups. We only need to analyze the simplest case, with
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L1 ≃
√
N , as in (5.87), and we will call this reference state |Ω1⟩.

. . . M1

L1

(5.82)

To analyze how one might get interference between the rows, we need to also analyze

another reference state
. . . S1

L1

(5.83)

with S1 = M1 + 1. This reference state differs from the previous one by adding one

column, and call this reference state |Ω2⟩. The idea now is to look for a state that

belongs to the code subspace generated from |Ω1⟩ and |Ω2⟩. The idea is to check if it is

possible to find a globally defined metric that agrees between the two code subspaces as

understood above in terms of building up perturbations relative to the reference state.

The simplest such state is given by

. . . M1
...

P

L1
...

(5.84)

where we have a column of length P added to |Ω1⟩ and that can be thought of as removing

a column of length L1 − P to |Ω2⟩.

The first state can be thought of as a superposition of states that have excitations

around |Ω1⟩ which are built from the b†Ω1
modes. Such states are superpositions of

excitations of the top edge r1|Ω1 . Relative to the reference state |Ω2⟩, they are instead

built by superpositions of modes c†Ω2
, which originate in r̃1|Ω2 . From the point of view
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of the two different code subspaces, we attach the excitation to different edges. This

assignment is not local: we cannot specify the edge uniquely in a way that is independent

of the reference state. The answer depends on the choice of reference state. We can even

do this with superpositions of states of this type that lead to coherent states (for example,

in [38] it was understood that a particular generating series of these states is a coherent

state). Such generating series are of the type

∑
P

ξP |P ⟩Ω1
(5.85)∑

P

ξ̃L1−P |L1 − P ⟩Ω2
(5.86)

where ξ is a complex number. In order to get the same state, we need that ξ = 1/ξ̃. In

our previous work, the range for P was infinite, so convergence required that |ξ| < 1 and

similarly for ξ̃, so naively only one such state can be a nice coherent state. In practice,

because of the cutoffs, the superposed coherent state does not belong completely to either

of the two code subspaces nor is it exactly a coherent state, but the state can have a

large overlap with states that do belong to either code subspace. The condition for large

overlap is that |ξ| < 1 or |ξ̃| < 1. However, the state at fixed P is a superposition of

objects of either type. Indeed, these objects are D-branes (giant gravitons [71]) that can

be thought of as having nucleated at one edge (and belonging to it) and being moved to

the other edge. This is shown in figure 5.3. Indeed, one can define a third code subspace

that is a strip geometry plus a D-brane. In one code subspace the state is an excitation

of r1, in a second code subspace, the state is an excitation of r̃1 and in the third code

subspace the state is a strip geometry plus a D-brane (this is interpreted as a state with

a different topology than the other two).

Now, it is clear that there is no absolute boundary between these. The cutoffs are of
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Figure 5.3: LLM diagrams of three (identical) states with D-brane excitations that
can be thought of as having nucleated in different ways in different code subsapces,
and this results on them being pictured differently.

order
√
N , but can be adjusted. What this means is that in practice |Ω1⟩ and |Ω2⟩ do

not define a single code subspace. They define families of code subspaces that differ by

the cutoffs. The state |P ⟩Ω1
may or may not belong to either of these code subspaces.

Also notice that it gets more ambiguous when we try states of the form

. . . M1
... P2

P
...

L1
...

(5.87)

The first column is either an excitation of the b modes or the c modes depending on

the code subspace, but the second column is an excitation of the b modes in both code

subspaces. The only condition on the Young tableaux is that P2 ≤ P , but to belong to

the different code subspaces, one needs to check that the cutoffs are not violated. We

also find that there is a new code subspace |Ω3⟩, with S2 = M1 + 2 where both of them

would be assigned to excitations of r̃1|Ω3 . We can keep on going this way so that the first

w1 columns are c excitations and the next one is a b excitation, versus all of them being b

excitations. one also gets code subspaces with one, two, up to w1 D-branes if one wants
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to. This ambiguity makes it impossible to answer a question as to what is the metric as

an operator that is independent of the choice of code subspace. Each code subspace has

a different answer, and they are not compatible with each other.

In this case we can even say that the code subspaces with D-branes have different

topology than the two original reference states. They also have a different spectrum of

excitations: apart for the b, c modes they also have the moduli of the D-branes themselves

(these can be thought of as the additional coordinates ξ = ξ̃−1 when we separate the D-

branes from the code subspaces).

If one states that the metric information is encoded in the state as a message, what

we are seeing is that different code subspaces that share the same state decode different

messages. It is intriguing to speculate that different messages (different notions of the

metric) are all allowed in the same sense that stringy dualities allow for more than one

interpretation of the geometry, but only one of them will be sufficiently classical. From

what we have determined so far it is not yet clear that this is what is going on. So far we

have done calculations in the absence of a concrete value for the string scale, relative to

the Planck scale. To study the physics of the string scale would require studying modes

that do not preserve as much supersymmetry. Such a problem is beyond the scope of the

present paper.

One should be able to argue similarly for folded geometries. These geometries with

folds are defined by stating that the number of r, r̃ variables is a function of the angle.

The local supergravity analysis of the Poisson structure around each edge is the same

[130], but one would have to define the mode expansions of the effective fields carefully.

Different choices should be generically related by a linear transformation of the mode

functions on each edge to a new set of functions. Such differences are accounted for by a

Bogolubov transformation of the modes. There is no obvious preferred basis distinguished
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by the energy of the modes, because the reference state is no longer an eigenstate of the

Hamiltonian. Unfortunately the dual field theory analysis is much more complicated

because the construction of the corresponding dual states is not combinatorial. Our

previous work [40, 38] dealt with these geometries in a particular approximation, but

this approximation was not deduced from first principles. Studying this problem is very

interesting as it should provide further details. Such analysis is beyond the scope of the

present paper.

5.9 Conclusion

In this paper, we draw parallels between effective field theory, especially within the

framework of the LLM geometries, and the notion of holographic code subspaces. We

found that the nearby Hilbert space of states around some classical background, which

is built by acting on the reference state with some number of effective fields results in

a space defined in the same way as the code subspace developed in [122]. It further

matches the little Hilbert space of [108]. We give explicit examples of code subspaces

in the case of the LLM geometries, where we use concentric ring configurations as our

reference state. To analyze this, we go beyond the infinite N limit of our previous work.

