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Abstract

Conformal Perturbation Theory and LLM Geometries
by

Alexandra Patrea Mathisen Miller

This dissertation will focus on various aspects of the AdS/CFT correspondence. Each
new result can be thought of as doing at least one of three things: 1) providing support
of the duality, 2) using the duality to learn about quantum gravity, and 3) helping to
further develop our understanding of the duality. The dissertation is divided into two
parts, each dealing with a different physical system.

In the first part, we derive universal results for near conformal systems, which we
have perturbed. In order to do this, we start by looking at the conformal correlation
functions and compute the corrections that arise when he hit the system with a new
operator. We were able to analyze what happens to the dual gravitational system under
such circumstances and see that our answers agree, providing support for the AdS/CFT
conjecture. These universal results also provided a previously lacking interpretation of
the universality of energy found in a quenching your system between the perturbed
and unperturbed set-ups. In order to perform these computations, we put our CF'T on a
cylinder, which happens to be the boundary of global AdS. This provided an IR regulator
and we found that the remaining divergences were of the same form as one expects in
dimensional regularization. Following along these same lines, we further analyzed the
divergence structure of correlators in conformal perturbation theory. We found that
on the plane, the logarithmic divergences that show up can be understood in terms of

resonant behavior in time dependent perturbation theory, for a transition between states
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that is induced by an oscillatory perturbation on the cylinder.

In part two, we restrict to the set of LLM geometries, which are the set of 1/2 BPS
solutions to IIB supergravity. In our first work, we analyzed limitations of the duality,
showing that boundary expectation values are not enough to determine the classical
bulk geometry. Next, we used this system in order to learn about quantum gravity.
We first were able to show that a quantum superposition of states with a well defined
spacetime topology leads to a new state with a different topology. From this, we were
able to prove that for this set of states there cannot exist a quantum topology measuring
operator, bringing to doubt whether such an operator can exist in quantum gravity more
generally. Finally, we were able to advance our understanding of the dictionary itself
by reinterpreting these results in terms of the language of quantum error correction,
showing that questions about topology perhaps only make sense within a particular

(code) subspace of states.
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Chapter 0O

Introduction

0.1 Scales in Physical Theories and the Road to Quan-
tum Gravity

One of the biggest open questions in physics today is: What is the correct theory of
quantum gravity? Two of the most fundamental and well tested theories in physics are
quantum mechanics and general relativity. In most cases, the effects of these two are
seen in very different settings. This is due to the fact they become important at very
different scales. In order to define and motivate the need for quantum gravity, I will start
by discussing this importance of considering the scale of your system when developing a
scientific theory.

Any physical theory has constants associated with it and these provide a scale where
the effects of the theory become important. The same physical system is often described
by multiple theories and which theory you use depends on the scale at which you probe
the theory. For instance, the proper equations needed to analyze the flow of water depend

on how closely you look at it. If you care about the dynamics of a river, you would use
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Introduction Chapter 0

the equations of fluid dynamics. But, if you want to zoom in on a droplet of water,
you will start to care about the fact that the water is actually made up of individual
H50 molecules and so will need to introduce more fundamental equations describing the
motion of the molecules. The size of H,O molecules is a constant that will help determine
which theory you will need to use. On length scales much longer than the size of the
molecules, you can take the continuum limit and use the equations of fluid dynamics,
but if you zoom in to length scales that are near the size of the molecule, you will need
to use a new set of equations.

Students first studying physics will generally start by learning Newton’s laws of clas-
sical mechanics, which work on every day human scales. But, if we want to understand
the many deep mysteries of the universe, we need to consider the physics of systems at all
scales. Furthermore, in the case of water, we considered zooming in to shorter lengths,
but this is not the only scale you might consider. Indeed, you can consider limiting cases
of any physical quantity you might discuss. Historically, there were three particularly
interesting limits that ended up leading to paradigm shifts in the way we understand
the world around us. The first was from considering objects moving very fast, near the
speed of light. In 1905, this led Einstein to propose the theory of special relativity [1],
which alters Newton’s laws for objects moving at these very high speeds and leads to very
unexpected phenomena, such as time dilation, length contraction, and recognizing the
speed of light as the universal speed limit. Ten years later, in 1915, Einstein took things
a step further and considered very massive objects. He again found that in this limit,
Newton’s laws simply don’t do the trick and a new theory is needed. This was his theory
of general relativity [2], which teaches us that very massive objects actually curve the
fabric of spacetime itself. And it is this curvature that causes, for instance, the planets to

orbit the Sun. Finally, around the same time, physicists were considering the behavior of
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objects at very small scales, which led to the development of quantum mechanics, which
comes with it a large array of surprises, such as the uncertainty principle, wave-particle
duality, and quantum entanglement.

In each of these cases, we learned that Newton’s Laws are not fundamental, but
instead are approximations that only work at everyday scales. It turned out that special
relativity, general relativity, and quantum mechanics are the more accurate descriptions
of the universe. A question you might ask is, how do you know when you need to use these
new theories and when can you use the classical approximations? With each theory there
is an associated constant of nature: special relativity uses the speed of light ¢, general
relativity has Newton’s gravitational constant GG, and quantum mechanics has Plank’s
constant A. And these constants set the scale at which the theory becomes important.
For instance, special relativity only becomes important when objects approach the speed
of light. At every day speeds, its effects are too small to notice.

We therefore found that by considering these limits, we were able to discover a more
accurate description of the universe. One might next wonder what happens if we consider
combinations of these limits. How do very fast large objects behave? Do we again need
a new theory in that case? Happily, this particular combination has already been solved.
When Einstein developed general relativity, he included special relativity in it. (That’s
why it is called special: it is the special case of relativity where we are in the limit of
flat spacetime). We might also want to consider systems with very fast objects probed
at very short distances, combining quantum mechanics with special relativity. This led
to the discovery of quantum field theory, which is used in describing the standard model
of particle physics, which predicts the phenomena seen at particle accelerators, such as
the LHC (Large Hadron Collider). Finally, one might want to consider the very massive

objects at very small distance scales. This is the regime of quantum gravity, where
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general relativity and quantum mechanics both become important.

One might wonder, usually massive objects are also large, while small objects have
a small mass. So, what are the physical systems quantum gravity will actually help us
describe? The answer is very dense objects. This leads us to black holes, which are the
densest objects in the universe. It is in these extreme places where general relativity alone
fails. And, again, it appears that there must be a more fundamental theory, a quantum
mechanical theory of gravity. As of today, we still do not know what the correct theory
of quantum gravity is. The work in this thesis was all done with the aim of trying to
help fill in pieces of the puzzle answering the question: What is the correct theoretical

description of the world where quantum mechanics and general relativity collide?

0.2 The Search for a Theory of Quantum Gravity

When classifying the forces of nature, there are four types we consider: electromag-
netic, weak, strong, and gravity. The first three of these are all well understood within
the framework of Quantum Field Theory (QFT). They are represented by force carrying
particles and so are well incorporated into the Standard Model. One might hope then
that quantum gravity is described by a graviton (the particle carrying the force of gravity)
and can also be understood using QFT. This, unfortunately does not work. Infinities ap-
pear and prevent you from extracting physically meaningful predictions. These infinities
are commonplace in QFT. However, there are usually only a finite number of them and
so they can be systematically removed. This process is referred to as renormalization. In
describing the graviton, we find that there are an infinite number of infinites that arise
and so renormalization is no longer sufficient. For this reason, it was discovered that we

need something new in order to describe quantum gravity.
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These infinities (divergences) generally have two physical origins: from either the very
short or the very long length scale. The infinites from short distances are referred to as
Ultraviolet (UV) divergences and come from the fact that we are including contributions
from infinite energy interactions, whereas those from the large scale are referred to as
Infrared (IR) and come from the fact that we integrate over infinite space.

String theory is a framework that treats fundamental particles as tiny vibrating strings
instead of as points in space. The finite size of particles softens the UV divergences and
so is a much better behaved theory. The fundamental constant of string theory is the
string scale and only near this scale will you be able to notice the stringy nature of
the particles. If you look at them at larger distances, then they will simply appear
to be points in space, reducing to our standard picture of a point particle. Originally,
string theory was written down in the late 1960’s in order to describe the strong force,
which governs the interactions of hadrons. But, it was eventually discarded in favor
of quantum chromodynamics. Today, it is believed that string theory may instead be
the correct framework for describing quantum gravity. This is in part because not only
does string theory allow for the existence of graviton, but its existence is required for
consistency. That is, all particles of the standard model have a spin associated with them.
This is simply one of their basic properties, just like their electric charge. For instance,
electrons have spin 1/2, whereas photons have spin 1. In 1965, Weinberg showed that
any massless spin 2 particle must be a graviton and such a particle arises naturally in
string theory, suggesting that it is a good candidate framework for quantum gravity.
Furthermore, there are two main requirements that we have for any possible theory of
quantum gravity: 1) that it is consistent with the postulates of quantum mechanics; and
2) that it agrees with the results of General Relativity in the classical limit. String theory

does both of these things.
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There is still a lot that we do not know about string theory, but much progress has
been made. And in 1997 [3], Juan Maldacena had a novel idea that completely changed
the way we look at the theory. He conjectured that type IIB superstring theory in
AdS5 x S° is dual to N = 4 Super-Yang-Mills, which lives in four spacetime dimensions.
In other words, he hypothesized that a particular supersymmetric form of string theory
(a theory of quantum gravity) is deeply mathematically related to a different theory that
does not contain gravity. This is an incredibly surprising, philosophically interesting,
and practically useful result. It says that any physical observable you can compute on
one side of the duality can be mapped to a result on the other side. To date, physicists
have worked on both sides of the duality to learn lessons about the other side. While
the conjecture has not yet been proven, there is a great deal of evidence for it and the
body of evidence seems to grow every day. All of the work in this thesis has approached
quantum gravity using AdS/CFT as a tool. As such, I will use the following section to

introduce some basic background of the duality.

0.3 AdS/CFT

Dualities are both remarkable and incredibly useful tools for science. A duality states
that one physical system can be described in two or more ways that often look incredibly
different, consisting of different interactions and degrees of freedom. This allows one to
look at the same physical system through very different lenses, providing new insights
and intuitions. These can be especially useful in the case of strong-weak dualities, where
one side is strongly coupled, while the other is weakly coupled. This is because we have
many more methods at our disposal for approaching weakly coupled theories. For two

theories to be truly dual, everything you can compute on one side must correspond to
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something on the other side, every degree of freedom must have a partner.

Gauge/Gravity dualities [3, @, 5] are remarkable and useful for all the same reasons
listed above, and more. There are various motivations one might have for studying
them. Many prefer to work in the limit where one can learn about strongly couple
field theories. There the mapping is incredibly useful because the gravitational theory
reduces to classical gravity, which we know how to deal with, while the field theory side
is strongly coupled and this is therefore generally much more challenging. I, on the other
hand, prefer to use the duality in the other direction and the work of this thesis reflects
that. I prefer to use the duality in order to learn about quantum gravity, which we are
still far from completely understanding. We can compute observables in field theory,
which we have good intuition for and map them to the other side in order to learn about
quantum gravity.

The first example of a gauge/gravity duality was conjectured by Juan Maldacena
and said that type IIB string theory on AdSs x S® is dual to N'=4 Super-Yang-Mills in
D = 4 [B]. It might seem surprising that a gravitational theory could be dual to one
without gravity and even more surprising that the two theories live in a different number
of spacetime dimensions. But, this amazingly is the case. This latter property is a result
of the holographic principle [G, [4, 8], which is due to the fact that the gravitational theory
is highly redundant and therefore should be able to be described by degrees of freedom
living in fewer dimensions.

Since this original example, many more examples of gauge/gravity dualities have
been studied, some with more success than others. There are an array of other examples
of AdS/CFT, as well as examples where the gravitational theory has other asymptotic
boundary conditions and correspondingly the field theory has other symmetries. For

instance, there are higher spin versions of AdS/CFT [9, [0, [T, 12]. And, with the goal
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in mind of developing a duality that describes our universe, there have been many efforts
to develop a dS/CFT duality [I3, I4, 5, [6, 7, IR]. One of the primary differences (and
challenges) this duality has is that whereas in AdS/CFT the radial direction emerges
holographically, in dS/CFT the time direction is emergent, which is challenging to recon-
cile with unitary time evolution. Others have considered flat space holography [19, 20,
which rather than being dual to a conformal theory, has as its dual a BMS invariant field
theory. It is still an open question which CFTs (or more general gauge theories) have a
gravitational dual.

All of of the work in this thesis deals with quantum gravity on a spacetime with
asymptotically AdS boundary conditions and is dual to a conformal field theory. To give
you a feel for this, in the following sections, I will give brief introductions to the two
sides of the duality, as well as describe some of the pieces of the dictionary, and discuss
some of the recent advances of our understanding. For more thorough reviews of the

correspondence, see 21, 22, 23, P4, P5)].

0.3.1 Classical Ads

One of the primary reasons why studying quantum gravity in Anti-de Sitter (AdS)
space is nice is because it acts like a finite sized box in that, though it is infinite in size, if
we send a signal to the boundary, it will return in finite proper time. For this reason, it is
a nice space in which to perform controlled experiments. This also means that boundary
conditions must be imposted in order to get a well-defined solution. That is, we do not
have a well-posed initial value problem in terms of information specified on a spacelike
slice (we will see later that these boundary conditions will be directly related to our dual
conformal theory). In order to get a better feel for AdS, let’s review the basic facts about

it. For a more thorough look, see any of the standard general relativity texts, for instance
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26, 27, PR, 29]. Alternatively, most of the AdS/CFT reviews mentioned above give an
overview.

Anti-de Sitter (AdS) space is one of the three maximally symmetric solutions to
Einstein’s equations. The other two being Minkowski and de Sitter space. AdS is the
solution with a negative cosmological constant, whereas de Sitter has a positive constant
and Minkowski space has vanishing cosmological constant. It is invariant under SO(d +
1,1). If we embed d + 1 dimensional Euclidean AdS space into R4TLL it is given by a
hyperboloid:

(X2 (XN 4 (X2 = _R2 X0 (0.1)

We can define Poincare coordinates of AdS by taking

1+ 22 + 22
X0=p—— = 0.2
2z (02)
H
Xt =R— (0.3)
z
1—a2%— 22
Xt —p— = 0.4
2z (04)
where 2# € R? and z > 0. The metric in these coordinates is given by
ds? — 12 dz? + 6, dxrdx” (0.5)

»2

In these coordinates, we see that the z = 0 boundary is just RY. And, if we move into
the bulk, each fixed z is simply another copy of R?, which is scaled down as z increases.
For this reason, one can interpret moving into the bulk as an RG (renormalization group)
flow. These coordinates are often referred to as the Poincare Patch because they do not

actually cover the full AdS space. A second useful coordinate system (which will cover
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the full space) is given by

X" = Rcosh7coshp (0.6)
X* = RQ"sinhp (0.7)
X% — _Rsinh 7 cosh p (0.8)

where (O# parameterizes a unit (d — 1) dimensional sphere. The metric is given by
ds®> = R* [cosh?® pd7* + dp® + sinh? pdQ2]_, | (0.9)

This metric is often referred to as Global AdS because, unlike the Poincare Patch, it
covers the full space. It is conformal to a solid cylinder and therefore the AdS/CFT
correspondence is often drawn as a cylinder with the conformal theory living on the
boundary. Both this and the Poincare metric representations are fairly common in the
AdS/CFT literature, and which is more useful is generally decided on a case by case

basis.

0.3.2 Conformal Field Theory

A Conformal Field Theory (CFT) is a Quantum Field Theory (QFT) that is invariant

under local changes of scale:

9y (2") = Q) gy (7) (0.10)

10
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An example of such a transformation is a constant scale transformation, where Q(z) = A

is constant across all spacetime.

G (@) = Ay () (0.11)

This simply zooms in or out of your entire system (increasing or decreasing everything
uniformly). More generally ©(z) can be a local scale transformation, which might zoom
in on some areas, but out in others. One can alternatively think of the set of conformal
transformations as being the set of angle preserving transformations. This a more liberal
constraint that that which leads to Poincare transformations, which only preserve the
norm of vectors. Notice the Poincare group a subset of the Conformal group, restricted
to the special case where Q(z) = 1. The set of allowed transformations is therefore
enlarged and includes the usual translations, boosts, and rotations, as well as dilatations
and special conformal transformations (which can be though of as an inversion, followed
by a translation, and then another inversion). We see that the symmetry group of a
d-dimensional CFT is enhanced from that of a normal QFT to SO(d+1,1). Notice that
this matches with the isometry group of AdS in (d + 1)-dimensions. When considering
the space of all allowed QFTs, the CF'Ts lie at critical points of the RG flow, where the
beta-functions vanish.

These are only the most basic defining properties of a CFT. Part I of this thesis
contains all of my work on conformal perturbation theory. So, I will begin that part
with a chapter, giving a more thorough introduction to some of the special properties of

conformal field theory.
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0.3.3 A few words about Strings and N =4

The original example of and AdS/CFT duality said that type IIB string theory on
AdS5 x S° was dual to N'=4 Super-Yang-Mills in d = 4 spacetime dimensions. For
a full description of both sides of this duality, please see any of the aforementioned
gauge/gravity duality reviews or the original work itself. Here, I will only provide a few
words about what the two sides are.

First, the gravity side. There are five consistent superstring theories: type I, type
ITA, type IIB, Heterotic Eg x Eg, and Heterotic SO(32). These all can only live in ten
spacetime dimensions can be related to each other via dualities (for instance, type I[IA and
IIB can be related via T-duality). Both type II theories have maximal supersymmetry
(32 supercharges) and are theories of closed strings. They differ in that IIB is chiral,
while ITA is non-chiral. Both can also have D-branes as excited states and open strings

can be attached to them. The massless fields of IIB are: G, GB,,, ®, C, C,,, Cpuxp,

s
and two gravitini and two dilatini. In the low energy limit,

You might wonder why we are studying a supersymmetric theory when evidence of
supersymmetry in our Universe is yet to be found. One can certinaly study bosonic
string theory, but it contains a tachyon (a field with mass? < 0), which causes a serious
instability. Moving to one of the supersymmetric theories removes this problem. Further-
more, we know that fermions exist in our universe and so we need a theory that contains
fermionic degrees of freedom anyway. For a more thorough introduction to string theory
more generally, some standard references are [30, 31, 32, B3, 34].

On the other side, we have N'=4 super-Yang-Mills theory in d = 4 spacetime dimen-
sions with gauge group SU(N) and Yang Mills coupling gyy. This, matching the gravity
side, is a maximally supersymmetric theory. It is, of course, also conformal (thus, the

C in AdS/CFT). We already saw that the matching of the symmetries when we looked

12
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at AdS and CFT individually, in this example, both bosonic symmetries are extended to
the superconformal version. Part of why this original example is nice is because it has so
many symmetries. We now know many examples of gauge/gravity duals with much less

symmetry.

0.4 Conformal Perturbation Theory

In this section, I will provide an introduction to some of the basic aspects of Con-
formal Field Theory (CFT) in d > 2 spacetime dimensions that will be important in
understanding chapters one and two of this thesis. Perhaps the most important thing
you will need to know is that the one-, two, and three- point correlation functions of any
CFT are completely determined up to a set of constants. One can derive them by simply
enforcing the transformation properties of the operators in the correlator. By doing this,

for scalar primary fields, one finds

(¢(x)) =0 (0.12)
_ 6A17A2
(91 (1) P2 (22)) = A (0.13)
|71 — @™
Clas
(91 (z1) P2 (22) @3 (23)) = o 3% (0.14)
|[Z12]™ [213]™ |223]
where
2CL = Al + AQ — A3
20 = A + Ag — Ay (0.15)

QC:A3+A2—A1

13



Introduction Chapter 0

the A; are the operator dimensions, and the C93 are the structure constants (also known
as OPE coefficients). One can find similar expressions for descendants by simply taking
the derivatives, as well as for operators with spin. For higher point functions, you being
to have conformal invariants, so enforcing covariance of the operators is no longer enough.

That is, for four points, you can write the expressions

_ |$12| |I34| _ |I12| |$34|
|2 13] [ 224 |Z14] 223

(0.16)

which alone are invariant under any conformal transformation and so an arbitrary func-
tion of these two can be included in the correlator without changing its transformation

properties. For instance, the four-point function can be expressed as

(@1 (21) G2 (w2) B3 (w3) ba (xa)) = f (w,0) [ ] larig "™ (0.17)

i<j

where > i Yij = —2A;. Higher point functions have even more conformal invariants
that you can write down.

In chapters one and two, we start with a conformal theory in an arbitrary number of
spacetime dimensions and perturb it with an operator O of dimension A. That is, if call
the action of our conformal theory Scpr, then the perturbed theory will have an action

S = Scrr + a [ d?zO(x). The partition function is given by
7 = / Doe S = / D Scrr—a [ dO@) (0.18)
We can compute an n-point partition function in the perturbed theory by

(D102 ... bp) = /D¢¢1¢2 ... ppeScrrma [ d%0) (0.19)
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We can Taylor expand the latter part of the exponential as
e—o [ d'e0(@) _ Z (—a/d%@(w)) (0.20)
n=0
Our correlator can therefore be re-expressed as

(D102 dn) = /D¢¢1¢2---¢n€_SCFT§: (—a/d%@(z))n (0.21)

n=0

= (12 . .. ¢n>cFT - / d'x (102 .. ¢no(x)>CFT + O(O‘2) (0.22)

We see, therefore, that the correlator in the perturbed theory can be written as a sum
over integrals of correlators in the unperturbed theory. And, because the unperturbed
theory is conformal, we know the form of the correlators, at least up to three-points.

Therefore, the work in computing the corrections is reduced to computing integrals.

0.5 LLM Geometries

The LLM Geometries are the set of 1/2 BPS solutions of type IIB supergravity. They
were first classified by Lin, Lunin, and Maldacena in 2004 [63]. Because of their high
degree of symmetry, we can make a lot of progress on both sides of the duality and

therefore they are an incredibly useful example of AdS/CFT. The supergravity solutions

— 2z l_|_z ~
dQ3 2" a3
()

can all be described by the metric

1_ 2

—(dt+1/;dxi)2+4T(dy2+dxid:17i)+y (

N =

N |
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where i = 1,2. Each solution is completely characterized by z(y, x;) (the vector V satisfies
a differential equation that ties it to z). The function z obeys a linear elliptic sourceless
PDE:
Oy~
Y

which requires a boundary condition at y = 0, which is often referred to as the LLM
plane. Non-singularity of the ten dimensional metric requires z = :I:% at this locus (this
forces only one of the two spheres to shrink to zero size, while the other stays finite).

From here, one can compute

(0.25)

y? / z(wy, wa, 0) dwy dwsy
T

z(x1,22,y) = = (21 —w1)? + (22 — we)? + y?)?

Notice that the integral is always convergent if z(wy, ws, 0) is bounded. Each non-singular
solution can be represented by a black and white coloring of the plane, where the two
colors are representing the two possible boundary conditions for the function z(x1, xs,0).

The other side of the duality corresponds to the 1/2 BPS solutions of N'=4 Super
Yang Mills. In this infinite N limit, this can be described by a free chiral boson on a
circle. In a Fock space representation, we can build all allowed states by an infinite set
of raising and lowering operators. We can alternatively work in a basis, where each state
is represented by an allowed Young Tableaux. The details of these two bases are given

in chapter four, section three.

0.6 Thesis Outline

All of the work contained in this thesis deals with doing at least one of three things:

providing support of the AdS/CFT correspondence, utilizes it as a tool for understanding
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quantum gravity, and/or advances our understanding of the duality. It is separated into
two parts, each dealing with a particular system. Part I includes my study of Conformal
Perturbation Theory, while Part II consists of my analysis of the LLM Geometries. Here,
I will discuss the system studied in each part and briefly review our primary findings
presented in each chapter.

There are two chapters in part I and both of them provide results within the frame-
work of conformal perturbation theory in an arbitrary number of spacetime dimensions
d. The results of each chapter are universal in that the initial conformal theory is not
specified; we only use the fact that it is conformal.

In chapter one, we consider perturbing the theory by a scalar operator of dimension
A (allowing it initially to be marginal, relevant, or irrelevant) and compute the first
order correction to the one-point function in such a set-up. We found that in trying to
compute this naively, one runs into both UV and IR divergences. By transforming our
system from the plane to the cylinder, we were able to tame the IR divergences, leaving
only those in the UV. We found that the divergence structure exactly matched what one
would find in a standard dimensional regularization scheme in QFT.

Exciting a scalar operator on the CFT is dual to exciting a scalar field in the bulk.
We computed the first order asymptotic behavior of such a field and, following the rules
of the AdS/CFT dictionary, were able to show that it agreed with the CFT result. In
this chapter, we also computed the energy in quenching between the perturbed and
unperturbed systems. What we found provided a deeper understanding of previous
results of [A1, A2, A3, A4] in that in our set-up it was clear why the energy in such a
quench should be universal.

In chapter two, we again work within the framework of conformal perturbation theory

and analyze the divergence structure of corrections to various correlation functions one

17



Introduction Chapter 0

might encounter. Here we consider higher point functions and allow the deformation to
have a spacetime dependent scaling profile. In the special case of marginal deformations,
we related our our computations to time dependent perturbation theory on the cylinder
and noted that singularities could be reinterpreted as resonances that arise in time de-
pendent perturbation theory. The logarithmic enhancements in the plane computations
reflect the secular behavior for resonant perturbations in the cylinder.

Part II of this thesis utilizes the LLM Geometries. These are the set of half BPS
states of type IIB supergravity. Because of their high degree of symmetry, we are able
to perform computations on both sides of the duality and so this provides an incredibly
useful playground for both learning about the duality and using it to learning about
quantum gravity.

In chapter three, we delve into how much information is needed from the hologram
in order to learn about the bulk theory. We use the LLM Geometries as an example and
show that, in that case, the expectation values of the boundary theory do no provide
enough information to reconstruct the classical bulk solution. Indeed, multiple bulk
geometries can be associated with the same boundary expectation values. Furthermore,
these bulk geometries are not just a little different, but can be topologically distinct.

In chapter four, we use the fact that the example of the LLM Geometries is one
where we understand both sides of the duality well in order to learn about quantum
gravity. One of our primary findings was that one can superpose states with topologically
distinct spacetime geometries that will give rise to new states with a classical spacetime
dual, which has a completely different topology than any of the original spacetimes.
Specifically, we show that coherent states on the field theory side have topologically
trivial gravitational duals. But, one can superpose these coherent states and form new

states whose dual is again a classical geometry, but now has a non-trivial topology. From
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this, we were able to prove that there cannot exist a topology measuring operator for
this set of states, which suggests that one should not assume that such an operator
exists in quantum gravity more generally. We end the chapter by discussing alternative
ways to extract the topological information, including using entanglement entropy and
uncertainty. In order to show these things rigorously, chapter four has several sections
building up the technology for preforming computations. Along the way, we show that
the Murnaghan-Nakayama rule (which is a rule for determining characters in the theory
of finite groups) encodes the fermi statistics of our Hilbert space.

Finally, chapter five contains a re-examining of the findings of chapter four. We
show that questions about the topology of the gravitational dual to a field theory state
only have non-ambiguous answers within a particular (code) subspace of states. We
discuss how the language of code subspaces is natural for understanding the AdS/CFT
dictionary in this case, which supports many of the recent ideas by the community
regarding holographic code subspaces, such as in [I22]. In order to do this, we went
beyond the infinite N limit of chapter four.

Note that Appendix D contains the short companion paper to the work included in

chapter four.

0.7 Permissions and Attributions

1. The content of Chapter 1 is the result of work in collaboration with David Beren-
stein, and have previously appeared in Physical Review D (Phys. Rev. D) [34]. It
is reproduced here with the permission of the permission of the American Physical
Society (APS), College Park, MD, USA. http://publish.aps.org/info/terms.

htmll.
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2. The contents of Chapter 2 and Appendix A are the result of work in collaboration

with David Berenstein [36].

3. The content of Chapter 3 is the result of work in collaboration with David Beren-
stein, and has previously appeared in The International Journal of Modern Physics
D [87]. Tt is reproduced here with the permission of the permission of World Sci-

entific. https://www.worldscientific.com/page/authors/author-rights.

4. The contents of Chapter 4, Appendix B, and Appendix C are the result of work in
collaboration with David Berenstein, and have previously appeared in The Journal
of High Energy Physics [38]. It is reproduced here with the permission of the
permission of the International School of Advanced Studies (SISSA). http://jhep.

sissa.it/jhep/help/JHEP/CR_OA.pdf.

5. The contents of Chapter 5 and Appendix E are the result of work in collabora-
tion with David Berenstein, and previously appeared in the Journal Classical and
Quantum Gravity [39]. It is reproduced here with the permission of the permis-
sion of the Institute of Physics (IOP). http://authors.iop.org/atom/help.nsf/

LookupJournalSpecific/WebPermissionsFAQ~*x.

6. The content of Appendix D is the result of work in collaboration with David Beren-
stein, and previously appeared in Physical Review Letters [40]. It is reproduced
here with the permission of the permission of the American Physical Society (APS).

http://journals.aps.org/copyrightFAQ.html.
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Conformal Perturbation Theory
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Chapter 1

Conformal perturbation theory,

dimensional regularization, and

AdS/CFT

1.1 Introduction

Consider a conformal field theory in d dimensions perturbed by a relevant (scalar)
operator O of dimension A < d. We are interested in evaluating the correlators of O in

the presence of the perturbation. The partition function is

o

7z <exp(—a/ddm(’)(:€))> _ <Z% (—a/dd:c(’)(:c)>n> (1.1)

n=0
and the formal evaluation of correlators with the infinite sum in the equation above is

what is known as conformal perturbation theory. To begin with such a program, one can
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compute the one point function of O(z) as follows

(O())= <—a/ddy(’)(y)(9(m) b > _ —a/ddy%—l— (1.2)

gt

The right hand side is infinite regardless of A. The divergence comes either from the
small distance UV regime, or from the long distance IR regime. This is because we have
to perform an integral of a scaling function. The problem seems ill defined until one
resums the full perturbation expansion. This is a very important conceptual point in
the AdS/CFT correspondence [3] where standard ‘experiments’ insert time dependent or
time independent sources for various fields on the boundary of AdS [5, 4] and these in
turn can be associated with sources for an operator such as O(x). Some of these results
have been argued to be universal in [A1, A2, 43, 44], independent of the AdS origin of
such a calculation. We want to understand such type of results under a more controlled
setting, where we can use the philosophy of conformal perturbation theory to get finite
answers ab initio without a resummation.

A natural way to solve the problem above is to introduce a meaningful infrared
regulator, so that the only divergences that survive arise from the UV of the theory and
can then be handled via the usual procedure of renormalization. Such a natural regulator
is provided by the conformal field theory on the cylinder S x R, which also happens
to be the conformal boundary of global AdS spacetime, rather than just the Poincaré
patch. The cylinder also is conformally equivalent to flat space and provides both the
radial quantization and the operator state correspondence. In this sense, we are not
modifying the AdS space in a meaningful way. However, a constant source for O(z) in
such a geometry is different than a constant source on the Poincaré patch.

In the rest of the paper we discuss the details of such a computation for two uni-
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versal quantities. These are the one point function of O(z), and the energy stored in a
configuration where we quench from « # 0 to a = 0. We also explain how to deal with
general time dependent sources in the conformal field theory side for more general AdS
motivated experiments. Because we work with arbitrary d, A, our results can naturally
be cast as a real space dimensional regularization formalism.

We find that the AdS answer, which is generally finite for the one point function,
matches this notion of dimensional regularization. The only singularities that arise are
those that one associates with logarithmic divergences. We are also able to match this
result to the CF'T calculation exactly, where the calculation is more involved. We also
argue how to calculate the energy of the configuration and that having solved for the one

point function naturally produces the result for this other computation.

1.2 One point functions on the sphere

What we want to do is set up the equivalent calculation to (1) and (I=2), but where

we substitute the space R x S%! in the integral. That is, we want to compute
(O(1,0)) ~ <—a/dd_lQ’dT'(’)(7", 0YO(T,0) + ... > = —aCx (1.3)

for 7 a time coordinate on R and # an angular position on the sphere. Because the
operator O is not marginal, o has units and we need to choose a specific radius for
the sphere. We will choose this radius to be one. Our job is to compute the number
Ca. Because the sphere times time as a space is both spherically invariant and time
independent, properties that are also shared by the perturbation, we find that the result

of equation ([=3) should be independent of both § and 7. As such, we can choose to
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perform the angular integral by setting the point 6 at the north pole of the sphere, so
that we only need to do an integral over the polar angle in 8. We want to do this
calculation both in the AdS spacetime and in conformal field theory. We will first do the

AdS calculation and then we will do the conformal field theory calculation.

The AdS calculation

As described in the introduction, we need to compute the answer in global AdS

spacetime. We first describe the global AdS geometry as follows

dr?

(1+72)

ds® = —(1+r?)dt* + +72dQ5 (1.4)
We need to find solutions for a perturbatively small scalar field ¢ with mass m and time
independent boundary conditions at infinity. Such a perturbation is a solution to the
free equations of motion of the field ¢ in global AdS. Such boundary conditions allow
separation of variables in time, angular coordinates and r. A solution which is time
independent and independent of the angles can be found. We only need to solve the

2(d—1

radial equation of motion. Using |g| o< 7241 we find that we need to solve

Td—l_lg (r(d_l)(l + 7‘%%) —m?p(r) =0 (1.5)

The nonsingular solution at the origin is provided by
d 1 d 1 d
0r) = Aafy (G = GV A T VB i g (16)

where A indicates the amplitude of the solution. We now switch to a coordinate y = 1/r

to study the asymptotic form of the field by expanding near y ~ 0. In this coordinate
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system we have that

d? dy? a0 A dy?  dD?
2 2 ~ -J Dt
ds _—?—dt T v v (1.7)

So zooming into any small region of the sphere on the boundary y = 0 we have an
asymptotic form of the metric that matches the usual Poincare slicing of AdS. In such a
coordinate system the asymptotic growth or decay of ¢(y) in the y coordinate is polyno-
mial, proportional to y* and can be matched to the usual dictionary for a flat slicing,
where Ay = gj: %\/m . We have made the match A, = A, the operator dimension
for irrelevant perturbations. For relevant perturbations we get a choice.

Reading the coefficients of this expansion has the same interpretation as in flat space:

one is a source and the other one is the response. Writing this as

o(y) = A(fry™ + f-y™) (1.8)

we find that f, =T'(d/2)T'(d/2 — A,)/T(1/2(A_))? and f_ is the same expression with
A, replaced by A_. We now use

in what follows to distinguish between vev and source, although we will find the answer
is symmetric in this choice.

The relation between source and vacuum expectation value is then

—~
D=

I'(¢ - AI(30)?

AT )

N

We have artificially chosen A = A, over A_ to indicate the vacuum expectation value
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versus the source as one would do for irrelevant perturbations, but since the expressions
for f, and f_ are symmetric in the exchange of A, and A_, we can eliminate the dis-
tinction in equation (ICId). Notice that this relation seems to be completely independent
of the normalization of the field ¢. We will explain how to get the correct normalization

later.

The conformal field theory computation

The basic question for the conformal field theory computation is how does one com-
pute the two point function on the cylinder. Since the cylinder results from a Weyl
rescaling of the plane, the two point functions are related to each other in a standard

way. The Weyl rescaling is as follows

d 2
ds> = di® = r? (7% + d93_1> = dr® 4 A2, (1.11)
which uses a Weyl factor of 2 (the rescaling of units is by a factor of r = exp(7)). As
a primary field of conformal dimension A, O(x) will need to be rescaled by O(0,r) ~

r2O(z) to translate to the new rescaled metric. For the two point functions this means

that

exp(Ar) exp(A7y) 1

<O(7-1791)O(7—2a62)>c 1= =
Y |21 — 29]28 (exp[(T1 — 72)] + expl(Ta — 71)] — 2COS(9T€1>)A

(1.12)
where 0, is the angle computed between the unit vectors Z;,Zs in standard cartesian
coordinates. If we choose Z; to be fixed, and at the north pole, the angle 6,; is the polar

angle of the insertion of O over which we will integrate. Since the answer only depends

on the the difference of the times, 75 — 71, the end result is time translation invariant.
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Notice that we have used throughout conformal primaries that are unit normalized in
the Zamolodchikov metric.
Now we need to integrate over the angles and the relative time 7. Our expression for

Ca reduces to the following definite double integral

o0 s ) _ 1
Ca = / dT/ df sin? QGVOZ(Sd_2)2A(COShT—COSQ)A (1.13)

1

du
Vu -1

= 2172V 0l(S,;_s) dv(1 —v?) E [u— o] 2 (1.14)

where we have changed variables to u = cosh 7 and v = cos #. For the integral to converge
absolutely, we need that 0 < 2A < d, but once we find an analytic formula for arbitrary
0 < 2A < d we can analytically continue it for all values of A, d. The volume of spheres
can be computed in arbitrary dimensions as is done in dimensional regularization, so we
also get an analytic answer for the variable d itself. Any answer we get can therefore be
interpreted as one would in a real space dimensional regularization formalism, where we
keep the operator dimension fixed but arbitrary, but where we allow the dimension of

space to vary. The final answer we get is

OIS [F(F(%l —MI(3) (1.15)

CA =T 2
T3P+ D)

Divergences

On comparing the answers for the AdS and CFT calculation, equations (IId) and
(IT3) seem to be completely different. But here we need to be careful about normaliza-
tions of the operator O in the conformal field theory and the corresponding fields in the
gravity formulation. We should compare the Green’s function of the field ¢ in gravity

and take it to the boundary to match the two point function one expects in the CFT
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dual. The correct normalization factor that does so can be found in equation (A.10) in

[@5]. Naively, it seems that we just need to multiply the result from equation (II3) by
dr(;‘) and then we might expect
2m20(A—2+1)

I+ I'(A)

[~ omEn(A—441)

2

Ch. (1.16)

However, if we compare the ratio of the left hand side to the right hand side we get that

the ratio of the two is given by

Ie L) o
f- (QWZF(A_ d_|_1)CA) =28-d=4,—-A- (1.17)

2

Happily, this extra factor is exactly what is predicted from the work [46] (in particular,
eq. 4.24). See also [A7, #8]. This is because one needs to add a counter-term to the action
of the scalar field when one uses a geometric regulator in order to have a well defined
boundary condition in gravity.

We see then that the gravity answer and the field theory answer match each other
exactly, for arbitrary d, A once the known normalization issues are dealt with carefully.
Now we want to interpret the end result Cx itself.

The expression we found has singularities at specific values of A. These arise from
poles in the I" function, which occur when (d/2 — A) is a negative integer. However,
these poles are cancelled when (d — A)/2 is a negative integer, because we then have a
double pole in the denominator. For both of these conditions to be true simultaneously,
we need both d and A to be even, and furthermore A > d. The origin of such poles is

from the UV structure of the integral (I2). The singular integral (evaluated at = = 0)
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is of the form

Asmgz/ ddyy‘mm/ dyyd‘l‘mﬁ// dpp® ' (p®> +m?) 79 (1.18)
0 0 1/e

where g = d — A and in the last step we introduced a momentum like variable p = 1/y
and a mass m infrared regulator to render it into a familiar form for dimensional regu-
larization integrals that would arise from Feynman diagrams. Singularities on the right
hand side arise in dimensional regularization in the UV whenever there are logarithmic
subdivergences. This can be seen by factorizing p? + m? = p?(1 +m?/p?) and expanding
in power series in m2. Only when d — 1 — 2¢g — 2k = —1 for some non-negative integer
k do we expect a logarithmic singularity. In our case, with —g = A — d, the condition
for such a logarithmic singularity is that —g = A —d = —g + k, which is exactly the
same condition as we found for there to exist poles in the numerator of equation (IZTI3).
The first such singularity arises when A = d/2. Beyond that, the integral in equation
(IT4) is not convergent, but is rendered finite in the dimensional regularization spirit.
Notice that this was never really an issue in the gravitational computation, since the
final answer depended only the asymptotic expansion of hypergeometric functions and
we never had to do an integral. The presence of singularities in gravity has to do with
the fact that when A, — A_ is twice an integer, then the two linearly independent so-
lutions to the hypergeometric equation near y = 0 have power series expansions where
the exponents of y match between the two. Such singularities are resolved by taking a
limit which produces an additional logarithm between the two solutions. We should take
this match to mean that the AdS gravity computation already knows about dimensional
regularization.

Another interesting value for A is when we take A — d. The denominator will have a
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double pole that will always render the number Ca—; = 0. This is exactly as expected for
a marginal operator in a conformal field theory: it should move us to a near conformal

point where all one point functions of non-trivial local operators vanish.

1.3 The energy of a quench

After concluding that the AdS and CF'T calculation really did give the same answer
for a constant perturbation we want to understand the energy stored in such a solution.
This needs to be done carefully, because as we have seen divergences can appear. Under
such circumstances, we should compare the new state to the vacuum state in the absence
of a perturbation and ask if we get a finite answer for the energy. That is, we need to
take the state and quench the dynamics to the unperturbed theory. In that setup one
can compute the energy unambiguously.

