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Abstract

We present measurements of the ratio of branching fractions of semileptonic decays of the B0

and Λb relative to the fully reconstructed hadronic decay of similar topology. Using data taken
with the CDF-II detector corresponding to a total sample size of 171.5 pb−1 we reconstruct ,
579 ± 30, 106 ± 11, and 179 ± 19 of the statistically limiting B0 → D−π+, B0 → D∗−π+ and
Λb → Λ+

c π− decays, respectively. After subtracting backgrounds we find:

B(B
0 → D∗+µ−νµ)

B(B
0 → D∗+π−)

= 17.7 ± 2.3 (stat)± 0.6 (syst)± 0.4 (BR)± 1.1 (UBR),

B(B
0 → D+µ−νµ)

B(B
0 → D+π−)

= 9.8 ± 1.0 (stat)± 0.6 (syst)± 0.8 (BR)± 0.9 (UBR),

B(Λb → Λ+
c µ−νµ)

B(Λb → Λ+
c π−)

= 20.0 ± 3.0 (stat)± 1.2 (syst)
+0.7

−2.1
(BR)± 0.5 (UBR).

where the uncertainties are from statistics, CDF internal systematics, external measured branching
ratios and unmeasured branching ratios, respectively. The B0 results are in good agreement with
the world averages and will substantially improve our knowledge of these semileptonic branching
ratios. The Λb results are the first of their kind and combining with additional information we
determine the exclusive semileptonic branching fraction:

B(Λ0
b → Λ+

c µ−νµ) =
(
8.1 ± 1.2 (stat)

+1.1

−1.6
(syst)± 4.3 (B(Λb → Λ+

c π−))
)
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1 Difference between This Version and Version 2.0

Section 5.2 and Section 5.3

We now include a study of the acceptance using a more realistic decay model including form factors.
We find the central value of the acceptance changes by ∼ 0.6%. Our Monte Carlo samples have a 2%
statistical uncertainty for the acceptance.

Section 6.1 and 6.4

The latest B(Λb → Λ+
c π

−) from CDF note 7558 [1] is used to normalize the semileptonic backgrounds
to Λb → Λ+

c π
−. The relative efficiency of each semileptonic background to the Λb → Λ+

c π
− decay

in Tables 26–27 has reduced by 0.6%, after applying the scaling for the form factor decay model(see
Section 5.3). The combination of the modified B(Λb → Λ+

c π
−) and relative efficiencies reduces the

total amount of physics background in the inclusive B → Λ+
c µ

−X events.

Section 7.1–7.5

The systematic uncertainties for the Λb relative branching ratios are re-calculated due to the change
of B(Λb → Λ+

c π
−). In addition, we also include the systematic uncertainty from the scaling factor for

the decay model.

Section 8–9

We re-evaluate B(Λb → Λ+
c µ

−νµ) and compared our result with the recent DELPHI measurement.

Appendix A

We include the questions of the B group members we received and their answers.
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2 Introduction

Hadrons containing a b-quark represent one of the most interesting topics in flavor physics. B mesons
have been studied by several experiments and much is known about the lowsest lying mesons containing
a b-quark. However, the situation is very different for the lowest lying baryon containing beauty, the
Λb. According to the quark model the Λb contains u and d quarks in addition to the b-quark.
Since the b-quark is much more massive than the the two lighter quarks one may use a heavy quark
approximation to describe the system. The heavy quark approximation assumes the QCD properties
of the a hadron are largely determined by the heavy quark. This means that in weak decays, the
light quarks, the ud diquark in the Λb, act as spectators and the diquark properties do not change.
More important, since the dominant decay for b-quarks is to a c-quark which is also considerably
heavier than u and/or d quarks, the heavy symmetry is carried over to the daughter charm hadron.
This heavy quark symmetry allows theorists to calculate the QCD properties of the b-hadrons, in
particular, form factors and branching ratios. Specifically, the general description of the semileptonic
decay of a baryond is described by six (6) form factors. Application of the heavy quark approximation
reduces the number of form factor to two (2) and makes specific predictions on the nature of the form
factors.

The Λb offers a unique test for theoretical models using heavy quark symmetry. In this paper we
present a measurement of the ratio of branching fractions

B(Λ0
b → Λ+

c µ
−νµ)

B(Λ0
b → Λ+

c π−)
, (1)

where we reconstruct the Λ+
c through its hadronic decay Λ+

c → pK−π+. The careful reader will note
that both the numerator and denominator modes contain four charge particles in the final state; three
of those four particles originate from the Λ+

c which allows most systematic uncertainties to cancel in
the final measurement.

Because such a measurement has never been performed, one would like to test our measurement
technique on other systems. The B0 system offers two such decays of a similar topology which have
been measured previously. Specifically, we will test our techniques by measuring the additional ratios
of branching fractions:

B(B0 → D−µ−νµ)
B(B0 → D−π+)

(2)

B(B0 → D∗
−
µ+νµ)

B(B0 → D∗−π+)
, (3)

where we reconstruct the daughter decays D− → K+π−π− and D∗− → D
0
π− with a subsequent

decay D
0 → K+π0. Again, all of the decays under study contain four (4) tracks in the final state

and three of the four tracks originate from a common parent for both the numerator and denominator
decays.

In the following sections we describe the triggers and event selection used to obtain our data
sample. We then describe how the final states are reconstructed and signals optimized. Once the
number of events in each decay mode are determined, we describe the various backgrounds which
must be subtracted from the semileptonic decays. We estimate systematic effects and finally present
our final results.
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3 Event Selection

Data used in this analysis are collected with the upgraded CDF detector from 9th February 2002 to
6th September 2003 and cover runs 138809 through 168889. This period corresponds to an integrated
luminosity of ∼237 pb−1. The data from B CHARM Scenario A are processed with the Production
executable, version 4.8.4, and compressed into the secondary datasets hbot0h and hbot1i. The total
size of hbot0h and hbot1i is about 10 Terabytes (150M events), which is too big to be analyzed
quickly multiple times. We apply loose selection cuts and reduce hbot0h, hbot1i to smaller, tertiary
datasets. Yu [2] discusses the data skimming. Then we optimize the analysis cuts using the tertiary
datasets in this section.

From the reduced datasets we reconstruct our signals:

• B
0 → D∗+π− and B → D∗+µ−X, where D∗+ → D0π+, D0 → K−π+

• B
0 → D+π− and B → D+µ−X, where D+ → K−π+π+

• Λb → Λ+
c π

− and B → Λ+
c µ

−X, where Λ+
c → pK−π+

The reconstruction procedure is similar to that described in Yu [2]. The following cuts are studied
more carefully and optimized :

• χ2
r−φ of B and charm vertex fit

• PT of B and charm candidates

• cτ of B and charm candidates: Lxy × M
PT

.

Our semileptonic signals are larger than the hadronic signals, and the statistical uncertainty of the
relative branching fraction measurement is dominated by the uncertainty of the number of events in
the hadronic signals. Therefore, we optimize the hadronic mode only and apply the optimized cuts to
the semileptonic mode. The optimized quantity is the significance, S√

S+B
, where “S” is the number

of signal and “B” is the number of background events.
For our optimization, the amount of signal, “S” comes from a MC as described in Section 5.1. In

order to scale the significance close to the true value measured from the data, we apply a normalization
factor fc on the signal MC,

fc =
Sdata

SMC
, (4)

where Sdata and SMC are the amount of the signal found in the data and MC after applying loose
cuts, and

S = fc × SMC. (5)

Figure 1 shows a comparison of the number of signal in the data and in the MC after applying the
normalization factor.

We evaluate the background beneath the signal peak from the data. We first apply loose cuts on
each mode to identify a clear B0 or Λb peak;

• cτ(B) > 50 µm

• each track PT > 0.5 GeV/c

• π from the B hadron is CMU fiducial

• for B
0 → D∗+π−:

– 1.833 < MKπ < 1.893 GeV/c2

– 0.143 < MKππ - MKπ < 0.148 GeV/c2
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Figure 1: Signal optimization: number of signal in the MC and data as a function of the cτ(B)
cut after applying the normalization factor for each hadronic mode. Top: B

0 → D∗+π−. Middle:
B

0 → D+π−. Bottom: Λb → Λ+
c π

−.
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Figure 2: D∗π, Dπ and Λcπ invariant mass for data and MC. From the top to the bottom rows are
B

0 → D∗+π−, B
0 → D+π−, and Λb → Λ+

c π
− channels. Left: data, the pink solid lines indicate the

signal region. Right: MC.

• for B
0 → D+π−: 1.8517 < MKππ < 1.8837 GeV/c2

• for Λb → Λ+
c π

−: 2.269 < MpKπ < 2.302 GeV/c2

We require that both the muon and pion from the B hadron point within CMU fiducial volume because
we use the CMU only to identify the muons. CMU covers the region of pseudo-rapidity (η) less than
0.6. Making the same fiducial requirement for the hadronic mode allows the tracking efficiencies from
both modes to cancel.

The backgrounds in the signal and in the upper mass regions are mainly combinatorial, and may
be described by an exponential function, as we will see in Section 4.2. Therefore, we fit the upper
mass region to an exponential function. Finally we extrapolate and integrate the exponential over
the mass region of ± 3 σ around the signal peak to obtain “B”. Figure 2 shows the B hadron mass
distribution in the data and MC. The figure also shows the signal region we define and the upper mass
region we fit to an exponential.

The optimization follows an iterative procedure which passes through the data multiple times. In
the first pass, cuts on each variable are scanned and optimization points are found. In the second
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Table 1: Final analysis cuts shared by all the modes.

All

PT for all tracks > 0.5 GeV/c

πB and µB PT > 2.0 GeV/c

PT of 4 tracks > 6.0 GeV/c

PT of charm hadron > 5.0 GeV/c

µB CMU χ2
x < 9

every track exits at COT layer 95

πB and µB matched to SVT tracks and CMU fiducial

pass, we apply the optimized cuts for all but the variable which is being re-optimized. We iterate this
process several times until the optimization points become stable; usually twice is enough. Figures 3–
5 show S√

S+B
, S

B and S
Sref

as a function of each cut variable, where Sref is the number of signal events
at the starting point. Tables 1– 2 list the final analysis cuts. Note that because the MC and the
data χ2

r−φ do not agree well, as shown in Section 5.2, we choose to make a loose cut at the plateau
region of the significance. The final analysis cuts for the PT of charm hadrons are tighter than the
optimization points. The tighter cuts arise from the 4 GeV/c PT threshold applied to the c-quark in
the MC sample for our semileptonic background study (see Section 6.3.2). This PT threshold makes
the reconstruction of charm hadrons below 4 GeV/c inefficient. The MC sample is produced by the
CDF B group and it would take a prohibitive amount of CPU time to generate a new sample more
suitable for our analysis. Therefore, we increase the PT cut of our charm hadrons to 5 GeV/c. As
the significance of the charm is a slowly varying curve, changing the cuts has little effect on the signal
yield.

In addition to the cuts which are optimized above, we also require that the muon and pion from
the B hadron each matches an SVT track. Finally, for the semileptonic modes, we make cuts on
the four track invariant mass (eg: M(Λcµ)) to reduce the backgrounds from the other B decays, see
Section 6.1 for more details. Figures 6– 9 give the signal and sideband distribution of each optimized
variable in the B → D∗+X and B → D+X data after N − 1 cuts. The signal distribution is sideband
subtracted as described in the MC and data comparison presented in Section 5.2. Figures 10– 11 give
the signal and sideband distribution of each optimized variable in the Λb → Λ+

c X data after N − 1
cuts. The signal distribution is obtained by fitting the number of signal events in bins of the variable
as described in Section 5.2. The sideband distribution is from the following mass region:

• For the Λb → Λ+
c π

− mode: 4 σ < MpKππ − 5.6204 < 7 σ

• For the B → Λ+
c µ

−X mode: 4 σ < |MpKπ − 2.285| < 6 σ

The optimization yields a S/B of 37.6 and 62.8 for the B
0 → D∗+π− and B → D∗+µ−X modes,

2.6 and 1.3 for the B
0 → D+π− and B → D+µ−X modes, 1.6 and 0.3 for the Λb → Λ+

c π
− and

B → Λ+
c µ

−X modes. Figure 12 shows the charm+π (left) and charm (right) mass spectra from the
hadronic and inclusive semileptonic signals in the data after applying the optimized analysis cuts. We
have reconstructed our signals in the data collected from the B CHARM Scenario A trigger path. We
have optimized our analysis cuts. In the next section, we will present the fit to the charm and B
hadron mass spectra to obtain the number of signal events.
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Table 2: Final analysis cuts for each mode.

B → D∗+X

D0 VertexFit χ2
r−φ < 16

4 track VertexFit χ2
r−φ < 17

cτ(D0 → B) > -70 µm

cτ(B → beamspot) > 200 µm

1.833 < MKπ < 1.893 GeV/c2

3.0< MKππµ <5.3 GeV/c2 for B → D∗+µ−X

0.143< ∆m <0.148 GeV/c2 for B
0 → D∗+π−

B → D+X

D+ VertexFit χ2
r−φ < 14

4 track VertexFit χ2
r−φ < 15

cτ(D+ → B) > -30 µm

cτ(B → beamspot) > 200 µm

3.0< MKππµ <5.3 GeV/c2 for B → D+µ−X

1.8517 < MKππ < 1.8837 GeV/c2 for B
0 → D+π−

Λb → Λ+
c X

PT of proton > 2 GeV/c

Λ+
c VertexFit χ2

r−φ < 14

4 track VertexFit χ2
r−φ < 15

cτ(Λ+
c → Λb) > -70 µm

cτ(Λb→ beamspot) > 250 µm

3.7< MpKπµ <5.64 GeV/c2 for B → Λ+
c µ

−X

2.269< MpKπ <2.302 GeV/c2 for Λb → Λ+
c π

−
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Figure 4: Significance ( S√
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) marked by circles, signal/background ( S
B ) marked by squares and
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) marked by triangles for cuts used in B → D+X analysis.
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) marked by triangles for cuts used in Λb → Λ+
c X analysis.
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Figure 6: B → D∗+µ−X cut variables from the data after sideband subtraction. (a)–(c): PT (D∗µ)
cτ(D∗µ), and the vertex fit χ2

rφ for the D∗µ vertex. (d)–(f): PT (D∗+), cτ(D0), and the vertex fit χ2
rφ

for D0 vertex. (g)–(i): PT (µB), M(D∗µ) and MKπ. Arrows indicate the point of the final analysis
cuts. The shaded histograms are the distribution from the sideband of the mass difference: MKππ -
MKπ.
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Figure 7: B
0 → D∗+π− cut variables from the data after sideband subtraction. (a)–(c): PT (B0),

cτ(B0), and the vertex fit χ2
rφ for the B0 vertex. (d)–(f): PT (D∗+), cτ(D0), and the vertex fit χ2

rφ for
D0 vertex. (g)–(i): PT (πB), MKππ - MKπ and MKπ. Arrows indicate the point of the final analysis
cuts. The shaded histograms are the distribution from the sideband of MB0 .
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Figure 8: B → D+µ−X cut variables from the data after sideband subtraction. (a)–(c): PT (Dµ),
cτ(Dµ), and the vertex fit χ2

rφ for the Dµ vertex. (d)–(f): PT (D+), cτ(D+), and the vertex fit χ2
rφ

for D+ vertex. (g)–(h): PT (µB) and M(Dµ). Arrows indicate the point of the final analysis cuts.
The shaded histograms are the distribution from the sideband of MKππ.
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Figure 9: B
0 → D+π− cut variables from the data after sideband subtraction. (a)–(c): PT (B0),

cτ(B0), and the vertex fit χ2
rφ for the B0 vertex. (d)–(f): PT (D+), cτ(D+), and the vertex fit χ2

rφ for
D+ vertex. (g)–(h): PT (πB), and MKππ. Arrows indicate the point of the final analysis cuts. The
shaded histograms are the distribution from the sideband of MB0 .
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Figure 10: B → Λ+
c µ

−X cut variables from the data after sideband subtraction. (a)–(c): PT (Λcµ),
cτ(Λcµ), and the vertex fit χ2

rφ for the Λcµ vertex. (d)–(f): PT (Λ+
c ), cτ(Λ+

c ), and the vertex fit χ2
rφ

for Λ+
c vertex. (g)–(h): PT (µB) and M(Λcµ). Arrows indicate the point of the final analysis cuts.

The shaded histograms are the distribution from the sideband of MpKπ.
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Figure 11: Λb → Λ+
c π

− cut variables from the data after sideband subtraction. (a)–(c): PT (Λb),
cτ(Λb), and the vertex fit χ2

rφ for the Λb vertex. (d)–(f): PT (Λ+
c ), cτ(Λ+

c ), and the vertex fit χ2
rφ for

Λ+
c vertex. (g)–(h): PT (πB), and MpKπ. Arrows indicate the point of the final analysis cuts. The

shaded histograms are the distribution from the sideband of MΛb
.
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Figure 12: charm+π and charm mass spectra from our signals after all cuts. From the top left to the
bottom right are: MD∗π, MD0π −MD0 , MDπ, MKππ, MΛc

π and MpKπ.
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4 Signal Yield in the Data

In this section, we explain how the signal yield in the data is extracted. We extract the yield by fitting
the charm+π (or charm) mass spectra in Figure 12 to a function which describes both the signal and
the background. We integrate the signal function to obtain the yield. The signal function for all
modes is a Gaussian or double-Gaussians. The background function varies with the decay mode. All
our fits use an unbinned, extended likelihood technique. The general extended likelihood function (L)
is expressed as:

logL =
∑

i

log{Nsig · S(mi) +Nbg·B(mi)} −Nsig −Nbg + log C, (6)

where i represents ith event, m represents the reconstructed charm+π (charm) mass. The amounts of
signal and background are denoted as Nsig and Nbg, respectively, while S(m) (B(m)) are the functions
which describe the signal (background) mass spectrum. The last term in Equation 6, C, is a Gaussian
constraint on one fit parameter, x:

C = G(x, µ, σ) =
1√
2πσ

e−
1
2 (

(x−µ)
σ )2 , (7)

where we constrain the variable x around the mean µ. The difference of x and µ follows a Gaussian
distribution with an uncertainty σ. The unbinned likelihood fitter calls the MINUIT package. MINUIT
varies the fit parameters to minimizes −2 · logL .

The performance of the fitter was checked on 1000 toy MC samples similar to the data distribution.
We plot the pull distribution for each parameter. For a large number of toy MC tests, the pull is
expected to follow a Gaussian distribution. We examine if the fitter returns an output consistent with
the input, i.e. if the mean of the pull distribution is consistent with zero and if the width is consistent
with one. Note that the µ and σ of the Gaussian constraint in Equation 7 are determined from a
subsidiary measurement using the data and the MC. Therefore, we simulate this measurement in the
toy MC test, by smearing the mean of the constraint with a Gaussian distribution of mean µ and
sigma σ in Equation 7. In order to evaluate the quality of the fit, we also superimpose the fit result
on the data histograms and compute a χ2. Remark that as the B hadrons are fully reconstructed in
the hadronic channels, the yields we extract are the true amount of signal for this analysis. The yields
we extract for the inclusive semileptonic channels include the exclusive signals and indistinguishable
backgrounds: such as muon fakes, decays from bb, cc, or other B hadrons. These backgrounds will be
estimated in Section 6 and subtracted in the calculation of the relative branching ratios.

4.1 Mass Fit of the Semileptonic Modes

4.1.1 D∗µ Yield

As seen in Figure 12 (top right), the events with D∗µ in the final state have almost no combinatorial
background. The combinatorial background is reduced largely by requiring MKπ be consistent with
the world average D0 mass and cutting on the variable MD∗µ. The MD0π − MD0 distribution is
fitted to a double Gaussian signal and a constant background. The extended log likelihood function
is expressed as:

logL =
∑

i

log{Nsig · [(1− f2) · G1(mi, µ, σ1) + f2 · G2(mi, µ, σ2)]

+Nbg ·
1

Mmax −Mmin
} −Nsig −Nbg, (8)

where f2 is the fraction of the second Gaussian, The mass window 0.14 < MD0π−MD0 < 0.18 GeV/c2

is specified by Mmin and Mmax. Both Gaussians have the same mean but different sigmas. Table 3
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Table 3: D∗µ results from the unbinned likelihood fit.

Index Parameter 1000 toy MC 1000 toy MC Data fit value

pull mean pull width

1 Nsig -0.023 ± 0.031 1.006 ± 0.023 1059 ± 33

2 f2 0.002 ± 0.034 1.072 ± 0.024 0.56 ± 0.10

3 µ [GeV/c2] 0.049 ± 0.033 1.044 ± 0.024 0.145410 ± 0.000016

4 σ1 [GeV/c2] -0.048 ± 0.033 1.052 ± 0.024 0.00031 ± 0.00004

5 σ2 [GeV/c2] 0.011 ± 0.032 1.031 ± 0.023 0.00071 ± 0.00006

6 Nbg 0.010 ± 0.031 1.000 ± 0.022 321 ± 19

Table 4: Correlation coefficients returned from the fit (D∗µ data)

1 2 3 4 5 6

1 1.000

2 -0.050 1.000

3 0.002 0.064 1.000

4 0.040 -0.853 -0.031 1.000

5 0.085 -0.859 -0.058 0.686 1.000

6 -0.070 0.087 -0.004 -0.070 -0.147 1.000

lists the mean, width of the pull distribution from 1000 toy MC test and the fit value of each parameter
from the unbinned likelihood fit to the data. Figure 13 shows the fit to each pull distribution. The toy
MC test result indicates that the fitter returns a fit value consistent with the input. Table 4 gives the
correlation coefficients returned from the likelihood fit to the data, where the index of each parameter
follows that in Table 3. Figure 14 shows the fit result superimposed on the data histogram. We have
obtained from the fit:

NB→D∗+µ−X = 1059 ± 33.

4.1.2 Dµ Yield

A first glance of MKππ in Figure 12 (middle right) might suggest that we could fit MKππ to a Gaus-
sian signal and a first-order polynomial background. But, since we do not apply particle identification
(PID) in this analysis, the background under the signal contains not only the combinatorial back-
ground, but also contamination from the Ds decays. Not using PID means that a pion mass might
be assigned to a kaon, and D+

s may be reconstructed as D+. Figure 15 shows the mis-reconstructed
D+ mass spectrum from the Bs → D+

s µ
−νµ MC, where Ds are forced to decay into the final states

listed in Table 5. These final states are selected after a study to identify the dominant Ds decays re-
constructed in the D+ mass window. The MC used to assess Ds background is produced as described
in Section 5.1.
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Figure 13: Pull of each fit parameter in the unbinned likelihood fit (D∗µ)

22



]2) [GeV/c0)- M(Dπ0M(D
0.14 0.15 0.16 0.17 0.18

2
E

ve
nt

s/
 0

.2
 M

eV
/c

0
20
40
60
80

100
120
140
160
180
200
220

/NDF=151.5/153, prob = 51.9%2χ

X-µ*+ D→mixB
+π0 D→

+π- K→

Figure 14: MD0π −MD0 from the D∗µ events fit to a double- Gaussian signal and a constant back-
ground. The result of the unbinned likelihood fit is projected on the histogram and a χ2 probability
is calculated.

23



]2) [GeV/cππM(K
1.8 1.85 1.9 1.95

2
E

ve
n

ts
 / 

5 
M

eV
/c

0

20

40

60

80

100

120

140 µ+ reconstructed as Dνµs D→ sMC  B

Figure 15: Bs → D+
s µ

−νµ MC reconstructed as Dµ final state. Here Ds are forced to decay into the
modes listed in Table 5. The arrows indicate the 3 σ D+ signal region.

24



Table 5: Dominant mis-identified Ds sequential decays in Dµ signal. Branching fractions without
uncertainties have an upper limit in the PDG.

Selected final states of Ds decays
Mode B (%) relative to B(Ds → φπ)
D+

s → φπ+ 3.6 ± 0.9 1
D+

s → φK+ 0.03 ± ? 0.008 ± ?
D+

s → ηπ+ 1.7 ± 0.5 0.48 ± 0.05
D+

s → η′π+ 3.9 ± 1.0 1.08 ± 0.09
D+

s → ωπ+ 0.28 ± 0.11 0.077 ± 0.025
D+

s → ρ0π+ 0.04 ± ? 0.011 ± ?
D+

s → ρ0K+ 0.15 ± ? 0.042 ± ?
D+

s → f0π
+ 0.57 ± 0.17 0.16 ± 0.03

D+
s → f2π

+ 0.35 ± 0.12 0.098 ± 0.022
D+

s → ρ+η 10.8 ± 3.1 2.98 ± 0.44
D+

s → ρ+η′ 10.1 ± 2.8 2.78 ± 0.41
D+

s → K0π+ 0.4 ± ? 0.11 ± ?
D+

s → K∗0π+ 0.65 ± 0.28 0.18 ± 0.06
D+

s → K0K+ 3.6 ± 1.1 1.01 ± 0.16
D+

s → K∗0K+ 3.3 ± 0.9 0.92 ± 0.09
D+

s → π+π+π− 0.005 ± +0.022
−0.005 0.0014± 0.0007

D+
s → K+K−π+ 0.9 ± 0.4 0.25 ± 0.09

D+
s → K+K+K− 0.02 ± ? 0.0056± ?
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We need to include the mis-identified Ds mass shape in our likelihood fit so to properly estimate
the number of Dµ events in the data. Assuming that B → D+

s µ
−X has a similar mass spectrum

as Bs → D+
s µ

−νµ, we could use the MC for Figure 15 to obtain the function which describes the
line-shape of mis-reconstructed Ds mass spectrum. We find the Ds spectrum (F) could be described
by a constant and a triangular function convoluted with a Gaussian (T ):

F(m) = (1− ftrg) ·
1

Mmax −Mmin
+ ftrg · T (m), (9)

where ftrg is the fraction of triangular function, Mmax and Mmin specify the mass window, 1.767 <
MKππ < 1.977 GeV/c2, and

T (m) =
2(m−M0)

(Moff −M0)2
⊗ G(m,M0, σtrg). (10)

Here, ⊗ represents convolution, G is the Gaussian and σtrg is the width of G. The triangular function
value starts from zero at M0 and increases as the mass increases. When the mass reaches Moff , the
function values is at its maximum and drops precipitously to zero. A graphical representation of Moff

and M0 may be found in Figure 16. The exact form of T (m) is found in Appendix B.1 derived by
Heinrich. Figure 17 shows the result of the fit to the MC.

