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Te power of quantum computing may bring a revolution in fnance and banking. Here, we present quantum software, BQ-Bank
for option pricing, Value at Risk, portfolio optimization, and others. BQ-Bank can be run on a real quantum computer such as
superconducting system or on an emulation system based on a classical computer with an interface. BQ-Bank, such as other
quantum types of software, represents a new generation of the toolbox that likely brings disruptive innovations to the fnancial
industry and banking market in the future. BQ-Bank also provides the classical Monte Carlo solution, so that users can compare
their quantum results with classical ones directly. Our simulation results for a variety of examples show the superiority of quantum
solutions.

1. Introduction

Based on quantum physical principles, such as quantum
superposition and quantum entanglement, quantum com-
puters [1, 2] can provide unprecedented powerful compu-
tational capabilities. Compared with classical algorithms,
quantum algorithms possess tremendous speedup in solving
certain problems, such as Shor’s algorithm [3] for integer
factorization, Grover’s algorithm [4, 5] for unsorted data-
base search, and Harrow–Hassidim–Lloyd (HHL) quantum
algorithm [6] for linear systems of equations.

Quantum computers are expected to have a substantial
impact on the fnancial industry and banking market [7, 8].
Financial institutions such as J. P. Morgan Chase, Barclays
Bank, and Goldman Sachs Group have already established
collaborations with quantum computing companies such as
IBM and Amazon to explore the use of quantum computing
in fnance. Spanish bank CaixaBank has also joined hands

with IBM to develop a fnancial asset risk analysis simulation
project. Canada’s BMO Financial Group and Scotiabank
have partnered with Australian quantum computing startup
Xanadu to develop quantum Monte Carlo algorithms to
improve the efciency of fnancial transactions and optimize
real-time pricing. Recently, Everbright Technology, together
with the Beijing Academy of Quantum Information Sciences
and Boson Quantum Technology, has released a quantum
portfolio product–Tiangong Jingshi (https://fnworld.
qboson.com) quantum computing quantitative strategy
platform.

On the one hand, the concept of quantum computing
can be mysterious to the general public, and performing
quantum algorithms requires prior knowledge for people
in the fnance and banking sectors and is beyond their
capabilities on their own; this limits the desire of the
public to explore in the quantum computing world; on the
other hand, experts in quantum computing are interested
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in how quantum computing can apply in the industry such
as fnance and banking but do not know how to
realize them.

Here, we report a quantum software platform designed
for the fnance and banking industry, Biwon Quantum Bank
(BQ-Bank) (http://biwonq.baqis.ac.cn/#/pages/fnance). It
includes four commonly used modules in fnance and
banking: option pricing, option revenues, Value at Risk
(VaR), and portfolio optimization. With the graphical in-
terface and preset data, one can access and use the previous
four modules without any prior knowledge of quantum
computing, helping the public especially fnancial workers to
learn and perform applications of quantum computing in
fnance.

2. BQ-Bank

In this section, we present quantum algorithms that are re-
quired in fnance and banking, and demonstrate how they are
harnessed to solve problems in the modules. In each module,
we frst ofer detailed descriptions of the problem andmodels,
then introduce the solution with conventional classical
methods of simulation, and a quantum solution. Finally, we
compare the results of the conventional method with its
quantum counterpart. More specially, in subsections 2.1 and
2.2, we introduce how quantum amplitude estimation al-
gorithm can apply to calculating option pricing and VaR; and
in subsection 2.3, we give a simple description of quantum
approximate optimization algorithm (QAOA), a method that
is believed to be adaptive to current noisy devices.

2.1. Option Pricing and Revenues

2.1.1. Black-Scholes Option Pricing Model. An option is
a right for the buyer in a contract, who can choose whether
to exercise the right or not. Terefore, the option buyer
needs to pay a certain price to the option seller for the option
right. Te price of option buying and selling is often de-
termined by the option market exchange, which refects the
entire optionmarket’s assessment of the future price trend of
the underlying asset. However, such a method is often not
that efcient, and options market prices often fail to refect
their actual prices, especially in markets with smaller vol-
umes. So, we need a price to guide options trading. On the
other hand, a large number of speculators in the market need
to evaluate the diference between the market price of the
option and its actual value, to invest in option buying and
selling.