We would also like to have a better understanding of the origin of the divergences
in field theory, to understand how one can regulate the UV to create various states we
might be interested in. For this task we will now do a Hamiltonian analysis. Although in
principle one could use a three point function including the stress tensor and integrate,
performing a Hamiltonian analysis will both be simpler and more illuminating as to what

is the physics of these situations. Also, it is more easily adaptable to a real time situation.

A Hamiltonian approach

The perturbation we have discussed in the action takes the Euclidean action S —

S+ a [ O. When thinking in terms of the Hamiltonian on a sphere, we need to take
H— H+ a/dQ’O(G’) (1.19)
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and we think of it as a new time independent Hamiltonian. When we think of using
« as a perturbation expansion parameter, we need to know the action of [ d€QO(6’) on
the ground state of the Hamiltonian O(6’) |0). This is actually encoded in the two point

function we computed. Consider the time ordered two point function with 7 > m

1
O 7'1,91 O ’7'2,02 cy == 1.20
(O, 01)0(72,2)) (exp[(1 — 72)] + exp[(r2 — 71)] — 2 cos(Brer))> (1.20)

= Z(O|O(01) exp(—HTy) |s) (s| exp(H72)O(67)[0) (1.21)

= ) _exp(=Ey(n —m)) (0]0(8:) ]s) (s] O(61) |0) (1.22)

where s is a complete basis that diagonalizes the Hamiltonian H and we have written the
operators O(1) ~ exp(HT7)O(0) exp(—HT) as corresponds to the Schrodinger picture.
The states |s) that can contribute are those that are related to O by the operator-
state correspondence: the primary state of O and it’s descendants. When we integrate
over the sphere, only the descendants that are spherically invariant can survive. For a
primary O(0), these are the descendants given by (9,0*)*O(0). The normalized states
corresponding to these descendants will have energy (dimension) A + 2k, and are unique

for each k. We will label them by A+ 2k. We are interested in computing the amplitudes

Anior = (A + 2] / 40 0) (1.23)
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These amplitudes can be read from equation (ICZI) by integration over 6y, 6. Indeed, we
find that

1

/dd19<0(7’1, 01)O(72,02)) eyl = QAVOZ(Sdz)/ dv(1 — v*) % [eosh(r) — ¢1-24)

-1

- A 1+A d
= 7Tg21_A cosh[T]_A 2F1[57 +T; 5% COSh_z(T)[l-%)

= M) |Aaial’ exp[(—A — 2k)7] (1.26)

where 7 = 7 —73 and 2]5 1 is the regularized hypergeometric function. From this expression
further integration over Q; is trivial: it gives the volume of the sphere Vol(S?!). We
want to expand this in powers of exp(—7). To do this we use the expression cosh(7) =
exp(7)(1 + exp(—27))/2, and therefore

nTlatn]

T (1.27)

cosh™(7) = exp(—a7)2*[1+exp(—27)] ¢ = Z 2% exp(—at—2n7)(—1)

Inserting this expression into the power series of the hypergeometric function appearing
in (C23) gives us our desired expansion. Apart from common factors to all the amplitudes
Aaor (which are trivially computed for k£ = 0) we are in the end only interested in the

k dependence of the amplitude itself. After a bit of algebra one finds that

Ik + AT[A — £+ k + 1]
T[1+ A — 22Tk + 4]k!

| Anyon]? o (1.28)

and to normalize we have that

|AA|? = [Vol (S (1.29)
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For these amplitudes to make sense quantum mechanically, their squares have to be
positive numbers. This implies that none of the I' functions in the numerator can be
negative. The condition for that to happen is that the argument of the I' function in the
numerator must positive and therefore A > %l — 1, which is the usual unitary condition
for scalar primary fields. Also, at saturation A = d/2 — 1 we have a free field and then
the higher amplitudes vanish Aj~o/A¢ = 0. This is reflected in the fact that 9,0*¢ = 0
is the free field equation of motion.

We are interested in comparing our results to the AdS setup. In the CFT side this
usually corresponds to a large N field theory. If the primary fields we are considering are
single trace operators, they give rise to an approximate Fock space of states of multitraces,
whose anomalous dimension is the sum of the individual traces plus corrections of order
1/N? from non-planar diagrams. In the large N limit we can ignore these corrections, so
we want to imagine that the operator insertion of O is a linear combination of raising and
lowering operators [ dQO(0) ~ AAJF%a;HA + Apyoraopsa with [a,a’] = 1. In such a
situation we can write the perturbed Hamiltonian in terms of the free field representation

of the Fock space in the following form
H-+0H = Z Esalas + a(z AAJF%@HA + AnorQokin) + O(l/Nz)aTaTaa +... (1.30)

Indeed, when we work in perturbation theory, if this Fock space exists or not is im-
material, as the expectation value of the energy for a first order perturbation will only
depend on the amplitudes we have computed already. It is for states that do not differ
infinitesimally from the ground state that we need to be careful about this and this Fock
space representation becomes very useful.

When we computed using conformal perturbation theory abstractly, we were consid-
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ering the vacuum state of the Hamiltonian in equation (I=30) to first order in a. We
write this as

10),, = 10) + |1 (1.31)

(67

and we want to compute the value of the energy for the unperturbed Hamiltonian for
this new state. This is what quenching the system to the unperturbed theory does for
us. We find that

(0a| H|0), = (1| H |1) (1.32)

Now, we can use the expression ([Z30) to compute the state |0) . Indeed, we find that we
can do much better than infinitesimal values of . What we can do is realize that if we
ignore the subleading pieces in N then the ground state for H + 0 H is a coherent state

for the independent harmonic oscillators agk +a- Such a coherent state is of the form

0),, = NeXP(Z ﬁ2k+Aa£k+A) 10) (1.33)

For such a state we have that

<H + (5H> = Z(2k + A)‘52k+A|2 + 05/82k+AA2k-+5 -+ Oéﬁ;k+AA2k+5 (1.34)

and the energy is minimized by

Aopsa
2k + A

Pokin = —« (1.35)

Once we have this information, we can compute the energy of the state in the unperturbed

setup and the expectation value of O (which we integrate over the sphere). We find that
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A 2
(H) = S22k + &) st = 23 ol (1.36)
| Azpral?
<O> >~ Z2Ak+2Aﬁ2k+A >~ —2@2 m (137)
so that in general
a(O
(H) ~ — <2 ) (1.38)

That is, the integrated one point function of the operator O over the sphere and the
strength of the perturbation is enough to tell us the value of the energy of the state. For
both of these to be well defined, we need that the sum appearing in (IZ38) is actually
finite. Notice that this matches the Ward identity for gravity [41] integrated adiabatically
(for a more general treatment in holographic setups see [49]).

This is what we will take on next.

Amplitude Asymptotics, divergences and general quenches

Our purpose now is to understand in more detail the sum appearing in (IZ3G). What
we are interested in is the convergence and asymptotic values for the terms in the series,
that is, we want to understand the large k limit. This can be read from equation (IZ2R)
by using Stirlings approximation logI'[t + 1] ~ (¢)log(t) — (¢) in the large ¢ limit. We

find that after using this approximation on all terms that depend on k, that

log(A3in) =~ (k+A—1)log(k+A—1)+ (k+A—d/2)log(k+ A — d/2]1.39)

—(k+d/2—1)log(k +d/2 —1) — klog(k) + O(1) (1.40)
~ (A—l—l—A—g—(g—l))logk:(QA—d)logk (1.41)
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So that the sum is bounded by a power law in k

| Aog+al?
Z 2% + A Z kd+1 TAt1—2A (1.42)

Again, we see that convergence of the sum requires 2A — d < 0. This is the condition
to have a finite vacuum expectation value of both the energy and the operator O. If we
consider instead the L? norm of the state, the norm is finite so long as d + 2 — 2A > 1,
that is, so long as A < (d + 1)/2. The divergence in the window d/2 < A < (d+1)/2 is
associated with the unboundedness of the Hamiltonian, not to the infinite norm of the
state.

In general we can use higher order approximations to find subleading terms in the
expression (IZM). Such approximations will give that Agxia will have a polynomial
expression with leading term as above, with power corrections in 1/k. Only a finite
number of such corrections lead to divergent sums, so the problem of evaluating (O) can
be dealt with using a finite number of substractions of UV divergences. In this sense, we
can renormalize the answer with a finite number of counterterms. A particularly useful
regulator to make the sum finite is to choose to modify Aogyn — Aggpia exp(—e(2k+A)).
This is like inserting the operator O at time ¢ = 0 in the Euclidean cylinder and evolving
it in Euclidean time for a time e. Because the growth of the coefficients is polynomial in
k, any such exponential will render the sum finite. We can trade the divergences in the
sums for powers of 1/e and then take the limit € — 0 of the regulated answer. This is
beyond the scope of the present paper.

Notice that we can also analyze more general quenches from studying equation (I=34).
All we have to do is make « time dependent. The general problem can then be analyzed

in terms of linearly driven harmonic oscillators, one for each a',a pair. Since the driving
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force is linear in raising and lowering operators, the final state will always be a coherent
state as in equation (I=33) for some [ which is the linear response to the source. The
differential equation, derived from the Schrodinger equation applied to a time dependent

coherent state, is the following

iBokra(t) = (2k + A)Bopra + at) Agpsa (1.43)

The solution is given by
Bok+a(t) = Bor+a(0) exp(—iwt) + A2k+A/ dt'a(t)0(t —t") exp(—iw(t — "))  (1.44)
0

with w = 2k + A the frequency of the oscillator.
Consider the case that a only acts over a finite amount of time between 0,7 and
that we start in the vacuum. After the time 7 the motion for 5 will be trivial, and the

amplitude will be given by
Borin(T) = Agprn exp(—i(2k + A)T)/ dt' a(t") exp(iwt”) (1.45)
0

and all of these numbers can be obtained from the Fourier transform of a(¢). Notice that
these responses are always correct in the infinitesimal « regime, as can be derived using
time dependent perturbation theory. What is interesting is that in the large N limit they
are also valid for «(t) that is not infinitesimal, so long as the O(1/N) corrections can still
be neglected. One can also compute the energy of such processes. In particular, so long
as A < d/2, any such experiment with bounded a(t) will give a finite answer.

The simplest such experiment is to take a constant during a small interval 7 = 0t <<
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1. For modes with small w, that is, those such that wdt < 1, we then have that

Bok+a(T) = Agpaadt (1.46)
While for those modes such that wdét > 1, we get that

A
Bt a(7)] = a =22 (1.47)

When we compute the energy of such a configuration, we need to divide the sum between

high frequency and low frequency modes. The energy goes as

1/(26t) 00 |CVA2I<:+A|2
E ~ ZWW%JFA‘Q ~ / dkw| Agjy a6t ]? —I—/ dk—————— (1.48)
0 1/(26t) W
now we use the fact that |Agpya|? ~ £?2~% and that w o k to find that
E ~ |al?(6t)*24 (1.49)

which shows an interesting power law for the energy deposited into the system. One
can similarly argue that the one point function of O(7) scales as a(dt)4=22: for the slow
modes, the sum is proportional to Y A3, | yadt, while for the fast modes one can argue
that they have random phases and don’t contribute to O(7).

If we want to study the case A > d/2, divergences arise, so we need to choose an «(t)
that is smooth enough that the high energy modes are not excited in the process because
they are adiabatic, but if we scale that into a 0t window, the adiabatic modes are going
to be those such wdt > 10, let’s say. Then for these modes we take S ~ 0, and then the

estimate is also as above. For A = d/2, in an abrupt quench one obtains a logarithmic
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singularity rather than power law, coming from the UV modes. This matches the results
in [44] and gives a reason for their universality as arising from the universality of 2-point
functions in conformal perturbation theory. Essentially, the nature of the singularities
that arise is that the amplitudes to generate descendants are larger than amplitudes to
generate primaries, so the details of the cutoff matter.

Here is another simple way to understand the scaling for the one point function of the
operator O(7). The idea is that we need to do an integral similar to [ dzO(7)a(x)O(z),
but which takes into account causality of the perturbation relative to the response. If
we only turn on the perturbation by a small amount of time §t, the backwards lightcone
volume to the insertion of an operator at 7 = 4t is of order §t?, and this finite volume
serves as an infrared regulator, while the two point function that is being integrated
is of order 6?4, When we combine these two pieces of information we get a result
proportional to 622722 which again is finite for A < d/2 and otherwise has a singularity
in the corresponding integral. Similarly, the energy density would be an integral of the
three point function T7OO ~ §t~22~% times the volume of the past lightcone squared
which is again proportional to 6t2¢, giving an answer with the scaling we have already
found. The additional corrections would involve an extra insertion of O and the volume of
the past lightcone, so they scale as §t~2, multiplied by the amplitude of the perturbation.

This lets us recover the scalings of the energy [44] in full generality.

A note on renormalization

So far we have described our experiment as doing a time dependent profile for «(t)
such that a(t) = 0 for ¢ > 7. Under such an experiment, we can control the outcome of
the operations we have described and we obtain the scaling relations that we want. If

on the other hand we want to measure the operator O(6) for some ¢t < 7, we need to be
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more careful. This is where we need a better prescription for subtracting divergences. To
linear order in «(t), all UV divergences should be polynomial in the coupling constants
and their derivatives. Also, since we are working to linear order in «/(t), these can only
depend on «(t) and it’s time derivatives. Another object that can show up regularly is
the curvature of the background metric in which we are doing conformal field theory.
That is, we can have expressions of the form 9Fa/(t) R® appearing as counterterms in the
effective action. These are particularly important in the case of logarithmic divergences,
as these control the renormalization group.

For our purposes, we need to identify when such logarithmic divergences can be
present. In particular, we want to do a subtraction of the adiabatic modes (which do
contribute divergences) to the one point function of O(6,t) at times ¢t < 7. To undertake

such a procedure, we want to solve equation (IZ3) recursively. We do this by taking

A
ok (t) = —alt) 205 Bl (1) + Bha(t) + .. (1.50)

where we determine the (;(¢) recursively for high k by substituting Soria(t) as above in
the differential equation. The solution we have written is correct to zeroth order, and we

then write the next term as follows

o Aokga
—W(t)m = (2k + A) By a(t) (1.51)
and in general
iBpia(t) = (2k + A) B3 A1) (1.52)

This will generate a series in Mapa(t), which is also proportional to Aga. We then

substitute this solution into the expectation value of O(t, f), where we get an expression
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of the form

(Ot) =Y [Aoess| Wf)ﬂ aft) ~ /dk;zkm d(%fwﬂaf a(t) (1.53)

k¢

The right hand side has a logarithmic divergence when 2A — d + ¢ = 0. Notice that this
divergence arises from the combination 3 + 3*, so the terms with odd derivatives vanish
because of the factors of ¢ in equation (I52). Thus, such logarithmic divergences will
only be present when ¢ is even. We need then that A = d/2 + k, where k is an integer.
Notice that this is the same condition that we need to obtain a pole in the numerator
of the Gamma function in equation (IZTd). We see that such logarithmic divergences are
exactly captured by dimensional regularization. As a logarithmic divergence, it needs to
be of the form log(Ayy/Arr) = log(Auv /1) + log(p/Arr). In our case, the IR limit is
formally set by the radius of the sphere, while the UV is determined by how we choose
to work precisely with the cutoff. The counterterm is the infinite term log(Ayy /1), but
the finite term depends on the intermediate scale p, which is also usually taken to be
a UV scale which is finite. This lets us consider the Lorentzian limit by taking a small
region of the sphere and to work with ¢ as our infrared cutoff: only the adiabatic modes
should be treated in the way we described above. Then the logarithmic term scales
as log((uot))0?>~?a(t). These logarithmic terms are exactly as written in [24]. Notice
that after the quench, we have that «(t) = 0 and all of it’s derivatives are zero, so no
counterterms are needed at that time. We only need the pulse a(t) to be smooth enough

so that the state we produce has finite energy.
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1.4 Conclusion

In this paper we have shown how to do conformal perturbation theory on the cylinder
rather than in flat space. The main reason to do so was to use a physical infrared
regulator in order to understand the process of renormalization of UV divergences in a
more controlled setting. We showed moreover that the results that are found using AdS
calculations actually match a notion of dimensional regularization where the dimension
of the perturbation operator stays fixed. In this sense the AdS geometry knows about
dimensional regularization as a regulator. This is an interesting observation that merits
closer attention. In particular, it suggests that one can try a real space dimensional
regularization approach to study perturbations of conformal field theory.

We then showed that one could treat in detail also a time dependent quench, and not
only where we able to find the energy after a quench, but we also were able to understand
scalings that have been observed before for fast quenches. Our calculations show in what
sense they are universal. They only depend on the two point function of the perturbation.
The singularities that arise can be understood in detail in the Hamiltonian formulation
we have pursued, and they arise from amplitudes to excite descendants increasing with
energy, or just not decaying fast enough. In this way they are sensitive to the UV
cutoff associated to a pulse quench: the Fourier transform of the pulse shape needs to
decay sufficiently fast at infinity to compensate for the increasing amplitudes to produce
descendants. We were also able to explain some logarithmic enhancements for the vacuum
expectation values of operators during the process of the quench that can be understood
in terms of renormalizing the theory to first order in the perturbation. Understanding
how to do this to higher orders in the perturbation is interesting and should depend on

the OPE coefficients of a specific theory.
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Log enhancements in conformal
perturbation theory and their real

time interpretation

2.1 Introduction

Since the advent of the AdS/CFT correspondence [3], the study of conformal field
theories ™ has advanced substantially, as one can solve difficult problems in the dual
gravity theory instead. Many of the results found this way are not particular to gravita-
tional theories: they are universal in conformal field theory. For example, in the study
of quenches, one can find the anomalous scaling of various dynamical expectation values
[@3, bO]. This behavior can be understood from conformal perturbation theory, as shown
n [35]. In particular, in this last work, it was argued that many of the problems can be

handled by the use of dimensional regularization on the cylinder, where one leaves the

'This includes deformations away from the conformal fixed point.
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operator dimensions fixed, but integrates the angular variables in arbitrary number of
spacetime dimensions.

In this paper, we study corrections to various correlation functions in conformal per-
turbation theory, using dimensional regularization techniques. These results will be uni-
versal and can be applied to the gravitational theory via the AdS/CFT duality. Specif-
ically, we will analyze the divergence structure of these corrections and provide a novel
interpretation of their origin.

The general problem we are studying is that of a theory which has been deformed
away from a conformal fixed point by a scalar operator A [ d%z f(z)Op(x) (the subscript
D standing for deformation). We consider relevant, marginal, and irrelevant operators
with dimension hp and work in arbitrary number of spacetime dimensions d. Notice, we
further allow the deformation to be spacetime dependent, including the function f(x)
and taking the constant A to be our small parameter. Correlation functions in the new

theory take the form

(Oy(21) ... On(zx)), = <(91(x1) ... On(zy)e d"’mf<x>on<x>> (2.1)

CFT

where the correlators on the left hand side indicate the path integral in perturbed theory,
while those on the right are in the conformal theory. One can expand the right hand side

to find

(O1(z1) ... On(zN))y = (O1(21) ... On(2N)) cpr

(2.2)
I / 2 f(2) (O1(21) .. On () Op () )y + OON?)

We assume that the conformal field theory in question has a known set of operator

dimensions (a spectrum of conformal representations), and known three point functions.
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One then simply includes, for instance, the known form of the three point function

f123

|Z _ w|h1+h27h3|$ _ Z|h1+h3*h2|l= — w|h2+h3*h1

(O1(2)02(w)O3(2)) crr = (2.3)

and only needs to integrate to find the desired corrections.
However, these integrals can be tricky and are divergent. Consider, for instance,
the correction to the one point function when the theory is perturbed by a constant

deformation

(Op(0))x = A / ‘ijD o) (2.4)

where we have used the known form of the two point function in a CFT. This expression
diverges either at the origin (a UV divergence) or at infinity (an IR divergence), or both
if hp = d/2. Transforming the theory to the cylinder can provide an infrared regulator
(the size of the cylinder). The answer will then be IR finite, but there still might be
UV divergences. This is what was studied by the present authors in [35]. In that paper,
it was shown how to remove the divergences by using a modified version of dimensional
regularization, where d is varied, but the operator dimensions are fixed. This was shown
to be very similar to keeping d fixed and varying the dimensions of the operators: the
results were expressed in terms of gamma functions of linear combinations of d,hp.
Logarithmic divergences occurred at special values associated with the pole structure of
the gamma functions. This was also shown to be equal to the solution of the problem in
the gauge/gravity duality.

Let’s explicitly see how this IR divergence was tamed. To transform the operators
from the plane to the cylinder, one must introduce powers of the Weyl rescaling. That
is,

(O1...0n)

|£L’1|A1...|$N|AN <010N> (25)

cyl = plane
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It was this additional factor that helped with the convergence of the integral. Interest-

ingly, one can alternatively think of this factor of as having come from having made the
deformation spacetime dependent, with a source that scales as f(x) = |z|'»—4

1

|z — z|?hp

1 1
o7 fa = 2P

+0(N\?) (2.6)

(O(2))x = )\/ddxf(x) +0(N\?) = )\/ddx

In this case, the infrared cutoff is provided by the fact that the profile of f(x) dies
sufficiently fast at infinity. (Note the additional factor of |z|¢ comes from the change of
measure associated to the Weyl rescaling transformation.)

In this work, we will consider various functions that make these integrals more con-
vergent and will discuss the physics of the divergences that remain. In particular, we
will see that the correlators have logarithmic enhancements and will show that some of
the singularities that appear in the process of evaluating the integrals with dimensional
regularization techniques can be understood in terms of secular (resonant) behavior in
time dependent perturbation theory on the cylinder.

The paper is organized as follows: We first consider three physically interesting master
integrals and analyze the divergences in the resulting expressions. Next, we study the
special case of marginal deformations. And finally, we relate our computations to time
dependent perturbation theory on the cylinder and see how the singularities can be
interpreted as secular resonances that arise in time dependent perturbation theory. The
poles and logarithmic enhancements in the plane computations end up reflecting the

secular behavior for resonant perturbations in the cylinder.
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2.2 Dimensional regularization master integrals

There are three integrals we will consider explicitly in this work. They are all gener-

ically of the form
d'z f(z)

I =
|z — x| .o — x|

(2.7)

There is a vast array of literature on these Feynman integrals. For a general reference,
we suggest [B1]).

And, in fact, each of our computations have been performed in some form else-
where. We include the details for completeness and so that one may track the divergence
structure throughout the computation. It will be this structure that we are ultimately
concerned with.

As is standard practice in evaluating these types of integrals, we will find it to be

very useful to introduce Schwinger parameters, given by

1 1

B2« ~ F(a)/o dit"™" exp(—t| B[*) (2.8)

2.2.1 Fourier transform of the two point function

The first integral we consider is
Inlk; 2] = /ddx|z — 2|72 exp(ikx) (2.9)

Like in the previous work [35], this gives the first order correction to the one point function
in the presence of a deformation. However, rather than regulating by transforming to the
cylinder, here we introduce a source that is oscillating in position space f(x) ~ exp(ikz).

These deformations can be studied in a dual gravitational theory, where they produce
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2 (see for example [63, 54]). Here, the IR

a lattice that breaks translation invariance
regulator is provided by the scale of the oscillations. The point is that for large distances,
the integral is oscillatory and mostly cancels, removing the possible infrared divergence.
The small dimensionless parameter is A\|k|2~¢ << 1. This has already been computed in
other places [A8, b5, b6.

We compute with varying d, keeping A fixed. One can see that integral is UV
divergent if 2A > d, but otherwise should converge. This is because the large radius
region is tamed by the oscillatory nature of the integral. In this sense, the momentum

scale cuts off the possible infrared singularity.

To perform the integral, we first write it in terms of a Schwinger parametrization

Inlk; 2] = ﬁ/ddaz’/ dss® L exp(—s|z — z|?) exp(ikx) (2.10)
0

The net result is that the integral becomes Gaussian in x, and can be done by the
usual rules of dimensional regularization. Shifting first the integration variable from =z

tox’ =z — z, we get

. 1 . o0 .
IAlk; 2] = mexp(ik?)/ddx’/o dss® ! exp(—s|2'|?) exp(ikZ’) (2.11)

and then complete the square to find

1
[A]

Inlk; 2] = exp(iEZ)/ddx'/ dss® ! exp(—s|2’|?) exp(—|k|?/45) (2.12)
0

20ne can also do this by adding random disorder [52], which we will not study.
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The Gaussian integral is trivially done in d dimensions, giving us

ﬁd

[[A]

Inlk; 2] = exp(il;,?)/ dss® s~ Y2 exp(—|k|?/4s) (2.13)
0

Finally, we can change variables to § = 1/s, so that

d 00
Inlk: 2] = %exp(z/%’g) /0 d55 27152 exp(—5|k[? /4) (2.14)

which we immediately recognize as a gamma function. The final answer is

- o Td/2 - A

Ialfs2) = =S VA espliE2) (K /4) S (2.15)

Generically, the UV divergences for A > d/2 have been removed by analytic continuation.
The integral is always UV convergent for large enough d, if A is kept fixed. This defines
a function of d, A that can be continued to values where the naive integral has a UV
divergence.

Notice that there is a singularity whenever A — d/2 is a non-negative integer. These
arise as poles in the gamma function. The singularity at A = d/2 is exactly a logarithmic
divergence. For the other cases, the singularity is a subleading logarithmic divergence.
To get a finite answer in those cases, we need to add a counterterm. The counterterm is a
polynomial in &%, multiplied by 1/¢, where € = d— dj is the small parameter that deforms
the dimension d away from the dimension dj of interest. Because it is polynomial in %2,

it is local. This is a contact term. We write the full expression as follows

(O(x)0(2)) ~ |2 — 2|22 4 b2~ 425z — 2) (2.16)
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The full final answer needs to be expanded in Taylor series in d — dy. This produces an
extra logarithm from

_ €
(k[?)%r2m 4% 1 = 2 log(k?/1i?) (2.17)

Combined with the pole in the gamma function we get an enhancement of the answer by
a logarithm, where we have introduced a renormalization group scale p? for dimensional
reasons. The p? lets us shift the finite part of the counterterm to be whatever we wish

it to be.

2.2.2 First order correction to the two point function

Another interesting profile is to consider a different scaling function as follows

flz) ~1/|x|* (2.18)

where we can choose 7 to be real or complex. If we want f(z) to be real, we can also
take the real part of the expression. This leads to the same integral that appears when
considering a correction to the two point function of two different primary operators
O1(2), Os(w) in conformal perturbation theory. In this case, the infrared regulator is
provided by the distance between the operators.

If we consider two such primary operators O, Oy of dimensions hq, ho and a pertur-
bation of the field theory by a scalar operator Op(x), then the two point function Green
function for the operators is

(O1(2)Oz(w)) A _ Oy + A / d®z{0,(2)Ox(w)Op(z))crr + - . . (2.19)

T ]z — w[hrthe

where Op(z) is the operator that perturbs away from the conformal fixed point. The
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Kronecker delta appearing in the expression can generically depend on spin labels of the
operators, and the direction vector between z,w. We will be interested in the simplest
setting where both Oy, O, are primary scalar operators (and so is Op, in order not to
break rotational symmetry). If hy # hg, the first term vanishes, as the two operators
then have a vanishing two point function in the conformal field theory. The fact that
the right hand side does not generically vanish beyond the leading order in conformal
perturbation theory will be referred to as operator mixing.

If we use the known form of the three point function in a CFT, we see that the integral
we wish to perform is

1
|ZL’ _ Z|h1+hD_h2|l' _ w|h2+hD—h1

Iz, w, hp,d, hi, hy] = /ddx (2.20)

As can be seen, the integral diverges in the infrared if in the asymptotic |x| — oo region

we have that

o 1
d
/9:0 d xm%p (2.21)

is divergent. The integral is infrared convergent if 2hp > d.

Similarly, the integral is UV divergent for z ~ z if hy + hp — he > d. The same is
true near x ~ w if ho — hy + hp > d, and these follow from keeping the most singular
terms near each one of the insertions of the operators.

Adding these two, we find that there is always a UV divergence if hp > d. That
is, if the operator that performs the deformation Op(z) is marginal or irrelevant. The
divergences then need to be regulated before getting the correct (renormalized) physical
answer.

A standard procedure in the literature is to perform a geometric cutoff: do the inte-

grals until we are within a distance dz < A~! (see for example [67, b&]). This is problem-
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atic at higher orders. These integrals can also be handled via dimensional regularization,
which is the procedure we will follow. Here we keep hq, ho, hp fixed, and evaluate the
integrals for a variable complex d. The integral is defined in the non-convergent region
by analytically continuing in d past the singularities.

We will now perform the integral. Again, we start with Schwinger parameterization,

which is valid for ¢ > 0. With this, we find

j‘ ; tf j‘ <Ah;hD)__1 (hDgAh>_l
diz [T dty [ digt t
I[Z7w7hD7d> hl,h?] = OF (hi-l—fzp—hzz)lr (h2+h2D—h21) eXp(—t1|£B—Z|2—t2|:E—w|2)

(2.22)
where we have introduced Ah = hy — hy. The Schwinger parametrization is allowed as
long as both hp £ Ah > 0 and it is defined for other values of these quantities by analytic
continuation, contingent on the I" function being evaluated at a non-singular value (the
singularities occur when 2(]Ah|—hp) is a non-negative integer). As we see, the net result
is that integral over x again becomes Gaussian.

It is convenient to change variables to t; = ty,ty = t(1 — y), so that dt,dty = tdtdy,

so that t = t; 4 t5 as is usually done with Feynman parameters. We get then that

[ dia [ ot [ dyy (") 1 — g ()
[[Z:wahD:da hlth] = F(h1+h2th2)F(h2+h2thl)
x exp(—tylr — z|* = t(1 — y)|z — w]?) (2.23)

We now complete the square to do the Gaussian integral over x, to get that

thAh)_l

f()oo tthldt fOl dyy(Ah;hD>_1(]_ — y)( 2
T (h1+h2D—h2) r (h2+h2D—h1)

d
VT exp(=ty(1 —y)|z — w]’)
td/2

I[ZawahDaduhlahQ] -

(2.24)
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The Gaussian integral has been evaluated in an arbitrary number of (complex) dimensions
d by analytic continuation from positive integer dimension, as is standard in dimensional
regularization.

What we need to do now is understand the region of ¢,y plane that picks up the
singularities corresponding to z ~ z or x ~ w from passing from the equation (Z=23) to
equation (2224)). Obviously, the Gaussian is convergent as long as ¢ > 0, so all the UV
singularities are related to the region near ¢ ~ 0. In particular, ¢; small is the UV region
of the singularity at z, and ¢, near zero is the UV region near the singularity at w.

Upon integration in ¢, we get that

fol dyy(Ah;hp)_l(l B y)<hD;M)_1 . ﬁdr[hp —d/2]
D (Btpe) T (Bslp=) 7 [y(1 = )]z — wp2) "o
(2.25)

1[27 w, h’D7 da h’l> h?] =

Pulling out the constants that do not need to be integrated further, we find

VT T[hp — d/2]
I[z,w, hp,d, hy, he] = T (h1+h2th2) T <h2+h2D—h1) |z — w|?hp—d

x /01 dyy (") (1 gy (FR) (2.26)

The dependence on |z — w| could have been guessed by dimensional analysis. This step
also leads to a Gamma function with a singularity at hp = d/2. This is the infrared
singularity that appears in the integral for large x.

We now get, upon performing the integral over the last remaining variable, that the

full answer is

VT hp — d/2) I (hohn) | (d=Ohhp)
|Z _ w‘QhD_dF (h1+h2D—h2) T (h2+h2D—h1) F(d — hD)

I[Z7 w, hD7 d7 hla h2] =

(2.27)
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This is the correct answer as long as the two gamma functions in the numerator have a
positive argument. This in particular requires that d > hp. In other regions, the result is
defined by analytic continuation in d, first evaluated at large d, and then we bring down
d to the physical dimension of interest.

This final answer is very similar to the answers one gets from regular dimensional
regularization of Feynman diagrams in field theory. Indeed, the integrals that have been
done are of the same type. Here the improvements in the answer are obtained by taking
large d first. This is because we are not allowing the dimension of the operators to change
as we change d. Thus, marginal operators become relevant as we take d large and keep
the dimension of the deformation hp fixed.

Singularities in the final answer occur when hp + Ah — d is an even non-negative
integer. These appear as poles of the gamma function. There is also a pole in the
denominator that occurs if Ap — d is a non-negative integer. In all other cases, where
there are no singularities, we have obtained a finite answer. This is the dimensionally
regularized answer for the correction to the two point function.

In terms of the «, § variables, this integral is given by

(z —w)a-Ftd

~—

(2.28)

(—d+ a+p)
3

[

)

2.2.3 First order correction to the three point function

To get a correction to a three point function, we usually need to integrate a four point

function of the form

(O1(w1)Oa(w2)O3(w3))x = /ddy<(91(wl)02(w2)(93(w3)0D(?J)> (2.29)
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in the vast majority of the cases, such four point functions are not known exactly.
If one does perturbation theory with operators that are polynomials in a scalar field,
or in the example of string scattering amplitudes in flat space, the integrals one needs to

perform reduce to a finite number of integrals of the type

1
I[W, ay, s, as,d) = /ddx (2.30)

|x — w29z — wel?22|x — w3|?@3

The precise details of the integral evaluation can be found in the appendix @A The
techniques are similar to the ones used before, but in general the answer is not particulalry
simple.

It turns out that a similar integral is also obtained if we are working on a correction of
a two point function where we have added some position dependence to the deformation.

We will study this particular case in detail later on.

2.3 Marginal deformations

It is interesting to analyze the special case of marginal deformations, where hp =
d in equation (EZ3I). In that case, we find the following: there is always a pole in
the denominator at hp = d. This means that unless the numerators are singular, the
answer actually vanishes. This is expected from the usual rules of unitary conformal field
theories. Two point functions of primary operators of different dimensions should vanish
at a conformal fixed point.

For a singularity in the numerator to occur we require that Ah is an even integer.
There are two cases of interest. When Ah # 0 and the special case where Ah = 0. Let

us first analyze the case where Ah # 0, but still an even integer. In that case we find
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that the answer is equal to

_ V' Llhp — d/2] L G R G )
I[Z7w7 hD7 d7 hla hQ] - ‘Z _ w‘2hD—dF (Ah;hD) r (hD;Ah) ]_"(d _ hD)

(2.31)
If we keep hp fixed and analytically continue in d we find that only one of the two

numerators can become singular. The answer in the limit is of the form
lir% [[e/2 — m] /T[] x finite = finite (2.32)
e—

and this suggests that there could be finite mixing.

However, because in this case we have that Ah = 2m, the operators O;(z) and
O™y () have the same dimension. It is easy to see that we can modify O; with a finite
counterterm O; — c[J™ O, that removes the mixing. In this sense, this is no different that
Ah # 0 and we see the absence of mixing. Such a term can be interpreted as a contact
term in the OPE. It is also in this case, when the dimension hp is even, that there can
also be an extra pole in the denominator that arises from the Schwinger parametrization
of the denominators. This can produce a double pole in the denominator and makes the
end result vanish.

Now, only the special case where Ah = 0 and the operator is marginal remains to be

studied. The limit looks like
lir%F[e/Q]F[e/Z]/F[e] ~ 4 /e + finite (2.33)
e—

In this case we produce a universal logarithm. This is a correction to the anomalous
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dimension of the operator O;. It depends only on the OPE coefficient
hD(y)Ol(l') ~ f11D|ZL‘ — y|_hD01(Z[‘) + ... (234)

but not on the dimension of the operator h;. In that sense, the integral we have to

perform is always universal.

2.4 Position and time dependent perturbations

As described in the introduction, the second master integral that we evaluated in the
previous section can also be interpreted in terms of a position dependent excitation on
the cylinder. To see this, we convert the variables from the integral to the natural ones
on the cylinder.

To first order, the correction to the one point function on the cylinder in the presence

of a deformation with an f(x) = ¢ factor is given by

(Op(V, 7)) eyt = A / d*1Qdr exp™™(Op(Q, 7)Op (2, 7)) eyt (2.35)

cyl

where 7 is the natural euclidean time coordinate on the cylinder and w is a complex
variable. When w is real we have a bounded and oscillating perturbation of the conformal
field theory on the cylinder.

Using the fact that in radial quantization we have 7 ~ logr, and that to convert to
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the punctured plane we need extra factors of |r|~"» to be inserted, we get that

[ a1 e (0@, 0@ o = [ dlalal Ty (O@)O0)2:36)

, 1
o d iw+hp—d h
= /d x|z tho=d|y hp z _—y|2hD (2.37)
This can be written as
[ a9 ey (O, )0 e = 1l B DIy (2.38)
cyl
provided we identify
o = —hD —iw + d,ﬁ = 2hD (239)
in the master integral (2228). The result is then given by
72T (L (d = 2hp)) T (& (hp — i) T (L (i + hp)) 2P0+ 010

T (hp)T (3 (d—iw—hp))T (L (d+iw — hp))

This has the expected Euclidean time dependence. Notice that this has singularities
where

iw = +(hp + 2k) (2.41)

and k an integer. This is natural, as when we go from Euclidean to Lorentzian signature in
a Wick rotation, we should make w = iw imaginary in order to obtain a real frequency @.
This then corresponds to driving the field theory on the cylinder with a time dependent
source at frequency @. At the values of & = hp + 2k we obtain resonances. These
happen exactly at the energies of the spherically invariant excitations of the scalar O on
the cylinder (see [34] for a description of driving the conformal field theory in Hamiltonian

mechanics).
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The exponent is also given by
iw—hD—I—hD = W (242)

as one expects from the translation properties of the integral in the cylinder coordinates.
The way we deal with the resonance in this case is to analytically expand in @ at the
required frequency and keep the first subleading term. This gives the usual secular growth
of the resonance as t exp(iwt).

This response can also be obtained from the AdS dual following similar steps to those

found in [35]. We need to solve the differential equation for the radial coordinate

1 _ -
_ﬁ&"((l +r)r?710,p(r) + m2f(r) + &% /(1 +1r3)o(r) = 0 (2.43)
This is in a coordinate system where

ds? o~ —dt*(1 +r?) + dr*(1 + %)~ + r2dQ? (2.44)

The problem of the asymptotic shape near »r — oo ends up ends up being controlled

by the asymptotic expansion of the hypergeometric function

(d—hp —w) (hp —w) d’_rg)

— 2.4
2 ’ 2 "2 (245)

o(r) o< oF (

with the usual relation between the mass in AdS and the dimension of the operator
m? = /h% — dhp. This produces the correct ratio of the I' functions. The factors of
etc, are explained in detail in [35].

We can also notice that from this result we can recover the Fourier transform of the
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two-point function in equation (2ZI3). The idea is simple. If we take w — 0o in equation
(240), we are driving the theory in the cylinder with a Euclidean time dependence
that is oscillatory and that has a wavelength that is much smaller than the size of the
cylinder. In this limit, we would expect that if we zoom in to the region where we have
the operator, the infrared cutoff scale induced by the driving of the field theory is at
a higher energy than the infrared cutoff provided by the geometry. This second cutoff
should become invisible, up to ”finite size” corrections. To take the limit, we use Stirlings
approximation for the gamma functions that depend on w, I'(y) ~ exp(ylogy — 7).

We find this way that in the limit the answer becomes

72T (1 (d - 2hp))

<OD(T)> = F(hD)

exp(iwTt) X F(w) (2.46)

where

F(w) = exp 1 log v1—y14+72 log(72) =2 —73 log(y3) +v3 =74 log(74) +74) +O(1/7) (2.47)

where the ~; are the various w dependent variables that appear as arguments in the
Gamma functions. A straightforward evaluation shows us that
W2\ p—d/2
F(w) = exp((d — 2hp)log(2) + (2hp — d) log(w)) = <Z) (2.48)
and this matches the Fourier transform with all the factors of two and normalization
factors on the nose.

We can go one step further. We can also consider the case where we compute a

correction to a two point function in the presence of a position dependent perturbation
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with a radial profile. This is handled by the integral

|x|iw+hD—d

~ d? 2.4
(O1(21)O2(72))w f12D/ T | — a1 |AHhD |3 — |- AhthD (2.49)

where we have used the same convention for the profile as in equation (2231), so that it
corresponds to an oscillating driving of the cylinder after the conformal rescaling that
places the origin at the infinite past. This gives rise to a more complicated integral. But,
in the special case where either z; = 0 or x5 = 0, it takes the same form as the simpler
master integral we have already evaluated.

What is important for us, is that this modifies the exponents in the usual three point

function as follows
Ah+hp = Ah+hp —itw—hp+d=Ah—iw-+d (2.50)

keeping the other one, hp — Ah, fixed.

The w dependent gamma factors end up being given by

r [hD—iw] r [iwah]

2 2l (2.51)
d+Ah—iw d—hp+iw '
[ [y T[]
when we choose x; to be at the origin.
One set of poles in the numerator occur when w = —iw = 2k — Ah. This again can be

interpreted as a resonance. After all, putting the operator O; at the origin puts the field
theory in the vacuum of the representation of the conformal group associated to O; (the
lowest weight state), which is spherically invariant. This is an immediate consequence of
the conformal rescaling that takes the plane to the cylinder. This has energy h; relative to

the usual vacuum. Because we are integrating with a spherically invariant perturbation
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profile, the states that are generated need to be spherically invariant. We can think of

this as an amplitude in the cylinder Hamiltonian theory of the form

/ dr exp(iar) S s (O, 2k, 7] Op(r) |01, 0, —o0) (2.52)
k

where the ground state of the O, representation is converted into a sum of states in the
O, representation by the action of the perturbation. The coefficients s, appear from
how the operator O, at a particular radial time excites the individual states. This is
explained in [35]. Since |Oq,0,—00) is an eigenstate of the radial Hamiltonian, we can
choose the initial time to be anywhere we want, and we can make that coincide with the
lower end of the integration in the variable 7.

