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Abstract: In this paper, we apply the gravitational decoupling method for dynamical systems in

order to obtain a new type of solution that can describe a hairy dynamical black hole. We consider

three cases of decoupling. The first one is the simplest and most well known when the mass function

is the function only of space coordinate r. The second case is a Vaidya spacetime case when the mass

function depends on time v. Finally, the third case represents the generalization of these two cases: the

mass function is the function of both r and v. We also calculate the apparent horizon and singularity

locations for all three cases.

Keywords: gravitational decoupling; Vaidya spacetimes; hairy black hole

1. Introduction

Black holes are one of the most fascinating objects in our Universe. Currently, we can
make direct observations of them via detection of their gravitational waves [1,2] or black
hole shadow [3,4].

The famous no-hair theorem states that a black hole might have only three charges: the
mass M, angular momentum J, and electric charges Q [5]. However, it can be shown that
black holes can have other charges and there is so-called soft hair [6]. Among other possi-
bilities for evading the no-hair theorem is to use the gravitational decoupling method [7–9].

It is well known that obtaining the analytical solution of the Einstein equations is
a difficult task in most cases. We know that we can obtain an analytical solution of the
spherically symmetric spacetime in the case of the perfect fluid as the gravitational source.
However, if we consider the more realistic case when the perfect fluid is coupled to another
matter, it is nearly impossible to obtain the analytical solution. In papers [7–9], it was shown
using the Minimal Geometric Deformation (MGD) [10,11] method that we can decouple
the gravitational sources, for example, one can write the energy-momentum tensor Tik as:

Tik = T̃ik + αΘik . (1)

where T̃ik is the energy-momentum tensor of the perfect fluid and α is the coupling con-
stant to the energy-momentum tensor Θik. It is possible to solve Einstein’s field equations
for a gravitational source whose energy-momentum tensor is expressed as (1) by solving
Einstein’s field equations for each component T̃ik and Θik separately. Then, by a straightfor-
ward superposition of the two solutions, we obtain the complete solution corresponding
to the source Tik. Since Einstein’s field equations are non-linear, the MGD decoupling
represents a novel and useful method in the search for and analysis of solutions, especially
when we face scenarios beyond trivial cases, such as the interior of stellar systems with
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gravitational sources more realistic than the ideal perfect fluid, or even when we consider
alternative theories, which usually introduce new features that are difficult to deal with.

Moreover, there is only the gravitational interaction between two sources, i.e.,

Tik
;k = 0 → T̃ik

;k = αΘ
ik
;k = 0 . (2)

This fact allows us to think about Θik as dark matter. By applying the gravitational
decoupling method, one can obtain well-known black hole solutions with hair [12,13].
However, this method is applied only to static or stationary cases. That is, we obtain only
an eternal hairy black hole solution. If one wants to understand the process of these hairy
black hole formations, then one should consider the gravitational collapse of the matter
cloud. The problem is that in the general case, the (MGD) method is not applicable due to
its violation of condition (2). The gravitational decoupling of a dynamical system is still a
problem. One of the first successful decouplings of the dynamical system was performed
in Ref. [14].

In this paper, we offer a model of the gravitational decoupling of dynamical systems,
which can be used to investigate the question of gravitational collapse to a hairy black hole.
By using the hairy Schwarzschild black hole solution obtained in Ref. [12], we introduce
the Eddington–Finkelstein coordinates in order to consider the non-zero right hand side
of the Einstein equations. In this case, the mass M is not a constant; however, it is the
mass function of time v and the radial coordinate r. As a result, we obtained the Vaidya
and generalized Vaidya solutions. In the Vaidya case, the energy-momentum tensor T̃ik

represents the null dust. In the generalized Vaidya case, the T̃ik represents the mixture of
two matter fields—type I and type II [15,16]