We show that the allowed effective fields are comprised of state dependent operators,

insofar as analyzing the metric of a state depends on a choice of a code subspace in

which to analyze it. Further, we find that there is not a clear line between different code

subspaces, and, in fact, there are states that clearly belong to multiple such subspaces.

This makes it ambiguous to write down a globally well defined metric operator, as the

interpretation of how to obtain a metric depends on the reference state that one builds

the code space from. We have argued that this obstruction is essentially what forces us
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to state that it is only possible to interpret physics in an effective field theory of gravity

within the framework of code subspaces. If one thinks of the geometry of a quantum

state as a quantum message, different code subspaces decode different messages from the

same state.

A note of caution should be in order. Our results do not preclude having a globally

well defined quantum metric, as long as one is willing to abandon the setup we have

devised: the collection of reference states with perturbative semiclassical excitations on

them. These are constructed in a way that guarantees that effective field theory works,

as long as one is restricted to the code subspaces. Such a different setup could be in

conflict with effective field theory instead.

In this paper we dealt essentially exclusively with concentric ring LLM geometries.

This is because the dual field theory states are well understood as combinatorial objects.

In principle, a similar answer can be obtained for more general geometries, which can

include folds (these are dealt in an approximate way in [38]). These geometries with

folds are characterized by the fact that the number of r, r̃ variables is a function of the

angle. The supergravity analysis is more complicated because the modes necessarily mix

in the extrapolate dictionary, and the cutoffs might depend non-trivially in the angle.

These are interesting avenues of future research that can not be treated with the Young

diagram technique. To address these, one should understand the cutoffs directly in the

supergravity description.

Another setup that is interesting is to deal with the superstar ensemble (as in [91]),

which has properties more similar to a black hole. A big question here is to what extent

we can use information the uncertainty and entropy in the extrapolate dictionary to make

statements about geometry. This is currently under research [136].

So far, all this work has been done for half BPS geometries. It would be very in-
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teresting to extend these ideas further to geometries that have less supersymmetry, or

to excitations around such half BPS configurations that have less supersymmetry. Such

excitations could give additional insight into the more general structure of code subspaces

and the corresponding cutoffs. Some of these can even be stringy states.
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Conclusions and Future Directions

In a full theory of quantum gravity, what are the good observables? For instance, can

one represent the metric by a quantum operator? If not, should we think of it as a

good observable? What other objects might we consider instead? These are the types of

questions that have driven my research, with my primary goal being to help contribute

to the search for a complete theory of quantum gravity. My favorite tool comes from the

AdS/CFT correspondence [3]. As I would like to learn about quantum gravity, my work

has primarily been to perform calculations on the field theory side and see what lessons

we can learn about quantum gravity. I am also interested in helping to further develop

the duality itself, as we are still far from understanding the full dictionary. Therefore, I

enjoy analyzing questions about, for instance, which CFTs have a gravity dual and vice

versa or how much information is necessary from the boundary theory to determine the

bulk geometry, at least to a good approximation. To address these questions, the work

contained in this thesis was dealing with two different systems: Perturbed Conformal

Theories and LLM Geometries. In the future, I intend to both continue working in these

directions, as well as analyzing new avenues for advancing our knowledge. I have broken

233



Conclusions and Future Directions Chapter 6

my concluding remarks into two sections, one for each part of the thesis. In each section,

I briefly review some of our findings, as well as touch on ideas for future work.

6.1 Conformal Perturbation Theory

Part I of this thesis contained my work on conformal perturbation theory (CPT),

starting with an unspecified conformal theory in an arbitrary number of spacetime di-

mensions and perturbing it by a scalar operator with arbitrary scaling dimension. There,

we were able to compute universal results, such as in chapter 2 [35], where we computed

the first order correction to the one point function. This quantity initially had both UV

and IR divergences. We were able to provide an IR regulator by putting the CFT on a

cylinder and saw that the remaining UV divergences were logarithmic and had the same

form as the standard ones seen in dimensional regularization. We further showed that

this matched the dual calculation on the AdS side, providing a piece of support to the

conjecture. We also considered a time dependent set-up, where we quenched from the

perturbed to the unperturbed theory and calculated the energy after the quench, which

ultimately depended on the correction to the one point function, showing that it is also

universal. This supported and further explained the work [43, 50].

In chapter 3 [36], we pushed this work further. Corrections to correlation functions

in CPT all have a form similar to the standard Feynman integrals found in QFT. By

including various functions in the integrals, can make them more convergent and make

progress. Different functions will, of course, have different physical interpretations. One,

as seen in the earlier work, comes from transforming the two point function to its form

on a cylinder. In this work, we consider the Fourier transform of the two point function

and the correction to the two point function where the perturbation has a 1/|xα| scaling
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profile. We also look at the first order correction to the three point function, which takes

a similar form to the second order correction to the two point function. Again, all of

these results were universal. Finally, we found that for time dependent perturbations

on the cylinder, there are resonances matching those that would be expected in time

dependent perturbation theory.

We are currently pushing this work in a couple different directions. On one path,

we are attempting to compute and interpret scattering states in AdS in terms of their

field theory dual, using CPT. We are looking at, for instance, the amplitudes for such a

process to occur. I am also analyzing how working in Mellin space might help with our

computations. Beyond these specific calculations, I am interested in seeing more generally

what progress can be made in discovering new quantum field theories by perturbing away

from a conformal theory. This has the potential to carving out new regions in the space

of all possible QFTs. One might, for instance, wonder if there are more non-Lagrangian

QFTs out there (like the (2,0) superconformal theory in six dimensions, which currently

has no know Lagrangian description).

6.2 Half BPS States

Examples of gauge/gravity dualities where we currently understand both sides well

are few. One of these comes from considering the set of half BPS states of N = 4 SYM.

