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Abstract—The presence of foreign bodies in packaged food is a
serious concern for both final consumers (allergies, injuries, chok-
ing) and food manufacturers (reputation and economic losses).
In particular, low-density plastics, glass and wood splinters
are hard to detect even by the most advanced X-ray imagers.
One solution is Machine-Learning-based Microwave Sensing
(MLMWS): a non-invasive, contactless, and real-time method
which uses a machine-learning (ML) classifier to analyze the
scattered microwaves from the irradiated target object. In this
paper, we want to extend our previous work about contaminant
detection in cocoa-hazelnut spread jars by proposing an enhanced
ML flow to increase the accuracy of the ML classifier. For the first
time in this case study, we use a multi-class classifier, we train
it with scattering parameters measured at multiple microwave
frequencies, with a new pre-processing scaler, data augmentation,
quantization-aware training and a pruning schedule. The results
show a contaminant detection multi-class accuracy of 94.167%
with a latency of 26 µs when targeting an AMD/Xilinx Kria K26
FPGA. Finally, we released our datasets publicly to OpenML.1

Index Terms—foreign body detection in food, machine learning,
microwave sensing, neural networks, fpga acceleration

I. INTRODUCTION

Foreign bodies in packaged food pose risks for consumers’
health (e.g. injuries and choking) and could damage manufac-
turers’ reputation and finances. Nowadays, there are many non-
invasive techniques to detect foreign bodies in food (primarily
metal detectors, X-ray, near-infrared, and terahertz imaging)
[1], and each comes with some limitations [2]. In particular,
low-density contaminants, such as wood, glass and some types
of plastics, are very hard to detect for the current systems. One
emerging solution, which has already demonstrated excellent
detection performance [3–5], is Machine-Learning-based Mi-
crowave Sensing (MLMWS). This method takes advantage of
the distinct differences in dielectric properties between food
and contaminants. To perform the analysis, low-power electro-
magnetic waves at microwave (MW) frequencies are directed
towards the object to analyze through a set of antennas placed
at some distance from it. Then, the resulting scattered EM
waves are recorded back by the same antennas and processed
by a machine-learning (ML) classifier that checks for foreign
objects. Since MLMWS is not an imaging technique, it does
not require slow and computationally intensive algorithms to
reconstruct the image of the inspected object. Thus, it is ideal
for real-time and high-throughput food production lines [5].

The purpose of this paper is to expand upon our previous
research on the detection of foreign bodies in hazelnut-cocoa
spread jars using an MLMWS approach [4, 5]. In particular,
using the datasets measured in [4], we propose an enhanced

1Fermilab report number: FERMILAB-PUB-23-313-PPD

ML flow that improves classification accuracy. The novelties
with respect to our previous works [4, 5] are the following:
1) We assessed the detection capabilities of a multi-class

multi-layer perceptron (MLP) classifier, because it can help
food manufacturers gather statistics on contaminant types
that elude their industrial control systems. In this regard,
we used MW frequency pairs as features, we augmented
the training data by using Additive White Gaussian Noise
(AWGN), and we analyzed the features of our datasets in
detail to select a suitable feature pre-processing scaler.

2) We trained the best multi-class model using quantization-
aware training (QAT) and compressed it with pruning to
target an AMD/Xilinx Kria K26 FPGA with a multi-class
accuracy of 94.167% and a latency of 26 µs.

3) We open-sourced our datasets of [4] to OpenML [6] to
enable further ML research on this topic.

II. RELATED WORK

Contrary to most prior related works, which use MW imag-
ing to spot foreign bodies [2], in this work we use MLMWS.
Recently, microwave-sensing (MWS) systems and ML tools
have attracted the attention of the food industry. For example,
SVMs for damaged apple sorting [7], MLPs for cherry defects
[8] and, in particular, MLPs for intrusion detection in chocolate
spread jars [4, 5], to which the present work is strictly related.
In fact, it shares the same MWS system, dataset and model
architecture (MLP) of [4], and some of the ML steps of [5],
like Bayesian Optimization (BO) for hyperparameter search,
quantization for model size reduction, and hls4ml [9, 10] for
model deployment on an FPGA. However, the works presented
in [4, 5] do not propose: 1) to train their classifiers with
different MW frequency pairs as features ([4] used 10 GHz
only, while [5] combined eleven frequencies from 9.0 to
11.0 GHz); 2) to use data augmentation; 3) to use RobustScaler
for pre-processing data (instead of StandardScaler [4, 5]); 4)
to train a multi-class MLP classifier (rather then a binary one
[4, 5]); and 5) to train models with QAT and compress them
with pruning (instead of post-training quantization only [4, 5]).

