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Abstract
The reconstruction of charged particles will be a key computing challenge for the high-luminosity Large Hadron Collider 
(HL-LHC) where increased data rates lead to a large increase in running time for current pattern recognition algorithms. An 
alternative approach explored here expresses pattern recognition as a quadratic unconstrained binary optimization (QUBO), 
which allows algorithms to be run on classical and quantum annealers. While the overall timing of the proposed approach 
and its scaling has still to be measured and studied, we demonstrate that, in terms of efficiency and purity, the same phys-
ics performance of the LHC tracking algorithms can be achieved. More research will be needed to achieve comparable 
performance in HL-LHC conditions, as increasing track density decreases the purity of the QUBO track segment classifier.

Keywords  Quantum annealing · Pattern recognition · HEP particle tracking

Introduction

Early quantum computers are rapidly being made available 
both in the cloud and as prototypes in academic and indus-
trial settings. These devices span the range from D-Wave 
[1] commercial quantum annealers to gate-based quantum 
processor prototypes based on a wide range of promising 
technologies [2]. Quantum computing holds the potential 
for super-polynomial speedups and large decrease in energy 
usage, if suitable algorithms can be developed. It is therefore 
crucial to start identifying algorithms and applications for 
high-energy physics, to be ready for when quantum comput-
ing becomes mainstream and to provide input about what 
features are needed in quantum computers to solve problems 
in high-energy physics.

The reconstruction of charged particles will be a key com-
puting challenge for the high-luminosity Large Hadron Col-
lider (HL-LHC) where increased data rates lead to a large 

increase in running time for conventional pattern recognition 
algorithms. Conventional algorithms [3, 4], which are based 
on combinatorial track seeding and building, scale quadrati-
cally or worse as a function of the detector occupancy.

We present an alternative approach, one that expresses 
pattern recognition as a quadratic unconstrained binary opti-
mization (QUBO; a NP-hard problem) using annealing, a 
process to find the global minimum of an objective func-
tion—in our case a quadratic function over binary variables 
based on the algorithm introduced in Ref. [5] following ideas 
in Refs. [6, 7]. The term annealing is inspired by the metal-
lurgic process of repeated heating and cooling to remove 
dislocations in the lattice structure. Likewise as used here, 
the annealing optimization process uses random “thermal” 
fluctuations to find better results of the objective function, 
combined with a “cooling” which progressively reduces the 
probability of accepting a worse result. Quantum annealing 
is grounded in the adiabatic theorem: a system will remain 
in its eigenstate if perturbations that act on it are slow, and 
small enough not to span the gap between the ground and 
first excited states [8]. Thus, it is possible to initialize a 
quantum annealer with a simple ground state Hamiltonian 
and evolve it adiabatically to the desired, complex, prob-
lem Hamiltonian. After evolution, quantum fluctuations, 
such as tunneling, bring the annealer into the ground state 
of the latter, representing the global minimum solution of 
the problem [9]. All steps of quantum annealing operate on 
the system as a whole and the total time required is typically 
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bounded for a given device. Thus, as long as the problem fits 
on the annealer, the total running time should be constant, 
and it is hoped that a large enough quantum system, running 
an intricate problem, can outperform a software-based one.

We test our approach using annealing both in software 
simulation and by running on a D-Wave quantum computer. 
We use a dataset representative of the expected conditions 
at the HL-LHC from the TrackML challenge [10]. We study 
the performance of the algorithm as a function of the parti-
cle multiplicity. We do not expect to obtain speed improve-
ments because the size of the currently available annealers 
is smaller than the scale of our problem.

Methodology

Pattern Recognition: General Considerations

The goal of pattern recognition is to identify groups of 
detector hits to form tracks. Track trajectories are param-
eterized using the following five parameters: d0 , z0 , �0 , cot �, 
and q∕pT.1 The transverse impact parameter, d0 , is the dis-
tance of closest approach of the helix to the chosen refer-
ence point (e.g., the primary vertex) in the x-y plane. The 
longitudinal impact parameter, z0 , is the z coordinate of the 
track at the point of closest approach. The azimuthal angle, 
�0 , is the angle of the track in the x-y at the point of closest 
approach. The polar angle, cot � is the inverse slope of the 
track in the r-z plane. The curvature, q∕pT , is the inverse of 
the transverse momentum with the sign determined by the 
charge of the particle.