Te research on option pricing can be traced back to the
year 1900, when French fnancial expert Laures Bachelier
discussed option pricing in his doctoral dissertation [9].
Since then, various option pricing models have been pro-
posed, such as the binomial option pricing model [10, 11],
trinomial option pricing Model [12], and Black-Scholes
option pricing model [13]. Among these, the Black-
Scholes model is the most widely known, which was pro-
posed by Fisher Black and Myron Scholes and furthermore
developed by Robert Merton.

Generally, to use the Black-Scholes model to estimate the
price of an option, say, European-style call and put option,
some assumptions shall be made, such as the revenues of the
underlying asset follows a normal distribution, the risk-free
rate is constant, and investors can borrow unlimitedly at this
rate, (more details can be found in “Section I: Option Pricing
and Black-Scholes Model” of the supplementary material
from section VIII of the main manuscript.)

(1) Call Option. Te equation for pricing a call option based
on the Black-Scholes model has the following form:

C � S · N d1( 􏼁 − Ke
− rT

N d2( 􏼁, (1)

where C is the call option price, S is the current price of the
underlying asset, N is the standard normal cumulative
distribution function, K is the exercise price, r is the risk-free
interest rate, T is the time of option expiration, and d1 and d2
are given as follows:

d1 �
ln S/K + r +(1/2)σ2􏼐 􏼑T

σ
��
T

√ ,

d2 �
ln S/K + r − (1/2)σ2􏼐 􏼑T

σ
��
T

√ � d1 − σ
��
T

√
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where σ is the standard deviation of the stock’s returns.

(2) Put Option. Te equation for pricing a put option based
on the Black–Scholes model represented by the previous
same parameters can be expressed as follows:

P � Ke
− rT 1 − N d2( 􏼁( 􏼁 − S 1 − N d1( 􏼁( 􏼁, (3)

where P is the put option price.
A classical simulation method for calculating the option

pricing value is Monte Carlo simulation, which is widely
used for dealing with uncertainty in many aspects of
business operations. In option pricing, Monte Carlo sim-
ulation can be used for sampling estimation to calculate the
value of an option with multiple sources of uncertainties and
random features.

2.1.2. Quantum Solution. Now, we show a quantum option
pricing algorithm, as a quantum version of Monte Carlo
solution to the option pricing problem. Considering
European-style options, the procedure of the typical
quantum algorithm for option pricing is as follows:

(1) Generate M expiration date prices X1, X2, · · · XM􏼈 􏼉

for the underlying asset by a stochastic process
(2) Calculate M revenues of the option f(Xi) at each

price Xi

(3) Obtain the averaged revenues on the expiration date
in a risk-neutral world:

􏽢EP[f(X)] �
1

M
􏽘

M

i�1
f Xi( 􏼁. (4)
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(4) Calculate its present value e− rT 􏽢EP[f(X)] which is
the option price, where r is the risk-free interest rate
and T is the option expiration date.

Te quantum option pricing algorithm starts with
generating the quantum state of the option revenues and the
underlying asset distribution on the expiration date. Ten,
the quantum amplitude estimation algorithm [14–17] (QAE,
for more details, see “Section II: Quantum Amplitude Es-
timation” in the supplementarymaterial from section VIII of
the main manuscript.) is utilized to obtain the option price.

