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Abstract The excess in the measurement of the branching
fractions of B̄ → D(D∗)τ−ν̄τ and Bc → J/ψτ−ν̄τ from
the standard model expectation hints the existence of new
physics beyond the standard model. Motivated by these indi-
cations, we study similar modes mediated by b → cτ ν̄τ tran-
sitions, in particular, the semileptonic b-baryon decay modes
Ξb → Ξcτ

−ν̄τ and Σb → Σ
(∗)
c τ−ν̄τ . We consider a general

low energy effective Hamiltonian approach, which includes
both standard model and new physics contributions. Within
different new physics scenarios, we investigate the impact of
the new contributions on these modes and present predictions
for various semileptonic q2-spectra.

1 Introduction

The standard model (SM) of particle physics provides a uni-
fied framework of the fundamental particles and their inter-
actions. Although the SM has been successful in describ-
ing a wide range of experimental measurements, it is not
a complete theory. The limitations of the SM have led to
various new physics (NP) beyond the SM searches via both
direct and indirect means. NP has been hinted by precision
measurements such as that of the muon anomalous magnetic
moment (g − 2)μ. Flavor anomalies observed in b-hadron
decays represent one of the indirect indications of NP beyond
the SM. A number of measurements of b-decay observables
have been found to disagree with SM predictions. These dis-
crepancies have been seen particularly in decays mediated
by b → s�+�− and b → cτ−ν̄τ transitions.

One of the key properties of the SM is lepton flavor uni-
versality (LFU) which states that the couplings of leptons to
gauge bosons are flavor independent. In the b sector, some
of the observables that have been found to violate LFU are
the ratio of branching fractions RD and RD(∗) which are
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defined as, RD(∗) = B(B → D(∗)τν)/B(B → D(∗)�ν),
with � = e or μ. The world average values Rexpt

D =
0.339 ± 0.026 ± 0.014 and Rexpt

D∗ = 0.295 ± 0.010 ± 0.010
[1] exceed their SM predictions RSM

D = 0.299 ± 0.003 and
RSM
D∗ = 0.254 ± 0.005 [2–7] by 1.4σ and 2.8σ , respec-

tively. The ratio of branching fractions RJ/ψ = B(Bc →
J/ψτντ )/B(Bc → J/ψμνμ) = 0.71 ± 0.17 ± 0.18 as
measured by the LHCb collaboration [8] also deviates from
the SM prediction RSM

J/ψ = 0.289 ± 0.01 [9] by about 2σ .
These observations suggest the presence of NP beyond the
Standard Model (SM) and motivate the study of other decays
mediated by the same b → cτ−ν̄τ transitions. The τ polar-
ization PD∗

τ = −0.38 ± 0.51 +0.21
−0.16 [10,11] and the D∗−

polarization FD∗
L = 0.60 ± 0.08 ± 0.04 [12] as measured

by the Belle collaboration also provide additional aspects to
analyse NP in these transitions.

To explain the anomalies in the B meson modes, var-
ious NP models have been proposed, some of which can
be found in [13–21]. In our work, we analyse the semilep-
tonic b → cτ−ν̄τ transitions involving heavy b-baryons,
Bb → Bcτ

−ν̄τ , where Bb = Ξb,Σb and Bc = Ξc,Σ
(∗)
c ,

in a model-independent approach. The semileptonic decays
of b-baryons have not been studied as extensively as the
b-meson ones though. Insights on weak interaction prop-
erties of the heavy baryons, the underlying dynamics and
sensitivity to NP can be obtained from such decays. The
semileptonic heavy b-baryon decays can also complement
the sensitivity search of NP to that of the meson modes. The
b-baryon decay modes which are of half-integer spin pro-
vide an auxiliary environment to test the observed anoma-
lies. In addition, the CKM matrix parameter Vcb can be
determined from the semileptonic decays of heavy baryons
mediated by b → cτ−ντ transitions complimentary to heavy
meson semileptonic decays. Decays involving heavy baryons
are also good grounds for obtaining information on heavy
quark physics. There is also less contamination from non-
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perturbative QCD effects with regards to semileptonic decays
as leptons are involved. From the experimental side, exper-
iments such as the Tevatron and LHC have made signifi-
cant progress in the study of heavy baryons containing a
b quark with a considerable accumulation of data. For the
baryons of interest in this work, the Ξ0

b and Ξ±
b baryons

were first observed by CDF and D0 [22,23]. LHCb [24–
32] and CDF [33] have also measured their masses, lifetimes
and branching ratios. Clear signals of four strongly-decaying
baryon states, Σ+

b ,Σ∗+
b (uub),Σ−

b ,Σ∗−
b (ddb), have been

obtained by CDF [34,35] and LHCb [36]. Since the Σb

baryon predominantly decays via the strong interaction, it
may be difficult to measure its weak branching fraction.
However, analysing the semileptonic decay modes may be
insightful as they can be more sensitive to new particles and
any deviation from the SM prediction will be a clear indica-
tion of NP [37].

The experimental progress in the study of heavy b-baryons
which contain a single heavy quark necessitates theoretical
progress. Important theoretical studies onb-baryons and their
decays have indeed been carried out [38–40]. The semilep-
tonic mode involving the spin-1/2 baryon Λb has been con-
siderably studied. The form factors of Λb → Λc mode have
been computed using lattice QCD (LQCD) [41]. Exclusive
semileptonic decays of spin-1/2 baryons Λb,Ωb,Σb, Ξb

have been examined in the spectator quark model [42],
the relativistic three-quark model [39] and a non-relativistic
quark model [43]. The decay modes Λb → Λc�

−ν̄� and
Ξb → Ξc�

−ν̄� were analysed in [44] within a light-front
constituent quark model and similarly in [45] within a com-
bined non-relativistic constituent quark model and heavy
quark effective theory study. The authors in [46] studied the
weak transition of Σb → Σc and Ωb → Ωc in the light-
front quark model considering the quark–diquark picture for
heavy baryons. Similarly, in [37], the authors studied the
Λb → Λc and Σb → Σc weak decays in the light-front
quark model by considering the two spectator light quarks as
individual ones rather than a diquark. In the work of [47], the
semileptonic decays of heavy baryons (Λb,Σb,Ωb,Ξb, Ξ

′
b)

with scalar and axial-vector diquarks in the relativistic quark
model framework were analysed. The semileptonic decays
Ξb → Ξc�

−ν� and Ξb → Λ�−ν� were analysed in the
framework of the relativistic quark–diquark model based on
the quasipotential approach in [48]. In these works, SM esti-
mates of decay rates, branching fractions, longitudinal and
transverse asymmetries, the longitudinal to transverse decay
ratio, the CKM parameter |Vcb| and various other asymmetry
parameters such as forward-backward asymmetry, convex-
ity parameter, polarizations of the daughter baryon and the
charged lepton, and ratio of branching fractions were deter-
mined.