Now with the function form of the MKππ spectrum from the Ds decays, we have to normalize the
MC yield to the data. The Ds yield may be obtained by reconstructing one of the Ds final states in
the data: B → D+

s µ
−X, where D+

s → φπ+, φ → K+K−, then using MC to determine the ratio of
this Ds decay to that of all the Ds decays in Table 5, Rφπ:

Rφπ =
NMC

φπ

NMC
all

. (11)

The normalization of Ds is then expressed as:

NB→D+
s µ−X =

NB→D+
s µ−X,Ds→φπ,φ→KK

Rφπ
. (12)

In order to obtain NB→D+
s µ−X,Ds→φπ,φ→KK in the data, the same analysis cuts for Dµ are applied,

except that we assign kaon mass to one of the same-sign charged tracks and pion mass to the other.
We still assign kaon mass to the track which has the opposite charge of the other two. In addition,
the candidates are required to pass the following cuts:

• 1.767 < MKππ < 1.977 GeV/c2

• |MKK − 1.019| < 0.01 GeV/c2

The cut on MKK guarantees that there is no mis-identified D+ in the D+
s signal we reconstruct. We

confirm this by reconstructing D+
s from the B

0 → D+µ−νµ MC and no Ds candidate is found. See
Figure 18 for the B → D+

s µ
−X signal in the data, we find:

NB→D+
s µ−X,Ds→φπ,φ→KK = 237± 17.

We then reconstruct the same Ds decay chain in the MC as in the data and obtain

Rφπ = 0.131± 0.007. (13)

See Figure 19 for the reconstructed D+
s → φπ+ in the semi-inclusive Bs → D+

s µ
−νµ MC. Inserting

the result of NB→D+
s µ−X,Ds→φπ,φ→KK and Rφπ into Equation 12, we have:

NB→D+
s µ−X = 1812± 160, (14)
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The uncertainty in Equation 14 comes from the fractional uncertainties on: NB→D+
s µ−X,Ds→φπ,φ→KK

(7.2%) and Rφπ (5%).
In the unbinned fit, the extended log likelihood function is expressed by the sum of two likelihoods:

one describing the data and the other describing the Bs → D+
s µ

−νµ MC since we fit the data and
MC simultaneously;

logL = logLdata + logLMC, (15)

The likelihood function for the data, logLdata, is a sum of a signal Gaussian, a first-order polynomial
for the combinatorial background (H), and the function for the Ds (F , see Equation 9). A Gaussian
constraint on the amount of Ds, CDs

, is employed.

logLdata =
∑

i

log{Nsig · G(mi, µ, σ) +Ncombg · H(mi) +NDs · F(mi)}

− Nsig −Ncombg −NDs
+ log CDs

, (16)

where

H(mi) =
1

Mmax −Mmin
+ p1 · (mi −

Mmax +Mmin

2
),

CDs
= G(NDs

, µp, σp).

From the prediction of Equation 14, we have µp = 1812, and σp = 160.
The likelihood function logLMC is used to fit Bs → D+

s µ
−νµ MC and obtain the parameterization

of F(m). Here the normalization does not matter.

logLMC =
∑

i

log{F(mi)}. (17)

Table 6 lists the mean, width of the pulls from 1000 toy MC test and the result returned from the
unbinned likelihood fit to the data. Figure 20 shows the fit to each pull distribution. All the pull means
are consistent with zero and the pull widths are consistent with one. Table 7 gives the correlation
coefficients returned from the likelihood fit to the data. Figure 21 shows the fit result superimposed
on the data histogram. We have obtained from the fit:

NB→D+µ−X = 4721 ± 104.

We also perform a cross-check by removing the constraint onNDs
and obtainNB→D+µ−X = 4667±139,

NDs
= 2184±620, which are consistent with the result of the constrained fit. The fit without constraint

has a χ2/NDF=197.0/199 and probability is 52.7%.

4.1.3 Λcµ Yield

When a proton mass is assigned to a kaon or pion, numerous B meson to D meson semileptonic
decays could be mis-reconstructed as a Λcµ final state. In order to estimate the B meson background
shape under our signal, we use generator level MC and generate the semileptonic decays (µ channel)
of each B meson flavor separately. After applying analysis cuts, we add up the mis-reconstructed
mass spectrum from each kind of B meson according to the production fractions:

b→ Bd = (39.7 ± 1.3) %,
b→ Bu = (39.7 ± 1.3) %,
b→ Bs = (10.7 ± 1.1) %.

Figure 22 shows a smooth mass spectrum from the generator MC. The shape is best described by a
second-order polynomial, with χ2/NDF = 36.6/42, prob = 70%. A first-order polynomial fit yields
χ2/NDF = 56.6/43, prob = 8%. Because the combinatorial background may be parameterized by a
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Table 6: Dµ results from the unbinned likelihood fit.

Index Parameter 1000 toy MC 1000 toy MC Data fit value
pull mean pull width

1 Nsig -0.012 ± 0.035 1.004 ± 0.025 4721 ± 104
2 µ [GeV/c2] 0.027 ± 0.037 1.048 ± 0.027 1.8680 ± 0.0002
3 σ [GeV/c2] 0.007 ± 0.035 0.992 ± 0.025 0.0084 ± 0.0002
4 Ncombg -0.076 ± 0.038 1.073 ± 0.027 15178 ± 197
5 p1 0.018 ± 0.036 1.027 ± 0.026 -5.2 ± 0.7
6 NDs

0.042 ± 0.037 1.065 ± 0.027 1832 ± 155
7 ftrg 0.022 ± 0.036 1.023 ± 0.026 0.617 ± 0.021
8 M0 [GeV/c2] 0.055 ± 0.035 1.007 ± 0.025 1.69 ± 0.02
9 Moff [GeV/c2] -0.025 ± 0.036 1.019 ± 0.026 1.888 ± 0.002
10 σtrg [GeV/c2] -0.035 ± 0.037 1.056 ± 0.027 0.010 ± 0.002

Table 7: Correlation coefficients returned from the fit (Dµ data)

1 2 3 4 5 6 7 8 9 10

1 1.000

2 0.011 1.000

3 0.444 0.026 1.000

4 -0.032 -0.011 -0.065 1.000

5 -0.066 -0.050 -0.036 -0.316 1.000

6 -0.277 0.007 -0.168 -0.727 0.384 1.000

7 -0.041 0.019 -0.038 0.025 0.148 -0.005 1.000

8 -0.083 0.107 -0.029 0.070 -0.134 -0.033 -0.090 1.000

9 -0.054 -0.193 -0.090 -0.013 0.022 0.044 0.094 -0.542 1.000

10 0.079 0.175 0.058 -0.032 0.010 -0.007 0.272 0.376 -0.534 1.000
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Figure 20: Pull of each fit parameter in the unbinned likelihood fit (Dµ)
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first-order polynomial, and adding a first- to a second-order polynomial gives a second-order polyno-
mial, we fit the combinatorial and the B meson background together to a second-order polynomial
(H). The extended log likelihood function could be expressed as:

logL =
∑

i

log{Nsig · G(mi, µ, σ) +Nbg · H(mi)}

− Nsig −Nbg, (18)

where
H(mi) =

1
Mmax −Mmin

+ p1 · (mi −Mmid) + p2 · (12 · (mi −Mmid)2 −M2
diff).

Here, Mmax and Mmin specify the Λ+
c mass window: 2.19 < MpKπ < 2.37 GeV/c2. The average of

Mmax and Mmin, or the mid point in the mass window is Mmid. The difference of Mmax and Mmin is
Mdiff .

Table 8 lists the mean, width of the pulls from the toy MC test and the parameter value from the
fit to the data. Figure 23 gives the pull of each fit parameter. The pull mean of each fit parameter is
consistent with zero and pull width is consistent with one. Table 9 gives the correlation coefficients
returned from the likelihood fit to the data. Figure 24 shows fit result superimposed on the data
histogram. We have obtained from the fit:

NB→Λ+
c µ−X = 1237 ± 97.
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Figure 23: Pull of each fit parameter in the unbinned likelihood fit (Λcµ)
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Table 8: Λcµ results from the unbinned likelihood fit.

Index Parameter 1000 toy MC 1000 toy MC Data fit value
pull mean pull width

1 Nsig 0.018 ± 0.030 0.997 ± 0.022 1237 ± 97
2 µ [GeV/c2] 0.017 ± 0.033 1.070 ± 0.024 2.2850 ± 0.0005
3 σ [GeV/c2] -0.069 ± 0.032 1.036 ± 0.023 0.0074 ± 0.0006
4 Nbg 0.004 ± 0.031 1.021 ± 0.022 16576 ± 157
5 p1 0.010 ± 0.031 1.007 ± 0.022 -4.3 ± 0.8
6 p2 0.020 ± 0.031 1.012 ± 0.022 -3.7 ± 1.8

Table 9: Correlation coefficients returned from the fit (Λcµ data)

1 2 3 4 5 6
1 1.000
2 -0.024 1.000
3 0.460 -0.020 1.000
4 -0.429 0.013 -0.245 1.000
5 0.443 -0.022 0.243 -0.236 1.000
6 -0.060 -0.067 -0.033 0.032 -0.058 1.000
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4.2 Mass Fit of the Hadronic Modes

Figure 12 shows that to the left of the hadronic signal peak, the “charm+π” mass spectrum exhibits
an interesting structure. If we use an exponential or a first-order polynomial to fit the the lower and
upper mass regions separately, we find that the slope of the lower mass region is steep but seem to
turn off just below the peak, while the slope of the upper mass region is shallow and approaches a
constant. In order to extract a correct number of events observed in the hadronic channels, we have
to take into account the background structure when fitting the charm+π mass spectrum.

For the B
0 → D+π− and Λb → Λ+

c π
− modes, we import the B0 and Λb mass functions derived

in the analyses of Furic [3], and Martin and Maksimović [4], respectively. Several parameters that
describe the background shapes or normalizations are fixed. We find small modifications are needed
for the numerical values of the fixed parameters in the B

0 → D+π− mode, as a few variables we
apply cut on are different from those in Furic’s analysis. We apply our cuts on the MC used in Furic’s
analysis and refit the MC to extract the numbers for our analysis. For the B

0 → D∗+π− mode, we
produce an inclusive B → D∗+X MC sample to study the background composition. The decay modes
with distinguished mass shape are separated from the other modes. The decays with similar mass
spectra are lumped together and fit to the same background function. Figure 25 shows the B0 and
Λb mass spectra from the contributions of different decays.

Our hadronic mass spectra share several common features: It is clear that the background from
the B hadron decays only contribute to the mass region below the signal, while in the data, the upper
mass region is composed of combinatorial background, which may be described by an exponential
or a constant. The combinatorial background extends down to the lower B mass region as well.
In the region 40 to 70 MeV/c2 below the signal peak, Cabibbo suppressed decays, B

0 → D∗+K−,
B

0 → D+K−, Λb → Λ+
c K

−, with a branching ratio about 8% of our Cabibbo favored signals, produce
a small contamination. Going further down in the charm+π mass, we have partially reconstructed B
decays from the semileptonic modes, and other mis-identified B hadronic decays.

Note that since both B
0 → D∗+π− and Λb → Λ+

c π
− have low statistics, we constrain the widths

of their signal Gaussians in the following way: We first fit the width of MDπ (σdata
Dπ ) from the high

statistics B
0 → D+π− sample (∼600 events) in the data. Then we multiply σdata

Dπ with the MC width
ratio: σMC

Λcπ,D∗π/σ
MC
Dπ and predict σdata

Λcπ,D∗π.

4.2.1 B
0 → D∗+π− Yield

The study from the B → D∗+X MC shows that the background in the lower mass region is dominated
by the following decays: Cabibbo suppressed decay B

0 → D∗+K−, B
0 → D∗+ρ−, and the remaining

B → D∗+X. See the texts below for the detailed descriptions.

1. B
0 → D∗+K−: fully reconstructed Cabibbo suppressed decays. The mass spectrum is a peak

about 40 MeV/c2 below the B
0 → D∗+π− signal, with small tails on the lower mass side. The

shape is modeled by a lifetime function;

E(m) = exp(m, τD∗K)⊗ G(m,µD∗K , σD∗K), (19)

where τD∗K is the lifetime, µD∗K is the zero point of the lifetime function also the mean of the
Gaussian. The width of the Gaussian also the resolution of the lifetime function is σD∗K . The
exact form of E(m) is found in Appendix B.2. See Figure 26 (top) for the fit to B

0 → D∗+K−

MC.

2. B
0 → D∗+ρ−, where ρ− → π0π−: modeled by a triangular function convoluted with a Gaussian;

T (m) =
2(m−MD∗ρ

0 )

(MD∗ρ
off −MD∗ρ

0 )2
⊗ G(m,MD∗ρ

0 , σD∗ρ). (20)
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See Figure 26 (middle) for the fit.

3. Continuum: remaining B → D∗+X decays partially reconstructed. These backgrounds have
similar mass spectrum and are group together. The shape is modeled by a first-order polynomial
with a negative slope and a turn-off at MotherB

off ; when m < MotherB
off :

H(m) =
2

(MotherB
off −Mmin)2

· (MotherB
off −m), (21)

and when m > MotherB
off :

H(m) = 0. (22)

The lowest boundary of the D∗π mass window, Mmin, is 4.6 GeV/c2. See Figure 26 (bottom)
for the fit to these MC samples.

In the unbinned fit, the extended log likelihood function is expressed by the sum of five likelihoods:
one describing the data, and the other four describing the MC samples from each type of background
and the signal:

logL = logLdata + logLMC
D∗π + logLMC

D∗K + logLMC
D∗ρ + logLMC

otherB, (23)

The likelihood function logLdata is a sum of a signal Gaussian, a constant combinatorial background,
the functions for D∗K (E), D∗ρ (T ), and the continuum (H). In addition, there is a constraint on each
of the following parameters: the signal width, relative amount of D∗K to the signal (fD∗K), and the
fraction of D∗ρ in D∗ρ + remaining B → D∗+X (fD∗ρ) The reason for the last constraint is because
B

0 → D∗+ρ− and the remaining B → D∗+X decays occupy the same mass region. Therefore, the
likelihood fit converges faster if we constrain fD∗ρ.

logLdata =
∑

i

log{Nsig · (G(mi, µ, σ) + fD∗K · E(mi))

+Nbg · [fcombg ·
1

Mmax −Mmin

+(1− fcombg) · [fD∗ρ · T (mi) + (1− fD∗ρ) · H(mi)]}
− Nsig −ND∗K −Nbg

+ log C1 + log C2 + log Cσ, (24)

where E(mi), T (mi) and H(mi) are expressed in Equations 19–21. The Mmax and Mmin specify the
mass window: 4.6 < MD∗π < 5.6 GeV/c2. The parameters fD∗K , Nbg, fcombg and fD∗ρ are defined
as follow:

fD∗K ≡ ND∗K

Nsig
,

Nbg ≡ Ncombg +NotherB +ND∗ρ,

fcombg ≡ Ncombg

Nbg
,

fD∗ρ ≡ ND∗ρ

NotherB +ND∗ρ
.

The constraints are expressed as:

C1 = G(fD∗K , µ1, σ1),
C2 = G(fD∗ρ, µ2, σ2),
Cσ = G(σ, µp, σp),
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Table 10: Branching ratios and relative efficiencies for B
0 → D∗+π− background

B
0 → D∗+K− B

0 → D∗+π−

B(%) 0.276 ± 0.021 0.020 ± 0.005
ε ratio 1 1.02 ± 0.02
fD∗K 0.071 ± 0.019

B
0 → D∗+ρ− remaining B → D∗+X

NMC 758 2371
fD∗ρ 0.242 ± 0.008

where µ1 = 0.071, σ1 = 0.019, µ2 = 0.242, σ2 = 0.008, µp = 0.0259 GeV/c2, and σp = 0.0012 GeV/c2.
Here, µp and σp are determined using the B

0 → D+π− signal in the data, B
0 → D+π− and

B
0 → D∗+π− MC as described earlier. The µ1 and σ1 are determined using the world averaged

branching ratios, and the efficiencies from the MC listed in Table 10:

fD∗K =
B(B

0 → D∗+K−)

B(B
0 → D∗+π−)

·
ε
B

0→D∗+K−

ε
B

0→D∗+π−

. (25)

The µ2 and σ2 are determined by counting the number of reconstructed D∗ρ and the remaining
B → D∗+X events in the MC after all the analysis cuts.

The three likelihoods for the background MC are used to obtain the parameterization of E(m),
T (m), and H(m). The normalizations do not matter here.

logLMC
D∗K =

∑
i

log E(mi), (26)

logLMC
D∗ρ =

∑
i

log T (mi), (27)

logLMC
otherB =

∑
i

logH(mi). (28)

In addition, logLMC
D∗π is used to obtain the reconstructed mass difference between MC and data, mdiff .

In the logLdata, all the parameters except the normalization and the resolution parameters (σ) for
the signal Gaussian and the background functions, differ by mdiff from those in the logLMC. The
resolutions for all the backgrounds are kept the same between MC and data, while the resolution of
the signal Gaussian in the data is a separate free parameter from that in the MC.

We use the total likelihood to fit the data and MC simultaneously. Table 11 lists the pull means
and widths of toy MC test and the unbinned likelihood fit result to the data. Figures 27–28 give the
pull of each fit parameter. The pull mean of MotherB

off in Equation 21 is −0.220± 0.031, but this value
corresponds to a ∼ 0.02 % shift in the central value. The pull widths of MD∗ρ

0 and fcombg are about
3 σ away from one. However, the number of signal events is not affected. All the other pull means
and widths are consistent with zero and one. Table 12 gives the correlation coefficients returned from
the likelihood fit to the data. Figure 29 shows the fit result superimposed on the data histogram. We
have obtained from the fit:

N
B

0→D∗+π−
= 106 ± 11.

If we remove the constraint on the signal width, we find N
B

0→D∗+π−
= 110±11 and σdata = 0.0295±

0.0033GeV/c2. Removing the constraint on fD∗K gives us N
B

0→D∗+π−
= 107 ± 11 and fD∗K =

0.053±0.053. Removing the constraint on fD∗ρ gives usN
B

0→D∗+π−
= 107±11 and fD∗ρ = 0.38±0.07.
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Table 11: B
0 → D∗+π− results from the unbinned likelihood fit.

Index Parameter 1000 toy MC 1000 toy MC Data fit value
pull mean pull width

1 Nsig -0.019 ± 0.031 0.964 ± 0.022 106 ± 11
2 µ [GeV/c2] 0.013 ± 0.033 1.032 ± 0.024 5.2772 ± 0.0002
3 σMC [GeV/c2] -0.043 ± 0.033 1.036 ± 0.024 0.0262 ± 0.0002
4 fD∗ρ -0.009 ± 0.032 1.006 ± 0.023 0.244 ± 0.008
5 MD∗ρ

0 [GeV/c2] 0.027 ± 0.033 0.943 ± 0.020 4.43 ± 0.01
6 MD∗ρ

off [GeV/c2] 0.045 ± 0.032 0.993 ± 0.023 5.134 ± 0.001
7 σD∗ρ [GeV/c2] -0.077 ± 0.033 1.001 ± 0.024 0.026 ± 0.001
8 fcombg -0.045 ± 0.032 0.940 ± 0.023 0.09 ± 0.03
9 Nbg -0.010 ± 0.033 1.019 ± 0.023 428 ± 21
10 MotherB

off [GeV/c2] -0.220 ± 0.031 0.972 ± 0.022 5.174 ± 0.004
11 fD∗K -0.047 ± 0.033 1.016 ± 0.023 0.069 ± 0.018
12 µD∗K [GeV/c2] -0.032 ± 0.033 1.024 ± 0.024 5.2345 ± 0.0009
13 τD∗K [GeV/c2]−1 -0.017 ± 0.032 0.986 ± 0.023 0.0287 ± 0.0009
14 σD∗K [GeV/c2] 0.029 ± 0.033 1.029 ± 0.024 0.0254 ± 0.0006
15 mdiff [GeV/c2] -0.034 ± 0.032 0.992 ± 0.023 0.005 ± 0.003
16 σdata [GeV/c2] -0.050 ± 0.031 0.971 ± 0.022 0.026 ± 0.001

In conclusion, the un-constrained fits return a value consistent with the constrained fit, but with larger
uncertainties. The fit χ2/NDF are 20.0/12, 20.8/12, 16.5/12 and the fit probabilities are 6.7%, 5.4 %,
16.9% for the three different unconstrained fits.
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Figure 27: Pull of each fit parameter in the unbinned likelihood fit I (D∗π)
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Figure 28: Pull of each fit parameter in the unbinned likelihood fit II (D∗π)
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4.2.2 B
0 → D+π− Yield

As noted earlier, we make use of the mass function derived in Furic’s analysis for the B
0 → D+π−

mode. The parameters which are kept constant in Furic’s mass function remain constant in our
analysis. The following backgrounds contribute to the mass spectrum of B0 from Furic’s study:
Cabibbo suppressed decay B

0 → D+K−, B
0 → D∗+π−, B

0 → D+ρ−, remaining B → D+X and the
combinatorial background. Recent study by Belloni, Martin and Piedra et al. [4] [5] shows that the
mis-reconstructed Bs → D+

s π
− and Λb → Λ+

c π
− produce small contamination in the B

0 → D+π−

signal. See the text below for the detailed descriptions.

1. B
0 → D+K−: fully reconstructed Cabibbo suppressed decays. The mass spectrum is a peak

about 60 MeV/c2 below the B
0 → D+π− signal. The shape is modeled by a single Gaussian;

DK(m) = G(m,µ−∆MDK , σDK), (29)

where the shift of Gaussian mean from the B
0 → D+π− signal, ∆MDK , and the width, σDK ,

are extracted from the MC.

2. Bs → D+
s π

−, where D+
s → φπ+ and φ → K+K−: this decay produces a peak at around 5.31

GeV/c2 when the pion mass is assigned to one of the kaons. The spectrum is modeled by double
Gaussians with the same mean;

BS(m) = f1 · G(m,µBs
, σ1) + (1− f1) · G(m,µBs

, σ2), (30)

where the fraction f1, µBs
, σ1 and σ2 of each Gaussian are obtained from the fit to the MC as

shown in Figure 30 (top left).

3. Λb → Λ+
c π

−, where Λ+
c → pK−π+: this background produces a broad peak around 5.4 GeV/c2,

the region where the pion mass is mis-assigned to the proton. The spectrum is modeled by a
lifetime function;

LB(m) = exp(m, τΛb
)⊗ G(m,µΛb

, σΛb
), (31)

where µΛb
and σΛb

are the zero point and the resolution of the lifetime function. See Figure 30
(top right) for the fit to the Λb → Λ+

c π
− MC when reconstructed as D+π−.

4. B
0 → D+ρ−, where ρ− → π0π− and B

0 → D∗+π− where D∗+ → D+π0: These two back-
grounds are combined. The spectrum of B

0 → D+ρ− looks like B
0 → D∗+ρ− in Figure 26

(middle) and is modeled by a lifetime function. The spectrum of B
0 → D∗+π− is composed of

two horns and is modeled by two Gaussians with different means.

The structure of double horns arises for the following reasons: When B
0 → D∗+π−, D∗+ →

D+π0, is reconstructed as D+π−, the mass is lower than the world averaged B0 mass due to the
missing π0. The amount of the negative mass shift, ∆M , is determined by the angle between the
π0 and the D∗+ flight direction, dφ. Because both B0 and π− are scalars (spin=0), to conserve
the total angular momentum in the decay, the vector particle (spin=1), D∗+, is transversely
polarized. The angle dφ from a transversely polarized D∗+ is cos2 θ distributed and the most
probable dφ is either 0 or 180 degrees. Therefore, ∆M is quantized and this forms a double-horns
spectrum.

After combing B
0 → D+ρ− and B

0 → D∗+π−, we have:

R(m) = (1− fH) · exp(m, τref)⊗ G(m,µref , σref)
+ fH · (0.5 · G(m,µref − νref − δref , σH)

+0.5 · G(m,µref − νref + δref , σH)). (32)

47



The exact form of the lifetime function is found in Appendix B.2. The zero point of the lifetime
function is µref and νref is the offset of the mid point between two horns from the lifetime
function. The µref and νref are left free in the likelihood fit to the data. The values of the
following parameters are extracted from the fit to the MC, as shown in Figure 30 (bottom left),
and kept constant in the fit to the data: the lifetime (τref), the fraction of horns (fH), the half
distance between the peak of two horns (δref), the resolution of the lifetime function (σref) and
the width of both horns (σH).