These are useful because the extra symmetry allows us to perform highly controlled

computations on both sides. Lin, Lunin, and Maldacena classified the set of non-singular

supergravity duals to these, the LLM geometries [63]. In chapters 6 and 7 [38, 40], D.

Berenstein and I worked in the infinite N limit of this system, where the field theory

can be described by a free chiral boson in 1+1 dimensions, which can simply represented
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by an infinite set of harmonic oscillators. We built extensive technology to analyze this

system, which we then used to ask questions about quantum gravity. One of our most

interesting findings was that there cannot exist a topology measuring operator for these

states, which leads one to doubt the existence of one in quantum gravity more generally.

Fortunately, we were able to show that one can extract the topology for a certain class

of states via entanglement and uncertainty computations. This advances the idea that

there is an intimate relationship between geometry and entanglement [79, 137, 72, 78].

As previously stated, this was all in the infinite N limit, where there exists a canonical

factorization, which made computing the entropies straightforward.

In chapter 8 [39], we made some progress beyond the infinite N case, showing that

one can still extract topological information from uncertainty and entanglement compu-

tations. There, we also clarified some peculiarities of this system in terms of the language

of quantum information. Using effective field theory methods, we considered classes of

states formed by acting on topologically distinct reference states with small energy exci-

tations. This way of building states looks precisely the same as the code subspaces built

by Almheiri, Dong, and Harlow in [122]. There, they considered building a code subspace

by acting low energy fields on the ground state, whereas we considered many code sub-

spaces, each formed by acting on a reference state with low energy fields. We found that

many physical questions (for instance, about the topology) could only be asked within

a particular subspace, as one might find differing answers in the full Hilbert space. In

this way, one needs to consider the code subspaces in order for the dictionary to work

unambiguously. This state dependence is reminiscent of that found by Papadodimas and

Raju [126, 108]. Currently, I am working to make further progress beyond leading order,

looking at, for instance, the first non-zero contribution to the three point functions to

see what we can learn.
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In chapter 5 [37], we asked questions about the duality itself. We analyzed whether

one can reconstruct the bulk using only classical boundary data (specifically, only ex-

pectation values), again for LLM geometries. We found that this is ambiguous, as one

set of classical boundary data corresponds to many bulk geometries and one can only

distinguish between these with access to more information. This went against what was

previously thought about bulk reconstruction.

Finally, I have more recently been thinking about a different class of half BPS states.

The LLM geometries that we have been considering thus far are non-singular, but there

also exist half BPS states of N = 4 SYM that are dual to singular geometries. These

can further by separated into those with and without closed timelike curves. Happily,

the former were found to be dual to non-unitary states in the CFT [116]. It would be

interesting to further explore, within these dualities, physically bad states are always

dual to other physically bad states or not. And, further, if this is something we want or

need out of our duality.

A subset of the singular geometries without closed timelike curves form the superstar

geometries [138, 91]. These have naked singularities, but are near horizon forming. While

there has previously been some work on these states, there is still a lot we have to learn.

For instance, to what extent can we think of these as black hole solutions? And, how

deep into the bulk can we probe them with currently understood methods?
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Appendix A

Integral with three centers

We compute the integral given by

I[−→ω , α1, α2, α3, d] =

∫
ddx

1

|x− ω1|2α1|x− ω2|2α2|x− ω3|2α3
(A.1)

This integral was originally studied in [139], where the answer is given in terms of an

Appell Function, see also [55]. We follow instead the treatment of [56], which expresses

the final answer in terms of an integral of modified Bessel functions.

We will introduce a Schwinger parameter for each term in the denominator. This

gives

=

∫
ddx

∫ ∞

0

ds1 ds2 ds3 s
α1−1
1 sα2−1

2 sα3−1
3

Γ [α1] Γ [α2] Γ [α3]
exp

(
−s1 |x− ω1|2 − s2 |x− ω2|2 − s3 |x− ω3|2

)
(A.2)

Completing the square in the exponential gives
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=

∫
ddx′

∫ ∞

0

ds1 ds2 ds3 s
α1−1
1 sα2−1

2 sα3−1
3

Γ [α1] Γ [α2] Γ [α3]

× exp

(
−st

[
(x′)

2 − (s1ω1 + s2ω2 + s3ω3)
2

s2t
+

(s1ω
2
1 + s2ω

2
2 + s3ω

2
3)

st

])
(A.3)

where x′ = x− (s1ω1+s2ω2+s3ω3)
st

and st = s1 + s2 + s3. We can now easily perform the

integral over x′ because it is gaussian. This all gives

I = πd/2
∫ ∞

0

ds1 ds2 ds3 s
α1−1
1 sα2−1

2 sα3−1
3

Γ [α1] Γ [α2] Γ [α3] s
d/2
t

exp

[
(s1ω1 + s2ω2 + s3ω3)

2

st
−
(
s1ω

2
1 + s2ω

2
2 + s3ω

2
3

)]
(A.4)

We can simplify the exponential, leaving

I = πd/2
∫ ∞

0

ds1 ds2 ds3 s
α1−1
1 sα2−1

2 sα3−1
3

Γ [α1] Γ [α2] Γ [α3] s
d/2
t

exp

[
−s1s2ω

2
12 + s2s3ω

2
23 + s3s1ω

2
31

st

]
(A.5)

Now introduce a change of variables

sj =
V

2vj
=
v1v2 + v2v3 + v3v2

2vj
(A.6)

These result from finding a change of variables such that s1s2s3/(stsi) ∝ vi, and the

factor of two is the same convention as in the appendix in [56].

The measure will change as ds1ds2ds3 =
V 3

8v21v
2
2v

2
3
dv1dv2dv3. Our integral now takes the

form
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= πd/2
∫ ∞

0

V 3

8Γ3v21v
2
2v

2
3

dv1dv2dv3[
V
2
(v−1

1 + v−1
2 + v−1

3 )
]d/2 3∏

j=1

(
V

2vj

)αj−1

exp

[
−1

2
vjΩ

2
j

]
(A.7)

=
πd/2

(2)αt−d/2

∫ ∞

0

1

Γ3

1(
v−1
1 + v−1

2 + v−1
3

)d−αt

3∏
j=1

dvjv
αt−d/2−αj−1
j exp

[
−1

2
vjΩ

2
j

]
(A.8)

where Ω2
1 = (ω2 − ω3)

2, Ω2
2 = (ω1 − ω3)

2, and Ω2
3 = (ω2 − ω1)

2, and where we have used

V αt−d/2 =
(v1v2v3)

αt−d/2(
v−1
1 + v−1

2 + v−1
3

)d/2−αt
(A.9)

we also have used the shorthand Γ3 = Γ[α1]Γ[α2]Γ[α3].