Now, we explain how the QAE algorithm is used for option
pricing. By applying an operator |0〉n+1 to an (n + 1)− qubit
system initialized in |0n+1, the fnal quantum state reads

A|0〉n+1 � 􏽘
2n− 1

i�0

��������

1 − f Si( 􏼁

􏽱 ��
pi

􏽰
Si〉n

􏼌􏼌􏼌􏼌 |0〉 + 􏽘
2n − 1

i�0

�����

f Si( 􏼁

􏽱 ��
pi

􏽰
Si〉n

􏼌􏼌􏼌􏼌 |1〉,

(5)

where Si can be encoded as the option price, f(Si) represents
the revenue of option contracts at price Si, and pi stands for
the probability distribution of price Si. Let a be the prob-
ability of the (n + 1)-th qubit staying in state |1〉, the value of
a can be estimated by the QAE algorithm as follows:

a � 􏽘
2n− 1

i�0
f Si( 􏼁pi � E[f(S)], (6)

which is the expected value of the option on the expiration
date in (4).

Te previous equation shows how to obtain option value
with the QAE algorithm in a simplifed way; a more detailed
and accurate procedure lists are as follows:

Step 1. Under the assumption of random walk theory,
the price distribution of the underlying asset at the
option expiration date T is

p ST( 􏼁 �
1

STσ
����
2πT

√ exp −
ln ST − μ( 􏼁

2

2σ2T
􏼠 􏼡. (7)

After sampling and discretizing of the distribution into
pi, they are encoded into the amplitudes of a certain n−

qubit basis, and the corresponding state can be ef-
ciently prepared by parameterized quantum circuits
[18]:

|ψ(θ)〉n � 􏽘
2n− 1

i�0

�����

pi(θ)

􏽱

|i〉n, (8)

where i corresponds to the price ST in (7).
Step 2. For the revenue function of f(ST) � max (0, ST −

K) in the case of call option, the revenue function can be
divided into two parts, ST <K and ST ≥K.Tis is achieved
by adding an extraqubit (the (n + 1)-th qubit) to the
system, distinguishing the two parts with |0〉 and |1〉 of the
(n + 1)-th qubit, respectively.

ψ〉n

􏼌􏼌􏼌􏼌 |0〉→ 􏽘
i<K

��
pi

􏽰
i〉n

􏼌􏼌􏼌􏼌 |0〉 + 􏽘
i≥K

��
pi

􏽰
i〉n

􏼌􏼌􏼌􏼌 |1〉. (9)

Step 3. By encoding the revenue function f(i) into
a special function which satisfes 􏽥f(i) ∈ [− 1, 1]

􏽥f(i) � 2
f(i) − fmin

fmax − fmin
− 1, (10)

and adding an ancillary qubit initialized in state |0〉a,
the frst (n + 1) qubits can be used as control qubits to
rotate the ancillary qubit as an angle in a function of
􏽥f(i) as follows:

i〉n

􏼌􏼌􏼌􏼌 |1〉 0〉a

􏼌􏼌􏼌􏼌 → i〉n

􏼌􏼌􏼌􏼌 |1〉 cos c􏽥f(i) +
π
4

􏼒 􏼓 0〉a

􏼌􏼌􏼌􏼌 + sin c􏽥f(i) +
π
4

􏼒 􏼓 1〉a

􏼌􏼌􏼌􏼌􏼒 􏼓.

(11)

Step 4. After the measurement, we obtain the proba-
bility for which the (n + 1)-th qubit and the ancillary
qubit both in state |1〉:

P � 􏽘
2n− 1

i�0
pisin

2
c􏽥f(i) +

π
4

􏼒 􏼓. (12)

As we know, the function sin2 (x + π/4) can be ap-
proximated as x + 1/2 while x approaches zero. Tus, when
the value of c is small enough, the following approximation
is valid:

sin2 c􏽥f(i) +
π
4

􏼒 􏼓 ≈ c􏽥f(i) +
1
2

. (13)

By substituting (13) into (12), P is shown as

P � c
2 E[f(S)] − fmin( 􏼁

fmax − fmin
− c +

1
2

. (14)

Now, it is clear that E[f(S)] can be calculated with the
probability P, and it follows that the result value of current
option e− rTE[f(S)] is also on a silver platter.