Neglecting noise and multiple scattering, most particle 
tracks of physics interest, particularly those with high pT , 
exhibit the following properties:

•	 The hits follow an arc of a helix in the x-y plane with a 
large radius of curvature or small q∕pT;

•	 The hits follow a straight line in the r-z plane;
•	 Most hits lie on consecutive layers: there are few to no 

missing hits (holes).

Track candidates with fewer than five hits are predominantly 
fake tracks, which do not correspond to a true particle trajec-
tory. While tracks can share hits, we impose the constraint 

from Ref. [10] that any one hit can belong to at most one 
track.

Algorithm Goals

The algorithm presented in this paper encodes a classifi-
cation problem. Following Ref. [5], tracks are constructed 
from n consecutive hits, leading to n − 1 doublets. Given the 
large set of potential doublets from hits in the detector, the 
goal of the algorithm is to determine which subset belongs 
to the trajectories of charged particles. The algorithm aims 
to preserve the efficiency, but improve the purity of the input 
doublet set.

Triplets and Quadruplets

We follow a similar approach to Ref. [5], but use triplets 
instead of doublets. In addition to improving the perfor-
mance at high multiplicity, this allows us to calculate and 
use track properties.

A triplet, denoted Tabc , is a set of three hits (a, b, c) or 
a pair of consecutive doublets (a, b and b, c), ordered by 
increasing transverse radius (R). Two triplets Tabc (of hits 
a, b, c) and Tdef  (of hits d, e, f), can be combined to form a 
quadruplet if b = d ∧ c = e or a quintet if c = d . If they share 
any other hit, the triplets are marked as being in conflict. A 
set of n consecutive hits will result in n − 2 triplets and n − 3 
quadruplets.

Key triplet Tabc
i

 properties are the number of holes Hi ; the 
curvature, q∕pT ; and �� the difference in polar angle between 
the doublets.

The strength S quantifies the compatibility of the track 
parameters between the two triplets in a quadruplet (Ti, Tj):

where z2 encodes the relative importance of the curvature 
with respect to �� . The other parameters ( z1, z3, z4, z5 ) are 
unbounded constants that require problem-specific tuning. 
The parameters are set to favor high pT tracks. In its simplest 
form, we have z2 = 0.5 (equal weights), z5 = 2 , and all other 
constants set to 1:

(1)S(Ti, Tj) = z1

z2
(
1 − |�(q∕pTi, q∕pTj)|

)z3
(1 + Hi + Hj)

z5

(2)+
(1 − z2)

(
1 −max(��i, ��j)

)z4
(1 + Hi + Hj)

z5

(3)S(Ti, Tj) =
1 −

1

2
(|�(q∕pTi, q∕pTj)| +max(��i, ��j))

(1 + Hi + Hj)
2

1  We use a right-handed coordinate system with its origin at the 
nominal interaction point (IP) in the center of the detector. The 
x-axis points from the IP to the center of the LHC ring, the y-axis 
points upward, and the z-axis coincides with the axis of the beam 
pipe. Cylindrical coordinates ( r,� ) are used in the transverse plane, 
� being the azimuthal angle around the beam pipe. The polar angle � 
lies in the r-z plane.
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Definition of the Quadratic Unconstrained Binary 
Optimization

The QUBO is configured to identify the best pairs of triplets. 
It has two components: a linear term that weighs the quality 
of individual triplets and a quadratic term used to express 
relationships between pairs of triplets. In our case, the objec-
tive function to minimize becomes:

where T are all potential triplets, ai are the bias weights, 
and bij the coupling strengths computed from the rela-
tion between the triplets Ti and Tj . The bias weights and 
the coupling strengths define the Hamiltonian. Minimizing 
the QUBO is equivalent to finding the ground state of the 
Hamiltonian.

All bias weights are set to be identical ai = � , which 
means all triplets have equal a priori probability to belong 
to a particle track. Our objective function therefore depends 
solely2 on the triplet–triplet coupling strength bij . If the tri-
plets form a valid quadruplet, the coupling strength is nega-
tive and equal to the quadruplet quality S(Ti, Tj) (Eq. 3). If 
the two triplets are in conflict, the coupling is a positive 
constant bij = � that disfavors a solution with Ti = Tj = 1 . 
Finally, if the triplets have no relationship (meaning, no 
shared hits), the coupling is set to zero. This is illustrated in 
Fig. 1 and represented in Eq. 5.