Here, spherical symmetry of the initial state and the perturbation guarantees that the
operator O can only destroy spherically invariant states. These can only have energies

ho + 2k with k an integer. In this sense, we can schematically write

Op ~ CLJIFD + f12D Z fka;kaw (253)

where the fj, are determined by the conformal symmetry (this is related to the conformal
block structure of the OPE between the representations O, Oy, Op, it basically describes
how descendant amplitudes are related to the primary amplitudes). The gamma function
pole happens exactly at resonance for a transition between a state with energy h; and a
state of energy hs 4+ 2k. The resonance in this case is constructive interference between
the perturbations at different times. Again, in time dependent perturbation theory such
resonances produce secular behavior (linear growth in time), which becomes a logarithm

after passing from the cylinder to the plane.
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Let us explain this. The usual formula for time dependent perturbation theory is

/) = Pexp ( / mmu)dt) i (2.54)

where V' is in the interaction picture. This has a natural time dependence of exp(i(wy —
w;)t) for a transition between states of energies labeled by their frequencies w;, wy. If we
add to the problem an external time dependence at frequency w we get that the driving
of the transition oscillates at a shifted frequency w— Aw. This gives us a linearly growing
transition in time if w — Aw = 0, this is the secular term in perturbation theory. In our
case the frequency of the final state is any of the spherically invariant descendants of Oy

There is a second pole. This one does not depend on Ah. Instead, it corresponds to

the topology for a transition of the form
(Op, 2k, 7| Oz(12) |01, —00) (2.55)

where the secular behavior is produced because it has a time dependence that exactly
cancels the time dependence of (Op, 2k, 7| in the Schrodinger picture. This is why w
ends up with the other sign in the pole of the gamma function.

Using the results of appendix @A, we can actually solve the full problem without
restricting to putting one of the operators at the origin. This way we obtain the full
correction to the two point function on the cylinder. We will now show that many of
the singularities in the final answer have the same interpretation. The idea is to do an

integral of the form

1
I~ /ddx (2.56)

|z — wo|?*|x — wq|??|z — wy|?e
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with 2a = (d — hp) — iw, 2b = hp + Ah, 2¢ = hp — Ah. The answer is then given by
> d/2-2 & —a¢+d/24a;
N / dt (\/E) 1o Kaj2ia;—ar (\/2759]-) (2.57)
0 ey

where a; = a; + ay + a3 and N is a normalization factor given by

N B ﬂ-d/22at—d -
_F[al]F[ag]F[ag,]F[d_at] (2.58)

which is non-singular. The functions K are modified Bessel functions. It is convenient
to change variables to = oc V/1.

There are two types of singularities that can show up. Some of them result from
integration over the variable x, and others result from the normalization of the modified

Bessel function, whose expansion is as follows

K, (7) ~ 2”27 7"T[—v](1 + O(2?)) + 272 T[v](1 + O(2?)) (2.59)

The singularities all arise from the z ~ 0 region. At large z, K,(z) ~ exp(—z) X
power law, so the  — oo limit of the integral is convergent.
Singularities in the integral arise when d/2 — 1+ 1y £ 15+ v5 is a negative integer [5Y],

where the v are the labels of the Bessel function. But notice that when we compute, we
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find that

as+as = hp (2.60)

2a;, = (d—hp)—iw+2hp (2.61)

= d+hp —iw (2.62)

d/2+a—a, = df2—hp (2.63)
d/2+ay —a; = iw/2+ Ah/2 (2.64)
d/2+a3—a; = iw/2— Ah/2 (2.65)

so only two of the labels of the Bessel functions depend on w and Ah, and not the third.
When we take the combinations +1,+ v, either the dependence on Ah or the dependence
on w cancels, so the singularities in w that arise from the integrals do not depend on Ah,
which is what we are seeking to find.

Thus, the singularities we want to analyze must arise from the normalization factors
of the modified Bessel functions. These are in the I' factors. Poles will arise whenever

+(iw/2 £ Ah/2) are integers. That is the same as writing

iw = £Ah + 2k (2.66)

Half of these singularities are transitions where a descendants of the first operator (in the
initial state) is excited at a resonant frequency with descendants of the second operator.
The point is that the first operator not being at the origin produces a linear combination
of the lowest energy state in the representation and it’s descendants. Any one of which
could be the one in resonance. The second set of singularities arises from reversing the

order of the operators (thinking of Oy as generating the initial state, rather than Oy).
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Both are generally required because in the Euclidean answer we can interchange the order
of the operators without encountering a singularity. Again, spherical symmetry of the
perturbation forces the state generated by O; to have the same angular quantum numbers
as the state annihilated by Oy (or viceversa). This is what produces a difference that
is twice an integer, rather than just an integer. After all, states with the same angular
momentum that are descendants of a single state, differ in their energies by twice an
integer.

The upshot is that the poles in w that depend on Ah can always be interpreted in

terms of resonant transitions.
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Part 11

LLM Geometries
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Chapter 3

Reconstructing spacetime from the
hologram, even in the classical limit,
requires physics beyond the Planck

scale.

Understanding how quantum mechanics and gravity can be made compatible is one of the
thorniest problems in theoretical physics. This is especially true in light of the black hole
information paradox [60]. One of the main claims of the AdS/CFT correspondence [B] is
that it provides a definition of quantum gravity for spacetimes that are asymptotically of
the form AdS;, 1 x X in terms of a quantum field theory in d-dimensions that resides on
the boundary of the AdS geometry. In this setup, the information paradox is resolved in
principle: the quantum field theory of the boundary does not violate quantum mechanics.
We do not yet understand how the paradox is resolved in terms of the geometric variables

of gravity.
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The boundary theory is often referred to as the hologram, while the full higher di-
mensional geometry is called the bulk. A rather important open problem in the study
of this duality is the problem of reconstruction: how to derive the geometric data of the
bulk spacetime from the hologram. The hope is that if we understand this procedure suf-
ficiently well, we might finally understand what was the wrong assumption in the original
calculation by Hawking.

Here, we will discuss how much information is needed from the hologram in order
to reconstruct the bulk spacetime, specifically when the spacetime is a classical solution
of gravity. This problem is well understood near the vacuum state. Fields in the AdS
spacetime are in one to one correspondence with certain families of local operators on
the boundary [d]. The expectation values of these operators are related to the behavior
of the solutions of the classical fields as they approach the boundary. Very small classical
excitations in the bulk imprint themselves on these expectation values of the hologram
in a way that makes it possible to reconstruct the bulk solution from the expectation
values in a perturbative expansion |61, 62].

Does this work beyond a perturbative argument? In this essay, we will argue that the
answer to this question is generically no. The way we will argue for this outcome is with
a very concrete counter-example, where we can see the failure explicitly. We will then
argue that there is a mechanism in the quantum field theory that provides the additional
data necessary to reconstruct the spacetime, but that this data is hidden in modes that
lie beyond the Planck scale from the point of view of the vacuum geometry.

The counter-example can be constructed in the maximally supersymmetric theory
with excited states that preserve as much supersymmetry as possible. The complete set
of these solutions has been classified by Lin, Lunin and, Maldacena [63] and we will refer

to them as LLM geometries. What makes this example special is that we also understand
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the complete set of such states in the dual field theory [64, 65], so we can understand the
problem in detail not only in the geometric space of classical solutions, but also in the
Hilbert space of the quantum theory.

The LLM geometries are completely specified by a single function z(w,w,y), which
must obey a known differential equation. They are regular and horizon free. Geometric
regularity forces z(w,w,0) to take one of two possible values, +1/2. This can be repre-
sented by a two-coloring of the complex w,w plane. A single round disk will give rise
to the AdSs x S° spacetime. These patterns have fixed arca and are identical to the
configuration space of a fixed amount of incompressible liquid in two dimensions.

The coloring can be described by a step function p(w,w) that takes the value one in

the region of one color and is zero otherwise. Given p(w,w), the solution for z is

2(w, D, y) :-——/ plu!, w)du! (3.1)

(Jlw— w’|2+y )?

The boundary of the LLM geometries is located in the region where r? = (y* +
ww) — oo and z = 1/2 — N(r* — ww)/r* + O(1/r*). Indeed, z admits an expansion
in powers of w/r? w/r? 1/r?. The expressions that arise are linear in the moments
My = [ p(w, w)w"w™d*w of p(w,w). As shown in the works [66, 67] (see also [68]
for how to use some higher moments as conserved charges with which to distinguish
quantum states), the problem of computing expectation values of fields on the boundary
can be reduced to studying a particular set of these multipole moments. Conversely, in
this essay, we will see if it is possible to determine p from only a subset of the moments.

To see that this is a reasonable possibility, consider a small deformation of the lowest
energy state, which is represented by a circular disk of radius o = VN (as shown in the

left figure of Bl). We want the edge to be slightly deformed, so that in polar coordinates
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Figure 3.1: An example of a single droplet, versus a multi-droplet geometry, deformed
away from a setup of concentric circles. Notice that a ray starting from the origin
intersects various deformations of the edges.

the edge of the droplet can be described by a radial function r(0) = ro + 6r(6). In these

coordinates, w = rexp(if) and because p is just a step function, we can integrate along

the radial direction to get

My, — / / o, 0)1™ exp(—imO)rdrdo (3.2)

= Nomo +/d97’6”+15r(9) exp(—im0)dd + O(6r?) (3.3)

We see that to linear order, the moments M, become exactly the Fourier modes of
dr(0). Higher M, ,, are also linear in these Fourier modes, so they are redundant. We now
see why it is reasonable to think that the subset of moments M ,, might be sufficient to
calculate the function z and hence the full geometry: we need only to perform the inverse
Fourier transform to build the geometry. This procedure fails in general geometries.
Consider now the coloring illustrated on the right of figure B, which shows a droplet
excitation with a deformed disk and annulus that are concentric. We can quantify the
deformations by a set of functions, dr;() for each edge. One can then repeat the calcu-

lations that ended up with the Fourier coefficients (B23). However, in this case one would
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immediately see that the M ,, would only capture a particular linear combination of the
three dr;. This problem increases as one considers geometries with more droplets. We
find then that it is impossible to reconstruct the geometry from the knowledge of this
restricted data.

We can also compute the M, ,, for the multi-droplet geometry and find that to lin-
earized order they give a different linear combination of the Fourier modes of dr;. So, in
general, to reconstruct the bulk we would need roughly one of the M, ,, for each mode
of ér;. Classically, the state can have an arbitrary number of such circles, so to solve the
problem in the general case, we would need all of the M, ,,,. This is the same as knowing
the function z (and therefore the full geometry) at the start. To reconstruct spacetime,
we need to know it already. We find that reconstruction in the general case is not only
hard, but it is ambiguous: many geometries can have the same classical boundary data.
This is a counterexample to bulk reconstruction in the sense of [61], because some fluc-
tuations in the bulk are not coupled linearly to the expectation values that are available
on the boundary.

Now, we will discuss the implications of this observation for the full quantum problem,
rather than just the classical problem. The difficulty in reconstructing the interior is not
on first figuring out if the state preserves supersymmetry. The condition we need to
satisfy is that the charge of the state under one of the rotations of the sphere is equal
to the energy of the state. Both of these are readily measured on the boundary. The
problem really lies in that we need more modes than are available on the vacuum to
describe the excited state of the multi-edge droplet picture in figure (B7), one mode for
each of the Fourier modes of 67;(#). Where do these modes come from?

To better understand the physics of the boundary, we need to use the dictionary

[@]. The single-particle states that preserve this amount of symmetry are massless in
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ten dimensions. The list of modes can be read off from a table [6Y, [70]. Because these
modes preserve a large amount of supersymmetry, they can be followed from families of
operators in the free field theory limit of the boundary theory as we increase the strength
of interactions. This physics is determined by the eigenvalues of a single matrix degree of
freedom in the quantum field theory [65]. Let us say there are N such eigenvalues. This
means that we only need to know up to N invariants of the matrix to compute them.
This was argued to be a form of the stringy exclusion principle [[71]. These eigenvalues,
when properly quantized, actually determine quantum droplets of incompressible fluids
in two dimensions. The counting of excitations of the ground state droplet give a single
tower of states that stops at mode N. This has fewer degrees of freedom than the classical
gravitational theory, where the tower has no end, but notice in the latter case we had
assumed that N — oo first.

Here is where the physics of the Planck scale enters. A particle with momentum of
order the Planck scale is not a mode with momentum n = N, but it is at much smaller
values, around n = N4, The vast majority of the modes that are required to describe
the field theory data for such a supersymmetric state lie beyond the Planck scale.

To describe the degrees of freedom of the additional edges of the droplets, we need to
borrow supersymmetric modes from the UV somehow, as these are the only other modes
that preserve the correct amount of supersymmetry. It is now becoming clear why it was
not possible to reconstruct the bulk with the classical theory: the physics responsible
for the new modes of the geometry is way above the cutoff. In the strict classical limit,
where N approaches infinity, this cutoff was sent to infinity first!

A natural question is how something that started its life at short wavelengths (high
energies) became effectively a mode that is present in the long wavelength limit of the

theory in the excited state. The way this must happen is that the map in equation (333)
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is non-linear. A non-linear combination of modes adds the frequencies and wavelengths
of the linear fields. To get a long wavelength (low frequency), there must be negative
contributions as well as positive ones. The negative contributions in frequency indicate
that the state is not in the ground state, but in an excited state. Bound states of large
positive and large negative energy will have the required characteristics.

That such bound states play an important role implies that the modes are organized
in a non-trivial way in the quantum wave function. This requires the right type of entan-
glement between the different UV modes. This entanglement allows one to change the
topology of spacetime creating a droplet configuration with multiple edges. These multi-
edge geometries actually have different topologies of the spacetime [63], thus realizing
some of the ideas of Van Raamsdonk where topology changes of spacetime are related to
entanglement [[/2]. It is natural to speculate that this is more generally true in gravity
and that this paves a way to resolve the paradox of Hawking [60]. Transplanckian modes

are doing something important.

75



Chapter 4

Superposition induced topology

changes in quantum gravity

4.1 Introduction

4.1.1 The Question: Can topology be measured by an operator

measurement in quantum gravity?

The AdS/CFT correspondence [3] has provided a detailed model of quantum gravity
in terms of a dual quantum field theory. This has been an incredibly helpful tool, shedding
light on several puzzles of quantum gravity. For instance, it has shown that the black hole
information paradox [60] is soluble within a quantum mechanical framework (at least in
principle). It is natural to ask what else the AdS/CFT correspondence tells us about
quantum gravity. The careful reframing of the Hawking paradox in terms of information
theory, resulting in the AMPS paradox [73], suggests that our ideas about quantum

gravity might need rather large modifications in the presence of black hole horizons. The
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correspondence supplies a method for rigorously analyzing these questions. We can ask
if basic assumptions about the nature of gravity are actually valid or not. We will focus
in particular on the problem of measuring the topology of a spacetime. Specifically,
our question is: In the context of the AdS/CFT correspondence, can we determine the
topology of a spacetime via a simple quantum mechanical operator measurement or
instead does it require some other procedure?

Classically, spacetimes with different topologies can often be characterized by different
topological invariants, which can be computed via, for instance, the Gauss-Bonnet theo-
rem and its generalizations. Our current semiclassical understanding of quantum gravity
suggests that some states will be represented by a sum over states whose spacetimes are
topologically distinct. This should lead to a picture of spacetime that microscopically
has the attributes of a spacetime foam [74]. This semiclassical quantization of gravity
suggests that the metric and the topology are observables.

The simplest example of topology change in the AdS/CFT correspondence arises from
the Hawking-Page phase transition for black holes in AdS [[75]. This can be understood as
a confinement /deconfinement phase transition in gauge theory [76]. Here, the transition
leads to a new topology of spacetime, certainly in the Euclidean field theory. However,
one can argue that this change is hidden behind the horizon if one considers the real
time dynamics of a black hole. The Einstein-Rosen bridge of the maximal extension of
the AdS black hole geometry connects to another region of spacetime that is completely
hidden behind the horizon of the black hole and is not accessible to an observer on the
boundary of AdS space in finite time measurements. More precisely, it is expected that
the eternal black hole in AdS is equivalent to the field theory double of the thermal state
(7], so the other asymptotic boundary of the spacetime corresponds to a copy of the

degrees of freedom of the first field theory that is completely independent of the original
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theory, except for the fact that the state in the double field theory is entangling the two
copies of the field theory. In this sense, the topology change requires the addition of a
hidden sector to the original field theory.

On the other hand, a true topology change that is not hidden behind a horizon can
be obtained when studying bubbling solutions in AdS [63]. In this case, it is possible
to show that various spacetime topologies can be supported by the same boundary field
theory. Indeed, it is even possible to argue that the bubbles can be tiny and almost
indistinguishable from perturbative excitations of the geometry. The multi-bubbling
solutions can sometimes be interpreted as spacetime foam. A natural question to ask
is if we can measure the geometry (and even more coarsely, the macroscopic topology)
uniquely, for sufficiently smooth configurations and their superpositions, or if the notion
of geometry and topology is highly dependent on the state that we are studying. That
is, is the topology of spacetime a quantum observable in this minisuperspace model?

As the full theory is a complete quantum mechanical system, we can consider arbitrary
superpositions of geometries (with the same or different topology). Under the naive rules
of semiclassical quantum mechanics, one could argue that there should be a “topology
measuring” operator that distinguishes the different topologies, so that one could in
principle divide the Hilbert space into superselection sectors that are eigenstates of the
topology operator. However, Van Raamsdonk has suggested that topology and geometry
arise from quantum entanglement [72]. In that case, it would be impossible to produce
such a topology measuring operator. For example, entanglement of a factorization of the
Hilbert space can be obtained from superpositions of states, each of which has no such
entanglement. These could all have fixed topology, while the new superposed state could
be a state with a different topology. In the case studied by Van Raamsdonk, this was

associated with the double field theory interpretation of the black hole geometry [77],
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but one might imagine that this could be applicable more generally [78]. This program
for understanding geometry goes under the “ER=EPR” banner. One can also ask if the
topology changes due to entanglement always require black hole horizons.

The main difficulty in being precise about this idea is that models of holographic
quantum field theories where this could be analyzed tend to be too complicated to un-
derstand how to evaluate entanglement properties of most states, except perhaps for very
special states like the field theory double. This is also beyond the Ryu-Takayanagi setup
[79], as that setup assumes a single background geometry: it is not known how to make

it compatible with superpositions of (macroscopically distinct) states.

4.1.2 The Set-up: The set of half BPS states in N = 4.

In this paper, we work in a venue that is free from black hole horizons, in a setup
where a complete description of the quantum states that contribute to the phenomenon
can be understood in excruciating detail: the corresponding states have been completely
classified in the dual field theory and a complete basis for the states is known. The field
theory in question is the theory of a chiral free boson in two dimensions. Here, it arises
as a limit of the minisuperspace of half BPS states in N' = 4 SYM, though it can also
appear in many other holographic duals in a similar limit fashion. The supergravity dual
configurations that correspond to smooth horizonless geometries with various topologies
are well known and have been classified completely by Lin, Lunin and Maldacena [63].
They can be classified by black and white colorings of the plane, with some restrictions
on the area of the colored regions that enforce the Dirac quantization condition. We
will call these the LLM solutions. If one quantizes the solutions around the ground state
droplet (a circular disk, which corresponds to the AdSs x S° spacetime), one gets chiral

edge excitations of the droplet [80]. We want to analyze this system in in a limit where
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these edge excitations are described by a free field, this is the infinite N limit. In this
work, our calculations will all be in this limit.

This free field theory is interpreted as an effective closed string theory that is UV
complete from the point of view of quantum mechanics: we do not need any information
from outside the free chiral boson system to compute quantum mechanical amplitudes
and probabilities. The main reason for requiring the theory to be free is that it provides us
with a canonical factorization of the full Hilbert space in terms of a mode decomposition
of the free field. This makes it possible to compute the entanglement and uncertainty
properties of the different modes, which will ultimately relate to the topology of the
associated LLM geometry.

To address various technical issues that are required to make the arguments more
forceful and precise, the theory of the chiral boson is constructed in a novel way by
considering only the combinatorics of the symmetric group. This is an abstraction of the
description of the state dynamics of in the N' = 4 SYM dual that is necessary in order
to be able to take the free field limit. This construction is independent of the gravity
realization, but we can ask to what extent the gravity picture is forced on us and in
particular, if the combinatorial construction suggests to us a particular notion of locality.

We start with the idea that there are two natural basis for states. The first basis
is what we would call the multi-trace basis in a matrix model. It can be thought of
as being built from conjugacy classes and we will often refer to it as the closed string
basis. The second is the set of characters of a matrix in representations of the group.
As this can be built by irreducible representations, we can also represent these states
by Young diagrams. We will often refer to this basis as the D-brane basis. The first
one is approximately orthogonal from large N arguments [4]. The second one is exactly

orthogonal by direct computation [64] in A/ = 4 SYM, and also when used in the study
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of 2D Yang Mills theory [R1]. These can be described entirely in terms of group theory
without any reference to matrices. This property allows a limit that can be interpreted
as the exact N = oo limit of a matrix model and we can show directly that it corresponds

to a free field theory. This is the limit where we will work in this paper.

4.1.3 The Answer: No, topology cannot be determined via a

single operator measurement in this model.

In this paper, we argue that the topology of spacetime in quantum gravity cannot
be measured by an operator. The main argument has been presented by us already in
[@0]. But, here we provide all the computational details. In that work, it was explained
how the topology of simple classes of states ends up encoded in the uncertainty and
entanglement of various variables, echoing the observation of Van Raamsdonk. These
computations are not simple operator measurements. Instead, we showed how one can
extract the topological information of a large class of interesting states, including some
that are not fully classical, but have an interpretation as a state a few excited quanta on
top of a classical background.

The argument for the non-existence of a topology measuring operator follows from
considering a particular generating series of states in the D-brane basis and their precise
description in the string basis, an effective notion of locality emerges naturally, giving
rise to a local field theory on a circle that is the chiral boson quantum field theory. That
is, the circle on which the chiral boson theory lives on is deduced from the combinatorics
of the symmetric group. It turns out that the simplest such multi-D-brane generating
series can be shown to be exactly given by a coherent state of the chiral boson. In this

sense, the natural D-brane states are completely classical solutions of the free field theory

81



Superposition induced topology changes in quantum gravity Chapter 4

and end up being associated with the same topology as the vacuum (that is, the same
topology as AdSs x S®, which has trivial topology).

We will then show that there are other bubbling solution states that can be interpreted
geometrically as states with a topology that is macroscopically very different from each
of the coherent states. These states will correspond to Young tableaux states in the field
theory. Recall that coherent states are over-complete, so we can get any other state by
superposing them. In particular, we can superpose them to form one of these states with
a different classical topology. From this, it follows that there cannot be any quantum
observable (in the sense of projectors in a Hilbert space) that can distinguish the two
collections [40].

What we show instead is that the new bubbling states have an effective dynamics
for nearby states whose collective dynamics is given by multiple chiral bosons, so that
the states correspond to a new classical limit of the field theory. We will call these
collective modes the IR (infrared) fields, while the original chiral field will be called the
UV (ultraviolet) field theory. A similar statement about multiple chiral bosons is found
in the work [82] as a suggestion for the dynamics around special sets of configurations,
although one can already intuitively understand this from the original work [63]. Here we
explain how this works in detail in a way that lets us go beyond simple Young diagram
reference states. The work we do is aimed at being able to do computations. Our work
makes it possible to understand how an effective cutoff in these multiple chiral bosons is
generated dynamically by the state. We also develop the tools that allow us to explore
what happens when we move beyond the cutoff.

The effective dynamics of these collective fields is subject to a stringy exclusion prin-
ciple, and the UV field modes are in the vacuum well beyond this exclusion regime. The

notion of new topology and geometry only makes sense for these states (and coherent
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excitations of their collective dynamics) when we study their physical properties at low
and intermediate scales. They can be regarded as semiclassical states (superpositions of
quantum excitations around a vacuum) for high energy observables. This is similar to
the study of multi-throat configurations. We are also able to study in detail the amount
of entanglement of the UV theory modes, essentially mode per mode, and to use that to
characterize the topology of the new classical limits we need to compute other quantities
in the quantum theory that end up being non-linear in the wave-function of the configu-
ration. These are related to measuring how classical the state is (uncertainties), and how
entangled the state is from a canonical preferred factorization of the full Hilbert space of
states.

Perhaps more important than the statement that topology is not an operator, is the
fact that it can still be computed from the wavefunction of the system for states that
are sufficiently classical. One can check that effective field theory makes sense in the
vicinity of such states, although the cutoff required to make sense of effective theory
was out of reach to the techniques used in that paper. This paper provides the technical
details that are required to explore these ideas in a controlled setting without making any
approximations: we can analyze a complete description of the states that were studied
in [40] as well as other states that were not covered there. With this information we
can explore the physics of the cutoff directly. This way we will find that the computed
value of the topology varies as we vary the cutoff. In this sense, the topology that we
will assign to spacetime depends on choices that we make. These choices are physical:
a cutoff is usually related to the limits of an experimental setup. In the right double
scaling limit, one should see that all cutoffs can be pushed to infinity and that the usual
classical picture of gravity is correct.

The main goal of this paper is to desctibe a situation where the topology of spacetime
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can be well understood in what turns out to be a free field theory model of quantum
gravity. That is, we will show that the topology of spacetime can already be argued to
change in a regime where physics should be perturbative. An advantage to having a
setup in free field theory is that there will be a mode expansion, which will provide us
with various ways of factorizing the Hilbert space in a canonical way. This factorization

makes it possible to compute entanglement entropies that have a physical meaning.

4.1.4 The Outline

The paper is organized as follows. In section two, we review LLM geometries, which
are dual to half BPS states in N' = 4 SYM. These are the geometries we will study
throughout the paper. In section three, we build up the technology used to perform most
of our calculations. This comes from analyzing the Hilbert space formed by considering
conjugacy classes and irreducible representations of the symmetric group. This Hilbert
space describes the free chiral boson in one dimension, which is also known to be equiva-
lent to the space of half BPS states when N — oo (where we will work). In section four,
we show how to build D-branes using both the conjugacy class basis and the irreducible
representation basis. To go between these basis, one needs the characters of the group.
So, in section five, we introduce the Murnaghan-Nakayama rule, which provides a useful
way to compute these characters. Further, we explain how our Hilbert space can also be
used to describe free fermions and show how the Murnaghan-Nakayama rule encodes the
fermi statistics.

In section six, we get to the real meat of the paper. Here, we study various states
whose duals form classical geometries. We show that one set of these come from coherent
states of the raising and lowering operators in our oscillator bases. However, we show

that these are not the only states that give rise to classical geometries and further, the
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new states have a different topology than the coherent states. We argue by contradiction
that this leads to the fact that there cannot be a topology measuring operator in this
set-up. In section seven, we show how uncertainty measurements can provide a method
to compute topology in not one, but several measurements. We then discuss states that
should not be thought of as having a classical dual. Further, we analyze how to make
progress studying more complicated geometries with folds. Finally, in section eight, we
discuss a second method for determining topology, this time from entanglement entropy

calculations.

4.2 Droplet geometries and the limits of semiclassi-
cal reasoning

Half BPS states in AV = 4 SYM for U(NV) gauge group (at weak coupling) are described
exactly by the Hilbert space of N free fermions in a harmonic oscillator potential |64,
65]. The dynamics is fully solvable and all the states can be counted. In the study of
the AdS/CFT correspondence, the dual geometries have also been completely classified
[63]: they are described in terms of incompressible droplets on a two plane. This is a
semiclassical description of the phase space dynamics of the free fermions, which can also
be associated with the study of the integer quantum hall effect on a plane [65] (indeed,
the description that bosonizes small edge excitations of the droplets has been known
previously [83]). One can work backwards from supergravity solutions to argue for the
free fermion description [84, K], but the analysis becomes convoluted when the droplets
reach the minimal quantum size of A. Indeed, there is more than one path to obtain
certain solutions, especially the ones that have different topologies and it is not clear

how the system takes care of over-counting in the supergravity regime (see for example
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[85]). This is taken care of by the “matrix model” realization of the dynamics. That is,
the dual holographic CFT explains how to take care of the overcounting.

What is clear is that the over-counting is in some sense handled by a stringy exclusion
principle [86]. This idea was used to argue that BPS states bubble into giant gravitons
[71]. In the case of giant gravitons, the stringy exclusion principle is stated by saying that
trace modes become dependent for finite size matrices. In a sense, this gives a hard bound
on the number of modes that are available to us and turns the effective dynamics of the
traces into an interacting theory. This is mainly the statement that there are constraints
related to over-counting, so that there is no unconstrained free field theory description
of the system. The map of the states between the AdS and the CFT took much longer
to sort out, especially since the discovery of the dual giant gravitons [87, 8R]. This was
sorted out eventually in [8Y, 64], and the geometric interpretation came out later [65, B3].

There is a set of natural questions that can be asked.

1. What is the set of states that can be accurately described by (semiclassical) droplet

geometries?

2. How is the stringy exclusion principle implemented in detail for these different

droplet geometries?
3. Are there topology measuring operators?

4. Is there a limit of the system where the full dynamics of all the states is an uncon-

strained free field theory?
5. Are interactions necessary for understanding the topology changes?

The last question only makes sense if the answer to the fourth question is affirmative.
Indeed, all questions become more interesting if the answer to the fourth question is
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affirmative. This is because in that case one would have a UV complete free theory
in the gravity variables, rather than the N free fermion description. This would mean
that there is no intrinsic stringy exclusion principle in the dynamics, and such a stringy
exclusion principle would only appear effectively on particular solutions of the theory.
Moreover, it is not clear that one can obtain a topology change in such a free theory.
One is used to thinking about free theories as having a unique classical limit. A topology
change would indicate that there is more than one possible classical limit. The main
goal of the paper is to argue that the answer to question 4 is YES, that the answer to
questions 3, 5 is NO, and to produce detailed partial answers for questions 1 and 2. In
particular, we will construct the multi-droplet dynamics from first principles around a
preferred collection of states, in which the details of the stringy exclusion principle can

be understood.

4.2.1 Review of LLM geometries

We will start the analysis with a review of the salient features of the LLM solutions
in supergravity [63] that we need. The solutions that preserve half the supersymmetries
in ' =4 SYM preserve an SO(4) x SO(4) x R bosonic symmetry of SO(4,2) x SO(6).
The extra R symmetry is split evenly between the SO(2,4) and the SO(6). A geometry

with those symmetries has the form

1_ o T 1
ds? — _L(dt—l—‘/idxi)al—z;—(dyz—i-dfdxi)—i-y ? dQ+y ? e ds2
1,2 Y 2 2 %

4

(4.1)
where 7 = 1,2. The two copies of dQ)2 and dQ% are three-spheres that realize the

SO(4) x SO(4) symmetry. The metric is completely characterized by z(y, z;): the vector
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V satisfies a differential equation that ties it to z. The function z obeys a linear elliptic

sourceless PDE:

00 + y0, <%) ~0 (4.2)

and requires a boundary condition at y = 0. This locus is called the LLM plane. Non-
singularity of the ten dimensional metric requires z = :i:% at this locus (this forces only
one of the two spheres to shrink to zero size, while the other stays finite). From here,

one can compute

ZJQ / Z<w1, Wa, 0) dw, dws (4‘3)

z(l’biﬁz,y) = ; [(551 _ w1)2 + <x2 _ w2)2 T y2]2

Notice that the integral is always convergent if z(wy, ws, 0) is bounded. This is guaranteed
by the non-singularity condition. We can represent the areas of +1/2 as a two coloring
of the LLM plane. The area of each one of the two colored regions is quantized in
fundamental units [63]. The topology of the spacetime that arises from each two-coloring
is directly related to the topology of the diagram. The vacuum solution will be AdSs x S°.
We will see that this is associated with a solid disk in the LLM plane. We will refer to
this as a state with trivial topology. We will see that there are excited states with
trivial topology, which are represented by wiggles on the disk and states with non-trivial
topology, which can result from rings or additional disks, etc.

This is a complete description of all the LLM solutions. We are interested in taking a
limit where the areas of the regions with z = +1/2 are both infinite. Moreover, we want
the edge between the two areas to be compact. There are two ways to do so. Each of
them has their own advantages.

The first way to do so is to consider a half filled plane, with two regions. Naively,

this is the plane wave geometry with an infinite edge. To obtain the compact edge we
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perform a periodic identification with a translation along the edge. This is done without
distorting the geometry above. The disadvantage is that the asymptotic behavior of the
geometry is not the one of AdSs x S° geometry any longer.

The second way to do so is to consider the strict N — oo limit of excitations of
AdSs x S° with finite energy. Since the edge of the droplet grows in size like v/N in
fundamental units of the LLM area quanta, all the features of the solutions get compressed
in the radial direction. To see the topological features, we need to rescale the coordinates
to keep the coordinates of objects on the edge finite, even if the distance is effectively
shrinking. This does not affect the topology of the configuration, but it distorts the
geometry. We will study both of these. The reason is that both of them give rise to the
same Hilbert space of states, even if they correspond to very different sets of geometries

in ten dimensions.

4.2.2 Periodic LLM solutions

First, we will just study the LLM solutions that are periodic, with an infinite black
and white area after the periodic identification.

We will be particularly interested in solutions that are independent of one of the
LLM plane variables. These are stationary and represent states that do not evolve
under Hamiltonian evolution. In the semiclassical limit, these are eigenstates of the
Hamiltonian.

In the geometry represented by (E=3), we can choose that variable to be wy. Then we

have that

2
Y z(wl,0,0)dwl
z(m,m,y) = 5/ [($1 — w1)2 + y2]3/2 (4.4)

where z(wy,0,0) will alternate between values of —1/2,1/2 in regions, and we will also
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assume that x, is a periodic coordinate. The master integral we need is

’ duw, _ 1 (b—x1) _ (@ — 1)
I el W ey e B

1

This will give us the contribution for a region a to b where z = +35 (a z = —% region will

simply have an overall sign difference). Notice the 1/y? that appears here will cancel the

numerator in (E4). Our vacuum will be the solution with

1
Zo(wl,U)Q, O) = 9(11]1) — 5 (46)
for which
x1

2(T1,29,Y) = ——— 4.7
( 1,42 y) 2\/m ( )

The excited solutions will be determined by requiring that the domain where
Az(wy,ws, 0) = zo(wy, ws,0) — z(wq, wy, 0) # 0 (4.8)

has compact support (remember we have imposed that wsy is periodic), and that moreover

/[zo(wl, wa, 0) — z(wq, wa, 0)] dwy dwy = 0 (4.9)

We can understand the first condition by realizing that

—Az(wy, we, 0) dwy dw
2(21, 29, y) = 20(T1, 72,y Z / (o = 1 (2 . )_ w21)2 +2y2]2 (4.10)

1mages

where D is the finite support where the two can differ. To implement the periodicity

of wy, we need to sum over images under discrete translation in xs (as indicated in the
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sum). The infinite sum goes as 1/z3 asymptotically at large x;, rather than the naive
1/z7. This is due to the sum over images, which is clear for translation invariant solutions
in equation (E4). Let us explain this fact.

The sum can be performed explicitly, by writing the sum over images in detail

—Az (w1, we, 0) dwy dws
2(x1, 29, y) = 20(71, 72,y Z / (1 = + (2 — ws — 27m)2 1 g2 (4.11)

n=—oo

and where we have taken the period to be 27 (this is a convenient choice).

y 1
Z (21 — w1)? + (2 — we — 27n)% + y?|?

— i_yoo [cot(ip) + cot(—9p)] . ?/2 [CSCQ(gp) + CSCQ(@)]
AT ((w — 3)2 9232 16T (21— wi)? + 3?) (4.12)

where

(wy — 9) + i\/(wl —x1)?2+y?
2

Y= (4.13)

We would like to see how this expression behaves asymptotically, at large x;. Let’s look
at the expression one term at a time. The terms of the form csc(a + ib) will decay
exponentially fast, beating out the polynomial in z;, which multiplies them. So, these

terms can be dropped. The cotangent pieces, however, can be re-expressed using

1 —itanatanhd
tana + 7 tanh b

cot(a + ib) = (4.14)

and again, as b — oo, we find that tanh(b) — 1 up to exponentially suppressed terms.

We then get that

—-A 0)y? (2
2(x1, T2, y) —>zo(m1,$2,y)+/ 2w, ws, 0)y”(2) dwydwsy (4.15)

D 4(277')((1111 — 1’1)2 + y2)3/2
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Notice that this matches (B=) when we make Az(wy,ws,0) independent of the second
variable, and integrate over the range (27).

This implies that z(z1,x2,y) and zo(x1, 9, y) have the same asymptotics at finite y
and x; — doo up to order 1/z3, while the second condition improves the match to a

higher order. Expanding the expression asymptotically in powers of 27 we find that

1 3U)1
+

Az(x1,m9,y) = —yz/

D

Az(wy, wy, 0) dw; dw, ( + O(:c15)) (4.16)

Al Awad

This shows how the first term vanishes with the condition (B9). This is a coordinate
choice: the coordinate z; is only well defined up to translation invariance, as moving the
origin of z; changes the domain where Az # 0.

The next term is the first subleading term of the gravity solution and its coefficient

can be interpreted as the energy (see also the similar analysis in [90])
E x / Az(wy, we, 0) wy dwy dwsy (4.17)
D

This is positive, because Az > 0 for w; > 0 and Az < 0 for w; < 0. We see that
compactness of D gives rise to a finite energy. The area quantization condition forbids
us from trying to place smaller droplets very far away without incurring a large energy
cost. In principle, it is possible to produce finite energy configurations if we allow a
droplet to have a thinning finger whose width decreases as it tries to reach infinity: these
will inevitably become smaller than Planck size features in the metric and we should be
worried about using those solutions in the semiclassical regime.

This set of solutions is interpreted as a set of droplets for an incompressible fluid on
the x1, x5 plane (we can choose z(x1, z3,0) = 1/2 as the liquid, and the other region as an

absence of liquid). The first equation tells us that we have a finite energy solution, and the
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second one says that the number of liquid particles is conserved. The semiclassical Dirac
quantization condition requires that the areas of the individually connected (compact)
regions with z(wi,ws,0) > 0 and z(wy,ws,0) < 0 both be quantized. Each different
droplet topology corresponds to a different spacetime topology. Our set of semi-classical
coherent states will be droplet geometries that satisfy all of these properties. In the
particle/hole language, we have both an infinite number of particles and vacancies. This
tells us that there are no upper bounds on the energy of either a single particle being
moved into the vacancy region, or for a vacancy being moved into a particle region. These
are “giant gravitons” and “dual-giant gravitons.” Saying that there is no upper bound
on any of their energies is roughly stating that there is no stringy exclusion principle.

Once we have these semiclassical states, we can build a Hilbert space by taking
superpositions of these geometries. Notice that coherent states are usually over-complete,
so the set of solutions by itself does not tell us how this completion is supposed to work
in practice. This is what the dual gauge theory actually accomplishes. Once we resolve
this problem of what the correct theory is, we can reconstruct the geometric states and
ask questions about quantum gravity.

As discussed previously, we are also particularly interested in geometries that have
an extra translation symmetry. The translation symmetry comes from the lack of depen-
dence on the periodic variable x5. The black and white pattern is therefore represented
by a black and white pattern on a cylinder that is rotationally invariant. The area of a
(finite) droplet is then the size of the periodic variable 27 times the height of the region.
This is quantized. Therefore any such configuration is described by a set of integers:
the ordered heights of the regions. These alternate between the two colors. Since the
basic configuration has the bottom half of the cylinder filled and the top half empty, the

configurations must be asymptotically colored in the same way. This means that there
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are as many finite white regions as there are finite black regions. This can be represented

as in the figure B

U
2

Figure 4.1: Periodic LLM solutions are characterized by strips. The quantities
ni,n1,ng,No ... are quantized and can be taken to be integers.