2.1.3. Examples and Results. In the previous subsection, one
see that quantum computing plays an important role in
option pricing. However, for the general public, due to the
mysteriousness of quantum computing itself, and it is
neither easy nor practical to learn quantum computing and
quantum programming. To overcome this problem, we have
established a BQ-Bank web page, which provides software
applications related to option pricing with a friendly user
interface. We illustrate our modules for option pricing and
option revenues with concrete examples.

(1) Option Pricing.Te user interface for the quantum option
pricing module of European-style is shown in Figure 1. In
this user interface, we provide six main inputs as follows:

(1) Te current market price of the underlying asset
(2) Te option contract’s valid period
(3) Te risk-free interest rate
(4) Te annualized volatility

Quantum Engineering 3



(5) Te option exercise price
(6) Te choosing option of call or put options

In the backend, we provide three algorithms to calculate
the option price as follows:

(1) Black–Scholes model
(2) Quantum algorithm
(3) Classic Monte Carlo algorithm

In conducting option pricing with the quantum algo-
rithm, the users need to input the number of qubits (denoted
with n) in the user interface. For the convenience of com-
parison, the sampling number of the classic Monte Carlo
algorithm is set to 2n. After clicking the execution button, the
calculation result is shown in Figure 2, with respect to the
standard value shown by the Black–Scholes model, and the
result of option pricing from the quantum algorithm is
better than that from the classical Monte Carlo algorithm.
Because of the randomness involved in both algorithms, the
results will vary slightly from run to run.

(2) Option Revenues. Due to the discrepancy between the
option price calculated by the theoretical model and the
option price in the real market, speculators can arbitrage by
buying and selling options. An application for calculating
the expected option revenues strategy is also integrated into
BQ-Bank, and the quantum algorithm in the backend is still
based on the previous quantum option pricing algorithm.
Specifcally, this module calculates the expected option
revenues portfolio by estimating the price of each option
with a quantum option pricing algorithm and comparing it
with the option market price.

Similar to the inputs of option pricing, one can fnd the
user interface for calculating expected option revenues in
Figure 3. In addition to four inputs (i.e., the current market
price of the underlying asset, the option contract’s valid
period, the risk-free interest rate, and the annualized vol-
atility of the asset), there are also other user input parameters
required to construct an option portfolio. For example, to
add another pattern of options by clicking the “+” sign icon
at the end of its option input line, and to delete one pattern of
options by clicking its respective “trash can” icon. Each
pattern of options contains the option for call/put option,

the option for buying/selling options, its exercising price and
the option fee.

After executing the calculation, the result is shown in
Figure 4. From the fgure, we can get the estimated value of
the expected revenues obtained by the three algorithms for
the option portfolio we set. With respect to the standard
value shown by the Black-Scholes model, the result with the
quantum algorithm is better than the classical Monte Carlo
algorithm’s. Also, due to the randomness involved in both
algorithms, the results will vary slightly from run to run.

2.2. Value at Risk (VaR)

2.2.1. Classical Solution. VaR is a parameter used to assess
investment losses [19], and is often used as a risk measure of
risk management. A more specifc defnition gives that the
value of themaximum expected loss of an asset portfolio due to

Black-Scholes Model 0.0217

Monte Carlo Simulation 0.0198

Quantum Algorithm 0.0209

Black-Scholes
Model

Monte Carlo
Simulation

Quantum Algorithm
0.0000

0.0043

0.0087

0.0130

0.0174

0.0217

Figure 2: A result histogram of the option pricing with three
algorithms. From this example, we see that the result obtained from
the quantum algorithm is closer to that from the Black–Scholes
model compared with that from the Monte Carlo simulation,
indicating that the quantum algorithm is more accurate than the
classical Monte Carlo algorithm.

Figure 3: Te user interface for the expected option revenues
problem.

Figure 1: Te user interface for the option pricing problem.
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market price changes within a given confdence interval during
the holding period, as depicted in Figure 5, takes the form of

VaRα(X) � − inf x ∈ R: FX(x)> α􏼈 􏼉, (15)

where X is the proft and loss distribution (note the loss value
is negative and the proft value is positive), α is the given
probability, and FX is its cumulative distribution function.

