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Abstract

The reconstruction of charged particles will be a key computing challenge for the high-luminosity Large Hadron Collider
(HL-LHC) where increased data rates lead to a large increase in running time for current pattern recognition algorithms. An
alternative approach explored here expresses pattern recognition as a quadratic unconstrained binary optimization (QUBO),
which allows algorithms to be run on classical and quantum annealers. While the overall timing of the proposed approach
and its scaling has still to be measured and studied, we demonstrate that, in terms of efficiency and purity, the same phys-
ics performance of the LHC tracking algorithms can be achieved. More research will be needed to achieve comparable
performance in HL-LHC conditions, as increasing track density decreases the purity of the QUBO track segment classifier.

Keywords Quantum annealing - Pattern recognition - HEP particle tracking

Introduction

Early quantum computers are rapidly being made available
both in the cloud and as prototypes in academic and indus-
trial settings. These devices span the range from D-Wave
[1] commercial quantum annealers to gate-based quantum
processor prototypes based on a wide range of promising
technologies [2]. Quantum computing holds the potential
for super-polynomial speedups and large decrease in energy
usage, if suitable algorithms can be developed. It is therefore
crucial to start identifying algorithms and applications for
high-energy physics, to be ready for when quantum comput-
ing becomes mainstream and to provide input about what
features are needed in quantum computers to solve problems
in high-energy physics.

The reconstruction of charged particles will be a key com-
puting challenge for the high-luminosity Large Hadron Col-
lider (HL-LHC) where increased data rates lead to a large
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increase in running time for conventional pattern recognition
algorithms. Conventional algorithms [3, 4], which are based
on combinatorial track seeding and building, scale quadrati-
cally or worse as a function of the detector occupancy.

We present an alternative approach, one that expresses
pattern recognition as a quadratic unconstrained binary opti-
mization (QUBO; a NP-hard problem) using annealing, a
process to find the global minimum of an objective func-
tion—in our case a quadratic function over binary variables
based on the algorithm introduced in Ref. [5] following ideas
in Refs. [6, 7]. The term annealing is inspired by the metal-
lurgic process of repeated heating and cooling to remove
dislocations in the lattice structure. Likewise as used here,
the annealing optimization process uses random ‘“‘thermal”
fluctuations to find better results of the objective function,
combined with a “cooling” which progressively reduces the
probability of accepting a worse result. Quantum annealing
is grounded in the adiabatic theorem: a system will remain
in its eigenstate if perturbations that act on it are slow, and
small enough not to span the gap between the ground and
first excited states [8]. Thus, it is possible to initialize a
quantum annealer with a simple ground state Hamiltonian
and evolve it adiabatically to the desired, complex, prob-
lem Hamiltonian. After evolution, quantum fluctuations,
such as tunneling, bring the annealer into the ground state
of the latter, representing the global minimum solution of
the problem [9]. All steps of quantum annealing operate on
the system as a whole and the total time required is typically
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bounded for a given device. Thus, as long as the problem fits
on the annealer, the total running time should be constant,
and it is hoped that a large enough quantum system, running
an intricate problem, can outperform a software-based one.

We test our approach using annealing both in software
simulation and by running on a D-Wave quantum computer.
We use a dataset representative of the expected conditions
at the HL-LHC from the TrackML challenge [10]. We study
the performance of the algorithm as a function of the parti-
cle multiplicity. We do not expect to obtain speed improve-
ments because the size of the currently available annealers
is smaller than the scale of our problem.

Methodology
Pattern Recognition: General Considerations

The goal of pattern recognition is to identify groups of
detector hits to form tracks. Track trajectories are param-
eterized using the following five parameters: d, z, ¢y, cot 8,
and ¢/p;.! The transverse impact parameter, d,, is the dis-
tance of closest approach of the helix to the chosen refer-
ence point (e.g., the primary vertex) in the x-y plane. The
longitudinal impact parameter, z, is the z coordinate of the
track at the point of closest approach. The azimuthal angle,
¢y, 1s the angle of the track in the x-y at the point of closest
approach. The polar angle, cot 8 is the inverse slope of the
track in the r-z plane. The curvature, g/py, is the inverse of
the transverse momentum with the sign determined by the
charge of the particle.

