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1. Introduction

The main part of this thesis consists of the three appended papers. In this
introduction we briefly review some background material and survey some
of the key concepts discussed in the thesis. The aim of this introduction
is to give a general idea of the topics studied in the thesis and we refer the
interested reader to the references provided for more thorough treatments.

This thesis considers supersymmetric quantum field theory and related
geometrical structures. Quantum field theory was originally developed
by physicists in the last century to describe the forces of nature, cul-
minating in the ‘Standard model’ of particle physics. However, in the
past fifty years or so, there has been a wide range of applications of
field-theoretic ideas to mathematics. One famous example is Donald-
son’s [1] construction of topological invariants for four-manifolds, based
on the ideas of gauge theories. By studying the space of anti-self-dual
connections (instantons) he constructed topological invariants sensitive
to smooth structures. This resulted in the surprising result that there
are ‘exotic’ R%’s, i.e. spaces homeomorphic but not diffeomorphic to R*.
These ideas also inspired Floer’s work on 3-manifolds. After developing
an infinite-dimensional version of Morse theory, based on earlier work
of Witten [2], Floer [3] considered the Chern-Simons functional on the
space of connections of a principal SU(2)-bundle over the 3-manifold Ms.
The critical points are the flat connections and their flow lines can be
interpreted as instantons on M3 x R. Witten [4] showed that these ideas
of Donaldson and Floer could be formulated in terms of twisted N = 2
supersymmetric Yang-Mills theory.

Going up in dimensions there exist similar invariants introduced by
Donaldson-Thomas [5]. These can also be interpreted physically in terms
of supersymmetric string and gauge theories, see e.g. [6].

Supersymmetric field theories thus play a key role in several topics
of modern mathematics. In this thesis we consider 7D supersymmet-
ric Yang-Mills theory and its connection to toric and hypertoric geome-
try. The theory considered here can be regarded as a 7D lift of the 6D
Hermitian-Yang-Mills theory and might thus be of relevance to enumer-
ative geometry in higher dimensions.



2. Yang-Mills theory

The concept of gauge theory was central to the development of theoretical
physics in the past century. At the same time, mathematical concepts
such as fibre bundles and characteristic classes lead to new results in
differential geometry and topology. In the 1970’s people started realising
that these two topics were very much related - gauge theories could be
stated in terms of principal bundles, gauge fields in terms of connections
on them, etc.

A very important class of gauge theories are the so called Yang-Mills
theories. In this section we aim to give a pedagogical introduction to
Yang-Mills theory and related concepts such as instantons. The approach
we take here is to introduce Yang-Mills theory as a non-abelian generali-
sation of electromagnetism and hence we begin the discussion there.

2.1 Electromagnetism

In classical electromagnetism the source free Maxwell’s equations are

. 0B .

E=-=22 B = 2.1
V x = Y 0, (2.1)
vXézaaf, V. E=0, (2.2)

where E = (E,, Ey, E.) and B= (Bg, By, B.) are the electric and mag-
netic fields.

In Lorentzian spacetime R, with metric = diag(+ — ——) we can
re-package these fields into the electro-magnetic tensor

0o E E, E.
-E, 0 -B. B,
w=\|\-E, B. 0 —B,

—E. -B, B, 0

(2.3)

Electro-magnetic duality states that Maxwell’s equations are unchanged
under

E——-B, and B—E. (2.4)
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This corresponds to taking the dual of the electro-magnetic tensor:

0 -B, —-B, —B,
#F = 2emasl ™’ = gz EOZ _52 _EEym : (2.5)
B, -E, L, 0
We can then re-state the source-free Maxwell’s equations as
O F" =0, 0, (xF")=0. (2.6)

These equations have a natural formulation in terms of differential forms,
where we consider the 2-form

F =1F,, dz" Adz” . (2.7)
The electro-magnetic dual *F' is then the Hodge-dual
xF = Le,,0sFPdat N da” (2.8)
The source-free Maxwell’s equations can then be stated as
dFF =0, d+xF =0, (2.9)

where d denotes the deRham differential and * the Hodge-star.
By the Poincaré Lemma dF = 0 means that we can write F' = dA, i.e.
F =0,A,—0,A,. (2.10)

-,

This A is called the 4-potential and physically A, = (Ao, A), where Ay is
the electric potential and A the magnetic potential:

E——VAO—%?, B=VxA. (2.11)

This leads us to the Lagrangian formulation of electromagnetism. Here
A, is the main object of study, and the action is given by

S:/d%ﬁ:/d% (—iFuF"™) S:—%/F/\*F. (2.12)

The Euler-Lagrange equations (equations of motion)

oL oL
08 =0 <= 0, (8(8MAV)>_8AZ,O’ (2.13)
are given by
O F'" =0 < dxF=0. (2.14)
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From this viewpoint the Maxwell’s equation dF = 0 is automatically
satisfied since dF = d?A = 0 and d x F' = 0 corresponds to the equation
of motion.

Apart from standard global symmetries, such as translations, this the-
ory is also invariant under the following transformation

Ay = Ay +0,f, (2.15)

where f is any scalar function. Since the curl of a gradient is zero we see
that the fields (2.11) are invariant under this transformation. This is an
example of a gauge symmetry, i.e. a local symmetry where the parameter
f(z) depends on the spacetime coordinate x. In Yang-Mills theory, which
we introduce shortly, we will see how to generalise this concept.

2.2 Yang-Mills theory

Yang-Mills theories can be considered to be non-abelian generalisations
of electromagnetism. They were introduced by Yang and Mills in 1954 [7]
and have since become cornerstones of the ‘Standard model’ of particle
physics where the electromagnetic, weak and strong forces are described
by Yang-Mills theories. Yang-Mills theory has also played a central role
in mathematics, as we will discuss later in this section.

Let G be a compact semi-simple Lie group with Lie algebra g. For
concreteness, let us focus on G = SU(2). We take the generators of the

Lie algebra to be T* = —%a”, a = 1,2,3, where 0% are the Pauli spin
matrices
1 (0 1 o (0 —i 3 (1 0
0(10, =\ o) =y _1)- (2.16)
Then
[T, T = e°T° (2.17)

abc

i.e. the structure constants are given by f®¢ = ¢%¢ and

Te(T°T") = —16°. (2.18)

Let us describe SU(2) Yang-Mills theory in R*. Note that we now
consider Euclidean signature (as opposed to Lorentzian in the previous
section). Here the gauge potential A,(x) is a matrix-valued vector field
Au(z) = Aj(x)T?, where T form the representation of su(2) discussed
above. The field-strength tensor F),, is given by

F=0,A,—0,A, +[A. A). (2.19)
In terms of the covariant derivative

Dp=08,+[An] © di=d+]A] (2.20)
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we can write
F,, = [D“,D,,] . (2.21)

A gauge transformation is a function g(z) : R* — SU(2). The gauge
transformations of A, and F},, are given by

Ay — g Aug+ 970, (2.22)
Fu— 9 ' Fug. (2.23)

We could also write g(z) = exp(A*(x)T), for some functions A\* and
re-state the above gauge transformations in their infinitesimal forms.
The Yang-Mills action is given by

S = /d4a: Tr (—3F,F"™) & S= —/ Tr (F A *F) (2.24)
which leads to the Euler-Lagrange equation
D,F'"" =0 <« daxF=0. (2.25)

This equation is called the Yang-Mills equation.