III. MICROWAVE SENSING SYSTEM AND DATASETS

In this work, we used the same MWS system of our previous
research [4] as well as the five datasets collected at that time2.

The MWS system consists of an array of six monopole
antennas [11] that resonate at 10 GHz. The array is connected
to a 2-port Vector-Network Analyzer (VNA) through a 2×6
custom-made electro-mechanical switching matrix [12]. The

2In [4], we collected five datasets, but opted to use only one.



antennas are attached to an arch-shaped support lying above a
typical industrial conveyor belt for packaged food. When the
object to inspect is approaching the arch, a photocell triggers
the acquisition process and the MWS system generates a 6×6
scattering matrix (S-matrix) of the object.

Each dataset was obtained by measuring 1200 contaminated
and 1200 uncontaminated (i.e. free jars) samples. Each sample
is an S-matrix of an irradiated hazelnut-cocoa spread jar,
the target object of our work. The foreign bodies that we
considered are both high-density and low-density: a metal
sphere, a glass fragment, a big plastic sphere, a small plastic
sphere, a triangular plastic fragment (triangle), and a cap-
shaped plastic. The maximum dimensions of these range
from 1 mm to 20 mm. Specifically, for each intrusion type,
we measured 200 samples by varying the position of the
contaminant in the jar. Moreover, all samples were acquired
at five MW frequencies (9.0, 9.5, 10.0, 10.5, and 11.0 GHz),
so that this process resulted in five S-matrices per jar and
therefore five different datasets. After acquisition, each sample
was converted to a feature vector to be used as input for the
ML classifier. Each vector has 30 features corresponding to
the sequence of the real and imaginary parts of the 15 upper
diagonal scattering parameters of an acquired 6×6 S-matrix,
excluding the monostatic elements in the main diagonal. We
released our five datasets in the OpenML repository [6] with
data IDs3: 455XX, XX = 36, 37, 38, 39, 40.

IV. PRELIMINARY MACHINE-LEARNING EXPERIMENTS

In this section, we elaborate on the need for an enhanced
ML flow to improve our previous results on the same case
study [4]. Also, we describe the preliminary experiments that
helped us design the proposed flow that we present in Sec. V.

Initially, we analyzed the results of [4]. The binary MLP of
this work was trained using the 10.0 GHz dataset and reached
an accuracy of 93.958% on a balanced Test Set of 480 samples.
However, a recall of 100% was achieved for all contaminants
except for the plastic triangle, whose recall was 48.780%
(20/41 samples). In fact, we defined free jars as the negative
class, but contaminants as the positive class, so there were 21
false negatives (FNs). Nonetheless, this is unacceptable for an
industrial scenario (ideally FNs = 0).

Consequently, we decided to assess a multi-class approach
in this case study for the first time, because we believed
that multiple outputs could help mitigate the error rate of
the triangle. In addition, a multi-class output can help food
manufacturers gather statistics on foreign bodies and identify
the source of contamination in their production lines. Thus,
we balanced the 10.0 GHz dataset for the multi-class scenario
by keeping all 200 samples per contaminant and reducing the
free jar samples to 200. Moreover, we used a splitting ratio of
80%−20% to develop and test with shuffling to create our sets
[4], but we also stratified them based on the seven classes.

We then employed Scikit-Learn’s GridSearchCV() and
StratifiedKFold() to search for and evaluate multi-
class MLPs using cross-validation. We optimized for hidden

3Visit: https://www.openml.org/d/<data ID>.

layers (from 1 to 3), neurons per layer (from 16 to 256), the
optimizer (SGD, Adam or Adagrad), and the learning rate
(from 0.001 to 100). We chose 200 epochs, a batch size of 32,
and the activation function used by [4] (ReLU). As a result,
we obtained a model consisting of a single hidden layer with
160 neurons, that used Adagrad with a learning rate of 0.3.