The Vaidya spacetime is the so-called radiating Schwarzschild solution [17] and is one
of the first examples of a cosmic censorship conjecture violation [18]. The Vaidya space-
time is widely used in many astrophysical applications with strong gravitational fields.
In general relativity, this spacetime assumed added importance with the completion of the
junction conditions at the surface of the star by Santos [19]. The pressure at the surface is
non-zero, and the star dissipates energy in the form of heat flux. This made it possible to
study dissipation and physical features associated with gravitational collapse, as shown
by Herrera et al. [20–22] . Some recent studies of the temperature properties inside the
radiating star include Reddy et al. [23], Thirukkanesh et al. [24], and Thirukkanesh and
Govender [25]. The metric in Ref. [26] may be extended to include both null dust and null
string fluids leading to the generalized Vaidya spacetime. The properties of the general-
ized Vaidya metric have been studied by Hussain [27], Wang and Wu [16], and Glass and
Krisch [28,29]. Maharaj et al. [30,31] modeled a radiating star with a generalized Vaidya
atmosphere in general relativity. A detailed study of continual gravitational collapse of
these spacetimes in the context of the cosmic censorship conjecture was performed in
Refs. [32–37]. In the geometrical context, gravitational collapse has been considered in
Lovelock gravity theory [38], black holes in dynamical cosmology backgrounds [39], and in
electromagnetic fluids [40]. The influences of dust, radiation, quintessence, and the cosmo-
logical constant are included in these studies. The conformal symmetries and embedding
properties of the generalized Vaidya metric were studied in Refs. [41,42]. Other properties
of this spacetimes can be found in Refs. [43,44].

The paper is organized as follows: In Section 2 we introduce the Eddington–Finkelstein
coordinates for the hairy Schwarzschild metric and consider the solution of the Einstein
equation with mass as the function of the radial coordinate r only. In Section 3, we obtain
the hairy Vaidya solution by solving the Einstein equations with mass depending on the
time v only and calculate the apparent horizon for this metric. In Section 4, the general
case M = M(v, r) is considered in order to obtain the generalized hairy Vaidya spacetime,
and the apparent horizon, in this case, is also calculated. Section 5 is the conclusion.
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2. The Perfect Fluid Case

The hairy Schwarzschild spacetime obtained by gravitational decoupling [12], which
satisfies all energy conditions [15,45], has the following form:

ds2 = −eµdt2 + e−λdr2 + r2dθ2 + r2 sin θ2dϕ2 , (3)

where the metric coefficients are:

eµ = e−λ = 1 −
2M

r
+ α exp

(

−r

(σ − αl/2)

)

. (4)

Here, α is the coupling constant, l is a new charge (hair) of a black hole [12], σ is the
parameter related to the Misner–Sharp mass, and M is a mass of a black hole, which is
given by:

M = M +
αl

2
. (5)

M is the usual Schwarzschild mass. The kinematic properties of the solution (3) has
been intensively studied in Ref. [46]. Moreover, the authors showed that parameters α and
l can mimic the Kerr spacetime and gave the numerical values for the supermassive black
holes at Ark 564 and NGC 1365. The influence of a primary hair on the thermodynamics
of a black hole (3) has been investigated in Ref. [47]. As we have pointed out in the
introduction, gravitational decoupling allows us to consider the Einstein equations for each
source separately; however, the Schwarzschild solution is the vacuum solution. That is,
to obtain (3) one should put T̃ik = 0 and consider how an additional source Θik changes
the vacuum Schwarzschild metric. So, the metric (3) is the solution of the following
Einstein equation:

Gik = −αΘik (6)

where the energy-momentum tensor Θik represents anisotropic fluid. This energy-momentum
tensor satisfies the strong and dominant energy condition for r ≥ 2M [12]. It has the
following form:

pt = Θ
2
2 =

(αl + r − 2σ)α exp( 2r
αl−2σ )

4rπ(αl − 2σ)2
,

Pr = −ρ = Θ
1
1 = −

α exp( 2r
αl−2σ )(αl + 2r − 2σ)

8(αl − 2σ)r2π
.

(7)

Here, ρ is the energy density of an additional matter source and Pr and Pt are the radial
and tangential pressure, respectively.