There have also been some model-independent studies to
probe NP in the heavy baryon decays. The Λb → Λcτ

−ν̄τ

mode has already been analysed with several NP signa-
tures such as those that can be found in [49–63]. In [64],
the mode Ξb → Ξcτ

−ν̄τ decay was analyzed in the SM
and in various NP scenarios with vector and scalar type
of interactions. The observables RD and RD∗ were used
to constrain the NP parameter space. The decay modes
Σb → Σc�

−ν̄� and Ωb → Ωc�
−ν̄� were analyzed sim-

ilarly in [65] within a model-independent effective field
theory formalism. Real vector and scalar NP couplings
were considered and the allowed NP parameter space was
obtained from the experimental values of the observables
RD(∗) . In [66], new physics was probed in the baryon decays
Ξb → Λ(Ξc)τ

−ν̄τ . The new couplings assumed to be
complex were constrained using the experimental measure-
ments of B(B+

c → τ+ντ ), Rl
π , RD∗ , RJ/ψ and FD∗

L . The
authors in [67] studied the decay modes Σb → Σc�

−ν̄�

and Ωb → Ωc�
−ν̄� in a model-independent effective field

theory formalism. The NP couplings were assumed to be
complex and the allowed NP parameter space was con-
strained from the experimental values of the observables
B(B → D(∗)�−ν̄�), RD(∗) , RJ/ψ . In these analyses, predic-
tions for various q2-dependent observables such as differen-
tial decay rate, branching fraction, forward-backward asym-
metry of the charged lepton, convexity parameter, ratio of
branching fractions, polarizations of the daughter baryon and
the charged lepton were presented.

In our analysis of the heavy b-baryon semileptonic decay
modes Ξb → Ξcτ

−ν̄τ and Σb → Σ
(∗)
c τ−ν̄τ , we consider

a model-independent effective field theory framework, with
a low energy effective Hamiltonian that includes both SM
and NP contributions. For the amplitudes of the semilep-
tonic decays of heavy b-hadrons, the hadronic matrix ele-
ments of weak currents are generally parametrized in terms
of form factors that embody nonperturbative QCD effects.
For b → c transitions, the heavy quark effective theory
(HQET) [68–75] which is based on the 1/mQ expansion
of the QCD Lagrangian and heavy quark symmetry, is the
right approach for hadrons containing a single heavy quark.
In HQET, the form factors can be simplified and described
by the universal Isgur–Wise functions in the heavy quark
expansion. Here, we analyze the decay modes without tak-
ing into account effects of radiative corrections to the HQET
form factors. In our work, we use these form factors which
have been obtained in the relativistic quark model (RQM)
framework of [47], with the quark–diquark picture where
a heavy baryon is seen as a bound state of a heavy quark
and a light diquark system. We also use helicity amplitude
formalism [76–78] to analyze the semileptonic transitions
Ξb → Ξcτ

−ν̄τ and Σb → Σ
(∗)
c τ−ν̄τ . For the new cou-

plings, we obtain constraints using the experimental mea-
surements of RD(∗) , RJ/ψ , FD∗

L , PD∗
τ and the upper bound

of B(B+
c → τ+ντ ). We then investigate the impact of these

new contributions and present the predictions for various q2-
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dependent observables. It is to be noted that new physics
sensitivity of the Σb → Σ∗

c τ−ν̄τ mode has not been inves-
tigated so far. The helicity amplitudes in the presence of NP
for this 1/2+ → 3/2+ transition has been worked out thor-
oughly and presented here.

The paper is organized as follows. In Sect. 2, we briefly
discuss the theoretical framework used for the analysis,
including form factors and helicity amplitudes. We also
define various q2-dependent observables in this section. To
assess the validity of the RQM framework, we first compare
the theoretical predictions obtained using RQM with those
obtained using lattice QCD results in Sect. 3. In Sect. 4, we
present and discuss the NP sensitivity of the q2-dependent
observables for the Ξb → Ξcτ

−ν̄τ and Σb → Σ
(∗)
c τ−ν̄τ

decay modes, considering one new coupling at a time and
also using the global fits of [54]. We summarize our findings
and conclude in Sect. 5.

2 Theoretical framework

We consider the most general low energy effective Hamilto-
nian relevant for b → c�−ν̄� transitions at the b-quark mass
scale, with only left-handed neutrinos, given by [54]

He f f = 4GF√
2
Vcb

[ (
1 + CVL

)OVL + CVROVR + CSROSR

+CSLOSL + CTOT

]
+ h.c., (1)

where GF is the Fermi constant and Vcb is the CKM matrix
element. The fermionic operators are given by

OVL ,R = (
c̄γ μbL ,R

) (
�̄Lγμν�L

)
OSL ,R = (

c̄bL ,R
) (

�̄Rν�L

)
OT = (

c̄σμνbL
) (

�̄Rσμνν�L

)
(2)

and their corresponding Wilson coefficients denoted by
CVL ,R ,CSL ,R ,CT are the vector, scalar and tensor type cou-
plings that encode the NP contributions. The new contribu-
tions are assumed to be present only in the � = τ mode as
indicated by the LFU ratios. In our analysis, we consider only
vector and scalar type of interactions and the NP couplings
are assumed to be real. It has been shown that within the
context of the SM effective field theory (SMEFT) [79–81],
the vector operator with a right-handed quark current does
not contribute to LFU violation [54,55,82–84]. Hence, we
do not include the effects of CVR in our work.