This model reached a multi-class accuracy of 88.571%,
which equaled a binary accuracy of 98.571%, on our balanced
Test Set of 280 samples (40 per class). Moreover, unlike [4],
this MLP reached a recall of 95.000% (38/40 samples) for the
triangle. However, despite these good results, after adding 200
unseen uncontaminated samples to balance our Test Set for the
binary scenario, multi-class accuracy dropped to 67.083% (-
24.261%) due to 129 false positives (FPs), where 124 of these
free jar samples were mispredicted as triangle samples.

By analyzing these results, we realized that we needed
to address three points: 1) overfitting; 2) the reduced size
of our multi-class sets; and 3) our lack of insight into the
statistics of our datasets. We began from point 2), specifically
by adding back all the free jar samples to our 10.0 GHz dataset
to maximize data usage. Then, using an 80%−20% ratio, we
shuffled and split the entire dataset into a new Development
Set (1920 samples) and a New Test Set (480 samples). Next,
we shuffled and split the Development Set using a 75%−25%
ratio into a New Training Set (1440 samples) and Validation
Set (480 samples), to equal the size of the latter to the size of
the New Test Set. Also, in every step, we stratified the sets.

To address point 1), we used StratifiedKFold() to
refine hyperparameter ranges and analyze training and valida-
tion curves across folds to detect any split dependent behavior
or overfitting. To explore a broad hyperparameter space, we
used Scikit-Optimize’s BayesSearchCV(), which imple-
ments BO with cross-validation. Moreover, we employed it
to optimize for 16 hyperparameters, such as hidden layers
(from 1 to 6), neurons per layer (from 4 to 2048) and layer
dropout rates (up to 0.45). We repeated both methods various
times as we slightly tuned the hyperparameters manually and
evaluated the selected models post training to assess overfitting
and validation metrics (by plotting training and validation
curves). In our experiments, we also explored optimizers,
learning rates, activation functions, epochs, batch sizes, MW
frequency combinations (Sec. V-A) and data augmentation
(Sec. V-B). Additionally, we experimented with Max-Norm
regularization heuristics [13] and class weights, to address
class imbalance after adding the free jar samples back as we
previously described for point 2). Concerning point 3), we
chose RobustScaler() after our data analysis (Sec. V-C).

V. ENHANCED MACHINE-LEARNING FLOW

Using the knowledge acquired through our previous ex-
periments, we now propose an enhanced ML flow for MWS
systems, which is shown in Fig. 1. Specifically, we applied it to
the hazelnut-cocoa spread jar case study as a real example of
food contaminant detection. Furthermore, based on the results
in Sec. IV, we focused on a multi-class approach.

The steps or blocks reported in Fig. 1 appear in the same
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Fig. 1: The proposed enhanced ML flow for FPGA acceleration of neural networks.

order in which we suggest that they should be performed.
However, for an MWS application, not all blocks may always
be required. For instance, an ML designer might not perform
augmentation if data is already sufficient for the application,
or a hardware designer might not prune depending on the
target FPGA. In particular, the first block, Search Space and
Decision, is the core of the flow. This blue block: 1) samples
inputs from the search space to send a selection to the other
blocks; and 2) uses the metrics returned by the other blocks to
decide on the next inputs. Its tasks can be manual or automated
(e.g. by performing BO), depending on what aspect of the
model needs evaluation (e.g. hyperparameter optimization).
Now, we will explain the other blocks in more detail.

A) Microwave frequency combination. In the first step of
our flow, we propose training the ML classifier with features
derived from MW frequency combinations. Therefore, we
explored different combinations of the five datasets described
in Sec. III and compared our results to those achieved by
training on these datasets separately. As an example, Table
I summarizes the multi-class validation accuracy reached by
our final multi-class Keras MLP, which we will present in
Subsec.V-D, when trained with the scattering parameters of
various MW frequencies. We observe that, by combining
features related to different MW frequencies, we can achieve
an accuracy increase of approximately +5% – +12%. We also
observed accuracy improvements for other models that we
considered. Moreover, similar results have been reported in
[7], which describes a performance improvement of their MW
imaging system when operating at three MW frequencies.
Ultimately, based on our experiments, we chose the 9.5 and
10.5 GHz pair for the rest of our flow.

TABLE I: Multi-class results of some MW freq. combinations.