5. Continuum: remaining B → D+X decays and partially reconstructed. These backgrounds have
similar mass spectrum and are group together. The shape is modeled by a first-order polynomial
with a negative slope and a turn-off at Moff ; when m < Moff :

H(m) =
2

(Moff −Mmin)2
· (Moff −m), (33)

and when m > Moff :
H(m) = 0. (34)

The lowest boundary of the Dπ mass window, Mmin, is 4.6 GeV/c2. See Figure 30 (bottom
right) for the fit to these MC samples from Furic’s analysis [3].

6. combinatorial: modeled by an exponential function. When the slope of the exponential, p0, is
not zero,

EXP(m) = p0 ·
e−p0·Mmid

e−p0·Mmin − e−p0·Mmax
· e−p0·(x−Mmid), (35)

and when p0 is zero,

EXP(m) =
1

Mmax −Mmin
, (36)

where Mmax and Mmin specify the mass window: 4.6 < MDπ < 5.6 GeV/c2 and Mmid is the
average of Mmax and Mmin.

In the unbinned fit, the extended log likelihood function is expressed as a sum of a signal Gaussian,
the functions for the DK mode (DK), Dsπ (BS), Λcπ (LB), D∗π plus Dρ (R), the remaining B →
D+X decays (H), and the combinatorial background (EXP):

logL =
∑

i

log{Nsig · [G(mi, µ, σ) + fDK · DK(mi)

+fBs
· BS(mi) + fΛb

· LB(mi)]
+Nbg · [(1− fcombg) · [(1− fotherB) · R(mi) + fotherB · H(mi)]
+fcombg · EXP(mi)]}

− Nsig · (1 + fDK + fBs
+ fΛb

)−Nbg, (37)

where DK(mi), BS(mi), LB(mi), R(mi), H(mi) and EXP(mi) are expressed in Equations 29–36. The
fractions fDK , fBs

and fΛb
are the ratios of NDK , NBs

and NΛb
to the signal, Nsig. The total amount

of combinatorial background, the backgrounds from the Dρ, D∗π, and the remaining B decays is
denoted as Nbg. The parameters fcombg and fotherB are defined as follows:

fcombg ≡ Ncombg

Nbg
,

fotherB ≡ NotherB

NotherB +ND∗π +NDρ
.
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All the fractions and ratios here except fcombg are kept constant in the likelihood fit. The B
0 → D+K−

fraction, fDK , is determined from the world average branching ratios;

fDK =
B(B

0 → D+K−)

B(B
0 → D+π−)

. (38)

Table 13 lists the values of the branching ratios in Equation 38. We have fDK = 0.073± 0.023.
The Bs fraction, fBs

, is obtained using the formula:

fBs =
fs

fd
· B(Bs → D+

s π
−)

B(B
0 → D+π−)

· B(D+
s → φπ+)B(φ→ K+K−)
B(D+ → K−π+π+)

· Γ(D+
s → K+K−π−)

Γ(D+
s → φ(K+K−)π−)

·
εMC
Bs→D+

s π−

εMC

B
0→D+π−

, (39)

where the branching ratios are from the 2004 PDG and the CDF II measurement fs

fd
· B(Bs→D+

s π−)

B(B
0→D+π−)

by

Furic [3]. The efficiency ratio is obtained by applying our Dπ analysis cuts on the Bs MC. Inserting
the numbers listed in Table 13 into Equation 39, we obtain fBs = 0.006 ± 0.001. Note that the
uncertainties from the branching ratios of φ, Ds, and D decays vanish after multiplying Furic’s result
with the ratio: B(D+

s →φπ+)B(φ→K+K−)
B(D+→K−π+π+) .

The Λb fraction, fΛb
, is obtained using a similar formula;

fΛb
=

σΛb
(PT > 6.0)B(Λb → Λ+

c π
−)

σB0(PT > 6.0)B(B
0 → D+π−)

× B(Λ+
c → pK−π+)

B(D+ → K−π+π+)
×
εMC
Λb→Λ+

c π−

εMC

B
0→D+π−

, (40)

where the product of the first and the second terms come from 2004 PDG and CDF II measurements
by Le, et al. [4]. The uncertainties from the branching ratios of Λc and D decays vanish in Equation 40.
The efficiency ratio is obtained using the Λb → Λ+

c π
− MC. The value of fΛb

is then 0.031 ± 0.005.
Table 13 lists the numerical values of Le’s result and the MC efficiency. Finally, fotherB is obtained
using Furic’s B → D+X MC. We apply our analysis cuts and count the number of D∗π+Dρ and the
remaining B → D+X events. We find fotherB = 0.569± 0.011.

Table 14 lists the constant parameters with their values and uncertainties obtained from the fit to
the MC. Table 15 lists the mean, width of the pulls from the toy MC test and the value of each fit
parameter from the fit to the data. Figure 31 gives the pull of each fit parameter. All the pull means
and widths are consistent with zero and one, except the pull mean of fcombg, which is -0.145±0.034.
However, this only corresponds to a 1.1 % shift on the central value. The fit for the number of signal
events, Nsig, is not affected. Table 16 gives the correlation coefficients returned from the likelihood fit
to the data. Figure 32 shows the fit result superimposed on the data histogram. We have obtained
from the fit:

N
B

0→D+π−
= 579 ± 30.
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Table 13: Parameter values used to determine fDK , fBs
and fΛb

B(B
0 → D+K−) (2.0 ± 0.6)×10−4

B(B
0 → D+π−) (2.76 ± 0.25)×10−3

fDK 0.073 ± 0.023
fs

fd
· B(Bs→D+

s π−)

B(B
0→D+π−)

0.35 ± 0.05(stat) ± 0.02 (syst) ± 0.09 (BR)

B(D+
s → φπ+) (3.6 ± 0.9)%

B(φ→ K+K−) (49.1 ± 0.6)%

B(D+ → K−π+π+) (9.2 ± 0.6)%
Γ(D+

s →K+K−π−)

Γ(D+
s →φ(K+K−)π−)

0.81 ± 0.08

εMC
Bs→D+

s π−
/εMC

B
0→D+π−

0.071 ± 0.004

fBs
0.006 ± 0.001

σΛb
(PT >6.0)B(Λb→Λ+

c π−)

σB0 (PT >6.0)B(B
0→D+π−)

0.82 ± 0.08 (stat) ± 0.11 (syst) ± 0.22 (BR)

B(Λ+
c → pK−π+) (5.0 ± 1.3)%

εMC
Λb→Λ+

c π−
/εMC

B
0→D+π−

0.069 ± 0.002

fΛb
0.031 ± 0.005
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Table 14: Fixed parameters in the B
0 → D+π− unbinned likelihood fit.

Parameter Meaning Value

fDK N
B

0→D+K−/NB
0→D+π−

0.073 ± 0.023
∆MDK mass shift of B

0 → D+K− [GeV/c2] 0.067 ± 0.006
σDK width of B

0 → D+K−[GeV/c2] 0.032 ± 0.009
fBs

NBs→D+
s π−/NB

0→D+π−
0.006 ± 0.001

µBs
mean of Bs background [GeV/c2] 5.307 ± 0.001

f1 fraction of the narrow Bs Gaussian 0.773 ± 0.002
σ1 width of the narrow Bs Gaussian [GeV/c2] 0.021 ± 0.002
σ2/σ1 width ratio of the Bs Gaussians 1.8 ± 0.3
fΛb

NΛb→Λ+
c π−/NB

0→D+π−
0.031 ± 0.005

µΛb
mean of Λb [GeV/c2] 5.416 ± 0.002

σΛb
width of Λb background [GeV/c2] 0.024 ± 0.002

τΛb
lifetime of Λb background [GeV/c2−1] 0.052 ± 0.002

τref lifetime of Dρ background [GeV/c2−1] 0.36 ± 0.06
σref width of Dρ background [GeV/c2] 0.039 ± 0.008
fH fraction of D∗π horns 0.20 ± 0.06
δref distance between two horns [GeV/c2] 0.039 ± 0.003
σH width of the horns [GeV/c2] 0.019 ± 0.003
fotherB fraction of the remaining B → D+X 0.569 ± 0.011
Moff cut off for B → D+X mass [GeV/c2] 5.112 ± 0.007

51



Table 15: B
0 → D+π− results from the unbinned likelihood fit.

Index Parameter 1000 toy MC 1000 toy MC Data fit value
pull mean pull width

1 Nsig 0.012 ± 0.035 1.021 ± 0.026 579 ± 30
2 µ [GeV/c2] -0.026 ± 0.034 0.989 ± 0.025 5.278 ± 0.001
3 σ [GeV/c2] -0.040 ± 0.035 1.015 ± 0.026 0.0235 ± 0.0012
4 Nbg 0.017 ± 0.034 0.990 ± 0.025 4049 ± 67
5 µref [GeV/c2] -0.036 ± 0.036 1.037 ± 0.026 5.145 ± 0.015
6 νref [GeV/c2] -0.037 ± 0.038 1.085 ± 0.028 0.068 ± 0.020
7 fcombg -0.145 ± 0.034 0.988 ± 0.025 0.583 ± 0.044
8 p0 -0.051 ± 0.034 0.976 ± 0.024 1.75 ± 0.15

Table 16: Correlation coefficients returned from the fit (B
0 → D+π− data)

1 2 3 4 5 6 7 8
1 1.000
2 -0.021 1.000
3 0.308 -0.013 1.000
4 -0.201 0.011 -0.151 1.000
5 -0.034 0.105 -0.037 0.017 1.000
6 -0.042 0.095 -0.043 0.020 0.946 1.000
7 -0.312 0.023 -0.233 0.154 -0.005 0.021 1.000
8 -0.076 0.053 0.056 0.037 0.190 0.188 0.731 1.000
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Figure 30: Various MC samples reconstructed as B
0 → D+π−. From the top left to the bottom

right are Bs → D+
s π

−, Λb → Λ+
c π

−, B
0 → D∗+π− + B

0 → D+ρ−, and the remaining B → D+X.
The fit probabilities are 32.5%, 66.8%, 16.5% and 32.9 %
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Figure 31: Pull of each fit parameter in the unbinned likelihood fit (Dπ)
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0 → D+π− events is fit to a Gaussian (signal), an exponential (combi-

natorial), and the background functions for the lower mass spectrum as described in the text. The
result of the unbinned likelihood fit is projected on the histogram and a χ2 probability is calculated.
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4.2.3 Λb → Λ+
c π− Yield

We use the mass function derived in the analysis of Martin and Maksimović for the Λb → Λ+
c π

−

mode [4]. The parameters which were kept constant remain constant in our analysis. We cross-
check the values of the parameters by applying our analysis cuts on the MC used in the Martin
and Maksimović analysis and find the same numbers can be used for this analysis. The following
backgrounds contribute to the mass spectrum of Λb from their study: Cabibbo decay Λb → Λ+

c K
−,

four-prong mis-identified B meson, the remaining B meson decays, the remaining Λb decays and the
combinatorial background. Detailed descriptions of each background are find below.

1. Λb → Λ+
c K

−: fully reconstructed Cabibbo suppressed decays. The mass spectrum is a peak
about 50 MeV/c2 below the Λb → Λ+

c π
− signal. The shape is modeled by two Gaussians of

different mean and width;

LCK(m) = f1 · G(m,µ1
ΛcK , σ1) + (1− f1) · G(m,µ2

ΛcK , σ2), (41)

where f1, µ1
ΛcK , σ1, µ2

ΛcK and σ2 are from the fit to the MC.

2. mis-identified four-prong B mesons: all the B mesons with four tracks in the final states and
fully reconstructed. B

0 → D+π− contributes about 50% of this type of background. Since these
decays have similar final state as our Λb → Λ+

c π
− signal, they produce a distinguished peak to

the left of the signal Gaussian. This background (B4PRONG) is modeled by the sum of a Landau
(LAND) and a Gaussian function:

B4PRONG(m) = fL · LAND(m,µBPL, σL) + (1− fL) · G(m,µBPG, σG), (42)

where fL, µBPL and σL are the fraction, mean and the width of Landau distribution. The mean
and the width of the Gaussian are denoted as µBPG and σG. These parameters are extracted
from fit to the MC as shown in Figure 33 (bottom).

3. remaining B meson decays: this background (OB) spectrum is modeled by the sum of an expo-
nential function and a product of a bifurcated Gaussian (BF ) with a step-down function:

OB(m) = EXP(m) + fbifg · BF (m,µob, σ
L
ob, σ

R
ob) · (1− 1

1 + e(µobst−m)/aob
0

) (43)

where EXP(m) is expressed in Equations 35–36. The parameters fbifg, µob, σL
ob, and σR

ob are
the fraction, mean, left sigma, right sigma of bifurcated Gaussian. The step-down function pa-
rameters, µobst and aob

0 , together with the parameters for the bifurcated Gaussian, are extracted
from the MC as shown in Figure 33 (top left). The exact form of the bifurcated Gaussian is
found in Appendix B.3.

4. remaining Λb decays: this background (OL) spectrum is modeled by the sum of two Gaussians
and the product of a bifurcated Gaussian and a step-down function

OL(m) = fol
1 · G(m,µolg

1 , σol
1 ) + fol

2 · G(m,µolg
2 , σol

2 )

+ · BF (m,µol, σ
L
ol, σ

R
ol) · (1−

1
1 + e(µolst−m)/aol

0
) (44)

where the parameters in the function are from the fit to the MC as shown in Figure 33 (top
right).

5. combinatorial background: described by an exponential function
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In the unbinned fit, the extended log likelihood function is expressed as a sum of a signal Gaussian
and the functions for ΛcK (LCK), four-prong B meson (B4PRONG), remaining B meson decays (OB),
remaining Λb decays (OL) and the combinatorial background (EXP). In addition, there is a constraint
on the width of the signal Gaussian determined using the B

0 → D+π− data, B
0 → D+π− and

Λb → Λ+
c π

− MC as described earlier.

logL =
∑

i

log{Nsig · [G(mi, µ, σ) + fΛcK · LCK(mi)] +NB4prong · B4PRONG(mi)

+NOB · OB(mi) +NOL · OL(mi) +Ncombg · EXP(mi)}
− Nsig · (1 + fΛcK)−NB4prong −NOB −NOL −Ncombg

+ log Cσ, (45)

where LCK(mi), B4PRONG(mi), OB(mi), OL(mi) and EXP(mi) are expressed in Equations 41–44 and
Equations 35 –36. The fraction fΛcK is defined as:

fΛcK =
NΛb→Λ+

c K−

NΛb→Λ+
c π−

, (46)

and is fixed to 0.08; the number is suggested by the branching ratio of the Cabibbo suppressed relative
to the Cabibbo favored decay in the B meson system. The Gaussian constraint of the signal width,
Cσ is expressed as:

Cσ = G(σ, µp, σp), (47)

where µp = 0.0231 GeV/c2, and σp = 0.0012 GeV/c2.
Table 17 lists the values of the constant parameters imported from the analysis of Martin and

Maksimović. Table 18 lists the mean, width of the pulls from the toy MC test and the unbinned
likelihood fit result to the data. Figure 34 gives the pull of each fit parameter. Each pull mean
is consistent with zero and the pull width is consistent with one. Table 19 gives the correlation
coefficients returned from the likelihood fit to the data. Figure 35 shows the fit result superimposed
on the data histogram. We have obtained from the fit:

NΛb→Λ+
c π− = 179 ± 19.

We also cross-check by removing the constraint on signal width and obtain NΛb→Λ+
c π− = 177 ± 22,

and σ = 0.022± 0.004, which are consistent with the fit result in Table 18. The fit without constraint
has a χ2/NDF of 123.2/111 and fit probability of 20.2 %.
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Table 17: Fixed parameters in the Λb → Λ+
c π

− unbinned likelihood fit.

Parameter Meaning Value

fΛcK NΛb→Λ+
c K−/NΛb→Λ+

c π− 0.080
f1 fraction of the narrow ΛCK Gaussian 0.902
µ1

ΛcK mean of the narrow ΛCK Gaussian [GeV/c2] 5.573
σ1 width of the narrow ΛCK Gaussian [GeV/c2] 0.029
µ2

ΛcK mean of the wide ΛCK Gaussian [GeV/c2] 5.529
σ2 width of the wide ΛCK Gaussian [GeV/c2] 0.075
fL fraction of the Landau, 4-prong 0.413
µBPL mean of the Landau, 4-prong [GeV/c2] 5.486
σL width of the Landau, 4-prong [GeV/c2] 0.025
µBPG mean of the Gaussian, 4-prong [GeV/c2] 5.526
σG width of the Gaussian, 4-prong [GeV/c2] 0.078
s0 slope of the exponential, other B 2.180
fbifg fraction of the bifurcated Gaus, other B 0.106
µob mean of the bifurcated Gaus, other B [GeV/c2] 5.598
σL

ob left σ of the bifurcated Gaus, other B [GeV/c2] 10.0
σR

ob right σ of the bifurcated Gaus, other B [GeV/c2] 4.800
µobst mean of “step-down”, other B [GeV/c2] 5.436
aob
0 slope of the “step-down”, other B 0.079
µol mean of the bifurcated Gaus, other Λb [GeV/c2] 3.469
σL

ol left σ of the bifurcated Gaus, other Λb [GeV/c2] 10.0
σR

ol right σ of the bifurcated Gaus, other Λb [GeV/c2] 1.236
µolst mean of “step-down”, other Λb [GeV/c2] 5.451
aol
0 slope of “step-down”, other Λb [GeV/c2] 0.091
fol
1 fraction of first Gaus, other Λb 0.0005
µol

1 mean of first Gaus, other Λb 5.644
σol

1 width of first Gaus, other Λb 0.019
fol
2 fraction of second Gaus, other Λb 0.0034
µol

2 mean of second Gaus, other Λb 5.459
σol

2 width of second Gaus, other Λb 0.030
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Table 18: Λb → Λ+
c π

− results from the unbinned likelihood fit.

Index Parameter 1000 toy MC 1000 toy MC Data fit value
pull mean pull width

1 Nsig 0.007 ± 0.032 0.995 ± 0.023 179 ± 19
2 µ [GeV/c2] 0.021 ± 0.033 1.031 ± 0.024 5.621 ± 0.003
3 σ [GeV/c2] 0.026 ± 0.031 0.976 ± 0.022 0.023 ± 0.001
4 NB4prong 0.002 ± 0.032 1.018 ± 0.023 150 ± 32
5 NOB 0.038 ± 0.033 1.046 ± 0.024 3170 ± 291
6 NOL -0.048 ± 0.033 1.030 ± 0.023 962 ± 324
7 Ncombg -0.023 ± 0.032 1.013 ± 0.023 1971 ± 171
8 p0 -0.027 ± 0.032 1.010 ± 0.023 0.63 ± 0.10

Table 19: Correlation coefficients returned from the fit (Λb → Λ+
c π

− data)

1 2 3 4 5 6 7 8
1 1.000
2 -0.077 1.000
3 0.212 -0.100 1.000
4 -0.244 0.163 -0.104 1.000
5 -0.011 0.023 -0.005 0.278 1.000
6 0.075 0.014 0.030 -0.109 -0.862 1.000
7 -0.138 -0.088 -0.053 -0.394 -0.060 -0.393 1.000
8 -0.121 -0.072 -0.046 -0.333 -0.098 -0.348 0.898 1.000
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Figure 33: Various MC samples reconstructed as Λb → Λ+
c π

−. From the top left to the bottom are
the remaining B meson decays, the remaining Λb decays and four-prong B meson decays.
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Figure 34: Pull of each fit parameter in the unbinned likelihood fit (Λcπ)
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result of the unbinned likelihood fit is projected on the histogram and a χ2 probability is calculated.
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4.3 Summary

Using the unbinned, extended log likelihood technique, we fit the charm and B hadron mass spectra
to obtain the number of events. The yield for each mode is listed below. The performance of the fitter
is validated using 1000 toy MC test for each mode. In general, the mean of each pull distribution from
the toy MC test is consistent with zero and the width is consistent with one. For the fit parameter
with a pull mean deviated from zero and a width deviated from unity, the fitter only indicates a less
than 1% bias on the central value. Besides, these fit parameters are not correlated with the number
of signal events and do not affect the yield we obtain. The fit result to the data is also superimposed
on the data histograms and a χ2 is computed. We have obtained good χ2 for each mode.

Mode Yield

B
0 → D∗+π− 106 ± 11

B → D∗+µ−X 1059 ± 33
B

0 → D+π− 579 ± 30
B → D+µ−X 4721 ± 104
Λb → Λ+

c π
− 179 ± 19

B → Λ+
c µ

−X 1237 ± 97
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5 Monte Carlo Samples, Acceptance and Efficiencies

With the raw yield in hand, we now turn to the correction which must be applied to obtain the value of
the ratio of branching fractions, that is the acceptance, trigger and reconstruction efficiency which may
only be calculated using a Monte Carlo program. The Monte Carlo (MC) simulation plays a crucial
role in this analysis. In addition to the acceptance and efficiencies for our signals and backgrounds,
as described in Section 5.3 and Section 6, the MC is used for the optimization of signals in Section 3.
MC is also used to find out the function form that describes the mass spectrum of the background
due to partial- or mis-reconstruction in Section 4.2. In this section, we first explain the components
of Monte Carlo samples and show that, in general, the MC reproduces the data. Then we present the
acceptance, trigger and reconstruction efficiencies obtained from the MC.

5.1 Monte Carlo Simulation Components

There are several components in the MC simulation:

• production and decay of the B hadrons

• detector simulation

• trigger simulation

We use two types of event generators: Bgeneratorand PYTHIA. Bgenerator is the primary gen-
erator used in this analysis for calculating the acceptance and efficiencies of our signals and most
backgrounds. The PYTHIA provides more realistic simulation of an event than Bgenerator, and pro-
duces multi-particle final states like the hadron collider data. However the generation using the PYTHIA
is also more time consuming than the Bgenerator. This makes PYTHIA inefficient to understand the
acceptance and efficiency of a single decay mode. Therefore, PYTHIA has been used in this analysis
only to study the background from bb and cc decays.

Bgenerator generates a single b-quark according to the PT (b) spectrum which follows the NLO
calculation by Nason, Dawson, and Ellis (NDE) [6]. For the B meson MC sample, the b-quarks are
generated with a PT threshold of 4.0 GeV/c over the range in rapidity |y| < 2.5, and then fragmented
into B mesons with the CDF default Peterson fragmentation parameter [7], εB , set to 0.006. Figure 36
shows a small discrepancy in the reconstructed PT (B0) between data and MC. The slope of the data
to MC ratio is about 2 σ away from zero. The MC events which survive the trigger simulation,
reconstruction and the analysis cuts, will be re-weighted according to the ratio numerically, i.e. we
multiply each event with the ratio, w. We then calculate the efficiencies using the re-weighted MC
events;

Rpass =
Npass∑

i

wi

ε =
Rpass

Ngen

Figure 36 also shows a discrepancy in the reconstructed PT (Λb) between data and MC from the
Bgenerator. In order to correctly assess the acceptance and efficiency of the Λb, we need to skip the
fragmentation process inside Bgenerator. The Λb needs to be generated directly with a PT spectrum
which reproduces the data. This spectrum is obtained in the following way: We first obtain the default
generated Λb PT spectrum from the Bgenerator. Then, the default generated PT (Λb) is re-weighted
with the exponential slope of the ratio data/MC shown in Figure 36, using the “acceptance-rejection
(Von Neumann)” method [8]. See Figure 37 for the Λb PT spectra before and after our reweighting. We
also confirm that the reconstructed PT (Λb) from the MC using the re-weighted spectrum reproduces
the data, see Figure 49.
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After the event generation, the hadrons are allowed to decay using the EvtGen. This package is
maintained by BABAR and mainly tuned by the results from the experiments at the Υ(4S) resonance.
The decay model and branching ratios for B0 and B+ are well described but not necessarily those of
the Bs and the B baryons. As a proper decay model for the semileptonic Λb decays is not implemented
in the EvtGen yet, we use a phase space to decay the Λb first. Then, we will apply a scaling factor on
the acceptance after taking into account the effect of the semileptonic form factors (see Section 5.3).
The particles from the output of Bgenerator and EvtGen are then run through a full (“realistic”)
simulation of the CDF detector and trigger. The software version for the simulation is 4.11.2 with
patches which implement the most up-to-date configuration of SVT. Most of the detector subsystems,
like COT and CMU, are assumed to be in a time-independent and perfect condition, which means
there are no dead channels and the high voltages are constantly at full value. Selecting the data when
these systems are in good condition helps to ensure that MC reproduces the data. Because the SVX
active coverage and the configuration for the XFT and SVT systems change on various occasions, we
divide the data taking period into eight sub-periods, where the detector and trigger performance is
constant. We generate our MC samples for these eight sub-periods by choosing the runs with maximum
number of L3 triggered events as the representative runs. Each run has its own parameters for the
performance of the detector and triggers. For the sub-periods with large integrated luminosity, we
choose more representative runs so that each run corresponds to a period with integrated luminosity
around 3–6 pb−1. See Table 20 for the representative runs in the MC. The number of generated events
is proportional to the integrated luminosity of the sub-period each run represents. The positions of
the beamline for each run is taken directly from the database and simulated in the MC.

After the detector and trigger simulation, the MC events are run through a trigger decision pro-
gram, svtfilter. svtfilter takes the information from the simulated SVT data and makes the
B CHARM Scenario A requirements. The events which pass svtfilter are processed with the same
Production executable (version 4.9.1hpt3) as that which is run on the data. The Production exe-
cutable reconstructs higher level objects, such as electrons, muons, tracks and missing energy, from
the simulated detector and trigger data. The resulting MC events have the same structure and format
as the data and are then run through the same analysis program described in Section 3.