It is worth noticing that no additional information than the integers n;, n; is required.
This is because condition (E9) gives an equation for the ground state level relative to
the strip configuration. This level is obtained by requiring that the area in black above
the ‘zero level’ is equal to the area in white under the ’zero level’. There is only one
such level. The important point for us is that the (translationally invariant) geometry is
determined by the collection of integers ny, 71, .... These are all unconstrained integers.
In that sense, we should think of the geometry as being free from a ’stringy exclusion

principle’ that would limit the integers somehow.
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4.2.3 Zooming onto the edge

Now, consider the case where we take N — oo, while keeping the energy fixed, of an
LLM geometry that asymptotes to AdSsx S® (in the dual field theory we are considering a
state with finite scaling dimension, but N — co). We will also require that the geometry
has an extra symmetry, this time of rotations around a center of the geometry in polar
coordinates. The corresponding solutions are given by concentric rings in black and
white. Since the area of the droplet is N, when we scale N — oo the area becomes
infinite. It is also important to understand that the energy of the solution is given by
[63]

1

E:—/z(w,w,())wwd2w—§/ zo(w, W, 0) ww d*w (4.18)
D

where the domain D is the region of the droplet covered in black. We would like to
measure the energy relative to that of the ground state, which is why we subtract off the
integral over the ground state black droplets (we label this Dy). We can check that the
full integral is over the region where Az # 0, like in the previous subsection. The region
Dy is a circular droplet centered around the origin with radius r ~ v/N in fundamental
units. Because the radius of the droplet scales with N, the values of w, w where z differs
from z; also scale in the same way. We also want to keep the areas of small subdroplets
fixed and of order one. To understand these configurations, it becomes convenient to
change coordinates to a variation of angular polar coordinates y = r?/2 —72/2, 0 that are
centered near the edge of the droplet, so that dydf ~ r dr df = d*w is the natural area
element. This means that we do the change of coordinates in a way that preserves the
area measure. In this way, quantization of the circular area droplets is given immediately
by requiring that the black and white rings have quantized y sizes. This change of

coordinates was sketched in [40], but with most of the details on scaling of coordinates
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ommitted. This is depicted pictorially in the figure E=2.

—

Figure 4.2: Pictorial description of the change of coordinates (w,w) — (y,6). The
change of variables is area preserving.

Because the area of the new region is required to have the same area as the original
droplet, one can check readily that [, z(w,w,0) r§ d*w — fDo zo(w, w,0) r3 d*w = 0.

This way we find that the energy is given also by a simple expression

Eo</~Az(y,9)ydyd0 (4.19)

D

This is very similar to equation (E—I7) if we identify the two sets variables w; — y,
wy — 6. The advantage is that now we can take N — oo, keeping y fixed and the areas
fixed. Indeed, we find that the description of the droplets that survive the limit become
identical to the pictorial representation in figure B, even though the ten dimensional
geometries are very different.

What needs to be understood is that the variable y being of order one implies that
2y ~ 12 — 1% = (rg+ 0r)2 — 12 ~ 1. This means that ér ~ 1/v/N. In practice, this means
that in order to take the limit we have zoomed onto the edge of the droplet. In the y
coordinates taking N — oo is trivial, but in the regular polar coordinates r, the shift
in the radial coordinate scales as 1/ V/N relative to the edge. From the point of view of

the topology of the configurations, it should not matter how we scale the coordinates.
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Topology is after all a very coarse feature.

However, from the point of view of geometry (which includes distances), the features
that we are trying to zoom in to are typically smaller than the Planck scale. The main
reason for taking the limit is that at finite NV, the negative y coordinate has a finite
depth of order N. When we take N — oo we remove this constraint and can work on the
cylinder. This means that the numbers n;,n; are unconstrained and there is no stringy
exclusion principle. What is important for us is that in this limit the corresponding
modes of the supergravity theory become free [[76]. This is because the energy is of order
one rather than N2

It is important to understand that taking this limit at the level of geometries for
different topologies is suspect. In a free limit of a quantum field theory we would expect
that the classical solutions that survive would be related to coherent states of a field.
These would be solutions where the edge of the droplet is deformed, but there is no
topology change. It is natural to ask if both of these types of solutions can be thought of
as allowed classical limits simultaneously in the supergravity theory or not. This is not
resolved directly within the supergravity theory.

The claim that topology cannot be measured by an operator in [A0] depends on
this assumption being true. If both types of ”classical limits” survive in the quantum
theory with different topology, then the fact that coherent states are complete means
that states with the new topology (different than the ground state) can be made by
superposing coherent state geometries. The coherent states are expected to all have
trivial topology. This means that one can induce a topology change (of different classical
limits) by superposition of solutions in one (trivial) topological class. The main goal of
the paper is to explain how this works in detail in the Hilbert space of states of the free

theory that arises from the N — oo limit of half BPS states of the N' =4 SYM theory.
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A particularly important claim of the LLM setup [63] is that these concentric ring
solutions are a complete basis of states for the Hilbert space of BPS states in NV = 4
SYM. That is because these solutions can be put into 1-1 correspondence with Young
tableaux. The Young tableaux states are a complete basis of states of the dual N' = 4
SYM theory [64]. Such classification of states has been exploited in many setups (see
for example [91, B2]). Tt is important to notice that most of these will have topological
features on scales that are much shorter than the AdS planck scale. The typical such

solution should not be treated as classical objects in these extreme situations.

4.3 A Hilbert space from group theory

4.3.1 Irreducible representations and conjugacy classes

As is well understood in the theory of orbifolds, twisted sector states for closed strings
are assigned conjugacy classes of the group [93, B4]. Similarly, D-brane charges are
associated with representations of the group [95]. Here we will use this fact to develop
technology that we will use for the remainder of the paper. We will start by first describing
how to go back and forth between irreducible representations and conjugacy classes in
general. These will ultimately form two bases in our Hilbert space. In section EZ372, we
specifically discuss the symmetric group, which will allow us to build a Fock space where
we can create multi-string states. The Hilbert space we build will be exactly that of the
free chiral boson in one dimension (exactly as desired in the infinite N limit). In this
limit, the Hilbert space will be factorizable. This will, for instance, later provide a clear
way to compute entanglement entropies.

In the study of finite groups, one can use character tables to go from conjugacy classes

to projectors on representations [U6]. These two sets are in one to one correspondence
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with each other, and there is a linear map between the vector spaces that they generate
at the group algebra level. This linear map can be promoted into a change of basis in a
Hilbert space, so that one furnishes a model where D-branes can be understood as linear
combinations of strings. This is a model where a D-brane is thought of as a soliton for a
(closed) string theory: the D-brane state can be written directly in terms of string states.
In this toy model, we start from nothing but the group, so we might want to think of
this procedure as orbifolding the theory of a target space which is a point. Our goal is
to eventually apply this procedure to the symmetric group, where additional structures
are present and to connect this information with the study of matrix models.

The idea is rather simple. Consider a finite group I', with elements o, and the usual

transform in the group algebra

Pp = 1_11“| > xrlo)o (4.20)

el

where R labels the irreducible representations of I'. The object Pg is a projector in
the group algebra that projects into the irreducible representation R and xg(c) is the
character of o in the irreducible representation R. Because the characters only depend on
the conjugacy class of o, we can convert this sum into an equation relating the conjugacy

classes and the projectors themselves

1

Pp=—
|

Y. xa(lol)do o] (4.21)

[#]€ConjT]

where d,, is the degeneracy of the class (number of elements in the class), and this defines
[0], which is simply the average over the elements of the class.

Now, we can promote this equation to an equation in a (finite) Hilbert space of states,
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where we have two basis: one furnished by strings (conjugacy classes), and another
one labeled by irreducible representations R, which we call the D-branes. Again, these
are labels that we add to the two basis to reiterate the classification properties of the

corresponding objects in orbifold theories. We thus write

R) == > x&llo))do |lo]) (4.22)

[c]€Conj[I']

and treat both the [R] and the [0] as non-zero elements in a Hilbert space. One can
expect that strings associated with different conjugacy classes are orthogonal to each
other (they are different twisted sectors), and that different D-branes are also orthogonal

to each other (they have different D-brane charges). Therefore, we require that

(lolle"]) = 0o, 107] fio] (4.23)

([R]I[R]) = Otr),ir) 91R) (4.24)

This is a non-trivial set of orthogonality conditions: it is not guaranteed that they can
be made compatible. The inverse transformation, relating the conjugacy classes and the

representations is

o) = > xz(le™ D I[R) (4.25)

(R]
where we use the characters of the conjugacy class of the inverse elements. Remember
that xr([c™']) = xr([o])*. Using the conjugacy class of the identity (which has the

identity as its only element), we find

(e = 22 (4.20
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Now, expressing the vector |[id]) in terms of the inverse function (E=23), we find that
> xw([id]) ([R)) [R] = xrlid)gr, (4.27)
[R]

Comparing the two expressions, we find that

1
Jir = mf[id} (4.28)

so the norm of the kets associated with the representations is independent of the repre-
sentation.
Similarly, we can now apply this information to the trivial representation A, which

is such that ya([o]) =1 for all [o]. We find that
(&) o] = Y xr(lo]) (&) [R] = xa (o) (D) & = ga (4.29)
(R]

Writing |A) in terms of the class vectors, we find

(D) [o] = %mf]*m ey (4.30)

Putting these two together we get that

for =907 (4.31)

So, we find that the representations are all normalized to the same value (which we can
choose to be equal to one) and the class function kets are proportional to the inverse of

the degeneracy of the class.
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Since we only used the kets |A) and |id) to normalize everything, we need to check
consistency. This is straightforward. The orthogonality of representation kets becomes
equivalent to the orthogonality of the rows of the character table. The orthogonality of
the conjugacy classes ends up being related to the orthogonality of the columns of the

character table (see [96], pp 17, exercise 2.21).

4.3.2 Fock space from the symmetric group

At this point, this can be thought of as a curiosity. The reason is that as written,
this exercise should be thought of as a first quantized setup. Single string states can
be reshuffled via a “Fourier transform” into single D-brane states. We have made no
mention of multi-string states.

This all changes when we consider the symmetric group S,. As argued in [97, 98],
the conjugacy classes of the symmetric group should be associated with multi-strings,
rather than single strings. Similarly, one can imagine that the representation theory left
hand side should be generically associated with multiple D-branes, rather than a single
D-brane. In essence, when we consider the symmetric group, the theory should be for all
practical purposes second-quantized. This becomes precise when we consider the more

general object generated by the symmetric group 5, for all values of n

H = Bpsots, (4.32)

with the Hilbert space constructed as above. We can now also add (multi-) strings to
a configuration. Consider a conjugacy class in S, and a group element g; € S, that
represents it. Similarly, consider another conjugacy class and a group element g, € .S,

that represents it. There is a natural embedding of the product of symmetric groups into
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a larger symmetric group p : S, X Sy, — Spim. Here the S, acts as permutations of
a set of n + m elements and the S,, acts only on the first n elements, while the S, acts
only on the last m elements. This gives a natural element of S, ., for the two group
elements, namely (g1 X g2) >~ p(g1 x 1) o (1 X g2). Now, it is important to notice that
this defines a unique conjugacy class in S,, 1, which is irrespective of the representatives
g1, g2 that were chosen. This is done as follows.

A group element of S, can be written in a cycle presentation of permutations of the
set {1,...n}. As is well known, the conjugacy classes are in one to one correspondence
with the lengths of the cycle decomposition. A conjugacy class thus gives a partition of
n =) wss where we have w, cycles of length s. We do this for g1, so that [g1] >~ [[,[s]"*,

where we pick the cycles of length [s] as generators, and similarly for [go] =~ [],[s]**. With

this we find that

(91] @ [g] = [ 151" = [91 @ go] = [95] ® [91] (4.33)

s

which shows that the cycle decomposition is irrespective of the elements of the class that
we pick. We also find that the product of conjugacy classes is commutative, and the set
is generated by the primitive cycles of length [s]. We will call [s] := ¢, so that the set
of states can be thought of as (a particular completion of) the set of polynomials in an
infinite set of variables {t;}. The decomposition of the Hilbert space into the different
Hs, can be thought of as being graded by n, and the grading is additive on the product
we defined. The product operation we defined is just the product of polynomials when
extended linearly. The degree of [s] is s. We will call this function for a monomial the
energy of the state. A conjugacy class associated to the monomial ¢1" ...¢,* will be said

to have w; particles of energy 1, wy particles of energy 2, etc.
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The most important question for us is to address is how we are going to relate the
inner products of the different Hg, to each other. There are two routes we can take. The
first route is to declare that the irreducible representations of all the symmetric groups
have norm equal to one. This can be twisted by the energy, so an irreducible of energy
n has norm |T'|" ~ exp(E log(|T])). A second route is to assume that the norm of a two
particle state, where the two particles have different energy, is the product of the norms
of the corresponding single particle states. This is a factorization condition. This will be
shown to be equivalent to the first route after a computation.

To do a computation, we need to find both the dimension of the symmetric group
|Sy| = n! and also the number of elements in a conjugacy class d, (remember we have
labeled these as [],[s]"s ~ 1" ...¢.* with ), wik = n). The number of elements of a

conjugacy class of the symmetric group is known to be given by

n! 1N
d, = = 4.34
kak'k’wk Hk’wk!k‘wk ( 3 )
from equation (E=31), we find that
w o qw Tl w
15867 = a (o] [0, = n () A = o (A) &, [ [ronlk (4.35)
7 k

So, if we choose ,, (A) A, = |T'|", the right hand side becomes equivalent to a norm on a
bosonic Fock space where to each t; we assign a raising operator of norm squared k|T'|*.
That is, we associate a raising and a lowering operator pair (al, ax), with commutation

relations

lax, af] = k|T|* (4.36)
with all others vanishing. Obviously, the simplest choice is to take |T'| = 1. The raising
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operator acts by multiplication by ¢;, namely aL — 11, and the adjoint acts by k0;,. The

inner product can be computed using

(9) f = /Hdtkdfk exp <— Z %) g@) f(t) (4.37)

k

where the normalization factor of the measure is such that
(H1=1 (4.38)
If we take the factorization condition instead, we find that
[tats] = abq (A) Dgy () By = abary (D) Dy (4.39)
for all a,b with a + b constant. This would suggest that
a (B) Do s (D) Dy = 0 (D) Doy (4.40)

but this only seems to work if a # b and a,b # 0.

With this, one can show that it works for all a,b. Consider (A)A,. By the
naive factorization condition, it is independent of | (A) A;. From here, we can form
3 (DAY Ay = o (DAY ANy 1 (A) A uniquely, and similarly 4 (A) A, = 5 (D) ANy (A) A =

2 (AN Ay (A) A2, When we get to 5 (A) A, there is a consistency condition

5 <A> AE) = 3 <A> A?) 2 <A> Dy =4 <A> AVET <A> AN} (441)

= S (AYAF (DAY A = 5 (A) Ay (A) A] (4.42)
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Clearing out the common terms, we find that o (A) A, = 1 (A) A2 and one can then

easily show that we get ,, (A) A, = 1 (A) AT for all other n.

n

4.3.3 Physical Interpretations

The Hilbert space we have constructed is the Hilbert space of a chiral boson in one
dimension (again, this is theory we get when we consider the infinite N limit, and so is
what we wanted). We have a single oscillator of energy k and left moving momentum
k for each k. This is natural considering that in the computation of elliptic genera one
builds an extra chiral circle [97]. We have the momentum modes of the chiral boson field
theory, but we still need to argue that there is preferred notion of a local field that also
arises from this construction. This will be taken up in the next section.

One should also remember that there is a straightforward relation between a chiral
boson field theory and edge states in a quantum hall droplet [83]. The relation uses the
theory of symmetric polynomials in many variables to go from traces to Schur polynomi-
als. The Schur functions are associated with representations of the symmetric group Sy
(described by Young tableaux) , and one can directly write these in terms of free fermions.
The same combinatorics appears in the study of half BPS states in N' =4 SYM [64] and
the representation of the physics in terms of droplets and fermions was explored in de-
tail in [B4]. Surprisingly, the description of half BPS geometries in the gravity dual of
N =4 SYM is also in terms of droplets: a droplet configuration with specified shape
corresponds to a particular solution of the supergravity equations of motion [63], as we
described in the pervious section. It has also been argued recently that similar physics
might control a wide class of AdS/CFT dual configurations when one studies elements
of the chiral ring that are extremal [99]. It was this particular observation that led us to

try to understand the problem using group theory of the symmetric group without any
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particular matrix model in mind. The map that realizes this correspondence assigns

Te(Z%) ~ t, (4.43)

where Z can be either an elementary matrix valued field (like in A" = 4 SYM), or a com-
posite matrix field (this would be common in toric field theories or some simple orbifolds).
The main reason that this works is that to any conjugacy class of the symmetric group
one naturally associates a multi-trace object constructed from the permutation itself.
This was critical in the computations of [64] that show that Schur functions associated
with different Young tableaux are orthogonal. Here we have reversed the arguments:
assuming orthogonality of Young tableaux and conjugacy class states leads to a unique
consistency condition that gives precisely a free chiral boson. Thus, in this setup, we
do not have any non-trivial three point functions: we are strictly in the N = oo limit.
The free fermions that realize the correspondence for the free field that we have here are
associated with a system of free fermions for a Cuntz oscillator. The Cuntz oscillator
algebra is defined by

B n) = |n+1) (4.44)

usually with £]0) = 0. For us, we have an infinite sea of fermions, so all we require is that
the set of |n) is labeled by integers (both positive and negative). We set by convention
the Fermi-sea energy at n = 0. The Cuntz oscillators appear repeatedly also in the study
of open spin chain dual states to open strings in the AdS/CFT correspondence [T00] and
their coherent states are especially important to describe the ground state energies of the
corresponding open spin chains [T01, T02]. What we have described here corresponds to
the strict N = oo limit of the corresponding matrix models.

In a certain sense, the picture we have been advocating above is building a bridge
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between matrix string theory and an abstract version of a (holomorphic) matrix model,
in a vein similar to [I03], but with very few states to consider. The picture we have is
greatly inspired by the observation that requiring orthogonality of the Young tableaux
states and a large N counting for correlators, at leading order in N produced a result
where the norm of Young tableaux states is independent of the shape of the tableaux
and only depends on the number of boxes [99]. Here we have even removed the large N
counting hypothesis and replaced it by the weaker orthogonality of multi-string states.
The fact that the harmonic oscillators that are constructed in this fashion have the
correct statistics to correctly describe quantum fields in one dimension is derived from
the compatibility of the two basis of states and the Fourier transform that relates them

to each other.

4.4 D-brane creation operators and constructing lo-

cal fields

4.4.1 The D-brane

It is instructive now to consider the simplest (trivial) representation of the symmetric
group, which we have labeled [A], in the previous section. This is associated with a
Young tableaux with n boxes and only one row. Using our polynomial formulation, we

have that

A= Y [ ()™ (4.45)

w !
Fepm) b k kwg!
where p(n) := { & | 32, kwy, = n} are the partitions of n and we have used the fact that

all characters are one for the trivial representation. We also have included the explicit
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value of the degeneracy of corresponding conjugacy classes in the sum, extracted from
equation (E=34). Notice that this is an equation relating states. In the raising/lowering

operator notation, this state would have been created by

= > kamk )% |0) (4.46)

Jepln) k

which would be equivalent. From here we find that

AMA), = > H ( )Wk w%' (4.47)

Jepn) k

We notice that apart from the constraint ), kwj, = n, the right hand side represents a
series expression for an exponential function. It is convenient to sum over n and consider

a generating series for these representations, so that we can write

| Ly

A;A) A" |A) t = AR 4.4

=y =3 5 II(5) - on (T) s
n=0 J e p(n

The trivial representations of each S,, correspond to the totally symmetric representations

of the group U(N) with n boxes (as shown below), and have an interpretation as a single

dual giant graviton [64]. That is, it has an interpretation as a single D-brane in an

AdSs x S® geometry.

IA) = N (4.49)

n

Here, we find that when we move away from thinking of A as formal parameter,
and rather think of it as an actual c-number, the right hand side can be interpreted as

a coherent state of the harmonic oscillators represented by t;. We will now push the

109



Superposition induced topology changes in quantum gravity Chapter 4

idea that a special generating series of interesting objects should be more than a formal
expression and actually have physical meaning. The reason this is a coherent state is
that it is an exponential of a linear combination of raising operators. We still need to
find the range of A that is appropriate for this expression.

We can consider the norm of the state

(O A) A5 A=) (AN = —x (4.50)

and we see that it is convergent for |A| < 1. This can be similarly obtained from the

exponential and the gaussian measure (B237). The proof is instructive. Consider

(N A) NN = /Hdtkcztk exp (— Z %) exp (Z Ak%> exp (Z Ak%(>&.51)

k

= /1;[ dtydty, exp <— Z (t = Ak)k(fk - Ak)) exp <; AkkAk )(4.52)

k

where to arrive at the second line we completed the square. Shifting the integration

variables, we find that

(A A AN A = exp (Zk: A’;Ak) = exp(—log(1 — AA)) = - _1M (4.53)
where we have recognized the Taylor series for log(1 — z) in the exponential. If we didn’t
already know that the |A) were orthonormal, the coefficients in the Taylor series that
appear in (A250) after expanding in (A253) would have shown that.

The fact that this generating series produces a coherent state for the oscillators is
important in more than one way. First, it shows that the D-brane can be thought of as a

“soliton” of the free field theory: a non-dissipating solution of the classical equations of

110



Superposition induced topology changes in quantum gravity Chapter 4

motion. This is how, in the weak string limit, a D-brane can be thought of as a localized
classical source for string fields, where away from the D-brane location one has a solution
of the classical equations of motion. This is usually encoded in how different boundary
states overlap by considering how closed strings propagate from one boundary state to
the other [I04]. Another example where D-branes decay into string fields can be found
in [I05].

Since this D-brane state is a coherent state, it is an eigenstate of the lowering operators

represented by (t;)" =~ kd;,. We find that for these states
(ar)am = (t))am = A, (af)an = (t)an = A (4.54)

This behavior is expected from the collective coordinate treatment in setups at finite N
[T06, 99]. In these other approaches, the coherent states in question are described in
terms of Slater determinants of coherent states for generalized oscillator algebras.
The states we have found are also of minimal uncertainty for all the oscillators. This
will become important when we try to describe other classical limits later in the paper.
The next thing that is interesting to compute is the average energy per oscillator in

each one of these states. This is captured by
(Eryan = (kteOy)an = (A/_\)k (4.55)

so that the expectation value of the energy is

(B = YA = 20 (4.56)

k>0

the energy carried by the state is large in the limit where |A| — 1, but in this limit the
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state becomes non-normalizable. It makes sense to consider states near this limit, where
A =~ (1—¢)/2 exp(iv) with e infinitesimally small and acting as a cutoff. In that case, the
energy per oscillator degree of freedom goes to one, but this means that each oscillator

has on average low occupation number

<Nk>A;A—>exp(iy) - <Ek>A;A—>exp(i’y)/k = ]-/k (457)

The excitations are then still a coherent state for all oscillators, and if we cut off the
degrees of freedom in the UV, we find a finite energy lump determined by the cutoff.
The failure of the state to be normalizable is due to the infinitude of modes that can be
excited, not to any one oscillator mode going bad on its own. Also, the amplitudes for
the different modes are phase correlated. This is important. The reason is that we want
to build a field out of the oscillators ay, aL. The geometry where the fields live should be
on a circle (we have argued that we have the degrees of freedom of a chiral boson in the

previous section).

4.4.2 Field of the brane

The finiteness properties and phase correlations we have found suggest that we can
think of the field generated by the D-brane state as being a classical profile everywhere
except at the position of the brane itself. We will use this intuition to argue that there
is a preferred linear combination of the oscillators that gives nice properties for the field
profile in the limit we want. We will posit that the field operator take the following

hermitian combination as an ansatz

$(0) = fular exp(—ik6) + af exp(ik)] (4.58)

k>0
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where f} is a set of positive numbers. At this stage, we are simply making an educated
guess as to the form of the operator. Later, we will find that it is consistent with all
expectations and declare it to have been the correct choice. Although we could have
added phases to fx, the phase correlation of the modes suggest that we set all the phases
equal to each other. Scale invariance of the chiral boson suggests that we take fj ~ 1/|k|*
for some exponent o which is yet to be determined. Replacing the expectation values
from (E54) and taking the limit, we find that the profile associated with the D-brane is

given by

3(0) = (5(0)) ainmexpiy = D felexp(ik(y — 0)) + exp(—ik(y — 6))] (4.59)

k>0

The phases give (maximal) constructive interference at § = ~, which we will call the
position of the D-brane. This is why it is important to choose all phases as we did: it
produces the maximum possible constructive interference of the profile at a point. This
is tantamount to saying that we have localized the peak as much as possible. Everywhere
else, the phase sums can cancel enough that the result is finite. Taking fr = 1/]k|%, the
result can be written in terms of Polylog functions. We will now argue that if we instead
choose fi = 1, the answer becomes extremely simple, and we should therefore choose

this value. This choice will have preferable geometric consequences. We find

3(0) = (3(0)) asn=exp(iy) = Y exp(ik(y — 0)) = 276(y — 0) — 1 (4.60)
k0

That is, the field away from the position of the brane becomes constant and has an
exactly flat shape in the tail of the D-brane. We will promote this property to the reason

why we make this choice for the field. This is a geometric condition. Because the field
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does not have a mode at k = 0, it is required that

/ 6 $(0) = 0 (4.61)

which is verified readily. This is actually true for any choice of the fx, subject to conver-
gence at |A| < 1. For the particular choice we made, we have a quantization condition on
the area under the d-function distribution, which is 2. The energy can also be written

simply in terms of ¢(#). More precisely

<Zakak> _ < o / d9( . 3(0)? )> ;ﬂ / de( ¢(9)2) (4.62)

where we use the normalization of the modes in (B238) with || = 1. This shows that
the choice for the field coefficients in equation (E58) is also determined by being able to
write a local expression for the energy: a single integral of the field and a finite number
of its derivatives. The rightmost term in (E62) is the classical contribution to the energy
for a smooth ¢(0).

There is a second natural choice for a field. This is the field that is obtained by
considering |A| = 1 and looking for the combination of modes that appears in the expo-
nent of (E48). The idea is that when we declared the generating function (E2R) to be
singled out by our representation basis and the convergence properties, the limit defined
a preferred combination of modes.

It is convenient to call this field x and define it to be

1
x(0) = Z T exp(ikf) al + c.c (4.63)

k>0
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The factor of ¢ in the denominator is a convention we choose, which gives

| A5 A = exp(iy)) =: exp(ix(y)) : 0) (4.64)

One easily finds that the field x and the field ¢ are related by

Ipx(0) = 0(0) (4.65)

so that locality in the sense of x (in terms of the smooth variable €) ends up being
equivalent to locality in the sense of ¢. Indeed, the field y is what we would usually call
the free boson and the field ¢ is the associated current. The local energy is the standard
stress tensor for the chiral boson. This matches the derivations in [83] very well.

The field : exp(ix(€)) : is usually thought of as a fermionic field written in the

bosonized language (see [31], pp 11, eq. 10.3.10).

4.4.3 The anti-brane and its field

The other natural representation of the symmetric group is the alternating represen-
tation. This representation is also one dimensional, and the character counts how many
transpositions (modulo 2) are in a group element. For a cycle [s], the sign assigned to it
is

sign[s] = (—1)*7* (4.66)
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This is multiplicative, meaning that sign[a o b] = sign|a|sign[b] . When we consider the

equivalent of equation (E67), we get that the sum over characters is

Y I L3 = Y kakwk YLy ) > (4.67)

esn ﬁEp k

where we used the multiplicative rule on the right hand side. We have labeled the states
with 7 instead of AA. In the language of Young diagrams, this representation corresponds

to a single column with n boxes.

V)0 = (4.68)

This also corresponds to a totally antisymmetric representation of U (V) with n indices.
These states correspond to giant graviton states [89] in the AdS/CFT correspondence.
We now want to do a similar generating function to the one in (E=48) for these states.

Consider the following

v, —) = ZQ”|v>n (4.69)
= > > Q”kakw Yoty (4.70)
n W ep(n) k!
SO FCE wy (471
n Wep(n) K
= > Y Hw ( )tk> (4.72)
n Wepn) k k
= exp (—Z(_g)ktk> (4.73)
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where we have made a sign convention choice in how we wrote 2 in the generating series,

versus how we wrote it in the previous state. We find that with this convention

Kk
[V, A) = exp (— Xk:/\ E) (4.74)

so that in the same limit as before we have that

V75 A = exp(i7)) =: exp(=ix(7)) : |0) (4.75)

which is the other fermion field. The natural notion of locality derived from the states

|A; A) and |75 A) are the same. It is now trivial to show that for these new solutions
(D) wirmexntin) = = 3 exp(ik(y = 0)) = =2md(y = 0) +1 (4.76)
k#0

There is also a symmetry that sends A <> 7. This is ‘particle-hole’ duality and is
implemented by x(0) — —x(0), and ¢(0) — —@(0). In some finite matrix models built
from microscopic fermionic degrees of freedom, this can be implemented exactly [107].

We will call the two families of operators

Bj:,A = exp <:|: Z Ak%> (477)
k

acting on any state the D-brane creation operators. That is, up to including : exp(+ix(v)) ,

which is non-normalizable.
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4.4.4 Multiple brane states

Consider acting with a D-brane creation operator on a state that already has one
D-brane. At the level of the oscillator representation of states, this is straightforward.

We can write

t
Bya,Bia, |0) =exp (Z (A} + AS) f) (4.78)
k

We easily find that this is also a classical state, which results from the superposition of

the two profiles of the individual D-branes. The classical field is characterized by

(D)) ansan, =AY+ A5 (B)ansan, =AY+ AS (4.79)

and
. Ale—z‘e A2e—z‘¢9
: =2 . ‘ 4.
GO aman =2 (120 2 (4.50)
Similarly, we can write
12
Bia Boa, |0) = exp (Ek (AT — A5) E) (4.81)
. Ale—ie A2€—z‘9
: =2 — — , 4.82
GO =2 (124~ (4.82)

Notice that if we take A; = Ay in the second profile, the fields cancel. This tells us that
the two types of D-brane states annihilate one another into the vacuum T,
We will now use the D-brane basis (the basis using irreducible representations of \S,, ),

to better understand how these generating functions behave. We will use Young tableaux

to compute the multi-brane states. The correct multiplication table is governed by the

!The more precise version of this cancellation is that the OPE expansion of the two fermion fields
contains the identity
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Littlewood-Richardson coefficients [64] (see also the discussion in [99]). Remember that

|A),, is associated with a tableaux with n boxes in a row. These are the objects that

appear in |A; A). We want to compute

By a,Bia, [0) =) ATAY L x g (4.83)

n,m

The multiplication of two of these objects is similar to addition of angular momentum in

U(2), so that

. TL >< ... m (4‘84)
_ + T e I R n (485)
n+m oo lm
e
n+m—1

where we assume n > m in the second line, but we can also have the opposite ordering
in which case we exchange n,m. We see that all states have only two rows in their
Young diagrams. We will group together all diagrams with two rows of lengths r and
s with » > s. To find the coefficient of these, we need to consider the decomposition
r+ s = n+ m, such that [n —m| < s and to sum over these possibilities. When we

perform this sum we obtain

r+1As sAT+HL
ATTAS — ATAS

ATAS + ATTIASTE o ASAL = (4.86)
A — Ay
That is, we can write identically that
ATTE A8
(Al _ A2)B+7AlB+,A2 |O> _ Z 1 L T (487)
r>s A;Jrl A; el S
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where the coefficients are very easily written in terms of determinants. This suggests that
the full set of states with two classical D-branes acting on the vacuum can be interpreted
as a set of fermionic wave functions (Slater determinants), as long as we multiply them
on the left by a Vandermonde determinant made from the A parameters. The point is
that the complexity of the coefficients of the tableaux in equation (EZ7) is very small.
Notice that even though r > s, this implies that » + 1 > s, so the Slater determinants
never vanish, unless we have that A; = Ay (this is trivial in the left hand side, as the
full ket is multiplied by A; — As). Notice that if both D-brane states are normalizable,
so is their product. The same arguments work for the product of various D-brane states,
but the combinatorics of multiplying the Young tableaux are more complicated. The
simplest way to understand it is through the relation between free fermions and formal
matrix models for a generalized oscillator (this is described in [99]).

We can also compute the norm of the state to obtain

2
AN
||(A1 - AQ)B+,AlB+,A2 |0> ||2 = Zrzs = ZTZS ||AI+1A§ - AfAQHHQ
A
= ZTZS ||/\71‘—"_1/\§||2 + ZSZT ||A5Ag+1||2
- ZTZS AI+1A;I_\§]\£+1 - ZSZT A§A§+1Ai+1[_\g
= 2o [IATAS][? = ATASATA

1 1 o 1 1
I-[JA1]2 1-[[A2]]2  1-A1A2 1-AxA,

where we have relabeled r, s in some of the sums in the second line, and next we add and

subtract the r + 1 = s and s + 1 = r contribution to obtain unrestricted sums that can
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be evaluated explicitly on the last line. This expression is equal to

(A1 = A2) By a, By O |2 = [HA A [PI[A, Ag) |7 = (A, Ao) A, Ay (A A1) AL Ay
(4.88)
after we recognize the result (B250) and we think of A, A as independent variables. This
results in the typical norm for two-particle states in fermion systems: the product of the
norms minus the exchange contribution.

The multiplication rules for two B_ operators will give a similar result, but with
Young tableaux with two columns, rather than two rows. This follows from the ¢ — —¢
symmetry, which flips tableaux along the main diagonal. The other example with two
branes is what happens when we multiply Bz, and B_ ,,. This is the most interesting
example because one can get a cancellation between the two. It is instructive to see how

this comes about from multiplying the corresponding Young tableaux, as follows

and to each of these we associated the coefficient A7 |(—=A_5)™. Now, we only get two
possible tableaux on the right hand side. If we fix the Young diagram to have r boxes

on the first row and s boxes on the first column, we get by summing over possibilities

AT (=A™t + ATTH—Ap)® = ATH(—Ag)* YAy — Ay), except in the case of no boxes,
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where we get 1. That is, we find that

Bin,Bon, |0) =1+ > A=Ay (A = Ay L)L (4.90)

r>1,s>1

and now the right hand side simplifies if we divide by (A; — Ay) (rather than when we
multiply by it). If we compute the norm of the state (when dividing by (A; — Az)) we

get that
B 1
1AL — Aq[?

1A, A P, Ag) (4.91)

B+,Ale,A2 ’0>
A — Ay

and apart from the first term, it shows that the two types of fermionic “particles” are
distinguishable. In this setup, when A; — As, the first term develops a pole. That is,
the 1 dominates the norm of the state, but this can be subtracted if we are careful, and
then we can get a smooth two particle state in the limit.

Formally, when we consider a state |¢)), which results from applying various By

operators, we can identify the expectation values as supertraces of a complex supermatrix

(Wla ) =3 Ak, ZAk =Str| . = Str[A"] (4.92)

where we identify the different values A, _ with the corresponding eigenvalues. The
values of A are then interpreted as collective coordinates for the D-brane states. The

interesting prefactor of the wave functions where we multiply by

[T — A [T = A [ J(A =A™ (4.93)

1<j 1<j
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is a super-Vandermonde determinant.

4.5 Free fermions and the Murnaghan-Nakayama rule

We see that it is rather helpful to be able to go from the conjugacy class basis to the
representation basis efficiently. Therefore it makes sense to understand how to compute
the characters ygr(c) more precisely in order to be able to make progress. The main
tool to do so is the Murnaghan-Nakayama rule, as described in appendix B. This gives
a recursive way to compute the characters of the symmetric group. We will now see
that this rule is essentially encoding the fact that the tableaux states correspond to free
fermions.

We will prove this fact now. To do so, let us analyze the main result of the appendix,
where the Murnaghan-Nakayama rule can be rewritten as an operator equation in the

Hilbert space of states

s@ts

R) = Z (—1) 2% | Ryoor) (4.94)

hooks of length s

where fiook is the number of rows spanned by the hook, minus one, and }?hook is the
Young tableaux R with the skew hook corresponding to the hook that has been singled
out removed. A skew hook is a set of boxes at the edge of the tableaux whose removal
produces an allowed tableaux, and they are in one to one correspondence with regular
hooks (see appendix B).

Remember that s0;, ~ a is the lowering operator of the mode s in the Fock space.
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This equation above can also be read as follows

or taking adjoints

(Rla.|B) = (=)

(Rl }|R) = (~1)/

(4.95)

(4.96)

where |R) is a particular diagram appearing in the sum with one hook removed. For

instance, consider the state corresponding to the representation given by

We could apply the lowering operator as. Equation 294 gives

a3

We could then dot this with the state given by

And we find

as expected.

(Rlag|R) = —1 = (-1)!

(4.97)

(4.98)

(4.99)

(4.100)

We will now show how this arises using free fermion intuition. Proving equation (E-93)

is equivalent to proving equation (E794), which in turn gives a proof of the Murnaghan-

Nakayama rule.
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We need to think of what af is doing in terms of the eigenvalue representation (the
fermions in Matrix models). The idea is that to each eigenvalue of an infinite matrix we
associate a Cuntz oscillator pair 565} = 1 (which commute with each other for different
¢) and we will treat these eigenvalues as Fermions (see [99] for details on how to build

fermionic systems from general oscillators). The operator

al => (8] =Tr((8)) (4.101)

=0

is a trace of the powers of the raising operator 47 thought of as a matrix. The ground

state of the multiple particle system e is defined by the Slater determinant

o = lim |~1/2)|-3/2)...|-(2N = 1)/2) (4.102)

antisymm

where we have set the Fermi sea at energy zero, and all the (infinite tower of) negative
energy states are occupied. If all the |j) are orthonormal, the procedure of antisym-
metrization gives a normalization factor in front of the state with an ' = ((N +1)!)~%/2

to obtain a normalized state. This is common to all states in what follows. Pictorally,

we will represent our ground state as

(4.103)

Notice we have chosen to label the energy of each particle at half integers, rather
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than filling the Fermi sea to zero and having the particles occupy integer energies. We
did this because it makes the particle/hole duality more explicit and symmetric. This is
simply a convention and everything would follow in the same way if all particle energies
were shifted by 1/2, as it is always energy differences that are measured.

A complete basis of states is given by

[{n}) = Tim [} 1) - - [0 anieymn (4.104)
N—o0
with ny > ny > n3g > -+ > ny, half integers, and for all sufficiently large j we require

that n; = —%.

We will now show how to go directly from one of these states to a Young tableaux
representation, which we will associate with it. Consider the numbers given by r; =
nj—n9 =n;—(5—j), eg r=n —(—3), 72 = ny— (—3). These numbers will give the
differences between the particles excited positions and their ground state position. We
can check easily that r; — r; ;1 = n; —n;.1 — 1 > 0, since the n; are strictly decreasing
integers and moreover that r; = 0 for sufficiently large . We assign to this set a Young
diagram with rows of length r{,...7s for all the r; that are different from zero. This
is an allowed tableaux because the integers are non-increasing. Details of the pictorial
representation of this assignment can be found in appendix 0. We can clearly invert this
map, because knowing r; is equivalent to knowing the n;. Now, instead of |[{n}) we use

the tableaux |R).

Now we act with af = T7((81)*) on |R) and get that

N
-i- ~ .
o) oc Jim 3l ) - nacs) e+ ) ) I (4.105)
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If the state has two of the n; equal to each other, the antisymmetrization procedure will
remove the term from the sum. Now, we need to check if the new state has the ng in
decreasing order or not. If it does not, we need to reshuffle the ng, by moving the ny,
to the left until we get a proper order. We do this by transposition of nearest neighbors,
moving n, + s as we go along. Each such transposition is an exchange of two fermions,
so it costs a factor of (—1). The sign we get is (—1)#transpositions,

As an example of how this works, we would have

al (15/2) 13/2) |=1/2) |=7/2)1=9/2) .. 1) sty
= 19/2)13/2) [=1/2) [=7/2) [=9/2) - - [P\ stisyram
—17/2)15/2) |=1/2) |=7/2) [=9/2) ... In suticyrann (4.106)
+15/2) 13/2) 1-1/2) [=3/2) [<9/2) - . 1NN amiiyrmn

—15/2)13/2) [=1/2) [=5/2) [=7/2) - .- InN) antisymm

Notice the second and fourth terms have negative signs because we had to perform
one transposition on each to find a state with the proper ordering. Notice also that we
dropped all terms that would have had two n;’s that are equal to each other and so would
go away upon antisymmeterization. Now we want to think about how the transpositions
affected the Young diagrams these states correspond to.

Because various of the n; have been moved to the right, we find that for these that
have moved we get that ni®Y = ng'd, so r2V = npod . — (—i) = r?!4 + 1. That is, in the
Young diagram we have moved the row 7 to the ¢ + 1 row and added one extra box to

the right (this is equivalent to moving the corner of the row one to the right and one

down). There is still the one that got moved to the left. This one row was moved upward
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by #transpositions, and each such transposition makes the corresponding row we are
tracking shorter by one (this is the opposite of the +1 to the right that we have found
for the others). The net effect is that we have added just s boxes to the Young diagram

and gotten a normalized state for each ¢ that is allowed. That is, we get that

ai |R> — Z (_1)#transpositions |Rallowed> (4107)

hooks

The motion to the right and down produces a skew hook of length s added to the original
tableaux (we just color in the new boxes in a different color than those of R). The sign
we find is the same sign that is assigned by the Murnaghan-Nakayama rule. The number
of transpositions is the number of rows that have changed minus one!

As a simple example consider a} HEN

What does this correspond to in the Fermi sea picture of appendix 7 We have 5
units of energy we are adding and there are several options we have for where to put

them. The state we are starting with is

(4.108)
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We could imagine giving all the energy to the already excited particle. This gives

#é (4.109)

which we know corresponds to a totally symmetric diagram with 8 boxes.

However, we could have made a different choice and excited the top particle out of

éié (4.110)

Notice that to get to this position, we had to pass the already excited particle (we had to

the fermi sea. This would give

perform a transposition), and therefore had to pick up a minus sign. We find, then, that
the negative sign, which previously was simply a part of the MN rule, actually encodes
the exchange statistics of fermions.