MW freq. (GHz) Val. acc. (%) MW freq. (GHz) Val. acc. (%)
9.0 81.88 11.0 78.96
9.5 80.21 9.5 & 10.0 87.08
10.0 80.42 9.5 & 10.5 90.4210.5 78.13

B) Data augmentation. In the second step, we propose
augmenting the Training Set to manage overfitting and im-
prove the generalization of the model. In our case study,
we performed augmentation by using AWGN to enlarge our
9.5 & 10.5 GHz Training Set of 1440 samples. Specifically, for
each sample, we computed two normally distributed random
variables for every i-th scattering parameter si, one for the real
part ℜ(si) and another one for the imaginary part ℑ(si), to

add random Gaussian noise to every parameter with a Signal-
to-Noise Ratio SNR=60 dB. We considered a mean µ=0, to
not introduce bias, and a standard deviation σ=

√
S

SNR . Here,

S=(
∑N

i=1 ℜ(si)2 +ℑ(si)2)/N , where N=30 is the number
of scattering parameters in a sample. Due to this augmentation
step, an artificial sample is created from every original sample.

We explored the gradual augmentation of the entire Training
Set to decrease FNs and FPs. During this process, to further
decrease the FPs, we performed additional augmentation steps
for the triangle class since the free jars were mostly confused
with those containing the triangles. Ultimately, we chose an
augmentation factor of 3 for all classes (i.e. 3×1440) and
an additional augmentation factor of 18 for the triangles (i.e.
18×120). This was the best choice that reduced FPs and, at
the same time, balanced the number of FNs and FPs in our
experiments. Therefore, our New Training Set increased to
6480 samples. Among these, 2160 (33.33%) correspond to
free jars, 2520 (38.89%) to triangles and 1800 to the other
contaminants, where each one has 360 (5.56%) samples.

C) Dataset scaling. In the third step, we propose pre-
processing data by using a scaler that addresses its statistics.
We introduced this step because it should be present in every
ML flow. However, this was not done in [4]. Therefore, we
studied, for each single frequency dataset, the histograms of
every feature. We found that most feature distributions did not
resemble a Gaussian curve, possibly due to the reduced size
of the datasets. We also obtained Box and Whisker Plots to
visualize these distributions through quartiles, as well as the
value ranges per feature. Although we found no outliers in
terms of abnormal values, there were data points past the end
of the whiskers. Moreover, while studying the feature value
ranges, we observed that values differed by at least one order
of magnitude. All the previous observations were also valid
for the 9.5 and 10.5 GHz pair, before and after augmentation.
Consequently, we chose to pre-process our data using Scikit-
Learn’s RobustScaler(), which uses statistics that are
calculated per feature and are robust to data outliers. For every
feature, this scaler removes the median of the feature and
then divides the result by its Interquartile Range, which is
the difference between the 75th and 25th percentiles.

D) Floating-point training. The fourth step comprises the
same steps of the last paragraph of Sec. IV, in particular BO,
stratified cross-validation and manual training. As a result, we
obtained our final multi-class model, which is an MLP with
four hidden layers with 300, 151, 195 and 128 neurons. More-
over, we used dropout rates of 0.4, 0.2, 0.1 and 0.05 and the



Scaled Exponential Linear Unit (SELU) activation function.
We trained it considering 350 epochs, a batch of 320, the
Adam optimizer and a learning rate of approximately 5.5e-5.
We also employed compute_class_weight() by Scikit-
Learn with the parameter class_weight=‘balanced’
to account for class imbalance. Additionally, we performed
regularization by leveraging the MaxNorm class by Keras to
limit the weight norms to 4, as described in [13].

On our New Test Set of 480 samples (Sec.IV), our classifier
reached a multi-class accuracy of 96.458% and a recall of
85.000% (34/40 samples) for the triangle class. Table II,
instead, reports the most relevant binary-equivalent test metrics
of our Keras model (row 2), from which we observe +3.334%
in accuracy with respect to the binary MLP of [4] (row 1).

E) Quantization-aware training and pruning. In the fifth
step, we suggest optimizing for hardware resources to improve
FPGA deployment (Sec. V-F). Specifically, we considered
QAT with QKeras [14] and pruning with a TensorFlow pruning
schedule. QAT allows for training with reduced bit precision
of weights, biases and activations, while pruning compresses
MLPs by removing irrelevant neurons, so these methods speed
up inference and lower power consumption. However, upon
introducing these techniques, we had to check if the learning
rate, epochs, batch size and activation function of our model
would still manage overfitting properly. For this reason, we
manually explored some values in [1.0e-5, 5.5e-5], [290, 780]
and [290, 320] for the learning rate, epochs and batch size,
respectively. We also considered decreasing the learning rate
while increasing the epochs [15]. Regarding activations, we
evaluated quantized_relu() and quantized_tanh()
since SELU is not available in QKeras.