Note that d% # 0, but d4F = 0 still holds by the Jacobi identity.

The question arises how to find (finite-action) solutions to the Yang-
Mills equation. To do so, one can use a ‘Bogomolni trick’” as in [8]. On
2-forms the Hodge star squares to one and we can define the projectors

PE=11+x%). (2.26)
This leads to an orthogonal decomposition of 2-forms:
F=F"+F, (2.27)

where

«F* =+F*%, (2.28)

We can then write the action as
S=— (/ Te (P AF) 4+ [ T (P *F)> (2.29)
and obtain the bound
S > ‘/ Tr (FY AxET) —/ Tr (F~ /\*F‘)’ = ’/ Tr(F/\F)‘ . (2.30)

We get equality when FF' = FT or F'= F~,ie. when ' = £ % F.
To summarise, the Yang-Mills action is given by

S:/d4:p Tr (—1F, F™) S:—/Tr (FAF).  (231)
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The equations of motion are given by the Yang-Mills equation
D,F'"" =0 <« daxF=0 (2.32)
and there is a bound on the action that is saturated when
F=+xF. (2.33)

The above equation is called the instanton equation and its solutions are
called instantons (for the + sign) or anti-instantons (for the — sign).
Moreover, such solutions automatically solve the Yang-Mills equation
since

dA * [ = :EdAF =0. (2.34)

The point of the ‘Bogomolni trick’ is thus that we can find solutions to
a second order equation (the Yang-Mills equation) by instead solving a
first order equation (the instanton equation).

Another interesting aspect is that the lower bound of the action has a
topological interpretation. In fact

S > 8% |N|,

where

1

is an integer called the ‘instanton number’ and is the integral of the second
Chern class. (Recall that we represented the Lie algebra by traceless
matrices.)

We have a bound on the action for each N which is satisfied by (anti)-
instantons F' = &+ * F'. The question arises how many solutions there are
for each N (dimension of moduli space) and how to construct these solu-
tions explicitly. In 1977 Schwarz [9] and Atiyah-Hitchin-Singer [10] used
index theorems to show that the most general soultion has 8N parame-
ters. A year later Atiyah-Drinfeld-Hitchin-Manin [11] provided an explicit
solution on R* with 8N parameters, know as the ‘ADHM-construction’.
The construction turns the analytic problem of finding solutions to the
PDE to a purely algebraic problem in terms of a quaternionic matrix
satisfying some conditions.

It is rather remarkable that already the simplest non-abelian gauge
theory, SU(2) Yang-Mills, on the simplest possible 4-manifold, R*, leads
to such interesting problems. Many generalisations of this set-up have
been studied. With some modifications the ADHM-construction can be
extended to the gauge groups SU(n), SO(n) and Sp(n). To generalise to
other manifolds requires the mathematical formulation of gauge theories
in terms of principal fibre bundles. In this picture the gauge field is
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formulated in terms of a connection and the field strength corresponds to
its curvature, see e.g. [12] for a textbook discussion.

Donaldson [1] used instantons to define topological invariants on 4-
manifolds. These invariants are sensitive to the smooth structure and one
remarkable result is that there exist ‘exotic’ 4-spaces that homeomorphic
but not diffeomorphic to R*. For this work Donaldson was awarded the
Fields Medal in 1986.

The work of Donalson shows how mathematics and physics can interact
in a very fruitful way, and there have been many examples of this since.
This thesis aims to make a modest contribution to this tradition. On one
hand we make use of mathematical results such as equivariant localisation
and toric geometry to study physical theories. On the other hand we use
physics arguments to find mathematical statements, such as factorisations
and other properties of special functions.

In Paper I we consider a 7D generalisation of the instanton equation
(2.33), similar to that previously considered in 5D [13]. We also obtain a
7D lift of the Hermitian-Yang-Mills equations studied in e.g. [6]. Although
we do not pursue this point further in this thesis, the hope is that these
equations could be mathematically interesting as well. It is plausible that
the results presented in this thesis could have applications to Donaldson-
Thomas theory [5].

2.3 Supersymmetric Yang-Mills theory

The work in this thesis deals with supersymmetric Yang-Mills theory.
Supersymmetry, or SUSY for short, is a proposed symmetry that relate
fermions and bosons. Although there is currently no experimental evi-
dence that supersymmetry exists in nature, it has been widely studied
by the theoretical physics community and there has also been interesting
applications to mathematics. In fact, supersymmetry is a key component
in many of the relations between mathematics and physics we have dis-
cussed previously. For example, Donaldson-Witten theory is formulated
on the physics side in terms of supersymmetric Yang-Mills theory.

To make the Yang-Mills theory discussed in the previous section su-
persymmetric we need to introduce a fermionic partner to the bosonic
field A,. We also need to formulate a supersymmetry transformation
that mixes these two. Let ¥ be a massless spin—% particle in the adjoint
representation of the gauge group. Consider the D-dimensional action
14]

Sp = / Pz Tr (=L Py FMY 4 9T Dy 0) (2.35)

Whether or not this action can be supersymmetric (without adding addi-
tional fields) depends on the dimension D. It turns out that the possible
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dimensions are D = 3,4,6,10 which is related to the division algebras
R,C,H, O, see e.g. [15] and references therein. Supersymmetric Yang-
Mills theories in other dimensions can be obtained from dimensional re-
ductions of these theories. Since this thesis deals with dimension seven,
the D = 10 theory is the one relevant for us.

For the theory to be supersymmetric the bosonic and ferminonic de-
grees of freedom must match. In D = 10 we thus require the spinors to
be both Majorana and Weyl. The 10-dimensional action

o = /dl% Tr (Fun PPN — 0TV Dy, ) (2.36)

can be shown to be invariant under the supersymmetry transformations
0A, =el',V, (2.37)

60 = TN Fy ve, (2.38)

where € is a constant Majorana-Weyl spinor. The invariance relies on the
existence of Fierz identities for Clifford algebras, and again this is related
to list of possible dimensions D = 3,4, 6, 10.

To obtain sypersymmetric Yang-Mills theories in other dimensions one
need to include more fields. One approach to do this is to make dimen-
sional reductions and this is the approach we take to obtain 7D super-
symmetric Yang-Mills theory discussed in this thesis, see e.g. Paper L.
The 7D supersymmetric Yang-Mills theory is unique and it is maximally
supersymmetric with 16 supercharges.