Carrying on, we we could imagine exciting the second particle from the fermi sea, but
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we know this should not be allowed by the Pauli exclusion principle:

(4.111)

If we think about this in terms of Young tableau, we see that this would have corresponded
to a diagram that is not allowed. Specifically, it would have corresponded to something

of the form

| (4.112)

We know that this is not an allowed diagram and that fact encodes the exclusion principle.

The end result is that

o (11~ C 1T e el -+ (4.113)
The outcome of this computation is that
<R’ al |R> — (_1)#transpositions _ (_1)fhook (4114)

as we wanted to prove. Moreover, the sign of the Murnaghan-Nakayama rule is nothing
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other than the Fermi statistics. The boxes colored in blue are exactly the skew hooks that
can be added to the original tableaux. These are always at the border of the tableaux
such that adding them produces an allowed tableaux.

The upshot is that rather than trying to compute the yg(co) directly, we compute the
action of the ¢, and its adjoints on the basis of Young tableaux (the D-brane basis). This

algebraic action is simple and will let us establish a lot of facts in the next sections.

4.6 Multi-edge geometries: new classical limits with
different topologies

In this section we will think of the classical field ¢(f) as a displacement of the geomet-
ric interface between two fluids, made of particles and holes. This is the main viewpoint
in treating the system as a set of free fermions as exemplified in the description of the
quantum hall effect [83]. This is a geometric interpretation that also appears naturally
in studying bubbling solutions [63], where the two fluids in question arise as the two
possible values of a function on a plane that give rise to a regular BPS geometry in ten
dimensions. Some of the treatment here follows the previous work by the authors [40].

Let us start with a simple identity for the classical energy of a configuration, where

we use

El¢] = %/d&%qﬁ(@f = %/d@ [/0¢(0)>Ohdh— /O_¢(9)>0(—h) dh] (4.115)

That is, we introduced and auxiliary field h and divided the coordinate # into the
regions ¢(#) > 0 and the regions ¢(#) < 0. This makes sense in the classical theory for

smooth functions, but not quite in the quantum theory. The first region is associated
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with moving particles into spaces that had been occupied by holes, and the second one
is associated with moving holes where there were particles. Both particles and holes are
conserved because [ ¢(0)df = 0. We want to associate a function with this change of
occupation, that takes the value +1 when particles occupy a hole state, and takes the
value —1 when holes occupy previously occupied particle states. The function should
otherwise vanish. This function is the relative density of particles with respect to the
ground state p(6, h) = p1(0,h) — p°(0, h). It can also be symmetrically constructed from

the hole density with few modifications. The energy can then be expressed as

Elg] = %//ﬁ(@,h)hdhd& (4.116)

Notice that this formula is very similar to (BI7). The main difference is that in (B-17)
one is allowed to have arbitrary regions with p # 0, while in (EZI18) we have a description
not only with fixed topology, but also with a unique height for the boundary between

holes and particles for each 6. The field ¢ is given by

6(0) = — / dh hOpp(0, h) (4.117)

This uses the fact that p can be written as Heaviside step functions whose derivative is a
delta function, precisely at the height of the droplet. The contribution at h = 0 vanishes.

Alternatively, we can integrate by parts to find that

6(0) = / 56, h) dh (4.118)
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and the conservation of particles and holes can be expressed as

5(0,h)dodh = 0 (4.119)
/]

Basically, we are expressing the states as pictures on a two dimensional cylinder. We
will use this identity together with previous observations (particularly equation (E60))
to understand how new classical limits can appear from different quantum states that

are not classical in the oscillator representation.

4.6.1 Fixed energy single D-brane state

Let us start with a single D-brane state, but instead of considering the coherent states
(I48), we want to consider a state of the form |A)  for a fixed n: a single D-brane with
fixed energy, and we want to think of it formally as a superposition of non-normalizable
states |A\, exp(iy)) by doing a Fourier transform. The state |A),  is an eigenstate of the
momentum operator, so it is translation invariant. Because the state is a superposition
of classical states, it is not a classical state with respect to the usual variables a};, aj any
longer. For example, it does not factorize into a product of coherent states because it
has a fixed energy and it is not in the vacuum. Indeed, it is possible to show that in this
state (ag) = (aT> = 0, yet the energy is not zero (as one would conclude for coherent
states). The naive classical state we would associate with this profile is the ground state.
Because in the end the corresponding state is not a coherent state, we will be interested
eventually in characterizing to what extent it violates the properties of the coherent state.
For example, if a state has minimal uncertainty then it is a coherent state. Conversely, a

non-trivial uncertainty serves as a measure of how much the state differs from a coherent

state. Similarly, a coherent state is a product state ( a pure state mode per mode).
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Entanglement between the modes measures to what extent the mode per mode quantum
state is not pure. We will take the problem of measuring these later in the paper.

What we want to do is we want to find an alternative classical description of this
particular state so that when we insert the right value of p(f, h) in equation (E118), we
get the right energy. We want to declare that this state can be classical as well, even if
it is not a coherent state. Our goal is to come up with a prescription for how to do this
consistently.

Moreover, we want the relative density to be translation invariant, so p is independent
of 6. To be classical, it should take the same prescribed nominal values from before p =
+1,—1,0. In principle, a value in between can be obtained from statistically averaging
states (a density matrix state rater than a pure state). Those will not be treated as
classical states but as statistical states. Here, we want the state to be pure, so no
averaging should be performed.

Now, let us look precisely at (E60). The idea behind building the new classical
solution is that acting with a D-brane state lowers the level of ¢ by a prescribed amount:
—1 in our conventions, and the area under the delta function is identified with the amount
of area that a single D-brane (particle) occupies. We need to move this occupied area
somewhere else, but we want to leave the lowering of the level interface exactly as the
—1 demands: this is after all the classical field everywhere else away from the § function
distribution. Because of translation invariance, we should add horizontal strips with
p = 1 to the picture in order to conserve area. Since we are acting with a single D-brane,
this horizontal strip should be connected (a single object), and of width one because
of area conservation. We are building this picture by hand, but we are inspired by the
description of states in [63]. To match the energy of the state, there is only one place

where we can put the strip: the topmost edge of the strip should be at height n.
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0 27

Figure 4.3: The black and white LLM plane drawing corresponding to a D-brane with
fixed energy n.

n

If we use equation (II18), we find that the field ¢(6) vanishes, just as expected from
the expectation values of the quantum state. However, when we analyze it from the point
of view of (EIT7) we realize that the expectation value of the field vanishes by adding

three contributions
gb:/dhh(é(h—n) CSh—nt )46+ 1) =n—(n—1)—1 (4.120)

one from each of the edges of the p density. That is, we should think of the field ¢(0)
essentially as becoming a multi-valued function of #, and the expectation value of the
field is obtained by summing over these values with signs. We have gone from one well
defined classical edge to three. This should be thought of as a topology transition. Notice
that the superposition of states that gave rise to the state we want can be performed
for finite values of A as well. In this interpretation, superpositions of classical coherent
states with one topology can give rise to a topology change.

Notice that this new state is macroscopically different from each of the states that is
used to make it, even statistically. For example, all the coherent states have p(#,h) > 0
strictly non-increasing as a function of h when h > 0. So when we take a classical

statistical average of these states, this property should still hold. The new p does not
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have this property.

If for all original classical states we assign the same topology where the edge is a
circle, then we find that there is no operator measurement in the Hilbert space that can
distinguish the strip from the coherent states [A0]. The argument is by contradiction. Tt
proceeds as follows:

Suppose first that all coherent states are associated with a fixed (trivial) topology.
Imagine now that such an operator exists. The operator should be such that all states
with a trivial topology have the same eigenvalue. We can imagine building one such
operator if we simply count the total number of edges to characterize the topology. We
then get the same number for all coherent states: 1 (because they are described by a single
height function), and so we are describing the identity operator. The strip topology state
is a superposition of these, so the operator should evaluate to 1 as well, which clearly
fails to count the number of edges appropriately. Therefore, there is no such topology
measuring operator.

This means that topological type should be associated with details of a particular
classical approximation of a state, and not with measurement of an operator. Notice that
at this stage we have made no reference to entanglement as a source for topology changes
(72, 78]. We are also stating that the set of classical states is even more overcomplete
than regular coherent states. That there might be an overcompleteness that exceeds the
standard overcompleteness of coherent states has been hinted at in [10R] for situations
involving the interior of a black hole. It was also argued there (following [T09]) that
gravitational physics requires state dependence, which implies that gravitational physics
can not be encoded in operators. These works, in some sense, already assume that the
ER = EPR conjecture is true [8], so that non-trivial entanglement measures a topology

change. As is well known, entanglement is not an operator measurement in Hilbert space,
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although it can be computed in simple enough setups.

Back to our main discussion, since the strip state is not a coherent state, one can
presume it is a state with larger uncertainty on each oscillator. We can actually compute
these uncertainties using the techniques developed in section EH. We will see later that
the spirit of (EIZ0) can be made precise for a large number of quantum states in the
field theory, and the microscopic quantum field ¢ can be written as a sum with signs
of other effective fields that appear as quantizations of small deviations away from a
particular multi-strip configuration that should be thought of as a ‘ground state’ classical
configuration with a coherent state excitation of its collective coordinates.

Let us finish analyzing this one configuration at a large but finite energy n. The

Young diagram describing the state has n boxes and is completely horizontal.

A), =[T7. (4.121)

We can evaluate the expectation values of the mode number operators E, = alas, N, =

s lala, by the Murnaghan-Nakayama rule (see appendix B) in a straightforward fashion

1 ifs<n
n (Alalag|A), = o o(AJA), - = (4.122)
0 Otherwise

so the average energy per mode is constant up to mode n where it cuts off abruptly. The
average occupation number per mode s is 1/s, exactly as in equation (E234). This shows
why the state is a very close approximation to a regularized ”fermion field state.”

It also makes sense to ask which of the states |A, A) is the best approximation to
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|A),,. The normalized probability amplitude to go from one to the other is

HAJAA) = A"V1 — AA (4.123)

So that
[ (AJA; A) P = (AA)"(1 — AA) (4.124)
This is maximized for
_ n
AN = 4.12
n+1 ( )

For this value of AA, we would find that the energy of the best coherent state approx-
imation to the state to be exactly n, the energy of the state. For large n, the size of
the overlap is of order (en)™! where e is Euler’s constant. It is also easy to check the
equations as = af for these states, just as expected from the fact that all the coherent
states that can be superposed to obtain the state satisfy them.

This means that the state |A), should be thought of as an overlap of order n approx-
imately orthogonal coherent states. That is roughly the number of states that would be
needed to get the probabilities ), [,(A|A; A;)| to add up to order one: what we need in
order to say that we closely approximate the state |A), .

One can use this result to state that a superposition of a large number of states in
quantum gravity might have very different properties (even different topology) than any
of the individual states that make up the system. This is a result that has been argued
quite effectively in [I10], where the goal was to show that entanglement entropy can be
thought of as an operator for a sufficiently small superposition of classical states, but not
when we take the limit.

One can do a similar analysis with a single hole state of fixed energy |v/), and the
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results are very similar.

Now, we can also evaluate the quantities

n{Alasal [A), = {(as = {as))(al = (al))) = s + (alas) = s +1 (4.126)

S

for s < n. These can be thought of as the net quantum uncertainty of the solution
(including the ground state uncertainty, which is s). This shows that the state has low

uncertainty (mode per mode) and can therefore be interpreted classically.

4.6.2 More general one stripe geometries

Now we will turn our attention to other states that have a similar interpretation.
These are "translation invariant condensates of branes”. The idea is to look at states

whose Young diagram looks as follows

L3
B} []

Or.m) (4.127)

That is, a rectangular Young diagram with L columns and M rows.

We can visualize this state in the fermion picture (assuming L > M) as follows

(4.128)

where there is a gap of size L between the filled sea and the excitation, and then the
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excitation has width M (this corresponds to M filled states). This is natural from
identifications in the figure 8 of [63]. These states are also translation invariant and
share many of the properties of the previous state |A,), which would correspond to
|O,1). The natural identification with states in the droplet picture is to extend the
representation (A-I2R) to a stripe configuration where the holes and filled states become
extended on an interval (0, 27). The gap between the filled regions is of width L, and the

filled top region is of width M. The corresponding LLM droplet picture is shown below.

M

v

b (L= )

0 2

Figure 4.4: The black and white LLM plane drawing corresponding to a rectangular
Young tableaux with L x M boxes.

Since these states are of fixed energy and a, a, change the energy, we also have that
{asypym = {(al)par = 0. Again, if this were a classical state in the usual classical limit
of regular coherent states we would find that it should correspond to the vacuum. We
want to interpret this state also as a classical state, with a black and white pattern as
described. The configuration now has three edges: one at the very topmost of the most
excited state, one (anti-) edge where the gap ends, and one more edge where the infinitely
deep sea ends. We use the labeling edge for an edge where the filled states are below and
the empty states above. We will use the label anti-edge for the opposite set, where the
empty sites are below and occupied sites are above. The energy of this state is LM.

What we call the field ¢ again becomes multi-valued, with one contribution from each
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(anti-) edge. The vanishing of the (zero mode of the ) field is governed by adding three

contributions
¢:/dhh((5(h—L)—5(h— (L— M) +8(h+ M) =L—(L—M)—M (4.129)
very similar to (E120).

4.6.3 Excitations of striped geometries

In general, we expect that we could start with one of these translationally invariant

striped geometries and deform each edge independently, As shown schematically below.

0 27
Figure 4.5: A schematic depicting possible independent deformations of each edge of
an LM state.
Recall that the energy is given by
1 .
El¢] = o // p(0,h) hdhdf (4.130)
s

Further, let us recall that ¢ ~ h on the edge, while p = 1,0, —1. We want to consider small
deformations of each height, keeping the local density at nominal values, and the area
of each region fixed. This is formalizing the idea that the field ¢ becomes multivalued,
with ¢(#) the height at each (anti) edge. The total field sums over these contributions
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d(0) = ¢*(0) + ¢*(A) — ¢'(A). Here, we indicate the fields in order from the top down,
with ¢ representing the anti-edge fields. To keep the area of each region fixed, we require
that for each field [dfd¢’ = [dOd¢" = 0, and we can substitute in the energy as an

area integral to find that
QWZ/dH ¢ +¢) (¢f — &) = Z/de (6612 — (6¢7)%) + Epar (4.131)

We find that the energy splits into a (local) sum over fluctuations of each edge indepen-
dently, but the ones associated with ¢ have a negative sign. This is an indication that
the reference state |y p) is not the ground state. The fields ¢ can be thought of as
ghosts (in the sense of negative energy states, not negative norm states). In the paper
[82], such states are called counter-gravitons. The fields #% and é(i) will be the collective
excitations of the configuration.

What we have done is formalize the suggestion of [82] that makes ¢ decompose linearly
into pieces that work on each (anti-)edge independently. Now, we can take the Fourier
transform to obtain the mode decomposition, as in [40].

We find that

al = bt 4 p1T — (4.132)

where the b are excitations of the edges, and the ¢® modes are excitations of the
anti-edges. We need to explain this equation. The mode a increases the energy by s
units. This is the equation of motion of the mode al. The modes b; (Dt b( also increase
the energy by the same amount (which is equal to the momentum of the mode). The
lowering mode for excitations of the anti edge destroys (—s) units of energy, so it acts

in the same way to increase the energy. This is the only way to make the equations

consistent with energy conservation and with a linear expression for the modes a! in
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terms of the collective excitations of the state |y ). As long as we can show that the
b, ¢ have the correct commutation relations, we find that the equation (E-I3%7) indicates
that the UV fields (those that are canonical modes of the chiral free field) are related by a
Bogolubov transformation to the collective fields (which we are calling the IR theory). Tt
is not a complete Bogolubov transformation, because such transformations preserve the
number of oscillators. The linear transformation can be completed to a full Bogolubov
transformation if we add additional orthogonal fields to the ay that are made of linear
combinations of the b, ¢ modes (we will expand on this idea in the next section).

The important point is that equation (EI337) is an approximation to the fluctuations
about the state. It is clear that if the fields ¢ get too large that the edges will collide
changing the topology. Our purpose right now is to actually derive this transformation
from first principles by analyzing the physics of the state |py/) independent of the
geometric intuition. We want to show that the decomposition can actually be derived
from the combinatorial structure of the full Hilbert space of states.

The reference vacuum state |y ) is defined by 0 |0py) = ¢|pp) = 0. We will call
an excitation a classical configuration if it is a coherent state excitation of the low lying
modes of b® and ¢, assuming that they have canonical commutation relations. This
can be derived semiclassically by following [80], but again, it does not explain what to do
when the ¢ get large, so the commutation relations are approximately true on a sector
of low amplitude.

Our goal now is to construct the operators b, ¢ explicitly in the quantum theory and
show that they have the correct (canonical) commutation relations when acting on a
particular subspace of the Hilbert space of states, so that the equation (A7I32) is indeed
a Bogolubov transformation. To do this, the results of section B-3 and appendix B are

essential. This is the point where we are able to improve the discussion in [82] substan-

143



Superposition induced topology changes in quantum gravity Chapter 4

tially because we will have no guesswork. Moreover, we will be able to understand the
cutoffs in field space implicitly and to study the cutoff dependence of various quantities.

The idea is to consider nearby excited states relative to |y, y), where, by nearby, we
mean young tableaux states that differ from |y p/) by a few boxes. This is depicted in

equation (A—I33).

g |

R) (4.133)

The states |R) are those that differ from the reference state |z ) by adding (few) boxes
in the corners marked by blue and green, and removing (few) boxes in the corner marked
by red. Each of these can be done independently at large L, M. What this means is that

the Hilbert space of nearby states factorizes into

Hnearby = Hblue & ngeen ® Hred (4134)

Now, each of Hpiue, Hereen Hred can be written as a small Young diagram. For Hyp,e and
Hgreen this is pretty obvious. For H,.q all we need to do is rotate the empty corners
marked in red by (180)° and we get a proper Young diagram.

Relative to the reference state, the Young diagrams with blue and green boxes will
have norm one, and so will the diagram with antiboxes. This is special to the original
theory being described with Young diagrams states that all have the same norm 2. Now,

we can do the Fourier transform from Young diagrams to a Fock space description with

2This is easy to modify for theories of generalized free fermions as in [99] because the norms will
factorize for each different color of Young diagram. See also [IT1] and references therein for how to
compute energies of excitations in the special case of A =4 SYM. This is not essential for this paper.
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canonical raising and lowering operators. This is essentially due to the uniqueness of
the relations discussed in section BEZ3. For each of these, we can apply the results of the

previous section and the appendix B. We find that
(Rl al |R) = (1) (4.135)

as long as the skew hook is an allowed transition from R to R with s boxes. We have a
similar expression for the other colored operators. The one difference for the red boxes is
that as the red diagram is growing, the original Tableaux is being chipped away, but this
is done by a skew hook that is at the interface of the red tableaux and the reference state:
it is also an allowed skew hook of length s for the complement of the red tableaux. These
are the operators that we have identified as bt and bf.f), and for the antiboxes these are
the ¢, ¢ operators. Because the Hilbert spaces factorize we obtain the following exact

commutation relations

M pI1 = s, (4.136)

@) I = §idgg,, (4.137)

and all other commutators vanish. These commutation relations are true only when
evaluated in states that are sufficiently close to the reference state, so that the boxes and
anti-boxes do not interfere with each other. This is implicit in the full discussion, but
it is worth emphasizing that these equations are not true for arbitrary excitations of the
original system, only so in the effective field theory of nearby configurations. The extreme
value where they could be right would be halfway along the reference state sides, so it is

only for labels that are less than L /2, M /2, and total differences of energies that are much
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less than LM . Beyond this scale we would claim that the modes become related to each
other and there are fewer independent states. These give relations between the operators
at high order. We call such transitions, where the number of states is reduced relative to
the very naive counting of independent free fields, the stringy exclusion principle for the
collective dynamics in the same sense as [86, [71].

We will label the nearby states as follows
|Opa + Ry — Ry + 175) ~ |R1) @ |Rs) ® |Ry) (4.138)

in a way that makes it clear that we are adding and substracting Young diagrams from
each corner as is appropriate to the nature of the corner.

From here, one can easily check that the following is true

as|Opy + Ry — Ry + 1) = Y (=1)fe |R) (4.139)

hooks

where R differs from the original state by removing a skew hook of length s. These can
only be removed from either of the R;, or added to the R;. These are the only places

where small hooks can be subtracted (or added). This means that

Qg |DLM + R, — Ri + > = Z(—l)fh“’k |R1> X |R2> X |R>1 (4140)

+ ) |R) @ (1) [Ry) @ [R)g + > [Ri) @ [Rp) @ (—1)7wox| Ry)

This translates to

ay = bM 4 b® 4 4O (4.141)

so we get what we want in equation (B2I32) up to a sign for cl. Following the discussion
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in section B4 this sign can be changed by a particle-hole transformation, which is a
symmetry of the algebra of the raising and lowering operators that we have constructed.
The choice we make is a convention that needs to be established, and this is used to
match better our geometric intuition. There is no deeper meaning to it.

We have proven what we set out to: the UV modes can be written as a linear super-
position of the collective modes of the configuration (the infrared modes) when acting on
nearby states. Moreover, the collective modes ave canonical commutation relations. It is
the presence of these collective modes that lets us know for sure that we have changed

the topology. Their number dictates the number of edges (anti-edges).

4.7 'Topology from uncertainty measurements

Now, we can further evaluate how non-classical these states are from the point of view
of the original al, a, oscillators, by computing quantities that appear in (B2128). That is,
we want to compute

(asal)ar = (alas + 8)u (4.142)

Using the MN rule, the (afa,) are evaluated by counting all the skew hooks of length
s (this is the same as the number of hooks of length s, see appendix B). One can easily

see that each hook has its corner on a diagonal band, as in equation (E—I23).

Oz =~ (4.143)

so we get that for low s (that is, s < min(L, M))

(asal)par = 25 (4.144)
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For simplicity we will assume that L > M, so that the first place where things change is
at s = M +1. At this point the diagonal bands are of constant length M. Things change
again when we want very large hooks at s = L, where the available diagonal bands start

shrinking. We get the answer

2s ifs< M

M+s HL>s>M
<GSGZ>LM: (4145)
M+L iftL+M>s>1L

S Otherwise

We can also write this equation equivalently in terms of the average occupation per mode

T . . .. . .
Ny = 2% Tt is convenient to do this in two different (equivalent) ways so that

s

2 ifs< M

i M/s+1 ifL>s>M
Ny = (Ns+ 1)pm = (4.146)
(M+L)/s ifL+M>s>1L

\ 1 Otherwise
and )
1 ifs< M
M/s ifL>s>M
(Ne)rar = (4.147)

(M+L)/s—1 ifL+M>s>1L

0 Otherwise

\

the number N, can be computed for more general multi-strip geometries for low s using
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the Bogoliubov transformation. It is given by

~ 1 N
Ns = <asai>mu1ti—stripe/3 = - Z<bgl)ng)T>n1ulti—stripe = Nedges (4148)
s 7
while
1 N
Ns - <aias>multi—stripe/$ ~ - Z(CgZ)CgZ)T>multi—stripe - nanti—edges (4149)

S

We can draw a few consequences from these equations.

First, since the numbers N, are generally of order one, the states that we have con-
sidered so far have very low uncertainty in the fluctuations, comparable in size to the
usual quantum uncertainty of the ground state. That uncertainty is multiplied by an
integer for low s. In this sense, they should be regarded as being classical, because un-
certainties are of typical quantum size. This integer that we get is exactly the number
of edges. In this sense, the number of edges is measurable in the size of the quantum
fluctuations of the UV modes of the theory (those that are given a priori without any
reference to the particular state). It is important that there are a large number of modes
for which this number is the same. This means that with a simultaneous measurement of
various quantities that commute with each other we can do enough statistics to compute
the topology (without destroying the full information of the state, but already knowing
that the state is a rectangular tableau). We measure the topology by census-taking and
finding consensus.

This is where the size of L, M actually start mattering. At roughly the same place
where the stringy exclusion principe becomes important (at modes of order L, M) the
numbers that effectively measure the topology of the state start changing.

In the large L, M limit, the number N, becomes a continuous function of the rescaled
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parameters © = s/M (or s/L) and interpolates smoothly between neqges for z << 1
and 1 for large x. This can be interpreted as the effective number of edges at the scale
associated with x. In this sense, the measurement of topology is energy dependent. Since
the energy goes like £ ~ L? at least for the square tableau, the stringy exclusion energy

scales as L ~ v/E ), and can be effectively very high.

4.7.1 Coherent states of edge oscillators

We can now consider general classical coherent states of the b, ¢ oscillators and as
we have said above, we will think of these as new classical configurations. The coherent

state is defined by the equations
(bs — (bs)) |Cohpn) = 0 (4.150)

and similar for the ¢. These belong the small Hilbert space for sufficiently small shifts
(the tails at high occupation number will have negligible probability). The subscript LM
is to indicate that this is a coherent state relative to the b, ¢ oscillators of the LM state.

When we set out to compute the numbers N, as above, they will depend greatly on
the properties of the state we pick. The occupation number itself is not robust against
taking general coherent states. What we mean by this is that we can change it by a
large fraction (even in a lot of modes). However, consider the following operators that

are shifted by a c-number
1, = {ag) = 3280 = () = 3 (e — () (1.151)
i J
Because the b, ¢ operators shifted by a c-number still satisfy the canonical commutation
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relations (the shift is an automorphism of the algebra of b, ¢ operators), then we can
repeat the calculations we did before including these shifts.
We find that for these states the same computation that we did before holds with the

shifted oscillators. That is, we find that

1
g <|as - <as>|2>CthM = TNedges (4.152)

We can measure the number of edges if we measure the uncertainty, not the number oper-
ator itself. The expectation value of the number operator is the same as the uncertainty
if the shift vanishes, but the uncertainty is not in general the number operator.

This means that to measure neqges, we end up evaluating a non-linear function of the
wave function. This is because the shift (as) depends on the state! In a certain sense
this should not be a surprise. We already argued that the topology cannot be measured
by an operator, because all coherent states relative to the trivial vacuum (AdSs x S°) of
the chiral boson are of the same topology. But a non-linear function of the wave function
is not an operator measurement. It is something that can be computed in quantum
mechanics, and that moreover can be recovered with a set of observations on the system
with different variables that do not commute with each other: a polynomial function
involving the number operator and the expectation values of the raising and lowering
operators. Once we measure the expectation values of the field (¢(#)) we can recover the
shifts we need. Given these shifts, we can evaluate an effective number operator for the
shifted variable. This is a protocol for measuring the topology. It just cannot be done
with one single observation.

Notice also that at least in this example, even though we can measure the topology

with a few observations for low energy modes (from the UV point of view), measuring the
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values of L, M themselves requires getting to the scale of the stringy exclusion principle
(although the product LM is readily measured by the energy). This is not expected to
persist in more general circularly symmetric LLM geometries, because the corresponding
generalized effective Bogolubov transformation has coefficients that depend on L, M, N
[82] (the details of this operation are beyond the scope of the present paper). This issue
of indistinguishability of states based on simple measurements of the energy has also been
alluded to in [66, 67], but it is also important to understand that the problem persists
if we only have the expectation value of the UV fields and the energy. To reconstruct
the classical geometry we need the expectation values of all of the b, ¢ modes, not just
the @ modes. The a modes are the naive classical data needed on the boundary of AdS
to specify the classical fields associated to ¢ in the bulk. The collection of a modes is
the list of ‘single particle’ supergravity modes that can be excited. This description does
not take into account that the field ¢ is effectively multi-valued. This has been discussed
recently in the work by the authors of the present paper in [37], where it is argued that
it gives an example where bulk reconstruction from classical boundary data fails (in the
sense of [61, 62]). It is not clear at this stage if this is special to LLM states, or applicable
in more general settings (formally, it works in all cases where the states are the large N
limit of the extremal chiral ring [99]). This needs to be investigated further.

Indeed, following [67] we can consider more general operators of the low momentum

modes (of the UV theory) and we find

(alas, ...as, )i =0 (4.153)

with m > 1. This result is easily obtained by using the Bogolubov transformation and

Wicks theorem with respect to the vacuum of the b, ¢ oscillators and it’s true as long as
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s < M. What this means is that there are no obvious correlations between the low lying
modes, nor any quantum correlation that can be used to measure L, M directly without
going to high energy.

Another question that can be asked is how close this |dp,/) state is to a regular
coherent state of the free chiral boson. A rough estimate of a similar overlap to (E124)
suggests that

1
|{(Opa) AP ~ T = exp(—Mlog L) (4.154)

which is exponentially suppressed at large M, L. This means that the new classical state
is very far from any one traditional classical state. Alternatively, we can say that the
state |Jras) can only be approximated well by an exponentially large superposition of
classical states.

On taking double scaling limits in L, M, the new classical reference state is essentially
orthogonal to all other standard classical states of the chiral boson theory and should
not be thought of any longer as a Schrédinger cat state, but a classical state in its own
right. This classical state has different topology than the standard classical states and
this automatically implies that it has a different geometry. This is the sense in which
these new states represent different classical limits of the chiral free boson theory. In
particular, the existence of fluctuation fields d¢@,5¢® with a well defined action on
the small Hilbert space of the corners defines a semi-classical quantization on top of the
classical state and can be used to argue that one can do effective and unitary quantum

field theory in the background of the state |p/).
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4.7.2 Beyond classical states

If we consider a semiclassical state (the classical coherent of the b, ¢ oscillators state
with a few excitations of the b, ¢ quanta), our consensus measurement can still be used to
get to the topology. The point is that the few extra quanta can only affect a few of the
modes for these measurements. The majority will have the same value of the uncertainty
as before, and the majority vote will win.

Consider now a very different type of state: the thermal state at temperature 7" >> 1.
This is a stand-in for the typical state of high energy. A lot of the physics associated
with this state in the LLM setup has been addressed in [91]. For us, the energy per mode
is equal to T for low enough modes, up to the cutoff scale (of order T'), but the state also
satisfies (as) = 0. This means that the occupation number per mode is Ny ~ T'/s and is a
rapidly varying function with s. For us this means that the effective topology that counts
the number of edges in the geometry is varying rapidly with scale: the state should not
be thought of as a classical geometric state with a fixed topology (the topology can not
be measured and have a meaningful answer in the consensus part of the test).

We can also consider the triangular diagram of equation 131 in [91], given by tableaux

of the typical form

|R25tep> = (4155)
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with L rows. It is easy to check that there are no hooks with a length that is a multiple
3. That is, there are no hooks of length 3k for every k. So, we find that Ny, = 0 for
all k. This would suggest that the topology is that of the vacuum. However, when we

consider other modes we find that

(alas) ~ (alay) = L (4.156)

where L is the number of hooks of length 1, so again the energy per mode that is not a
multiple of three is roughly fixed, but the effective number of edges varies wildly and we
fail to find consensus. Now the number of edges is not even a smooth function for the
rescaling parameter x ~ s/L. It is only states that have few corners that are deemed
sufficiently geometrical, to the extent that one can fix their topology by checking that N;
is independent of s for all s that are small (below a suitable stringy exclusion principle
energy).

These states fail to be classical also in that any attempt to produce oscillators like
the b, ¢ oscillators fails because the naive stringy exclusion principle is very small: the
equivalent of the red corners can at most remove one or two boxes before interfering with
the addition of boxes in the anti-corners. In a sense, this is seen in that the edge of the
tableaux is rough (very jagged) rather than a straight line.

These other examples show that the geometric states |[Jpys) are essentially charac-
terized by having low, but on average essentially constant, occupation number per low
momentum (energy) mode of the UV theory. Also, the different modes must be very
correlated to each other in order to be able to find fluctuation fields like the b, ¢ systems
above that implement the required partial Bogolubov transformation from the collective

dynamics to the UV modes.
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4.7.3 Geometries with folds

Thus far, we have primarily considered only a couple classes of states: coherent states
and striped (i.e. LM) states. These are nice because we know how to write them down in
terms of oscillators and /or young tableaux, which we know how to deal with. Of course,
there are many other possible geometries in the full set of LLM states. There is a general
class that is particularly tricky, so we will touch on this class here. These are the states
that wrap in such a way that their number of edges that is a function of . For instance,

the state drawn in figure B=73.

0 27

Figure 4.6: An example of a state with a number of edges that is dependent on 6.

If one were to do a local measurement of one of these states, then one would expect to
find that the number of edges that varies with location. Here, we would like to determine
if there is a way to compute nNegges(f) from uncertainty computations. Notice that here
we do not have an obvious candidate for the state in terms of Young tableaux. Instead
we expect the state to be complicated in that basis. The reason to say so is that such
geometries also arise in the study of the ¢ = 1 matrix model [IT2] and in that case
they result from Hamiltonian evolution of more standard coherent states. But already
coherent states superpose a lot of Young tableaux, and such evolution would scramble

a lot of the phases between the different basis elements. The fact that such states exist
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point to the non-triviality of the classical limit in the ¢ = 1 matrix model.
The local commutation relation of our field operator can be computed using [ak, aﬂ =

kdy, ;. We find

[60).60)] = L2 19,50~ 0) - 0050 0) (4157)

As before with striped states, we will want to decompose our operators into pieces that

act on each edge or anti-edge. Here, we will do this as follows

Nedges () Nanti—edges (0)
dO) = > O - > ¢ (4.158)
I=0 J=0

where, as before, the tilde refers to operators that act on an anti-edge. Also note the
operator-denoting hats are dropped on the edge fields for notational convenience. We see
that unlike before, this decomposition is f-dependent. That is, the range the indices run
over depends on theta, just as the number of edges does.

It is easy to see that these subfields should obey the same local commutation relations

as the field ngb(é’) with signs that depend on if the field is at a regular edge or an anti-edge

6 0).6" )] = “C (0,6 (0 — ) — 35 (¢ — )] 8" (4159)
and
50).5' @) = - s -0 - 00 -0)8 (1160)

These signs ensure that the commutation relations of the field gE(Q) are preserved. One
way to understand this is that the coefficient of the commutation relation of the ¢ field
can be understood as the anomaly coefficient of the chiral boson. If we normalize this

coefficient to one for ¢, then we find that the ¢’ have anomaly equal to one, and the
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¢’ have anomaly minus one. The fact that there is one more ¢! than ¢’ locally is the
statement that the combined effective field theory of the ¢!, é‘] has the same anomaly as
the UV theory of ¢. In this sense, the effective field theory near our reference states has
anomaly matching between the UV representation and the collective degrees of freedom.

Now, we will call d¢ the quantum field relative to the background field. That is, we

call

0¢" =o' — (") (4.161)

and similar for gz;‘] and gg

To proceed further, we can consider breaking our field into raising and lowering oper-
ator pieces for each of the indices 0¢ = 6¢* + 6¢~ as was done in the multi-edge regular
geometry by Fourier transforms. Our problem in this case is that we do not know the
vacuum state. In the standard multi-strip geometries this is achieved by requiring that
in the translationally invariant multi-strip geometry, the Fourier modes of the operators
for the edge modes are raising/lowering operators depending on if the mode adds or sub-
tracts energy relative to the reference state, with a provision that changes the assignment
for anti-edges relative to edges. This is demonstrated for the strip geometries with the
explicit construction based on the Young diagram representation of states. Here we have
to choose a vacuum, because the multi-fold geometries are not translation invariant. We
would still want the raising/lowering operators of the field ¢ to be locally in the same
decomposition as for multi-edge states and the lowering operators of the $I , QASJ to act
trivially on the reference states.

Combing this with our edge/anti-edge decomposition, we make the approximation

that

nedges(e nantifedges(e)

)
R C)RSEES N I () N T (1) (4.162)

J=0
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where we know that the lowering operator on anti-edges adds energy, so should be grouped
with the raising operator piece. We will call this the Local Multi-Edge approximation
(LME approximation). Notice that this is a statement about raising and lowering opera-
tors relative to the state, so we have subtracted the classical value of the fields and only
included the fluctuation piece. This is important because we want to compute the un-
certainty in the measurement relative to the classical state (we did a similar step on the
multi-edge geometries when we argued that the shift by the field vevs is an automorphism
of the Weyl algebra).

Notice that the splitting into raising and lowering operators is not really local. How-
ever, it can be approximately local under some circumstances: as long as the region over
which the splitting is done is much larger than the typical wavelength of the fields con-
sidered, the approximation makes sense. This means that the vacuum is very similar to
the multi-edge setups locally on length scales that are small relative to where the folds
begin and end. The finite size corrections should depend on the separation between the
folds.

To proceed further, we start by convoluting the field operator ngS with a test function

f(6) to build a new operator

b= [ 1O 608 (4.163)

Our goal is to use these operators to estimate uncertainties and correlators with particular
choices of f. The role that f plays is to select the correct wavelengths of the modes. If
we are worried about the details where the folds are located, we can take f to be nearly
vanishing near these regions, but we will not do so here.

It will turn out that the operators given by & I3 qgg with f = e™? and g = e is just
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what we need. Notice that, in a more familiar form, this is simply
q@eimeggefm = amaL (4164)

Now, let’s try to compute the expectation value of this for a folded state, which we will

call [fold).

(fold| Gimo Pe—in- [fold) = % / df dry €™%e=*7 (fold| $(0)p(7) [fold) (4.165)

(27)
We can break this up into its raising and lowering pieces

= (er)z / d dy e"™e= ™ (fold| (¢7(0) + ¢7(0)) (67 (7) + ¢~ (7)) [fold) ~ (4.166)

Because of our choice of sign for the exponentials of f and g, if we actually write out the
raising and lowering pieces, we find that upon integration, ¢ (#) and ¢~ () will vanish,

leaving

1 . .
= 2np / df dry e™e™ (fold| ¢ (6)¢* (7) |fold) (4.167)
s
We can now expand this in terms of pieces that act on each edge and anti-edge
nantifedges(a)

(0)
)R N ()

1=0 J=0

1 im0 —iky =
(4.168)

Nanti—edges (0)

()
x ¢ (7) — ¢’~(7) | [fold)
1=0 J=0

Nedges

Here, if we zoom in on any small region in 8, we imagine that the folded state will look

like a striped state. So, locally, we expect that these operators will act on the folded
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state, just as they would on a young tableaux state, giving

Te, cs(e)
1 . , dg
= n) / df dy e™e ™ (fold| Y (67 (0)0" (7)) [fold) (4.169)
1=0
We notice now that we can write this as
1 nedges(e)
= @2 / df dye™e (fold| Yy [¢7(6). ' (7)] |fold) (4.170)
1=0

This, again, only works in this way because of the sign of the exponentials in f and g,
causing some of the terms to vanish upon integration. Others vanish because as you
zoom in the state will look like a vacuum young tableaux state. Finally, we can use the

known commutation relation, giving

Ne, ese .
dges ( )Z(27T>

1 .
= —(27T>2 /d@ d’y €Zm9e k~y <f01d| Z 2 [805 (fy — 9) — a’y(s (,Y _ 8)] 5[[ |f01d>
1=0
(4.171)

Again, remember the decomposition is location dependent, with the index I running over
each edge at each location. We see then that summing over 67/ simply gives the number

of edges at each location.

1 . . (2
= EIE /d9 dvy ™ e~ (fold| v (27T) [Nedges(7) 000 (7 — 6) — Nedges(0)050 (v — 6)] |fold)
(4.172)
Integrating by parts off the delta functions onto the exponentials gives
(m+ k) / (m—k)0
- dg ™™ edges (0 4.1
2(27) c Medges (0) (4.173)
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Recalling that the original operator was equivalent to amal, we find

27
(fold| ay,al, |fold) ~ %/{) R T () (4.174)

So, we see that these matrix elements give the Fourier transform of the number of edges.

Notice that if we had done the same computation starting with f = e~ and ¢ = ik,
everything would have followed similarly, leading to
m + k o i(m—
(fold| ajnak |fold) = %/0 df e k)enanti_edges(e) (4.175)
The LME approximation also produces the following two results:
(akal,) soia = (axam) jora = 0 (4.176)

which result from no mixing between raising and lowering operators of the same collective
fields.

As a consistency check, we get that
(fold| af ay, |fold) = ({fold| a,a}, [fold))* (4.177)

and that
(fold| a! ay|fold) = (fold| aza, |fold) (4.178)

for m # k, which follows because ngnti—cdges = Medges — 1, 50 they have the same Fourier
coefficients for the non-constant mode.
As a check of this proposal, we can evaluate it in the case of the multi-strip geometries.

We would then expect this to agree with our previous result for young tableaux states.
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Here, we would find a constant number of edges, giving

(m+ k)

YT|a,,al [YT) =

2
/ do ei(m_k)enedges = MOy, kNedges (4.179)
0

as computed previously. And similarly for the anti-edge calculation.

The upshot of the computation is that we can argue that n(6) is encoded in the
expectation values of (fold| (am,— (am))(al—(al)) [fold). These are non-trivial correlations
between the modes of the field, valid for modes m that are larger than the inverse of the
separation between the folds (measured with respect to 27). A pre-requisite for a state
to have a non-trivial topology is that n(6) # 1 someplace. This means that at least one
of these correlators (generalized uncertainties) is different than the ones in the vacuum.
If n(0) is non-constant, then some correlators with m # k must be non-vanishing.