We now introduce a fourth Schwinger parameter for the sum
∑
v−1
i , which gives

=
πd/2

(2)αt−d/2

∫ ∞

0

dttd−αt−1

Γ [α1] Γ [α2] Γ [α3] Γ [d− αt]

3∏
j=1

dvjv
αt−d/2−αj−1
j exp

[
−1

2
vjΩ

2
j −

t

vj

]
(A.10)

Notice that if d = 2αt this is not necessary and the integral is elementary (this is a

special case of the magic identities [140]). Continuing on, we would like to write this in

terms of the modified Bessel function

Kν (z) =
1

2

(z
2

)ν ∫ ∞

0

e−u−
z2

4uu−ν−1du (A.11)

To do this, we simply change variables to 1
2
vjω

2
kl = uj, duj =

1
2
dvjω

2
kl, vj =

2uj
ω2
kl
.
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Our integral becomes

=
πd/2

(2)αt−d/2

∫ ∞

0

dttd−αt−1

Γ [α1] Γ [α2] Γ [α3] Γ [d− αt]

3∏
j=1

duj

(
2

Ω2
j

)αt−d/2−αj

u
αt−d/2−αj−1
j exp

[
−uj −

tΩ2
j

2uj

]
(A.12)

= πd/2 (2)αt−d
∫ ∞

0

dt
(√

t
)d/2−2

Γ [α1] Γ [α2] Γ [α3] Γ [d− αt]

3∏
j=1

Ω
−αt+d/2+αj

j Kd/2+αj−αt

(√
2tΩj

)
(A.13)

It turns out that this expression is sufficient to extract the divergence structure that

we are interested in. To see the relation to secular resonances, we need only the parts

that include the frequency.
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Appendix B

The Murnaghan-Nakayama rule

A standard problem in the group theory of the symmetric group Sn is the computation

of the characters of conjugacy classes [σ] in a given representation R. That is, we want

to compute

χR([σ]) (B.1)

and as is explicitly presented in section 4.3, we need these characters to implement the

Fourier transform relating the “string basis” and the “D-brane basis” of our Hilbert

space.

The representations R of Sn will be labeled by Young diagrams with n boxes, while

the conjugacy classes will be presented in a cycle form [σ] = tw1
1 . . . twk

k with
∑
kwk = n.

The Murnaghan-Nakayama rule gives a recursive way to evaluate χR([σ]) in terms of

χR̃([σ̃]), where we have that [σ] = [σ̃]ts for some ts, and the R̃ is a set of representations

of Sn−s related to R and s in a particular way.

The rule is easiest to explain with an example first.
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Consider for example the tableaux with 10 boxes given by

(B.2)

which is a partition of 10. Assume that we want to compute the characters for splitting

into two traces (only group elements with two different cycles) of the diagram. There

are 5 such possibilities: 5 + 5, 6 + 4, 7 + 3, 8 + 2, 9 + 1. Let us compute the splitting into

5 + 5. The first step is to find the hooks of the diagram, and to decorate the diagram

with the hook lengths, in the standard way

8 5 2 1

5 2

4 1

2

1

(B.3)

This will be useful, as hooks are in one to one correspondence with skew hooks, which

are of interest to us, and the corresponding pairs have the same length. We see that there

are two (skew) hooks of length 5. We first remove one of the two length 5 skew hooks,

as shown in the figure

• • •
•
• (B.4)
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the other option is

•
• •
•
•

(B.5)

As you can see, a skew-hook is a regular hook that has been moved to the edge of the

tableaux. Like standard hooks, they do not contain a 2×2 squares. As previously stated,

the set of skew-hooks and regular hooks are in one to one correspondence, so one reads

of the allowed skew-hook lengths by reading the lengths of the ordinary hooks.

A sign is assigned to each such skew hook. The sign is (−1) if the number of rows

covered by the skew hook is even, or (+1) if this is odd. After removing the skew-hook

we are left with a proper partition, and we are also left with a cycle decomposition of

the remnant of the group element (or conjugacy class). The Murnaghan-Nakayama rule

states that to obtain the character of a diagram, sum over the characters of the remnant

of the group element on the remnant tableaux with the sign of the skew-hook accounted

for. Let us do so for the example above.

To simplify, we will notate a young diagram by the length of its rows. Thus, the

full diagram is (4, 2, 2, 1, 1), and we will notate the conjugacy class by the lengths of the

cycles. That is, [5, 5].

For the example above, one skew hook has an odd number of rows and the other has

an even number of rows, so the sign is (+1) and (−1) respectively. The rule then gives

χ4,2,2,1,1([5, 5]) = χ1,1,1,1,1([5])− χ4,1([5]) = 1 + 1 = 2 (B.6)

where the character of the remnant character is also ±1 and is determined by the number

244



The Murnaghan-Nakayama rule Chapter B

of rows it contains. Since there are no hooks of length 6, 7, 9 (as made explicit by our

diagram with the hook lengths notated), we also find immediately that

χ4,2,2,1,1([6, 4]) = χ4,2,2,1,1([7, 3]) = χ4,2,2,1,1([9, 1]) = 0 (B.7)

while for the last one, we find

χ4,2,2,1,1([8, 2]) = χ1,1([2]) = −1 (B.8)

A convenient way to think about the Murnaghan-Nakayama rule is that it gives the

action of the lowering operators s∂ts on the Young diagram basis, and so it does not just

compute the characters, but the action of the lowering operator on the Hilbert space of

states. Let us discuss this with a few examples. Consider first the state

|t1t22⟩ = + − 2 + + (B.9)

We could act on this state with the lowering operator a1. The conjugacy class states are

just Fock space states, so we know

a1|t1t22⟩ = |t22⟩ (B.10)

We could further compute the necessary characters using the MN rule and expand

the new state as

|t22⟩ = − + 2 − + (B.11)
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Alternatively, we could have considered applying the lowering operator directly to the

diagrams. Our lowering operator is a1, so it removes skew hooks of length 1 as shown

a1 = + (B.12)

There were two possible ways to remove skew hooks of length 1, so we end with a sum

of the two possibilities. On the other hand, if we apply this to the trivial representation,

there is only one way to remove a hook, so we have

a1 = (B.13)

Applying the lowering operator to the full state, we find

a1|t1t22⟩ = a1

 + − 2 + +

 (B.14)

= + + − 2 − 2 + + + (B.15)

We see that if we simplify this, we get the same expression for the state |t22⟩ shown above.