The compactification gives rise to scalars ¢4, A = 0,8,9 and the action
and supersymmetry transformations are modified to

1 1
St = - [ dov=gTr (N Fuy = WY Da¥ +86%04 (2.39)
7D

3
+ JUAY —2(0", 0”16 e anc)
and

5614]\/[ = EFM\I/ y
6V = LEynTMNe 4+ 8P RV e, (2.40)

see [16] and Paper I for details.
This construction relies on the existence of a 10-dimensional Majorana-
Weyl spinor € satisfying the generalised Killing spinor equation

1-
V€= §PHA6. (2.41)

It turns out that the existence of such a spinor puts heavy constraints
on which geometries we can consider. In Paper 1 we argue that such a
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10D spinor € can be constructed from positive Killing spinors on the 7D
manifold. Manifolds admitting such spinors have been classified [17] and
in 7D they are

e The seven-sphere S” (16 Killing spinors)

e 3-Sasakian manifolds (3 Killing spinors)

e Sasaki-Einstein manifolds (2 Killing spinors)

e Proper Gy-manifolds (1 Killing spinor)
In the next section we will describe these and other geometrical structures
further.

Let us briefly remark that there may well be other 7D spaces on which
one could place the theory. In view of the work of Festuccia and Seiberg
[18] the equation (2.41) is just the first instance of a more general equation
arising from supergravity considerations. However, very little is known
about the existence of solutions to such an equation in higher dimensions
and we do not pursue this further in this thesis.
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3. Geometry

3.1 Symplectic geometry

In this section we give a very brief introduction to some topics in sym-
plectic geometry that are of special relevance to this thesis. We refer the
reader to e.g. [19] for a thorough introduction.

A smooth manifold M is said to be symplectic if it admits a closed,
non-degenerate 2-form w € Q%(M), called a symplectic form. Such a
manifold is necessarily of real dimension 2n. Non-degeneracy means that
w™ never vanishes and thus provides a volume form, making M orientable.
The simplest example of a symplectic manifold is R?"® with the standard
symplectic form

w= dei A dy; . (3.1)
i=1

The Darboux theorem states that locally the symplectic form can always
be put into this standard form. Thus there are no local invariants in
symplectic geometry, only global.

3.1.1 Classical mechanics

Symplectic geometry arises naturally in classical mechanics in R? when
one considers the phase space M = T*R? = RS where the coordinates
(gi,pi), © = 1,2,3, represent position and momentum respectively. The
standard symplectic form is given by

3
w= Z dg; N dp; . (3.2)

i=1

A vector field Xy on M such that
tx,w=dH (3.3)

for some function H is called a Hamiltonian vector field with Hamiltonian
function H. In mechanics, the energy of the system is given by the
Hamiltonian H. Since w is non-degenerate we can solve

txyw=dH (3.4)
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for the Hamiltonian vector field Xp. The time-evolution of the system
then corresponds to flowing with this vector field

i = Xp(x), (3.5)

where x = (¢;, p;) denotes the coordinate on M. Let us show that this
corresponds to Hamilton’s equations of classical mechanics. We have

. . .0 .0
& = (4,p) :%87(]- +pi37p- (3.6)
and so from (3.2) and (3.5)
LX g, W = Gidp; — Pidg; - (3.7)
But from (3.4) we also have that
OH OH

Combining these two expressions we obtain Hamilton’s equations from
classical mechanics

oH . oH
G b= dq;

Gi (3.9)

3.1.2 Lie group actions

Let G be a Lie group. Recall that this means that G is a smooth manifold
with a smooth map - : G x G — G such that (G, ) is a group and taking
the inverse is also smooth map. Let g be the Lie algebra of G, which we
can identify as g = T, G, i.e. the tangent space at identity. We can map
from g to G via the exponential map X — eX. For g € G we define the
conjugation map

¢g(h) = ghg™, (3.10)
where h € GG. The differential of this map at the identity is a map g — g
called the adjoint action

Ady = dedy , (3.11)
d _
Ady(X) = &l geXg7t. (3.12)

Note that for abelian G the adjoint action is trivial. Let g* denote the
dual Lie algebra and (-, -) : g* x g — R the pairing between the two. The
co-adjoint action, Ady, on g* is defined by

(AdZY, X) = (Y, Ady 1 X). (3.13)

A (left) group action of G on M is a differentiable map o : GX M — M,
which we write as o(g,z) = 04(z), such that
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eo.(v)=x,VreM,
o ogn(x) = 04(op(x)), Ve € M,Vg,h € G .
We say that such an action is effective if oy(z) =2, Ve € M = g=e,
i.e. only the identity keeps all points fixed. If the action has no fixed
points we say that it is free.
The differential of o at identity is a map from the Lie algebra to the
tangent space of M
doe(z) g — T, M. (3.14)

For X € g the image of X under this map is a vector field on M called
the fundamental vector field X 7.

Now let us consider the action of a Lie group on a symplectic manifold
M with symplectic form w. We call the action symplectic if it preserves
the symplectic form, i.e. if o (w) = w.

As a first example of these concepts, we consider translations in classi-
cal mechanics. Conisder the phase space M with coordinates (g;, p;) and

the standard symplectic form (3.2). We let G = R3 act on M by
a € R (¢ +a,pi), (3.15)

i.e. 04(qi,pi) = (¢; +a,p;). Clearly this preserves the standard symplectic
form. The Lie algebra g is also R?® and the fundamental vector field
generated by X = (X1, X5, X3) € R3 is

0
X#* = X;— . 3.16
a4, (3.16)
It follows that
Lx#w = Xydp; = d(p- X) (3.17)

and so the fundamental vector field X# is Hamiltonian. The correspond-
ing Hamiltonian function H = p- X is the linear momentum in the direc-
tion X.

Another example is that of rotations. Let G = SO(3) act on M by

oa(q,p) = (Ag, Ap), (3.18)

where A € SO(3) is a 3 x 3-matrix with det(A) = 1 and AAT = 1. From
AAT = 1 it follows that this action preserves the symplectic form. We
identify the Lie algebra g = so(3) with R? via

0 —as a9

( as 0 —al) < a=(ay,az,as). (3.19)
—a9 ay 0

Under this identification the Lie bracket corresponds to the cross product

of vectors. The fundamental vector field generated by X = (X7, X, X3)

is given by

X = (X X @i+ (X xp) (3.20)

dq; "op;’
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and we find that
ixrw=d((¢gxp)-X). (3.21)

The Hamiltonian function H = (¢ x p) - X for this action is thus the
angular momentum in the direction X.

3.1.3 Moment maps

For the example of translations in mechanics we saw that
dlp- X) = 1x#w. (3.22)

We can define a ‘linear momentum map’ x(q, p) = p and think of it as a
map
w:M— g (3.23)

satisfying
A, X) = 1xcno, (3.24)

where (-, -) denotes the pairing between the Lie algebra and its dual.
Similarly, for rotations we can define the ‘angular momentum map’
(g, p) = g x p. We think of it as a map M — g* and by (3.21) it also
satisfies d(p, X) = tx#w.
We generalise this as follows: Let o : G x M — M be a symplectic
group action. We call such an action Hamiltonian if there exists a map

w:M—g* (3.25)

satisfying the following:
e For all X € g with fundamental vector field X#

d{p, X) = txsw. (3.26)

e 4 is equivariant with respect to the action ¢ and the coadjoint
action
pooy,=Adjou, Vgea. (3.27)

Such a map p is called a moment map.

