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The null-surface formulation of general relativity (NSF) focuses on families of null sur-
faces rather than on the metric. The NSF uses special spacetime coordinates, called
intrinsic coordinates, which are naturally adapted to the surfaces. The three coupled,
nonlinear, partial differential equations that arise in the NSF have so far proved ex-
tremely difficult to solve. The present paper gives a solution that depends on two of the
four intrinsic coordinates and is not conformally flat.
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In an earlier paper,1 the present authors gave a (2+1)-dimensional solution for the

null-surface formulation2−5 (NSF) of general relativity. The purpose of the present

paper is to find a solution for the NSF in 3+1 dimensions. The NSF is expressed in

terms of so-called intrinsic (spacetime) coordinates u, ω, ω̄ and r, and a function

Z(u, ω, ω̄, r; ζ, ζ̄). The coordinates u and r are real, and ω and its conjugate ω̄

are complex. The complex stereographic coordinates ζ and ζ̄ range over a 2-sphere.

Families of null surfaces are introduced by putting Z(u, ω, ω̄, r; ζ, ζ̄) equal to different

constants and having ζ and ζ̄ label the families. Since the surfaces are null, Z must

satisfy gabZ,aZ,b = 0 for some choice of spacetime metric. Repeated differentiation

with the operator ð (called eth6) then leads to the three NSF equations which are

written in terms of the complex function Λ := ð
2Z and a real auxiliary function Ω.

The first two equations are called the main metricity condition and the secondary

metricity condition and they ensure the existence of a spacetime metric. The third

equation, which would have zero on the right side for vacuum spacetimes, ensures

that the Einstein equations, Gab = κT ab, are satisfied. The equations are as follows:

ðΛ,1 − 2Λ,− = (W + ð ln q)Λ,1, (1)

ðΩ = 1
2W Ω, (2)

Ω,11 −QΩ = 1
2κT

abZ,aZ,bΩ
−3. (3)
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Let Φ(u, ω, ω̄, r; ζ, ζ̄) be any function and let ð′ and ð̄
′ denote the eth-derivatives6

with respect to ζ and ζ̄ with the intrinsic coordinates held constant. The notation

used in Eqs (1), (2) and (3) should be interpreted as follows:

Φ,0 := ∂Φ/∂u, Φ,+ := ∂Φ/∂ω, Φ,− := ∂Φ/∂ω̄, Φ,1 := ∂Φ/∂r,

ðΦ = ð
′Φ+ ωΦ,0 + ΛΦ,+ + rΦ,− +KΦ,1,

ð̄Φ = ð̄
′Φ+ ω̄Φ,0 + Λ̄Φ,− + rΦ,+ + K̄Φ,1,

q := 1− Λ,1Λ̄,1,

p := 1− Λ,1Λ̄,1/4,

K := q−1(Λ,1J̄ + J),

K̄ := q−1(Λ̄,1J + J̄),

J := −2ω + ω̄Λ,0 + ð̄
′Λ + rΛ,+ + Λ̄Λ,−

J̄ := −2ω̄ + ωΛ̄,0 + ð
′Λ̄ + rΛ̄,− + ΛΛ̄,+

W := p−1
[
Λ,+ + ð̄Λ,1/2 + Λ,1Λ̄,−/2 + Λ,1ðΛ̄,1/4

−(ð ln q)/2− (Λ,1 ð̄ ln q)/4
]
,

Q := − [−(1/4)q−1Λ̄,11 Λ,11 − (3/8)q−2(q,1)
2 + (1/4)q−1 q,11

]
.

To avoid a solution that leads to a flat spacetime, Λ must be r-dependent,5 and

this will generate terms linear in ω and ω̄ in the main metricity condition. Similar

terms would be generated by allowing Λ to be proportional to ω2. Combining both

ideas, assume Λ to be of the form

Λ(ω, r) = L(r) + b ω2,

where L(r) and the constant b may be complex. Note that in proposing this form

of solution we are simply seeking a solution of Eq. (1) without considering issues

such as spin-weight or satisfying any integrability condition. Clearly, Λ,1 = L,1 and

Λ̄ = L̄(r) + b̄ ω̄2. It follows that

Λ,+ = 2b ω, Λ,− = 0, Λ̄,+ = 0, Λ̄,− = 2b̄ ω̄.

Consider the terms that enter into the main metricity condition, Eq. (1). For the

form of solution proposed above,

ðΛ,1 = K Λ,11, ð̄Λ,1 = K̄ Λ,11.

Introducing

P := − (Λ,1Λ̄,11 + Λ̄,1Λ,11) = P̄ ,
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it follows that

ð ln q = q−1K P , ð̄ ln q = q−1K̄ P .