Neglecting noise and multiple scattering, most particle
tracks of physics interest, particularly those with high p;,
exhibit the following properties:

e The hits follow an arc of a helix in the x-y plane with a
large radius of curvature or small ¢/py;

e The hits follow a straight line in the r-z plane;

e Most hits lie on consecutive layers: there are few to no
missing hits (holes).

Track candidates with fewer than five hits are predominantly
fake tracks, which do not correspond to a true particle trajec-
tory. While tracks can share hits, we impose the constraint

! We use a right-handed coordinate system with its origin at the
nominal interaction point (IP) in the center of the detector. The
x-axis points from the IP to the center of the LHC ring, the y-axis
points upward, and the z-axis coincides with the axis of the beam
pipe. Cylindrical coordinates (r, ¢) are used in the transverse plane,
¢ being the azimuthal angle around the beam pipe. The polar angle 0
lies in the r-z plane.
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from Ref. [10] that any one hit can belong to at most one
track.

Algorithm Goals

The algorithm presented in this paper encodes a classifi-
cation problem. Following Ref. [5], tracks are constructed
from n consecutive hits, leading to n — 1 doublets. Given the
large set of potential doublets from hits in the detector, the
goal of the algorithm is to determine which subset belongs
to the trajectories of charged particles. The algorithm aims
to preserve the efficiency, but improve the purity of the input
doublet set.

Triplets and Quadruplets

We follow a similar approach to Ref. [5], but use triplets
instead of doublets. In addition to improving the perfor-
mance at high multiplicity, this allows us to calculate and
use track properties.

A triplet, denoted Tec_ is a set of three hits (a, b, ¢) or
a pair of consecutive doublets (a, b and b, c¢), ordered by
increasing transverse radius (R). Two triplets T (of hits
a, b, ¢) and T% (of hits d, e, ), can be combined to form a
quadrupletif b = d A ¢ = e or a quintet if ¢ = d. If they share
any other hit, the triplets are marked as being in conflict. A
set of n consecutive hits will result in n — 2 triplets and n — 3
quadruplets.

Key triplet Tl.“”” properties are the number of holes H; the
curvature, g/py; and 60 the difference in polar angle between
the doublets.

The strength S quantifies the compatibility of the track
parameters between the two triplets in a quadruplet (7}, T)):

o (1= 18(a/pr-a/pipl)”
S(T,.T) =z, dl (1+H:HA)ZST’ ) 1)
i v

(1 = 2p)(1 — max(66;,56,))"
(1+H;+H)s

@

where z, encodes the relative importance of the curvature
with respect to 66. The other parameters (z;, z3,24,25) are
unbounded constants that require problem-specific tuning.
The parameters are set to favor high py tracks. In its simplest
form, we have z, = 0.5 (equal weights), zs = 2, and all other
constants set to 1:

1- %(|5(CI/PT53 CI/PT,')| + max(s6;, 59j))
(1+H; + H))

ST, T) = 3
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Fig.1 The value assigned to the QUBO quadratic weights b; for
different configurations of the pairs of triplets 7; and 7;. See text for
details

Definition of the Quadratic Unconstrained Binary
Optimization

The QUBO is configured to identify the best pairs of triplets.
It has two components: a linear term that weighs the quality
of individual triplets and a quadratic term used to express
relationships between pairs of triplets. In our case, the objec-
tive function to minimize becomes:

N N N
O, b,T) =Y aT,+ Y Y b;TT, T,T,€{0,1} (4)

i=1 ij<i

where T are all potential triplets, g; are the bias weights,
and b; the coupling strengths computed from the rela-
tion between the triplets 7; and 7. The bias weights and
the coupling strengths define the Hamiltonian. Minimizing
the QUBO is equivalent to finding the ground state of the
Hamiltonian.

All bias weights are set to be identical a; = @ , which
means all triplets have equal a priori probability to belong
to a particle track. Our objective function therefore depends
solely” on the triplet—triplet coupling strength b;. If the tri-
plets form a valid quadruplet, the coupling strength is nega-
tive and equal to the quadruplet quality S(7;, T;) (Eq. 3). If
the two triplets are in conflict, the coupling is a positive
constant b; = ¢ that disfavors a solution with 7; =T, = 1.
Finally, if the triplets have no relationship (meaning, no
shared hits), the coupling is set to zero. This is illustrated in
Fig. 1 and represented in Eq. 5.