As is clear from Eq. 5, the choice of constants in Eq. 1 deter-
mines the functional behavior of bij . The larger the conflict 

(4)O(a, b, T) =

N∑
i=1

aiTi +

N∑
i

N∑
j<i

bijTiTj Ti, Tj ∈ {0, 1}

(5)bij =

⎧
⎪⎨⎪⎩

−S(Ti, Tj), if (Ti, Tj) form a quadruplet ,

� if (Ti, Tj) are in conflict ,

0 otherwise.

strength � the lower the number of conflicts, but too large 
values risk discontinuities in the energy landscape, increas-
ing time to convergence. Furthermore, the D-Wave machines 
limit the value of bij , and thus � , to between −2 and 2 (with a 
restricted precision, so scaling is not a fix either).

Dataset Selection

By design, the algorithm does not favor any particular 
momentum range. However, to limit the size of the QUBO, 
we focus on high pT tracks ( pT ≥ 1 GeV), which are the 
most relevant for physics analysis at the HL-LHC.

A triplet Ti is created if and only if:

And a quadruplet (Ti, Tj) is created if and only if:

Triplets that are not part of any quadruplet or whose long-
est potential track has less than five hits are not considered.

Experimental Setup

Dataset

The TrackML dataset is representative of future high-energy 
physics experiments at the HL-LHC. It anticipates the HL-
LHC multiplicities planned for after 2026. Both the low 
pT cut (150 MeV) and high luminosity (200 μ ) make pat-
tern recognition within this dataset a challenging task. We 
simplify the dataset by focusing on the barrel (experiment 
mid-section, with detectors mostly parallel to the beamline) 
region of the detector, i.e., hits in the end caps (both experi-
ment end sections, with detectors mostly transverse to the 
beamline) are removed. If a particle makes multiple energy 
deposits in a single layer, all but one energy deposits are 
removed. Hits from particles with pT < 1 GeV and particles 
with less than five hits are kept and thus part of the pattern 
recognition, but are not taken into account when comput-
ing the performance metrics. Events are split by randomly 
selecting a fraction of particles and an equal fraction of noise 
to generate datasets with different detector occupancies yet 
similar characteristics. We note that this is not fully equiva-
lent to a lower multiplicity event because such a procedure 
selects a fraction of the tracks in a pile-up event rather than 
a fraction of the pile-up events.

Hi ≤1

|(q∕pT )i| ≤8 × 10−4 GeV−1,

��i ≤0.1 rad

|𝛿((q∕pT )i, (q∕pT )j)| ≤1 × 10−4 GeV−1,

S(Ti, Tj) >0.2

Fig. 1   The value assigned to the QUBO quadratic weights bij for 
different configurations of the pairs of triplets Ti and Tj . See text for 
details

2  No difference was observed when shifting the bias weight � by a 
small amount.
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Metrics

The performance is assessed using purity and efficiency,3 
which are computed on the final set of doublets. This pro-
vides a good estimate of the quality of the model as a doublet 
classifier, but does not account for the difference in impor-
tance between track candidates for physics. The TrackML 
score [10] is used as a complementary metric as it includes 
weights to favour tracks with higher pT , which play a larger 
role in physics performance.

The efficiency and purity are defined as follows:

The number of true doublets ( Dtrue ) only includes those 
with pT > 1 GeV, which deposit at least five hits in the 
detector barrel. Reconstructed doublets ( Drec ) are matched 
to true doublets using truth information ( Drec

matched
 ). Recon-

structed doublets matched to true doublets, but with either 
pT ≤ 1 GeV or less than five hits in the detector barrel 
( Drec

oa
 ) are excluded from the purity.

Initial Doublets

The initial set of doublets is generated using an adaptation 
as a Python library of the ATLAS online track seeding code 
[11]. It was tuned to ensure an efficiency above 99% for high 
pT tracks, but has a purity below 0.5%.