2.1 Hadronic matrix elements and form factors

The hadronic matrix elements of the vector and axial vector
currents for the decays Bb → B(∗)

c �−ν̄� can be parametrized

in terms of various form factors expressed as functions of
velocities of baryons [47].

For 1/2 → 1/2 transition, the parametrization is given by

Mμ
V = 〈Bc(v

′, s′)|c̄γ μb|Bb(v, s)〉
= ū Bc (v

′, s′)
[
F1(ω)γ μ + F2(ω)vμ + F3(ω)v′μ

]

× uBb (v, s),

Mμ
A = 〈Bc(v

′, s′)|c̄γ μγ5b|Bb(v, s)〉
= ū Bc (v

′, s′)
[
G1(ω)γ μ + G2(ω)vμ + G3(ω)v′μ

]

× γ5uBb (v, s), (3)

where Bb represent the bottomed baryons Ξb,Σb and Bc

represent the charmed baryons Ξc,Σ
(∗)
c , and uBb and ū Bc

are the Dirac spinors of Bb and Bc, respectively. The form
factors F1, F2, F3,G1,G2,G3 are functions of the velocity

transfer variable ω = v · v′ = (m2
Bb

+m2
Bc

−q2)

2mBbmBc
, where v and v′

are the four-velocities of the baryons Bb and Bc, respectively.
Using equations of motion, the hadronic matrix elements

of the scalar and pseudoscalar currents can be obtained from
those of the vector and axial vector currents and are given by

〈Bc(v
′, s′)|c̄b|Bb(v, s)〉 = qμ

mb − mc

×〈Bc(v
′, s′)|c̄γ μb|Bb(v, s)〉

= ū Bc (v
′, s′)

[
F1(ω)

/q

(mb − mc)

+F2(ω)

(m2
Bb

− m2
Bc

+ q2

2mBb (mb − mc)

)

+F3(ω)

(m2
Bb

− m2
Bc

− q2

2mBc (mb − mc)

)]

×uBb (v, s),

〈Bc(v
′, s′)|c̄γ5b|Bb(v, s)〉 = qμ

−(mb + mc)

×〈Bc(v
′, s′)|c̄γ μγ5b|Bb(v, s)〉

= ū Bc (v
′, s′)

[
− G1(ω)

/q

(mb + mc)

−G2(ω)

(m2
Bb

− m2
Bc

+ q2

2mBb (mb + mc)

)

−G3(ω)

(m2
Bb

− m2
Bc

− q2

2mBc (mb + mc)

)]

×γ5uBb (v, s), (4)

where mb and mc denote the mass of b and c quarks respec-
tively evaluated at the renormalization scale, μ = mb.

For 1/2 → 3/2 transition, the parametrization is given by

Mμ
V = 〈B∗

c (v′, s′)|c̄γ μb|Bb(v, s)〉
= ū B∗

c ,λ(v
′, s′)

[
N1(ω)vλγ μ + N2(ω)vλvμ
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+N3(ω)vλv′μ + N4(ω)gλμ

]
γ5uBb (v, s),

Mμ
A = 〈B∗

c (v′, s′)|c̄γ μγ5b|Bb(v, s)〉
= ū B∗

c ,λ(v
′, s′)

[
K1(ω)vλγ μ + K2(ω)vλvμ

+K3(ω)vλv′μ + K4(ω)gλμ

]
uBb (v, s), (5)

where uB∗
c ,λ is the Rarita–Schwinger spinor for the B∗

c
baryon.

Again using equations of motion, the scalar and pseu-
doscalar matrix elements can be obtained as before and are
given by

〈B∗
c (v′, s′)|c̄b|Bb(v, s)〉 = ū B∗

c ,λ(v
′, s′)

[
N1(ω)vλ

× /q

(mb − mc)
+ N2(ω)vλ

×
(
m2

Bb
− m2

B∗
c

+ q2

2mBb(mb − mc)

)

+N3(ω)vλ

×
(
m2

Bb
− m2

B∗
c

− q2

2mB∗
c
(mb − mc)

)

+N4(ω)
qλ

(mb − mc)

]

×γ5uBb (v, s),

〈B∗
c (v′, s′)|c̄γ5b|Bb(v, s)〉 = ū B∗

c ,λ(v
′, s′)

[
− K1(ω)vλ

× /q

(mb + mc)
− K2(ω)vλ

×
(
m2

Bb
− m2

B∗
c

+ q2

2mBb(mb + mc)

)

−K3(ω)vλ

×
(
m2

Bb
− m2

B∗
c

− q2

2mB∗
c
(mb + mc)

)

−K4(ω)
qλ

(mb + mc)

]

×uBb (v, s). (6)

In the heavy quark limit, the form factors for the semilep-
tonic decay of Ξb → Ξc (scalar diquark picture) can be
expressed as

F1(ω) = ζ(ω)+
(

Λ

2mb
+ Λ

2mc

)[
2χ(ω) + ζ(ω)

]
,

G1(ω) = ζ(ω)+
(

Λ

2mb
+ Λ

2mc

)[
2χ(ω) + ω − 1

ω + 1
ζ(ω)

]
,

F2(ω) = G2(ω) = − Λ

2mc

2

ω + 1
ζ(ω),

F3(ω) = −G3(ω) = − Λ

2mb

2

ω + 1
ζ(ω), (7)

where the parameter Λ = (mBb − mb) and ζ(ω) is the lead-
ing order Isgur–Wise (IW) function. The additional func-
tion χ(ω) arises from the 1/mb correction to the HQET
Lagrangian. Near the zero recoil point of the daughter baryon,
the functions ζ(ω) and χ(ω) can be approximated by

ζ(ω) = 1 − ρ2
ζ (ω − 1) + cζ (ω − 1)2 + · · · ,

χ(ω) = ρ2
χ (ω − 1) + cχ (ω − 1)2 + · · · , (8)

where ρ2 gives the slope and c gives the curvature of the IW
functions. The values of these parameters are Λ (GeV) =
0.970, ρ2

ζ = 2.27, cζ = 3.87, ρ2
χ = 0.045 and cχ = 0.036.