To obtain the line element (3) in Eddington–Finkelstein coordinates one should per-
form the following coordinate transformation [47]

dt = dv +
rdr

(

−αe−
2r

−αl+2M r + 2M − r
) (8)

Then, one obtains the hairy Schwarzschild spacetime in Eddington–Finkelstein coordinates:

ds2 = −






1 −

2M

r
+

α

exp
(

r
−αl+2σ

)2






dv2 + 2dvdr + r2dθ2 + r2 sin θ2dϕ2 (9)

We know that the energy-momentum tensor of the generalized Vaidya spacetime
represents the mixture of two matter fields—type I (the null dust) and type II (the null
string) [16]. We can obtain type I if we assume that the mass function M depends upon the
time v, and we can acquire type II if the mass function depends on the radial coordinate
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r; furthermore, we can obtain their combination if the mass function is the function of
both v and r. We begin our consideration by assuming that M is the function of the r
coordinate only (M = M(r)). With this assumption, the Einstein tensor components Gik for
the metric (9) are given by:

G0
0 =

α(αl + 2r − 2σ) exp
(

2r
αl−2σ

)

− 2M′(r)(αl − 2σ)

r2(αl − 2σ)
(10)

G1
1 =

α(αl + 2r − 2σ) exp
(

2r
αl−2σ

)

− 2M′(r)(αl − 2σ)

r2(αl − 2σ)
(11)

G2
2 =

2α(αl + 2r − 2σ) exp
(

2r
αl−2σ

)

− M′′(r)(αl − 2σ)2

r(αl − 2σ)2
(12)

G3
3 =

2α(αl + 2r − 2σ) exp
(

2r
αl−2σ

)

− M′′(r)(αl − 2σ)2

r(αl − 2σ)2
, (13)

with the energy-momentum tensor:

Tik = T̃ik + αΘik (14)

where Θik is the energy-momentum tensor (7) and T̃ik is the energy-momentum tensor of
the metric (9) with α = 0. We write it in the following form:

T̃ik = (ρ̂ + p̂)(link + nilk) + p̂g̃ik . (15)

where g̃ik is the metric tensor (9) with α = 0. ρ̂ and p̂ are the energy density and the pressure
of the matter T̃ik. li and ni are two null vectors, which are given by:

ni =
1

2

(

1 −
2M(r)

r

)

δ0
i − δ1

i ,

li = δ0
i ,

lil
i = nin

i = 0 ,

nil
i = −1 .

(16)

First of all, let us find the Einstein equation in the case α = 0 :

ρ̂ = −
2M′(r)

r2
,

p̂ =
M′′(r)

r
.

(17)

The Einstein tensor components, in this case, are given by:

G̃0
0 = −

2M′(r)

r2
,

G̃1
1 = −

2M′(r)

r2
,

G̃2
2 = −

M′′(r)

r
,

G̃3
3 = −

M′′(r)

r
.

(18)
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Comparing (10), (11), (12), (13) and (18), one can easily decouple the initial Einstein
tensor into G̃ik, (α = 0), and Ĝik, which correspond to the metric of minimal geometric
deformation. So, one has:

Ĝ0
0 = ρ = −Pr =

α(αl + 2r − 2σ)exp
(

2r
αl−2σ

)

r2(αl − 2σ)
,

Ĝ1
1 =

α(αl + 2r − 2σ)exp
(

2r
αl−2σ

)

r2(αl − 2σ)
,

Ĝ2
2 =

2α(αl + 2r − 2σ)exp
(

2r
αl−2σ

)

r(αl − 2σ)2
,

Ĝ3
3 =

2α(αl + 2r − 2σ)exp
(

2r
αl−2σ

)

r(αl − 2σ)2
.