Tere are three kinds of classical VaR algorithms,
namely, Historical VaR (H-VaR), Parametric VaR (P-VaR),
Monte Carlo VaR (MC-VaR) [20]. However, these algo-
rithms rely on diferent assumptions, so that their fnal VaR
values are often diferent.

(1) H-VaR. When we have a certain amount of historical
data in our hands but do not know the probability distri-
bution of asset losses, we can assume that the asset’s future
losses and gains are merely repetitions of past situations.
Ten, we use the VaR of the historical data to estimate the
future VaR. Te specifc method is to sort the historical data
by size, and determine the position of VaR in the sorting
according to the product of the probability α and the size of
the historical data.

(2) P-VaR. If we assume that the asset’s loss distribution
follows a normal distribution, we can use historical data to
estimate the mean and variance of the normal distribution,
then use the normal distribution function to calculate the
VaR at the probability α.

(3) MC-VaR. Here, we use the Monte Carlo method to
simulate future asset market changes. A variety of risk
factors need to be considered in the simulation process,
which makes the simulation methods diverse and difcult.
Among them, the geometric Brownian motion model is
relatively simple. In the process of computer simulation, the
geometric Brownian motion discrete model is

∆St � μ · Δt + σ · St · ϵ ·
��
∆t

√
, (16)

where St is the price of the asset at time t, ∆St is the frst-
order diference of the prices, μ is the mean value of his-
torical returns, σ is the standard deviation of historical
returns, and ∆t is the unit time of returns. In the MC-VaR
method, we randomly select ϵ according to the normal
distribution N(0, 1) at each step of the time evolution of the
asset holding period, so as to calculate sampling points on
the expiration date.

2.2.2. Quantum Solution. In this subsection, we show how
the QAE algorithm applies in calculating VaR [21, 22]. We
discretize a random variable X and then map it into a qubit
system 0, 1, 2, . . . , M − 1{ }, M � 2m, where m is the number
of sampled qubits, so any random variable X can be rep-
resented by a quantum state with probability pi in state |i〉:

|ψ〉 � 􏽘
M− 1

i�0

��
pi

􏽰
|i〉,

􏽘

M− 1

i�0
pi � 1, pi ∈ [0, 1].

(17)

Consider a quantum operation F acting on sampling
qubits and an ancillary qubit

F|i〉|0〉 � |i〉(

�������

1 − f(i)

􏽱

|0〉 +

����

f(i)

􏽱

|1〉), (18)

where function f(i) ∈ [0, 1]. Similar to (5), we can get the
following equation:

ψ′〉
􏼌􏼌􏼌􏼌 � F|ψ〉|0〉 � 􏽘

M− 1

i�0

�������

1 − f(i)

􏽱 ��
pi

􏽰
|i〉|0〉 + 􏽘

M− 1

i�0

����

f(i)

􏽱 ��
pi

􏽰
|i〉|1〉.

(19)

Employing the QAE algorithm, we can obtain the
quantum state probability 􏽐

M− 1
i�k+1 pi with the ancillary qubit

in state |1〉.
If we defne function f(i) as

f(i) �
0, i> k,

1, i≤ k.
􏼨 (20)

Black-Scholes Model 0.0147

Monte Carlo Simulation 0.0133

Quantum Algorithm 0.0141

Black-Scholes
Model

Monte Carlo
Simulation

Quantum Algorithm
0.0000

0.0029

0.0059

0.0088

0.0118

0.0147

Figure 4: A result histogram of the expected option revenues with
three methods, the Black–Scholes model, quantum algorithm, and
Monte Carlo simulation, which shows the result of our quantum
algorithm is closer to the Black–Scholes model’s than the Monte
Carlo simulation’s, indicating the quantum algorithm method is
more accurate than the classical Monte Carlo method.