A test to determine if a state could in principle be geometric is that since the Fourier
coefficients only depend on m — k, there has to be a large degree of consistency between
the correlations of the different modes. That is, even for semiclassical states with multi-
edges, one can build a consensus measurement of n(#): most of the modes that should be
identical (with the proper normalization dependent on m, k) and determine the consensus
measurement of the Fourier transform of n(#), but again, it is not a single operator
measurement on the Hilbert space of states that produces the result.

At this stage we do not have a clear understanding on how to incorporate the finite
size corrections. They should be small for short wavelengths. We should also expect
that there are additional small corrections to the LME approximation related to how
the transitions from one value of n to another are handled. At this stage the LME
approximation is not systematic and is used instead to set a benchmark for how such

correlations should behave. This issue needs to be studied further and is beyond the
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scope of the present paper.

Notice that eventually we also run into trouble at high frequencies, because we expect
there to be a local bound on the momentum. In the Young tableaux case this occurs when
the hooks at different corners start interfering with each other. A similar phenomenon
should appear locally at each location of 6 and should indicate a local stringy exclusion

principle.

4.8 Entanglement measurements of topology

The particular model we have studied, as a quantum mechanical theory is a free field
theory. The Hilbert space is a Fock space with a natural set of raising and lowering
operators (a set of commuting algebras), and we can think of this Fock space as having

a canonical product structure
Hiot ¥ H1 @ Ha ® -+ ® Hoo (4.180)

where the Hilbert space basis is defined by kets that have have all but finitely many
oscillators in the ground state. The Hilbert space itself is the L? completion of states
made from this basis. We use the monicker H., to indicate the infinite product for all
sufficiently large H,,. Because we have this canonical factorization structure, it is possible
to take a pure state in ‘H and find a reduced density matrix for each of the modes, p1, po
etc, or for more modes grouped together p;;, pijr etc. It is the structure under this class

of factorizations that we will try to understand for the states studied in the previous
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section. The total Hamiltonian is

H= Zalas = Z sN, (4.181)

We will aim to measure the entanglement entropies for each of these density matrices to
characterize the state. The idea is to understand the entanglement structure of the state
and to try to use that structure to measure the topology of the geometry etc. In a sense,
this is putting to flesh the idea that entanglement can be the source of geometry a la
Van Raamsdonk [[72]. It is unclear how to implement this calculation as a calculation of
entanglement entropy in gravity by a minimal surface [79]. This is mainly studying the
momentum space entanglement in the quantum field theory (in [I13] this information is
related to the Wilsonian effective action ).

Consider a state that is an energy eigenstate of the full Hamiltonian (e.g. |0),,,,
which has energy E = ML). We can decompose any such state, singling out the j*®
oscillator, to find the reduced density matrix. If we do this, we can write the state as

follows

) =& ln); @ [w,) (4.182)

where |w,) includes occupation information about all the other oscillators. We can now

use

Hp) =Y &GHn), @ lwa) =Y &un+ > kNy)[n), ® [w,) = Ey ) (4.183)

k#j

We see the unevaluated part of the Hamiltonian », ; kN, acts only on |w), . When we

dot this with ; (7|, we find that the states |w,) are different eigenstates of a Hermitian
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operator.

> kNy wa) = (Ey — ) ws) (4.184)
k#j

As such, they are orthogonal and can be made orthonormal. The reduced density matrix
for p; can be obtained from tracing with any orthonormal basis and we choose the |w),

themselves. We find then that the reduced density matrix is diagonal in the energy basis

=Y l&lPIn); 5 (nl = paln); 5 (nl (4.185)

where the p, are the probabilities to find the state |¢/) has the j*® oscillator with occu-
pation n upon a measurement of N ;. Our goal is to compute the coefficients 1 > p,, > 0,

and therefore the entropy

si=—Y palogp, (4.186)

for each mode j.
We will start by considering the state |A) , for simplicity. The idea is that we can

compute quantities like

W(AlalFak|A), =1 (4.187)

if k < n. Otherwise it vanishes. This also can equivalently be written as a}*'|A), =0
because there are no states with negative energy. This in particular implies that py = 0
for £ > n so we only have to determine finitely many of the pg. This results trivially
from applying the Murnaghan-Nakayama rule in operator form repeatedly.

Because this number is only made of expectation values of operators that act on H;,
the complete information is encoded in the density matrix p;. This equation can be

written as

tr(pral®ak) =1 (4.188)
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One can easily evaluate the matrix elements of the operator in the number basis

, Y
al*af |j) = G=h) 17) (4.189)
The equation (E-I88) reads
Y =1 (4.190)
pr A Vil

for all 0 < k < n and together with p; = 0 for 7 > n is a complete linear system so all
of the p; can be determined. The first of these equations is tr(p;) = 1. The second one
is <]\71) = 1. We can preform the same computation for the other modes, say the j'.

Computing p; leads to
[n/k]
Y b 1/4* (4.191)
Ll - k)
1=0

which can be solved to give us the probabilities, pl(j ) (the probability for the j** oscillator
to have occupation ).

Now, let us consider |[Jz,,) states. Again, the simplest way to understand reduced
density matrices starts by understanding that the density matrices p; are diagonal in the
occupation number basis. So, our job is to compute

(al*a®) ar = tr(pialtal) (4.192)

and to use these equations to compute the elements of p;. It will prove helpful to use

our partial Bogoliubov transformation (E132). From
a; = b + b — T (4.193)

where, recall that each piece now acts on a particular edge or anti-edge. The computations
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can be performed for small enough k (below the stringy exclusion principle) by using Wick

contractions of the ¢ oscillators only
k k
(@l abyoar = 0 (0] () () 10y, (4.194)

where we explicitly write the LM state as the vacuum state for the bg»]) and cg»‘]) oscillators.

This can be computed and gives

k k
e (0] (c§1>> (cf”) 0, , = kIj* (4.195)

for small enough k. At larger k eventually we find that acting with too many a; kills the
state, and that generically the equation (E-IUH) is an upper bound for the quantities we

want. For the case of more edges, we get a similar answer

Tedges k Manti—edges k
o(E) (ST ot e 0

1=0 J=0
This is because now there are nanti—edges ¢ fields. We write this set of equations as

Nanti—edges 4

J k
E : . = kInk . 4.197
e~ pj (j . k)' nantl—edges ( )

Notice, we have the same equation for each oscillator. This can be seen easily from
writing it in terms of canonical normalization oscillators, rather than oscillators with
the field theory normalization that was computed in equation (E=38), and this is exact
below the stringy exclusion principle. After the stringy exclusion principle is crossed we
do not understand sufficiently well how the values on the right hand side taper off and

eventually vanish.

168



Superposition induced topology changes in quantum gravity Chapter 4

This suggests that a good approximation to the entropies can be had if we don’t
impose the stringy exclusion principle at all, assuming that for sufficiently high values of
k the elements of the density matrix are already sufficiently suppressed that their con-
tribution to the entanglement entropy is negligible when we make them slightly smaller.

To solve (ET91) when we don’t have bounds, we consider a (thermal) partition func-
tion given by

Zlz] = ixj (4.198)

where we are saying p; < 7. Consider acting with z"9¥ on Z[z]. We get

AL = Zxkj(j —1)... -kt F = Z G i!k)!xﬂ' (4.199)

which is of the form we want. To normalize the answer, we should divide by the sum of

the non-normalized p and we get that the following should be true

J! -
N b=y = 20 2] = Ml (4.200)
]:

with NV the normalization. Now, the sums are straightforward to compute, and give

Zx) b0k Z[x] = (1 — x)xkk!ﬁ = k! (1 f x)k (4.201)

so that the equations are solved if

Nanti—edges — % (4202)
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or equivalently

r = Nanti—edges (4203>
1+ Nanti—edges

We should take this to mean that the moments of the density matrix p; are identical to
those of a thermal density matrix for all low enough moments. This means that the two
density matrices should be very similar. In the thermal density matrix the large p; are
exponentially suppressed. Indeed, the thermal density matrix is the one that maximizes
the entropy if we fix the number operator (N ), so at worst we get an upper bound for
the entanglement entropy mode per mode.

Let us try to explain this. At first sight, this seems strange. The reason why having an
approximately thermal density matrix is strange is that the state we started with [dp /)
has a supergravity dual that is free from horizons. However, notice that the method of
computing the moments based on (A-32) starts from a partial Bogolubov transformation

where three modes b2 and ¢! are mixed. We can find the other two linear combination

of modes that gives rise to a full Bogolubov transformation. Use for example

b + oY
V2

dh= =00 ), el = Vad - <

NG (4.204)

We can compute the moments of the distribution in two different ways. In one, we use
the oscillator basis b, ¢ and the vacuum |0),. to get the answer. In the other way, we
integrate out the fields e, f in the vacuum |0),. and compute a density matrix for the a
modes directly. This Bogolubov transformation generically produces a squeezed state,
and integrating the d, e modes gives rise to a Gaussian density matrix 8. This Gaussian

density matrix is not pure, but thermal, as is typical in gravitational computations [B0].

3This is explained for example in [[14] and references therein, where this statement follows from a
simple generalization of eq. 40, and see also appendix B
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Notice that this density matrix is not computed directly in the full Hilbert space H, but

is rather computed in the small (nearby) Hilbert space from equation (E—134)
Hnearby = Hblue & ngeen ® Hred (4205>

which is readily generalized to the other more general multi-edge solutions.

What is interesting is that the factorization of the full Hilbert space induces a factor-
ization in the nearby Hilbert space. This is because the algebra of observables af, a acts
simply on Hpeany. That is, the operators do not take the states out of Hyearhy When we
use simple observables made of few such a below the stringy exclusion principle.

Indeed, this factorization structure and the corresponding quasi-thermal structure
of the state persists even when we consider coherent states of the b, ¢ modes. These
can be obtained by a shift in the algebra of the b, ¢ fields. This is an automorphism of
the algebra. Similarly, the answer is simple in terms of the shifted modes a;, — (as) =
> b — <bg)) - (cgi)T - (aff“)) that appeared in equation (EI51) and similar for the d, e
modes. Integrating out the d,e modes or the shifted d, e modes gives the same result.
The density matrix for the shifted a modes will still be Gaussian, and the entanglement
entropy of p; does not change: it is independent of the choice of basis in which we perform
the computations. This entropy will only depend on the expectation value of the (shifted)
occupation number. Since this will be roughly the same for all modes below the stringy

exclusion principle, we find that after a straightforward computation

§; = (nedges 1Og(nedges)) - nanti—edges 10g<nanti—edges) (4206)

and we can measure neqges Dy consensus of the entanglement entropies of the different

modes. This is not too different from the analysis in the previous section.
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An additional interesting fact we observe is that in the small Hilbert space, the differ-
ent a modes arise from integrating out different d, e modes. The density matrices p;;, pijk
etc. are factorized! This means that there is no mutual information between the different
modes a; for sufficiently small s. One expresses this by saying that there is no entan-
glement between the modes as. The entanglement occurs between these low-momentum
modes and very high momentum modes (at or beyond the stringy exclusion principle).
We can say that these geometries arise from a special kind of UV-IR entanglement, but
that there is no IR-IR entanglement contributing to the geometry.

Indeed, to the naive classical holographic observer that can only measure simple
combinations of the low a modes, the information of the d, e modes is almost completely
hidden (except for the total energy and that they act to purify the state). This suggests
that for these backgrounds the reconstruction procedure [61, 62] will fail to construct
excitations of the d, e modes, which are clearly contributing to bulk fields of supergravity
modes. The precise way in which this could happen in these geometries is very interesting
but is also beyond the scope of the present paper. A partial answer has been discussed
n [37].

Another interesting calculation to do is to understand how big an overlap between a
state like |0pas) and a general coherent state of the free field theory can be. The best
way to estimate this is to realize that the mode per mode entropy bounds how much
overlap there is mode per mode. As coherent states are factorized between the modes,

we get rather easily that
L
| (Opar) Coh|* << exp(— Z si) ~ exp(—Lsy) (4.207)
=1

which is exponentially suppressed in the dynamically generated cutoff. This means that
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when we think of the states |J7y;) and other multi-edge geometries they are always an
exponentially large superposition of coherent states around the trivial geometry. This is

important in other setups with black holes [10].

4.8.1 Entanglement measurements of Geometries with folds

We can do a similar analysis of the entanglement entropy, mode per mode, for the
geometries with folds. On a first pass, because of the LME approximation, for a single

mode we find that the uncertainty of each mode is given by

k

T om

2w
/ n(0)dl = kng, (4.208)
0

with the average number of edges denoted by ng,. Moreover we have that ((a} —(al))?) =
0.

The state for mode k results from a Bogolubov transformation of the collective modes
with a shift. Integrating out the 'orthogonal” modes, the result is a regular thermal state
for the shifted mode k. Such a thermal state is completely determined by the n,,. The

entanglement entropy of such a mode is
Sk = (Ngy) 10g(nay) — (Naw — 1) log(ng, — 1) (4.209)

so again, mode per mode, the entanglement entropy of a single mode is constant and
measures the average number of edges over #. This again makes it possible to measure
Ngy Dy a consensus measurement on semiclassical states (those that differ from a folded
geometry by a finite number of collective excitations).

Now, we also find that the LME approximation implies that there are non-trivial
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correlations between the different modes. Therefore the density matrix does not factorize
anymore. This implies that there is mutual information between the different collections
of modes that one can produce. This is determined uniquely by the Fourier transform of
n(). Studying the detailed structure information of all of these correlations is beyond
the scope of the present paper.

We should note that as is usual with entanglement entropy (mode per mode) and mu-
tual information between modes, one can do unitary transformations on each of the sub-
factors without changing the answer. A particularly interesting unitary is exp(iaala,/s),
which rotates the (shifted) s oscillator by a phase as. These unitaries preserve the en-

tanglement entropy mode per mode, but they modify the correlators as follows
(amal) — (amal) exp(i(ay — o)) (4.210)

etc. Now the phase of the correlation (a,al) should match the phase of (@ .a), )
but generically these unitaries do not do that, however, the mutual information of the
factorization is not changed. This means that a simple unitary operator destroys the
‘uncertainty measurement’ of geometry without changing the entanglement entropy mea-
surement. This indicates that the entanglement entropy measurement of topology is much
weaker than the uncertainty measurement of topology: states that are (clearly) non ge-
ometric would pass the entanglement entropy consensus measurement of topology, but
not the uncertainty measurement tests.

Notice also that if n,, = 0, then the state is a coherent state: a minimum uncertainty
packet in each of the Hilbert spaces and the entropy for each sub-Hilbert space for a mode
k or any collection of them is zero. In general this implies that the other correlators should

vanish. This means that there are inequalities between the generalized correlators that
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need to be satisfied. Violations of these inequalities should in general lead to ‘negative
probabilities’: violations of unitarity. Some examples of such violations can be understood
in generalized half-BPS solutions of type IIB supergravity that have closed time-like

curves [IT5, I16]. Studying these inequalities would also be very interesting, but again,

this is beyond the scope of the present article.

4.9 Discussion

We have discussed topology changes in the set of LLM geometries and their dual
realization. We focused on a particular simple limit where the full mini-superspace of
half BPS geometries is quantum mechanically given by a free theory: the free chiral
boson.

We found that since the coherent states of the free chiral boson are overcomplete,
any state in the quantum theory can be written as a superposition of this class of states.
These coherent states all have the same ‘trivial topology’ as the vacuum. It is curious that
one can construct states with different topology (also known as bubbling solutions) just
by superposing states with a trivial topology, and the new topologically distinct states
are macroscopically very different from any of the states that we are superposing. The
overlaps between the new state and the elements of the overcomplete basis of coherent
states are all exponentially suppressed. We state this by saying that topology changes can
be triggered by superposition. This is a superposition of an exponentially large number
of states, not a naive Schodinger cat state that superposes just two distinct geometries.

A simple, yet deep, consequence of this fact is that topology can not be measured
by a single operator measurement. That is, the Hilbert space of states does not admit

an orthogonal decomposition into different topological types. So if topology cannot be
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measured by an operator, it seems reasonable that finer geometric information might
suffer the same fate. This puts into question how (a seemingly unitary) effective field
theory of gravity can be compatible with this non-operator property.

To understand the physics of our example, it became important to understand the
physical states in more than one basis of vectors for the Hilbert space of states. The set of
wave functions can be written either in an oscillator basis for the chiral modes, or in terms
of a Young Tableaux basis (the free fermion realization of matrix models). We carefully
developed the dictionary between them, which is a generalized Fourier transform. An
important result is that the set of raising and lowering operators of the free chiral boson
act simply on the Young tableaux basis. We were able to show that this action encodes
the Murnaghan-Nakayama rule for evaluating characters of the symmetric group, and
the sign that is needed for this rule is supplied by Fermi statistics.

Armed with these tools we were able to show that topology changes are characterized
by two important properties. First, a local field in the free field chiral boson becomes

effectively multivalued so that in the simplest case

o(0) = ¢'(0) + ¢*(0) — '(0) (4.211)

The total field, which in our case can be identified with the charge current density,
can be written effectively as contributions from edges of the droplet distribution. This
decomposition is valid only for nearby states to a reference state with a different topology
from the vacuum. The important result for us is that the fields ¢! and ¢ on the subspace
of nearby states states are each given by a chiral free boson, and they all commute with
each other. The ¢ field has negative energy states rather than positive energy. When

we mode expand, this decomposition is a partial Bogolubov transformation. This result
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puts into firmer footing observations that have been made in [82], where we can also
extend the ideas straightforwardly to fairly general coherent states.

On the face of it, this dynamical generation of new degrees of freedom is a violation
of the Zamolodchikov c-theorem. A theory with central charge ¢ =1 in the UV flows to
a theory which is seemingly of central charge ¢ = 3 in the IR. It is better to write this
central charge as follows c;g = (2, 1), where we are indicating by the decomposition the
fact that the first two act to increase the energy, and the other set of oscillators acts to
decrease the energy. This is the signature of the energy as a quadratic form, similarly as
is done with spacetime dimensions. It is the fact that we can lower the energy around
the new vacuum that allows the violation of the c-theorem: the vacuum of the new state
is not stable. This property essentially arises from trying to do effective field theory in
a very special non-vacuum state. Notice that cyy = 2 — 1, so something similar to an
index is preserved in the flow, indeed we found that this is the chiral anomaly of the
system. The positive energy bosons carry anomaly one, and the negative energy bosons
carry anomaly (—1).

The second property of the solutions with new topology is that they are characterized
by having low uncertainty mode per mode in the mode expansion of the field ¢. In
this sense, the states can be said to be classical. We found that this uncertainty can
be used as an order parameter to measure the topology. One can also similarly use
the entanglement entropy of these modes to characterize the topology. The type of
measurement that gets the topology is either an uncertainty measurement or an entropy
measurement. Numerically, this results from measuring several quantum observables
that don’t commute with each other. We use this information to form an algebraic
combination of the measurements that can be used to measure the topology. This ends

up being a non-linear measurement on the wave functions. To offset the possibility
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that one or a few of the new modes is excited in a non-classical state, the non-linear
measurement needs to be performed on a large number of modes. The majority rule
decides the topology by what we have termed a consensus measurement.

It is clear that this can be generalized beyond the simple stripe geometries we con-
sider for more intricate bubbles. The multi-valuedness should then be thought of on a
local basis in the coordinate 6, and the partial Bogolubov transformation should also be
thought of in terms of a local expansion. We did a partial analysis of this setup with
an approximation that describes the state as a locally multi-edge geometry. we observed
that within this approximation one could find that generalized correlators encoded the
fourier transform of the number of edges.

Also, the partial Bogolubov transformation makes it clear that the set of nearby states
is somewhat compatible with effective field theory. The effective quantum fields are the
new collective modes ¢/, ¢”. They exist on a neighborhood of the reference state. These
collective fields do not stretch all the way to the UV. They have an effective cutoff given
by the stringy exclusion principle, which depends on the details of the reference state.
Because these modes only exist relative to some reference background they should be
thought of as being background dependent. This seems to get around the problem of
geometry being quantized by operators in a semiclassical approximation: the operators
that are needed to do so are state dependent in a way that depends weakly on the state,

which is not too different from the background field method.

To bubble or not to bubble

Given that we can trigger changes in topology by superposition and that we can get
all possible topologies this way, we can argue that thinking of a quantum gravity theory

as a sum (or path integral) over all topologies is at best ambiguous.
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There are cases where this sum over topologies is absolutely correct. For example, in
the topological string one can sum over topologies associated with crystal melting [I17].
In that case, each shape of the melted crystal is a different topology. The limit shape
of the crystal is the geometry of the string at large distances. The partition function
depends on a probe brane and there is a parameter a that describes how far the probe
brane is from the crystal. At large a, the molten crystal can be ignored. For a ~ 1 one
gets the quantum corrected stringy geometry, and for a ~ g, one is in the quantum foam
regime.

We can form an analogy with this setup. The basis of Young tableaux states is a
complete basis of states. Each of these is topologically distinct in the naive classical
supergravity approximation. The reason for this is that even though one might have the
same spacetime topology for two configurations (same number of disks), one should also
count the quantized flux through each cycle as topological data (this can not be deformed
by small amounts, but only by integers, due to the Dirac quantization condition). In this
basis, any state is in principle a superposition of an infinite number of distinct topologies
that can be measured. This is not a complete set of all the possible topologies, only
those that can be realized by rotationally invariant configurations. One can expect that
for sufficiently classical states, like those that are close to our reference states, one can
define an average (coarse-grained) topology that only counts the big corners, but not
the small indentations of corners (these are small semiclassical excitations around the
reference state). The distinction between geometry and excitations about a geometry
depends on energy (this replaces the parameter a of the topological string). Our consensus
measurement of topology necessitates a discussion of where we set the stringy exclusion
principle. Unless we already know the state, this is not known a priori. Indeed, in our

discussion in this paper, this is usually state dependent. When we try to go to lower
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energies for the probes, the geometry appears to bubble more, while when we go to much
higher energies than the stringy exclusion principle dictates, the topology looks trivial.
In our case, this is tied to how entangled the different long wavelength modes of the
oscillators are to the UV degrees of freedom in the free chiral boson. We can not discuss
this entanglement without first defining what we mean by long wavelength versus short
wavelength.

On the other hand, we can also define the theory entirely in terms of classical coherent
states of the trivial topology as we argued in this paper. This is a different partition of
unity (a different choice of basis states for the Hilbert space). In this case, the definition
of topology depends on the precise superposition of states that we take. More precisely,
it is contingent on our ability to find a reasonable nearby space of excitations to a given
reference state that can be associated to small deformations of a classical geometry. This
is a background dependent formulation of the dynamics, similar to how one treats the
background field method. What is curious is that the existence of the new topologies
implies that there is more than one classical limit of the free chiral boson field theory.
This is to be understood in a double scaling limit.

In a certain sense, what we should be doing instead is to argue that the topology
is not meaningful on its own: all versions of topology that we have discussed so far
should be allowed at the same time, but most of them will not be useful descriptions
of the system. This is very familiar when we think about dualities in field theory and
string theory. Different duality frames are more or less useful depending on the size of
particular cycles, or in the strength of certain coupling constants. The prescription that
is more classical and permits us to get results with the least effort should be the preferred
duality frame. In this sense, we should argue that at least some aspects of topology in

the study of bubbling solutions correspond to a choice of duality frame. The frame that
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most easily describes a configuration should be preferred. When we move away from
simple configurations maybe none of the descriptions is useful on their own, but there we
have a picture of a duality web where as we move between configurations, we get natural
transitions in the topology of spacetime without any apparent singularity.

What is obvious is that if we want to have it both ways, we are double counting.
This has implications for the fuzzball proposal [TI8] (see also [I19]) and the counting of
states in those geometries. It might be the case that in these other setups all different
geometries and topologies are superpositions of more basic coherent states with a fixed
topology. Understanding this intriguing possibility is beyond the scope of the present

work.

Decoding the hologram

A natural question to ask is to what extent, given a state with a different topology
than the vacuum of AdSsx S®, is one able to recover the geometry from naive holographic
data on the boundary. The techniques that usually permit one to do so are elaborations
on the Fefferaman-Graham expansion of the metric, extended to other fields [4]. A
hologram would give us the solutions for the vacuum expectation values of single trace
operators in the boundary, and that data should be useable to decipher the geometry of
the solution.

As noticed in [67], this data seems to be insufficient to understand the geometry of
circularly symmetric solutions of supergravity, as there is some ambiguity in how to do
that. For us, this data is given by the expectation values of the modes of the chiral
boson. For standard coherent states around the vacuum topology, this data is sufficient
to reconstruct the coherent state.

For solutions around a geometric circularly symmetric solution with non-trivial topol-
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ogy, it was first noticed in [82] that the excitations of the mode expansion of the ”trace”
modes on the UV theory (the free chiral boson) decompose into linear combinations of
modes at each edge. In this paper, we have proven this result and argued that the partial
Boguliubov transformation can be completed to a full Boguliubov transformation. We
have also seen that the long wavelength modes of the mode expansion of the chiral boson
of the UV theory act simply on these geometric states, and only a subset of the nearby
Hilbert space is accessible by these actions. This is a general property of having a partial
Boguliubov transformation. If we restore factors of N, and we have a solution with many
annuli and energy of order N2, the wavelength of the modes of the chiral boson become
dependent at energies of order N (this is the stringy exclusion principle scale). More
precisely, they fail to be planar at energies of order v N (see for example [I20]), which
are still larger than the naive Planck scale N/%.

A naive low energy observer would probe wavelengths up to the order of the Planck
scale. When extended to the boundary, the modes would all have long wavelengths
with respect to the stringy exclusion principle. The other modes of the Boguliubov
transformation become invisible and have to be treated as being traced over. We cannot
decode the hologram with the naive boundary data. This is true even if we have measured
the approximate radii of the circular droplets. In essence, we only measure a linear
combination of the geometric modes, and the other linear combinations are not accessible
to the holographic observer at infinity. The modes that are visible are effectively in a
generalized thermal state mode per mode and they are very entangled with the UV
modes.

This suggests that the reconstruction of local fields in the bulk from the boundary,
a la [B1], is generically suspect in a low energy approximation for states with non-trivial

topologies. This setup ignores the information of the transplanckian modes and the
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underlying UV theory, which at this scale is not really geometric in the classical sense
any longer. If one acts with these types of mode operators of very high energy, one
disturbs the underlying geometry by either adding a D-brane or making excitations that
make the droplets meet with each other. A fluctuation this large is non-local any longer.

Also, entanglement by itself is a very coarse description of the state and is not neces-
sarily very useful. Although we have been able to realize horizon free geometries, where
measuring the momentum space entanglement can be used as an order parameter to de-
scribe the topology, and we realize precisely some ideas in [72] in a different context, the
precise set of states for which we get such a geometry are not uniquely determined by
this information. It is the construction of the modes that describe the fluctuations to the

nearby states to a reference state that actually represent the full details of the physics.

Final remarks

One of the main conclusions of this paper is that even though we have a complete
Hilbert space of states in which quantum mechanics is valid, the measurement of topology
is not the result of an operator measurement. If topology is measured classically by
integrating out a density made of polynomials of the curvature of the metric over the
manifold, as we expect for gauge invariant operators in gravity, the fact that the topology
cannot be measured by an operator seems to indicate that the metric (even modulo
gauge invariance issues) is also not described by an operator. In our construction, the
metric fluctuations around a sufficiently classical state exist relative to that state, but
the construction of such operators does not extend to the full phase space of the theory.
The generic state is non-geometric, but the semiclassical analysis is valid where it should
be. This seems to be one of the properties that we need in order to claim that spacetime

is emergent and not fundamental.
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The holographic modes at infinity always exists. In our case, they are the mode
expansion of the free chiral boson. These (boundary) modes give an approximation to
something that looks geometric in a Fefferman-Graham expansion. However, the modes
in the interior do not necessarily exist as operators. They might only be constructible
around particular classical configurations. The proposal we have for this phenomenon is
inherently non-linear: the modes that may exists in a superposition of states, do not exist
in any one of the states that we are superposing. This emergence of modes depends on the
entanglement of the soft modes with the UV and with each other. A non-linear proposal
for quantum mechanics defining the physics inside of the horizon has been put forward
by Papadodimas and Raju [I21]). This proposal depends crucially on this entanglement,
and essentially only on this entanglement (the state is pure but typical, so the details
of the state are fairly random). For us, the entanglement of the modes is clearly not
enough. The modes that we build are all outside the horizon and their existence depends

on the state being just right.
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Chapter 5

Code Subspaces for LLM

Geometries

5.1 Introduction

The existence of gauge/gravity dualities [3, 4, 8] is remarkable and with each passing
day we discover a new piece to their puzzle. Part of why these theories are so mysterious
is because they often have non-intuitive and surprising properties that seem to lead to
paradoxes. One of these was recently resolved by Almheiri, Dong, and Harlow [I27].
The puzzle they addressed was that a local field at a point in the bulk should have
vanishing commutators with fields that are spatially separated from them, including the
boundary. A point in the center of global AdS would be spatially separated from the
boundary at ¢ = 0 (they belong to the same Cauchy slice) and would therefore have
to commute with all local operator insertions on the boundary. Such a field should act
trivially on the Hilbert space of states, and yet, be encoded as a non-trivial operator on

the boundary. That is, bulk information seemed to be non-localized in the boundary
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theory in an unexpected way. Their resolution was that though this might seem strange,
it is not an entirely new phenomenon and in fact has a very nice interpretation in terms
of quantum information theory. The idea is that the holographic correspondence acts
as a quantum error correcting code. The commutation properties that are required are
true in a subspace of the Hilbert space called the code subspace. It is this restriction
to the code subspace that makes it possible to have the vanishing commutators in an
effective sense, rather than as a statement on the full Hilbert space of states, where such
properties are forbidden by quantum field theory theorems. Since their original work,
there has been much progress in reinterpreting gauge/gravity dualities as holographic
codes (for instance [123, 124, 125]). In this paper, we will push the idea further. We
find that the language of code subspaces is a natural home for effective field theory and
further, this can be seen explicitly within the framework of the LLM geometries [63].

In standard quantum information theory, if one wants to encode a message, one
utilizes a Hilbert space of states larger than is necessary. One then constrains allowed
messages to a particular subspace, the code subspace. For instance, one might use a few
qubits to send a one qubit message, this provides a larger Hilbert space to work with and
allows the messenger to choose whatever subspace they like to work within. In [T22], the
authors defined a set of code subspaces in AdS/CFT to be those formed as the linear

span of

1), ¢i(z) [€), i(xi)@;(x2) ) ... (5.1)

where the ¢;(x) make up some finite set of local bulk operators, which can be realized in
the CFT with the Hamilton-Kabat-Lifschitz-Lowe reconstruction of bulk operators [61].

Almbheiry et al. take |Q) to be the ground state of the system (though they say one
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could also consider other semiclassical background states, as we will do explicitly). The
quantum error correcting properties of the gauge/gravity duality code make it possible
to have a realization of the fields ¢ in the code subspace that commute with operators
on the boundary, as long as one restricts the evaluation to states that belong to the code
subspace.

In this work, we start by discussing effective field theory around a given classical
background. We consider the Hilbert space accessible to an experimenter, which can be
built by acting on the background state with some set of effective fields, in a way similar
to equation (B0). That is, we want to construct a space similar to the code subspace of
vacuum AdS, within the confines of effective field theory and show that this has a lot of
desirable properties for addressing more general questions of quantum gravity. Because
an experimenter will not have access to infinite energy, they cannot act with all fields
in the theory, but rather they are constrained by some cutoff (both in momentum and
occupation number). It will turn out that the details of what cutoff is appropriate for
each background will depend on the particular background under consideration. That
is, the formulation of effective field theory is state dependent in relation to the reference
state that we choose to expand from. We observe that the space built in this way exactly
matches the structure of the code subspace defined in [22] and we expand on this fact.
This is also very similar to how the Hilbert space of nearby states is built around black
hole states in the work of Papadodimas and Raju [I21, 126], by starting with a reference
state. We discuss this philosophy in section b2.

In the rest of the paper, we deal specifically with the example of the LLM Geometries,
which are dual to the half-BPS states of N' = 4 SYM. This is a very useful setup to work
with as it is a place where we understand both the geometric description [63] and the

field theory Hilbert space well [64, 65]. In fact, most of the exact computations turn

187



Code Subspaces for LLM Geometries Chapter 5

out to be combinatorial in nature [38] (see also [T27]). In section B33, we build some
necessary technology to do computations. We show that there are two convenient bases
for describing the set of half-BPS states: one that can be classified by Young diagrams
and one built by taking traces of powers of a matrix Z. In this section, we provide the
details of these two bases, describing how to go between them and computing their inner
products. These will be the tools we need both for the remainder of this work, and to
help generalize some constructions that were carried out in our previous work [38] for
finite N.

The states are dual to the set of half-BPS states in type IIB supergravity: the LLM
geometries. Fach geometry in this set can be classified by a black and white coloring of
the plane. We consider the set of concentric ring configurations, because they are dual
to states that are simple to describe in terms of Young diagrams [63, 90]. Although in
principle other such geometries could be analyzed, the control of the states in the field
theory dual is poor and relies on approximations. With the concentric configurations,
we can make exact statements in the Hilbert space of states. These states dual to
concentric rings will be the background states upon which we build our code subspaces.
The nearby states that make up the subspace are built by acting with effective gravity
field perturbations on each edge of the rings, which causes them to deform. With a bit
of work, we are able to write down these fields explicitly so that we can build the states
as in () in a way that is suitable for our purposes. This is the content of section B4.

By only considering the geometric description, the aforementioned cutoffs are not
immediately clear and although in principle one should be able to derive them, it takes a
considerable amount of effort. So, instead, in section b3, we go back to the representation
of the states in terms of Young diagrams, where things become clearer. The well behaved

concentric ring configurations correspond to diagrams with few corners. The effective
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fields are build out of modes that act only in a particular corner of the diagram and one
can reproduce directly the supergravity analysis entirely with combinatorial techniques.
These techniques have been developed in various papers for different settings (see [I20,
2, 106, BR, [27] and references therein).

In section b8, we undertake the problem of understanding the cutoff. The cutoff
is provided by constraining the excitations so that they do not simultaneously affect
multiple corners of the diagram and by requiring that they are sufficiently planar. This
corresponds to each field only acting on a single edge of the concentric rings and having
small energy, although the energy of an individual quantum can be much larger than the
Planck scale”. We can write these excitations in terms of modes that act in a particular
corner of the Young diagram and from these build a Fock space representation.

In section BZ1 we expand on some of our previous work [B8, 0], where we compute
the topology of the states within a given code subspace. Previously, we were in the strict
N — oo limit, but here we go beyond that, taking N to be large, but finite. As before, we
find that we can extract the topological information from entanglement and uncertainty
calculations, though it requires more work: a number can not be guessed any longer from
a single mode, but it requires many modes instead. Here we also find a close connection
with the recent work of Balasubramanian, et. al. [I28], who showed the existence of
entanglement shadows in the LLM geometries. We find that similarly, the extrapolate
dictionary seems to stop at the outermost anti-edge of the concentric ring diagrams. This
is the second edge starting from the outside going inward in the radial direction of the
LLM plane and it is the same place where the entanglement shadow begins.

Finally, in section b8 we consider the overlap that can occur between different code

subspaces. We look specifically at an example where you start with two different back-

IThe energy of an individual quantum can scale like N'/2 rather than N'/4
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ground states and add particular excitations to each, which results in having prepared
two identical states from the viewpoint of Young diagrams, but whose construction indi-
cates that they should be assigned different metric operators. We discuss the ambiguities
that arise because of this fact, which in particular obscures one’s ability to write down a

globally well defined metric operator.

5.2 Code subspaces and effective field theory

In this section, we will discuss doing effective field theory around some classical back-
ground. We will consider the constraints put on an experimenter in this set-up and will
show how what we end up with matches previous definitions of code subspaces.

Let us start by assuming we are given a quantum state |B) that is dual to a clas-
sical background for a field or gravitational theory. Eventually we will analyze a field
theory with a gravitational dual, using the gauge/gravity duality. Here, the state |B)
will correspond to a classical background in the bulk, rather than the boundary theory.
Though |B) is a classical background, we need to be careful, because in the quantum
theory the quantum fluctuations can never be zero. Instead, we should think of |B) as a
coherent state, where (effective) quantum fields have minimal uncertainty relative to the
background. We also want to be careful because we will often have a cutoff to account
for. For instance, if |B) is a ground state for a gapped system, |0), the cutoff might
be in the energy available to us. This will restrict us in two different ways. First, it
will require that the only modes that can be excited are long wavelength fluctuations
(of small enough energy) and further, we will be restricted in the occupation number of
any one such mode, so that the energy cutoff also imposes an amplitude cutoff for any

one mode. Generally, this could be configuration dependent if for example, the gap for
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some additional excitation depends on a vacuum expectation value. This is common in
supersymmetric field theories when we have a moduli space of vacua.

In analyzing this system, we might want to understand what a Hilbert space of nearby
states to the background | B) would look like. The state | B) belongs to a Hilbert space of
states H that defines the full quantum theory. It is tempting to consider the set of states
|) € H such that they differ from |B) by a small amount, € inside the Hilbert space
| [#)) — |B) | < e. There are many problems with this prescription, and we will enumerate
a few of them in what follows. First, the set of states [¢) is not a linear subspace of H:
we cannot do quantum mechanics restricted to the nearby states. Secondly, the set of
such states |1)) makes no mention of the cutoff nor to the effective fields.

We want to define the set of nearby states to be those that can be generated from
|B) by the action of the effective fields, and so that it is also a linear space. That
is, we want the set of nearby states to be a Hilbert space in its own right: a Hilbert
space where an experimenter can act and make observations, and in principle make
predictions for those observations as well, within the constraints that would be imposed
by the apparatus and how it acts in effective field theory. Such sub-Hilbert spaces can be
thought of as code subspaces: the set of observables of the experimenter is constrained
to lie in the code subspace. At the technical level, the idea will be to first decompose the
fields ¢;(x) = (¢i(2)) B+ D_, fi,,\(x)az)\ + 25 fia(x)by into raising/lowering operators of
approximate wavelength \. We need to include the b modes to allow for the possibility
that the field ¢; is complex, otherwise we have b ~ af. For brevity, we will take the
field to be real. We also need to require that the a,a’ approximately satisfy the Weyl
commutation relations. To impose a cutoff, we state that the set of \ is restricted. We
also impose that |B) is annihilated by the lowering operators a. This second condition

is what defines the state operationally to be effectively a coherent state.
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We make use of the modes of the fields ¢;(z) acting on |B) to generate new states

(i, Ar), - (i Ae); BY = [ [ al o, 1B) (5.2)
for some such collection of pairs (i;,A;). We can think of this state as the background
state |B) with some finite number of cutoff respecting excitations turned on. We will
call our cutoff A. Usually, we interpret A as a UV cutoff in effective field theory around
a ground state, so that energies (frequencies) w of individual excitations are bounded
above by w < A. Here, we are constrained so that our set of excitations collectively stay
below A. The cutoff A should not be in general thought of as simply a fixed shortest
wavelength, nor as just an upper bound on the energy. It can also be dependent on
position and on the differing modes. In the work [122], the cutoff is implicit in the sense
that we do not form a black hole. In the work of Papadodimas and Raju, the cutoff is
described by not having too many actions on the reference state [126]. This is again an

implicit cutoff.

We will call the Hilbert space

Hpa = Span(|(iy, M), oo-(ix, An); B) {1, M), oo (is M)} < A) (5.3)

the code subspace associated with the background |B) and the cutoff A. This will be
sometimes abbreviated to Heoge. This is in accordance with the definition of code sub-
space found in the work of Almheiry, Dong, Harlow [I22] on quantum error correction
and it also matches the effective description of states generated from a reference black
hole state in the work of Papadodimas and Raju [T26, I08]. This also matches the defi-

nition of the nearby Hilbert space of states in our previous work [38]. The advantage of
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using the language of code subspaces is that it makes three items automatic. First, it is
a Hilbert space, so that we can do quantum mechanics inside Hcoqe. Secondly, effective
fields act simply on it. Finally, there is an explicit cutoff A, so this does not need to be
repeated again and again: it is part of the definition of the code subspace itself.

If the state |B) is an excited state (not a ground state), one can in principle find
many states that have a similar energy to |B) but that are not generated in this way.
One should think of the code subspace Hp as the set of states that is accessible to
an experimenter who can control the excitations of the fields ¢; below the cutoff. In
this sense, this is the natural home for effective field theory. As an experimenter builds
a better experiment, the cutoff might change and more states can become available.
However, the effective field theory description might break down. This is not a failure
of quantum mechanics, but of the simplified description of the Hilbert space of available
states that the experimenter can access.

With this definition, the fields ¢; have been given to us, at the very least in an implicit
form, as well as the mode expansion. In general, we could expect that there are non-
linear field redefinitions to worry about, as they might generate states that do not belong
to the code subspace. We also have to worry that under time evolution the states might
exit the code subspace. As long as we can stay comfortably inside H,q. for some fixed
amount of time we will be content. To do so we will also include a temporal cutoff in the
time during which experiments can be performed. The second problem is not obviously
an immediate issue if | B) is an energy eigenstate, but the problem will kick in as soon as
we act on the state. We do not address these issues directly for general setups, rather,
we will leave these issues implicit in the definition of A itself, thinking of it as a set of all
the necessary cutoff information.