=S(Ti, Tj), if (T,,T;) form a quadruplet,
b;=1¢ if (T}, T;) are in conflict, 5)
0 otherwise.

As is clear from Eq. 5, the choice of constants in Eq. 1 deter-
mines the functional behavior of b;. The larger the conflict

2 No difference was observed when shifting the bias weight a by a
small amount.

strength ¢ the lower the number of conflicts, but too large
values risk discontinuities in the energy landscape, increas-
ing time to convergence. Furthermore, the D-Wave machines
limit the value of bij, and thus ¢, to between —2 and 2 (with a
restricted precision, so scaling is not a fix either).

Dataset Selection

By design, the algorithm does not favor any particular
momentum range. However, to limit the size of the QUBO,
we focus on high p; tracks (p; > 1 GeV), which are the
most relevant for physics analysis at the HL-LHC.

A triplet T; is created if and only if:

H, <1
I(q/pr)il <8 x107* GeV~!,
06; <0.1 rad

And a quadruplet (7}, 7)) is created if and only if:

16a/pr)i-(@/pr)p] <1x107* GeV™,
S(T,.T;) >0.2

Triplets that are not part of any quadruplet or whose long-
est potential track has less than five hits are not considered.

Experimental Setup
Dataset

The TrackML dataset is representative of future high-energy
physics experiments at the HL-LHC. It anticipates the HL-
LHC multiplicities planned for after 2026. Both the low
pr cut (150 MeV) and high luminosity (200 p) make pat-
tern recognition within this dataset a challenging task. We
simplify the dataset by focusing on the barrel (experiment
mid-section, with detectors mostly parallel to the beamline)
region of the detector, i.e., hits in the end caps (both experi-
ment end sections, with detectors mostly transverse to the
beamline) are removed. If a particle makes multiple energy
deposits in a single layer, all but one energy deposits are
removed. Hits from particles with p; < 1GeV and particles
with less than five hits are kept and thus part of the pattern
recognition, but are not taken into account when comput-
ing the performance metrics. Events are split by randomly
selecting a fraction of particles and an equal fraction of noise
to generate datasets with different detector occupancies yet
similar characteristics. We note that this is not fully equiva-
lent to a lower multiplicity event because such a procedure
selects a fraction of the tracks in a pile-up event rather than
a fraction of the pile-up events.
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Metrics

The performance is assessed using purity and efficiency,’
which are computed on the final set of doublets. This pro-
vides a good estimate of the quality of the model as a doublet
classifier, but does not account for the difference in impor-
tance between track candidates for physics. The TrackML
score [10] is used as a complementary metric as it includes
weights to favour tracks with higher p;, which play a larger
role in physics performance.
The efficiency and purity are defined as follows:

rec

. __ " matched
Efficiency = (6)
rec
IR matched
Purity = Drec — Drec 0
oa

The number of true doublets (D"™¢) only includes those
with p; > 1 GeV, which deposit at least five hits in the
detector barrel. Reconstructed doublets (D™°) are matched
to true doublets using truth information (D . ). Recon-
structed doublets matched to true doublets, but with either
pr < 1GeV or less than five hits in the detector barrel

(D5y) are excluded from the purity.
Initial Doublets

The initial set of doublets is generated using an adaptation
as a Python library of the ATLAS online track seeding code
[11]. It was tuned to ensure an efficiency above 99% for high
pr tracks, but has a purity below 0.5%.

QUBO Solver

gbsolv [12] is a tool developed by D-Wave to solve larger and
more densely connected QUBOs than currently supported
by the D-Wave hardware. It uses an iterative hybrid classi-
cal/quantum approach with multiple trials. In each trial, the
QUBO is split into smaller instances that are submitted to a
sub-QUBO solver for global optimization. Results are com-
bined and a tabu search [13] is performed for local optimiza-
tion. The sub-QUBO solver is either a D-Wave system or a
software-based solver. Using this setup, running gbsolv on
a classical system has the same workflow as running qbsolv
with D-Wave, making it an effective simulator. D-Wave also
provides NEAL [14], a standalone software-only annealer,
which we use for comparison studies.