We would expect that if we apply any aj to our original state |t1t22⟩ with j > 2 that

this should kill the state. Let’s see how this works diagrammatically. Of course, there

are no skew hooks of length greater than 5, as each diagram has only five boxes, so any

aj with j > 5 will kill the state. As a less trivial example, let’s consider acting with a3.
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This gives

a3|t1t22⟩ = a3

 + − 2 + +

 (B.16)

= − − + = 0 (B.17)

where we remember that if the height of the hook is even, then the diagram changes sign.

Notice also that there were no allowed hooks of length 3 in the third diagram, so that

piece vanishes.

Finally, we would expect that if we apply any aj on the state |tj⟩, then we should get

aj|tj⟩ = j|0⟩, where the factor of j comes from the commutation rules for our raising and

lowering operators: [ai, a
†
j] = δijj. We will represent the vacuum diagrammatically as •.

As an example of this, we have

a4|t4⟩ = a4

 − + −

 (B.18)

= •+ •+ •+ • = 4 • = 4 |0⟩ (B.19)

where each piece was exactly a skew hook of length 4 and so became the vacuum state

when hit with a4. Also, note the sign changes come from the height of the hooks.

One can see that this is indicative of the general case. This is handled by using the

fact that

|R⟩ =
∑ χR[σ]∏

kwk wk!

∏
twk
k (B.20)

Now, let us try to remove one ts from the above equation, by acting with s∂ts on a
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monomial
∏
twk
k . We get swst

ws−1
s . The extra factor of s and ws cancel terms in the

denominator, so that we get regular denominators as would correspond to [σ]/ts = [σ̃]

for any sigma that has a ts in it.

Now we use that χR[σ] =
∑

(−1)∗χR̃([σ̃]) where (−1)∗ is the sign assigned by the

Murnaghan-Nakayama rule. That is, we find that

s∂ts |R⟩ =
∑ (−1)∗χR̃[σ̃]∏

kwk wk!
(sws)[σ]/ts =

∑
hooks of length s

(−1)∗ |R̃⟩ (B.21)

and because we recognize that the sum is over [σ̃] unrestricted, we find that on the right

hand side we sum over the states R̃ with the Murnaghan-Nakayama rule sign and nothing

else.
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Assigning Young Tableaux to

Fermions states

The ground state of the multiple particle system • is defined by the Slater determinant

• ≃ lim
N→∞

|−1/2⟩ |−3/2⟩ . . . |−N/2⟩antisymmetrized (C.1)

where, as in the text, we shift our allowed energies so that particles sit at half integer

levels. And, as usual, the ground state has the full infinite tower of negative states

occupied. This can be represented pictorially as follows, as in figure C.1, where dots

represent filled states and circles represent holes.

A complete basis of states is given by

|{n}⟩ ≃ lim
N→∞

|n1⟩ |n2⟩ . . . |nN⟩antisymm (C.2)

with n1 > n2 > n3 > · · · > nN , half integers, and for all sufficiently large j we require

that nj = −2j−1
2

. This state is represented by filling in each nj energy level with a dot.
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bc
bc
bc
bc
bc

b

b

b

b

b

Figure C.1: Vacuum State of Fermi Sea

If a particular value of j is missing, it is left empty (circles in the drawings).

To each state, we will assign a Young diagram whose j-th row has rj = nj − (1
2
− j)

boxes (and if rj = 0 we leave those rows empty and without boxes). By inverting this

expression, we can go the other way, assigning a state of the Fermions to a Young diagram.

We then relate these diagrams to representations of the symmetric group.

A trivial representation (totally symmetric if considered as a representation of U(N)

instead of Sn) corresponds to an excitation out of the sea, with an energy equal to the

number of boxes. That is, the state given by

(C.3)

corresponds to the figure C.2

Further, the totally anti-symmetric state corresponds to a hole, where an n-box rep-

resentation corresponds to a hole n spaces below zero. That is,

(C.4)

corresponds to the figure C.3.
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Figure C.2: Excitation with 5 units of energy on the highest Fermion
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Figure C.3: Excitation with 1 unit of energy on the highest five fermions, or equivalent,
a hole with 5 units of energy has been excited

Basically, a tableaux is assigned by taking the highest fermion energy available and

subtracting the energy of the highest occupied fermion in the ground state and assigning

that many boxes to the first row of the tableaux. We then do the same with the sec-

ond highest energy fermion, and so on until all the subsequent fermions in the excited

state have the same energy as the corresponding fermions in the vacuum, where we stop

assigning boxes.
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Appendix D

Can Topology and Geometry be

Measured by an Operator

Measurement in Quantum Gravity?

One of the main claims of the AdS/CFT correspondence [3] is that it provides a definition

of quantum gravity for spacetimes that are asymptotically of the form AdS × X. It

is natural to ask: what does this holographic description tell us about the nature of

observables in the quantum theory of gravity?

By an observable, we mean a Hermitian (linear) operator on the Hilbert space of states

as is usual in quantum mechanics. In this context, is the metric a quantum mechanical

observable? Is topology measurable by an observable? And if the answer is no, then

when are they sufficiently well approximated by observables?