One might think that this is overly pedantic. The purpose of this paper is to show that
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this structure is the only sense in which one can do effective field theory in a particular
subsector of a gravitational theory. It will turn out that different code subspaces will
generically be incompatible. That is, assume that a state belongs to two such code
subspaces ) € Hpa, Hpa. The topology of |B), |B’) and the number of (effective)
fields might differ substantially to the point where even though the state [¢)) is well
defined, we cannot say what topology it has (the one of |B) or |B’)) nor the number of
fields. More importantly, one code subspace might recycle a field of another code subspace
nonlinearly into many fields. What this will mean is that the physical answer to many
(interpretational) questions can only be answered inside the different code subspaces, but
not in the full Hilbert space H.

Our goal in the rest of the paper will be to explain how to construct a particular
collection of code subspaces explicitly, including the effective fields and the cutoff and to

show precisely how they are incompatible.

5.3 The action of traces on Young tableaux

We will now consider a particular set-up, where we can study effective field theory
explicitly. The half-BPS states of A/ = 4 SYM on the sphere are in one to one corre-
spondence with the gauge invariant local operators that are build out of polynomials of
a single scalar field Z(z) (which we will take to be in the adjoint in the adjoint of U(N)).
This space is converted into a Hilbert space via the operator state correspondence that
is available in conformal field theories. We write the map as follows O — |O). For us to
understand the Hilbert space of states, we need to determine the norms of states. The

norms of states that correspond to local operators come the Zamolodchikov norm of the
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operator, obtained from the two point function as follows

(O} (@)0(0)) = {99

RS

(5.4)

What we need now is the complete list of operators in a basis that is suitable for com-
putations. This problem was solved in [64], where it was noted that a Schur polynomial
basis was orthogonal (this is based on the fact that characters of Z in irreducible rep-
resentations of U(NN) are orthogonal) and where their norms were computed. However,
there is another basis made of string states, which are traces, that is also useful and can
be used to define the supergravity fields of AdSs x S°. It is the traces that are used to
define the extrapolate dictionary of AdS/CFT [4]. Thus, it is necessary to study both
basis to get to the complete physical description. For this section we follow mostly the
results obtained in [64, B8] where the main results are proved in detail. The new result we
find is to compute the actions for Young Tableaux states that are normalized according
to the results of [64] rather than the N — oo limit discussed in [38].

There are two natural ways to construct gauge invariant operators from a matrix Z.
One of them is to take traces of powers of Z, Tr(Z™) and to consider the set of linear
combinations of multi-traces of Z. The other is to think of an N x N matrix Z as an
element of GL(N,C). Then we can take the character of Z in some representation of the
group GL(N,C), R, and denote the result as yg(Z). The latter are classified by Young
diagrams.

These two bases of gauge invariant operators generate the same linear space and can
be related to each other algebraically, the details can be found in [64]. For example,

the fundamental representation, with Young Tableau OJ, can be related to Tr(Z) via its

195



Code Subspaces for LLM Geometries Chapter 5

character as

xo(Z) = Tr(Z2). (5.5)

To write the relationship for other states, we need a few more definitions. Let [o] be
a conjugacy class of S,,. The conjugacy class of [o] is in one to one correspondence with
group elements o of the same cycle decomposition, where there are n;([o]) cycles of length
js so that n =3, jn;([o]). See appendix B for details on how the cycle decomposition
is obtained from a group element. To each such cycle, we associate the trace Tr(Z7), so

that to the element [o] we can associate the monomial in the traces

o] = JJ(Tx(27))m D, (5.6)

J

If R is represented by a Young diagram with n boxes, which we indicate by R, then

xm(2) == > xa(lo)ds [ J(Tr(z7)m(D (5.7)

" [0]€Conj[Sy] i

where d, is the number of elements of the conjugacy class, xr([o]) is the character of o
in the representation of the group S, with the same Young diagram as R,, (these are in
one to one correspondence via Schur-Weyl duality). This explains how to write the basis
Xr(Z) in terms of traces. The map is invertible (the fact that the relationship between
conjugacy classes and representations is invertible is true for any finite group, see [124]).

The result of this inversion is

(Te(z)" D = 3" xr(lo)xr(2) (5:8)

[R]€Reps[Sn]

which was shown in [38].
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In what follows, we will define the variables t, = Tr(Z%), and we will label the
representations of R directly in terms of Young diagrams. The length of the cycle ¢ will
be called the degree of ¢y, and the number of boxes of a Young diagram n will be the
degree of the Young diagram. With this convention we have that [o] — [], t?i([o}). The
sum »_,ny = n, so we have that the degree of each of the monomials is equal to the
degree of the Young diagram, and acting with an extra trace Tr(Z*) will be multiplication
by t,. Acting with ¢, on xg(Z) (by multiplication), will have degree deg(R) + ¢ and can

be expressed in terms of the basis of the x5, with deg(R) = deg(R) + /.

For example, we can take the state

(6’47271) = (59)

where we label R = (6,4,2,1) by the length of the rows of the Young diagram and we
think of the Young diagram as the gauge invariant operator yg(%) itself. Now, we want
to act with one of the ¢y, and see what linear combination of representation characters
we get. The answer is actually simple.

We will do the particular example of #4(6,4,2,1). Acting with ¢4 will give us the
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following result

[ | | [efe[e]e] .
ty = - olele (5.10)
B B B []
| |
oo : - oo + ° (5'11)
| |

(5.12)

where we have indicated with circles the extra boxes that are attached to the original
Young diagram R. The action on any given Young diagram is given by applying the

following rules [3¥]:
1. The original Young diagram sits inside the added boxes.

2. The set of new extra boxes are arranged in a pattern where they all touch each

other and give rise to a proper diagram when combined with the original.

3. The set of new boxes snake around the edge of the old diagram (this means that
no square pattern set of 2 x 2 boxes can be found in the new boxes). Sets of boxes

with this property are called skew-hooks.

4. The coefficients are all 1. The sign is determined by how many rows the new
boxes cover: +1 if the new boxes sit in an odd number of rows, and (—1) if it is

eveln.
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5. The sum is over all possible ways of attaching a skew hook of the right length (in

this case four, as we acted with t4) to the original Young diagram.

We can write these conditions as follows

te xv(2) = > (1) " xy 11 (2) (5.13)

heSkew hooks of length ¢

where the symbol H (h) indicates the height of the hook (the number of rows it subtends).
Also, the length of a skew hook, |h|, is the number of boxes it has.

As we have argued, the space of gauge invariant operators is endowed with a metric,
the Zamolodchikov metric. This is a positive definite metric and is identified with the
Hilbert space norm in the quantum theory on the cylinder. The norm for each Young
diagram state |Y) can be evaluated as follows. We first label the boxes of the diagram,

adding one as we go to the right and subtracting one as we go down

0| +1{+2|+3|+4|+5

1] 0 |+1]+2
(6,4,2,1) = (5.14)
2] -1

That is, to each box in position (i, 7) (the label i refers to the column, and the label j
refers to the row of the box) we associate the number ¢ — j. The norm is then computed

as follows:

V)Y =a#> T[] (N+i-j) (5.15)

(4,j)Eboxes
where « is a normalization constant for the matrix field Z. Also, different Young tableaux

are orthogonal. This was deduced in [64]. To simplify matters, we choose a = N~!'. Then

199



Code Subspaces for LLM Geometries Chapter 5

we have that

WVy= 1] (1+i]_\7j> (5.16)

(¢,j)Eboxes
so that the large N — oo limit is simple and all the norms for each Young tableaux state
are equal to one. We are interested in a finite but large V.
Now, since the Young diagram states are orthogonal, we can consider a dual basis for

the Young diagrams |Y’), so that we have the relation
(Y)Y = dyy (5.17)

and it is easy to see that

V) =1v)/{V)Y (5.18)

Using this dual basis, we can write the action (EI3) as follows
Y +hlt, [YV) = (=1)"®s , (5.19)

where again, |h| is the number of boxes in the skew hook h and |Y + h) refers to a state

|Y') with an added hook h. If we choose the basis to be orthonormal, we find that

(Y +h|t,|Y) =

= (Y +h|t, V) (5.20)

where we are using |Y) to represent an orthonormal state (as opposed to the state in the

dual basis, which has a down check instead of a hat). So the action in the orthonormal
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basis is represented by

<?¥%thHU:=(—1Vﬂmﬁmm\/0ft;2§;+}l:(_1Vﬂm5h“ II (1+i};j>

(5.21)

(3,j)€boxes of h

And the adjoint action is

(Y —hlth|Y) = (=),

H(h i—J
JY —hY —h 0 a1 <1+ N)

(,j)€boxes of h
(5.22)

With this formula, we now have the main computational tool we need for the rest of
the paper. It should be noted that if we take the limit where i, j are finite and N — oo,
the set of Young tableaux states all have trivial norm and the coefficients for the action
of the traces are all 1. In this case, the half BPS states are described exactly by a ¢ =1

left-moving chiral boson in 1 4+ 1 dimensions.

5.4 Defining the code subspaces for concentric con-
figurations.

Let us consider a particular case of an LLM geometry that is time independent and
that is therefore an eigenstate of the Hamiltonian of the N' = 4 SYM theory on the
S3 x R boundary. The LLM geometries are described by droplet configurations on the
plane, and as they are time evolved they rotate uniformly about an origin in the LLM
plane. The ground state is described by a disk, and the rotation center is located exactly
at the center of the disk. For another configuration to be similarly time independent,
the droplet configuration must be invariant under rotations around such an origin. This
results in a droplet configuration that is described by a set of concentric rings. Because
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the configurations are time independent, they have an extra isometry symmetry in the
supergravity description. This extra symmetry is exactly the rotation of the configuration
around the origin. This is a diffeomorphism that does not vanish at infinity and is realized
as a proper symmetry of the configuration. This is the symmetry associated with either
time translation or to being an eigenstate of the R-charge.

A particular example of a geometry is visualized in figure B, The radii of the
boundaries are labeled as follows ry > 7y > ry > 79 > ..., from the outermost boundary
inwards. We will call these edges and anti-edges, depending on if they are labeled with
an 7; or a 7;, that is, if they go from black to white (edges) or if they go from white
to black (anti-edges) when tracing a straight line from the origin. This is in accordance

with the convention established in [BR]. The important geometric parameters are the

Figure 5.1: A circularly invariant LLM geometry. The radii are labeled by r, 7, de-
pending on if they go from black region to white region, or viceversa, starting from
the outside and going inwards.

radii r1,71,... which are necessary to uniquely identify the geometry. We will assume
that we are working at fixed large IV, and that the disk representing the ground state

has been normalized to have radius equal to one. We will also assume that the r;, 7; are
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of order one. The area of the black region is given by

A=) (P —i)=n (5.23)

which is the same as the area of the unit disk. This gives us one relation between the
radii.

The energy of the state (geometry) is given by

E x N? (Z i — ff) — N? (5.24)

As long as the radii are moderately spaced, the solution is weakly curved and effective
field theory is valid. Small deformations of the geometry that preserve the supersym-
metry can be characterized by having the r;, 7; vary with the angle around the origin
as follows 7;(0) = r; + dr;(0), 7:(0) = 7 + 67:(0) with ér, 7 << 1 and more precisely,
we require that the configuration is fairly smooth so that the wiggles are not too pro-
nounced. This is what we mean by long wavelength fluctuations. This is depicted in
figure B2. Larger deformations will have either short wavelength (rougher edges), or
larger amplitude resulting in more pronounced creases.

From the point of view of supergravity, it is obvious that to each of the radii r;,7;
we can associate a function of one variable 6 that preserves the supersymmetry of the
configuration and that therefore the effective field theory — restricted to the half-BPS
states— is now described by many functions of #. Since each r;,7; can be in principle
deformed independently of the others, we have to associate an effective field with each
such (anti-) edge. Each such field should result in a left chiral field ¢;(6), ;(6), just like
the single edge of the ground state results in such a field.

In the limit where the dr;, or; << 1, we can expand the area of the regions to linear
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Figure 5.2: A slightly deformed circularly invariant LLM geometry. The radii are now
given by r;(0),7;(0)

order in these deformations. We get that the areas of the regions are given by one of the
two expressions (the left for black regions and the right for white)

1

A= [ do20) = 760 A= 5 [ G0 = riea(6)) (5.25)

and to leading order in fluctuations we get that the variations in the area are given by

Because the areas are quantized in natural units due to Dirac quantization condition, we

need to require that the 64; = 6A; = 0, and this implies that

/ d05r;(0) = / d957:(6) = 0 (5.27)

We infer that the fluctuations have a Fourier expansion with the zero mode missing for

each fluctuation.
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For quantization, we also need the Poisson bracket between the d7;(f). This was
calculated in [I30]. One can derive it from the Hamiltonian and locality in 6. Basically,
we need that

and similarly for 67;. Since the energy function is the Hamiltonian, the Poisson bracket

is as follows

(6140).57,(0)} = 2, 255306800 ) (5.29)

whereas for the other variables we find a sign change

dij

{07:(0),075(¢)} = N2~< 2 N (a0e0 (0 — @) (5.30)

that follows because the Hamiltonian for the 7 is actually negative definite. The cross
term vanishes.

We interpret the prefactor in front of the derivative of the delta function as an effective
notion of the Planck constant A for the corresponding background field determined by
the geometric data. As is usual in the AdS/CFT correspondence, h scales as 1/N?, and
this is the normalized Newton constant 2.

With these conventions, the canonically normalized fluctuating fields ¢¢, and #°

depend on the values of the geometric parameters r;, 7;, as follows
c N o
6(6) = Nrbri(6) = S0629)) (5.31)

and similarly for ¢€. The Fourier modes of the ¢, ¢¢ will have canonical commutation

ZNotice that if we scale r,ér by the same scale factor to remove the 1/N? pieces, we find that the
normalized value of the radius R then scales as R ~ v/ N, and the area of the disk is proportional to N

205



Code Subspaces for LLM Geometries Chapter 5

relations, such that

Z(b exp(inf) (5.32)
and
{¢z no = néijfsn,m (533)
whereas for the ¢ we get a sign change
{¢z no jC:m} = _n(;ij(;n,m (534)

One can then show that the ¢¢, ggg are either raising or lowering operators with energy
n, —n respectively (the C fluctuations reduce the energy).

Now that we have our canonical mode fields, we can define the code subspaces as in
section B2, We just take the concentric ring background configuration and act with the
raising operators ¢, ngncl a finite number of times, with a cutoff on n, m and the number
of raising operators acting on the reference state, which is specified by the radii, and the
quantization condition that all the lowering modes of the effective edge fields are in their
ground state. The precise details of the cutoff are yet to be specified, and the result
should be understood to be a leading order approximation in a large N expansion, so
there might be 1/N corrections that need to be studied more carefully.

Notice that the definition of the code subspace is fairly straightforward, but the
determination of the effective modes took some work. It also assumes a particular action
of the modes of the fields on the reference state and by relying heavily on the classical
analysis in gravity, we do not have a direct access to how the cutoff should be correctly
implemented.

A second issue that needs attention is to make sure that the code subspace that
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we have defined this way is compatible with the holographic boundary operator actions.
That is, we want to show that acting with the operators that preserve the supersymmetry
and that are realized in the boundary does not take us out of the code subspace. To do
this, we need to notice that the boundary operators measure the multipole moments of

the droplet distribution. These can be written as follows

O /p(r, 0) [r exp(—1i6)]" rdrdf (5.35)
where p is the region of the plane that is filled. After some manipulations where we do

the radial integral first [37], these modes are written as follows

1
n+2

n

[ S ) expl-i0))" r20) - @) esp(-it)" 0)ls (536)
To linearized order we have that r;(6) = r; + 07;(#), so we find that

o / Z [r7167;(0) exp(—ind) — 77H16r;(0) exp(—ind)] db (5.37)
which in terms of the canonical fields becomes
Gu= N[00, — 7, (5.38)

The factor of 1/N in the prefactor is to be thought of as vk, which is the standard size
for quantum fluctuations. In this sense, we should remove it and the normalized operator

for boundary insertions should be given by

b= [riof, — 7dC, (5.39)

%
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With these conventions we have that for the ground state where r; = 1 and all other
r;, 7; vanish, we have that

On = ¢ (5.40)

- ¥1n

Since the field ¢ is in general clearly a linear combination of operators in the code sub-

space, it belongs to the code subspace. To go beyond linearized order, we need to normal

order the expressions. The non-linear terms that are generated will be polynomials in
gn and (;Szcn suppressed by additional powers 1/N.

What we want to do now is reproduce these same results without relying on the semi-
classical description, but directly in terms of the matrix variables. What is important
for us is that the concentric circle configurations have a simple description in terms of
Young tableaux [63]. Therefore it is possible to analyze the physics of the cutoff in terms
of the trace variables as in section b=3. This will permit us to describe the cutoffs better
and to verify directly the expression (B=39). This can be understood as a test of the LLM

geometry map. We will tackle this problem in the next section.

5.5 Code subspaces in the Young tableaux formalism

As is by now well understood, concentric ring classical configurations in the LLM

plane correspond to Young tableaux with only a few corners (see [90] for more details).
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A typical such Young tableaux looks as portrayed in the diagram (5=2)

M,

M, (5.41)

Ly

where the length of the long rows are of size My, Ms, ..., and the depth of the columns
is Ly, Lo, .... With these conventions, the empty corners to the right of the M; (concave

corners) have coordinates given by

(i,5) € {(M; +1,1), (My+ 1, Ly + 1), ... (M + 1, Ly_1 + 1)} (5.42)

Similarly, the convex corners of the edge of the tableaux are given by the coordinates

(i,7) € {(My, Ly) ... (M, Ly)} (5.43)

We will call this state the reference state |2). It is around this state that we want to
build an effective field theory of the LLM states that mirrors the gravity construction.
To such a tableaux with widely spread out corners we can associate a Hilbert space of
small fluctuations. These are additional small tableaux that can be attached to each
corner. In the young diagram depicted in (524), we see an example of adding a small

tableaux to the concave corner depicted with the symbol + and also a tableaux that
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is substracted from the convex corner and depicted with the symbol —. This idea was
originally sketched in [82], but was not fully realized at the time. It was implemented in
the strict N — oo limit in [38] and better estimates for various quantities were obtained
in [27].

Here we have a full implementation of the details at finite V.

+]

+
+

(5.44)

It is easy to see that we can define a small Hilbert space for each corner. This Hilbert
space is the set of small Young tableaux (whose sides are much smaller than the sides of
the big tableaux with few corners). There will generically be two types of corners: the
ones that have + boxes, and the ones that have — boxes. These correspond to the two
types of corners of the reference tableaux. For convenience, we will label them with the
(,7) values of the first corner that we can add or substract, and each of these corner
Hilbert spaces will be called H; ;). By construction, we find the small Hilbert space of
states relative to the reference state |2), which we will call the code subspace, can be

decomposed as follows

Hcode\Q) = HH(Mk+1,Lk_1+1) ® HH(MImLk) (545)
k k

As of yet, we have not specified the size of the factors of code subspace. We will proceed

to do this later. What we need to do right now is to understand in a little more detail
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the H; ;) factors. The idea is that each of these is characterized by a Young diagram.
There are two cases to consider: the + subspaces and the — subspaces.

Let us begin with the + subspaces. These are labeled by H s, 41,0, ,+1). What we
are interested in to begin with are the factors associated with adding and substracting
boxes, as in equation (5=22). We will use new sets of relative labels to the reference corner

(A, Aj) = (i — My, j — Li_1). In this way the square root factors from before read

L 1/2 M — I A AN 2 M. I 1/2
<1+z ]) _)(1+ k kot A g) 2(1+ k kl) (5.46)

N N N N

in the limit where N is large and the A;, A; are of order one.
When we add a skew hook with s boxes to a Young diagram that belongs H (g, +1.1,_,+1),
we would associate the factor

My — L1\ *?
1+ ——- A4
( + N ) (5.47)

and we need to identify this with an action as we would have in equation (B=39). The

correct identification to have a match is that

My — L\ 2
With this, we find that
My — Ly
r, =1+ kal (5.49)

so that the My, L, are clearly geometric. To have r; of order one, we need My, Lj_1
to be of order N. For convenience, we add Lo = 0 so that the uppermost corner can

be treated uniformly with the others. This is very similar to equations obtained in
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[TT1] (which generalize previous results in [I31]), where it was argued that one needs to
replace N by an effective N to account for anomalous dimension computations for giant
magnon states. The techniques used in those papers use the technology of restricted
Schur polynomials, rather than the skew hook representation of the actions of traces.
The idea now is that to each such corner we will assign a set of variables 5, =
ta, L, labeled by an integer ¢, such that they act as traces in the small Young tableaux

alone. That is, we write is as follows
<Yk + h| tm ‘Yk> = (—1)H(h)(5|h|7n (550)

where Y}, is the small Young tableaux in the corner.
Now we need to do something similar with the convex corners. The beginning setup
is the same, starting at the (Mj, Lg) corner but now we are substracting boxes. The

relative coordinates will now be given by
(B, 2)) = (L — j. My — i) (5.51)

so that they are both positive. Notice that we have switched the 7, j labels in the definition
of the left. With this convention we get that the corresponding square root factor is still

of the form

— 5\ My — L A — AN M, — L\
<1+7’ 3) :(1+ E_ Tk J) Njgo(1+—’“ ’“) (5.52)

N N N N

where both A; and A; appear with the same sign as before. Notice that A; increases as
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we go up the diagram, and A; increases as we go to the left. This way we find that

My — Ly

(5.53)

What this means is that the vertical direction in the — tableaux should be thought of
in a similar way to the horizontal direction in a + tableaux, and similarly the horizontal
direction in the — tableaux should be thought of as the vertical direction in a + tableaux.
That is, the conventions for the tableaux are reflected. We now want to introduce Ekvg
variables that act only in convex corners. To get an equation that works as (550), we

need to modify it to look as follows
(Vi + hl trn V) = (=) ™6y (5.54)

where instead of measuring the height of the skew hook, we measure the width of the
skew hook in the — boxes. For hooks with an odd number of boxes, the vertical and
horizontal parity coincide. Whereas for skew hooks with an even number of boxes, they
are opposite. This means that relative to the usual conventions, we have set up #, to act
as —t; for £ even. It is more convenient to have ¢, to have a uniform negative sign in all
actions. This is done by changing signs in the definition of Y; — (—1)#***Y;. That way
both even and odd fk’g act with a minus sign relative to the usual convention.

We can now ask how t, acts on a state in the code subspace. It is straightforward to

show that in general we can write
te Y (e =L, (5.55)
k

which is an equation that seems identical to equation (5239). The minus sign for the ¢
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variables is the minus sign that we just introduced. This is part of the definition of how
the Y diagrams should be understood.

Because the different ¢, act on different subfactors of Hcoqe, they automatically
commute. Moreover, they also commute with each other’s adjoints. The only non trivial
commutation relations are between t; and their own adjoint, or between ?; and their
adjoints. To get a good match we need to show that the t,%; variables should have
canonical commutation relations. This was proven in our previous work [B8] for tableaux
without restrictions. Since the tableaux are restricted in size, this cannot be true for
general states. After all, the representation of a harmonic oscillator algebra is always
infinite. This is the first formal cutoff we encounter. The commutation relations that we

need

[t ¢+ tm] = € St.m (5.56)

should be valid inside the factor of the code subspace, but only when sandwiched between
states in the code subspace. If the ty , take us out of the code subspace, then we need to
define their action. The bounds are implicit in that the small tableaux have small sizes,
and the definition of their limits is still to be determined more carefully. Here we see
that the language of the code subspace is helping us to understand that the commutation
relations we need are valid in a restricted subspace of the Hilbert space, and they can
be arbitrary outside. The language of these relations automatically assumes that we are
inside the code subspace. This is also the way the code subspaces do their work in [122].

Now, by construction we have that multiplication by the tj g, Ek’g act as raising opera-
tors in the small factors. Since ¢, adds boxes and fk,g substracts them, ¢, is more similar
to t};. That is why we need to write the equation (555) with daggered operators for the

t variables.
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For convenience, since multiplying by ¢, is like a raising operator and their adjoint
is like a lowering operator, we will rewrite the equation in a more standard Fock space

language. We do this by stating that

the — bl (5.57)
the — by (5.58)
thy — big (5.59)
th, = o (5.60)

These identifications are valid inside the code subspace. The b, ¢ oscillators have canonical

commutation relations. The action of 5, becomes

=) <T£b?e — TCre + 0(1/N)> (5.61)

k

and we ignore the 1/N corrections when we match to supergravity. Now it is clear that
(6) is identical in form to (6=39). Where the field modes have canonical commutation
relations, just like the supergravity modes do. This implements the requirements of
equation (b=39) exactly. That is, the code subspace in the Young tableaux basis can be
put into correspondence exactly with the code subspace in supergravity.

Moreover, we have seen that there is an implicit cutoff on the size of the small
tableaux. This is not immediately apparent in the supergravity construction where one
is formally taking the limit N — oo first. To argue for the cutoffs, one needs to follow
[71] and argue that a type of stringy exclusion principle (similar to [86]) is responsible for

a cutoff on the number of modes and their amplitudes. To proceed further, we need to

understand the implicit cutoffs explicitly and explore the physics that is beyond classical
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supergravity.

5.6 Cutoff physics in the Young tableaux formalism

The first step in the process of understanding the cutoff is to describe when the
linearization implied by equation (B5H) is correct. In essence, we want to understand
how when multiplying by t,, the subleading terms in N in the expression (528) or (A5H2)
accumulate when we vary ¢ and take ¢ large. This limit will give us a UV cutoff on the
effective modes beyond which non-linearities matter.

The idea is that the products on each skew hook will be of the form

a+/l

[Vt itV [ = T 0%+ k/N) = v exp(> log(1 4+ k/(N12))) (5.62)
k=a+1 k

and we will look at cases where r,, is of order 1 and k << N. The term in the exponential

can be further approximated by

> k/(N1h)) = O/ (Nr},) (5.63)

We want these corrections to be small for each skew hook, which means that we want in
general (?/(Nr2) << 1. That means that we should have the label ¢ scaling at most as
¢ < eN'/? where ¢ is a small number (this is the same scaling that is observed in studies
of the BMN string [T20], that ends up being a special case of the LLM geometries: the
vacuum geometry). For us it is a choice that tells us how big of an error we should allow.
A similar (slightly weaker) limit is obtained from three point functions [I32] (see also
[T33] and references therein for earlier work on the exact three point functions).

That is, the code subspaces associated with the corners have a bound on the size of
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skew hooks. We also want the bound to apply to excited states, so all the A; and A;
should also fit in this bound. In essence, the allowed Young tableaux on each corner
is essentially a tableaux that fits in a square of order v/N x v/N around each corner.
If the L;, M; are well separated from each other, the different tableaux on each corner
cannot interfere with each other, because the horizontal or vertical difference between
the corners is of order N. Since such a small tableaux has energy that is equal to the
number of boxes in the tableaux, this means that the excitation energy above (below) the
reference state is bounded and of order at most N. This is subleading in the supergravity
description, because the energy of the supergravity solutions is of order N2, but it is also
a typical energy of a single giant graviton whose scale is of order the AdS radius. This
limit where the linear structure starts breaking down is due to 1/N corrections given by
interactions of the local string excitations (as perceived by the extrapolate dictionary).

Remember that the Planck scale quanta are associated to energies of order N'/4. An
energy of order N'/2 is roughly the energy of a Planck sized object that has been boosted
by an ultra-relativistic factor of ¥ ~ N/, This means that the physics of these modes
does not break down at the Planck scale, but at much higher energies and the notion of
(local) Lorentz invariance for single particle states should be well respected at energies
of order the Planck scale itself. Since the total size of the circle associated with the edge
of the droplet is of order N'/4p, the Lorentz contraction obtained from a boost of N/4
gives an effective circle of size ¢p (similar boost arguments have been used to describe
matrix black holes [I34]). In essence, the physics is breaking down when for a boosted
object at the Planck scale, the Lorentz contracted circle on which it is moving is of order
the Planck length.

Our description of the cutoff is that the allowed Young tableaux need to fit inside a

square of size w; x w; where each w; scales as N'/2. We can restrict the action of the
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b,c modes so that if a skew hook falls outside these squares we get zero. This would
modify the canonical commutation relations between these modes only for tableaux that
are nearly filling the allowed squares. Also, the restriction in depth is similar to the
restriction that representations for SU(M) vanish if their associated Young tableaux
have a column of length larger than or equal to M. This restriction makes traces of
length larger than or equal to M dependent non-linearly on the smaller traces (these are
the Mandelstam relations and they are closely related to the Cayley Hamilton relation,
see for example [I35]). The additional b, ¢ modes become (non-linearly) redundant when
we hit this bound. The maximal bound on ¢ for each of the b, ¢ modes is fixed by the
size of the square regions, and all small Young tableaux states can be generated from the
action of b, ¢, modes with these cutoffs (as long as we act by zero when we get out of the

confining boxes).

5.7 Uncertainty and entropy

In our previous work [38] we argued that in the strict N — oo case one could calculate
the topology of LLM geometries by measuring the uncertainty and the entropy of the
mode expansion for the ¢, actions on the corresponding Young tableaux state. Our
purpose now is to understand how the answer changes when we take N finite, or more
precisely, when we take N to be very large and the L, M scale with N. In this way,
we can take equation (B=39) or equivalently (551) and compute the uncertainties for the
actions by traces. The result is very simple, by using Wick’s theorem in the b, ¢ oscillators
(this is the original technique we used in [40], with the understanding that the tails of

distributions contribute a very small amount). This is combinatorially equivalent to
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computing directly with the Young tableaux [3R, I27], and we get the following answers

it = S0sm 2™ = $85mSim (5.64)

(tmtDg = $0gm ¥ 2™ = 56mSm (5.65)

for the reference state |Q), where we have defined the quantities S,,, S, on the right hand
side as the result of the computations.

For the previous case studied by us, the answers are given by specializing tor; =7, = 1
for all 4, in which case we would immediately get the number of edges and anti edges by
computing these expectation values.

What we see in this case is that now the answer on the right hand side is geometric.
We get an algebraic sum of the powers of the r;, or the powers of the 7;. These are
symmetric functions of the r; or the 7; respectively. If there is a finite number of these
given by Nedges; Nanti—edges; We Will find that there are algebraic relations between them.
The first order for a non-trivial relation will be exactly when we have enough variables
on the left hand side above to be able to compute the r; by solving for the roots of a
polynomial. To obtain the coefficients A; of the polynomial equation from the S,,, one

uses Newton’s equations given as follows

A48 =0 (5.66)

24,4+ S141+ S5, = 0 (5.67)

(5.68)

nA, +S1Ay 14+ Sy 1A+ S, = 0 (5.69)

Once we pass the point where we have saturated the number of the different r;, the
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corresponding A, will vanish: the rest of the putative r;, 7#; would vanish &.

In this sense, it is possible to get the topology for a concentric LLM geometry. One
can follow a similar argument for coherent states of the b, ¢ oscillators, only as long as
the notion of coherent states fits nicely within the cutoffs of the code subspace that were
discussed in the previous section. In this sense, the deformations away from circularity of
the droplets are of subleading order in N. The easiest way to see this is that a classical
shape deformation should typically cost an energy of order N2, but the cutoff windows
we have discussed only allows for changes in energy of order N.

Going a little bit further in comparison to our previous work, we notice that as long
as we ignore the cutoffs, we can think of t, az and tz x a as raising and lowering
operators themselves. To go from the b, ¢ oscillators to the a oscillators we are writing a
partial Bogolubov transformation (we have less a’s than b and ¢ combined).

An important question is what is the normalization of the oscillators. This can be
used to compute the expectation value of the number operators. This can be done by

computing the commutator as follows

tg,tg 627”26 gz ~2£ Sg) = heff (570)

and on the right hand side we identify this with an effective A in the commutation relation.
The expectation value of the number operator evaluated on the reference state |€2), which

defines our vacuum, is then

A (titha  (ata)g Sy
= (N hesy la,a’] S, — S, (5.71)

3The S; are also Schur polynomials related to the totally antisymmetric representation for a matrix
with eigenvalues r; or 7;.
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Similarly we have that
R S,
ng+1=(N;+1)g= . 5.72
¢ (Ne+ 1o 5, _35, (5.72)

From these expectation values we can assign an entropy to the linear mode a,. This
is the entanglement entropy of the mode a in the vacuum €2, and since the vacuum is
obtained by a partial Bogolubov transformation, we get that the reduced density matrix

for the modes a,a’ look thermal (they are a Gaussian state). This entropy is given by

Sy = (ng + 1) log(ng + 1) — TNy log(ng) (573)

which is again dependent on the geometric radii r;, 7;.

The meaning of this entropy is clear in the N — oo limit where we are analyzing an
effective field theory, but at finite N it is more problematic because of all the cutoffs.
The main problem is that the Hilbert space itself does not factorize. We want to use this
number as an entropy also at finite IV, so we need a way to interpret it as an entropy.

One way to think about this entropy is that since the modes a, a' act simply on the
code subspace, they should induce an (approximate) factorization in the code subspace
itself, but not the full Hilbert space. Indeed, these modes commute with the other modes
so long as one is close to the reference state. What we can do now is to assign an entropy
to an algebra A acting on the reference state 2. The idea is that we need to produce a
representation of the algebra by acting on (2 with the elements of the algebra, as follows
H ~ Span{ON}, where the O € A. This is what gets around having a factorization of
the full Hilbert space.

If we think of the state {2 as a general state for A, we would get that Q =" |n) |n)
where the label n runs over all possible states in the representation of A and A does not

act on 1 (here neither n nor 7 are normalized nor orthogonal). If we have a factorization
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of the algebra in the algebraic sense, the |n) would be a representation of the commutant
of A in the algebra of operators in the full Hilbert space.
This procedure induces a reduced density matrix for the A factor such that all the

expectation values for A are reproduced
tr(pa0) = (Q0[Q) (5.74)

and we can associate the entropy s, with this density matrix. For example, if A is the
algebra of a spin 1/2 representation at one site in a spin chain (the set of Pauli matrices)
, this density matrix would coincide with the reduced density matrix for the set of states
on that site.

If the algebra A acts in such a way that no element of the algebra annihilates the
state, there is a second copy of A, A* that acts on H_4 and commutes with A. This
second copy can be thought of as the thermal double of A (this is the Tomita-Takesaki

theory, as discussed in [126]). Roughly speaking, the state will look as follows

> Galn) |7 (5.75)

where the ¢, are a collection of numbers and the |n) enumerate the possible states for the
algebra A that diagonalize the density matrix, while the |7) would be the representation
of the elements of the double copy. If we have an infinite algebra like the Weyl algebra of
the harmonic opscillator and its unique infinite dimensional unitary representation, we
might fall outside the code subspace where our analysis is valid. To avoid the infinite size
representation and to fit the algebra inside the code subspace, we just need to truncate
to states whose occupation number is bellow a cutoff induced by the code subspaces
themselves. For us, the associated density matrix we need is diagonal in the oscillator

222



Code Subspaces for LLM Geometries Chapter 5

basis (this is because (a?) = ((a")?) = 0 and of the fact that the state is Gaussian), so

we truncate it

p= Y |Gl n) (n| (5.76)

nN<Nmazx

If we had a more complicated state this might not be possible. To reiterate, we are trying
to show how a notion of entropy fits the number in (5273) at finite N and in the presence
of cutoffs. For the states at hand, as long as the ¢, — 0 sufficiently fast (which is usually
true in an approximately thermal state), if the algebra is truncated or not becomes a
moot point: the entropy is going to be dominated by the (,, where n is small anyhow.
In the case above, we think of the representation space of A* as a purification of p, so
the A* should be associated to the purification inside €2 for the generators of the oscillator
algebra a,a’. Because we have a partial Bogolubov transformation, we can compute this
purification directly in terms of modes of the effective oscillators, rather than abstractly.

The idea is as follows. Consider the two effective oscillators given by

1 )
Bl = > e (5.77)
n \/S_n 7 n
of (5.78)

: %S—Zf?c%

It is easy to check that these oscillators are normalized, and that the state |2) is the

ground state for the B, C oscillators. From these oscillators it follows that

b= V5Bl — /3., (5.79)

and now it looks like part of a Bogolubov transformation between only two modes.
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Normalizing the mode of the left hand side, which we will call al, we need to take

t 1 ~
al = —e = —(\/S,B —1/5,C,) = cosh(v,) B —sinh(v,)C,,  (5.80)
\/heff \/Sn - Sn

and similarly for its adjoint. The mode af is entangled with the mode

d! = cosh(7,)C! — sinh(v,) B, (5.81)

that acts as the purification of the a,, mode. Indeed, the B, C' oscillators can be recovered
from a,d, and the ground state is a pure state of the B, modes. It is easy to check
that the state |Q2) in the a, d basis is a squeezed state between the the a,d modes. When
tracing over d we get a thermal density matrix for a, whose entropy is determined by the
expectation value of the number operator: it maximizes the entropy given the constraint.

What is important for us is that the modes B, C' for moderately large n are concen-
trated on the outermost edge of the concentric circle configuration, and the outermost
anti-edge. That is, most of the weight of the B, oscillators is concentrated on the
modes at 7, and 7, respectively b, ). The amplitudes for the other modes are expo-
nentially suppressed in n. What this means is that for generic modes, the extrapolate
dictionary can not penetrate beyond the geometric locus characterized by 7. By the
Tomita -Takesaki analysis of [[26], we can generate the states |n), |m), from the state
|©2) by acting with a alone. In practice, this means we can recover the algebra of the d
modes with an ensemble by having the reference ground state.

Notice that the extrapolate dictionary seems to stop exactly at the outermost anti-
edge. This was also suggested by the work of [128], which argued that there was an
entanglement shadow in these geometries (a region where extremal Ryu-Takayanagi sur-

faces [[79] can not penetrate) and that the extremal surface that can enter the deepest
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stops exactly at this place.

In practice what this means is that the information inside the region of the outermost
anti-edge is inaccessible. One can equally say that it is protected from quantum errors
generated by acting with the extrapolate dictionary. This information is encoded in the
modes b, ¢ that are orthogonal to B, C.

Overall, the finite N picture is similar to what we found before in [38, 40]. The
topology can be deduced from the uncertainties, although the procedure is more com-
plicated. Also the entropy of the extrapolate dictionary modes is maximal given those
uncertainties. Similar arguments can be used when we shift the reference ground state

to a coherent state of the b, ¢ modes that fits comfortably inside the code subspace.

5.8 Obstructions to having a globally well defined
quantum metric

So far, we have found ourselves with a cutoff that is of order v/N on the modes, and
we have assumed that the spacing between the radii is of order one. From the point
of view of Young tableaux, this is a situation where the lengths of the horizontal or
vertical edges of the reference state are of order V. Our goal now is to push ourselves to
a situation where we make some of these edges small enough so that the cutoff of VN
is already too large. That is, we want to take M; — M;.; or L; — L;1; to be of order
V/'N themselves. The idea now is to understand to what extent it is possible for us to

define a metric operator in these setups. We only need to analyze the simplest case, with
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Ly ~ /N, as in (5517), and we will call this reference state |Q;).

My

(5.82)

Ly

To analyze how one might get interference between the rows, we need to also analyze

another reference state

Si

(5.83)

Ly

with S; = M; + 1. This reference state differs from the previous one by adding one
column, and call this reference state |€23). The idea now is to look for a state that
belongs to the code subspace generated from [21) and [€2s). The idea is to check if it is
possible to find a globally defined metric that agrees between the two code subspaces as
understood above in terms of building up perturbations relative to the reference state.

The simplest such state is given by

(5.84)

Ly

where we have a column of length P added to |€2;) and that can be thought of as removing
a column of length L; — P to |{s).

The first state can be thought of as a superposition of states that have excitations
around |€2;) which are built from the b}h modes. Such states are superpositions of
excitations of the top edge r1|q,. Relative to the reference state |(23), they are instead

built by superpositions of modes cgb? which originate in 7|q,. From the point of view
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of the two different code subspaces, we attach the excitation to different edges. This
assignment is not local: we cannot specify the edge uniquely in a way that is independent
of the reference state. The answer depends on the choice of reference state. We can even
do this with superpositions of states of this type that lead to coherent states (for example,
in [38] it was understood that a particular generating series of these states is a coherent

state). Such generating series are of the type

> 7Py, (5.85)
> L - P)g, (5.86)

where ¢ is a complex number. In order to get the same state, we need that £ =1/ é . In
our previous work, the range for P was infinite, so convergence required that || < 1 and
similarly for €, so naively only one such state can be a nice coherent state. In practice,
because of the cutoffs, the superposed coherent state does not belong completely to either
of the two code subspaces nor is it exactly a coherent state, but the state can have a
large overlap with states that do belong to either code subspace. The condition for large
overlap is that [¢| < 1 or || < 1. However, the state at fixed P is a superposition of
objects of either type. Indeed, these objects are D-branes (giant gravitons [[Z1]) that can
be thought of as having nucleated at one edge (and belonging to it) and being moved to
the other edge. This is shown in figure b33. Indeed, one can define a third code subspace
that is a strip geometry plus a D-brane. In one code subspace the state is an excitation
of 1, in a second code subspace, the state is an excitation of 7; and in the third code
subspace the state is a strip geometry plus a D-brane (this is interpreted as a state with
a different topology than the other two).