5.2 Monte Carlo and Data Comparison

To confirm that the simulation accurately reproduces the data, we compare various reconstructed
distributions from the MC with the same distribution from the data. To ensure a fair comparison,
the combinatorial background present in the signal region of data has to be removed . We perform
a sideband subtraction for the B

0 → D∗+π−, B → D∗+µ−X, B
0 → D+π− and B → D+µ−X

decays. For the Λb → Λ+
c π

− and B → Λ+
c µ

−X decays, a sideband subtraction can not remove
all the backgrounds in the signal region as explained later in the text and in Section 4.2. Instead,
a signal distribution of variable “X” is obtained by fitting MΛcπ and MpKπ to get the number of
signal events in bins of variable “X”. For all the semileptonic modes, we include the MC samples of
the physics backgrounds described in Section 6.1. The distribution from each physics background
is scaled according to the assumed or measured branching ratio for that background. In addition,
the distribution of each compared variable from the fake muons is subtracted from the data. The
distribution from the fake muons is obtained by reconstructing the “fake muon-charm” final state as
described in Section 6.2. The combinatorial background in the “fake muon-charm” is removed using
the same method as described above for the real muon. See Figure 38 for the MDµ from the muon
fakes.

For the B meson semileptonic channels, the mass difference between D∗+ and D0 in the B →
D∗+µ−X mode (MKππ - MKπ), and mass of D+ in the B → D+µ−X mode (MKππ), are used as the
variables to perform the sideband subtraction. The signal region for both these modes is defined as:

|M −MPDG| < 2σ, (48)
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Table 20: Simulated Runs in the MC sample.

Range Run
∫
L dt (pb−1) Comment

138809–143000 140129 3.4 Scenario A implemented
143001–146000 145005 4.0 Tevatron incident
146001–149659 148824 4.2 SVX coverage improved

149387 2.9
149660–150009 149663 0.6 SVT optimization (coverage+patterns)
150010–152668 150820 4.1 Lxy > 200 µm cut added

151844 3.7
152520 3.5

152669–156487 152967 3.6 XFT from 2-miss to 1-miss
153327 3.7
153447 3.7
153694 2.4
154452 4.2
154654 4.9
155364 4.3
155795 2.5
155895 3.6
156116 3.7
156484 2.6

159603–164302 160230 3.7 data taken after the shutdown
160441 3.4
160823 3.7
161029 3.8
161379 3.3
161678 3.9
162130 3.6
162393 3.6
162498 5.6
162631 5.7
162857 4.4
163064 3.7
163431 4.3

164303–167715 164451 4.6 SVT change from 4/4 to 4/5
164844 3.5
165121 2.9
165271 3.9
165412 3.6
166008 6.0
166063 2.9
166567 5.2
166662 5.3
167053 5.9
167186 2.2
167506 4.0
167551 2.7

Total 170.9
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Figure 38: MDµ from the B → D+µfake data. The distribution is sideband subtracted using MKππ.

and the sideband region is defined as:

4σ < |M −MPDG| < 6σ. (49)

The background function is assumed to be a straight line. Therefore, the amount of background in
our signal region is the same as that in our sideband regions. We obtain a clean signal distribution by
subtracting the histogram in the sideband region from the histogram in the signal region. Figure 39
displays the signal and sideband regions of MKππ - MKπ and MKππ.

For the B meson hadronic modes, we use the upper mass sideband above the signal peak to perform
the sideband subtraction. The lower mass region below the signal peak consists of both combinatorial
background and partially reconstructed B decays. However, the background in the signal region and
in the upper mass region above the peak is mainly combinatorial as shown in Figures 29 – 32. We have
learned in Section 4.2 that the combinatorial background is adequately described by an exponential
function. Therefore, we fit the upper mass region to an exponential function. We further extrapolate
the exponential to the signal region and obtain the ratio of the background in our signal region to
that in our upper mass sideband, Rbg. The histogram of the compared variable extracted from the
upper mass sideband is scaled by Rbg and subtracted from the histogram in the signal region. See
Figure 40 for the B0 mass signal region we define and the upper mass region we fit to an exponential.

For the B → Λ+
c µ

−X and Λb → Λ+
c π

− modes, there are non-negligible backgrounds under the
signal peak from the reflections due to a mis-assignment of the mass for one of the particles, see
Section 4 for more details. This type of background has a different behavior from the combinato-
rial background in the sideband region. Since a background-free sideband subtraction is difficult to
perform, we choose to fit the number of signal events in each bin of the variables which we want
to compare. For the number of B → Λ+

c µ
−X candidates, the MpKπ distribution is fitted to a sig-

nal Gaussian and a second-order polynomial background as shown in Figure 41. For the number of
Λb → Λ+

c π
−candidates, the MpKππ distribution is fitted to a simplified model: a Gaussian signal and

an exponential background, as shown in Figure 42. Note that although the Λb fit model is simplified,
the systematic uncertainty due to the naive model is no more than 3% of the number of signal events
in each bin compared with the 15% statistical uncertainty. The widths of MpKπ and MKπ are fixed
to the values obtained from the full statistics when doing the fit. Figure 43 shows the data and MC
comparison using the fit values obtained from Figures 41– 42.

When comparing the MC and data distributions, if the number of data signal events in one bin is
less than 20, that bin is combined with the next bin until the sum of the events is over 20. Then a χ2
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is computed,

χ2 =
n∑
i

(NMC(i)−Ndata(i))2

σMC(i)2 + σdata(i)2
(50)

where i stands for ith bin and total number of bins in a histogram is n. The number of degree freedom
is n − 1. For the B → Λ+

c µ
−X and Λb → Λ+

c π
− modes, a χ2 is also calculated except that the bin

width of each variable is fixed in this case. Besides the χ2 test, we also plot the ratio data/MC. We
fit the ratio to a first-order polynomial and check if the slope, M, is consistent with zero. In the first
pass, we find discrepancies in the PT spectra of B0 and Λb between MC and data (see Figure 36).
As the semileptonic modes are three-body decays and two-body decays for the hadronic modes, the
efficiency of the trigger and analysis PT cut depends strongly on the PT of B hadron (see Figure 44).
We decide to reweight the PT spectra of B0 and Λb as described in Section 5.1. Figures 45– 50 show
the comparison between MC and data for the analysis cut variables. Figures 77– 94 in Appendix C
shows other distributions important for this analysis. Figure 51 shows the comparison for the MD∗µ,
MDµ, and the MΛcµ from the phase space MC before and after multiplying each bin entry with a
scaling factor. The scaling factor is obtained by dividing the MΛcµ distribution from the form factor
weighted (see Section 5.3) by that from the phase space generator-level MC. In general, the MC
describes the data well except for the pseudo cτ of Λcµ, and the χ2

r−φ of the B and charm vertex
fits. For the disagreement in the vertex fit χ2

r−φ, as it is beyond the scope of this analysis to scale the
measurement errors in the MC, we choose to make a loose cuts on the data χ2

r−φ. In Section 7.4, we
perform a cross-check of the relative branching ratio variation by dividing the data into two subsets,
according to the cuts on the pseudo cτ of Λcµ, χ2

r−φ and other variables. We do not see any significant
inconsistency. Therefore, we do not assign any systematic uncertainties.
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Figure 41: Example of Λ+
c mass fit for the MC and data comparison. The variable to compare is the

PT of proton, from 2 to 8 GeV/c, in bins of 0.5 GeV/c. MpKπ is fitted to a signal Gaussian and a
second-order polynomial.
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Figure 42: Example of Λb mass fit for the MC and data comparison. The variable to compare is the
PT of proton, from 2 to 10 GeV/c, in bins of 1 GeV/c. MpKππ is fitted to a signal Gaussian and an
exponential background.
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Figure 43: MC and data comparison of PT (proton). The data points come from the fit to MpKπ in
Figure 41 (left) and the fit to MpKππ in Figure 42 (right).
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Figure 45: B
0 → D∗+π− MC and data comparison: from the top left to the bottom right are: PT (B0),

cτ(B0), vertex fit χ2
r−φ for the B0 vertex, PT (D∗+), cτ(D0), and vertex fit χ2

r−φ for the D0 vertex.
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Figure 46: B → D∗+µ−X MC and data comparison: from the top left to the bottom right are:
PT (D∗µ), cτ(D∗µ), vertex fit χ2

r−φ for the D∗µ vertex, PT (D∗+), cτ(D0), and vertex fit χ2
r−φ for the

D0 vertex.
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Figure 47: B
0 → D+π− MC and data comparison: from the top left to the bottom right are: PT (B0),

cτ(B0), vertex fit χ2
r−φ for the B0 vertex, PT (D+), cτ(D+), and vertex fit χ2

r−φ for the D+ vertex.
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Figure 48: B → D+µ−X MC and data comparison: from the top left to the bottom right are:
PT (Dµ), cτ(Dµ), vertex fit χ2

r−φ for the Dµ vertex, PT (D+), cτ(D+), and vertex fit χ2
r−φ for the D+

vertex.
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Figure 49: Λb → Λ+
c π

− MC and data comparison: from the top left to the bottom right are: PT (Λb),
cτ(Λb), vertex fit χ2

r−φ for the Λb vertex, PT (Λ+
c ), cτ(Λ+

c ), and vertex fit χ2
r−φ for the Λ+

c vertex.
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Figure 50: B → Λ+
c µ

−X MC and data comparison: from the top left to the bottom right are:
PT (Λcµ), cτ(Λcµ), vertex fit χ2

r−φ for the Λcµ vertex, PT (Λ+
c ), cτ(Λ+

c ), and vertex fit χ2
r−φ for the

Λ+
c vertex.
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Figure 51: four track invariant mass MC and data comparison: from the top left to the bottom right
are: MD∗µ, MDµ, MΛcµ (phase space MC without scaling), MΛcµ (phase space MC after scaling).
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5.3 Acceptance, Trigger and Reconstruction Efficiencies of Signal

We obtain the product of the acceptance, trigger and reconstruction efficiencies using the MC described
in Section 5.1. The total efficiency is defined as: the number of reconstructed events surviving the
trigger simulation and analysis cuts, divided by the total number of events generated. Efficiencies
for the backgrounds are found in Section 6. Our data could be divided into eight sub-periods under
different trigger and hardware configurations, see Table 20. In this analysis, because the final states
are nearly alike, we expect that the ratio of the efficiencies to be independent of the detector, trigger
and calibration effects. To confirm this, we divide our signal MC samples into eight sub-periods and
calculate their efficiencies and the ratio of hadronic to semileptonic modes. Tables 21– 23 list the
efficiencies for our signals. It is shown as an example in Figure 53 that the efficiency of B

0 → D+π−

varies dramatically in each period. However the efficiency ratio of the hadronic to semileptonic mode
is quite stable, as shown in Figures 54– 56.

Note that because Bloom and Dagenhart [9] find a difference in the CMU muon reconstruction
efficiency between MC and data, we apply a scaling factor on the efficiencies of the semileptonic
signals and backgrounds: R = 0.986± 0.003. The uncertainty on R is used to estimate the systematic
uncertainty on the relative branching fractions. In addition, Giagu, Herndon and Rescigno [10] [11]
notice that there are differences in the XFT efficiencies for the charged kaons, pions, and protons,
when the XFT configuration is switched to the “1-miss” mode, i.e. when the tracking algorithm in
the XFT requires at least 11 hits from each COT axial superlayer. The COT frond-end electronics
requires a minimum input charge from the ionization of the incident particle. At a fixed momentum,
protons and kaons deposit less charge than the pions, have more hits below the electronics threshold,
and fail the stringent XFT “1-miss” requirement. Therefore, in general, the proton and kaon XFT
efficiencies are lower than that of the pion.

Figure 57(top) shows that kaon and pion XFT efficiencies are identical in the MC and need to be
corrected. Giagu, Herndon and Rescigno measure the ratio, data/MC for the XFT efficiencies of pions,
kaons and protons, as shown in Figure 57. We reweight the MC events using the “acceptance-rejection
(Von Neumann)” method [8] according to the ratio:

Cπ = 1.002− 0.067
PT

,

CK = 0.969− 0.094
PT

,

Cp = 1.06− 1.3
PT

+
3.2
P 2

T

− 2.2
P 3

T

,

where PT is the transverse momentum of the track that passes the trigger cuts in our reconstruction
program.

Finally, one additional scaling factor has to be applied on all the Λb decays with Λcµ in the
final state. We have mentioned in Section 5.1 that a phase space decay model was used for these
decays. In a phase space, the event density in the w-cos θ plane is a constant within the kinematic
boundary. The w is the scalar product of the Λb and Λc four-velocities, and θ is the angle between
the muon and the neutrino momentum vectors in the Λb rest frame. The form factors that describe
the strong interaction in the Λb semileptonic decay modify the event distribution in the phase space
and change the fraction of events accepted. We obtain the scaling factor in the following way: Using
the “acceptance-rejection” method, we reweight the generator-level Λb → Λ+

c µ
−νµ MC according to:

fc =
dΓ(Λb → Λ+

c µ
−νµ)

dw
· T (cos θ, w)

P (w)
, (51)

where the differential semileptonic decay rate, dΓ(Λb→Λ+
c µ−νµ)

dw , is obtained from Huang [12]. The
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Figure 52: The phase space (top) and the w (bottom) distribution obtained from the Λb → Λ+
c µ

−νµ

phase space MC, before (left) and after (right) reweighting the events according to the semileptonic
form factors from Huang [12].

T (cos θ, w) includes the W spin effect and describes the correlation between the µ and νµ, and

P (w) =
∫ cos θmax(w)

cos θmin(w)

T (cos θ, w)d cos θ. (52)

Here, cos θmax and cos θmin specify the kinematic range and are functions of w. Figure 52 shows the
phase space and the w distribution from the phase space and the form factor reweighted MC. Then,
we apply generator-level analysis cuts to obtain the acceptance. We further divide this acceptance by
that from the phase space MC and obtain a scaling factor of 0.994±0.025, where the uncertainty is
dominated by the size of the MC sample.

5.4 Summary

We have described the procedure of generating MC samples and compared the MC distributions with
those in the data. In general, the MC and data are in good agreement. For the variables which MC
does not reproduce the data, we will study the systematic uncertainties from the disagreement. We
also obtain the signal efficiencies from the MC. It is confirmed that the efficiency ratios from both the
Λb and B0 modes are insensitive to the time variation of beam lines and SVT trigger configurations.
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Figure 53: B
0 → D+π− MC total efficiency as a function of run number
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Figure 54: Total efficiency ratio of B
0 → D+π− to B

0 → D+µ−νµ MC in eight different hardware
configurations. The shaded area represents the total average efficiency ratio including the uncertainty.

84



Run
1400 1500 1600

2x10

)ν- µ
*+

 D
→0

B(∈
)/- π

*+
 D

→0
B(∈

1

1.5

2

2.5

3

Figure 55: Total efficiency ratio of B
0 → D∗+π− to B

0 → D∗+µ−νµ MC in eight different hardware
configurations. The shaded area represents the total average efficiency ratio including the uncertainty.
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Figure 56: Total efficiency ratio of Λb → Λ+
c π

− to Λb → Λ+
c µ

−νµ MC in eight different hardware
configurations. The shaded area represents the total average efficiency ratio including the uncertainty.
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by Giagu and Rescigno [10], respectively.
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Table 21: Total efficiency and ratios for B
0 → D∗+π− and B

0 → D∗+µ−νµ.

Run Range
∫
L dt ε

B
0→D∗+π−

ε
B

0→D∗+µ−νµ
ε Ratio

(pb−1) (10−4) (10−4)
138809–143000 3.4 1.72 ± 0.15 0.77 ± 0.07 2.22 ± 0.28
143001–146000 4.0 1.42 ± 0.12 0.73 ± 0.06 1.94 ± 0.24
146001–149659 7.1 1.57 ± 0.10 0.82 ± 0.05 1.92 ± 0.17
149660–150009 0.6 2.35 ± 0.40 1.13 ± 0.19 2.08 ± 0.50
150010–152668 11.3 2.65 ± 0.10 1.13 ± 0.05 2.34 ± 0.13
152669–156487 39.2 2.74 ± 0.06 1.23 ± 0.03 2.23 ± 0.07
159603–164302 52.7 3.10 ± 0.05 1.38 ± 0.02 2.24 ± 0.05
164303–167715 52.7 4.27 ± 0.06 1.90 ± 0.03 2.25 ± 0.05
Total average 171.0 3.22 ± 0.03 1.44 ± 0.01 2.24 ± 0.03

Table 22: Total efficiency and ratios for B
0 → D+π− and B

0 → D+µ−νµ.

Run Range
∫
L dt ε

B
0→D+π−

ε
B

0→D+µ−νµ
ε Ratio

(pb−1) (10−4) (10−4)
138809–143000 3.4 2.99 ± 0.19 1.35 ± 0.09 2.21 ± 0.21
143001–146000 4.0 2.39 ± 0.16 1.36 ± 0.09 1.76 ± 0.16
146001–149659 7.1 2.93 ± 0.13 1.28 ± 0.06 2.30 ± 0.15
149660–150009 0.6 4.82 ± 0.57 2.23 ± 0.27 2.16 ± 0.37
150010–152668 11.3 4.12 ± 0.14 2.01 ± 0.06 2.05 ± 0.09
152669–156487 39.2 4.79 ± 0.08 2.24 ± 0.04 2.14 ± 0.05
159603–164302 52.7 5.43 ± 0.07 2.48 ± 0.03 2.19 ± 0.04
164303–167715 52.7 7.49 ± 0.08 3.37 ± 0.04 2.22 ± 0.03
Total average 171.0 5.67 ± 0.04 2.58 ± 0.02 2.20 ± 0.02

Table 23: Total efficiency and ratios for Λb → Λ+
c π

− and Λb → Λ+
c µ

−νµ.

Run Range
∫
L dt εΛb→Λ+

c π− εΛb→Λ+
c µ−νµ

ε Ratio
(pb−1) (10−4) (10−4)

138809–143000 3.4 1.84 ± 0.15 0.50 ± 0.06 3.69 ± 0.51
143001–146000 4.0 1.23 ± 0.12 0.36 ± 0.04 3.43 ± 0.53
146001–149659 7.1 1.42 ± 0.09 0.48 ± 0.04 2.98 ± 0.30
149660–150009 0.6 2.23 ± 0.39 1.13 ± 0.19 1.98 ± 0.48
150010–152668 11.3 2.13 ± 0.12 0.63 ± 0.04 3.37 ± 0.27
152669–156487 39.2 2.37 ± 0.05 0.75 ± 0.02 3.15 ± 0.11
159603–164302 52.7 2.67 ± 0.05 0.82 ± 0.02 3.26 ± 0.09
164303–167715 52.7 3.76 ± 0.06 1.14 ± 0.02 3.30 ± 0.08
Total average 171.0 2.86 ± 0.03 0.86 ± 0.01 3.31 ± 0.05
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6 Backgrounds of the Semileptonic Modes

The D∗µ, Dµ and Λcµ combinations we observe in the data consist of the exclusive semileptonic
signals, B

0 → D∗+µ−νµ, B
0 → D+µ−νµ, Λb → Λ+

c µ
−νµ, in the presence of other backgrounds.

These backgrounds arise from three sources:

• physics backgrounds: B hadron decays into similar final states, a charm hadron, a real muon
and other tracks.

• muon fakes: a charm hadron and a track which fakes a muon.

• bb and cc: two B or charm hadrons from the bb and cc pairs decay into a D∗+ (D+, Λ+
c ) and a

muon, respectively.

The goal is to measure the relative partial decay widths of the exclusive semileptonic decays to hadronic
decays. The backgrounds listed above should be subtracted from the observed inclusive semileptonic
signal in the data. The ratio of branching fractions is then calculated as follows:

Bsemi

Bhad
= (

Ninclusive semi −Nphysics −Nfakeµ −Ncc, bb

Nhad
) · εhad

εsemi
, (53)

where B stands for the branching ratio, ε is the efficiency from the MC. We estimate the contribu-
tion from the physics and bb, cc backgrounds, using the efficiencies from the MC and the branching
ratios from the PDG. We normalize the backgrounds to the observed number of events in the fully
reconstructed hadronic signal in the data,

Nphysics (bb,cc) = Nhad · Σ
Bi · εi

Bhad · εhad
. (54)

The branching ratios of B0 hadronic modes in Equation 54 come from the world average in the
PDG. For the Λb mode, we extract B(Λb → Λ+

c π
−) from the recent CDF result, σΛb

(PT >6.0)B(Λb→Λ+
c π−)

σB0 (PT >6.0)B(B
0→D+π−)

by Le, et al. [4] in Yu [1]. Sections 6.1– 6.3 estimate the amount of backgrounds in the semileptonic
signal. We will show that the dominant signal contamination is from the physics background. The
second largest background arises from muon fakes. The smallest background source is from bb and cc.

6.1 Physics Backgrounds

Physics backgrounds come from the decays of B hadrons into similar final state as our semileptonic
signal: a D∗+ (D+, Λ+

c ), a µ− and missing particles. Branching ratios and efficiencies of these physics
decays are needed to normalize the background contribution to the observed number of hadronic signal
events in the data;

Nphysics

Nhad
=

Σ Bi · εi
Bhad · εhad

. (55)

For the backgrounds to the B
0 → D∗+µ−νµ and B

0 → D+µ−νµ decays, we find the modes which
give similar final states as our semileptonic signals in the decays listed in the PDG summary and the
default decay table inside EvtGen package. Many decays of B and D mesons have been measured
by other experiments, such as CLEO, BELLE and BABAR. These measurements serve as inputs to the
EvtGen decay package. Since BELLE and BABAR also use the EvtGen package, they have included decay
modes into EvtGen which have not yet been measured and estimate the branching ratios. For the
backgrounds to the Λb → Λ+

c µ
−νµ decay, none of the B hadrons decays to Λcµ final states have

been measured in the CDF-I and other experiments, or estimated inside EvtGen. We use the results
from the preliminary measurements by Litvintsev, et al. [13] and the PDG upper limit to obtain the
background branching ratios.
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After we have a list of decays which share similar final states as our signals, we use the generator
level simulation to estimate the composition of the inclusive semileptonic signal from each physics
background. Details of this procedure maybe be found in the study by Tesarek, et al. [14] [15].
The decays which contribute ≥ 1% to the semileptonic signal after trigger-like and the four track
invariant mass MD∗(D,Λc)µ cuts are selected for further consideration. We generate each selected
decay separately and run through the full CDF detector simulation as described in Section 5.1. Then
we run the same signal reconstruction program used for the data on the MC and divide the number
of reconstructed events by the number of generated events to obtain the efficiency.

6.1.1 Physics backgrounds of B
0 → D∗+µ−νµ and B

0 → D+µ−νµ

A detailed description about the estimate of the branching fractions of the B
0 → D∗+µ−νµ and

B
0 → D+µ−νµ physics backgrounds can be found in Tesarek [14]. Tables 24– 25 summarize the physics

background in B
0 → D∗+µ−νµ and B

0 → D+µ−νµ which contribute ≥ 1%. The second column in
the table lists the measured or estimated branching ratios. The third column lists their efficiencies
relative to the hadronic signals with statistical errors. The fourth column lists the normalization of
each background relative to the exclusive semileptonic signal. The last column lists the number of
events from each background after multiplying the relative branching ratio and efficiencies with the
number of hadronic signal in the data, as expressed in Equation 55. The uncertainty in the last
column only includes the statistical uncertainty of the hadronic yield. The dominant background of
B

0 → D∗+µ−νµ is B− → D0
1µ
−νµ where D0

1 → D∗+π−. The total physics background in Table 24
is about 15% of B → D∗+µ−X events in the data after all the cuts. The dominant background of
B

0 → D+µ−νµ is B
0 → D∗+µ−νµ where D∗+ → D+π0. The total physics background in Table 25

contributes about 40% of B → D+µ−X events in the data after all the cuts. As shown in Figure 58,
a cut on the invariant mass of D∗+(D+)µ− can reduce or eliminate the background from B0, B+

decaying semileptonically to more particles or a higher mass charm state.

6.1.2 Physics backgrounds of Λb → Λ+
c µ

−νµ

A more detailed description about the estimate of the branching fractions of the Λb → Λ+
c µ

−νµ

physics backgrounds can be found in Tesarek [15]. Table 26 summarizes the physics background
from the other Λb semileptonic decays discussed in Tesarek [15] and their relative efficiencies to the
hadronic signal. The dominant backgrounds are Λb → Λc(2593)+µ−νµ and Λb → Λc(2625)+µ−νµ.
Total physics background in Table 26 is about 9.2% of the B → Λ+

c µ
−X events in the data.

We also consider the background from the baryonic semileptonic decays of B mesons. While there
are branching ratio measurements of the B baryonic hadronic decay, eg: B

0 → Λ+
c pπ

+π−, there is
only an upper limit for the semileptonic decay of Bu/Bd mixture. We assume the upper limit for
the muon-neutron or muon-proton final state should be the same as those decays with a proton and
electron in the final state:

B(B0/B+ → Λ−c peνe) < 0.15%.

and use the limit for the branching ratios of the following modes:

B(B− → Λ+
c pµ

−νµ) = 0.15%,

B(B
0 → Λ+

c nµ
−νµ) = 0.15%.

We then generate Monte Carlo to obtain the efficiencies for these two decays. Since we find the
PT spectra of B mesons and Λb are quite different, it is least ambiguous to calculate the quantity:

NB−→Λ+
c pµ−νµ

NΛb→Λ+
c π−

=
σΛb

(PT > 4.0)
σB0(PT > 4.0)

·
B(B− → Λ+

c pµ
−νµ) · εB−→Λ+

c pµ−νµ

B(Λb → Λ+
c π−) · εΛb→Λ+

c π−
. (56)
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Table 24: Physics backgrounds in B
0 → D∗+µ−νµ.