For the semileptonic decays of Σb → Σ
(∗)
c (axial-vector

diquark picture), the form factors in the heavy quark limit
can be expressed in terms of the Isgur–Wise function ζ1(ω)

as

F1(ω) = G1(ω) = −1

3
ζ1(ω),

F2(ω) = F3(ω) = 2

3

2

ω + 1
ζ1(ω),

G2(ω) = G3(ω) = 0,

N1(ω) = −N3(ω) = K3(ω) = − 1√
3

2

ω + 1
ζ1(ω),

N4(ω) = −K4(ω) = − 2√
3
ζ1(ω),

N2(ω) = K1(ω) = K2(ω) = 0. (9)

Again, near the zero recoil point of the daughter baryon, the
ζ1(ω) function can be approximated by

ζ1(ω) = ζ1(1) − ρ2
ζ1

(ω − 1) + cζ1(ω − 1)2 + · · · , (10)

where ρ2
ζ1

gives the slope and cζ1 gives the curvature of the

IW functions. The values of these parameters are ρ2
ζ1

= 2.17
and cζ1 = 3.62. Further details of the Isgur–Wise functions
used in this work can be found in [47].

2.2 Helicity amplitudes

The helicity amplitudes are defined as [49,56,76,85,86]

HV,A
λ2,λW

= MV,A
μ (λ2)ε

∗μ(λW ), (11)

where λ2 and λW are the helicities of the daughter baryon and
the virtual vector boson, respectively; ε∗μ is the polarization
vector of the virtual vector boson.

In the parent baryon (Bb) rest frame, the vector (V ) and
axial vector (A) helicity amplitudes can be obtained in terms
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of form factors and NP couplings. The scalar (S) and pseu-
doscalar (P) helicity amplitudes corresponding to new scalar
and pseudoscalar interactions can be obtained using equa-
tions of motion.

For 1/2 → 1/2 transition, the helicity amplitudes are
given by

HV,A
1
2 ,0

= (1 + CVL ± CVR )

{
1√
q2

√
2mBbmBc (ω ∓ 1)

×
[
(mBb ± mBc )F

V,A
1 (ω) ± mBc (ω ± 1)FV,A

2 (ω)

± mBb (ω ± 1)FV,A
3 (ω)

]}
,

HV,A
1
2 ,t

= (1 + CVL ± CVR )

{
1√
q2

√
2mBbmBc (ω ± 1)

×
[
(mBb ∓ mBc )F

V,A
1 (ω) ± (mBb − mBcω)FV,A

2 (ω)

±(mBbω − mBc )F
V,A
3 (ω)

]}
,

HV,A
1
2 ,1

= (1 + CVL ± CVR )

[
− 2

√
mBbmBc (ω ∓ 1)FV,A

1 (ω)

]
,

HS,P
1
2 ,0

= (CSL ± CSR )

{√
2mBbmBc (ω ± 1)

mb ∓ mc

×
[
(mBb ∓ mBc )F

V,A
1 (ω)

±
(m2

Bb
− m2

Bc
+ q2

2mBb

)
FV,A

2 (ω)

±
(m2

Bb
− m2

Bc
− q2

2mBc

)
FV,A

3 (ω)

]}
. (12)

For 1/2 → 3/2 transition, the helicity amplitudes are
given by

HV,A
1
2 ,0

= (1 + CVL ± CVR )

{
∓ 1√

q2

2√
3

√
mBbmB∗

c
(ω ∓ 1)

×
[

∓ (mBb ∓ mB∗
c
)(ω ± 1)NV,A

1 (ω)

+ mB∗
c
(ω2 − 1)NV,A

2 (ω) + mBb (ω
2 − 1)NV,A

3 (ω)

+(mBbω − mB∗
c
)NV,A

4 (ω)

]}
,

HV,A
1
2 ,t

= (1 + CVL ± CVR )

{
∓ 1√

q2

2√
3

√
mBbmB∗

c
(ω ± 1)

×(ω ∓ 1)

[
∓ (mBb ± mB∗

c
)NV,A

1 (ω)

+(mBb − mB∗
c
ω)NV,A

2 (ω)

+(mBbω − mB∗
c
)NV,A

3 (ω) + mBb N
V,A
4 (ω)

]}
,

HV,A
1
2 ,1

= (1 + CVL ± CVR )

√
2

3

√
mBbmB∗

c
(ω ∓ 1)

×
[

− 2(ω ± 1)NV,A
1 (ω) + NV,A

4 (ω)

]
,

HV,A
3
2 ,1

= (1 + CVL ± CVR )

[
∓

√
2mBbmB∗

c
(ω ∓ 1)NV,A

4 (ω)

]
,

HS,P
1
2 ,0

= (CSL ± CSR )

{
−

√
2

3

√
2mBbmB∗

c
(ω ± 1)

(mb ∓ mc)

×2mBbmB∗
c
(ω ∓ 1)

2mB∗
c

[
∓

(
mBb ± mB∗

c

mBb

)
NV,A

1 (ω)

+
(
m2

Bb
− m2

B∗
c

+ q2

2m2
Bb

)
NV,A

2 (ω)

+
(
m2

Bb
− m2

B∗
c

− q2

2mBb2mB∗
c

)
NV,A

3 (ω) + NV,A
4 (ω)

]}
. (13)

The remaining helicity amplitudes can be obtained using
parity relations

HV,A
−λ2,−λW

= ±HV,A
λ2,λW

(1/2+ → 1/2+)

HV,A
−λ2,−λW

= ∓HV,A
λ2,λW

(1/2+ → 3/2+)

HS,P
−λ2,−λNP

= ±HS,P
λ2,λNP

(1/2+ → 1/2+)

HS,P
−λ2,−λNP

= ∓HS,P
λ2,λNP

(1/2+ → 3/2+) . (14)

The total helicity amplitudes are given by

Hλ2,λW = HV
λ2,λW

− H A
λ2,λW

HSP
λ2,0 = HS

λ2,0 − HP
λ2,0 . (15)