(19)

The energy-momentum tensor must satisfy the conservation equation, which is auto-
matically satisfied through the Einstein equation:

Tik
;k = T̃ik

;k + αΘ
ik
;k = 0 . (20)

Hence, for two sources, one has either energy exchange between two matter fields:

T̃ik
;k = −αΘ

ik
;k 6= 0 , (21)

or purely the gravitation interaction of two sources:

T̃ik
;k = αΘ

ik
;k = 0 . (22)

The last condition means that Θik corresponds to the dark matter due to only gravita-
tional interaction. In our case, from the condition T̃ik

;k = 0, it follows that Θik
;k = 0, i.e., there

is no energy exchange between two sources. Let us introduce the generalized density ρ̃ and
pressure P̃ for the metric (9):

ρ̃ =
−α(αl + r − 2σ) exp

(

2r
αl−2σ

)

+ 2M′′(r)(αl − 2σ)2

8r2π(αl − 2σ)2
(23)

P̃ =
2α(αl + r − 2σ) exp

(

2r
αl−2σ

)

− M′′(r)(αl − 2σ)2

8rπ(αl − 2σ)2
(24)

It is worth noticing that this decoupling was introduced in Ref. [7]. We have trans-
formed it to Eddington–Finkelstein coordinates (9) because it is a effective tool to obtain
Vaidya and generalized Vaidya solutions by gravitational decoupling. We also notice that a
new gravitational source Θik changes the location of the apparent horizon. To prove it, let
us consider the expansion Θl of outgoing null geodesic congruence:

eγ
Θl =

2

r






1 −

2M(r)

r
+

α

exp
(

r
−αl+2σ

)2






. (25)

So, to obtain the apparent horizon, one should solve the following equation:

1 −
2M(r)

r
+

α

exp
(

r
−αl+2σ

)2
= 0 . (26)



Universe 2022, 8, 567 6 of 11

One should note that this solution is static. It means that the apparent horizon
coincides with the event horizon. In a dynamical case, it is not true, and the location of the
event horizon is the big question. The only thing that we know is that in a dynamical case,
the radius of the apparent horizon rah is bigger than the event horizon location reh(rah ≥ reh).
The horizon of this metric is a canonical one [48] if the following condition is held:

dB

dr
|r=rh

< 1 . (27)

where rh is the solution of (26) and

B(r) ≡ 2M(r)− r
α

exp
(

r
−αl+2σ

)2
. (28)

To understand the structure of a singularity of a new solution, one should count the
Kretschmann scalar K = RiklmRiklm. Here, we do not investigate the question of the global
structure of this singularity. The main question, which we are interested in now, is that
a new solution does not generate new singularities except for r = 0. In the next section,
the singularity location will be at r = 0 only due to the fact that the mass function M
depends only on the time v. However, when M is the function of r, the structure of the
point r = 0 is not so clear. For example, when one considers the generalized Vaidya solution
(without a hair), r = 0 is not always a singular point [49]. The Kretschmann scalar for
metric (3) with M = M(r) is given by:

K = 1

(αl−2σ)4r6

(

− 16r
(

r4M′′(r) + 2r2(αl − r − 2σ)M′(r)+
(

2r2 + (−2αl + 4σ)r(αl − 2σ)2
)

M(r)
)

α(αl − 2σ)2 exp
(

2r
αl−2σ

)

+

4r2
(

2r2 + (αl − 2σ)2
)2

α2 exp
(

4r
αl−2σ

)

+

4(αl − 2σ)4(r4M′′(r)2 +
(

−4r3M′(r) + 4r2M(r)
)

M′′(r)+

8r2M′(r)2 − 16rMM′(r) + 12M(r)2
)

)

(29)

3. Vaidya Solution by Gravitational Decoupling

The Vaidya spacetime by gravitational decoupling is obtained by the assumption that
the mass in (9) is the function of the time v:

ds2 = −






1 −

2M(v)

r
+

α

exp
(

r
−αl+2σ

)2






dv2 + 2dvdr + r2dθ2 + r2 sin θ2dϕ2 (30)

The Einstein tensor components for this metric are given by:

G0
0 =

α(αl + 2r − 2σ) exp
(

2r
αl−2σ

)

r2(αl − 2σ)
,

G1
0 =

2Ṁ(v)

r2
,

G1
1 =

α(αl + 2r − 2σ) exp
(

2r
αl−2σ

)

r2(αl − 2σ)
,

G2
2 =

2α(αl + 2r − 2σ) exp
(

2r
αl−2σ

)

r(αl − 2σ)2
,

G3
3 =

2α(αl + 2r − 2σ) exp
(

2r
αl−2σ

)

r(αl − 2σ)2
.