Mode BR (%) ε ratio Norm Nevent

B
0 → D∗+π− 0.276± 0.021 1 – 106± 11

B → D∗+µ−X – – – 1059± 33
B

0 → D∗+µ−νµ 5.44 ± 0.23 0.447 ± 0.006 1.000 –
B− → D0

1µ
−νµ 0.56 ± 0.16 0.356 ± 0.008 0.055 51± 5

↪→ D∗+π− 66.67 ± ?
B

0 → D+
1 µ

−νµ 0.56 ± ? 0.349 ± 0.008 0.027 25± 3
↪→ D∗+π0 33.33 ± ?

B− → D′01 µ
−νµ 0.37 ± ? 0.351 ± 0.008 0.036 33± 4

↪→ D∗+π− 66.67 ± ?
B

0 → D′+1 µ−νµ 0.37 ± ? 0.336 ± 0.008 0.017 16± 2
↪→ D∗+π0 33.33 ± ?

B− → D∗+π−µ−νµ 0.20 ± ? 0.242 ± 0.007 0.020 19± 2
B

0 → D∗+π0µ−νµ 0.100± ? 0.239 ± 0.006 0.010 9± 1
B

0 → D∗+τ−ντ 1.60 ± ? 0.136 ± 0.005 0.016 15± 2
↪→ µ−νµ 17.36 ± 0.06

Table 25: Physics backgrounds in B
0 → D+µ−νµ.

Mode BR (%) ε ratio Norm Nevent

B
0 → D+π− 0.276± 0.025 1.000 – 579± 30

B → D+µ−X – – – 4721± 104
B

0 → D+µ−νµ 2.14 ± 0.20 0.455 ± 0.004 1.000 –
B

0 → D∗+µ−νµ 5.44 ± 0.23 0.372 ± 0.005 0.671 1373± 71
↪→ D+π0/γ 32.30 ± 0.64

B
0 → D+π0µ−νµ 0.30 ± ? 0.165 ± 0.004 0.051 104± 5

B− → D+π−µ−νµ 0.60 ± ? 0.165 ± 0.004 0.102 208± 11
B− → D0

1µ
−νµ 0.56 ± 0.16 0.278 ± 0.005 0.034 70± 4

↪→ D∗+π− 66.67 ± ?
↪→ D+π0/γ 32.30 ± 0.64

B− → D0
1µ
−νµ 0.37 ± ? 0.273 ± 0.005 0.022 46± 3

↪→ D∗+π− 66.67 ± ?
↪→ D+π0/γ 32.30 ± 0.64

B
0 → D+τ−ντ 0.70 ± ? 0.100 ± 0.004 0.013 26± 1

↪→ µ−νµ 17.36 ± 0.06
Bs → D+K0µ−νµ 0.30 ± ? 0.137 ± 0.005 0.011 23± 1
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Figure 58: Invariant mass of D+µ− for the signal and physics backgrounds from semileptonic B0

decays [14]. The top and bottom histograms are the same plot on a linear and log scale, respectively.
Note that the backgrounds are concentrated in the low mass region. The signal to background ratio
is larger at the higher mass region.
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Table 26: Physics backgrounds in Λb → Λ+
c µ

−νµ from other Λb semileptonic decays.

Mode BR (%) ε ratio Norm Nevent

Λb → Λ+
c π

− 0.41± 0.21 1 – 179± 19
B → Λ+

c µ
−X – – – 1237± 97

Λb → Λ+
c µ

−νµ 6.26± 0.21 0.300 ± 0.004 1 –
Λb → Λc(2593)+µ−νµ 0.295± 0.098 0.196 ± 0.003 0.031 26± 3

↪→ Σ++
c π− 24 ± 7
↪→ Λ+

c π
+ 100

↪→ Σ0
cπ

+ 24 ± 7
↪→ Λ+

c π
− 100

↪→ Σ+
c π

0 24 ± ?
↪→ Λ+

c π
0 100

↪→ Λ+
c π

+π− 18 ± 10
↪→ Λ+

c π
0π0 9 ± ?

↪→ Λ+
c γ 1 ± ?

Λb → Λc(2625)+µ−νµ 0.492± 0.095 0.191 ± 0.003 0.050 42± 4
↪→ Λ+

c π
+π− 66 ± ?.

↪→ Λ+
c π

0π0 33 ± ?
↪→ Λ+

c γ 1 ± ?
Λb → Λ+

c f
0µ−νµ 0.25± ? 0.023 ± 0.002 0.003 2.6± 0.3

Λb → Λ+
c π

+π−µ−νµ 0.50± ? 0.032 ± 0.002 0.009 7± 1
Λb → Λ+

c π
0π0µ−νµ 0.25± ? 0.033 ± 0.002 0.004 3.6± 0.4

Λb → Σ0
cπ

+µ−νµ 0.264± 0.103 0.081 ± 0.004 0.011 10± 1
↪→ Λ+

c π
− 100

Λb → Σ+
c π

0µ−νµ 0.264± 0.103 0.072 ± 0.004 0.010 8± 1
↪→ Λ+

c π
0 100

Λb → Σ++
c π−µ−νµ 0.264± 0.103 0.077 ± 0.004 0.011 9± 1
↪→ Λ+

c π
+ 100

Λb → Λ+
c τ

−ντ 1.74± ? 0.040 ± 0.003 0.007 5± 1
↪→ µ−νµ 17.36 ± 0.06
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Table 27: Physics backgrounds in Λb → Λ+
c µ

−νµ from B mesons.

Mode BR (%) Relative ε Nevent

Λb → Λ+
c π

− 0.41± 0.21 1 179 ± 19
B → Λ+

c µ
−X 1237 ± 97

Λb → Λ+
c µ

−νµ 6.26± 0.21 0.265 ± 0.004 –
B− → Λ+

c pµ
−νµ 0.15 ± ? 0.045 ± 0.002 4.7 ± 0.5

B
0 → Λ+

c nµ
−νµ 0.15 ± ? 0.044 ± 0.002 4.6 ± 0.5

We use a low PT threshold (PT > 4 GeV/c) because we wish to accurately assess the acceptance of
the B hadron after applying the reconstruction requirements. Specifically we are concerned about
the case where the neutrino is emitted in the direction opposite to the direction that B hadron is
traveling. This case increases the PT of the remaining daughters and may make their total PT greater
than the PT of the B hadron. Therefore, the denominator of the efficiency is the number of events
with B mesons or Λb PT > 4 GeV/c and rapidity < 2.0. The numerator is the number of events which
pass all the trigger and analysis cuts. Using the method presented in Yu [1], we obtain a corrected
number for the ratio of B meson to Λb cross-sections:

σΛb
(PT > 4.0)

σB0(PT > 4.0)
= 0.63± 0.23(stat⊕ other syst)

+0.24
−0.14

(PT ). (57)

The uncertainty due to the Λb PT spectrum is separated from the other systematic and statistical
uncertainties for the systematics study on the relative branching fractions in Section 7.1. Table 27
summarizes the B meson to Λ+

c µ
− backgrounds. The contribution of B0 and B+ in the B → Λ+

c µ
−X

events is about 0.4% each.

6.2 Fake Muons

Another source of background originates from a charm hadron together with a hadron track (π, K,
proton) misidentified as a muon. Physics processes that generate these hadrons are direct production,
inelastic collisions with the detector material, fragmentation or the decays of charm and B hadrons.
Fragmentation is the process by which a b or c quark combines with additional quarks and gluons
to form a qq or qqq bound state. Fake muons from the first three categories tend to have a softer
PT spectrum than the real muons from B decays. A tighter PT cut on the muon candidate largely
removes these backgrounds. Fake muons from the charm hadrons which are produced at the primary
vertex are also suppressed. For the reason that we require the muon candidate should be matched to
an SVT track with a d0 greater than 120 µm, while fake muons from the promptly produced charm
tend to have smaller impact parameter. Also for the reason that we require the charm hadron and
the muon candidate to form a vertex displaced from the beam line and make a strict requirement on
the pseudo cτ .

pseudo cτ =
MB

PT (charm + µ)
· Lxy. (58)

Here PT (charm + µ) is the total transverse momentum of charm hadron and the muon.
Therefore, our principle source of fake muons comes from two types of B hadron decays:

• B → D∗+ (D+,Λ+
c )Xhad anything: hadronic decays of any B hadrons, where Xhad is π, K or

proton which fakes the muon.

• B → D∗+ (D+,Λ+
c )Xhad l νl anything: semileptonic B decay into a charm, a hadron track

Xhad, and any leptons (e, µ, τ). The muon is not reconstructed but Xhad fakes the muon.
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In this section, we estimate the fake muon contamination for our three signals: B
0 → D∗+µ−νµ,

B
0 → D+µ−νµ and Λb → Λ+

c µ
−νµ. Note the charge conjugates of the modes listed are also included.

6.2.1 Background Estimate

We use two methods to estimate the amount of contamination from fake muons in our semileptonic
signal. Each method uses a different way to obtain the number of (hadron track, charm hadron)
candidates in our data. Both methods apply the previous CDF measurements of the probabilities
for a real pion, kaon and proton to be misidentified as a muon. These measurements are performed
by Ashmanskas and Harr [16] using a pion and kaon sample from the D∗+ → D0π+decays, where
D0 → K−π+, and by Litvintsev [17] using a proton sample from the Λ → p+π− decays. The fake
probability Pπ (PK , Pp) is defined as the number of pions (kaons or protons) that pass the following
muon identification cuts divided by the total number of pions (kaons or protons) inside the fiducial
volume of CDF Central Muon Detector (CMU) and matched to an SVT track.

• The track is fiducial to the CMU and matched to an SVT track

• The track is associated with hits in the CMU

• The matching χ2 between the track and the hits in the CMU is less than 9.

Figure 59 shows the Pπ, PK measured in sixteen and Pp measured in twelve transverse momentum
bins for positive and negative charged tracks, separately.

Method I The first method uses data to obtain the number of (hadron track,charm hadron) can-
didates, then Monte Carlo to determine the ratio of pions, kaons and protons in the hadron tracks.
We run the same signal reconstruction program on the secondary datasets hbot0h and hbot1i. We
do not use the skimmed tertiary datasets (see Yu [2] ) as the samples are biased by requiring at
least one track in the event matched to a muon stub in the muon detector. We look for a charged
track which fails the muon identification cuts (TRKfail). TRKfail and a charm hadron should form
a displaced vertex and pass the same analysis cuts we apply to the signal. Each event is weighted
with the fake probability (Pavg) according to the momentum and the charge of TRKfail. We then fit
the weighted charm hadron mass distribution, i.e. MKππ −MKπ, MKππ and MpKπ, using the same
functions as described in Section 4.1, to obtain the signal contamination from the fake muons. Since
an event-weighted likelihood fit will not give a proper error for the yield, a binned χ2 fit is performed.
Pavg is a weighted average of pion, kaon and proton fake probability (Pπ, PK , Pp). The weight Ri is
determined by the fraction of pions, kaons and protons in the B → D∗+ (D+,Λ+

c )Xhad l νl anything
and B → D∗+ (D+,Λ+

c )Xhad anything MC after analysis cuts:

Pavg = RπPπ +RKPK +RpPp, (59)

where
Ri =

Ni

Nπ +NK +Np
,

and i is π, K or proton. The Monte Carlo is generated as described in Section 5.1. Decays of B0,
B+, Bs and Λb are generated separately and decay tables include all the possible decays. Each kind
of B hadron gives different Ri and is weighted with the product of the production fractions, total
branching ratios and the number of generated events. Table 28 summarizes the pion to kaon ratio
and the number of fake muon candidates before and after weighting the events in our three different
signals. See Figures 60– 62 for the weighted mass distribution for each mode.

The uncertainties of the number of fake muon candidates come from three sources: 1. the un-
certainty from the binned χ2 fit, 2. the uncertainties on the pion, kaon and proton fractions due to
the finite Monte Carlo sample size, the uncertainties of the branching ratios and production fractions,
and 3. the uncertainty on the measured fake probability. For the last source, we vary the fake rate in
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each momentum bin ± 1 sigma, independently. We then add the systematic shifts in quadrature to
get the accumulative uncertainty. The number of fake muons using this method is about 3–5% of the
inclusive semileptonic signals in the data.

Method II The second method relies on the MC and the external input of the branching ra-
tios from the PDG. MC is run through the same reconstruction program for the data. Then we
apply the same cuts as signal reconstruction and obtain the trigger and reconstruction efficiencies
of B → D∗+ (D+,Λ+

c )Xhad anything and B → D∗+ (D+,Λ+
c )Xhad l νl anything decays. We

weight the MC events which pass the analysis cuts with the fake probability according to the mo-
mentum, the charge and the particle type of the track, Xhad. The particle identification of the track,
Xhad, is obtained by matching the hits on the reconstructed track with those on the input simu-
lated track. Together with the efficiency of hadronic mode, branching ratios of our hadronic signals,
B → D∗+ (D+,Λ+

c )Xhad anything and B → D∗+ (D+,Λ+
c )Xhad l νl anything from the PDG, we

normalize the background to the observed number of hadronic signals in the data,

Nfake µ

Nhad
=
B(B → D∗+ (D+,Λ+

c )X) · εfake µ

fd,baryon · Bhadεhad
. (60)

Equations 61– 62 use D+ as an example to show how we derive the B → D∗+ (D+,Λ+
c )Xhad anything

and B → D∗+ (D+,Λ+
c )Xhad l νl anything branching ratios from the existing information in the

PDG.

B(B → D+Xhad lνl anything) =
7
3
· B(B → D+π+µ anything)

+
7
3
· B(B → D+π−µ anything), (61)

B(B → D+Xhad anything) = B(B → D+anything)

− 7
3
· B(B → D+µ anything), (62)

where the factor, 7
3 , comes from the fact that the branching ratios of muon and electron channels are

equal and the branching ratio of the tau channel is scaled down by the ratio of the phase space, ∼ 1
3 .

Therefore, we have to scale up the branching ratio of the muon channel by 1 + 1 + 1
3 = 7

3 to get the
total branching ratio of all the lepton channels.

Table 29 summarizes the parameters used to calculate the number of fake muon events, where the
decayB → D∗+ (D+,Λ+

c )Xhad anything is denoted as mode “1” andB → D∗+ (D+,Λ+
c )Xhad l νl anything

is denoted as mode “2” in the table. The uncertainties on the number of fake muons originate from:
the uncertainty on the hadronic yield, the relative efficiency, the uncertainty on the fake rate and
the relative branching ratios. The dominant uncertainty is from the relative branching ratios. The
number of fake muon backgrounds from method I is consistent with the result using method II. We
use the results of method I in the calculation of our final result of the relative branching ratios. In
general, the fraction of fake muons is about 5% of the total semileptonic yield in the data.

6.2.2 Like-sign Combination

Note that we do not use the like sign combination (i.e. the charm hadron and the muon have the same
sign of charges) to estimate the fake muon background for two reasons: First, two different B hadrons
from the bb in the event can produce a real muon and a real charm of the same charge sign when
the B hadrons in the event have opposite flavors and one B hadron decays semileptonically. Second,
the two track trigger, used for this analysis, requires a pair of tracks with opposite charges. The
trigger requirement greatly reduces the number of like-sign (wrong-sign) candidates and introduces
large statistical errors for the number of fake muons.
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Figure 59: The probability for a pion, kaon or proton being misidentified as a muon in bins of transverse
momentum (PT ) from the measurements by Ashmanskas, Harr [16] and Litvintsev [17]. From the
top left to the bottom right are π+, π−, K+, K−, p and p fake probabilities.
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Figure 60: Fit of B → D∗+µfake yield after weighting the charged track which fails the muon ID cut
with an averaged muon fake probability. There are 44 ± 1 events in the peak. Fit χ2/NDF = 134/92,
probability = 0.3%. A sideband subtraction yields 46 ± 7 events in the signal peak. Note that the
uncertainty from the sideband subtraction does not take into account the event weighting with the
fake rate and is over-estimated.
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Figure 61: Fit of B → D+µfake yield after weighting the charged track which fails the muon ID
cut with an averaged muon fake probability. There are 230 ± 5 events in the peak. Fit χ2/NDF =
36.3/35, probability = 19.7%
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Figure 62: Fit of B → Λ+
c µfake yield after weighting the charged track which fails the muon ID cut

with an averaged muon fake probability. There 40 ± 6 events in the peak. Fit χ2/NDF = 55.6/39,
probability = 4.1%. A sideband subtraction yields 44 ± 25 events in the signal peak.
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Table 28: Parameters for the number of fake muons: Method I.

B
0 → D∗+µ−νµ B

0 → D+µ−νµ Λb → Λ+
c µ−νµ

N before weighting 2953 ± 57 15343 ± 303 3560 ± 198

Rπ 0.937 ± 0.009 0.909 ± 0.005 0.71 ± 0.16

RK 0.063 ± 0.009 0.091 ± 0.005 0.05 ± 0.08

Rp – – 0.24 ± 0.16

Nfake µ 44 ± 3 230 ± 19 40 ± 9

Table 29: Parameters for the number of fake muons: Method II.

B
0 → D∗+µ−νµ B

0 → D+µ−νµ Λb → Λ+
c µ−νµ

Bhad % 0.276 ± 0.021 0.276 ± 0.025 0.41± 0.19

B1 % 10.9 ± 2.1 17.7 ± 2.4 4.8 ± 3.0

ε1
εhad

0.0038 ± 0.0004 0.0022 ± 0.0002 0.0029 ± 0.0003

B2 % 1.3 ± 0.3 1.8 ± 0.6 < 1.23

ε2
εhad

0.0005 ± 0.0002 0.0010 ± 0.0002 0.0002 ± 0.0001

Nhad 106 ± 11 579 ± 30 179 ± 19

Nfake µ 45 ± 11 220 ± 41 28 ± 34

Table 30: Fake muons from bb and cc.

bb cc
Ngen 43454949 89718181
Real muon Npass 15 35
Fake muon Npass 1.8 0.4

6.2.3 Fake muons from bb and cc

One type of fake muons is not included in the previous subsections. These fake muons stem from bb,
cc to two B or charm hadrons then decay into a charm signal, a hadron track misidentified as a muon
and other missing particles. A study at the generator level for the B

0 → D+µ−νµ mode is done using
the bb and cc PYTHIA Monte Carlo datasets as described in Section 6.3.2. We apply analysis-like cuts
on the Monte Carlo. We weight the events that pass the cuts with the muon fake probability according
to the “muon” candidate momentum, charge and the true particle identification: a kaon, a pion or
a proton. Then we compare the number of weighted events with the number of charm hadron and
real muon combinations, i.e, a bb and cc background as described in Section 6.3. We find that fake
muons from bb and cc is about 10% of the bb and cc background with real muons. See Table 30. From
Section 6.3, we show that the bb and cc background with real muons is at the 1% level. Therefore, we
conclude that bb and cc background with fake muons is about or less than 0.1% and can be ignored.
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Figure 63: Charm hadrons from cc with small (left) and big (right) ∆φ. In the left figure, the muon
from the semileptonic decay of D0 and the D+ forms a secondary vertex and fake our B

0 → D+µ−νµ

signal. In the right figure, ∆φ between two charm hadrons is too big and the daughters can not form
a secondary vertex.

6.3 bb and cc Backgrounds

When the azimuthal angle (∆φ) between bb or cc quark pair is small, daughters of two heavy flavor
hadrons from the fragmentation of bb or cc appear to come from the same decay vertex, see Figure 63
. Here ∆φ is defined as the opening angle in the plane perpendicular to the proton and antiproton
beam axis. If one hadron decays semileptonically, and the other hadron decays into a charm final
state, such as D∗+ → D0π+, D+ → K−π+π+, and Λ+

c → pK−π+, the muon from the semileptonic
decay, together with the charm, may fake our semileptonic signal. Production mechanisms and an
estimate of the amount of bb and cc backgrounds are discussed below.

6.3.1 bb and cc Production Mechanism

In pp collisions, the b or c quarks may be single or pair produced by the electroweak and the strong
(QCD) processes. The b or c quark production cross-section for the electroweak process σ · B(pp →
W → bc) is around 0.01 µb and is derived from the CDF measurement of the inclusive W cross-section
by Halkiadakis, et al. [18]. The bb and cc production cross-sections for the QCD process are around 50
and 200µb respectively from the PYTHIA Monte Carlo, when the total transverse momenta of the hard
scattering, i.e. the part of the interaction with the largest momentum scale, is greater than 5 GeV/c
and at least one b or c quark has PT > 4.0 GeV/c, pseudo-rapidity η < 1.5. The bb and cc production
rates from the electroweak process are about five thousand times smaller than the QCD processes.
Therefore, only the QCD processes are discussed here. Figure 64 shows the leading and next-to-leading
order Feynman diagrams for bb(cc) production by the QCD processes from Lannon [19]. The QCD
process that contributes the production at leading order is flavor creation. The next-to-leading order
(NLO) processes are flavor excitation and gluon splitting, contribute at the same level as the flavor
creation [19].
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Figure 64: Representative lowest order Feynman diagrams (without loops or radiative corrections)
of quark annihilation, gluon fusion, flavor excitation and gluon splitting. Details of these processes
may be found in Lannon [19].

6.3.2 Background Estimate

The amount of bb and cc background is normalized to the number of events observed in the hadronic
modes in the the data,

Nbb,cc

Nhad
=
σbb,cc ·

∑
i

∑
j f

iBjεj

σB0,Λb
· Bhadεhad

. (63)

Here, i represents the species of b(c) hadrons and j represents the decay modes which could con-
tribute to bb and cc backgrounds. f i stands for the production fraction ratio for species i. Bj and εj
are the branching ratio and the efficiency of jth decay mode. Here, “had” refers to B

0 → D∗+π−,
B

0 → D+π−, or Λb → Λ+
c π

−, which are the normalization modes in our relative branching ratio
measurements. The following subsections detail the methods to estimate σbb,cc ·

∑
i

∑
j f

iBjεj and
σB0,Λb

· Bhadεhad in Equation 63. We do not use detector and trigger simulations to obtain the effi-
ciencies for the following reasons: First, detector and trigger simulations are time and CPU intensive.
Second, we will find the contribution of this background is quite small compared with the other back-
grounds. Third, we care about the efficiency ratio of the background to the signal, not the absolute
efficiency. Our studies show that generator level Monte Carlo gives a good approximation. For in-
stance, the relative efficiency ε(Λb→Λ+

c π−)

ε(Λb→Λ+
c µ−νµ)

is 3.31 ± 0.05 from the full detector simulation and 3.23
± 0.01 from the generator level simulation. The difference is only about 2.5%. Similar results are
obtained from the relative efficiencies of our other signals.

Background: σbb,cc ·
∑

i

∑
j f

iBjεj Our estimate of σbb,cc ·
∑

i

∑
j f

iBjεj relies heavily on the
Monte Carlo. We use PYTHIA version 6.2 and to generate bb and cc events, we include the QCD
processes mentioned in Section 6.3.1: flavor creation, flavor excitation and gluon splitting (MSEL=1).
We further require the PT of the hard scattering be greater than 5 GeV/c. Events with b quarks
PT greater than 4.0 GeV/c and pseudo-rapidity less than 1.5 are collected into the nbot90 sample.
Events with c quarks which satisfy the same kinematic cuts are collected into the nbota0 sample.
Note that nbot90 and nbota0 have small overlap when both b and c quarks are produced and are
above the PT and pseudo-rapidity thresholds. Details of nbot90 and nbota0 datasets could be found
in [20]. PYTHIA bb and cc cross-sections are used for σbb,cc.
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The product of the efficiency, branching ratio and production fraction from all the modes,
∑

i

∑
j f

iBjεj ,
is obtained using the following steps: First, we identify the bb (cc) production mechanism to which
we are most sensitive. In this pass, we only study the background that forms a D+µ− signature
since D+ has longer lifetime than D∗+, Λ+

c and B
0 → D+µ−νµ suffers larger cc background con-

tamination compared to the other two modes. We need to achieve higher accuracy for the estimate
of

∑
i

∑
j f

iBjεj . Consequently, for the bb background, we re-decay nbot90 sample ten times, i.e.
we re-use the same kinematic distribution of the parent hadrons from nbot90 ten times but decay
the hadrons with independent random numbers and force the decay D+ → K−π+π+. For the cc
background, we force the decay of D+ → K−π+π+ and require that all the negative charged charm
hadron decay semileptonically.

Then, a generator level two track trigger filter (SvtFilter) is applied. We further identify any
combination of D+ and a muon which passes the generator-level, analysis-like cuts found in Table 32.
In order to avoid double counting (count cc as bb background in nbot90 and bb as cc background in
nbota0) due to the overlap of nbot90 and nbota0 samples, the ancestors of the muon and charm
hadrons are retrieved by tracing the true information from the generator. If both muon and charm
hadron come from the same B hadron, the combination is rejected. If the muon and charm hadron
come from different B hadrons, the combination is categorized into bb background, otherwise, the
combination is categorized as a cc background. We find that for both bb and cc, more than 90% of
the events that pass the cuts are from gluon splitting. Therefore, we are most sensitive to the “gluon
splitting” mechanism. Table 31 summarizes the background contributions from different production
processes.