Now, it is clear that there is no absolute boundary between these. The cutoffs are of
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Figure 5.3: LLM diagrams of three (identical) states with D-brane excitations that
can be thought of as having nucleated in different ways in different code subsapces,
and this results on them being pictured differently.

order v N, but can be adjusted. What this means is that in practice [©;) and |€25) do
not define a single code subspace. They define families of code subspaces that differ by
the cutoffs. The state ]P)Ql may or may not belong to either of these code subspaces.

Also notice that it gets more ambiguous when we try states of the form

M,

P (5.87)

Ly

The first column is either an excitation of the b modes or the ¢ modes depending on
the code subspace, but the second column is an excitation of the b modes in both code
subspaces. The only condition on the Young tableaux is that P, < P, but to belong to
the different code subspaces, one needs to check that the cutoffs are not violated. We
also find that there is a new code subspace |(23), with So = M; + 2 where both of them
would be assigned to excitations of 71|q,. We can keep on going this way so that the first
wy columns are ¢ excitations and the next one is a b excitation, versus all of them being b

excitations. one also gets code subspaces with one, two, up to w; D-branes if one wants
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to. This ambiguity makes it impossible to answer a question as to what is the metric as
an operator that is independent of the choice of code subspace. Each code subspace has
a different answer, and they are not compatible with each other.

In this case we can even say that the code subspaces with D-branes have different
topology than the two original reference states. They also have a different spectrum of
excitations: apart for the b, c modes they also have the moduli of the D-branes themselves
(these can be thought of as the additional coordinates & = §~ ~1 when we separate the D-
branes from the code subspaces).

If one states that the metric information is encoded in the state as a message, what
we are seeing is that different code subspaces that share the same state decode different
messages. It is intriguing to speculate that different messages (different notions of the
metric) are all allowed in the same sense that stringy dualities allow for more than one
interpretation of the geometry, but only one of them will be sufficiently classical. From
what we have determined so far it is not yet clear that this is what is going on. So far we
have done calculations in the absence of a concrete value for the string scale, relative to
the Planck scale. To study the physics of the string scale would require studying modes
that do not preserve as much supersymmetry. Such a problem is beyond the scope of the
present paper.

One should be able to argue similarly for folded geometries. These geometries with
folds are defined by stating that the number of 7,7 variables is a function of the angle.
The local supergravity analysis of the Poisson structure around each edge is the same
[T30], but one would have to define the mode expansions of the effective fields carefully.
Different choices should be generically related by a linear transformation of the mode
functions on each edge to a new set of functions. Such differences are accounted for by a

Bogolubov transformation of the modes. There is no obvious preferred basis distinguished
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by the energy of the modes, because the reference state is no longer an eigenstate of the
Hamiltonian. Unfortunately the dual field theory analysis is much more complicated
because the construction of the corresponding dual states is not combinatorial. Our
previous work [40, BR] dealt with these geometries in a particular approximation, but
this approximation was not deduced from first principles. Studying this problem is very
interesting as it should provide further details. Such analysis is beyond the scope of the

present paper.

5.9 Conclusion

In this paper, we draw parallels between effective field theory, especially within the
framework of the LLM geometries, and the notion of holographic code subspaces. We
found that the nearby Hilbert space of states around some classical background, which
is built by acting on the reference state with some number of effective fields results in
a space defined in the same way as the code subspace developed in [(22]. It further
matches the little Hilbert space of [T0R]. We give explicit examples of code subspaces
in the case of the LLM geometries, where we use concentric ring configurations as our
reference state. To analyze this, we go beyond the infinite N limit of our previous work.
We show that the allowed effective fields are comprised of state dependent operators,
insofar as analyzing the metric of a state depends on a choice of a code subspace in
which to analyze it. Further, we find that there is not a clear line between different code
subspaces, and, in fact, there are states that clearly belong to multiple such subspaces.
This makes it ambiguous to write down a globally well defined metric operator, as the
interpretation of how to obtain a metric depends on the reference state that one builds

the code space from. We have argued that this obstruction is essentially what forces us
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to state that it is only possible to interpret physics in an effective field theory of gravity
within the framework of code subspaces. If one thinks of the geometry of a quantum
state as a quantum message, different code subspaces decode different messages from the
same state.

A note of caution should be in order. Our results do not preclude having a globally
well defined quantum metric, as long as one is willing to abandon the setup we have
devised: the collection of reference states with perturbative semiclassical excitations on
them. These are constructed in a way that guarantees that effective field theory works,
as long as one is restricted to the code subspaces. Such a different setup could be in
conflict with effective field theory instead.

In this paper we dealt essentially exclusively with concentric ring LLM geometries.
This is because the dual field theory states are well understood as combinatorial objects.
In principle, a similar answer can be obtained for more general geometries, which can
include folds (these are dealt in an approximate way in [B8]). These geometries with
folds are characterized by the fact that the number of r, 7 variables is a function of the
angle. The supergravity analysis is more complicated because the modes necessarily mix
in the extrapolate dictionary, and the cutoffs might depend non-trivially in the angle.
These are interesting avenues of future research that can not be treated with the Young
diagram technique. To address these, one should understand the cutoffs directly in the
supergravity description.

Another setup that is interesting is to deal with the superstar ensemble (as in [91]),
which has properties more similar to a black hole. A big question here is to what extent
we can use information the uncertainty and entropy in the extrapolate dictionary to make
statements about geometry. This is currently under research [[Z36].

So far, all this work has been done for half BPS geometries. It would be very in-

231



Code Subspaces for LLM Geometries Chapter 5

teresting to extend these ideas further to geometries that have less supersymmetry, or
to excitations around such half BPS configurations that have less supersymmetry. Such
excitations could give additional insight into the more general structure of code subspaces

and the corresponding cutoffs. Some of these can even be stringy states.

232



Chapter 6

Conclusions and Future Directions

In a full theory of quantum gravity, what are the good observables? For instance, can
one represent the metric by a quantum operator? If not, should we think of it as a
good observable? What other objects might we consider instead? These are the types of
questions that have driven my research, with my primary goal being to help contribute
to the search for a complete theory of quantum gravity. My favorite tool comes from the
AdS/CFT correspondence [B]. As I would like to learn about quantum gravity, my work
has primarily been to perform calculations on the field theory side and see what lessons
we can learn about quantum gravity. I am also interested in helping to further develop
the duality itself, as we are still far from understanding the full dictionary. Therefore, I
enjoy analyzing questions about, for instance, which CFT's have a gravity dual and vice
versa or how much information is necessary from the boundary theory to determine the
bulk geometry, at least to a good approximation. To address these questions, the work
contained in this thesis was dealing with two different systems: Perturbed Conformal
Theories and LLM Geometries. In the future, I intend to both continue working in these

directions, as well as analyzing new avenues for advancing our knowledge. I have broken
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my concluding remarks into two sections, one for each part of the thesis. In each section,

I briefly review some of our findings, as well as touch on ideas for future work.

6.1 Conformal Perturbation Theory

Part T of this thesis contained my work on conformal perturbation theory (CPT),
starting with an unspecified conformal theory in an arbitrary number of spacetime di-
mensions and perturbing it by a scalar operator with arbitrary scaling dimension. There,
we were able to compute universal results, such as in chapter 2 [35], where we computed
the first order correction to the one point function. This quantity initially had both UV
and IR divergences. We were able to provide an IR regulator by putting the CFT on a
cylinder and saw that the remaining UV divergences were logarithmic and had the same
form as the standard ones seen in dimensional regularization. We further showed that
this matched the dual calculation on the AdS side, providing a piece of support to the
conjecture. We also considered a time dependent set-up, where we quenched from the
perturbed to the unperturbed theory and calculated the energy after the quench, which
ultimately depended on the correction to the one point function, showing that it is also
universal. This supported and further explained the work [23, b0].

In chapter 3 [36], we pushed this work further. Corrections to correlation functions
in CPT all have a form similar to the standard Feynman integrals found in QFT. By
including various functions in the integrals, can make them more convergent and make
progress. Different functions will, of course, have different physical interpretations. One,
as seen in the earlier work, comes from transforming the two point function to its form
on a cylinder. In this work, we consider the Fourier transform of the two point function

and the correction to the two point function where the perturbation has a 1/|x%| scaling
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profile. We also look at the first order correction to the three point function, which takes
a similar form to the second order correction to the two point function. Again, all of
these results were universal. Finally, we found that for time dependent perturbations
on the cylinder, there are resonances matching those that would be expected in time
dependent perturbation theory.

We are currently pushing this work in a couple different directions. On one path,
we are attempting to compute and interpret scattering states in AdS in terms of their
field theory dual, using CPT. We are looking at, for instance, the amplitudes for such a
process to occur. I am also analyzing how working in Mellin space might help with our
computations. Beyond these specific calculations, I am interested in seeing more generally
what progress can be made in discovering new quantum field theories by perturbing away
from a conformal theory. This has the potential to carving out new regions in the space
of all possible QFTs. One might, for instance, wonder if there are more non-Lagrangian
QFTs out there (like the (2,0) superconformal theory in six dimensions, which currently

has no know Lagrangian description).

6.2 Half BPS States

Examples of gauge/gravity dualities where we currently understand both sides well
are few. One of these comes from considering the set of half BPS states of N’ =4 SYM.
These are useful because the extra symmetry allows us to perform highly controlled
computations on both sides. Lin, Lunin, and Maldacena classified the set of non-singular
supergravity duals to these, the LLM geometries [63]. In chapters 6 and 7 [38, 40], D.
Berenstein and I worked in the infinite N limit of this system, where the field theory

can be described by a free chiral boson in 141 dimensions, which can simply represented
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by an infinite set of harmonic oscillators. We built extensive technology to analyze this
system, which we then used to ask questions about quantum gravity. One of our most
interesting findings was that there cannot exist a topology measuring operator for these
states, which leads one to doubt the existence of one in quantum gravity more generally.
Fortunately, we were able to show that one can extract the topology for a certain class
of states via entanglement and uncertainty computations. This advances the idea that
there is an intimate relationship between geometry and entanglement |79, 37, 2, [/8].
As previously stated, this was all in the infinite N limit, where there exists a canonical
factorization, which made computing the entropies straightforward.

In chapter 8 [39], we made some progress beyond the infinite N case, showing that
one can still extract topological information from uncertainty and entanglement compu-
tations. There, we also clarified some peculiarities of this system in terms of the language
of quantum information. Using effective field theory methods, we considered classes of
states formed by acting on topologically distinct reference states with small energy exci-
tations. This way of building states looks precisely the same as the code subspaces built
by Almbheiri, Dong, and Harlow in [I22]. There, they considered building a code subspace
by acting low energy fields on the ground state, whereas we considered many code sub-
spaces, each formed by acting on a reference state with low energy fields. We found that
many physical questions (for instance, about the topology) could only be asked within
a particular subspace, as one might find differing answers in the full Hilbert space. In
this way, one needs to consider the code subspaces in order for the dictionary to work
unambiguously. This state dependence is reminiscent of that found by Papadodimas and
Raju [I26, 108]. Currently, I am working to make further progress beyond leading order,
looking at, for instance, the first non-zero contribution to the three point functions to

see what we can learn.
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In chapter 5 [37], we asked questions about the duality itself. We analyzed whether
one can reconstruct the bulk using only classical boundary data (specifically, only ex-
pectation values), again for LLM geometries. We found that this is ambiguous, as one
set of classical boundary data corresponds to many bulk geometries and one can only
distinguish between these with access to more information. This went against what was
previously thought about bulk reconstruction.

Finally, I have more recently been thinking about a different class of half BPS states.
The LLM geometries that we have been considering thus far are non-singular, but there
also exist half BPS states of N' = 4 SYM that are dual to singular geometries. These
can further by separated into those with and without closed timelike curves. Happily,
the former were found to be dual to non-unitary states in the CFT [I16]. It would be
interesting to further explore, within these dualities, physically bad states are always
dual to other physically bad states or not. And, further, if this is something we want or
need out of our duality.

A subset of the singular geometries without closed timelike curves form the superstar
geometries [I38, 91]. These have naked singularities, but are near horizon forming. While
there has previously been some work on these states, there is still a lot we have to learn.
For instance, to what extent can we think of these as black hole solutions? And, how

deep into the bulk can we probe them with currently understood methods?
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Appendix A

Integral with three centers

We compute the integral given by

1
I[ﬁ,al,ag,ag,d] :/dda: (A.1)

|z — w21 |z — w2 |z — ws |2
This integral was originally studied in [I39], where the answer is given in terms of an
Appell Function, see also [65]. We follow instead the treatment of [66], which expresses
the final answer in terms of an integral of modified Bessel functions.
We will introduce a Schwinger parameter for each term in the denominator. This

gives

ds ds ds st ggel gget
/dd / LR [ag];[ag] 2 exp (—s |z — wi]® — 59 |T — wa|® — s3 |:L‘—w3|2)
(A.2)

Completing the square in the exponential gives
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/dd ,/ dsy d52d33 s 135‘2 15§3 L
on] I'[ao] ' [a3)]

2 2 2 2
+ 8903 + +
« exp <_5t [(x,)Q B (s1w1 + Sows + S3ws) N (s1w] + Sow3 + S3w3)

S? St

)m@

(srwitsswatssws) ang g = g, + 89 + 53. We can now easily perform the

St

where 2/ = x —

integral over =’ because it is gaussian. This all gives

1 a2—1 _az—1 2

a2 [ dsidsadsy st sy syt (s1w1 + Saws + S3ws3) ) 5 )

I=n — (s10] 4 sowj + s3w3)
0

[ [aa] T [a] T [ag] 577

St

(A4)

We can simplify the exponential, leaving

a1—1 as—1 _az—1 2 2 2
a4 dsydsgdss s 857 sg 5189Wiy + S2S3wW5s + S351W3;
I=r Xp | —
0

A5
HMFMWM%W } (A.5)

St
Now introduce a change of variables

V
5= o = V1V + VU3 + U3Vo (AG)

QUJ‘ 2’Uj

These result from finding a change of variables such that sjsess/(sys;) o v;, and the
factor of two is the same convention as in the appendix in [b6].

The measure will change as ds;ds,dss = 802 2 deldvgdvg Our integral now takes the

form
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© 8 dv, dvyd v\ 1
:7Td/2/ 32,22 L /2 H (—> exp {——vjﬂﬂ (A.7)

" % q ovdf2-05- 1 )

where QF = (wy — w3)?, Q3 = (w; — w3)?, and Q2 = (wy — wy)?, and where we have used

Voét—d/Q _ ('Ulvg’t)s)atfd/Z

(7' + oyt 403!

)d/2 o (A.9)

we also have used the shorthand I'® = T'[o T[] T[cxs].

We now introduce a fourth Schwinger parameter for the sum Y v; !, which gives

/2 > i1 d/2—a;—1 1 t

= dv; T AT — 02 - =
2" /0 T[]l o] T [ ~al] Ul P { 207 v,}
(A.10)
Notice that if d = 2¢4 this is not necessary and the integral is elementary (this is a

special case of the magic identities [140]). Continuing on, we would like to write this in

terms of the modified Bessel function

L rz\y OO —u—ﬁ -v—1
K,(z)=— (—) e Ty du (A.11)
2\2/ Jy
To do this, we simply change variables to svjw?, = uj, du; = dvjwy;, v; = i%
kl
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Our integral becomes

a2 o dttd—ee—1 > 2N e Q2
_ T / Hduj 2 T L
(2)af*d/2 o Dag| T ag]T [as] T [d — oy ; 02 J 2u,;

- J (A.12)

- 00 dt (\/g)d/272 3 B v
— qd/2 () Q ety 20
72 (2) /0 F[al]f‘[ag]r[ag]r[d—at]jl;[l J d/2 e o (f ])

(A.13)
It turns out that this expression is sufficient to extract the divergence structure that
we are interested in. To see the relation to secular resonances, we need only the parts

that include the frequency.
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The Murnaghan-Nakayama rule

A standard problem in the group theory of the symmetric group .S, is the computation
of the characters of conjugacy classes [o] in a given representation R. That is, we want

to compute

xr([o]) (B.1)

and as is explicitly presented in section B=3, we need these characters to implement the
Fourier transform relating the “string basis” and the “D-brane basis” of our Hilbert
space.

The representations R of S,, will be labeled by Young diagrams with n boxes, while
the conjugacy classes will be presented in a cycle form [o] = ¢} ... t;* with ) kw = n.
The Murnaghan-Nakayama rule gives a recursive way to evaluate yg([o]) in terms of
X([7]), where we have that [0] = [5]t, for some t,, and the R is a set of representations
of S,_s related to R and s in a particular way.

The rule is easiest to explain with an example first.
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Consider for example the tableaux with 10 boxes given by

(B.2)

which is a partition of 10. Assume that we want to compute the characters for splitting
into two traces (only group elements with two different cycles) of the diagram. There
are 5 such possibilities: 5+ 5,6 4+4,7+ 3,84+ 2,9+ 1. Let us compute the splitting into
5+ 5. The first step is to find the hooks of the diagram, and to decorate the diagram

with the hook lengths, in the standard way

(B.3)

N =] Ot OO

This will be useful, as hooks are in one to one correspondence with skew hooks, which
are of interest to us, and the corresponding pairs have the same length. We see that there
are two (skew) hooks of length 5. We first remove one of the two length 5 skew hooks,

as shown in the figure
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the other option is

oo (B.5)

As you can see, a skew-hook is a regular hook that has been moved to the edge of the
tableaux. Like standard hooks, they do not contain a 2 x 2 squares. As previously stated,
the set of skew-hooks and regular hooks are in one to one correspondence, so one reads
of the allowed skew-hook lengths by reading the lengths of the ordinary hooks.

A sign is assigned to each such skew hook. The sign is (—1) if the number of rows
covered by the skew hook is even, or (+1) if this is odd. After removing the skew-hook
we are left with a proper partition, and we are also left with a cycle decomposition of
the remnant of the group element (or conjugacy class). The Murnaghan-Nakayama rule
states that to obtain the character of a diagram, sum over the characters of the remnant
of the group element on the remnant tableaux with the sign of the skew-hook accounted
for. Let us do so for the example above.

To simplify, we will notate a young diagram by the length of its rows. Thus, the
full diagram is (4,2,2,1,1), and we will notate the conjugacy class by the lengths of the
cycles. That is, [5, 5].

For the example above, one skew hook has an odd number of rows and the other has

an even number of rows, so the sign is (+1) and (—1) respectively. The rule then gives

X4,221,1([5,5]) = x1,1,1,11([5]) = xa1([5]) =1 +1=2 (B.6)

where the character of the remnant character is also £1 and is determined by the number
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of rows it contains. Since there are no hooks of length 6,7,9 (as made explicit by our

diagram with the hook lengths notated), we also find immediately that

X4,2,2,1,1([674]) = X4,2,2,1,1([7a 3]) = X4,2,2,1,1([97 1]) =0 (B-7)

while for the last one, we find

Xa2211([8,2]) = x1a([2]) = -1 (B-8)

A convenient way to think about the Murnaghan-Nakayama rule is that it gives the
action of the lowering operators sd;, on the Young diagram basis, and so it does not just
compute the characters, but the action of the lowering operator on the Hilbert space of

states. Let us discuss this with a few examples. Consider first the state

) =T T T T ]+ o] | |+ + (B.9)

We could act on this state with the lowering operator a;. The conjugacy class states are

just Fock space states, so we know

ay|tit3) = [t3) (B.10)

We could further compute the necessary characters using the MN rule and expand

the new state as

1) =TT -+ 2 -+ (B.11)
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Alternatively, we could have considered applying the lowering operator directly to the

diagrams. Our lowering operator is aj, so it removes skew hooks of length 1 as shown

a A =TT+ (B.12)

There were two possible ways to remove skew hooks of length 1, so we end with a sum
of the two possibilities. On the other hand, if we apply this to the trivial representation,

there is only one way to remove a hook, so we have

a [ [ [ ]=[11] (B.13)

Applying the lowering operator to the full state, we find

| |
alttd) = a | [T+ -2+ 1+ (B.14)

=T+ 220+ e B

We see that if we simplify this, we get the same expression for the state |¢3) shown above.

We would expect that if we apply any a; to our original state |t1¢3) with j > 2 that
this should kill the state. Let’s see how this works diagrammatically. Of course, there
are no skew hooks of length greater than 5, as each diagram has only five boxes, so any

a; with j > 5 will kill the state. As a less trivial example, let’s consider acting with as.
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This gives

asltrity) =as | [T [ [ | |+ | 2] + + (B.16)

ZE_H_E+H:O (B.17)

where we remember that if the height of the hook is even, then the diagram changes sign.
Notice also that there were no allowed hooks of length 3 in the third diagram, so that
piece vanishes.

Finally, we would expect that if we apply any a; on the state |t;), then we should get
ajlt;) = j|0), where the factor of j comes from the commutation rules for our raising and
lowering operators: [a;, a;] = 0;;j. We will represent the vacuum diagrammatically as e.

As an example of this, we have

asfts) = as | (T T T~ |+ - (B.18)

—eoefeoeteof+eoe=40=41|0) (B.19)

where each piece was exactly a skew hook of length 4 and so became the vacuum state
when hit with a4. Also, note the sign changes come from the height of the hooks.
One can see that this is indicative of the general case. This is handled by using the

fact that
" B.20
Y T B2
Now, let us try to remove one t; from the above equation, by acting with sd;, on a
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monomial []#*. We get swst?=~!. The extra factor of s and ws cancel terms in the
denominator, so that we get regular denominators as would correspond to [o]/ts = [7]
for any sigma that has a t; in it.

Now we use that xglo] = > (—1)*xz([d]) where (—1)* is the sign assigned by the

Murnaghan-Nakayama rule. That is, we find that

88,55

R OIS O/ D C i N L)
R hooks of length s

and because we recognize that the sum is over [7] unrestricted, we find that on the right
hand side we sum over the states R with the Murnaghan-Nakayama rule sign and nothing

else.
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Assigning Young Tableaux to

Fermions states

The ground state of the multiple particle system e is defined by the Slater determinant

(C.1)

antisymmetrized

o= lim |~1/2)|-3/2)...|-N/2)

where, as in the text, we shift our allowed energies so that particles sit at half integer
levels. And, as usual, the ground state has the full infinite tower of negative states
occupied. This can be represented pictorially as follows, as in figure Cl, where dots
represent filled states and circles represent holes.

A complete basis of states is given by

|{n}> = ]\;lj}(l)o |7’L1> |’I’L2> tee InN>antisymm (CQ)
with ny > ny > ng > --- > ny, half integers, and for all sufficiently large j we require
that n; = —%. This state is represented by filling in each n; energy level with a dot.
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Figure C.1: Vacuum State of Fermi Sea

If a particular value of j is missing, it is left empty (circles in the drawings).

To each state, we will assign a Young diagram whose j-th row has r; = n; — (% —7)
boxes (and if r; = 0 we leave those rows empty and without boxes). By inverting this
expression, we can go the other way, assigning a state of the Fermions to a Young diagram.
We then relate these diagrams to representations of the symmetric group.

A trivial representation (totally symmetric if considered as a representation of U(N)
instead of S,,) corresponds to an excitation out of the sea, with an energy equal to the

number of boxes. That is, the state given by

[TTTT] (C.3)

corresponds to the figure C2
Further, the totally anti-symmetric state corresponds to a hole, where an n-box rep-

resentation corresponds to a hole n spaces below zero. That is,

(C.4)

corresponds to the figure C3.
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Figure C.2: Excitation with 5 units of energy on the highest Fermion

Figure C.3: Excitation with 1 unit of energy on the highest five fermions, or equivalent,
a hole with 5 units of energy has been excited

Basically, a tableaux is assigned by taking the highest fermion energy available and
subtracting the energy of the highest occupied fermion in the ground state and assigning
that many boxes to the first row of the tableaux. We then do the same with the sec-
ond highest energy fermion, and so on until all the subsequent fermions in the excited
state have the same energy as the corresponding fermions in the vacuum, where we stop

assigning boxes.
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Can Topology and Geometry be
Measured by an Operator

Measurement in Quantum Gravity?

One of the main claims of the AdS/CFT correspondence [3] is that it provides a definition
of quantum gravity for spacetimes that are asymptotically of the form AdS x X. It
is natural to ask: what does this holographic description tell us about the nature of
observables in the quantum theory of gravity?

By an observable, we mean a Hermitian (linear) operator on the Hilbert space of states
as is usual in quantum mechanics. In this context, is the metric a quantum mechanical
observable? Is topology measurable by an observable? And if the answer is no, then
when are they sufficiently well approximated by observables?

We define 7' to be a topology measuring operator if different eigenvalues correspond
to different topologies of the dual gravity theory and the zero eigenvalue is reserved for

the trivial topology alone. Here trivial means the same topology as the ground state.
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Our main conclusion is that such topology measuring operators do not always exist. We
support this by providing an example where one can prove that there is no such operator.

The example arises from studying the states that preserve half of the supersymmetries
of N = 4 Super -Yang-Mills theory (SYM) and their dual geometries.

The set of states we are interested in forms a Hilbert space in its own right. Quantum
mechanics is therefore valid and quantum mechanical questions can be answered unam-
biguously. The relevant Hilbert space of states near the free field theory limit gy, — 0
has been analyzed in [64]. An orthogonal basis of states of energy £ = n can be repre-
sented by partitions of n, which can be written in terms of Schur polynomials and are
classified by Young tableaux for U(N). These states can also be represented in terms of
free fermion dynamics for N fermions in the lowest Landau level on a plane [65]. This
description gives rise to a geometric interpretation of states as incompressible droplets in
two dimensions. These free fermions can also be described by the incompressible droplets
of the integer quantum Hall effect [T4T].

The geometric droplet shape is exactly the geometric data that is required to build
a horizon-free solution of type IIB supergravity that respects the same amount of super-
symmetry and that also asymptotes to AdSs x S°, as constructed by Lin, Lunin, and
Maldacena [63]. We will call these the LLM geometries. In these geometries, different
droplet topologies correspond to different spacetime topologies.

There exists a limit of the LLM geometries where a complete minisuperspace theory
characterizing all the states with the requisite amount of supersymmetry, as a quantum
theory, is identical to the Hilbert space of a free chiral boson on a circle in 141 dimensions.
This limit is the strict N — oo limit of the theory, with the energy above the ground
state kept finite. The mode expansion of the chiral boson can be related to traces of the

N = 4 SYM fields Z by al ~ tr(Z") via the usual operator-state correspondence and
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the understanding that single traces go to single particle modes [@]. In this limit, the
oscillators give a rise to a free Fock space, with a free mode for every n. We will take the
existence of this limit as a statement of fact and it is in this limit that our statements
can be made rigorously. Many of the technical details that are required to prove some
claims in this paper will appear in a forthcoming paper by the authors [38].

This paper makes the claim that topology cannot be measured by operators. To make

the claim, we need the following assumptions about the particular setup we have:

1. All coherent states of the chiral boson theory with finite energy have trivial topology

(the same as the vacuum) and are to be thought of as smooth classical geometries.

2. The set of these coherent states is over-complete, so every other state in the Hilbert

space can be obtained by superposition of this family of states.

3. There are states in the Hilbert space that have a different topology than the vacuum

and can also be thought of as classical states of the gravitational theory.

From these assumptions, it follows that there is no operator T in the Hilbert space
that measures the topology. We now prove this statement by contradiction, assuming
the existence of 7.

From assumption one above, all coherent states have trivial topology, so T |Coh) = 0.

Any other state |¢)) that is a superposition of coherent states will satisfy

Ty = T / Acon |Coh) = / Ao T’ [Cob) = 0 O.1)
Coh Coh

so the ket [1)) is an eigenstate of the topology operator with eigenvalue zero: it has trivial
topology. By condition two above, this includes all possible states. Therefore, if such an
operator exists, all states have trivial topology. This contradicts the third assumption
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A related argument where overcompleteness is used to indicate problems with defining
either topology operators or geometric operators is found in |09, I08]. These arguments
are made in the ER = EPR context [[78] for setups with entangled black holes, and the
topology change is hidden behind a horizon in an Einstein-Rosen bridge.

We will now elaborate on the basis for assumptions one and three. Assumption two
is a well known fact for studying states of a finite number of harmonic oscillators. It
can be extended to the case of an infinite number of oscillators by carefully taking the
appropriate limits.

A geometric picture of the states can be obtained as follows: in the LLM geometries,
all states can be drawn as a two color picture in two dimensions. The individual droplet
areas of both colors are quantized. As we are focusing on N — oo, keeping the energy
finite, all relevant states are close to the circular droplet that makes the vacuum. We

want to focus on the edge of the droplet, by using an area preserving map

dedy ~rdrdf = dhdf (D.2)

where the variable i will be measured relative to the circular droplet. In this setup, the
N — oo limit is taken by sending r — oo, keeping h finite. In this limit, |h| can be as
large as we need it to be. The topology of the (h,#) space is a cylinder. The vacuum
has the area below h = 0 completely filled, and above h = 0 completely empty. We
can excite fermions from the filled region to the empty region and will characterize this
shift by a density function Ap, which takes on a value +1 for regions above h = 0 and

—1 below. Conservation of the fermion number is implemented by [ dhdf Ap = 0. The
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energy relative to the vacuum is measured by
E~ /d& dh h(0) Ap(h,0) (D.3)

This follows easily from the computations in [63], being careful about subtracting the
energy of the vacuum.

A typical geometric fluctuation is depicted in figure D1. The fluctuation is described

Figure D.1: A geometric fluctuation of the vacuum, characterized by h(0).

by a single height function h(#) that represents the edge of the droplet.

The function h(f) is the excess density of fermions at the angle 6. It gets matched
to the charged current of the chiral boson as h(f) o 09X (#). Conservation of fermion
number is described by [ df 9y X (6) = 0. That is, the field 95X has no zero mode. This is
exactly as is expected from studies of the quantum Hall effect (see for example [142, K3]).
It follows from integrating Ap over a column in equation (D=3) that the energy goes to
E ~ 5 [df : 0,X(#)* :, where the normal ordering ensures that the vacuum has zero
energy. This is the standard expression for the energy in the chiral boson theory. The
factor of 2 is a choice of convention for normalization of the field Fourier modes.

A coherent state of the free chiral boson will result in a unique (sufficiently smooth)
single valued h(f) o (0X(0)) such that the classical energy of the state as computed

in (D33) is equal to the expectation value of the energy of the corresponding quantum
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state. All of these solutions have a classical LLM geometry that can be reconstructed
uniquely from h(#). The topology of the geometry is encoded in the topology of the
fermion droplet. All of these states have trivial topology in the LLM setting: one edge
with circle topology winding once around the circle direction #. This justifies assertion
one.

Now we need to justify assertion three. This can be done with figure (D). The

Figure D.2: Examples of two colorings with non-trivial geometry. On the left, the
areas L, M have quantized area L, M respectively. On the right, we depict a more
general folded configuration.

idea is that we can also do a two coloring of the cylinder that preserves the net area
and is such that the topology is now characterized by a strip-geometry. In this case,
there are three edges winding around the circle, two of them go from black to white (at
heights h1, hy) and the other one goes from white to black (at height &,). Edges with the
opposite coloring will be called anti-edges. We call this state the reference state |y ).
This state is easily constructible in terms of Young diagrams [63]. One can also consider
folded configurations (which are not translation invariant) as in the drawing on the right
of figure (D22).

Small fluctuations of the state |dpps) will be characterized by three functions hy(6) =
hgo) +0hq(6), ha(0) = hgo) +0hy(0), and hy () = ﬁﬁo) +6hy(0). Quantization of the area is
implemented by requiring that none of the dh have a zero mode in the Fourier coefficients.

This can easily be generalized to more stripes. A straightforward computation of the
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energy of such a geometry shows that the energy, relative to the reference state, is given
by
EZ&M+/w§:@Mm%wh@ﬁ (D.4)

with the edge modes having positive excess energy and the anti-edge modes having nega-
tive excess energy. The net fermion over density at position 6 is 90X () =~ hy(0) + ho(6) —
h1(#). The absence of the zero mode for X () results in h§°) + hgo) — ﬁgo) = 0. This
determines the location of the reference height, which tells us that the reference state
depends only on L, M, with no extra parameters.

We now claim that the new topology is generated by making the height function in
|Orar), h(F) multivalued. The function h(f) is related linearly to 90X (#) in the classical
coherent state setup. The net 90X (6) that reflects a proper observable in the quantum
system is obtained by a signed sum over these multi-values. Indeed, because all the edges
are similar, one can imagine that to each of the edges one could associate a chiral boson
field theory so that 0X(0) = 0X;(0) + 0X2(0) — 0X5(0). Because in equation (D)
the tilded modes have the wrong sign, the notion of raising and lowering operators is

reversed. We can rewrite this equation in a mode expansion
af, = T 4 pt — D (D.5)

where the b modes refer to regular edges, and the ¢ modes to the anti-edges. Notice,
without the lowering operator pieces in equation (D), the necessary commutation re-
lations of the a,, modes could not be satisfied. This also gives the correct equations
of motion for 90X, with each of the modes satisfying them on their own. The negative
energy associated with the modes c is crucial, so that the notion of positive and negative

frequency can reverse the assignment of raising and lowering operators. This equation

258



Can Topology and Geometry be Measured by an Operator Measurement in Quantum Gravity?
Chapter D

can be thought of as a partial Bogolubov transformation mode by mode. The reference
state is characterized by b Orum) = RS |Ora) = 0 for all n. A similar analysis for a
folded configuration would require decomposing in modes that also have position resolu-
tion (a wavelet transform) and the multivaluedness would have to be assessed locally in 6
with some resolution. Folded configurations cannot evolve from unfolded configurations
in this setup, but they can in the ¢ = 1 matrix model [IT2]. A proper analysis of folded
configurations and how to extract their topology is beyond the scope of the present paper.

The linearity of the mode decomposition for strip geometries has already been sug-
gested in [87] (see also the more recent [IT1]). The construction of such modes is purely
combinatorial and depends on knowing how to manipulate the states labeled by Young
tableaux carefully. The commutation relations of the b, ¢ modes are canonical for states

near the reference state. This can be deduced from [R0]. We take these to be

n’'n

b0, 1] = pstd (D.6)

and similar for ¢, with all other commutators vanishing. These assertions are proven in the
companion work to this paper [38], where the details on the cutoff and the applicability
of these commutation relations are deduced from first principles. The nearby states form
a small Hilbert space in their own right. The commutation relations are valid when inside
the small Hilbert space, but they get corrected as we try to include more states.

These new modes only extend to values of order n << M, L. Beyond that they do not
exist as independent operators [38]. This is a type of stringy exclusion principle of the
same type as the one implemented in [[Z1]. It is dynamically generated and depends on
the reference state (depends on L, M). The modes b, ¢ do not exist for any of the coherent

states |Coh) that we have discussed previously. For those states, the height function is
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single-valued. We should not be able to extend the definition of these modes to those
states. We claim we are prevented from doing so by the stringy exclusion principle.
The existence of these strip-geometry states justifies our third assumption, and therefore
completes our argument that one cannot have a topology measuring operator.

Does this lack of a topology measuring operator mean we simply cannot determine
the topology of the spacetime? In the remainder of the paper, we will give two reso-
lutions: one that involves measuring classicality of the state and one that involves its
entanglement. Both of these rely on computing quantities that are non-linear in the
wavefunction, rather than performing a single operator measurement.

Consider forming coherent states of the b, ¢ oscillators, which can be interpreted as
new classical solutions relative to the state |Orys), with dh%(6) o (0X*(#)) and similar
for the anti-edges. These are allowed as long as the tails in the coherent state can be
truncated without appreciable loss of information.

The existence (construction) of the b, ¢ modes means we can do (unitary) effective
field theory in the nearby Hilbert space with them. We just need to restrict ourselves to
being well below the stringy exclusion principle. The small Hilbert space is constructed
by acting with finitely many raising operators bf, cf, keeping the total energy in the b
modes less than min(L/2,M/2), and the total negative energy in the ¢ modes less than
min(L/2,M/2). In that regard, the operators al,a, well below the (dynamical) stringy
exclusion principle act inside the small Hilbert space, leaving the new state inside it.
Any quantum mechanical question about them can be answered in principle in the small
Hilbert space: they belong to the effective field theory. This explains why effective field
theory is still valid in the gravity theory.

Consider taking the expectation value of the number operator N,, for mode a,, in the
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reference state (this is easy to do for multi-edge geometries). We find that

<n_1alan>LM - Nanti—edges <n_1anaL>LM - Nedges (D7)

so the expectation value of the number operator (on reference states) can be used to
measure the topology, mode per mode. The number operator can change a lot when
we consider coherent states of the b,c¢ modes. Let us call one such state |¢)). Consider
instead of the number operator, the uncertainty. A straightforward manipulation shows

that

(™ (al, = (ah))(an — {an)s))w = Nanti-cdges (D.8)

We see that the topology of the coherent state of the b, ¢ oscillators, the new classical
states, can be measured by computing the net fluctuations of the modes af. These are
still of quantum size (order one), so the state can be said to be approximately classical
for each of the modes a,. In taking a double scaling limit A — 0, implemented by taking
L, M — oo and rescaling the fields by appropriate powers of L, M, the rescaled uncer-
tainty vanishes. In this sense, these topologically different drawings provide new classical
limits of the free chiral boson. Similar limits for folded setups have been considered in
the ¢ = 1 matrix model [IT2], where it is found that in general (h(6)?* — (h())?) is large,
but does not measure the number of edges directly.

The topology for the state |[Jpy,) is measurable by the uncertainty. This is a non-
linear operation in the Hilbert space: it is not a single operator measurement, but a test
of classicality. If we want to extend the measurement of topology to the semiclassical
limit, where we allow a few quanta of the b, c modes to be in a state that is not a coherent
state, we find that to measure the topology, we have to ask each mode a, what value

of uncertainty they measure. The few modes that are outliers can be discarded and the
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majority rule will be used. We call this a census measurement. The best answer for the
topology will be given by the consensus of the majority. This depends highly on what
scale we use to cut off the census. This should be determined by the stringy exclusion
principle, which is related to the value of L, M. But, we do not know these a priori:
the state is given to us as a black box. If the cutoff is set at a scale much larger than
L, M, most of the a,, modes will be in the vacuum and we would find that state has a
trivial topology. If the cutoff is set well below L, M, the consensus might give a different
topology than if we measure near L, M. This is because the b, ¢, modes may be forming
thinner striped states on their own.

We will next use the idea that spacetime geometry and entanglement seem to be
intimately related. We compute the entanglement entropy using the Bogoliubov trans-

formation. Starting with a coherent state of the b, ¢ modes, we find

Sn = Nedges In Nedges - Nanti—edges In Nanti—edges (D9>

where everything but the a,, modes have been traced out. As with the previous method,
we need to perform this computation for many modes and find consensus to determine
the topology of nearby semi-classical states. We can only be sure of the accuracy of
this calculation for modes below the stringy exclusion principle. The connection we find
between topology and entanglement supports the ideas of Van Raamsdonk [[72]. Related
ideas about connectedness being related to entanglement are currently being developed
by Almbeiri et al. [II0].

It is important to note that we have been working in the strict N — oo limit. At
finite N, there is no longer a canonical factorization of the Hilbert space, so comput-

ing the entanglement entropy becomes ambiguous. This suggests that the uncertainty
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measurement definition of topology might be preferable in general.

Further, at finite N, the Planck scale scales as ¢,;* ~ N4 If L, M >> N'*, there
are many more modes with energy below £, Lin the geometry with the striped topology
than when computed in the ground state of the system. These all commute with each
other. To describe these multi-droplet geometries, one needs to borrow supersymmetric
modes from the UV [37]. To end up with the extra finite energy modes, whose energies
are of order one, one needs the UV modes to be excited. That way, the UV modes don’t
annihilate the reference state and one can form a bound state of a mode that raises
the energy with another mode that lowers it. These UV states that lower the energy
count as large negative energy excitations relative to the reference state. Bound states
at threshold between the large positive energy excitations and the large negative energy
excitations provide a consistent solution to the presence of the extra modes, including an
explanation for the modes ¢ with negative energy.

To summarize, we have shown that states with non-trivial topology can be formed
by superposing topologically trivial states. We have shown that in our examples, the
topology for multi-strip geometries can be accessed either by computing the uncertainty
or the entanglement entropy of the different modes. Neither of these two methods of

measurement correspond to a single operator measurement in the Hilbert space of states.

263



Appendix E

Conjugacy classes of 5,

Consider the group of permutations S,,. The list of irreps of S, is in one to one corre-
spondence with Young diagrams with n boxes. The cardinality of this set is also equal
to the cardinality of the set of conjugacy classes of the group S,, which we label by a
group element representative [o]. The element o acts on the set of n elements as a one
to one function o : {1,...n} — {1,...,n}, sending i — o (7). We can also represent this
as a cycle decomposition

1 1 1 2 2
o=mMnd )P ey (E.1)

1

where the set of elements {néj)} is the set {1,...n}. It follows that n = >  k; Each

m € {1,...,n} only appears once, and the elements on each parenthesis are called a
cycle. We can recover the action on the set by the convention that a(n%)) = n%)ﬂ,
with n,(jj )+1 = §j ), Basically, the cycles represent the iterated action of ¢ on individual

1)

elements of the set {1,...n}. An individual cycle (ng nél) . n,(gll)) is said to have length

k1. We can choose the k; to be non-decreasing by permuting the order in which the
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individual cycles are presented. This does not change the assignment of .
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