Note that for abelian groups the (co)adjoint action is trivial and the
second condition becomes just p1 004 = p.

Let us consider the simple example of a U(1) action on C". To make
a connection with the previous discussion, note that we can identify C"
with T*R" via z; = ¢; +ip;. The standard symplectic form on C" is then

W= ;;dzi AdZ . (3.28)

The group G = U(1) = S! is the unit circle which we can parametrise by
e, The tangent space at identity is a line and thus g ~ R which we may
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identify with the imaginary axis in the complex plane. The exponential
map back to the Lie group is then it — e. The action o : G x M — M
is

(e 2;) > ez, (3.29)
(e”, 51) — e_itii , (330)

and the fundamental vector field is then given by
0 0
X# — — — Z— . 31
i EZ (z o7, z 8%) (3.31)

To find the moment map we calculate

Lx#W = Lx# (; Z dz; N d2i> (3.32)
1

= —5 (Z zidz; + Eidzi> (333)
1

1

=d (-2 > \zﬁ) : (3.35)

(2

So in order for d{u, X) = tx#w to hold, we can pick any
1
M(Z) = —iz‘zi‘2+0, (336)

where ¢ € g* is any number. In general, moment maps are only deter-
mined by the action up to an additive constant. By construction, this
map satisfies (3.26). Since the group is abelian the second condition (3.27)
just becomes i o 0 = p and this also holds since

) 1 . 1
p(ez) = —3 Z ez 2 4+ c = ) Z lzi]* +c = p(z). (3.37)

For non-abelian actions this condition would restric the additive constant
¢ to be fixed by the co-adjoint action, i.e. to be a central element.

3.1.4 Symplectic and Kéhler quotients

In the example above, let us pick ¢ = % Then

wz) =0 < Z|zi\2: 1, (3.38)

22



so the zero level set of the moment map corresponds to the unit sphere
pt(0) = st (3.39)

We have thus constructed a manifold, $**~1, from a U(1) action on the
manifold C". Moreover, this U(1) acts freely on S?"~! and so the quotient
S2n=1/U(1) is also a manifold, namely CP"~!. This gives rise to a prin-
cipal U(1)-bundle, which in this example is the standard Hopf-fibration:

SQn—l Sl

|

(CPn—l

Moreover, the symplectic form of the original manifold C™ descends to
the quotient CP™~!, making it a symplectic manifold.

More generally, if we have a symplectic manifold M and a Hamiltonian
action of a compact Lie group G that acts freely on p=1(0), then we get
a new symplectic manifold via the ‘symplectic quotient’

M//G = (0)/G. (3.40)

We refer the reader to [19] for a textbook discussion.

The above quotient can also be extended to Ké&hler manifolds. Re-
call that a Kéhler manifold is a symplectic manifold with a compatible
integrable almost complex structure J. Compatibility means that

9(X,Y) = w(X,JY) (3.41)

and the symplectic form w is then called a Kéhler form.

If the action of G discussed above also preserves the complex structure
(or equivalently the metric), then the quotient M//G is called a ‘Kéhler
quotient’ and gives rise to a new Kéhler manifold.

The remarkable thing about such quotients is that already the simple
case of tori acting on flat complex space can give highly non-trivial mani-
folds. For example, toric Sasaki-Einstein manifolds can be obtained using
Kéhler quotients, see e.g. [20]. We study such manifolds in Paper I.

3.1.5 Hyperkéhler quotients

Just as complex manifolds are modelled on the complex numbers C, hy-
perkdhler manifolds are modelled on the quaternions H. For complex
manifolds the complex structure roughly corresponds to multiplication
by 4, while for hyperkédhler manifolds we have three complex structures,
roughly corresponding to multiplication by the quaternions i, j, k.
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More formally, a hyperkéhler manifold is a manifold admitting three
complex structures I, J, K satisfying the quaternionic relations

P=J=K=1JK =—1, (3.42)

and has a metric that is Kéhler with respect to each of these. Such a
manifold is necessarily of real dimension 4n.

If there is a group action of G on such a manifold that preserves all three
complex structures I, J, K one can construct another quotient, similar to
the ones discussed above, called the hyperkéahler quotient [21]. One then
has three moment maps, one for each complex structure, and one can
view them as a single map

—

i=(pr,pg, pg): M — g* @R3. (3.43)

Picking one of the complex structures, say I, the moment maps can be
arranged into a real ug = p; and a complex puc = py +ipx moment map,
the latter which is holomorphic w.r.t. to I. Taking the zero level set of
the moment maps and quotienting by G one obtains a new hyperkéahler
manifold denoted

M//)G = i=H0)/G. (3.44)

In particular, one can obtain interesting examples by taking hyperkahler
quotients of flat quaternionic space by tori. This is discussed in Papers II
and III where we use such quotients to construct hypertoric 3-Sasakian
manifolds.

3.2 Contact geometry

Contact geometry can be regarded as an odd-dimensional analogue of
symplectic geometry. Here we will review some of the key concepts that
are used in the thesis. We refer the reader to [22, 23] for textbook dis-
cussions.
A contact manifold of dimension 2n + 1 is a manifold equipped with a
1-form & such that
kA (dr)" #0. (3.45)

Such a 1-form is called a contact form. The hyperplane field D = ker(x) C
TM is called the ‘contact structure’. Note that x and e/x give the same
contact structure.

The canonical example of a contact manifold is R?**!, with coordinates
(X1, Y1, -+ Tny Yn, 2), with the standard contact form

k=dz + Z xidy; . (3.46)
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Just as in symplectic geometry there is a Darboux theorem that states
that locally one can always put the contact structure in this standard
form.

Associated to the contact form k there exists a unique Reeb vector
field R such that

trdk =0, (3.47)
trk=1. (3.48)

For the standard contact form (3.46) on R*"*! the Reeb vector is R = 0,.
The tangent bundle can be decomposed as

TM=D®Lg, (3.49)

where Lp is the line tangent to the Reeb R and D = ker(k) is the contact
structure or ‘horizontal space’.

Given a contact manifold one can find a Riemannian metric g and a
(1,1)-tensor J satisfying

JP=-14+Kk®R, (3.50)
g(JX,JY)=9(X,Y) — k(X)r(Y), (3.51)
dr(X,Y) = g(X,JY). (3.52)

Such a structure is called a contact metric structure. If we further have
that R is Killing with respect to the metric, i.e.