Table 31: Summary of bb and cc production mechanisms and our relative sensitivity for reconstructing
the event in our semileptonic sample.

bb background cc background
Ngen 219093011 21996889
Npass 75 62
Ngluon 70 57
Nexcitation 5 5
Ncreation 0 0
fgluon(%) 93 ± 3 92 ± 3
fexcitation(%) 7 ± 3 8 ± 4
fcreation(%) 0 0

Second, we filter the gluon splitting events and re-decay the b(c) hadrons in nbot90 and nbota0
ten times with the procedure described above. For the bb background estimate, we let all the b hadrons
and negative charged charm hadrons decay freely, but force the decays of the positive charged charm
hadrons in two ways:

• D∗+ → D0π+, D0 → K−π+ for the background of B
0 → D∗+µ−νµ

• D+ → K−π+π+ and Λ+
c → pK−π+ for the background of B

0 → D+µ−νµ and Λb → Λ+
c µ

−νµ

Then the SvtFilter and the cuts listed in Table 32 are applied. We divide the number of reconstructed
events by the number of generated events and get

∑
i

∑
j f

iBjεj . Table 33 lists the parameters for
the bb background.

For the cc background estimate, we force the decays of both positive and negative charged charm
hadrons. The positive charged charm hadrons are forced to decay into the modes listed above. The
negative charged charm hadrons are forced to decay into semileptonic modes individually for D−,
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D
0
, D−s and Λ−c . As the semileptonic decay modes of these four charm hadrons are all different, we

separate the events into four classes denoted by the parent charm particles. After applying SvtFilter
and the cuts listed in Table 32, we obtain

∑
j f

iBjεj for each class. Then we multiply the semileptonic
branching ratios for each kind of charm hadron with its

∑
j f

iBjεj and sum them up to get the total
amount of

∑
j f

iBjεj for the cc background,∑
i

∑
j

f iBjεj(total) =
∑

i

∑
j

f iBjεj(D−)B(D− → µX)

+
∑

i

∑
j

f iBjεj(D
0
)B(D

0 → µX)

+
∑

i

∑
j

f iBjεj(D−s )B(D−s → µX)

+
∑

i

∑
j

f iBjεj(Λ−c )B(Λ−c → µX). (64)

Table 34 lists the parameters for the cc background.
In both bb and cc background estimates, since we force the positive charged charm hadron to decay

into the same final state as our charm signals, we have to multiply the final result by two to include
the contribution from both charge states. Table 36 lists Nbb and Ncc in our three different signals
after multiplying the ratio in Equation 63 with the observed number of events in the hadronic signals.

Table 32: Generator-level analysis-like cuts for bb and cc background study.

Parameter Cut Value

PT of all tracks > 0.5 GeV/c
PT of µ (πB) > 2.0 GeV/c
η of all tracks < 1.2
η of µ (πB) < 0.6
PT of four tracks > 6.0 GeV/c
PT of charm hadron > 5.0 GeV/c
cτ of four tracks > 200 µm (B), > 250 µm (Λb)
cτ of charm hadron > -70 µm (D∗, Λc), > -30 µm (D+)
3.0 < MD(∗)µ < 5.5 GeV/c2

3.7 < MΛcµ < 5.7 GeV/c2

µ (πB) match to a SVT track
charm hadron and µ (πB) have opposite charge signs
2 out of 4 tracks of B candidate pass two track trigger cuts

Hadronic signal: σB0,Λb
· Bhadεhad In order to normalize the background to the observed num-

ber of events in the hadronic mode, the B0 or Λb production cross-section, the efficiency and the
branching ratio of the hadronic signal, have to come from external input or must be calculated using
MC (see Equation 63). We obtain σB0 by multiplying the previous CDF σB+ measurement by Keaf-
faber, et al. [21] with the production fraction ratios, fd/fu, from the 2004 PDG. B0 decay branching
ratios are also obtained from the PDG. The product of σΛb

and B(Λb → Λ+
c π

−) is obtained by multi-

plying the CDF measurement of σΛb
(PT >6.0)B(Λb→Λ+

c π−)

σB0 (PT >6.0)B(B
0→D+π−)

by Le, et al. [4] with the σB0 we derive and
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Table 33: Parameters used for bb background estimate.

PYTHIA σbb (µb) 49.6

bb → D∗µ bb → Dµ bb → Λcµ

Ngen 221606748 221619610 221619610

Npass 43 80 9∑
i

∑
j f

iBjεj (10−7) 1.9 ± 0.3 3.6 ± 0.4 0.41 ±0.14

2 · σbb ·
∑

i

∑
j f

iBjεj (10−5 µ b) 1.9 ± 0.3 3.6 ± 0.4 0.41 ± 0.14

Table 34: Parameters used for cc background estimate.

PYTHIA σcc (µb) 198.4

cc → D∗µ cc → Dµ cc → Λcµ

Ngen 720741510 698988700 698988700

Npass 214 396 7

D− : B(D− → µX) = 14.22 (%) 117 205 4

D
0

: B(D
0 → µX) = 6.15 (%) 76 157 2

D−s : B(D−s → µX) = 13.32 (%) 19 34 1

Λ−c : B(Λ−c → µX) = 4.5 (%) 2 0 0∑
i

∑
j f

iBjεj (10−8) 3.3 ± 0.6 6.2 ± 1.0 0.12 ± 0.05

2 · σcc ·
∑

i

∑
j f

iBjεj (10−5 µ b) 1.3 ± 0.2 2.5 ± 0.4 0.047 ± 0.020

the PDG B(B
0 → D+π−).

Since we reconstruct both b and anti-b hadrons in the data, we should multiply the measured
cross-section by two. For the efficiencies, we use the MC to generate and decay B hadrons into our
signals as described in Section 5.1. The CDF σB+ measurement is restricted to the B+ with PT

greater than 6 GeV/c and rapidity (y) less than 1.0. Therefore, the denominator of the efficiency is
the number of events in which the B hadrons have PT > 6 GeV/c and |y| < 1.0. The numerator of
the efficiency is the number of events which pass the cuts in Table 32 except the cut on four track
invariant mass. Table 35 lists the parameters that are used to calculate σB0,Λb

· Bhadεhad.

Semileptonic signal Table 35 also lists the efficiency and branching ratio of the semileptonic signal
mode for a comparison with the background Nbb,cc. In the case of the Λb, we lack the external input for
the branching ratio of Λb → Λ+

c µ
−νµ. Therefore, instead of the exclusive mode, we list the branching

ratio of the inclusive mode: B → Λ+
c µ

−X from the 2004 PDG as an upper bound. We multiply the
ratio σΛb

σB0
(PT > 6.0) from Yu [1] with the Keaffaber σB+ result to get σΛb

for PT greater than 6.0
GeV/c. The efficiency of Λb → Λ+

c µ
−νµ is listed for a comparison with εbb,cc. Note that the amount

of bb and cc background relative to the signal is around 1%. The numbers from three different modes
should not be compared directly without multiplying the branching ratios of the charm decays.

6.3.3 Comparison of Data and MC Cross Section

While there are precise measurements of the single charm hadron, B+ and inclusive b hadron cross-
sections, there are no accurate measurements of the total bb and cc cross-section (σbb, σcc) at the

104



Table 35: Parameters used to calculate σB0,Λb
, Bhadεhad and Bsemiεsemi.

σB+ (µb) 3.6 ± 0.6

B → D∗+X B → D+X Λb → Λ+
c X

fx/fu 1.00 ± 0.04 1.00 ± 0.04 0.25 ± 0.04

σB0,Λb
(µb) 3.6 ± 0.6 3.6 ± 0.6 2.2 ± 0.5

B
0 → D∗+π− B

0 → D+π− Λb → Λ+
c π

−

σΛb
(PT >6.0)B(Λb→Λ+

c π−)

σB0 (PT >6.0)B(B
0→D+π−)

– – 0.82 ± 0.26

Bhad (%) 0.276 ± 0.021 0.276 ± 0.025 –

σ(Λb)B(Λb → Λ+
c π

−) (µb) – – 0.008 ± 0.003

Ngen 4242100 4242100 39999996

Npass 70147 130433 843693

εhad (10−2) 1.654 ± 0.006 3.075 ± 0.008 2.109 ± 0.002

2σB0,Λb
Bhadεhad (10−5 µb) 33 ± 6 61 ± 12 34 ± 13

B
0 → D∗+µ−νµ B

0 → D+µ−νµ Λb → Λ+
c µ

−νµ

Bsemi (%) 5.44 ± 0.23 2.14 ± 0.20 9.2 ± 2.1 (%)

Ngen 4242100 4242100 39999996

Npass 32620 66854 264484

εsemi (10−2) 0.769 ± 0.004 1.576 ± 0.006 0.661 ± 0.001

2σB0,Λb
Bsemiεsemi (10−5 µb) 300 ± 50 240 ± 50 270 ± 90

Tevatron, yet. To understand how well PYTHIA predicts σbb and σcc, we cross-check indirectly by
comparing the “differential cross-section” of D0, B+ and inclusive b hadrons in PYTHIA with CDF
Run I and II measurements by Chen [22], Keaffaber [21], and Bishai [23] et al.. We count the number
of D0, B+ or b hadrons from nbot90 and nbota0 in bins of PT (D0), PT (B+) and PT (J/ψ). The
bin width and the PT ranges are the same as Chen, Keaffaber and Bishai analyses. We divide the
number of hadrons in each PT bin by the total number of generated events. Then we multiply Pythia
assumed σbb and σcc (see Tables 33– 34) to get the cross section of hadrons in each PT bin. We
further divide the number by the bin width to obtain the “differential cross-section”. The agreements
between Monte Carlo and data cross-sections are generally within 10% for charm hadrons and 40%
for B hadrons (see Figure 65).

Besides the total cross-section of bb and cc, the ratio of gluon splitting relative to the other two
processes, flavor creation and flavor excitation, also affects the amount of bb and cc backgrounds.
Previous CDF Run I measurement of bb azimuthal production correlations by Lannon [24] concludes
that Pythia gives reasonable prediction of the relative bb production rates from the three processes.
However, due to the lack of measurements of the cc relative production rates, we do not yet have a
comparison of the fraction of cc gluon splitting between Monte Carlo and data. Therefore, we assign
100% uncertainty when calculating the systematic errors for the estimate of bb and cc backgrounds.
As the contribution of bb and cc background is at the 1% level, the systematic errors from 100%
uncertainty is also about 1%.
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Figure 65: D0 (top left), B+ (top right), and inclusive b (bottom) differential cross-sections. The
upper plot in each figure shows the differential cross-section for data (closed circles) by Chen [22],
Keaffaber [21], and Bishai [23] and MC (open squares). The lower plot in each figure shows the data
to MC ratio.
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Table 36: The amount of bb and cc background.

B → D∗+X B → D+X Λb → Λ+
c X

Nhad 106 ± 11 579 ± 30 179 ± 19
Nsemi 1059 ± 33 4721 ± 104 1237 ± 97
Nbb 6 ± 0.6 34 ± 2 2.1 ± 0.2
Ncc 4 ± 0.4 23 ± 1 0.2 ± 0.03

6.3.4 Comparison of Data and MC Impact Parameter

We compare the distribution of the impact parameter of charm hadrons with respect to the beam
spot in MC and data. The impact parameter, d0, is the distance from the closest approach of the
charm hadron trajectory to the beam spot when projected onto the r-φ plane. Figure 66 shows a
good agreement of the MC with the data. No excess of charm hadrons with small d0 is found in the
data. This indicates that the promptly produced charm from cc has negligible contribution to the
background in the semileptonic B decays, which is consistent with our estimate using PYTHIA.

6.4 Background Summary

The fraction of each type of background in our semileptonic signal is summarized below. The dominant
signal contamination is from the physics background. The second largest background arises from muon
fakes. The smallest background source is from bb and cc.

Table 37: Summary of the backgrounds of the semileptonic modes.

Fraction (%)
Background Type D∗µ Dµ Λcµ

Physics 15 40 9.8
Muon fakes 4.3 4.9 3.2
bb and cc 0.9 1.2 0.2

Total 20.2 46.1 13.8
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Figure 66: Impact parameters of the charm hadrons, from the top left to the bottom are D0, D+

and Λ+
c : MC and data comparison. The good agreement of the MC with the data indicates that

background from the promptly produced charm (cc) is negligible.
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7 Relative Branching Fraction Results and Systematics

We reconstruct hadronic and inclusive semileptonic signals in the data and fit the mass spectra to
obtain the yields, Nhad and Ninclusive semi, as described in Section 4. We estimate the backgrounds of
our semileptonic signals, Nphysics, Nfakeµ and Ncc, bb, in Section 6. The ratio of branching fractions is
the yield ratio with each mode corrected for acceptance and reconstruction efficiency.

Bsemi

Bhad
= (

Ninclusive semi −Nphysics −Nfakeµ −Ncc, bb

Nhad
)× εhad

εsemi
, (65)

where B stands for the branching ratio, ε is the efficiency from the MC as described in Section 5.3.
With every component on the right hand side of Equation 65 in hand, we are ready to calculate the
relative branching fractions. The relative branching fractions with the statistical uncertainties only
are:

B(B
0 → D∗+µ−νµ)

B(B
0 → D∗+π−)

= 17.7 ± 2.3,

B(B
0 → D+µ−νµ)

B(B
0 → D+π−)

= 9.8 ± 1.0,

B(Λb → Λ+
c µ

−νµ)
B(Λb → Λ+

c π−)
= 20.0 ± 3.0.

In this section, we first discuss and estimate the systematic uncertainties. Then, we show the result of
the relative branching fractions for each mode. Finally, a conclusion is given at the end of the section.

7.1 Systematic Uncertainties

7.2 Sources of Systematics

Systematic uncertainties in our measurements may arise from the difference in the semileptonic and
hadronic decays, from the lack of knowledge of certain backgrounds, and from the uncertainties on
the external information. Most of the sources are common to all the decay modes. Systematic
uncertainties which affect only one mode are discussed separately. To simplify the notation, we define
our measurement of the relative branching fractions as R:

R ≡ Bsemi

Bhad
,

and σR is the systematic uncertainty. We also denote the term, “branching ratio” in the text, as BR,
while the branching ratio of one specific mode is denoted as B(mode), eg: B(B

0 → D+π−).

Mass Fitting

• B → D∗+µ−X and B → Λ+
c µ

−X: The mass functions are general and cover all the possible
backgrounds. Because the functions do not involve any external BR or MC efficiencies, we do
not assign systematic uncertainty for the mass fitting of these two modes.

• B → D+µ−X: The uncertainties on the Ds decay BR can modify the misreconstructed Ds mass
spectrum in B → D+µ−X. In addition, the mean of the Gaussian constraint for the amount of
Ds background in Equation 16, µp, also changes accordingly. We study this effect by varying the
following numbers in Table 5 ± 1 σ independently: the BR of D+

s → φπ+, and the BR of each
selected Ds decay relative to B(D+

s → φπ+), because these Ds BR were measured relative to
the φπ mode [25]. The corresponding Ds background shape and the µp are re-evaluated for each

109



change of Ds BR. The changes in the yield are added in quadrature to get the accumulative
variation. Table 38 summarizes the yield variations. Modes which are not listed give identical
results to the central value. We find total ∆(NB→D+µ−X) = 33 events and σR = 0.13. Note
that a few Ds decays in Table 5 only have an upper limit in the PDG and the estimated values
in the EvtGen decay table are used. We assign 100% uncertainty for these modes.

Table 38: B → D+µ−X yield change due to the variation of Ds BR.

∆(NB→D+µ−X)
D+

s → K+K−π+± 23
D+

s → φK+ ± 2
D+

s → ηπ+ ± 2
D+

s → η′π+ ± 3
D+

s → ωπ+ ± 1
D+

s → ρ0K+ ± 1
D+

s → f2π
+ ± 1

D+
s → ρ+η ± 3

D+
s → ρ+η′ ± 2

D+
s → K0K+ ± 2

D+
s → K∗0K+ ± 22

D+
s → K

∗0
π+ ± 2

Total ± 33

• B
0 → D∗+π−: the composition of the remaining B → D∗+X background can affect the shape

of its mass spectrum, and its ratio to the D∗ρ background. The latter changes the mean of
the Gaussian constraint, µ2, in Equation 24. We study the systematics by varying the BR of
B

0 → D∗+ρ− and the dominant modes in the remaining B → D∗+X background. The change
of signal yield from each variation of BR is listed in Table 39. The accumulative yield change is
only +0.1

−0.2 events, which is insignificant. Therefore, we do not assign systematic uncertainty for
the mass fitting of this decay mode.

• B
0 → D+π−: the systematic uncertainties come from three sources: the normalizations of

Table 39: B
0 → D∗+π− yield change due to the variation of the background BR.

Mode BR (%) ∆N

B
0 → D∗+e−νe 5.44 ± 0.23 < 0.1

B
0 → D∗+µ−νµ 5.44 ± 0.23 < 0.1

B
0 → D∗+π−π0 0.7 ± ? < 0.1

B
0 → D∗+a−1 1.30 ± 0.27 < 0.1

B
0 → D∗+ρ− 0.68 ± 0.09 +0.1

−0.2

Total +0.1
−0.2
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the Cabibbo suppressed decay, Bs and Λb backgrounds, the uncertainties of the background
function fit to the MC, and the BR of the backgrounds. We study the effect of the first two
sources in the following way: We vary each constant parameter including the normalizations
and the shape parameters in Table 14 ± 1 σ, independently. The changes of yield (∆N) are
listed in Table 40. The normalizations of the backgrounds from the Cabibbo suppressed decay,
Bs and Λb decays are independent from the shape parameters. But, several shape parameters
for the same background are correlated, as shown in Tables 43–45. In order to take into account
the correlation properly, the correlated shape parameters are grouped together. We calculate
the product of the correlation coefficient matrix (M), with the row and column vectors of ∆N,
to obtain a total systematic uncertainty. For instance, the systematic uncertainty from the Bs

background shape parameters is:

σ2
N =

(
∆Nµ ∆Nσ1 ∆Nf1 ∆Nσ2

σ1

)
M


∆Nµ

∆Nσ1

∆Nf1

∆Nσ2
σ1

 , (66)

where M is a 4 × 4 correlation coefficient matrix returned from the fit to the Bs MC (see
Table 43). The value of ∆N for each parameter is listed in Table 40.

For the systematics associated with the BR, we vary the BR of B
0 → D∗+π−, B

0 → D+ρ− and
the dominant modes in the remaining B → D+X backgrounds, ± 1 σ independently. We re-fit
the background shapes using the MC, fix the shape parameters and re-fit the data. Table 41
lists the signal yield change due to the variation of the BR. Table 42 summarizes the signal
yield change from the variation of the shape parameters and the BR. These changes are added
in quadrature to get the accumulative difference. The total change in the yield is 13 events,
which modifies R by 0.38.

• Λb → Λ+
c π

−: we follow the same scheme applied by Martin [26]. Using a generic B-decay
MC, we first extract the top twenty largest contributing modes in the mass region 5.3 < MΛcπ

< 6.0 GeV/c2, from each type of background: four-prong B meson, the remaining B meson
decays, and the remaining Λb decays. Each dominant decay contributes N i

base events. Then, we
generate a new distribution for each dominant mode, according to the shape determined from
a large single-decay MC. The normalization of the new distribution is first Gaussian fluctuated
with a mean N i

base, a sigma of ∆(BR)/(BR) and then Poisson fluctuated. For the measured
decays, ∆(BR) is the uncertainty reported in the PDG. For the unmeasured B meson decays,
∆(BR) is assumed to be three times the uncertainty of the closest equivalent mode in the
measured B meson decays. For the unmeasured Λb decays, ∆(BR) is hypothesized to be +100

−50 %
of the BR. These Gaussian and Poisson fluctuated distributions are then re-combined with the
other non-dominant modes. The combined background mass spectrum is refitted and the newly
derived shape parameters are fixed in the fit to the data. The whole procedure is repeated
1000 times with different random seeds for the Gaussian and Poisson fluctuations. We plot the
distribution of the Λb → Λ+

c π
− yield and record the RMS as the change in the yield due to the

variation of the BR. Figure 67 shows an example of the Λb → Λ+
c π

− yield distribution from the
BR variation of the four-prong B meson background. In addition, we vary the fraction of the
Cabibbo suppressed mode, fΛcK , +100

−50 % and record the yield change. Table 46 summarizes the
change of Λb → Λ+

c π
− yield. The accumulative σR is 0.63.

Measured Branching Fractions

We use the BR from the world average in the PDG to estimate the physics backgrounds in our semilep-
tonic signals as described in Section 6.1. We vary the BR of these measured physics backgrounds by
± 1 σ. We then calculate σR. Note that here the variation of the B(Λb → Λ+

c π
−) does not include
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Table 40: B
0 → D+π− yield change due to an independent variation of the fixed parameter value.

Parameter ∆N
fDK N

B
0→D+K−/NB

0→D+π−
± 4.97

∆MDK mass shift of B
0 → D+K− ± 3.82

σDK width of B
0 → D+K− ± 0.82

fBs
NBs→D+

s π−/NB
0→D+π−

± 0.51
µBs

mean of Bs background ± 0.02
f1 fraction of the narrow Bs Gaussian ± 0.00
σ1 width of the narrow Bs Gaussian ± 0.10
σ2/σ1 width ratio of the Bs Gaussians ± 0.04
fΛb

NΛb→Λ+
c π−/NB

0→D+π−
± 0.22

µΛb
mean of Λb ± 0.22

σΛb
width of Λb background ± 0.02

τΛb
lifetime of Λb background ± 0.21

τref lifetime of Dρ background ± 2.62
σref width of Dρ background ± 0.27
fH fraction of D∗π horns ± 6.38
δref distance between two horns ± 1.04
σH width of the horns ± 2.70
fotherB fraction of the remaining B → D+X ± 1.90
Moff cut off for B → D+X mass ± 1.02

112



Table 41: B
0 → D+π− yield change due to the variation of the background BR.

Mode BR (%) ∆N

B
0 → D+ρ− 0.77 ± 0.13 +0.5

−3.4

B
0 → D∗+π− 0.276± 0.021 +2.2

−1.3

B
0 → D+e−νe 2.14 ± 0.20 +0.6

−0.2

B
0 → D+µ−νµ 2.14 ± 0.20 +1.0

−0.4

B
0 → D∗+e−νe 5.44 ± 0.23 +0.1

−0.2

B
0 → D∗+µ−νµ 5.44 ± 0.23 ± 0.2

B
0 → D+π−π0 0.1 ± ? ± 0.5

B
0 → D∗+π−π0 0.7 ± ? ± 1.0

B
0 → D+a−1 0.60 ± 0.33 ± 3.0

B
0 → D∗+a−1 1.30 ± 0.27 ± 0.1

B
0 → D∗+ρ− 0.68 ± 0.09 ± 0.6

Total ± 4.5

Table 42: Systematic uncertainty on the B
0 → D+π− yield from each independent parameter group.

∆N
fDK ± 5.0
DK shape ± 3.9
fBs

± 0.5
Bs shape ± 0.1
fΛb

± 0.2
Λb shape ± 0.4
Dρ+D∗π shape± 9.9
fotherB ± 1.9
Moff ± 1.0
BR ± 4.5
Total ± 12.8
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Table 43: Correlation coefficients returned from the fit to Bs MC.

N µBs
σ1 f1 σ2/σ1

N 1.000
µBs

0.024 1.000
σ1 -0.003 -0.084 1.000
f1 0.007 -0.004 0.847 1.000
σ2/σ1 0.023 0.133 0.268 0.647 1.000

Table 44: Correlation coefficients returned from the fit to Λb MC.

N µΛb
σΛb

τΛb

N 1.000
µΛb

0.000 1.000
σΛb

0.000 -0.624 1.000
τΛb

0.000 0.699 -0.508 1.000

Table 45: Correlation coefficients returned from the fit to D∗π and Dρ MC.

N τref µref σref fH δref σH νref

N 1.000
τref 0.000 1.000
µref 0.000 0.013 1.000
σref 0.000 0.169 -0.841 1.000
fH 0.000 0.549 -0.688 0.720 1.000
δref 0.000 0.294 0.284 -0.429 -0.435 1.000
σH 0.000 0.407 -0.507 0.507 0.699 -0.381 1.000
νref 0.000 0.029 0.971 -0.786 -0.624 0.261 -0.455 1.000

Table 46: Λb → Λ+
c π

− yield change due to the variation of the background BR.

∆N
Λb → Λ+

c K
− +1.1

−2.8

four-prong B meson decays ± 2.9
remaining B meson decays ± 0.9
all the other Λb decays ± 2.8
Total +4.3

−5.0
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Figure 67: Λb → Λ+
c π

− yield from 1000 variations of the 4-prong B meson background BR. The RMS
is recorded as the yield change.

the uncertainty due to the measured Λb PT spectrum. The σR due to the measured BR is 0.43, 0.75
and +0.73

−2.07 for B
0 → D∗+, B

0 → D+ and Λb → Λ+
c modes, respectively. For the remainder of this

section, we quote the systematic uncertainties in the same order.

Unmeasured Branching Fractions

The BR of several physics backgrounds in Section 6.1 have not yet been measured, e.g.: Λb →
Λ+

c f
0µ−νµ, or have just been measured by us for this analysis, e.g.:Λb → Λc(2593)+µ−νµ. For the

first case, we use the estimated BR from the decay file of EvtGen, and our own derivation based on
HQET. As we have no uncertainty input from the estimated BR, we assign a 5% uncertainty to the
BR of the excited charm meson decays and a 100% uncertainty to the BR of the B hadron decays.
Because the excited charm hadrons decay via strong interaction and conserve isospin symmetry, their
BR could be inferred from Clebsch-Gordan Coefficients. While for the weak decays of B hadrons,
allowable decay spectrum is wider. For the second case, we add (20⊕ 20)% uncertainty in quadrature
with the uncertainty from the preliminary measurement (see Table 26). The first 20% arises from the
unresolved disagreement of measured τΛb

with that from the HQET prediction. The second 20% is
due to the difference of the soft pion reconstruction efficiency between MC and data. We vary the
BR by the uncertainties we assigned and calculate the shift of our measurement. The shift due to the
unmeasured BR is 1.09, 0.91 and 0.50.