3 Instead of purity and efficiency, the equivalent terms of precision
and recall are sometimes used in the literature.
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Fig.2 An example event showing the convergence towards the solu-
tion in each gbsolv loop. The algorithm occasionally jumps away
from the current best solution which is an intended feature to avoid
local minima

potential
doublets
filter doublets kept triplets
create triplets solve precision
QUBO doublets
create quadruplets ety recall
build QUBO D:\WJaue tracks ~, trackml
score
L final doublets
forming track candidates
QUBO generation solving postprocessing scoring

Fig.3 Overview of the steps in the algorithm

The number of sub-QUBOs that are created can be con-
trolled by restricting the size of the number of logical qubits
that can be used per sub-QUBO. We use the default value of
47 for both the simulator and the D-Wave, as it worked well:
larger or smaller numbers can result in a failed mapping,
and a subsequent abort of the run. Another gbsolv param-
eter we have tuned is the number of times the main loop
of the algorithm is repeated before stopping. The default
value of 50 was too conservative for our problem which
converges smoothly to the optimal solution (Fig. 2). Reduc-
ing that value to 10 sped up the solving step without any
performance loss. Other gbsolv command line parameters
do not appear to influence the algorithm performance, and
were also left at their default values.

We ran our simulations on the Cori [15] supercomputer
at NERSC, experiments on the Ising D-Wave 2X machine
at Los Alamos National Laboratory (with 1000 qubits), and
tests on the D-Wave LEAP cloud service. The number of
iterations and D-Wave samplings was limited to 10.

Complete Algorithm

Figure 3 illustrates the steps in the algorithm [16]. The
initial doublets are combined into triplets and quadruplets,
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Fig.4 The performance of classical simulator (top) and D-Wave (bot-
tom), as measured by TrackML score (red), purity (blue), and effi-
ciency (green), as a function of particle multiplicity

after satisfying the requirements from Sect. 2.4. Details
of the QUBO building including the quality cuts applied
to triplets and quadruplets are discussed in [16]. The
QUBO is generated and sampled using gbsolv. The post-
processing phase includes converting the triplets into
doublets, removing duplicates and removing any doublets
with unresolved conflicts. The track candidates are recon-
structed from the doublets, and track candidates with less
than five hits are discarded. Finally, performance metrics
are computed and the set of final doublets corresponding
to the track candidates is returned.

Results

We chose three events from the dataset containing 10K,
12K and 14K particles plus noise, with the latter being
the highest multiplicity event in the dataset. We sample
from these events to construct sets ranging from O(1K)
to O(7K) particles. Each set is constructed by taking a
fixed fraction of the particles and the noise in that event.

0.7 E real
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Fig.5 The fraction of real (green) and fake (red) doublets as a func-
tion of the number of hits on track
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Fig.6 Selected real (green) and fake (red) track candidates from a
low multiplicity event

Algorithmic Performance

We use purity and efficiency, as defined in Sect. 3.2, to
assess the algorithmic performance. Figure 4 shows these
metrics as a function of the particle multiplicity. Efficiency
and the TrackML score are well above 90% across the range,
with the purity starting close to 100%, but dropping to about
50% for the highest occupancies considered. As the purity
drops with increasing occupancy, the number of fake dou-
blets rises. The D-Wave machine results are well reproduced
by the simulation. The reproducibility of the results was
checked by repeating the gsolving step on D-Wave for the
same QUBO.

Figure 5 shows the fraction of real and fake doublets as a
function of the number of hits on tracks. As the fake tracks

@ Springer
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Fig.7 The performance of the classical simulator as measured by
TrackML score (red), purity (blue), and efficiency (green), as a func-
tion of particle multiplicity when including a bias term based on the
impact parameter of the triplet

(i.e., tracks containing one or more fake doublets, see Fig. 6)
tend to have fewer hits, the purity can be improved, with
minimal efficiency loss, by requiring barrel tracks to have
at least six hits.