2.3 q2-dependent observables

The twofold angular distribution for the Bb → B(∗)
c �−ν̄�

decay including NP contributions can be written as [49]

d2Γ

dq2d cos θ�

=
G2

F |Vcb|2q2|p
B(∗)
c

|
512π3m2

B1

(
1 − m2

�

q2

)2

×
[
A1 + m2

�

q2 A2 + 2A3 + 4m�√
q2

A4

]
, (16)

where θ� is the angle of the lepton with respect to the W
momentum in the rest frame of the W boson, |p

B(∗)
c

| =√
λ(m2

Bb
,m2

B(∗)
c

,q2)

2mBb
, and

A1 = 2 sin2 θ�

(
H2

1
2 ,0

+ H2
− 1

2 ,0

)
+ (1 − cos θ�)

2
(
H2

1
2 ,1

+H2
3
2 ,1

)
+ (1 + cos θ�)

2
(
H2

− 1
2 ,−1

+ H2
− 3

2 ,−1

)
,

A2 = 2 cos2 θ�

(
H2

1
2 ,0

+ H2
− 1

2 ,0

)
+ sin2 θ�

(
H2

1
2 ,1

+ H2
− 1

2 ,−1

+H2
3
2 ,1

+ H2
− 3

2 ,−1

)
+ 2

(
H2

1
2 ,t

+ H2
− 1

2 ,t

)

−4 cos θ�

(
H 1

2 ,t H 1
2 ,0 + H− 1

2 ,t H− 1
2 ,0

)
,

A3 =
(
HSP

1
2 ,0

)2 +
(
HSP

− 1
2 ,0

)2
,

A4 = − cos θ�

(
H 1

2 ,0H
SP
1
2 ,0

+ H− 1
2 ,0H

SP
− 1

2 ,0

)

+
(
H 1

2 ,t H
SP
1
2 ,0

+ H− 1
2 ,t H

SP
− 1

2 ,0

)
. (17)
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Table 1 Form factors predictions for Λb → Λc at q2 = 0 and q2 = q2
max

f+(0) f⊥(0) f0(0) g+(0) g⊥(0) g0(0)

RQM [47] 0.796 1.013 0.796 0.796 0.783 0.796

LQCD [41] 0.418 0.558 0.416 0.377 0.375 0.378

f+(q2
max ) f⊥(q2

max ) f0(q2
max ) g+(q2

max ) g⊥(q2
max ) g0(q2

max )

RQM [47] 1.088 1.392 0.999 0.999 0.999 1.088

LQCD [41] 1.126 1.491 0.986 0.903 0.903 1.030

The helicity amplitude squared terms

(
H2

3
2 ,1

)
and(

H2
− 3

2 ,−1

)
contribute only to the Bb → B∗

c �−ν̄� case.

On integrating out cos θ� from Eq. (16), the differential
decay rate for the Bb → B(∗)

c �−ν̄� decay including NP con-
tributions can be obtained as

dΓ

dq2 =
G2

F |Vcb|2q2|p
B(∗)
c

|
192π3m2

Bb

(
1 − m2

�

q2

)2

H 1
2 → 1

2

(
3
2

), (18)

where

H 1
2 → 1

2
=

(
H2

1
2 0

)
+

(
H2

− 1
2 0

)
+

(
H2

1
2 1

)
+

(
H2

− 1
2 −1

)

+ m2
�

2q2

[ (
H2

1
2 0

)
+

(
H2

− 1
2 0

)
+

(
H2

1
2 1

)
+

(
H2

− 1
2 −1

)

+3
(
H2

1
2 t

+ H2
− 1

2 t

)]
+ 3

2

[ (
HSP

1
2 0

)2

+
(
HSP

− 1
2 0

)2]

+ 3m�√
q2

[
H 1

2 t
H SP

1
2 0

+ H− 1
2 t
H SP

− 1
2 0

]
(19)

and

H 1
2 → 3

2
=

(
H2

1
2 0

)
+

(
H2

− 1
2 0

)
+

(
H2

1
2 1

)
+

(
H2

− 1
2 −1

)

+
(
H2

3
2 1

)
+

(
H2

− 3
2 −1

)
+ m2

�

2q2

[ (
H2

1
2 0

)
+

(
H2

− 1
2 0

)

+
(
H2

1
2 1

)
+

(
H2

− 1
2 −1

)
+

(
H2

3
2 1

)
+

(
H2

− 3
2 −1

)

+3
(
H2

1
2 t

+ H2
− 1

2 t

)]
+ 3

2

[ (
HSP

1
2 0

)2

+
(
HSP

− 1
2 0

)2]

+ 3m�√
q2

[
H 1

2 t
H SP

1
2 0

+ H− 1
2 t
H SP

− 1
2 0

]
. (20)

The differential branching fraction is given by

DBR(q2) = τBb

(
dΓ

dq2

)
. (21)

Apart from these, other interesting q2-dependent observables
are defined, such as:

Ratio of branching fractions

R
B(∗)
c

(q2) =
dΓ
dq2 (Bb → B(∗)

c τ−ν̄τ )

dΓ
dq2 (Bb → B(∗)

c �−ν̄�)
, (22)

Forward-backward asymmetry of the charged lepton

Aτ
FB(q2) =

(∫ 1

0
−

∫ 0

−1

)
d2Γ

dq2d cos θ�
d cos θ�

(∫ 1

0
+

∫ 0

−1

)
d2Γ

dq2d cos θ�
d cos θ�

, (23)

Convexity parameter

Cτ
F (q2) = 1

dΓ /dq2

d2

d(cosθ�)2

(
d2Γ

dq2d cos θ�

)
, (24)

Longitudinal polarization of the charged lepton

Pτ
L (q2) =

dΓ λτ =1/2

dq2 − dΓ λτ =−1/2

dq2

dΓ λτ =1/2

dq2 + dΓ λτ =−1/2

dq2

, (25)

where dΓ λτ =±1/2/dq2 are helicity-dependent differential
decay rates.