1.0

0.8

0.6

0.4

0.2

-4 -2 2 4

α

Figure 5: A loss probability distribution diagram of VaR.
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Equation (19) can be rewritten as

ψ′
􏼌􏼌􏼌􏼌 〉 � 􏽘

M− 1

i�k+1

��
pi

􏽰
|i〉|0〉 + 􏽘

k

i�0

��
pi

􏽰
|i〉|1〉. (21)

Tus, we can get the probability of the ancillary qubit in
state |1〉, 􏽐

k
i�0 pi � FX(x≤ k). When x≤ k, there exists

FX(x≤ kα)≥ α, whichmeans kα is the VaR with a confdence
of α and a precision of O(M− 1), showing the quantum
algorithm has a quadratic speedup compared to the classical
MC-VaR method O(M− 1/2).

2.2.3. Examples and Results. Now, we show how three
diferent classical VaR algorithms, H-VaR, P-VaR, and MC-
VaR, and our quantum algorithm perform for the same
instance. As we can see, in the case studied in Figure 6, we
choose the normal distribution as our model, 0.95 conf-
dence and 30 holding days of assets which are combined of
two assets, China Bao An and Ping An Bank with 10 of each
are purchased.

Te results for both classical and quantum methods in
diferent sampling points are shown in Figure 7, where we
see that H-VaR and P-VaR are independent of the sampling
points, which is quite intuitively obvious since both are
calculated mainly based on historical data of assets without
any sampling. As to MC-VaR, its VaR approaches to P-VaR
with sampling points increasing, and even at 512 sampling
points, there are still a small diference between P-VaR and
MC-VaR. While the VaR with quantum algorithm ap-
proaches P-VaR monotonically with sampling points in-
creasing and at 32 or larger sampling points, the VaR with
the quantum algorithm is exactly equal to P-VaR. As the
result shown in this instance, the VaR with the quantum
algorithm is closer to P-VaR than that with the Monte Carlo
method at the same sampling point, and we argue that the
quantum algorithm performs better than the Monte Carlo
method.

2.3. Portfolio Optimization

2.3.1. Model. Portfolio optimization [23] is an important
problem that many investors will encounter. It requires
investors to invest in candidate fnancial assets in order to
minimize the risk under the condition of a certain return or
maximize the investment return under the condition of
a certain risk. If the number of candidate assets is very large,
the classical algorithms used to solve such problems usually
have high time complexity and are difcult to implement.
Tanks to the powerful computing performance of quantum
computing, the quantum algorithm can give the portfolio of
assets with the optimal budget number among the candidate
assets [24].

We use the mean-variance combinatorial optimization
method, and the model for this problem can be expressed as

min
x∈ 0,1{ }n

qx
T
Cx − μT

x,

subject to: 1T
x � b,

(22)

where

(i) x ∈ 0, 1{ }n in quantum algorithms represents the
vector of binary decision variables. If the asset i is
purchased, xi � 1 and xi � 0 when not. xi ∈ [0, 1] in
classical algorithms is the weight of purchasing the
corresponding asset, and 􏽐ixi � 1.

(ii) μ ∈ Rn represents the expected return of each asset.
(iii) C ∈ Rn×n represents the covariance between the

expected returns of each asset.
(iv) q> 0 is the risk factor, which indicates the investor’s

investment risk preference.
(v) 1 represents a n-dimensional vector whose elements

are all 1 s.
(vi) b represents the investment budget, which is the

number of assets purchased from n assets in
quantum algorithms case (assuming the price of
each asset is 1). Usually, b � 1 in classical
algorithms case.

2.3.2. Quantum Solution. According to the equation of the
problem model in (22), the loss function is given as follows:

Lx � q 􏽘
i

􏽘
j

Cjixixj − 􏽘
i

xiμi + A b − 􏽘
i

xi
⎛⎝ ⎞⎠

2

, (23)

in which the frst term represents the risk of the investment,
the second term is the return of the investment, and the last
term is a penalty function with A as the penalty parameter
and is usually set large.