The purity can be improved to above 90% (see Fig. 7) by
adding new properties to the QUBO such as the extrapolated
track perigee or impact parameters, but at the cost of biasing
the algorithm against tracks with large impact parameters.

We find that the results from the simulator match those of
the D-Wave machine rather well. This allows us to use the
simulation to tune the parameters for the experiments on the
D-Wave machine. No significant impact of noise from the
machine on the final results is observed.

Throughput and Timing

Our current experimental setup does not allow to perform
detailed timing studies. This is because the devices used are
shared, accessed remotely and inherently stochastic.

Today, D-Wave devices are not fully connected and thus
require synthesis of logical qubits, via a process named
“minor embedding” [17]. In our setting, the process that
takes the initial set of doublets and generates the QUBO
placement onto the D-Wave is approximately linear over the
range of input doublets considered. It takes up to an hour on
the largest dataset, which we view as a limitation of the cur-
rent approach. However, we expect that the run time would
be improved by code optimization including parallelization
and by exploiting more advanced track seeding algorithms.
All QUBO solvers scale similarly, with a superlinear run-
ning time as a function of occupancy. NEAL is two orders
of magnitude faster than gbsolv.

On D-Wave, the annealing is run ten times for each sub-
QUBO to reduce the impact of noise. There is significant
initial setup time on D-Wave, as well as additional overhead
due to the time required for minor embedding.

@ Springer

In the configuration described in Sect. 3.4, the quantum
annealer converges reliably to a solution, likely due to the
smoothness of the energy function O(a, b, T) (Eq. 4). Vary-
ing the constant bias a between [—0.1, 0.1], and the conflict
term ¢ between [0.8, 2.0] has little impact on the algorithm
purity and efficiency, that change by less than 3% across the
intensity (#particles/event) range.

Related Work

Ref. [18] shows that quantum Hopfield associative memory
can be implemented and trained on a D-Wave computer.
When training a Hopfield network, the optimization goal
is to find the set of connection weights that minimizes the
network energy for a given set of training patterns. In this
work, we used charged particle properties to determine a
set of weights and then the set of patterns that minimize the
QUBO energy.

Ventura’s quantum associative memory (QuAM) is a
quantum pattern matching algorithm derived from Grover’s
search [19] providing exponential storage capacity [20]. That
algorithm targets pattern recognition algorithms in trigger
detectors, while the algorithm discussed here targets offline
pattern recognition.

Discussion

The main algorithmic innovation reported here is the
introduction of a triplet-based QUBO. The richer feature
set of a triplet allows the QUBO to achieve greater than
90% efficiency at track densities which are comparable to
HL-LHC*. The binary constraints used in the QUBO are
based on matching the p, and  track parameters between
two triplets. Improvement can be achieved using the full
track covariance matrix. Further improvements may come
from more refined hyperparameter tuning, integration of the
detailed geometry and magnetic field description, tuning the
preselection according to the detector location and topolo-
gies of the triplets and the use of quadruplets instead of
triplets in the QUBO.

When considering throughput, the timing is driven by
partitioning the QUBO to fit on the available hardware,
given the limited connectivity and the available number
of qubits. The running time of individual sub-QUBOs was
observed to be constant. The overall execution time was
found to scale with the number of sub-QUBOs. Because of
this, we do not currently observe an advantage in running
on the D-Wave system. We observed that our large QUBO

4 And two orders of magnitude higher than in Ref. [5]
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instances are processed quite efficiently with a particular
classical solver. In addition, formulating the problem as a
QUBO has the additional advantage of also being compat-
ible with other kinds of special hardware dedicated to the
Ising model.

Conclusion

We ran pattern recognition on events representative of
expected conditions at the HL-LHC on a D-Wave quantum
computer using gbsolv, and provided a detailed analysis of
the physics performance of the algorithm. At low track mul-
tiplicity, we obtain results with purity and efficiency compa-
rable to current algorithms. We were able to run on events
with as many as 6600 tracks. A very good performance
was obtained with up to approximately 2000 particles per
event, after which efficiency remains high, but purity starts
to drop. Ideas for future algorithmic improvements were also
explored. Further investigations would be required to study
and optimize the timing performance of such algorithms.
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