Lrg=0, (3.53)

then we have a K-contact structure.
Given a contact structure we can define the two projectors

Py =kKkNr, (3.54)
Pp=1—-Py=1—k AR, (3.55)

which decompose the differential forms into ‘vertical’ and ‘horizontal’
parts
QF = QF @ OF . (3.56)

From (3.49) and (3.50) it follows that the complexified tangent bundle
can be decomposed as

TeM = (C® D)) @ (C® D)V ¢ (C® R), (3.57)
and similarly for 1-forms:
0l = Q0 e 0P @ 0%, (3.58)
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where QY denotes any function times the contact 1-form x. This extends
to general differential forms, which we decompose as

o= @ ek k. (3.59)
p+q=k

Note that for K-contact manifolds (3.53) implies that LgJ = 0 and thus
L respects this decomposition.

3.2.1 Sasaki geometry

Note that Jp := J|p acts as an almost complex structure and wy := dk|p
as a symplectic form on the horizontal space D. From the properties of
the metric we see that there is an ‘almost Kéhler strucutre’ on D. It is
natural to ask when this is actually a Kéahler structure, i.e. when Jp is
integrable. This motivates the condition

N;=—-dk ® R, (3.60)

where N denotes the Nijenhuis tensor of J which in this case is zero on
the horizontal space. If the condition (3.60) is satisfied we say that we
have a Sasaki structure. The above condition can also be stated as

(VxJ)Y = g(X,Y)R — w(Y)X. (3.61)

We can also go up one dimension and consider the metric cone over M
defined via
C(M)=M x R", (3.62)

with metric
gc = dr* + g, (3.63)

where 7 denotes the coordinate on R*. Then we = d(r?k) is a symplectic

form on C'(M) and we can define an almost complex structure on C'(M)
via Jo(X) = J(X) — k(X)rd, and Jo(r0,) = R. Then M is Sasaki if and
only if C'(M) is Kéhler. In fact, we will use this as the definition in this
thesis.

3.2.2 Sasaki-Einstein manifolds

Recall that a manifold is called Einstein if the Ricci tensor is proportional
to the metric, i.e.
Ricy, = Ag (3.64)

for some constant A. A Sasaki-Einstein manifold is a manifold that is
both Sasaki and Einstein. In this case it follows that A\ = 2(n — 1).
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As a consequence, one can show that Ricy, = 0, i.e. the Kéhler cone
C(M) is Ricci flat. The converse also holds: M is Sasaki-Einstein if and
only if C'(M) is Kéahler and Ricci flat (Calabi-Yau), and this provides an
alternative definition.

3.2.3 Toric Sasaki-Einstein manifolds

A class of Sasaki-Einstein manifolds of particular relevance to this thesis
are toric Sasaki-Einstein manifolds. A Sasaki-Einstein manifold M of
dimension 2n — 1 is said to be toric if its Kéhler cone C'(M) admits an
effective, Hamiltonian action of the torus T™ that respects the complex
structure. It is also required that the Reeb vector field lies in the Lie
algebra of the torus action. Let us review some of the properties of toric
Sasaki-Einstein manifolds, we refer the reader to [24, 19] for more details.
A nice introduction to the more general area of toric varieties can be
found in [25].

As a first example, consider the odd-dimensional sphere M = §?"~1
with metric cone C(M) = C". There is a natural action of the torus 7"
on C" given by a phase rotation of each complex coordinate:

2 > iz (3.65)
Zi e Wiz (3.66)
This action preserves the standard symplectic form (3.28) and in analogy

to the example presented in section 3.1.3 one can check that it is effetive
and Hamiltonian with moment map

w:Ch— =R (3.67)
M(21;~~-;2n) :—%(’21|2,...,|2n‘2)+07 (368)
where ¢ = (¢1,...,¢,) is a constant vector. The image of the moment

map is a convex cone in R™ which is called the moment map cone. In the
example above, we can do a change of basis and choose ¢ such that the
moment map cone is the positive orthant of R”.

The condition that the Reeb vector of the Sasaki-Einstein manifold
lies in the Lie algebra of the torus action means that we can represent
it by a vector R in R™. Viewing the Sasaki-Einstein manifold M as the
hypersurface in C(M) where r = 1, it can be shown that its image under
the moment map is given by the intersection of the moment map cone
and the hyperplane {y - R = 1}:

M(M)IM({TIH‘XM)ZM(C(M))FW{?/-RZ%}- (3.69)

This slice, or ‘base’, of the moment map cone is a compact (n — 1)-
dimensional polytope. In fact it is a very special type of polytope known
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S?

S5
83

Figure 3.1. Moment map cones and polytopes for S, S° and S7. For S” only
the polytope is shown.

as a Delzant polytope, see e.g. [19] for a definition. For the example of
S?2n=1 we have R = (1,...,1) and the Delzant polytope looks like an
(n — 1)-simplex, see figure 3.1.

A toric Sasaki-Einstein manifold can be viewed as a T™ fibration over
its Delzant polytope, where one circle of the torus degenerate at each
face. For example, S® can be viewed as a T? fibration over the interval
illustrated in figure 3.1. At each end of the interval one of the two circles
degenerate. In particular this means that there is a linear combination
of the two circles that never degenerates and this gives rise to the Hopf
fibration S' — S — CP!. The stories are similar for S® and S7.

There are plenty of examples of toric Sasaki-Einstein manifolds in 7D,
for example those constructed by Martelli and Sparks [20]. These can be
obtained via Kéahler quotients and we give some examples in Paper I.

3.2.4 3-Sasakian manifolds

Let M be a Sasaki manifold with metric g and with R, x, J as in previous
sections. Then {R, k, J} is called a Sasaki-structure. A 3-Sasaki structure
is a triplet of such Sasaki structures satisfying

LK = Oat (3.70)
[Raa Rb} = €apele y (371)

where €4 denotes the anti-symmetric symbol. The three contact struc-
tures give rise to three complex structures on the cone and the above
relations mean that they satisfy the quaternion algebra and the cone is
hyperkdhler. We may use this as the definition, i.e. M is 3-Sasakian if
and only if C'(M) is hyperkdhler. 3-Sasakian manifolds are automati-
cally Einstein (since hyperkahler manifolds are Ricci-flat) and so they are
a special subcase of Sasaki-Einstein manifolds. Note that hyperkéahler
manifolds can only exist in dimensions 4n, so 3-Sasakian manifolds can
only exist in dimesions 4n — 1. In particular, the spheres S =1 provide
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examples of 3-Sasakian manifolds. We refer the reader to [26] for further
details, some of which are also discussed in Paper II.

Papers II and III deal with hypertoric 3-Sasakian manifolds. We say
that a 3-Sasakian manifold M of dimension 4n — 1 is hypertoric if its
hyperkéhler cone C'(M) admits an effective, tri-Hamiltonian action of
the torus T™. That is, an action that is Hamiltonian with respect to each
of the three Kéhler structures and respects the three complex structures.
Such cones C'(M) are examples of hypertoric varieties, first introduced
by Bielawski and Dancer [27]. See also [28] for a review. In Papers II and
I1I we review some of the key aspects of hypertoric geometry used in this
thesis.

3.2.5 Killing spinors

As discussed in section 2.3, the formulation of supersymmetry used in
this thesis requires the existence of Killing spinors.