Our portfolio optimization scheme uses a combination
strategy of classical and quantum methods. First, it uses
quantum algorithms to select the optimal portfolio of assets
with a budgeted number of n candidate assets. Ten, it uses
classical algorithms to calculate the assets selected by
quantum algorithms (i.e., QAOA). Finally, it predicts the
optimal strategy of purchasing assets and achieves maxi-
mum returns. With the aid of quantum algorithm, we can
flter out the assets that do not need to be purchased, and the

Figure 6: Te user interface of a VaR instance. One can select the
input parameters for the VaR model, such as the distribution
model, preferred confdence, and holding period. Te objective
assets can be selected from a preset asset list and support adding or
deleting an interest asset.
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difculty in implementing the classical algorithm is greatly
reduced.

QAOA [25, 26], which can be classifed as a variational
quantum algorithm (VQA) [27, 28], is a quantum algorithm
with a wide range of applications in the recent Noisy
Intermediate-Scale Quantum (NISQ) [29] era. QAOA was
proposed by Edward Farhi et al. in 2014 to approximately
solve the combinatorial optimization problems. For a com-
binatorial optimization problem, which can be defned by
a binary string of n bits z � z1 . . . zn, the aim is to determine
the string that minimizes ormaximizes the classical objective
function C(z): +1, − 1{ }n↦R⩾0.

QAOA can transform a combinatorial problem into
an optimization problem. By mapping the binary vari-
ables into quantum spin operators σz

i , the classical ob-
jective function can be changed into a quantum
Hamiltonian:

HC � C σz
1, σz

2, . . . , σz
n( 􏼁, (24)

whose ground state corresponds to the optimal solution of
the problem.

In the case of QAOA with p layers, we usually initialize
the state of the quantum system as |> + ⊗n and then al-
ternately act the problem Hamiltonian HC and the mixed
Hamiltonian on the quantum system as follows:

HB � 􏽘
n

i�1
σi

x, (25)

which results in a wave function with 2p variational pa-
rameters as follows:

|φ(γ, β)〉 � e
− iβpHB e

− icpHC · · · e
− iβ1HB e

− ic1HC |+〉⊗ n
. (26)

Te expected value of HC under this variational wave
function can be obtained by measuring the quantum system:

Fp(γ, β) �〈φ(γ, β) HC

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌φ(γ, β)〉, (27)

then, solve the optimal parameter (c∗, β∗) on a classical
computer, achieving

Fp γ∗, β∗( 􏼁 � minγ,βFp(γ, β). (28)

In the ideal case, the quantum state |φ(c∗, β∗)〉 should be
the optimal solution, but it should be noted that the depth p of
a parameterized quantum circuit is not infnite, so it is likely that

Fp γ∗, β∗( 􏼁> minγ,βFp(γ, β). (29)

So, |φ(c∗, β∗)〉 contains only the approximate optimal
solution. Suppose |φ(c∗, β∗)〉 is a superposition of l com-
putational basis states, i.e.,

φ γ∗, β∗( 􏼁
􏼌􏼌􏼌􏼌 〉 � c1 e1

􏼌􏼌􏼌􏼌 〉 + c2 e2
􏼌􏼌􏼌􏼌 〉 + · · · + cl el

􏼌􏼌􏼌􏼌 〉. (30)

Usually, the greater of the probability that the ground
state |ci|

2 is measured in the eigenstate of Hc, the greater of
the probability that its corresponding bit string ei is the
optimal solution.

2.3.3. Examples and Results. In conducting portfolio opti-
mization with quantum algorithms, we made two as-
sumptions about the problem to simplify the model:

(1) All assets should have the same price (assumed to
be 1)

(2) Te given budget should be an integral multiple of
the price of an asset, and it needs to be all used for
investment, which means that b assets need to be
purchased

In this case, the portfolio optimization problem under
these two assumptions corresponds to choosing a subset of b

assets from n assets. We need to convert the loss function
shown in (23) into a Hamiltonian to complete the encoding