We define T̂ to be a topology measuring operator if different eigenvalues correspond

to different topologies of the dual gravity theory and the zero eigenvalue is reserved for

the trivial topology alone. Here trivial means the same topology as the ground state.
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Our main conclusion is that such topology measuring operators do not always exist. We

support this by providing an example where one can prove that there is no such operator.

The example arises from studying the states that preserve half of the supersymmetries

of N = 4 Super -Yang-Mills theory (SYM) and their dual geometries.

The set of states we are interested in forms a Hilbert space in its own right. Quantum

mechanics is therefore valid and quantum mechanical questions can be answered unam-

biguously. The relevant Hilbert space of states near the free field theory limit gYM → 0

has been analyzed in [64]. An orthogonal basis of states of energy E = n can be repre-

sented by partitions of n, which can be written in terms of Schur polynomials and are

classified by Young tableaux for U(N). These states can also be represented in terms of

free fermion dynamics for N fermions in the lowest Landau level on a plane [65]. This

description gives rise to a geometric interpretation of states as incompressible droplets in

two dimensions. These free fermions can also be described by the incompressible droplets

of the integer quantum Hall effect [141].

The geometric droplet shape is exactly the geometric data that is required to build

a horizon-free solution of type IIB supergravity that respects the same amount of super-

symmetry and that also asymptotes to AdS5 × S5, as constructed by Lin, Lunin, and

Maldacena [63]. We will call these the LLM geometries. In these geometries, different

droplet topologies correspond to different spacetime topologies.

There exists a limit of the LLM geometries where a complete minisuperspace theory

characterizing all the states with the requisite amount of supersymmetry, as a quantum

theory, is identical to the Hilbert space of a free chiral boson on a circle in 1+1 dimensions.

This limit is the strict N → ∞ limit of the theory, with the energy above the ground

state kept finite. The mode expansion of the chiral boson can be related to traces of the

N = 4 SYM fields Z by a†n ≃ tr(Zn) via the usual operator-state correspondence and
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the understanding that single traces go to single particle modes [4]. In this limit, the

oscillators give a rise to a free Fock space, with a free mode for every n. We will take the

existence of this limit as a statement of fact and it is in this limit that our statements

can be made rigorously. Many of the technical details that are required to prove some

claims in this paper will appear in a forthcoming paper by the authors [38].

This paper makes the claim that topology cannot be measured by operators. To make

the claim, we need the following assumptions about the particular setup we have:

1. All coherent states of the chiral boson theory with finite energy have trivial topology

(the same as the vacuum) and are to be thought of as smooth classical geometries.

2. The set of these coherent states is over-complete, so every other state in the Hilbert

space can be obtained by superposition of this family of states.

3. There are states in the Hilbert space that have a different topology than the vacuum

and can also be thought of as classical states of the gravitational theory.

From these assumptions, it follows that there is no operator T̂ in the Hilbert space

that measures the topology. We now prove this statement by contradiction, assuming

the existence of T̂ .

From assumption one above, all coherent states have trivial topology, so T̂ |Coh⟩ = 0.

Any other state |ψ⟩ that is a superposition of coherent states will satisfy

T̂ |ψ⟩ = T̂

∫
Coh

ACoh |Coh⟩ =
∫
Coh

ACohT̂ |Coh⟩ = 0 (D.1)

so the ket |ψ⟩ is an eigenstate of the topology operator with eigenvalue zero: it has trivial

topology. By condition two above, this includes all possible states. Therefore, if such an

operator exists, all states have trivial topology. This contradicts the third assumption
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A related argument where overcompleteness is used to indicate problems with defining

either topology operators or geometric operators is found in [109, 108]. These arguments

are made in the ER = EPR context [78] for setups with entangled black holes, and the

topology change is hidden behind a horizon in an Einstein-Rosen bridge.

We will now elaborate on the basis for assumptions one and three. Assumption two

is a well known fact for studying states of a finite number of harmonic oscillators. It

can be extended to the case of an infinite number of oscillators by carefully taking the

appropriate limits.

A geometric picture of the states can be obtained as follows: in the LLM geometries,

all states can be drawn as a two color picture in two dimensions. The individual droplet

areas of both colors are quantized. As we are focusing on N → ∞, keeping the energy

finite, all relevant states are close to the circular droplet that makes the vacuum. We

want to focus on the edge of the droplet, by using an area preserving map

dx dy ≃ r dr dθ = dh dθ (D.2)

where the variable h will be measured relative to the circular droplet. In this setup, the

N → ∞ limit is taken by sending r → ∞, keeping h finite. In this limit, |h| can be as

large as we need it to be. The topology of the (h, θ) space is a cylinder. The vacuum

has the area below h = 0 completely filled, and above h = 0 completely empty. We

can excite fermions from the filled region to the empty region and will characterize this

shift by a density function ∆ρ, which takes on a value +1 for regions above h = 0 and

−1 below. Conservation of the fermion number is implemented by
∫
dh dθ∆ρ = 0. The
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energy relative to the vacuum is measured by

E ≃
∫
dθ dh h(θ)∆ρ(h, θ) (D.3)

This follows easily from the computations in [63], being careful about subtracting the

energy of the vacuum.

A typical geometric fluctuation is depicted in figure D.1. The fluctuation is described

h( )

Figure D.1: A geometric fluctuation of the vacuum, characterized by h(θ).

by a single height function h(θ) that represents the edge of the droplet.

The function h(θ) is the excess density of fermions at the angle θ. It gets matched

to the charged current of the chiral boson as h(θ) ∝ ∂θX(θ). Conservation of fermion

number is described by
∫
dθ ∂θX(θ) = 0. That is, the field ∂θX has no zero mode. This is

exactly as is expected from studies of the quantum Hall effect (see for example [142, 83]).

It follows from integrating ∆ρ over a column in equation (D.3) that the energy goes to

E ≃ 1
2π

∫
dθ : ∂θX(θ)2 :, where the normal ordering ensures that the vacuum has zero

energy. This is the standard expression for the energy in the chiral boson theory. The

factor of 2π is a choice of convention for normalization of the field Fourier modes.