Fake µ estimate

As noted in Section 6.2.1, the systematic uncertainties from the fake µ estimate originate from:

1. The uncertainty from the fit to the charm mass spectra.
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Table 47: Summary of fake muon contamination.

B → D∗+µfake B → D+µfake B → Λ+
c µfake

45 ± 3 230 ± 19 40 ± 9

2. The uncertainty on the probabilities for the pions, kaons and protons to fake muons.

3. The uncertainty on the fraction of pion, kaon and proton in the hadron tracks.

For each category, we vary the central value ± 1 σ, independently. More detailed description can
be found in Section 6.2.1. The resulting uncertainty on the amount of fake muons together with the
central value are summarized in Table 47. We then vary the number of fake muons ± 1 σ and insert
the new number into Equation 65. The total variation on R due to the fake µ estimate is 0.07, 0.07,
0.17.

bb and cc background

In Section 6.3, we notice a 10–40% discrepancy of the D0, B+, and inclusive b cross-section from
PYTHIA with those from the data. In addition, we do not possess information about the relative bb
and cc production rates between flavor creation, flavor excitation, and gluon splitting. Therefore, we
assign a 100% uncertainty to the amount of bb and cc backgrounds. This changes R by 0.22, 0.22,
0.04.

MC sample size

We have generated large MC samples for calculating the efficiencies of our signals and backgrounds,
but there is a small statistical uncertainty due to the finite MC sample size. We use the uncertainties
on the efficiencies to calculate σR. σR is 0.28, 0.18, and 0.32.

MC PT (B) Spectrum

We find discrepancies between data and MC in the PT spectrum of B0 and Λb, as described in
Section 5.1. After reweighting the PT spectrum of B0 and Λb, we have observed good agreement of
MC with the data as seen in Section 5.2. However, there is an uncertainty on the exponential slope of
data/MC, p1 in Figure 36, which is limited by the amount of data used for comparison with the MC.
We vary p1 ± 1 σ and re-weight the MC events after the analysis cuts numerically to calculate the
efficiency change. In addition, we vary the variables which depend on the Λb PT spectrum accordingly,
eg: cross-section correction factors and the result of σΛb

(PT >6.0)B(Λb→Λ+
c π−)

σB0 (PT >6.0)B(B
0→D+π−)

by Le, et al. [4]. The

total variation on R due to the MC PT spectrum of B hadrons is 0.38, 0.32, and +0.28
−0.50 .

Pion Interaction with the Material

One difference between our semileptonic and hadronic final states is the muon and the pion. The
muon does not interact with the material via the hadronic (strong) interaction while the pion does.
In order to model the track reconstruction efficiency correctly, two things have to be right:

1. The type and the amount of material in the detector.

2. The model that describes the hadronic interaction cross-section, the final state multiplicities and
kinematics.
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We generate MC for the signals as described in Section 5.1 except that we switch off the hadronic
interaction in the detector simulation. We compare the difference in the hadronic to semileptonic
signal efficiency ratio, between the normal MC and the MC with the hadronic interaction off. This
difference gives us an idea for the extreme situation, when the material is 100% wrong. For both the
B0 and Λb modes, the efficiency ratio changes by 4%. From the study of Korn [27], we know that
the available CDF detector simulation underestimate the amount of material by 15%. In addition, a
comparison between two programs which model the hadronic interactions, GHEISHA and FLUKA [28],
has been done by Michael [29]. The FLUKA package is known to better reproduce the experimental
data but currently it is not available in the CDF detector simulation. The effect of the hadronic
interaction model estimated by Michael is 20%. Adding 15% and 20% in quadrature, we get 25%.
We multiply the 100% efficiency ratio difference described earlier, with 0.25, and get 1%. We apply a
scaling factor, 1.01, to all the relative efficiencies, including the semileptonic background to hadronic
efficiency ratios. We then re-calculate R and find σR is 0.22, 0.17 and 0.22.

CMU reconstruction efficiency scaling factor

The scaling factor to correct the difference of CMU muon reconstruction efficiency between MC and
data has an uncertainty as described in Section 5.3. We vary the scaling factor ± 1 σ and calculate
σR= 0.07, 0.05, and 0.07.

XFT efficiency scaling factor

We apply the XFT efficiency scaling factors data/MC in bins of inverse PT from Herndon [11] to
correct the signal and background efficiencies. The uncertainty on the kaon and pion scaling factors
are varied ± 1 σ to evaluate σR. For the proton scaling factor, due to the limited statistics, we
evaluate the systematic uncertainty following the suggestion in Herndon’s analysis: we compare the
difference by applying a constant efficiency scaling factor as shown in Figure 68, instead of the one
based on the third order polynomial in Figure 57. For all the three modes, the systematic uncertainties
are negligible as expected, since the final states of our semileptonic and hadronic modes are almost
identical and the difference in the ionization of the pion and muon is insignificant. σR is less than
0.01.

Λb and Λc polarizations

There is not yet a precise measurement of the production polarizations of Λb and Λc, while the
Standard Model predicts both particles are produced polarized. The angular distribution of of the Λb

daughters is parameterized by
dN

d cos Θ
∝ 1 + PB cos Θ, (67)

where PB is the product of the Λb polarization and the asymmetry parameter of the weak decay. Θ
is defined as the angle between the Λ+

c momentum in the Λb rest frame and the axis normal to the
beam proton-Λb production plane, n̂. Therefore,

cos Θ = P̂(Λc) · n̂, (68)

where

n̂ ≡ P̂(p)× P̂(Λb)
|P̂(p)× P̂(Λb)|

, (69)

Here “×” (“·”) means vector (scalar) product of two vectors. See Figure 69 for the definition of Θ
and n̂. The angular distribution of Λc daughters is parameterized in a similar way;

dN

d cos θ
∝ 1 + PC cos θ, (70)
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Figure 68: The relative proton XFT efficiency between MC and data in bins of 1/PT fit to a constant
by Herndon [11].
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Figure 69: Angle definition for the Λb production polarization, where the dashed line indicates the
momentum of Λc in the rest frame of Λb, and n̂ is the polarization axis normal to the beam proton-Λb

production plane.
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Table 48: ε(Λb → Λ+
c π

−)/ε(Λb → Λ+
c µ

−νµ) from each combination of PB and PC .

PB PC ε(Λb→Λ+
c π−)

ε(Λb→Λ+
c µ−νµ)

Scaling factor

0 0 3.225± 0.010 1
0 -1 3.193± 0.007 0.990 ± 0.004
0 1 3.281± 0.006 1.017 ± 0.004
1 0 3.232± 0.006 1.002 ± 0.004
1 -1 3.193± 0.009 0.990 ± 0.004
1 1 3.275± 0.009 1.016 ± 0.004

-1 0 3.235± 0.006 1.003 ± 0.004
-1 1 3.274± 0.009 1.015 ± 0.004
-1 -1 3.175± 0.011 0.985 ± 0.005

where θ is defined as the angle between the proton momentum in the rest frame of Λc and the Λc

momentum in the lab frame, i.e.
cos Θ = P̂(Λc) · p̂, (71)

Note that here P̂(Λc) is in a different frame from that in Equation 68. The value of PB (PC) is ± 1
for the polarized state and 0 for the unpolarized state.

The Bgenerator and EvtGen do not include the polarization of Λb and Λc. We use the default
settings for the central value of R. We study the systematics due to a non-null polarization using
the generator-level signal MC without the detector and trigger simulation. We use the “acceptance-
rejection (Von Neumann)” method [8] and reweight the MC according to:

(1 + PB cos Θ) · (1 + PC cos θ),

where all combinations of PB and PC for values at -1, 0, 1 are used. Each MC starts from a different
random seed. We apply generator-level analysis-like cuts and obtain the efficiency ratio for each
combination. We compare these efficiency ratios with that from the MC generated with zero PB
and PC . We find the efficiency ratios are mainly determined by the PC as seen in Table 48, i.e. the
efficiency ratios with the same PC , but different PB are consistent with each other. Therefore, we
apply scaling factors from the two PC values: -1 and 1 (± 1.017%) on all the relative efficiencies and
re-calculate R. We find σR = 0.37.

Λc Dalitz structure

The Λc from our Λb → Λ+
c π

− and B → Λ+
c µ

−X signal, decays into p, K, and π in the final state.
However, any two Λc daughters could form an intermediate resonant state, see Table 49. The resonant
structure is called the “Dalitz” structure in the literature, and is usually displayed with a Dalitz
plot [30], where the invariant mass square of one pair of daughters is plotted versus another pair in
the two-dimension. Figure 70 (left) shows the Dalitz plot from the B → Λ+

c µ
−X data after sideband

subtraction. If a resonance exists, a concentrated area near the mass of the resonant particle will be
visible. The momenta of p, K and π are affected by the Dalitz structure and Λb decays have different
efficiencies for various structures. However, EvtGen does not take into account the interference of each
resonant state. Each state is considered as an independent decay with a BR measured by E791 [31]
and listed in Table 49. See Figure 70 (right) for the Λc Dalitz structure in the MC.

Without a better model to describe the Λc Dalitz structure, we study the change in the efficiency
ratio of Λb → Λ+

c π
− to Λb → Λ+

c µ
−νµ by varying the BR in Table 49 ± 1σ. We generate four sets
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Table 49: Λc decays with p, K, π in the final state.

Decay Mode BR(%) ε(Λb→Λ+
c π−)

ε(Λb→Λ+
c µ−νµ)

Rj

pK∗(890)0 1.6 ± 0.5 3.17± 0.01 3.22
∆(1232)++K− 0.86± 0.30 3.24± 0.01 3.23
Λ(1520)π+ 0.59± 0.21 3.30± 0.01 3.23
non-resonant 2.8 ± 0.8 3.24± 0.01 3.23
Rc 3.23 ± 0.01

of Λb → Λ+
c π

− and Λb → Λ+
c µ

−νµ MC samples without detector and trigger simulation, where Λc

decay is forced to one single mode. The efficiency of Λb decay with Λ+
c → pK−π+(total), is then the

sum of the BR weighted efficiency of each individual Λc mode.

Ec =
∑4

i BRi · εi∑4
i BRi

, (72)

Rc =
Ec(Λb → Λ+

c π
−)

Ec(Λb → Λ+
c µ−νµ)

, (73)

where Ec (Rc) is the total weighted efficiency (ratio) using the central value of each Λc BR. We
re-calculate the absolute and relative efficiency, by varying BR of each Λc decay ± 1 σ;

Ej =
∑3

i BRi · εi + (BRj + σj) · εj∑4
i BRi + σj

, (74)

Rj =
Ej(Λb → Λ+

c π
−)

Ej(Λb → Λ+
c µ−νµ)

, (75)

where Ej (Rj) is the total weighted efficiency (ratio) with BR of jth mode varied by ± 1 σ and other
BR fixed.

We find a fractional change of 0.3% after adding the difference of each Rj from Rc in quadrature.
We apply this fractional change to the relative efficiencies of all the semileptonic backgrounds to the
hadronic signal and calculate σR= 0.07.

Λb Lifetime

The world average Λb lifetime is lower than the theoretical prediction. A smaller Λb lifetime gives a
smaller efficiency for reconstructing Λb decays. While we cut on the cτ of Λb → Λ+

c π
−, the Λb →

Λ+
c µ

−νµ is not fully reconstructed and we actually cut on the pseudo-cτ of the inclusive semileptonic
decays. Therefore, systematics due to the uncertainty on the Λb lifetime may not cancel in our
measurement. We study this effect by generating Λb → Λ+

c µ
−νµ and Λb → Λ+

c π
− MC without

detector and trigger simulation. We vary the lifetime of Λb ± 15% around the central value: 1.229
ps. We compare the difference of the relative efficiency ratio from the central value. We then apply a
scaling factor from the signals, on the efficiency ratios of the semileptonic backgrounds to the hadronic
mode, and calculate σR=0.22.

Semileptonic Λb decay model

In Section 5.3, we introduce a scaling factor, fc, which accommodates the acceptance difference
between the flat phase space MC and the form factor weighted MC. We vary the fc ± 1 σ according
to its statistical uncertainty and obtain σR = ±0.57.
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Figure 70: Λc Dalitz structure in the sideband subtracted B → Λ+
c µ

−X data (left) and MC (right).
The concentrated areas in the top figure indicate the existence of K∗(892)0 and Λ(1520). Clearly, the
destructive interference between the resonant states are not simulated in the MC.

7.3 Systematic Uncertainty for Each Mode

Tables 50–52 list the result of systematic uncertainties as discussed above. The systematics from the
external information are separated from the ones from the CDF MC and measurements. Table 53 sum-
marizes the uncertainties from each category. The statistical uncertainties on the relative branching
fractions are also listed for comparison.

7.4 Consistency Check of R

In order to detect any unexpected systematics in R, we separate the data and MC into several groups
of independent subsets according to the run number, vertex position, cτ and PT of the charm and B
hadrons, and etc. We cross-check the consistency of the R within each group. Figure 71 displays the
result of the cross-check, where the uncertainties in the figure are statistical only. The R from all the
subsets are consistent with the other subsets in the same group.

7.5 Measurement Result

For the control modes, we measure the relative branching fractions to be:

B(B
0 → D∗+µ−νµ)

B(B
0 → D∗+π−)

= 17.7 ± 2.3 (stat)± 0.6 (syst)± 0.4 (BR)± 1.1 (UBR),

which is consistent with the ratio obtained by the PDG, 19.7± 1.7, at the 0.7 σ level. And

B(B
0 → D+µ−νµ)

B(B
0 → D+π−)

= 9.8 ± 1.0 (stat)± 0.6 (syst)± 0.8 (BR)± 0.9 (UBR),

which is consistent with the PDG ratio, 7.8± 1.0, at the 1.1 σ level. Finally, we measure the relative
Λb branching fraction to be:

B(Λb → Λ+
c µ

−νµ)
B(Λb → Λ+

c π−)
= 20.0 ± 3.0 (stat)± 1.2 (syst)

+0.7
−2.1

(BR)± 0.5 (UBR).
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Table 50: Statistical and systematic uncertainties of B(B
0→D∗+µ−νµ)

B(B
0→D∗+π−)

.

Source σR

Statistical ± 2.3

Measured BR
B

0 → D∗+π− ± 0.29
B− → D0

1µ
−νµ ± 0.31

τ → µνµντ < 0.01
± 0.43

Unmeasured BR
D0

1 → D∗+π− ± 0.05
D′01 → D∗+π− ± 0.04
D+

1 → D∗+π0 ± 0.03
D′+1 → D∗+π0 ± 0.02
B− → D′01 µ

−νµ ± 0.70
B− → D∗+π−µ−νµ ± 0.39
B

0 → D∗+τ−ντ ± 0.31
B

0 → D+
1 µ

−νµ ± 0.53
B

0 → D′+1 µ−νµ ± 0.34
B

0 → D∗+π0µ−νµ ± 0.19
± 1.09

CDF Internal Systematics

Fitting of B
0 → D∗+π− < 0.01

Fake µ estimate ± 0.07
bb and cc background ± 0.22
MC sample size ± 0.28
MC PT (B0) ± 0.38
π interaction with the material ± 0.22
CMU reconstruction efficiency scaling factor ± 0.07
XFT efficiency scaling factor < 0.01

± 0.58
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Table 51: Statistical and systematic uncertainties of B(B
0→D+µ−νµ)

B(B
0→D+π−)

.

Source σR

Statistical ± 1.0

Measured BR
B

0 → D+π− ± 0.70
B

0 → D∗+µ−νµ ± 0.22
B− → D0

1µ
−νµ ± 0.08

D∗+ → D+π0 ± 0.11
τ → µνµντ < 0.01
fs/fd ± 0.01

± 0.75

Unmeasured BR
D0

1 → D∗+π− ± 0.01
D′01 → D∗+π− ± 0.01
B− → D′01 µ

−νµ ± 0.17
B− → D+π−µ−νµ ± 0.79
B

0 → D+π0µ−νµ ± 0.39
B

0 → D+τ−ντ ± 0.10
Bs → D+K0µ−νµ ± 0.09

± 0.91

CDF Internal Systematics

Fitting of B
0 → D+π− ± 0.38

Fitting of B
0 → D+µ−νµ ± 0.13

Fake µ estimate ± 0.07
bb and cc background ± 0.22
MC sample size ± 0.18
MC PT (B0) ± 0.32
π interaction with the material ± 0.17
CMU reconstruction efficiency scaling factor ± 0.05
XFT efficiency scaling factor < 0.01

± 0.62
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Table 52: Statistical and systematic uncertainties of B(Λb→Λ+
c µ−νµ)

B(Λb→Λ+
c π−)

.

Source σR

Statistical ± 3.0

Measured BR
Λb → Λ+

c π
− +0.73

−2.07

τ → µνµντ < 0.01
Total +0.73

−2.07

Unmeasured BR
Λb → Λc(2593)+µ−νµ ± 0.21
Λb → Λc(2625)+µ−νµ ± 0.27
Λb → Σ0

cπ
+µ−νµ, Λb → Σ+

c π
0µ−νµ, Λb → Σ++

c π−µ−νµ ± 0.24
Λb → Λ+

c f
0µ−νµ ± 0.05

Λb → Λ+
c π

0π0µ−νµ, Λb → Λ+
c π

+π−µ−νµ ± 0.20
Λb → Λ+

c τ
−ντ ± 0.10

B− → Λ+
c pµ

−νµ ± 0.11
B

0 → Λ+
c nµ

−νµ ± 0.11
Total ± 0.50

CDF Internal Systematics
Fitting of Λb → Λ+

c π
− ± 0.63

Fake µ estimate ± 0.17
bb and cc background ± 0.04
MC sample size ± 0.32
MC PT (Λb) +0.28

−0.50

π interaction with the material ± 0.22
CMU reconstruction efficiency scaling factor ± 0.07
XFT efficiency scaling factor < 0.01
Λb and Λc polarizations ± 0.37
Λ+

c Dalitz structure ± 0.07
Λb lifetime ± 0.22
Semileptonic Λb decay model ± 0.57

+1.09
−1.16
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Table 53: Summary of statistical and systematic uncertainties.

σR

R (%)

Source B(B
0→D∗+µ−νµ)

B(B
0→D∗+π−)

B(B
0→D+µ−νµ)

B(B
0→D+π−)

B(Λb→Λ+
c µ−νµ)

B(Λb→Λ+
c π−)

Measured BR (%) 2.4 7.7 +3.5
−10.5

Unmeasured BR (%) 6.2 9.3 2.5
CDF internal (%) 3.3 6.4 6.0
Statistical (%) 13.1 10.2 15
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Figure 71: Consistency check of B(B
0 → D∗+µ−νµ)/B(B

0 → D∗+π−) (top left), B(B
0 →

D+µ−νµ)/B(B
0 → D+π−) (top right) and B(Λb → Λ+

c µ
−νµ)/B(Λb → Λ+

c π
−) (bottom). The uncer-

tainty on each point is statistical only. Each independent group is separated by a vertical dashed line.
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The first uncertainty of the relative branching fraction is due to the statistics of the data, the second is
the systematic uncertainty due to the MC and CDF internal measurements used in this analysis, the
third is due to the uncertainty of the world averaged branching ratios and production fractions, the
last uncertainty is due to the estimate of the unmeasured branching ratios. If we use the branching
ratio prediction by Leibovich [32] for the Λb → Λc(2593)+µ−νµ and Λb → Λc(2625)+µ−νµ decays, the
central value of the relative branching ratio drops to 17.7; the uncertainties from the measured and
unmeasured branching fractions increase to +1.5

−4.1 and ±3.0, respectively. If we use the prediction from
Huang [33], the central value goes up to 20.4; the uncertainties from the measured and unmeasured
branching fractions change to +0.6

−1.7 and ±0.8, respectively. Our result above and the numbers using the
theoretical predictions are consistent within the uncertainty from the unmeasured branching fractions.

8 Estimate of the B(Λb → Λ+
c µ−νµ)

We have just presented the first measurement of the ratio of Λb exclusive semileptonic to hadronic
branching fractions. The ratio provides important input for the absolute branching fraction of Λb →
Λ+

c µ
−νµ or Λb → Λ+

c π
−. Leibovich et al. [34] predict B(Λb → Λ+

c π
−) = 0.45% and B(Λb → Λ+

c µ
−νµ)

= 6.6%, which gives a relative branching fraction of 14.7. However, the largest theoretical uncertainty
from the functional form of the Isgur-Wise function is 30%, due to the assumption of the large Nc

limit. Our measurement of the ratio has a 19% uncertainty and may stimulate additional theoretical
work. Multiplying our Λb relative branching fraction, with our derivation of B(Λb → Λ+

c π
−) from the

CDF measurement of σΛb
(PT >6.0)B(Λb→Λ+

c π−)

σB0 (PT >6.0)B(B
0→D+π−)

[4] in Yu [1]:

B(Λb → Λ+
c π

−) =
(

0.41± 0.19 (stat⊕ syst)
+0.06
−0.08

(PT )
)

%,

we obtain

B(Λb → Λ+
c µ

−νµ) =
(

8.1 ± 1.2 (stat)
+1.1
−1.6

(syst)± 4.3 (B(Λb → Λ+
c π

−))
)

%.

which is also consistent with a recent DELPHI result derived from the Λb → Λ+
c µ

−νµ form factor
measurement [35],

B(Λb → Λ+
c µ

−νµ)DELPHI =
(

5.0
+1.1
−0.9

(stat)
+1.6
−1.2

(syst)
)

%

Combining our and DELPHI’s numbers, we obtain (5.5± 1.8(stat⊕ syst))%. Our relative branching
ratios and the derived B(Λb → Λ+

c π
−), B(Λb → Λ+

c µ
−νµ) are all in agreement with the predictions by

Leibovich et al., within large uncertainties. Note that the dominant uncertainties of B(Λb → Λ+
c π

−)
arise from σΛb

σB0
and B(Λ+

c → pK−π+). New CDF-II measurements of σΛb

σB0
are anticipated with reduced

uncertainties. A better measurement of B(Λ+
c → pK−π+) has been proposed by Dunietz [36] and

Migliozzi [37]. Improvements in the B(Λb → Λ+
c π

−) will reduce the uncertainties in our determination
of the exclusive semileptonic branching ratio.

9 Conclusion

We analyze 171.5 pb−1 of data collected with the CDF-II detector in the pp collisions at
√
s = 1.96 TeV.

Using a novel secondary vertex track trigger, we reconstruct 1237 ± 97 B → Λ+
c µ

−X decays and
179 ± 19 Λb → Λ+

c π
− decays. This is the largest Λb sample in the world, which enables us to

measure the relative Λb branching fractions and examine Heavy Quark Effective Theory. We have
also observed several Λb semileptonic decays which have never been seen in the other experiments:
Λb → Λc(2593)+µ−X, Λb → Λc(2625)+µ−X, Λb → Σ0

cπ
+µ−X, and Λb → Σ++

c π−µ−X. In addition,
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we reconstruct the B
0 → D∗+ and B

0 → D+ decays similar to our Λb decays and use them as the
control samples to understand the issues associated with the Λb measurement. After the estimate and
the subtraction of the background in the inclusive semileptonic signal, we correct the yield observed
in the data with the trigger and reconstruction efficiencies obtained from the Monte Carlo. We find
the relative branching fraction of the control modes in good agreement with the values obtained by
the PDG. We measure the ratio of Λb branching fraction to be:

B(Λb → Λ+
c µ

−νµ)
B(Λb → Λ+

c π−)
= 20.0± 3.0(stat)± 1.2(syst)

+0.7
−2.1

(BR)± 0.5(UBR).

The uncertainty is dominated by the size of the data sample and the branching ratio of Λb → Λ+
c π

−.
More data and a more precise measurement of B(Λb → Λ+

c π
−) in the future will immediately improve

our relative branching fraction measurement and our determination of B(Λb → Λ+
c µ

−νµ).
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Figure 72: Ratio of ∆φ between two trigger tracks of the semileptonic relative to the hadronic decays,
from the B

0 → D∗+ (top left), B
0 → D+ (top right), and Λb → Λ+

c (bottom) modes. The ratio is
compared to unity and a χ2 probability is calculated.

A Questions and Answers for the Blessing

In these sections, we list the questions raised by the colleagues in the B group and the answers to
them.

Q.1: Does the MC reproduce the angle between the two SVT tracks in the numerator
and denominator? This could affect the efficiency. Calculate a systematic error if there
is a difference.

Figure 72 shows the double ratio {semi/had(data)}{semi/had(MC)} for the ∆φ between the two
SVT trigger tracks in our three data samples. The ratio is compared to unity and a χ2 probability
is calculated. All the ratios are consistent with unity. Therefore, we do not assign any systematic
uncertainty.

Q.2: Consider whether only using Wendy Taylor’s analysis and the corrections you apply
to determine fΛb

makes more sense than correcting the PDG average number.