(31)
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Here, the decoupling is quite simple. First of all, one can see that the Einstein tensor
Ĝi

k is the same as in the previous section (19) and the only non-vanishing component of the

Einstein tensor G̃i
k, which corresponds with case α = 0, is

G̃1
0 =

2Ṁ(v)

r2
= −µ . (32)

Here, µ is the energy density. The energy-momentum tensor T̃ik represents null dust:

T̃ik = µLiLk ,

Li = δ0
i .

(33)

Such as in the previous case, we have only gravitational interaction between two
matter sources:

T̃ik
;k = Θ

ik
;k = 0 . (34)

Now, we calculate the expansion Θl in order to obtain the apparent horizon equation:

eγ
Θl =

2

r






1 −

2M(v)

r
+

α

exp
(

r
−αl+2σ

)2






. (35)

As in the previous section, the apparent horizon equation is:

1 −
2M(v)

r
+

α

exp
(

r
−αl+2σ

)2
= 0 . (36)

The singularity location in the metric (30) is at r = 0, which can be seen from the
Kretschmann scalar:

K =
1

(αl − 2σ)4r6

(

− 16
(

α2l2 − 2l(r + 2σ)α + 2r2 + 4rσ + 4σ2
)

×

r(αl − 2σ)2αM(v) exp

(

2r

αl − 2σ

)

+

4r2α2
(

α2l2 − 4αlσ + 2r2 + 4σ2
)2

exp

(

4r

αl − 2σ

)

+ 48M(v)2(αl − 2σ)4
)

(37)

4. Generalized Vaidya Spacetime by Gravitational Decoupling

Finally, if we consider the mass in (9) as the function of both time v and the space
coordinate r, we obtain the generalized Vaidya spacetime by gravitational decoupling:

ds2 = −






1 −

2M(v, r)

r
+

α

exp
(

r
−αl+2σ

)2






dv2 + 2dvdr + r2dθ2 + r2 sin θ2dϕ2 . (38)

This metric represents the Einstein equation solution of three sources: the null dust,
the null perfect fluid, and new field Θik. The Einstein tensor is given by:
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G0
0 =

α(αl + 2r − 2σ) exp
(

2r
αl−2σ

)

− 2M′(v, r)(αl − 2σ)

r2(αl − 2σ)
,

G1
0 =

2Ṁ(v, r)

r2
,

G1
1 =

α(αl + 2r − 2σ) exp
(

2r
αl−2σ

)

− 2M′(v, r)(αl − 2σ)

r2(αl − 2σ)
,

G2
2 =

2α(αl + 2r − 2σ) exp
(

2r
αl−2σ

)

− M′′(v, r)(αl − 2σ)2

r(αl − 2σ)2
,

G3
3 =

2α(αl + 2r − 2σ) exp
(

2r
αl−2σ

)

− M′′(v, r)(αl − 2σ)2

r(αl − 2σ)2
.

(39)

We can decouple this tensor into two: one corresponds to the Θik matter field and,
exactly as in (19), the other Einstein tensor corresponds to the energy-momentum tensor T̃ik,
which is a mixture of the two energy-momentum tensors of type-I and type-II matter fields:

T̃ik = T̃nulldust
ik + T̃

nullstring
ik . (40)

Here, T̃nulldust
ik is from (33) and T̃

nullstring
ik is from (15). The Einstein tensor correspond-

ing to the case α = 0 is given by:

G0
0 = −

2M′(v, r)

r2
,

G1
0 =

2Ṁ(v, r)

r2
,

G1
1 = −

2M′(v, r)

r2
,

G2
2 = −

M′′(v, r)

r
,

G3
3 = −

M′′(v, r)

r
.