QUBO Solver

qbsolv [12] is a tool developed by D-Wave to solve larger and 
more densely connected QUBOs than currently supported 
by the D-Wave hardware. It uses an iterative hybrid classi-
cal/quantum approach with multiple trials. In each trial, the 
QUBO is split into smaller instances that are submitted to a 
sub-QUBO solver for global optimization. Results are com-
bined and a tabu search [13] is performed for local optimiza-
tion. The sub-QUBO solver is either a D-Wave system or a 
software-based solver. Using this setup, running qbsolv on 
a classical system has the same workflow as running qbsolv 
with D-Wave, making it an effective simulator. D-Wave also 
provides NEAL [14], a standalone software-only annealer, 
which we use for comparison studies.

(6)Efficiency =
Drec

matched

Dtrue

(7)Purity =
Drec

matched

Drec − Drec
oa

The number of sub-QUBOs that are created can be con-
trolled by restricting the size of the number of logical qubits 
that can be used per sub-QUBO. We use the default value of 
47 for both the simulator and the D-Wave, as it worked well: 
larger or smaller numbers can result in a failed mapping, 
and a subsequent abort of the run. Another qbsolv param-
eter we have tuned is the number of times the main loop 
of the algorithm is repeated before stopping. The default 
value of 50 was too conservative for our problem which 
converges smoothly to the optimal solution (Fig. 2). Reduc-
ing that value to 10 sped up the solving step without any 
performance loss. Other qbsolv command line parameters 
do not appear to influence the algorithm performance, and 
were also left at their default values.

We ran our simulations on the Cori [15] supercomputer 
at NERSC, experiments on the Ising D-Wave 2X machine 
at Los Alamos National Laboratory (with 1000 qubits), and 
tests on the D-Wave LEAP cloud service. The number of 
iterations and D-Wave samplings was limited to 10.

Complete Algorithm

Figure 3 illustrates the steps in the algorithm [16]. The 
initial doublets are combined into triplets and quadruplets, 

Fig. 2   An example event showing the convergence towards the solu-
tion in each qbsolv loop. The algorithm occasionally jumps away 
from the current best solution which is an intended feature to avoid 
local minima

Fig. 3   Overview of the steps in the algorithm

3  Instead of purity and efficiency, the equivalent terms of precision 
and recall are sometimes used in the literature.
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after satisfying the requirements from Sect. 2.4. Details 
of the QUBO building including the quality cuts applied 
to triplets and quadruplets are discussed in [16]. The 
QUBO is generated and sampled using qbsolv. The post-
processing phase includes converting the triplets into 
doublets, removing duplicates and removing any doublets 
with unresolved conflicts. The track candidates are recon-
structed from the doublets, and track candidates with less 
than five hits are discarded. Finally, performance metrics 
are computed and the set of final doublets corresponding 
to the track candidates is returned.

Results

We chose three events from the dataset containing 10K, 
12K and 14K particles plus noise, with the latter being 
the highest multiplicity event in the dataset. We sample 
from these events to construct sets ranging from O(1K) 
to O(7K) particles. Each set is constructed by taking a 
fixed fraction of the particles and the noise in that event.

Algorithmic Performance

We use purity and efficiency, as defined in Sect. 3.2, to 
assess the algorithmic performance. Figure 4 shows these 
metrics as a function of the particle multiplicity. Efficiency 
and the TrackML score are well above 90% across the range, 
with the purity starting close to 100%, but dropping to about 
50% for the highest occupancies considered. As the purity 
drops with increasing occupancy, the number of fake dou-
blets rises. The D-Wave machine results are well reproduced 
by the simulation. The reproducibility of the results was 
checked by repeating the qsolving step on D-Wave for the 
same QUBO.

Figure 5 shows the fraction of real and fake doublets as a 
function of the number of hits on tracks. As the fake tracks 

Fig. 4   The performance of classical simulator (top) and D-Wave (bot-
tom), as measured by TrackML score (red), purity (blue), and effi-
ciency (green), as a function of particle multiplicity

Fig. 5   The fraction of real (green) and fake (red) doublets as a func-
tion of the number of hits on track

Fig. 6   Selected  real (green) and fake (red) track candidates from a 
low multiplicity event
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(i.e., tracks containing one or more fake doublets, see Fig. 6) 
tend to have fewer hits, the purity can be improved, with 
minimal efficiency loss, by requiring barrel tracks to have 
at least six hits.

The purity can be improved to above 90% (see Fig. 7) by 
adding new properties to the QUBO such as the extrapolated 
track perigee or impact parameters, but at the cost of biasing 
the algorithm against tracks with large impact parameters.