A coherent state of the free chiral boson will result in a unique (sufficiently smooth)

single valued h(θ) ∝ ⟨∂X(θ)⟩ such that the classical energy of the state as computed

in (D.3) is equal to the expectation value of the energy of the corresponding quantum
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state. All of these solutions have a classical LLM geometry that can be reconstructed

uniquely from h(θ). The topology of the geometry is encoded in the topology of the

fermion droplet. All of these states have trivial topology in the LLM setting: one edge

with circle topology winding once around the circle direction θ. This justifies assertion

one.

Now we need to justify assertion three. This can be done with figure (D.2). The

h

h

h

2

1

1

~

L

M

Figure D.2: Examples of two colorings with non-trivial geometry. On the left, the
areas L,M have quantized area L,M respectively. On the right, we depict a more
general folded configuration.

idea is that we can also do a two coloring of the cylinder that preserves the net area

and is such that the topology is now characterized by a strip-geometry. In this case,

there are three edges winding around the circle, two of them go from black to white (at

heights h1, h2) and the other one goes from white to black (at height h̃1). Edges with the

opposite coloring will be called anti-edges. We call this state the reference state |□LM⟩.

This state is easily constructible in terms of Young diagrams [63]. One can also consider

folded configurations (which are not translation invariant) as in the drawing on the right

of figure (D.2).

Small fluctuations of the state |□LM⟩ will be characterized by three functions h1(θ) =

h
(0)
1 +δh1(θ), h2(θ) = h

(0)
2 +δh2(θ), and h̃1(θ) = h̃

(0)
1 +δh̃1(θ). Quantization of the area is

implemented by requiring that none of the δh have a zero mode in the Fourier coefficients.

This can easily be generalized to more stripes. A straightforward computation of the
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energy of such a geometry shows that the energy, relative to the reference state, is given

by

E ≃ ELM +

∫
dθ
∑
i

(
δhi(θ)

2 − δh̃i(θ)
2
)

(D.4)

with the edge modes having positive excess energy and the anti-edge modes having nega-

tive excess energy. The net fermion over density at position θ is ∂X(θ) ≃ h1(θ)+h2(θ)−

h̃1(θ). The absence of the zero mode for ∂X(θ) results in h
(0)
1 + h

(0)
2 − h̃

(0)
1 = 0. This

determines the location of the reference height, which tells us that the reference state

depends only on L,M , with no extra parameters.

We now claim that the new topology is generated by making the height function in

|□LM⟩, h(θ) multivalued. The function h(θ) is related linearly to ∂X(θ) in the classical

coherent state setup. The net ∂X(θ) that reflects a proper observable in the quantum

system is obtained by a signed sum over these multi-values. Indeed, because all the edges

are similar, one can imagine that to each of the edges one could associate a chiral boson

field theory so that ∂X(θ) = ∂X1(θ) + ∂X2(θ) − ∂X1̃(θ). Because in equation (D.4)

the tilded modes have the wrong sign, the notion of raising and lowering operators is

reversed. We can rewrite this equation in a mode expansion

a†n = b(1)†n + b(2)†n − c(1̃)n (D.5)

where the b modes refer to regular edges, and the c modes to the anti-edges. Notice,

without the lowering operator pieces in equation (D.5), the necessary commutation re-

lations of the an modes could not be satisfied. This also gives the correct equations

of motion for ∂X, with each of the modes satisfying them on their own. The negative

energy associated with the modes c is crucial, so that the notion of positive and negative

frequency can reverse the assignment of raising and lowering operators. This equation
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can be thought of as a partial Bogolubov transformation mode by mode. The reference

state is characterized by b
(i)
n |□LM⟩ = c

(̃i)
n |□LM⟩ = 0 for all n. A similar analysis for a

folded configuration would require decomposing in modes that also have position resolu-

tion (a wavelet transform) and the multivaluedness would have to be assessed locally in θ

with some resolution. Folded configurations cannot evolve from unfolded configurations

in this setup, but they can in the c = 1 matrix model [112]. A proper analysis of folded

configurations and how to extract their topology is beyond the scope of the present paper.

The linearity of the mode decomposition for strip geometries has already been sug-

gested in [82] (see also the more recent [111]). The construction of such modes is purely

combinatorial and depends on knowing how to manipulate the states labeled by Young

tableaux carefully. The commutation relations of the b, c modes are canonical for states

near the reference state. This can be deduced from [80]. We take these to be

[b(i)n , b
(j)†
n ] = nδi,j (D.6)

and similar for c, with all other commutators vanishing. These assertions are proven in the

companion work to this paper [38], where the details on the cutoff and the applicability

of these commutation relations are deduced from first principles. The nearby states form

a small Hilbert space in their own right. The commutation relations are valid when inside

the small Hilbert space, but they get corrected as we try to include more states.

These new modes only extend to values of order n << M,L. Beyond that they do not

exist as independent operators [38]. This is a type of stringy exclusion principle of the

same type as the one implemented in [71]. It is dynamically generated and depends on

the reference state (depends on L,M). The modes b, c do not exist for any of the coherent

states |Coh⟩ that we have discussed previously. For those states, the height function is
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single-valued. We should not be able to extend the definition of these modes to those

states. We claim we are prevented from doing so by the stringy exclusion principle.

The existence of these strip-geometry states justifies our third assumption, and therefore

completes our argument that one cannot have a topology measuring operator.

Does this lack of a topology measuring operator mean we simply cannot determine

the topology of the spacetime? In the remainder of the paper, we will give two reso-

lutions: one that involves measuring classicality of the state and one that involves its

entanglement. Both of these rely on computing quantities that are non-linear in the

wavefunction, rather than performing a single operator measurement.

Consider forming coherent states of the b, c oscillators, which can be interpreted as

new classical solutions relative to the state |□LM⟩, with δhi(θ) ∝ ⟨∂X i(θ)⟩ and similar

for the anti-edges. These are allowed as long as the tails in the coherent state can be

truncated without appreciable loss of information.

The existence (construction) of the b, c modes means we can do (unitary) effective

field theory in the nearby Hilbert space with them. We just need to restrict ourselves to

being well below the stringy exclusion principle. The small Hilbert space is constructed

by acting with finitely many raising operators b†, c†, keeping the total energy in the b

modes less than min(L/2,M/2), and the total negative energy in the c modes less than

min(L/2,M/2). In that regard, the operators a†n, an well below the (dynamical) stringy

exclusion principle act inside the small Hilbert space, leaving the new state inside it.