(41)

To obtain the mass function, one should impose the equation of the state P = ξρ. Then,
the mass function is given by:

M(v, r) = C(v) + D(v)r1−2ξ ,

ξ 6=
1

2
, ξ ∈ [−1 , 1] .

(42)

where C(v) and D(v) are arbitrary functions of time v. The energy conditions for the
tensor Θik were obtained in Ref. [12] and are the same in this case; however, weak, strong,
and dominant energy conditions in all three cases demand:

µ ≥ 0 , ρ̂ ≥ 0 , ρ̂ ≥ P̂ , P̂ ≥ 0 . (43)

The interaction between T̃ik and Θik is purely gravitational, i.e.,:

T̃ik
;k = Θ

ik
;k = 0 . (44)
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Calculating the expansion Θl for null outgoing geodesic congruence

eγ
Θl =

2

r






1 −

2M(v, r)

r
+

α

exp
(

r
−αl+2σ

)2






. (45)

one can easily see that g00 = 0 is again the apparent horizon equation:

1 −
2M(v, r)

r
+

α

exp
(

r
−αl+2σ

)2
= 0 . (46)

The Kretschmann scalar shows that for all three cases the singularity location at r = 0 1:

K = 1

(αl−2σ)4r6

(

− 16r
(

r4M′′(v, r) + 2r2(αl − r − 2σ)M′(v, r)+
(

2r2 + (−2αl + 4σ)r + (αl − 2σ)2
)

M(v, r)
)

α(αl − 2σ)2 exp
2r

αl−2σ +

4r2
(

2r2 + (αl − 2σ)2
)2

α2 exp
4r

αl−2σ +

4(αl − 2σ)4(r4M′′(v, r)2+
(

−4r3M′(v, r) + 4r2M(v, r)
)

M′′(v, r)+

8r2M′(v, r)2 − 16rM(v, r)M′(v, r) + 12M(v, r)2
)

)

(47)

5. Conclusions

In this work, using the gravitational decoupling method, we obtained new dynamical
solutions—Vaidya and generalized Vaidya spacetimes. Despite the fact that the g00 compo-
nent of Vaidya spacetimes depends on time, we can easily decouple two (Vaidya spacetime)
or three (generalized one) gravitational sources. Moreover, we preserve the conservation
laws for the energy-momentum tensor. It means that there is no energy exchange between
these matter fields, and they interact only by gravitation. This fact allows us to consider Θik

as a dark matter source. The results of this paper will allow us to consider the gravitational
collapse problem and how the new matter field might affect the gravitational collapse pro-
cess. In this paper, we briefly considered the structure of the obtained spacetimes, i.e., we
calculated only the apparent horizon and singularity location and proved that the apparent
horizon equation is always g00 = 0 and the singularity is located at r = 0. The Vaidya
metric describes a dynamical spacetime instead of a static spacetime as the Schwarzschild
or Reissner–Nordstrom metrics do. In the real world, astronomical bodies gain mass when
they absorb radiation, and they lose mass when they emit radiation, which means that the
space time around them is time dependent. As we pointed out, the Vaidya spacetime can
be used as the simplest model of gravitational collapse. New solutions by the gravitational
decoupling method allow us to investigate the question of how an additional matter field
will affect the gravitational collapse process. When we consider the gravitational collapse
of Vaidya spacetimes, one might expect the naked singularity to form. New solutions can
tell us how Θik will influence the result of the gravitational collapse. Vaidya spacetimes are
currently widely used and the important question of the global structure of new solutions
is the direction of future research. We have already explained that Θik can be thought of as
the energy-momentum tensor of a dark matter. So, the obtained solution can tell us how
the well-known properties of the Vaidya spacetimes change when an additional matter
field is present. These properties should also be studied in the future.

We consider the additional matter source Θik to be static in this paper. However, it
is interesting if one can decouple the Einstein equations, which can be achieved if the
parameter σ connected to the Misner–Sharp mass is also time-depended.
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Note
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