3 Comparison of RQM and LQCD predictions

In this section, we first confront the theoretical predictions
obtained in the relativistic quark model framework [47] with
those obtained using lattice QCD [41]. Since lattice results
are available for the well-studied mode Λb → Λcτ

−ν̄τ , we
therefore present the comparison for form factors calculated
in RQM and in LQCD for the semileptonic Λb to Λc decay
at q2 = 0 and q2 = q2

max in Table 1. Such a comparison
can help to comprehend the different approaches used in the
determination of form factors for baryons. From Table 1, it
can be seen that the RQM form factor predictions and those
from lattice results are in reasonable agreement at the zero
recoil point of the daughter baryon. This is observed in the
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Table 2 Theoretical predictions
for Λb → Λcτ

−ν̄τ
RQM [47] ELA [50] LQCD [41]

Γ/|Vcb|2 ps−1 9.91 ± 0.29 7.15 ± 0.15 ± 0.27

Br(%) 2.43 1.63

RΛc 0.25 0.3379 0.3328 ± 0.0074 ± 0.0070

case of b-meson decays [87] also. The relation between the
RQM form factors and those used in lattice calculations are
given in Appendix A.

In the RQM framework, the uncertainties coming from
the form factors were estimated to be not more than 5%
[48,88]. These uncertainties were shown to have their ori-
gin in the uncertainties of the baryon wave functions used
in the calculation of the form factors. Using RQM form
factors and considering a 5% uncertainty coming from the
form factor inputs, we find that the predicted total decay
rate divided by the square of the CKM matrix element is
Γ (Λb → Λcτ

−ν̄τ )/|Vcb|2 = (9.91 ± 0.29) ps−1 and the
relative error is 2.9%. With lattice form factors, the predic-
tion is Γ (Λb → Λcτ

−ν̄τ )/|Vcb|2 = (7.15 ± 0.15 ± 0.27)

ps−1. Here, the relative error is about 2%. When the branch-
ing ratio is compared, we find that the prediction using lattice
form factors within an effective Lagrangian approach (ELA)
[50] is smaller compared to that obtained using RQM. Pre-
dictions for the ratio RΛc = Br(Λb → Λcτ

−ν̄τ )/Br(Λb →
Λc�

−ν̄�) in RQM are somewhat smaller compared to lattice
predictions. However, it should be noted that the sensitiv-
ity of these ratios to form factor uncertainties is less as these
cancel out partially in these ratios. The predictions compared
here are presented in Table 2.

In Fig. 1, we also display the differential branching frac-
tion prediction for Λb → Λcτ

−ν̄τ decay with RQM and
LQCD calculations within the SM. It can be observed that
there is a sizeable difference in the differential distribu-
tion and this may be attributed to the variation in the q2-
dependence of the form factors. However, close to the point
of zero recoil, the two predictions are in agreement with each
other.

4 New physics sensitivity

We now proceed to study the NP sensitivity of the vari-
ous q2-dependent observables defined in the earlier section
for the modes Ξb → Ξcτ

−ν̄τ and Σb → Σ
(∗)
c τ−ν̄τ . The

input parameters used for our numerical analysis are listed
in Table 3.

For the SM calculation of decay amplitudes, the theoreti-
cal uncertainties that arise from the input parameters such as
the CKM matrix element Vcb and the form factors are taken
into consideration. We consider the Vcb uncertainty as given

Fig. 1 Comparison of the differential branching fraction for Λb →
Λcτ

−ν̄τ decay in the SM obtained using RQM framework (red) and
lattice calculations (green)

in Table 3 and a 5% uncertainty coming from the form factor
inputs as determined in [48,88]. We constrain the new cou-
plings CVL ,CSL ,CSR using the experimental measurements
of RD(∗) , RJ/ψ , FD∗

L and PD∗
τ . A 30% constraint is also

imposed from the upper bound of B(B+
c → τ+ντ ) [90]. The

relevant relations pertaining to these observables are given
below.

The differential decay rate of B̄ → Dτ−ν̄τ is given by
[19]

dΓ (B̄ → Dτ−ν̄τ )

dq2 = G2
F |Vcb|2

192π3m3
B

q2
√

λD(q2)

(
1 − m2

τ

q2

)2

×
{
|1 + CVL + CVR |2

[(
1 + m2

τ

2q2

)

×H2
V,0 + 3

2

m2
τ

q2 H2
V,t

]

+3

2
|CSR + CSL |2H2

S

+3Re
[(

1 + CVL + CVR

)(
C∗
SR

+C∗
SL

)] mτ√
q2

HSHV,t

}
, (26)

where the hadronic helicity amplitudes HV,0, HV,t and HS

are expressed in terms of the Caprini et al. parametrized
HQET form factors [91]. These form factors are evaluated
using parameters obtained from lattice QCD calculations
[92].
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Table 3 Input parameters [89]

GF = 1.166378 × 10−5 GeV−2 mΞb= 5.7970 GeV

Vcb = (41.0 ± 1.4) × 10−3 mΞc = 2.47090 GeV

mτ = 1.77686 GeV mΣb = 5.81564 GeV

mμ = 0.105658 GeV mΣc = 2.45375 GeV

mb = 4.18 GeV mΣ∗
c

= 2.51848 GeV

mc = 1.27 GeV τΞb = 1.572 ps

me = 0.00051099 GeV

The differential decay rate of B̄ → D∗τ−ν̄τ is given by
[19,93]

dΓ (B̄ → D∗τ−ν̄τ )

dq2 = G2
F |Vcb|2

192π3m3
B

q2
√

λD∗(q2)

(
1 − m2

τ

q2

)2

×
{
(|1 + CVL |2 + |CVR |2)

×
[(

1 + m2
τ

2q2

) (
H2
V,0 + H2

V,+

+H2
V,−

) + 3

2

m2
τ

q2 H2
V,t

]

−2Re
[(

1 + CVL

)
C∗
VR

]

×
[(

1 + m2
τ

2q2

) (
H2
V,0

+2HV,+HV,−
) + 3

2

m2
τ

q2 H2
V,t

]

+3

2
|CSR − CSL |2H2

S

+3Re
[(

1 + CVL − CVR

)(
C∗
SR

−C∗
SL

)] mτ√
q2

HSHV,t

}
, (27)

where HV,0, HV,±, HV,t and HS are the hadronic helicity
amplitudes. Here λD(∗) (q2) = [(mB −mD(∗) )2 −q2][(mB +
mD(∗) )2 − q2].