Let M be a complete n-dimensional Riemannian spin manifold. A
spinor v is said to be a Killing spinor with Killling constant a € C if

Vxth=aX -1, (3.72)

for all tangent vectors X, where X -¢ is the Clifford multiplication and V
the spin connection. The existence of such a Killing spinor implies that
the manifold is Einstein with constant scalar curvature

R=—4n(n—1)a?. (3.73)

We will call a Killing spinor positive or negative depending on if it leads
to positive or negative curvature respectively. If the curvature is zero, i.e.
if Vx1 = 0, the spinor is said to be parallel. The manifolds admitting
positive Killing spinors have been classified. The final piece was provided
by Bér [17] by relating positive Killing spinors on M to parallel Killing
spinors on the cone C'(M). Of particular interest to us is the following the-
orem [17]: A complete simply-connected Sasaki-Einstein manifold admits
at least two linearly independent positive Killing spinors. Conversely, any
odd-dimensional complete Riemannian spin manifold admitting two such
spinors is Sasaki-Einsten.

For this reason, we shall focus on complete simply-connected Sasaki-
Einstein manifolds in this thesis. Note that such manifolds are also spin.
Simply connectedness also imply that the metric cone is Gorenstein. In
particular this means that there exists a nowhere vanishing holomorphic
(n,0)-form Q on C(M) such that

Lr0,Q = ng, (3.74)

where 2n = dimg(C'(M)), see e.g. [29] for a discussion.
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As mentioned in section 2.3, the seven-dimensional manifolds admitting

positive Killing spinors are [17]:

e The seven-sphere S” (16 Killing spinors)

e 3-Sasakian manifolds (3 Killing spinors)

e Sasaki-Einstein manifolds (2 Killing spinors)

e Proper Gy-manifolds (1 Killing spinor)
Supersymmetric Yang-Mills on S7 was studied in [16] and in this thesis we
consider 7D Sasaki-Einstein manifolds (Paper I) and 3-Sasakian manifolds
(Papers II and III). The last case, that of proper Gio-manifolds, is largely
ignored in this thesis, so let us make some comments about it.

3.2.6 Proper Gy-manifolds

In dimension seven there exists a type of manifold that admit exactly one
positive Killing spinor. Following [30] these are referred to as ‘proper Ga-
manifolds’ in this thesis. Seven-dimensional manifolds admitting positive
Killing spinors can also be characterised as manifolds admitting a 3-form
® satisfying

dd = —8a(xd), (3.75)

for some o # 0. Such manifolds are called nearly parallel Go-manifolds
n [30]. If (3.75) holds for & = 0 we say that we have a ‘geometric Ga-
structure’. Such manifolds are Ricci-flat, admit a parallel spinor, and
are typically referred to as just ‘Go-manifolds’ in the literature. Their
Ricci-flatness makes them suitable for ‘realistic’ compactifications of M-
theory. One can also formulate supersymmetric Yang-Mills theory on
such manifolds by making use of the parallel spinor. As discussed in e.g.
[31] one can take the supersymmetry off-shell and find a cohomological
complex where the differential squares to a gauge transformation. It can
then be argued that action is minimised by ‘Gs-instantons’ satisfying

«F=0AF. (3.76)

In Paper I we argue that supersymmetric Yang-Mills can be formulated
on proper Go-manifolds but we do not pursue this further. The reason for
this is that we need a contact structure to proceed with our localisation
arguments. The supersymmetry can be taken off-shell using the same
pure-spinor formalism as in Paper I, see [32] for a discussion. We believe
that it should be possible to find a cohomological complex also for the
proper Ga-case, with a differential that squares to a gauge transformation.
We expect such a theory to give rise to some form of generalised Gs-
instanton equations. This would be an interesting topic for further study.

30



4. Localisation

The results of this thesis rely on a framework of mathematical and physi-
cal results know as ‘localisation formulas’ that allow us to evaluate certain
integrals exactly. What typically happens in localisation is that an in-
tegral over some ‘large’ domain reduces to an evaluation over a much
smaller space, such as a discrete set of points. One may say that the
integral ‘localises’ there. For example, Cauchy’s residue formula in com-
plex analysis could be considered to be a localisation formula. There the
line integral of an analytic function is expressed as a sum of residues at
a discrete set of points.

The localisation results used in quantum field theories typically rely
on group actions. One of the first such results is by Duistermaat and
Heckman [33]: Let M be a compact symplectic manifold of real dimension
2n with symplectic form w. Assume there is a Hamiltonian U(1)-action,
whose moment map we denote pu, that has a discrete set of fixed-points

;. Then
6_#(Ii)

Lon—u _
/M e %} @) (4.1)
where e(z;) is the product of the weights of the U(1) action at the tangent
space at x;.

This formula is a special case of a more general equivariant localisa-
tion formula, discovered independently by Atiyah-Bott [34] and Berline-
Vergne [35].

In the next section we will discuss the Berline-Vergne-Atiyah-Bott for-
mula, as this example generalises nicely to the infinite dimensional setting
of path integrals in quantum field theories.

4.1 The Berline-Vergne-Atiyah-Bott localisation formula

Let M be a compact n-dimensinoal manifold with a U(1) action. Let
V(z) be the vector field associated to the U(1) action and consider the
equivariant differential

dy =d+ vy, (4.2)

where d is the ordinary deRham differential and ¢y denotes contraction
with the vector field. A form « is said to be equivariantly closed if

dva =0. (4.3)
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Note that « is of mixed degree and that (4.3) relates the various degrees.
The Berline-Vergne-Atiyah-Bott formula states that for an equivari-
antly closed form o

o= Pt (4.4
det 0, Vi(x;)

where the sum is taken over the (isolated) fixed-points x; and ag denotes
the zero-form component of a.

Let us derive this formula using the language of supergeometry as this
mimics the quantum field theoretic version nicely.

Conisder the odd tangent bundle II7T'M with coordinates (z#,¢*). The
a# are ordinary commuting (bosonic) coordinates on the base M, while

¥ are anti-commuting (fermionic) coordinates on the fiber. The * are
sometimes called Grassmann coordinates and satisfy

PrYY = =yt (4.5)

The ¥* can be identified with the one-forms dz* and the wedge product
of forms just becomes ordinary multiplication of the ¢* subject to (4.5).
One can define integration for Grassman variables with

=1, [dpl1=0, (4.6)
/ /

see e.g. [36] for a discussion.
We can think of mixed-degree differential forms as smooth functions
on IIT'M and write the integral of such a form as

/M a= /d":p A" a(z,v), (4.7)

where d"z = dz' A---Adx™ and d™p = dip' A--- Adyp™ form the canonical
measure on [ITM.

Consider a U(1) action on M with vector field V# and define the equiv-
ariant differential as in (4.2). Note that d?, = Ly, i.e. dy squares to a Lie
derivative by Cartan’s formula.