Since we do not have access to the details of the LEP analyses and it is still questionable whether the
fΛb

should be the same for the LEP and the Tevatron experiments, we use Wendy Taylor’s result and
apply corrections following the procedure documented in CDF note 7558 [1]. The change of the σΛb

σB0

is reflected in CDF note 7558.
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Q.3: From the optimization plots many of the cuts appear to be non optimal. Specifically
the PT cuts on the Λb and the Λc and equivalent B0 and D cuts in the light B states.
Could you explain concisely which of these choices were forced by what considerations?
(MC, preselection ...) Also can you make a back of the envelope(or better) estimation
of how much better the analysis could be statistically after performing a more rigorous
optimization. Though I don’t think we will chose to change the cuts now this may be
useful the next time around.

The optimization procedure is standard and described in Section 3. As noted in Section 3, we make
tighter cuts on the PT of charm and B hadrons, instead of cutting on the optimization points, for
the following reasons: First, the existing PYTHIA MC for the bb and cc background study, nbot90 and
nbota0, has preselection cuts on the PT of the b and c quarks at 4 GeV/c. This PT threshold makes
the reconstruction of charm hadrons below 4 GeV/c inefficient. It took one month [38] to produce
nbot90 and nbota0 and will take more time to produce another sample with a lower PT threshold.
Therefore, we choose to make a requirement of PT greater than 5 GeV/c for all the charm hadrons.
Second, to normalize the bb and cc backgrounds to the hadronic signals, we need an input of σB+

and σΛb
· B(Λb → Λ+

c π
−) (see Section 6.3.2). As there are no measurements of an exclusive B hadron

production cross-section at Run II, yet, we use the results of CDF Run I σB+ [21] and CDF Run II
σΛb

(PT >6.0)B(Λb→Λ+
c π−)

σB0 (PT >6.0)B(B
0→D+π−)

measurements [4]. Both measurements were made with a PT threshold of B

hadrons greater than 6 GeV/c, thus, we make the same requirement in our analysis.
If we lower the PT cuts to the data skimming requirements, i.e. PT of charm hadrons greater than

2 GeV/c, and PT of B hadrons greater than 4 GeV/c, the amount of the B → D∗+X signal events is
not affected. For the B → D+X and Λb → Λ+

c X decays, the amount of signal events is increased by
15% and 25%, respectively. The statistical uncertainties on the relative branching ratios only reduce
by 10%. The significance is increased by 6% for both decays and the signal to background ratios drop
by 7 and 23 %, respectively. The gains made by reducing the PT thresholds are marginal.

Q.4: Would it help to cut explicitly on the Ds mass hypothesis with the proper particle
type assignments to reduce background?

Figure 73 shows the MKππ distribution when the Mxyz is within (left) and outside (right) of the 2 σ Ds

mass window, where xyz can be any K, π combinations except the Kππ. The peak at 1.868 GeV/c2

in the left plot indicates large contribution from the real D+ inside the Ds mass window. Therefore,
if we cut explicitly on the Ds mass hypothesis with the proper particle type assignments, the amount
of signal events will reduce by a factor of 2 as shown from the fit in the right plot. Besides, about 10%
of the Ds decays, e.g.: D+

s → K∗0K+,K∗0 → K0π(γ), are not fully reconstructed and lie underneath
our signal. Consequently, they will not be removed by cutting on the Ds mass window. At the same
time, we lose the ability to estimate these backgrounds by normalizing them to the Ds → φπ mode.

Q.5: I notice that in the Dµ MC pull tests, Ncombg is mis-estimated. Nominally one
would expect that if Ncombg or NDs

are systematically mis-estimated this could lead to
a mis-estimation of Nsig. Though in fact Ncombg and NDs

are very highly correlated but
Ncombg is not correlated to Nsig. Perhaps an equal size or greater size set of additional
toy MC would demonstrate that this is just a fluctuation(which is quite probable) and
that we don’t have anything to worry about.

We have performed test on 1000 toy MC samples. Each sample has a factor of 5 more statistics than
the data. The results of the pull mean and width for Nsig, Ncombg and NDs

are listed in Table 54.
Figure 74 shows the pull distribution. We conclude that the previous 2 σ shift in the pull mean of
Ncombg (see Table 6) is only a fluctuation.
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Table 54: Pull mean and width of Nsig, Ncombg and NDs
from 1000 toy MC tests with 5 times more

statistics than the data.

pull mean pull width

Nsig -0.015 ± 0.031 1.019 ± 0.022

Ncombg 0.011 ± 0.032 1.066 ± 0.023

NDs 0.025 ± 0.031 1.033 ± 0.022
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Figure 73: Left: MKππ distribution by requiring Mxyz within the Ds mass window, where x, y and z
can be a K or a π. Right: MKππ distribution after removing the events with Mxyz in the Ds mass
window. The data points are fit to a signal Gaussian and a first-order polynomial background.

 Pull
sig

N
-6 -4 -2 0 2 4 6
0

50

100

150

200

250
0.031±mean=-0.015

0.022±=1.019σ
prob=33.4%

 Pull
combg

N
-6 -4 -2 0 2 4 6
0

50

100

150

200

250
0.032±mean=0.011

0.023±=1.066σ
prob=56.1%

 Pull
sDN

-6 -4 -2 0 2 4 6
0

50

100

150

200

250
0.031±mean=0.025

0.022±=1.033σ
prob=39.2%

Figure 74: B
0 → D+µ−νµ: Pull mean and width of Nsig, Ncombg and NDs

from the fit to 1000 toy
MC samples with 5 times more statistics than the data.
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Table 55: Pull mean and width of Nsig and σ from 1000 toy MC tests with 10 times more statistics
than the data.

pull mean pull width

Nsig 0.004 ± 0.031 0.970 ± 0.022

σ 0.008 ± 0.032 1.020 ± 0.023
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Figure 75: Λb → Λ+
c µ

−νµ: Pull mean and width of Nsig and σ from the fit to 1000 toy MC samples
with 10 times more statistics than the data.

Q.6: for the Λcµ results on page 35. You let the width float for the Λc and the pull for
the Λc width is slightly off and highly correlated to the number of signal events. Here
you could also run more toy MC and check that the width that is extracted in the data
is consistent with that expected from MC(with appropriate scaling).

Using the Λb → Λ+
c µ

−νµ, B
0 → D+µ−νµ MC and B → D+µ−X data, we predict the width of the

B → Λ+
c µ

−X signal Gaussian to be 6.9 ± 0.2 MeV/c2. The fit to the data yields 7.4 ± 0.6 MeV/c2

(see Table 8), which is consistent with the MC prediction. We also perform test on 1000 toy MC
samples. Each sample has a factor of 10 more statistics than the data. The results of the pull mean
and width for Nsig and σ are listed in Table 55. Figure 75 shows the pull distribution. We conclude
that the previous 2 σ shift in the pull mean of σ (see Table 8) is only a fluctuation.

Q.7: for the B
0 → D+π− results. fcomb is off by a large number of sigma - though I

understand this is small on the absolute scale. fcomb is also highly correlated to Nsig. Is
the effect on Nsig also small when this parameter is varied?

We study the change on Nsig due to the variation of fcomb by fixing all the fit parameters, except Nsig

and fcomb, to the fit result in Table 15. In Table 15, fcomb = 0.583 ± 0.044. Therefore, fcomb is now
fixed to 0.583+0.044 ·0.145, since the pull mean from the toy MC test is −0.145±0.034. The number
of signal events is changed by 2 events out of 579 events, which is only a 0.35% shift.
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Q.8: For the Cabibbo suppressed mode Λb → Λ+
c K

− you vary the possible branching frac-
tion by -50% + 100%. This lies right under the peak so is potentially a large systematic
error. 1st, why in general the asymmetric errors? Second is there any expectation for
how well we can predict this from the light B modes that would allow us to chose the
range for the systematic variation in a more justifiable way. Do we expect this % to
carry over from the light B mesons?

We assign the uncertainty on the B(Λb → Λ+
c K

−) in the same way as Le, Martin and Maksimović [4,
26]. We expect the ratio of the Cabibbo suppressed to Cabibbo favored modes to carry over from the B
mesons. However, if we use the fractional uncertainty from the ratio B(B

0 → D+K−)/B(B
0 → D+π−)

in Table 14 (∼ 30%) instead, the uncertainty from the fit to Λb → Λ+
c π

− is changed from 0.63 to 0.53,
and the total CDF systematic uncertainty is changed from 1.2 to 1.15, which is only a marginal gain.

Q.9: You compute a correction to the MC pt spectrum based on the Λb → Λ+
c π

−. Do we
observe the same discrepancy in the semileptonic decay PT distribution after accounting
for the contributions from other sources?

The PT (Λcµ) from the MC produced with the corrected Λb PT spectrum agree with that from the
data (see Figure 50). Besides, compared to the fully reconstructed modes, we do not believe the
partially reconstructed modes can provide an adequate PT spectrum for correcting the default MC
PT spectrum.

Q.10: In the MC the Λb semileptonic modes are decayed via phase space. I notice that the
data spectra actually looks more like that for the B mesons. Is there an expectation for a
more realistic model for the Λb and is the data qualitatively following that expectation?
Can we update the decay table? Also could you made a histogram of the Lb pt spectra
for Bgenerator available so that I can put it in the official MC directories so anyone can
easily use it.

In Section 5.3, we have developed a decay model to provide a better description of the decay dynamics.
From this better decay model, we find the acceptance unchanged, but the Λcµ invariant mass from
MC agrees with the data better. This work will be fed back to the authors of EvtGen. The Λb PT

spectrum is also made public by the B MC group.

Q.11: Figure 33. Maybe you say that in the note, but do you know which kind of events
have a mass above 5.5 GeV/c2? I think they are not statistical fluctuations and they are
included in your templates.

I assume you are asking if we have included the background template for the mass region above 5.5
GeV/c2. Yes, we have. In the unbinned likelihood fit, we use the functional forms in Figure 33 for
the backgrounds, which are derived by Maksimović [4]. The backgrounds that peak at 5.6 GeV/c2

near the signal are mostly Λb → Σcπ and Λb → Λ+
c π, where the Λ+

c either decay semileptonically or
to other hadronic final states instead of pKπ. A more detailed list of the decays can be found in CDF
note 6953 [26].

Q.12: Figure 39. Do you really include both sidebands in the D*-D, do you have any
events on the left side with respect to the D*-D PDG value?. I think the common thing
is to increase the right sideband.

Figure 76 shows a fit to the MD∗ −MD0 distribution after removing the events within 4 σ around
0.1454 GeV/c2. The good χ2 probability indicates that it is adequate to describe the background
with a constant. Therefore, we can include both sidebands when performing a sideband subtraction
to compare the data with the MC distribution. In addition, the signal to background ratio in the
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signal region is about 63, as noted in Section 3. If we overestimate or underestimate the amount of the
background by a factor of 2, we are only changing the data distributions by 1/63=2%. The agreement
of the MC distribution with the data is still valid.
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Figure 76: MD∗ −MD0 fit to a constant after removing the events 4 σ around 0.1454 GeV/c2.

Q.13: Figure 44. Do you consider the first bin of the efficiency ratios as a statistical
fluctuation? The ratio is much higher in that bin than any other.

The first bin represents a 2 σ deviation from the adjacent higher PT bins. There are 28 bins in
Figure 44 and we expect 1.5 bins with a 2 σ fluctuation. We believe this to be a fluctuation.

Q.14: Section 4.2. You are comparing data and MC, but on the other hand you know
that there is a 10% of physics backgrounds which (I think!) are not included in the MC
to make the plot. So, for several variables I would expect some disagreement due to that
fact. For example l-D mass, vertex fits and Pt, you should have some disagreement due
to that effect. Did you say that in the note, do you agree on it?

See the first paragraph of Section 5.2. We did include the physics backgrounds and the fake muon
contribution in the MC.

Q.15: Section 5.3.3. When we compare data and PYTHIA MC cross-sections and I expect
to have a disagreement of about 20-30%. Pythia is a LO generator, so once you include
the NLO corrections you expect a factor 1.1-1.3, right?. I know it doesn’t matter once
you include a 100% syst. error. But I think it’s well overestimated that error, but on
the other hand ” no-effect” or ”no-effect/4” is pretty much the same.

The 100% uncertainty is a combination of two sources: 1. the relative contribution of each production
mechanism: flavor creation, flavor excitation, and gluon splitting. 2. the difference of the B+,
D0, and inclusive b cross-section between PYTHIA and the CDF Run-I, Run-II measurements (see
Section 6.3.3). Even if this is an overestimate, the systematic uncertainty is still small compared to
the other uncertainties.
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Table 56: Background contribution from the Bs → D+K0µ−νµ and B
0 → D+D−s decays to the

B
0 → D+µ−νµ signal.

Mode BR (%) Norm

B
0 → D+µ−νµ 2.14 ± 0.20 1.000

Bs → D+K0µ−νµ 0.30 ± ? 0.013

B
0 → D+D−s 0.80 ± 0.30 0.006

↪→ (φ, η, η′)µ−νµ 5.51 ± 0.92

Q.16:I think there are some missing backgrounds in the B → lD modes. (a) Bs →
lνD∗∗s , D∗∗s → D(∗)K0, (b) B → D

(∗)
s DX,Ds → lX, (c) B → D1(∗)D2(∗)KX.

The decays which contribute ≥ 1% each to the semileptonic signal are included in the final calculation
of the relative branching fractions (see Section 6.1). CDF note 6599 [14] details the list of decays
which have Dµ in the final state. For a comparison with the backgrounds you mentioned, we list two
decays in Table 56 which have similar decay chains as (a), (b) and (c), extracted from Table 1 and 2
of CDF note 6599. The normalization has included the factor, fs/fd = 0.27± 0.03.

Decays (a) have not been observed, yet. However, the decay table in the EvtGen provides an
estimate of the branching fractions. The Bs → lD∗∗s decays that can fake our signals are Bs → D+

s1µνµ

and Bs → D∗+s2 µνµ, where D+
s1 → D∗+, D∗+ → D+ and D∗+s2 → (D∗+, D+)K0, D∗+ → D+. After

taking into account the branching ratios of the Ds1,s2 decays, the total branching ratios of the Ds1 and
Ds2 modes are about 0.06% and 0.3%, respectively. The efficiencies of these two decays are supposed
to be only as much as that of Bs → D+K0µ−νµ, since the final states are identical or with additional
π0, γ. Using the information in Table 56, Ds1 and D∗s2 are estimated to contribute about 0.2%, and 1%
to the signal. The Ds1 contribution can be neglected and the existence of D∗s2 is yet to be confirmed.
Therefore, we do not include these two decays in the relative branching ratio calculation.

Decays (b) and (c) can be compared to the decay B
0 → D+D−s , where D−s → (φ, η, η′)µνµ. Decays

(b) and (c) are expected to have smaller branching ratios than the B
0 → D+D−s mode, since the decays

of the excited charm hadrons into D+ have branching fractions at most ∼ 32%, and additional K0 in
the final state of decays (c) means creating extra quark pairs from the vacuum. Decays (b) and (c)
are also expected to have smaller efficiencies, since there are more particles in the final state and they
will be more suppressed after the cut on the MDµ. Because the contribution of B

0 → D+D−s is only
0.6%, decays (b) and (c) are expected to contribute less than 1% each and can be ignored. Table 2
in CDF note 6599 gives a partial list of decays which fall into the same category as (b) and (c), and
confirms that these decays contribute not more than 0.6% to the signal.
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B Derivation of the Function for the Mass Fit

B.1 Convolution of Gaussian with Triangular Distribution

The derivation comes from J. Heinrich.
Gaussian:

g(x) =
1√
2πσ

e−
1
2 ( x

σ )2

Triangular (also normalized to 1):

h(x) =
2
a2
x (0 ≤ x ≤ a)

Convolution:

f(x) = (g ∗ h)(x) =
∫ ∞

−∞
g(ξ)h(x− ξ)dξ =

1
a2σ

√
2
π

∫ x

x−a

(x− ξ)e−
1
2 ( ξ

σ )2dξ

Substitute ξ =
√

2σu:

f(x) =
2

a2
√
π

∫ x√
2σ

x−a√
2σ

(x−
√

2σu)e−u2
du

Error functions:
erf(z) =

2√
π

∫ z

0

e−t2dt erf(∞) = 1

erf(−z) = −erf(z) erfc(z) = 1− erf(z)

f(x) =
x

a2

[
erf

(
x√
2σ

)
+ erf

(
a− x√

2σ

)]
+

σ

a2

√
2
π

[
e−

1
2 ( x

σ )2 − e−
1
2 ( x−a

σ )2
]

The form above is well suited for 0 ≤ x ≤ a. When x� a, a better numerical form is

f(x) =
x

a2

[
erfc

(
x− a√

2σ

)
− erfc

(
x√
2σ

)]
+

σ

a2

√
2
π

[
e−

1
2 ( x

σ )2 − e−
1
2 ( x−a

σ )2
]

When x� 0,

f(x) =
x

a2

[
erfc

(
−x√
2σ

)
− erfc

(
a− x√

2σ

)]
+

σ

a2

√
2
π

[
e−

1
2 ( x

σ )2 − e−
1
2 ( x−a

σ )2
]

is better numerically.
Next we want the integral F (x) =

∫∞
x
f(t)dt. We have

F (x) =
∫ ∞

x

∫ ∞

−∞
g(t− ξ)h(ξ)dξ dt =

∫ ∞

−∞
h(ξ)

∫ ∞

x

g(t− ξ)dt dξ

=
1
2

∫ ∞

−∞
h(ξ)erfc

(
x− ξ√

2σ

)
dξ =

1
a2

∫ a

0

ξ erfc
(
x− ξ√

2σ

)
dξ

Substitute ξ = x−
√

2σv:

F (x) =
√

2σ
a2

∫ x√
2σ

x−a√
2σ

(x−
√

2σv)erfc(v)dv

Generic integrals: ∫
erfc(z)dz = z erfc(z)− 1√

π
e−z2

+ const.
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∫
z erfc(z)dz =

(
z2

2
− 1

4

)
erfc(z)− z

2
√
π
e−z2

+ const.

Result:

F (x) =
x2 + σ2

2a2
erfc

(
x√
2σ

)
− x2 − a2 + σ2

2a2
erfc

(
x− a√

2σ

)
+
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1
2 ( x−a

σ )2 − xσ√
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1
2 ( x

σ )2

or equivalently

F (x) =
1
2

+
x2 − a2 + σ2

2a2
erf
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x− a√

2σ

)
− x2 + σ2

2a2
erf

(
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)
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1
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e−
1
2 ( x
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B.2 Convolution of Gaussian with Exponential

Gaussian:
g(x) =

1√
2πσ

e−
1
2 ( x

σ )2

Exponential:
h(x) = e−

x
τ

Unnormalized lifetime distribution after convolution:

f(x) = (g ∗ h)(x) =
1
2τ

erfc(
1√
2
(
σ

τ
− x

σ
))e

σ2

2τ2− x
τ (76)

Integral:

F (x) =
1
2
{erfc(− x√

2σ
)− erfc(

1√
2
(
σ

τ
− x

σ
))e

σ2

2τ2− x
τ } (77)

The normalization could be obtained by dividing Equation 76 by the integral in the mass window
of concern using Equation 77.

B.3 Bifurcated Gaussian

Notation:

µ ≡ mean,
σL ≡ left sigma,
σR ≡ right sigma.

Function:
when x ≥ µ,

f(x) = e
− 1

2 ( x
σR

)2

when x < µ,
f(x) = e

− 1
2 ( x

σL
)2

Integral from a to b where a < b
if b < µ:

F (x) =
√
π

2
σL [erf(

b− µ√
2σL

)− erf(
a− µ√

2σL

)]
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if a > µ:

F (x) =
√
π

2
σR [erf(

b− µ√
2σR

)− erf(
a− µ√

2σR

)]

otherwise:

F (x) =
√
π

2
[σR erf(

b− µ√
2σR

)− σL erf(
a− µ√

2σL

)]
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Figure 77: B
0 → D∗+π− MC and data comparison: from the top left to the bottom right are: η(πD0),

η(KD0), η(πD∗), η(πB), d0(πD0), d0(KD0).

C Comparison of Data and MC

This section includes various distributions important for this analysis. The MC is generated as de-
scribed in Section 5.1. The background in the data distribution is removed using the method described
in Section 5.2. Comparison between MC and data for the following variables: PT , cτ , fit χ2

r−φ of the
B and charm hadrons, PT of the muon and pion from the B and invariant mass of the four tracks,
are found in Section 5.2.
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Figure 78: B
0 → D∗+π− MC and data comparison: from the top left to the bottom right are: d0(πD∗),

d0(πB), φ0(πD0), φ0(KD0), φ0(πD∗), φ0(πB)

139



0

1

2

3

4

5

6 Data
MC

prob:0.3400

 [GeV/c]0 from Dπ of TP

1 2 3 4 5 6 7 8 9 10

m
c

/N
d

at
a

N

0

0.5

1

1.5

2

2.5

3

 / ndf 2χ  0.6636 / 3
Prob   0.8817
p0        0.3198± 1.548 
p1        0.05738± -0.1115 

0

1

2

3

4

5 Data
MC

prob:0.9622

 [GeV/c]0 of K from DTP

1 2 3 4 5 6 7 8 9 10

m
c

/N
d

at
a

N

0

0.5

1

1.5

2

2.5

 / ndf 2χ  0.2586 / 2
Prob   0.8787
p0        0.2227± 0.9617 
p1        0.0502± 0.007813 

0

5

10

15

20

25
Data
MC

prob:0.8145

 [GeV/c]*+ from Dπ of Soft TP

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
m

c
/N

d
at

a
N

0

0.5

1

1.5

2

2.5

 / ndf 2χ  0.8671 / 2
Prob   0.6482
p0        0.297± 1.065 
p1        0.3351± -0.09022 

0

0.5

1

1.5

2

2.5

3

3.5

4 Data
MC

prob:0.5134

 from B [GeV/c]π of TP

1 2 3 4 5 6 7 8 9 10

m
c

/N
d

at
a

N

0

0.5

1

1.5

2

2.5
 / ndf 2χ  2.001 / 2

Prob   0.3677
p0        0.2695± 0.857 
p1        0.05088± 0.0219 

0

1

2

3

4

5

6 Data
MC

prob:0.5566

 z position at CMU radius [cm]Bπ

-500-400-300-200-100 0 100 200 300 400 500

m
c

/N
d

at
a

N

0

0.5

1

1.5

2

2.5

3

 / ndf 2χ  1.729 / 2
Prob   0.4213
p0        0.1166± 1.016 
p1        0.0006121± 0.0003602 

Figure 79: B
0 → D∗+π− MC and data comparison: from the top left to the bottom right are:

PT (πD0), PT (KD0), PT (πD∗), PT (πB) and extrapolated z position at CMU of πB .
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Figure 80: B → D∗+µ−X MC and data comparison: from the top left to the bottom right are:
η(πD0), η(KD0), η(πD∗), η(µ), d0(πD0), d0(KD0).
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Figure 81: B → D∗+µ−X MC and data comparison: from the top left to the bottom right are:
d0(πD∗), d0(µ), φ0(πD0), φ0(KD0), φ0(πD∗), φ0(µ)
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Figure 82: B → D∗+µ−X MC and data comparison: from the top left to the bottom right are:
PT (πD0), PT (KD0), PT (πD∗), PT (µ), extrapolated z position at CMU of µ
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Figure 83: B
0 → D+π− MC and data comparison: from the top left to the bottom right are: η(πhigh

D ),
η(KD), η(πlow

D ), η(πB), d0(π
high
D ), d0(KD).
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Figure 84: B
0 → D+π− MC and data comparison: from the top left to the bottom right are: d0(πlow

D ),
d0(πB), φ0(π

high
D ), φ0(KD), φ0(πlow

D ), φ0(πB)
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Figure 85: B
0 → D+π− MC and data comparison: from the top left to the bottom right are:

PT (πhigh
D ), PT (KD), PT (πlow

D ), PT (πB) and extrapolated z position at CMU of πB .
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Figure 86: B → D+µ−X MC and data comparison: from the top left to the bottom right are:
η(πhigh

D ), η(KD), η(πlow
D ), η(µ), d0(π

high
D ), d0(KD).
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Figure 87: B → D+µ−X MC and data comparison: from the top left to the bottom right are:
d0(πlow

D ), d0(µ), φ0(π
high
D ), φ0(KD), φ0(πlow

D ), φ0(µ)
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Figure 88: B → D+µ−X MC and data comparison: from the top left to the bottom right are:
PT (πhigh

D ), PT (KD), PT (πlow
D ), PT (µ), extrapolated z position at CMU of µ
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Figure 89: Λb → Λ+
c π

− MC and data comparison: from the top left to the bottom right are: η(p),
η(K), η(πΛc

), η(πΛb
), d0(p), d0(K).
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Figure 90: Λb → Λ+
c π

− MC and data comparison: from the top left to the bottom right are: d0(πΛc
),

d0(πB), φ0(p), φ0(K), φ0(πΛc
), φ0(πΛb

)
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Figure 91: Λb → Λ+
c π

− MC and data comparison: from the top left to the bottom right are: PT (p),
PT (K), PT (πΛc

), PT (πΛb
) and extrapolated z position at CMU of πΛb

.
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Figure 92: B → Λ+
c µ

−X MC and data comparison: from the top left to the bottom right are: η(p),
η(K), η(π), η(µ), d0(p), d0(K).
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Figure 93: B → Λ+
c µ

−X MC and data comparison: from the top left to the bottom right are: d0(π),
d0(µ), φ0(p), φ0(K), φ0(π), φ0(µ)
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Figure 94: B → Λ+
c µ

−X MC and data comparison: from the top left to the bottom right are: PT (p),
PT (K), PT (π), PT (µ), extrapolated z position at CMU of µ
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