We use B̄ → D∗ HQET form factors parametrized by
Caprini et al. [91] where the fitted parameters are determined
by HFLAV [1]. The differential decay rate expression for
Bc → J/ψτ−ν̄τ is similar to that of B̄ → D∗τ−ν̄τ with
appropriate substitutions for masses and form factors. For
this mode, we use the form factors obtained in [93,94] by
employing perturbative QCD approach.

The longitudinal polarization of τ (PD∗
τ ) and of D∗(FD∗

L )

in B → D∗τ−ν̄τ are respectively given by

PD∗
τ = Γ (λτ = 1/2) − Γ (λτ = −1/2)

Γ (λτ = 1/2) + Γ (λτ = −1/2)
, (28)

FD∗
L = ΓλD∗=0(B → D∗τ−ν̄τ )

Γ (B → D∗τ−ν̄τ )
, (29)

Table 4 Experimental and theoretical values of RD(∗) , RJψ, FD∗
L , PD∗

τ

Observable Experimental value SM value

RD 0.339 ± 0.026 ± 0.014 0.299 ± 0.003

RD∗ 0.295 ± 0.010 ± 0.010 0.254 ± 0.005

RJ/ψ 0.71 ± 0.17 ± 0.18 0.289 ± 0.01

FD∗
L 0.60 ± 0.08 ± 0.04 0.457 ± 0.010

PD∗
τ −0.38 ± 0.51+0.21

−0.16 −0.497 ± 0.013

Table 5 Best-fit values of the NP couplings

NP coupling Best-fit value 1σ range

CVL 0.0750 [0.0567, 0.0929]

CSL 0.1147 [0.0672, 0.1591]

CSR 0.1323 [0.0906, 0.1719]

where λτ and λD∗ denote the helicity of τ and D∗, respec-
tively.

The branching fraction of B+
c → τ+ντ is given by

B(B+
c → τ+ντ ) = G2

F |Vcb|2m2
τ

8π
τBcmBc f

2
Bc

(
1 − m2

τ

m2
Bc

)2

×
∣∣∣∣(1 + CVL − CVR ) − m2

Bc

mτ (mb + mc)

×(CSR − CSL )

∣∣∣∣
2

. (30)

We use fBc = 489 ± 4 ± 3MeV from [95] and the values of
other constants are taken from [89].

In our work, we consider one new coupling at a time and
the best-fit values are obtained by performing a χ2 fitting.
The χ2 function is defined as

χ2(Ck) =
Nobs∑
i j

[Oexp
i − Oth

i (Ck)]C−1
i j [Oexp

j − Oth
j (Ck)],

(31)

where Oexp
i are the experimental values of the observables,

Oth
i (Ck) are the theoretical predictions for the observables

with new couplings Ck , and C is the covariance matrix which
takes into account the correlation of RD and RD∗ . The χ2

function is minimized to obtain the best-fit values for each
NP coupling. The NP effects are obtained by imposing a 1σ

constraint from the measured values of RD(∗) , RJ/ψ , FD∗
L

and PD∗
τ . The experimental and SM theoretical values of the

observables used for obtaining the constraints are listed in
Table 4. The obtained best-fit values are listed in Table 5.

The q2-spectra of various observables for the Ξb →
Ξcτ

−ν̄τ and Σb → Σ
(∗)
c τ−ν̄τ decay modes in the SM

case and in the presence of the NP couplings CVL ,CSL ,CSR
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Fig. 2 The q2-dependence of various observables for the Ξb → Ξcτ
−ν̄τ decay mode in the presence of vector (CVL ) and scalar (CSL ,CSR ) NP

couplings

are presented in Figs. 2, 3 and 4. The predictions are distin-
guished by blue (SM), orange (CVL ), purple (CSL ) and red
(CSR ) colors, respectively. For the mode Ξb → Ξcτ

−ν̄τ ,
the differential branching ratio DBR deviates more notice-
ably from the SM in the presence of the CVL coupling
than in the case with the scalar couplings. The differential

decay rate dΓ/dq2 is enhanced over the whole q2 region
in the presence of both the vector and scalar couplings for
Σb → Σcτ

−ν̄τ decays. For Σb → Σ∗
c τ−ν̄τ decay mode,

dΓ/dq2 is enhanced with respect to the vector coupling but
is largely unaffected by the scalar couplings. In the case of
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Fig. 3 The q2-dependence of various observables for the Σb → Σcτ
−ν̄τ decay mode in the presence of vector (CVL ) and scalar (CSL ,CSR ) NP

couplings

the CVL coupling, the ratio R
B(∗)
c

and all the other observ-
ables behave SM-like for all three decay modes, as the NP-
dependent factor, (1 +CVL )

2 cancels out in these quantities.
RΞc(Σc) displays a distinctive deviation from the SM pre-
diction in the higher q2 region for CSL and CSR couplings.
Measuring RΞc(Σc) in the higher q2 region may thus further

substantiate the observed anomalies in b-decays. No sizable
deviation is observed for RΣ∗

c
in the presence of scalar cou-

plings. The forward-backward asymmetry Aτ
FB has a SM

zero-crossing point at q2 ≈ 8 GeV2 for Ξb → Ξcτ
−ν̄τ . This

shifts to a slightly higher q2 value in the presence of scalar
couplings. For Σb → Σcτ

−ν̄τ , Aτ
FB reaches 0 at q2 ≈ q2

max .
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Fig. 4 The q2-dependence of various observables for the Σb → Σ∗
c τ−ν̄τ decay mode in the presence of vector (CVL ) and scalar (CSL ,CSR ) NP

couplings

There is no significant deviation from the SM prediction in
the presence of scalar couplings. For the Σb → Σ∗

c τ−ν̄τ

decay mode, Aτ
FB has a SM zero-crossing point at q2 ≈ 6.6

GeV2. The zero-crossing shifts slightly to a lower q2 value
with CSL coupling and to a higher q2 value with CSR cou-
pling. The convexity parameter Cτ