Note that on our coordinates

dyat = dzt = P* | (4.8)
dyyt =V (), (4.9)
which resembles a supersymmetry transformation.

Let v be an equivariantly closed form, i.e. dya(z,1) = 0. Our goal is
to calculate

/ &z " oz, ). (4.10)
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To do this we introduce the auxiliary object

= /d”x d" oz, P)e W (4.11)

The main idea of the localisation argument is to show that this expression
is independent of ¢ and then the integral in (4.10), which corresponds to
Z[0], can be computed for any convenient value of ¢. Typically one takes
t — oo.

It can be shown that (4.11) is independent of ¢ if &3 W = Ly W = 0.
This follows from « being equivariantly closed, the Leibniz rule, and
Stokes’ theorem.

The next task is to find such a W. If Lyyg = 0, i.e. the vector field V
is Killing, then

W = VHg,a" (4.12)

satisfies d3,WW = 0. This can be checked by a direct computation. For
this choice of W we have

dyW = g VIVY + (0.V g )0y (4.13)
and thus we see that in the ¢ — oo limit the fixed points where V(z;) = 0

will dominate the integral. For simplicity, let us assume that there is a
single isolated fixed-point at x; = 0. In order to compute

Z[0] = lim / A d™ a(w, )9 VIVt OV g )yt (4.14)

we make the following change of coordinates around the fixed point:
F=Vtr, ©¥=Vt. (4.15)
Note that this change of coordinates leaves the measure invariant. In

the limit ¢ — oo only the quadratic terms in the exponent, which are
independent of ¢, will contribute. Explicitly, the ¢-independent terms are

S, T T+ A P = (4.16)
9o (0,V0))(0,V7(0)) 35" + (ganu0, V(0)) 1"

where S, and A, are symmetric and anti-symmetric matrices respec-
tively. We can thus evaluate the integral in terms of Gaussian integrals
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in even and odd coordinates:

Z[0]

tlim d"zd" oz, w)e—tnguvv—t(auvkgk,,)wwv (4.17)

= lim [ d"z dwa( >e—5uvf“f”—f“w¢“¢”+0(i) (4.18)

i
Vi

e

= (2m)"2a (0, )\1;(% (4.19)
_ (2m)"2a(0,0) (4.20)

det 9,VH(0)

Summing up all such contributions from each of the fixed points we obtain
the Berline-Vergne-Atiyah-Bott formula (4.4).

4.2 Localisation of supersymmetric gauge theories

The argument in the previous section can be generalised in many ways.
The corresponding argument for infinite-dimensional path integrals was
first considered by Witten in [2]. Since then there have been many appli-
cations and generalisations of localisation techniques.

For example, Gromov-Witten invariants can be computed using local-
isation techniques, at least in the toric case, see e.g. [37] for a review.
Another famous example is Nekrasov’s localisation results for the parti-
tion function of N = 2 supersymmetric theories in the 2-deformed back-
ground [38, 39] which derives the Seiberg-Witten prepotential from first
principles.

A major break-through was made by Pestun [40] who used localisation
techniques to find the partition function of supersymmetric Yang-Mills
theories on the four-sphere. He also calculated certain observables, Wil-
son loops, and verified a conjecture by Erickson-Semenoff-Zarembo [41]
and Drukker-Gross [42] relating these to matrix models. The method of
Pestun has since been generalised to many other theories and geometries
in various dimensions, see [43] for a review.

4.3 Localisation of 7D supersymmetric Yang-Mills
theory

The approach we take to localise 7D supersymmetric Yang-Mills theory
in this thesis is based on that of [16] for S” which in turn generalises
Pestun’s arguments for S*.

The fields of the theory are mapped to differential forms and the su-
persymmetry and BRST-operators form the equivariant differential. This
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differential squares to a Lie derivative along the Reeb vector field and a
gauge transformation. The localisation calculation results in the following
expression for the perturbative partition function

pert - ng4V7 Tr(02) / .
ZP" = [ doe det ug; sdetﬂg,.) (—Lr+1G,). (4.21)
g

In the expression above, the integral is taken over the Lie algebra g of
the gauge group, g2, is the coupling constant, and V7 denotes the vol-
ume of the 7D manifold. The first determinant is taken over the adjoint
representation (excluding zero modes) and the superdeterminant is taken
over horizontal (0, p)-forms. Here Lg is the Lie derivative along the Reeb
vector field R and G, is a gauge transformation. The next step is then
to evaluate the superdeterminant

Sdetgg),.) (—,CR + x) . (4.22)

As shown by Schmude [44] this superdeterminant can be expressed in
terms of holomorphic functions on the cone C'(M). Let us briefly out-
line the reason for this. As is typical for supersymmetric theories, there
are huge cancellations between bosonic and fermionic contributions, i.e.
between the numerator and denominator in the superdeterminant (4.22).
The result of these cancellations in our case is that we only get contribu-
tions from the Kohn-Rossi cohomology groups. These are the cohomology
groups corresponding to the horizontal Cauchy-Riemann operator!

Oy - QP9 5 olpatD) (4.23)

For the 7D manifolds studied in this thesis, we only get contributions
from Hl(?}g) and Hé?}g). Moreover, the Calabi-Yau property of the cone
provides an explicit isomorphism between these two cohomologies. The
whole superdeterminant (4.22) can thus be expressed in terms of H}?}g)
but

HOO(M) = H(Oc) (4.24)

and the calculation boils down to ‘counting’ the holomorphic functions
on the cone. There are infinitely many holomorphic functions on the
cone, so in order to ‘count’ them one needs to put a grading on them
(corresponding to some action) such that each graded component is finite-
dimensional. Then one looks at the dimension of each graded piece.

For toric Sasaki-Einstein manifolds we can grade the holomorphic func-
tions by their charges under the U(1)’s of the toric action. These are then

To be more precise, our dy is the restriction of the horizontal Cauchy-Riemann
operator to horizontal forms. However, since any non-horizontal part will have zero
charge under Lr we need not worry about this subtlety here.
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in one-to-one correspondence with integer lattice points inside a cone de-
termined by the toric action. We discuss this case in Paper I.

In Paper II and III we consider the case of hypertoric 3-Sasakian man-
ifolds. We show that when one grade the holmomorphic functions in
terms of the U(1)’s of the hypertoric action and the Reeb one gets a
similar picture. The holomorphic functions correspond to integer lattice
points inside a cone determined by the hypertoric action. This correspon-
dence is no longer one-to-one but the multiplicities can be expressed in
terms of the distance from the lattice points to the boundary of the cone.