We find that the results from the simulator match those of 
the D-Wave machine rather well. This allows us to use the 
simulation to tune the parameters for the experiments on the 
D-Wave machine. No significant impact of noise from the 
machine on the final results is observed.

Throughput and Timing

Our current experimental setup does not allow to perform 
detailed timing studies. This is because the devices used are 
shared, accessed remotely and inherently stochastic.

Today, D-Wave devices are not fully connected and thus 
require synthesis of logical qubits, via a process named 
“minor embedding” [17]. In our setting, the process that 
takes the initial set of doublets and generates the QUBO 
placement onto the D-Wave is approximately linear over the 
range of input doublets considered. It takes up to an hour on 
the largest dataset, which we view as a limitation of the cur-
rent approach. However, we expect that the run time would 
be improved by code optimization including parallelization 
and by exploiting more advanced track seeding algorithms. 
All QUBO solvers scale similarly, with a superlinear run-
ning time as a function of occupancy. NEAL is two orders 
of magnitude faster than qbsolv.

On D-Wave, the annealing is run ten times for each sub-
QUBO to reduce the impact of noise. There is significant 
initial setup time on D-Wave, as well as additional overhead 
due to the time required for minor embedding.

In the configuration described in Sect. 3.4, the quantum 
annealer converges reliably to a solution, likely due to the 
smoothness of the energy function O(a, b, T) (Eq. 4). Vary-
ing the constant bias � between [−0.1, 0.1] , and the conflict 
term � between [0.8, 2.0] has little impact on the algorithm 
purity and efficiency, that change by less than 3% across the 
intensity (#particles/event) range.

Related Work

Ref. [18] shows that quantum Hopfield associative memory 
can be implemented and trained on a D-Wave computer. 
When training a Hopfield network, the optimization goal 
is to find the set of connection weights that minimizes the 
network energy for a given set of training patterns. In this 
work, we used charged particle properties to determine a 
set of weights and then the set of patterns that minimize the 
QUBO energy.

Ventura’s quantum associative memory (QuAM) is a 
quantum pattern matching algorithm derived from Grover’s 
search [19] providing exponential storage capacity [20]. That 
algorithm targets pattern recognition algorithms in trigger 
detectors, while the algorithm discussed here targets offline 
pattern recognition.

Discussion

The main algorithmic innovation reported here is the 
introduction of a triplet-based QUBO. The richer feature 
set of a triplet allows the QUBO to achieve greater than 
90% efficiency at track densities which are comparable to 
HL-LHC4. The binary constraints used in the QUBO are 
based on matching the pT and � track parameters between 
two triplets. Improvement can be achieved using the full 
track covariance matrix. Further improvements may come 
from more refined hyperparameter tuning, integration of the 
detailed geometry and magnetic field description, tuning the 
preselection according to the detector location and topolo-
gies of the triplets and the use of quadruplets instead of 
triplets in the QUBO.

When considering throughput, the timing is driven by 
partitioning the QUBO to fit on the available hardware, 
given the limited connectivity and the available number 
of qubits. The running time of individual sub-QUBOs was 
observed to be constant. The overall execution time was 
found to scale with the number of sub-QUBOs. Because of 
this, we do not currently observe an advantage in running 
on the D-Wave system. We observed that our large QUBO 

Fig. 7   The performance of the classical simulator as measured by 
TrackML score (red), purity (blue), and efficiency (green), as a func-
tion of particle multiplicity when including a bias term based on the 
impact parameter of the triplet

4  And two orders of magnitude higher than in Ref. [5]
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instances are processed quite efficiently with a particular 
classical solver. In addition, formulating the problem as a 
QUBO has the additional advantage of also being compat-
ible with other kinds of special hardware dedicated to the 
Ising model.

Conclusion

We ran pattern recognition on events representative of 
expected conditions at the HL-LHC on a D-Wave quantum 
computer using qbsolv, and provided a detailed analysis of 
the physics performance of the algorithm. At low track mul-
tiplicity, we obtain results with purity and efficiency compa-
rable to current algorithms. We were able to run on events 
with as many as 6600 tracks. A very good performance 
was obtained with up to approximately 2000 particles per 
event, after which efficiency remains high, but purity starts 
to drop. Ideas for future algorithmic improvements were also 
explored. Further investigations would be required to study 
and optimize the timing performance of such algorithms.
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