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The null-surface formulation of general relativity (NSF) focuses on families of null sur-
faces rather than on the metric. The NSF uses special spacetime coordinates, called
intrinsic coordinates, which are naturally adapted to the surfaces. The three coupled,
nonlinear, partial differential equations that arise in the NSF have so far proved ex-
tremely difficult to solve. The present paper gives a solution that depends on two of the
four intrinsic coordinates and is not conformally flat.
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In an earlier paper,! the present authors gave a (2+1)-dimensional solution for the
null-surface formulation?=> (NSF) of general relativity. The purpose of the present
paper is to find a solution for the NSF in 341 dimensions. The NSF is expressed in
terms of so-called intrinsic (spacetime) coordinates u, w, @ and r, and a function
Z(u,w,,7;¢,¢). The coordinates u and r are real, and w and its conjugate @
are complex. The complex stereographic coordinates ¢ and ¢ range over a 2-sphere.
Families of null surfaces are introduced by putting Z (u, w, @, 7; ¢, ¢) equal to different
constants and having ¢ and ¢ label the families. Since the surfaces are null, Z must
satisfy g?*Z ,Z;, = 0 for some choice of spacetime metric. Repeated differentiation
with the operator d (called eth®) then leads to the three NSF equations which are
written in terms of the complex function A := 8?Z and a real auxiliary function .
The first two equations are called the main metricity condition and the secondary
metricity condition and they ensure the existence of a spacetime metric. The third
equation, which would have zero on the right side for vacuum spacetimes, ensures
that the Einstein equations, G* = kT, are satisfied. The equations are as follows:

OA 1 —2A_ = (W +0Ing)A 1, (1)

Q0 = 1w Q, (2)

Qu—QQ=3kT"Z,Z,Q7°. (3)
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Let ®(u,w,®,r; ¢, () be any function and let & and &’ denote the eth-derivatives®
with respect to ¢ and ¢ with the intrinsic coordinates held constant. The notation
used in Egs (1), (2) and (3) should be interpreted as follows:

Dy:=02/0u, 4 = 9P/0w, ®_ = 0P/0w, ;1 = 9D/Or,
00 =0 +wP o+ AP +rP _+KP,,
00 =00 +wdg+AD_ +7rd + Kb,

q:=1-AA,

p:=1-— A71/_X,1/4,

K :=q (AT +),

K:=q'(A1J+J),

Ji=2w+wAo+A+rA L +AA_

Ji==20+who+0dA+rA_+AA

Wi=p ' [A;+0A1/24+ A A _/2+ A 0A /4

—(0lng)/2 — (A1 0lng)/4],

Q:=—[-(1/9)g "A11 A1y — (3/8)g *(q.1)* + (1/4)g " q11] -
To avoid a solution that leads to a flat spacetime, A must be r-dependent,® and
this will generate terms linear in w and @ in the main metricity condition. Similar
terms would be generated by allowing A to be proportional to w?. Combining both
ideas, assume A to be of the form

Aw,r) = L(r) +bw?,
where L(r) and the constant b may be complex. Note that in proposing this form
of solution we are simply seeking a solution of Eq. (1) without considering issues
such as spin-weight or satisfying any integrability condition. Clearly, A ; = L ; and
A = L(r) + bw?. Tt follows that
Ar=2bw, A_=0, A;=0A_=2bw.
Consider the terms that enter into the main metricity condition, Eq. (1). For the
form of solution proposed above,
0N = KA, 0N = KA.
Introducing

P = —(AjA11+A1A1) = P,
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it follows that
dlng = ¢ 'K P, dlng = ¢ 'KP.
The relationship
—3K—IA 1 K+pK = A1 J+ 3,

together with A _ = 0 and the facts that, for the form of solution proposed, the
functions J and .J are given by

J= -201-br)w, J= —2(1-br)m,
implies that the main metricity condition can be written

BA, — 2A_ — (W +0lng)A,

—(pq) " [wL1{bgL1+ (1 —br)L 11}
+2W{qu1+(1—bT‘) (pL11+ (Ll) [_/,11)}}

=0.

Since w and @ are independent variables, their coefficients in the above equation
must both be zero. Thus both of the following equations need to be satisfied:

bgL 1+ (1 —br)L 11 =0, (4)

bgL,i+ (1 =br) [pLau+ §(L1)’Lai] = 0. (5)
If Eq. (4) holds then it is easy to show that Eq. (5) becomes equivalent to
(b—b)p = 0.

The function p =1 — A71/_X,1/4 =1- L,1E71/4 cannot be zero because that would
imply g =1—A3A; =1— L L; < 0 which is forbidden because Kozameh and
Newman’ have considered the quantity ¢ in the related context of light cone cuts
and have shown that Lorentz signature arises if and only if ¢ > 0. Since p # 0, it
follows that b — b = 0 and so b is real. The constant b will be assumed to be real
from now on.

It is straightforward to solve Eq. (4) for L. If b = 0, then Eq. (4) implies
L1 = 0 and L is linear in r. The resulting spacetime can be shown to be flat.
Hence assume b # 0. In general, L ; is complex. For simplicity, L ; will be assumed
to be real. Integration of Eq. (4) leads to

Ly = (1=br)[a®+(1—br)?] "2,

where o is a real constant and @ > 0. Further integration yields L and hence the
desired solution for A (= L + bw?), namely

A= —b a2+ (1027 F b
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Note that ¢ = a? [a2 +(1- br)2] !> 0. The secondary metricity condition, Eq.
(2), leads to Q% = ¢~ L ; which implies

0 = a 21 —0br) [a2 +(1- bT)2]1/2 .
It can be shown that Q = (3/4)a?b? [a® + (1 — br)?] 2 and that Eq. (3) is satisfied

with 7% = —(4k) 1a®d? (1 —br) =3 [a* + (1 — br)?] - Using the above results, the
metric in intrinsic coordinates is found to be

ds* = Q7% [-2¢7 'Ly (3v°w® + L 1) du® +8bq 'L 1 du (wdw + @ dw)

— 2dudr+2q 'dwdw — q 'L (dw® + dw?)] .

Frittelli, Kozameh, and Newman® have derived a quantity ¥, that is equivalent to
the Weyl tensor:

Uy = Q4Q<q_1 2)71’
where

n =91 q71/2 (1 o q1/2) A,l (1 - q1/2)71 eiqb
1

)

¢ = 2*1/ 21+ ¢ In(A /A ) dr
0

For the solution presented above, one finds ¢ = 0 and
¢ 'E=2""a"?b[a*+ (1 - br)2]1/2 .

The latter expression is clearly not constant. Hence Wy # 0 and so spacetime is not

conformally flat.
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