The relationship

− 1
2K − 1

4Λ,1 K̄ + pK = 1
4Λ,1 J̄ + 1

2J,

together with Λ,− = 0 and the facts that, for the form of solution proposed, the

functions J and J̄ are given by

J = − 2 (1− b r)ω, J̄ = − 2 (1− b̄ r) ω̄,

implies that the main metricity condition can be written

ðΛ,1 − 2Λ,− − (W + ð ln q)Λ,1

= −(pq)−1
[
ω̄L,1

{
b̄qL,1 + (1 − b̄r)L,11

}
+ 2ω

{
bqL,1 + (1 − br)

(
pL,11 +

1
4 (L,1)

2L̄,11

)}]
= 0.

Since ω and ω̄ are independent variables, their coefficients in the above equation

must both be zero. Thus both of the following equations need to be satisfied:

b̄qL,1 + (1− b̄r)L,11 = 0, (4)

bqL,1 + (1− br)
[
pL,11 +

1
4 (L,1)

2L̄,11

]
= 0. (5)

If Eq. (4) holds then it is easy to show that Eq. (5) becomes equivalent to

(b− b̄) p = 0.

The function p ≡ 1 − Λ,1Λ̄,1/4 = 1 − L,1L̄,1/4 cannot be zero because that would

imply q ≡ 1 − Λ,1Λ̄,1 = 1 − L,1L̄,1 < 0 which is forbidden because Kozameh and

Newman7 have considered the quantity q in the related context of light cone cuts

and have shown that Lorentz signature arises if and only if q > 0. Since p �= 0, it

follows that b − b̄ = 0 and so b is real. The constant b will be assumed to be real

from now on.

It is straightforward to solve Eq. (4) for L,1. If b = 0, then Eq. (4) implies

L,11 = 0 and L is linear in r. The resulting spacetime can be shown to be flat.

Hence assume b �= 0. In general, L,1 is complex. For simplicity, L,1 will be assumed

to be real. Integration of Eq. (4) leads to

L,1 = (1− br)
[
a2 + (1− br)2

]−1/2
,

where a is a real constant and a > 0. Further integration yields L and hence the

desired solution for Λ (= L+ bω2), namely

Λ = − b−1
[
a2 + (1 − br)2

]1/2
+ b ω2.

 T
he

 F
ou

rt
ee

nt
h 

M
ar

ce
l G

ro
ss

m
an

n 
M

ee
tin

g 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 o
n 

04
/2

6/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



August 31, 2017 9:44 ws-procs961x669 MG-14 – Proceedings (Part C) C300 page 2528

2528

Note that q = a2
[
a2 + (1− br)2

]−1
> 0. The secondary metricity condition, Eq.

(2), leads to Ω2 = q−1L,1 which implies

Ω2 = a−2 (1 − br)
[
a2 + (1 − br)2

]1/2
.

It can be shown that Q = (3/4)a2b2
[
a2 + (1− br)2

]−2
and that Eq. (3) is satisfied

with T uu = −(4κ)−1a4b2 (1−br)−3
[
a2 + (1− br)2

]−3
. Using the above results, the

metric in intrinsic coordinates is found to be

ds2 = Ω−2
[−2q−1L,1 (3b

2ω2 + L,1) du
2 + 8b q−1L,1 du (ω dω + ω̄ dω̄)

− 2 du dr + 2 q−1 dω dω̄ − q−1L,1 (dω
2 + dω̄2)

]
.

Frittelli, Kozameh, and Newman5 have derived a quantity Ψ0 that is equivalent to

the Weyl tensor:

Ψ0 = Ω4 q (q−1 Σ),1,

where

Σ = 2−1 q−1/2 (1 − q1/2)
[
Λ,1 (1− q1/2)−1

]
,1

eiφ,

φ = 2−1

∫ r

0

q−1/2 (1 + q1/2) ln(Λ,r′/Λ̄,r′) dr
′.

For the solution presented above, one finds φ = 0 and

q−1Σ = 2−1a−2b
[
a2 + (1 − br)2

]1/2
.

The latter expression is clearly not constant. Hence Ψ0 �= 0 and so spacetime is not

conformally flat.

Acknowledgments

This work was supported by a research grant from Mount Saint Vincent University

and by the Brandon University Research Committee. Discussions with Dr. Ted

Newman and Dr. Simonetta Frittelli during the authors’ visits to Pittsburgh are

gratefully acknowledged.

References

1. T. A. Harriott and J. G. Williams, Gen. Relativ. Gravit. 46, 1666 (2014).
2. S. Frittelli, C. N. Kozameh and E. T. Newman, J. Math. Phys. 36, 4975 (1995).
3. S. Frittelli, C. N. Kozameh and E. T. Newman, J. Math. Phys. 36, 4984 (1995).
4. S. Frittelli, C. N. Kozameh and E. T. Newman, J. Math. Phys. 36, 5005 (1995).
5. S. Frittelli, C. N. Kozameh and E. T. Newman, J. Math. Phys. 36, 6397 (1995).
6. E. T. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966).
7. C. N. Kozameh and E. T. Newman, J. Math. Phys. 24, 2481 (1983).

 T
he

 F
ou

rt
ee

nt
h 

M
ar

ce
l G

ro
ss

m
an

n 
M

ee
tin

g 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 o
n 

04
/2

6/
21

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.