22

21
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19

18
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16

Va
R

1 2 4 8 16 32 64 128 256 512
Sampling Points

H-VaR
P-VaR

MC-VaR
Quantum Algorithm

Figure 7: Te result curves of 4 diferent methods for calculating VaR.Te blue, green, yellow, and red curves show how historical VaR (H-
VaR), parametric VaR (P-VaR), Monte Carlo VaR (MC-VaR), and VaR with quantum algorithm performing, respectively, at diferent
sampling points.
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of the portfolio optimization problem. Because the value of
the binary variable xi (0 or 1) indicates whether the asset
needs to be purchased, we need to construct a Hamiltonian
whose eigenvalues corresponding to them. Since the ei-
genvalue of the Pauli operator σz is ± 1, we can construct
the Hamiltonian as (I − σz)/2, which corresponds to two
eigenvalues 0 and 1. So, one can use the mapping
xi↦I − σz

i /2 to convert the loss function Lx into a Hamil-
tonian whose ground state corresponds to the optimal so-
lution of the portfolio optimization problem.

As mentioned previously, we use a variational quantum
algorithm, especially QAOA, to approximately solve the
ground state of a Hamiltonian. Here, we list the procedure
how we solve the portfolio optimization problem with
QAOA and other algorithms:

(1) Preparation. For each candidate asset x, given its pre-
ferred maximum share maxx and minimum share minx
(where maxx ,minx ∈ [0, 1]) of the combinatorial assets,
purchased assets budget b(b⩽n), risk factor q, and historical
period of all candidate assets [ti, tf], as shown in Figure 8.

(2) Assignment. When the minimum share of an asset sat-
isfes minx > 0, it means the asset will defnitely be purchased
and will be assigned into the assets set X1, and the total
number of the assets set X1 is defned as n1. Else when
minx � 0, the asset needs to be determined by QAOA
whether it needs to be purchased or not, and which asset will
assigned into another assets set X2.

(3) Optimal Selection with QAOA. Since there are already n1
assets that have been determined to be purchased for sure,
only (b − n1) assets need to be selected from the set X2 using
QAOA. According to the mapping xi↦I − σz

i /2, the loss
function Lx can be converted into a systematic Hamiltonian
HC with qubit number (n − n1), and the ground state of this
Hamiltonian is the optimal solution, where the mixing
Hamiltonian is HB � 􏽐

n− n1
j�1 σx

j .
Te following procedure is divided into two parts:

(i) Quantum Part. Prepare a variational state |φ(θ, β) �

U(θ, β)| + ⊗n on a quantum computer, where
U(θ, β) � 􏽑

p

l�1 e− iβlHB e− iclHC , and then obtain the
expectation of Hamiltonian |φ(θ, β)〉 � U(θ, β)+〉⊗n.

Figure 8: Te user interface of portfolio optimization at the preparation stage.
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(ii) Classical Part: Update θ, β with the classical opti-
mization algorithm, such as COBYLA, and go back
to the quantum part until λ approximately reaches
a minimum.Te optimal combination of assets to be
purchased, as defned X2′, is obtained from the
variational state at this point, and the optimal
combination of assets to be purchased is X1 + X2′.

(4) Proportion Optimization. Finally, a trust-constr con-
straint algorithm is used to give the optimal proportion of
the assets in the optimal portfolio X1 + X2′ to the constraints
of every asset as assigned in the preparation step. Figure 9
shows the optimal result of an input example corresponding
to Figure 8, including the optimal portfolio and its corre-
sponding history return curve.

3. Summary

We have developed a quantum software BQ-Bank, which
comprises 4 modules: option pricing, option revenues, VaR,
and portfolio optimization. In eachmodule, we start with the
underlying problems and models, then we discuss the
conventional algorithms and their quantum solution, and at
the end we take an example and compare the results of the
conventional algorithms with their quantum solution. Te
results show that the quantum solution usually outperforms
the conventional algorithms. With the succinct design and
the preset data set of BQ-Bank, people with or without
quantum background can access and complete their interest
tasks on a silver platter without trained skills.
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