Any quantum mechanical question about them can be answered in principle in the small

Hilbert space: they belong to the effective field theory. This explains why effective field

theory is still valid in the gravity theory.

Consider taking the expectation value of the number operator N̂n for mode an in the
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reference state (this is easy to do for multi-edge geometries). We find that

⟨n−1a†nan⟩LM = Nanti−edges ⟨n−1ana
†
n⟩LM = Nedges (D.7)

so the expectation value of the number operator (on reference states) can be used to

measure the topology, mode per mode. The number operator can change a lot when

we consider coherent states of the b, c modes. Let us call one such state |ψ⟩. Consider

instead of the number operator, the uncertainty. A straightforward manipulation shows

that

⟨n−1(a†n − ⟨a†n⟩ψ)(an − ⟨an⟩ψ)⟩ψ = Nanti−edges (D.8)

We see that the topology of the coherent state of the b, c oscillators, the new classical

states, can be measured by computing the net fluctuations of the modes a†n. These are

still of quantum size (order one), so the state can be said to be approximately classical

for each of the modes an. In taking a double scaling limit ℏ → 0, implemented by taking

L,M → ∞ and rescaling the fields by appropriate powers of L,M , the rescaled uncer-

tainty vanishes. In this sense, these topologically different drawings provide new classical

limits of the free chiral boson. Similar limits for folded setups have been considered in

the c = 1 matrix model [112], where it is found that in general ⟨h(θ)2 − ⟨h(θ)⟩2⟩ is large,

but does not measure the number of edges directly.

The topology for the state |□LM⟩ is measurable by the uncertainty. This is a non-

linear operation in the Hilbert space: it is not a single operator measurement, but a test

of classicality. If we want to extend the measurement of topology to the semiclassical

limit, where we allow a few quanta of the b, c modes to be in a state that is not a coherent

state, we find that to measure the topology, we have to ask each mode an what value

of uncertainty they measure. The few modes that are outliers can be discarded and the
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majority rule will be used. We call this a census measurement. The best answer for the

topology will be given by the consensus of the majority. This depends highly on what

scale we use to cut off the census. This should be determined by the stringy exclusion

principle, which is related to the value of L,M . But, we do not know these a priori:

the state is given to us as a black box. If the cutoff is set at a scale much larger than

L,M , most of the an modes will be in the vacuum and we would find that state has a

trivial topology. If the cutoff is set well below L,M , the consensus might give a different

topology than if we measure near L,M . This is because the b, c, modes may be forming

thinner striped states on their own.

We will next use the idea that spacetime geometry and entanglement seem to be

intimately related. We compute the entanglement entropy using the Bogoliubov trans-

formation. Starting with a coherent state of the b, c modes, we find

Sn = Nedges lnNedges −Nanti−edges lnNanti−edges (D.9)

where everything but the an modes have been traced out. As with the previous method,

we need to perform this computation for many modes and find consensus to determine

the topology of nearby semi-classical states. We can only be sure of the accuracy of

this calculation for modes below the stringy exclusion principle. The connection we find

between topology and entanglement supports the ideas of Van Raamsdonk [72]. Related

ideas about connectedness being related to entanglement are currently being developed

by Almheiri et al. [110].

It is important to note that we have been working in the strict N → ∞ limit. At

finite N , there is no longer a canonical factorization of the Hilbert space, so comput-

ing the entanglement entropy becomes ambiguous. This suggests that the uncertainty
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measurement definition of topology might be preferable in general.

Further, at finite N , the Planck scale scales as ℓ−1
p ≃ N1/4. If L,M >> N1/4, there

are many more modes with energy below ℓ−1
p in the geometry with the striped topology

than when computed in the ground state of the system. These all commute with each

other. To describe these multi-droplet geometries, one needs to borrow supersymmetric

modes from the UV [37]. To end up with the extra finite energy modes, whose energies

are of order one, one needs the UV modes to be excited. That way, the UV modes don’t

annihilate the reference state and one can form a bound state of a mode that raises

the energy with another mode that lowers it. These UV states that lower the energy

count as large negative energy excitations relative to the reference state. Bound states

at threshold between the large positive energy excitations and the large negative energy

excitations provide a consistent solution to the presence of the extra modes, including an

explanation for the modes c with negative energy.

To summarize, we have shown that states with non-trivial topology can be formed

by superposing topologically trivial states. We have shown that in our examples, the

topology for multi-strip geometries can be accessed either by computing the uncertainty

or the entanglement entropy of the different modes. Neither of these two methods of

measurement correspond to a single operator measurement in the Hilbert space of states.
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Appendix E

Conjugacy classes of Sn

Consider the group of permutations Sn. The list of irreps of Sn is in one to one corre-

spondence with Young diagrams with n boxes. The cardinality of this set is also equal

to the cardinality of the set of conjugacy classes of the group Sn, which we label by a

group element representative [σ]. The element σ acts on the set of n elements as a one

to one function σ : {1, . . . n} → {1, . . . , n}, sending i→ σ(i). We can also represent this

as a cycle decomposition

σ = (n
(1)
1 n

(1)
2 . . . n

(1)
k1
)(n

(2)
1 . . . n

(2)
k2
) . . . (E.1)

where the set of elements {n(j)
ℓ } is the set {1, . . . n}. It follows that n =

∑
ki Each

m ∈ {1, . . . , n} only appears once, and the elements on each parenthesis are called a

cycle. We can recover the action on the set by the convention that σ(n
(j)
m ) = n

(j)
m+1,

with n
(j)
kj+1 ≡ n

(j)
1 . Basically, the cycles represent the iterated action of σ on individual

elements of the set {1, . . . n}. An individual cycle (n
(1)
1 n

(1)
2 . . . n

(1)
k1
) is said to have length

k1. We can choose the ki to be non-decreasing by permuting the order in which the
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individual cycles are presented. This does not change the assignment of σ.
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