F displays a distinctive

deviation from the SM prediction in case of CSL and CSR
couplings for the decay modes considered, with a more pro-
nounced deviation in the case of the Σb → Σcτ

−ν̄τ mode.
The measurement of this observable may further endorse
existence of NP beyond the SM. The longitudinal polariza-
tion Pτ

L (q2) has a zero-crossing at q2 ≈ 4.6 GeV2 in the SM
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Fig. 5 SM and NP predictions of various q2-dependent observables for the Ξb → Ξcτ
−ν̄τ (left panel), Σb → Σcτ

−ν̄τ (central panel) and
Σb → Σ∗

c τ−ν̄τ (right panel) decay modes using Fits 1 and 2 of [54]

for Ξb → Ξcτ
−ντ decay. It shifts to a higher q2 value in

case of both the scalar couplings. The deviation from the SM
prediction is more prominent at large q2. For Σb → Σcτ

−ντ

decay, Pτ
L (q2) shows a distinct deviation from the SM pre-

diction in the case of the scalar couplings. Thus, measuring

Pτ
L (q2) may provide insight into the nature of NP and distin-

guish between the vector and scalar type contributions. For
Σb → Σ∗

c τ−ντ , a SM zero-crossing point is observed at
q2 ≈ 3.5 GeV2. This shifts slightly to a lower q2 value for
CSL coupling and to a higher q2 value for CSR coupling.
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In addition to our results, we also present the NP predic-
tions obtained using the Wilson coefficients from the global
fits (Fits 1 and 2) of Murgui et al. [54] for all three decay
modes in Fig. 5. Performing a global χ2 fit to the data avail-
able in b → cτ−ν̄τ transitions, the authors of [54] obtained
three fits, Fit 1, 2 and 3, where the coefficient CVR was
assumed to be lepton-flavour universal also. The experimen-
tal measurements of the ratios RD, RD∗ and FD∗

L were used
to constrain the new couplings. An upper bound constraint
from B(B+

c → τ+ντ ) was also imposed. Here, we show the
results using the numerical values of CVL ,CSL and CSR from
Fits 1 and 2 tabulated in Table 3 of [54] (including FD∗

L ) with
B(B+

c → τ+ντ ) ≤ 30%. In this paper, we do not consider
Fit 3 as it is found to be already disregarded by the measured
differential distributions. For all the three decay modes, NP
scenarios using Fits 1 and 2 are clearly distinguishable. It is
observed that predictions with Fit 1 are much closer to the
SM than those with Fit 2, which is similar to the observations
of Murgui et al. for b-meson modes.

5 Summary and conclusion

We have analyzed the semileptonic b-baryon decays Ξb →
Ξcτ

−ν̄τ and Σb → Σ
(∗)
c τ−ν̄τ within a model-independent

effective theory framework, consisting of both SM and NP
contributions. The helicity amplitudes method was used to
describe the hadronic transitions. Form factors expressed
in terms of Isgur–Wise functions in the heavy quark limit
have been adopted to parametrize the decay amplitudes.
These form factors were obtained within the relativistic quark
model. The SM predictions in the relativistic quark model and
those obtained using lattice QCD results were first compared
for an assessment of the validity of the different approaches.
It was found that form factors calculated in RQM and on
the lattice are compatible at the zero recoil point of the final
baryon. The total decay rate, branching ratios and RΛc dif-
fered slightly in the two cases. On analyzing NP effects, we
considered one new coupling at a time and using a χ2 fit-
ting, best-fit values of these couplings were obtained. Pre-
dictions for the q2-dependence of various observables such
as the differential branching ratio, ratio of branching frac-
tions, forward-backward asymmetry of the charged lepton,
convexity parameter and lepton polarization have been pre-
sented in both the SM and NP scenarios. In order to deter-
mine the allowed NP parameter space, we imposed a 1σ

constraint from the experimental measurements of the LFU
ratios RD(∗) , RJ/ψ , the D∗− polarization FD∗

L and the τ

polarization PD∗
τ . We observed NP sensitivity for most of

the observables of interest, with the deviations from the SM
prediction being more discernible in the scenario with new
scalar couplings than that with new vector couplings. In par-
ticular, observables such as the ratio of branching fractions,

convexity parameter and lepton polarization were found to
be more sensitive to the new contributions for some of the
decay modes considered. Using previously obtained signifi-
cant fits of the new couplings, predictions for the different q2-
dependent observables were also presented. It was observed
that NP with these fits mostly displayed distinct variations
from the SM. Hence, the study of semileptonic b → c�−ν̄�

transitions of half-integer spin b-baryons such as those con-
sidered in this work can be invaluable in revealing the pres-
ence and ascertaining the exact nature of NP. Also, the study
of such baryon modes augments that of the b-meson modes
as they furnish a complementary environment in the search
for NP.
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A Form factors for the semileptonic Λb → Λc decay

The form factors used in Eq. (3) are related to those used in
[41] by the following relations.

f⊥(q2) = F1(q
2)

f+(q2) = F1(q
2)+

[
(mBb + mBc )

2 − q2

2mBb (mBb + mBc )

]
F2(q

2)

+
[
(mBb + mBc)

2 − q2

2mBc(mBb + mBc )

]
F3(q

2)

f0(q
2) = F1(q

2)+
[
(m2

Bb
− m2

Bc
) + q2

2mBb (mBb − mBc )

]
F2(q

2)

+
[
(m2

Bb
− m2

Bc
) − q2

2mBc(mBb − mBc )

]
F3(q

2)

g⊥(q2) = G1(q
2)
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g+(q2) = G1(q
2)−

[
(mBb − mBc )

2 − q2

2mBb (mBb − mBc)

]
G2(q

2)

−
[
(mBb − mBc )

2 − q2

2mBc (mBb − mBc)

]
G3(q

2)

g0(q
2) = G1(q

2)−
[
(m2

Bb
− m2

Bc
) + q2

2mBb (mBb + mBc)

]
G2(q

2)

−
[
(m2

Bb
− m2

Bc
) − q2

2mBc (mBb + mBc)

]
G3(q

2) (A.1)
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