The contribution to the superdeterminant from the holomorphic func-
tions, when combined with the shifted contribution from Hg)}g), can be
expressed in terms of a special function. We can then write the pertur-
bative partition function (4.21) in terms of a matrix model involving this
special function. For toric Sasaki-Einstein manifolds this special function
is the generalised quadruple sine function that has been studied in e.g.
[45]. For hypertoric 3-Sasakian manifolds we get a new type of special
functions. Future work includes studying these functions from a math-
ematical point of view. For example, it would be interesting to derive
their integral representations, asymptotic behaviours and factorisation
properties.
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5. Summary of papers

5.1 Paper |

In Paper I we study 7D maximally supersymmetric Yang-Mills theory
on curved manifolds. We argue that the construction of such a theory
on the seven-sphere by Minahan and Zabzine [16] can be generalised to
any 7D manifold admitting positive Killing spinors. Such manifolds have
been classified in the maths literature and are given by the seven-sphere
ST (16 Killing spinors), 3-Sasakian manifolds (3 Killing spinors), Sasaki-
Einstein manifolds (2 Killing spinors) and proper Go-manifolds (1 Killing
spinor). For manifolds admitting at least two Killing spinors we map the
theory to a cohomological complex and perform a localisation calculation.
For toric Sasaki-Finstein manifolds we find that the perturbative partition
function can be expressed in terms of a generalised quadruple sine function
that count integer lattice points inside a cone determined by toric data.
Studying factorisation properties of this function allows us to speculate
about the non-perturbative part of the partition function. We also provide
some heuristic arguments for an alternative factorisation for S7 based on
its 3-Sasaki structure. We also discuss a generalised form of instanton
equations and make some remarks about observables.

5.2 Paper II

In Paper II we extend the results of Paper I to a specific example of
a 3-Sasakian manifold. The manifold we consider is not toric but its
hyperkéhler cone has hypertoric symmetry. This hypertoric symmetry is
used to enumerate the holomorphic functions on the cone and this allows
us to find the perturbative partition function. The result is also verified
by an index calculation which also provides a factorisation result.

5.3 Paper III

Paper III generalises the ‘proof-of-concept’ calculation in Paper II to arbi-
trary hypertoric 3-Sasakian manifolds. The perturbative partition func-
tion is expressed in terms of a special function that count integer lattice
points inside a cone determined by hypertoric data. We also present a
factorisation result for this function.
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6. Summary in Swedish

Kvantfaltteori ar ett av de viktigaste teoretiska ramverken inom modern
fysik. Den mest berdmda kvantfiltteorin &r Standardmodellen som beskri-
ver tre av de fyra fundamentala krafterna i naturen: elektromagnetismen
samt den svaga och starka véxelverkan. Dess forutsiagelser har bekraf-
tats experimentellt med extrem noggrannhet, t.ex. vid CERNs partikel-
acceleratorer. En viktig kategori av kvantfiltteorier ar sa kallade gauge-
teorier. Kénnetecknande for dessa teorier ar att de &r invarianta under
vissa lokala symmetrier, d.v.s. under symmetritransformationer som be-
ror pa rumstidskoordinaten. Elektromagnetismen ar ett exempel pa en sa
kallad abelsk gaugeteori. De andra tva teorierna i Standardmodellen, den
svaga och starka véxelverkan, ar exempel pa icke-abelska gaugeteorier,
eller Yang-Mills teorier.

Yang-Mills teorier dr saledes fundamentala byggstenar fér Standard-
modellen men har &ven lett till ménga intressanta resultat inom mate-
matiken. Matematiskt sett formulerar man gaugeteorier via en viss typ
av fiberbuntar éver mangfalder. Gaugefélt motsvarar da forbindelser pa
dessa fiberbuntar. Donaldson [1] anvinde dessa idéer for att definiera nya
topologiska invarianter pa fyrdimensionella mangfalder. Dessa invarianter
kan skilja mellan olika glatta strukturer och Donaldson kunde bland an-
nat visa att det finns ‘exotiska’ fyrdimensionella rum som ar homeomorfa
men inte diffeomorfa med R*.

Donaldsons arbete har generaliserats i manga riktningar. Ett berémt
exempel ar Floerhomologi [3] som ger invarianter for tredimensionella
mangfalder. Det finns dven generaliseringar i hogre dimensioner, t.ex.
Donaldson-Thomas-teori [5].

Supersymmetri &r en symmetri som relaterar fermioner och bosoner.
Det finns inget experimentellt stod for att supersymmetri skulle finnas
i naturen men supersymmetriska gaugeteorier spelar dnda en viktig roll
inom modern teoretisk fysik och matematik. Bland annat visade Witten
[4] att Donaldsons och Floers invarianter kunde formuleras via vridna
N = 2 supersymmetriska Yang-Mills teorier.

I denna avhandling studerar vi en specifik supersymmetrisk gauge-
teori och anvdnder oss av matematiska lokaliseringsresultat for att gora
exakta berdkningar. Vi studerar maximalt supersymmetrisk Yang-Mills
teori i sju dimensioner pa toriska och hypertoriska mangfalder - en typ
av geometriska rum med mycket symmetri.
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I artikel I generaliserar vi Minahan och Zabzines [16] konstruktion
av maximalt supersymmetrisk Yang-Mills-teori pa sju-sfiaren till and-
ra sjudimensionella mangfalder som tillater positiva Killingspinorer. For
Sasaki-Einsteinmangfalder konstruerar vi ett kohomologiskt komplex och
anvander oss av lokalisering for att hitta den perturbativa tillstands-
summan. Denna tillstdndssumma kan beskrivas via en superdeterminant.
For toriska Sasaki-Einsteinmangfalder relaterar vi denna superdetermi-
nant till holomorfa funktioner pa den metriska konen 6ver var mang-
fald. Dessa funktioner kan tack vare den toriska symmetrin beskrivas
som punkterna i ett heltalsgitter inuti en konisk polytop. Resultatet blir
att tillstandssumman kan beskrivas med hjalp av en speciell funktion som
i det toriska fallet 4r en generaliserad kvadrupel sinusfunktion. Faktorise-
ringsegenskaper hos dessa funktioner gor att vi &ven kan spekulera kring
den fulla tillstandssummans struktur.

I artikel II studerar vi aterigen sjudimensionell supersymmetrisk Yang-
Mills-teori, denna gang pa en specifik 3-Sasakimangfald. Eftersom 3-
Sasakiméngfalder &ven ar Sasaki-Einstein kan vi anvinda samma loka-
liseringsargument som i artikel I. Mangfalden vi studerar i artikel II &r
inte torisk och vi behéver darfor en annan teknik for att berdkna super-
determinanten i tillstAndssumman. Mangfalden vi studerar &r dock hy-
pertorisk och detta gor att vi kan beskriva de holomorfa funktionerna
pa mangfaldens kon och dérmed berdkna den perturbativa tillstdnds-
summan. Vi verifierar &ven resultatet via en index-berdkning samt pavisar
ett faktoriseringsresultat.

I artikel III generaliserar vi metoden i artikel II till godtyckliga sju-
dimensionella 3-Sasakimangfalder med hypertorisk symmetri. Den pertur-
bativa tillstindssumman ges nu av en ny speciell funktion som beskrivs
via heltalsgitterpunkter i en polytop som bestdms av den hypertoriska
symmetrin. Vi presenterar dven ett faktoriseringsresultat for denna funk-
tion.
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