To quantize, we considered all the possible combinations
of the following: 1) for activation layers, we varied the total
number of bits from 8 to 18 using multiples of 2 and no
integer bits; and 2) for weights and biases, we considered 8
bits with 2, 3 or 4 bits for the integer part and alpha=1, which
is a scaling factor defined in [14]. Thanks to quantization,
we removed Max-Norm regularization. Regarding pruning, we
chose PolynomialDecay() by TensorFlow to prune the
best quantized model gradually during training. We applied
an initial sparsity of 50% at step 2000 and a final sparsity
of 75% around step 15120, where the steps are calculated by
dividing the number of training samples by the batch size and
then multiplying this result by the number of epochs.

Although our best model used quantized_tanh(), we
had to replace this function with quantized_relu() and
remove the fourth hidden layer to fit it on our target FPGA.
Therefore, we trained it again using 700 epochs, a batch of
300, a learning rate of 5.5e-5, 16 bits for the activation layers
(with no integer part) and 8 bits for weights and biases (with
3 integer bits). This quantized and pruned model achieved a
multi-class accuracy of 94.167% on our New Test Set (Sec. IV)
and a recall of 82.500% (33/40 samples) for the triangle class.

Table II also reports the binary equivalent results of our
quantized and pruned model (row 3). As expected, accuracy
decreased with respect to our floating-point model (Sec. V-D),

TABLE II: Binary vs multi-class classifiers (test metrics).

Best ML classifier Binary
Test. acc (%)

Binary
FNs / FPs

Recall for
triangles (%)

Binary ([4]) 93.96 21 / 8 48.78
Multi-class (Sec. V-D) 97.29 6 / 7 85.00
Multi-class (Sec. V-E) 95.42 7 / 15 82.50

specifically by 1.875%. Regarding FNs, our models reduce the
issue of the plastic triangle mentioned in [4] (as highlighted by
column 3 and 4), at the cost of increasing FPs. Nonetheless,
FPs are not as critical as FNs for this industrial food scenario.

F) FPGA acceleration. In the last step, we perform hard-
ware acceleration to speed up the model inference. In fact, we
considered our model from Sec.V-E to support the throughput
of an industrial production line. We adopted hls4ml, an open-
source Python framework for the co-design and translation of
machine learning algorithms into hardware implementations
[9, 10]. hls4ml translates the model into C++ specification
for AMD/Xilinx Vivado HLS [16], which in turn generates
a hardware implementation at the register-transfer level for
the traditional synthesis and implementation flow targeting an
FPGA as deployment hardware.

As a development board we chose the recently released
AMD/Xilinx Kria KV260. This board is an ideal solution for
edge deployment that combines programmable logic and an
ARM multi-processor in the same system-on-chip (MPSoC).
To fit the final model on the FPGA resources, we explored
many hardware configuration, such as clock frequency and
hardware parallelization. After deployment, the final model
confirmed the multi-class test accuracy of 94.167%. For the
final synthesis and implementation, we targeted a clock period
of 5 ns that our model easily achieves on the Ultrascale+ FPGA
fabric. Our accelerator has a streaming interface and a latency
of 809 clock cycles (approximately 4 µs). When integrated
with data movers to main memory and a software application
to control the accelerator, the overall latency is 26 µs. The
post-implementation resources are: 110, 317 LUTs (94% of
the total), 133, 404 (57%) FFs, 656 (53%) DSPs, and 3 (2%)
BRAMs. The estimated power consumption for the accelerator
on the programmable logic is 0.86 W, while for the entire chip
(including the SoC ARM cores) it is 3.27 W.

VI. CONCLUSION

In this paper, we proposed an improved machine-learning
flow for microwave-sensing systems that, in the chocolate-
spread jar case study, it helped increase the detection accuracy
of foreign bodies compared to our previous work. In particular,
the novelty that helped the most was the multi-class approach
with a MW frequency combination and data augmentation.
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