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We formulate a computational method to evaluate the overlap integral of the shell-model and
cluster-model wave functions. The framework is applied to the system of the core plus two
neutrons, and the magnitude of the overlap of the shell-model configuration (core + n + n)
and the di-neutron cluster one (core + 2n) is explored. We have found that the magnitude of the
overlap integral is prominently enhanced when two neutrons occupy shell-model orbits with low
orbital angular momenta, such as s- and p-wave orbits. The shell–cluster overlap is calculated in
systems with jj-closed cores plus two neutrons, and the enhancement due to occupation of the
s or p orbit also occurs in the systematic calculation. The effect of the configuration interaction
on the shell–cluster overlap integrals is also discussed.
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1. Introduction

The nuclear shell model and the mean-field model are standard models to describe ground and low-
lying states in nuclear systems [1–4]. In the ground state of a nucleus, all nucleons contribute to
generating a mean field in a self-consistent manner, and they show independent particle motion by
occupying single-particle orbits in a self-consistent mean field (see Ref. [1] and references therein).
There are energy gaps in a sequence of single-particle orbits; this level structure is called the shell
structure [1–4]. The nuclear shell model, which considers single-particle configurations based on
the shell structure, is quite successful in explaining the ground-state properties of nuclei over a wide
mass region, except for a few examples [1–4].

In contrast, in lighter mass systems, there appear clustering phenomena, in which several nucleons
are spatially localized and form subunits called clusters. A typical well known example of such a
cluster is the α cluster [5–7], which is a quartet of two protons and two neutrons. In most of the
ground states of nuclear systems, the α cluster and the residual nucleus are merged, which leads to
the formation of a compound system with the shell structure, but α clustering is greatly enhanced
in particular excited states [5–7]. Furthermore, in recent studies, di-neutron correlations have been
extensively investigated in lighter mass regions [8–11]. Two neutrons do not form a bound state in
free space but the spatial localization of the di-neutron around a nuclear surface has been confirmed
experimentally [8,9] and compared with theoretical calculations [10,11].

The independent particle configuration in the shell model seems to contradict the cluster configu-
ration with the spatial localization of the nucleons but these two configurations are non-orthogonal,
and hence the amplitude of the cluster formation is non-zero even if the pure shell-model structure
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is realized, in which the individual nucleons show completely independent particle motions. The
relationship between the shell-model and the α-cluster-model configurations has been discussed in
detail in the lighter mass region, where the spin–orbit interaction is ineffective [5,7] (see also Refs.
[6,12] and references therein). However, the relationship between the shell–cluster configurations
remains unclear in the heavy mass region, in which the spin–orbit interaction must be prominent
due to the occupation of shell-model orbits with higher orbital angular momenta (see Ref. [1] and
references therein).

The evaluation of the non-orthogonal amplitude of the shell and cluster models is important to
clarify the relationship between these two models, which seem to describe the different particle
motions intuitively. The non-orthogonal amplitude can be directly calculated by the overlap integral
of the wave functions in the shell and cluster models, which are defined by multi-dimensional
integration involving coordinate rearrangements [13,14]. It is interesting and instructive to explore
the systematic features of the shell–cluster overlap integral in systems of a core plus valence nucleons,
which can be obtained by varying the valence orbits, the core mass number, the spatial size of the
cluster, and so on.

In this article, we formulate a new method to calculate the overlap integral of the wave functions
in the shell and cluster models by combining the Gaussian expansion method (GEM) [13–16] with
the Fourier transformation (FT). The new framework of GEM + FT is applied to core-plus-two-
neutrons systems, and we investigate the basic features of the overlap integrals of the naive shell-
model configuration and the di-neutron cluster one. Furthermore, a calculation of the configuration
interaction (CI) is also performed [2,3,17], and the CI effect on the shell–cluster overlap integral is
systematically investigated. Although we focus on a discussion of the core-plus-two-neutrons system
in the present article, the new framework can also be extended to a core-plus-four-nucleons system,
corresponding to a core-plus-α-cluster system, in a straightforward manner.

The matrix elements of the shell and cluster configurations can also be transformed by the traditional
method in the shell-model calculation, the Talmi–Moshinsky (TM) transformation [18,19], and we
can see its recent application in Ref. [20]. The TM transformation can be applied to the transformation
using the harmonic oscillator (HO) basis function with a common length parameter, �ω. Numerically,
the superposition of HO bases with different nodal numbers makes it difficult to optimize the oscillator
length �ω from a set of solutions with different �ω in the calculation of weakly bound or unbound
resonant states [21], where a tail of the wave functions is prominently extended to the outer region
of the nuclear interaction. Thus, computational methods using HO expansion are not so convenient
for analyzing cluster correlations in extremely weakly bound systems, e.g., di-neutron correlations
[8–11].

In contrast, superpositions of the Gaussian bases employed in GEM can describe the spatially
extended wave functions in weakly bound systems [13,14,22]. In the calculation of the unbound
states, a detailed comparison of GEM with the Gamow shell model relying on HO expansion is
discussed in Ref. [22], and it demonstrates a clear convergence of the resonant solution in GEM.
Moreover, GEM is also able to handle highly oscillating wave functions, which widely appear from
the bound states [13,15,16] to the unbound states [23,24], by extending the real range parameter to
the complex range one. Such highly oscillating features in the wave function really appear in the
α-cluster structure inside a heavy nucleus [5–7,25]. Therefore, GEM is more flexible and applicable
than the computational method with HO expansion.

We combine GEM and the Fourier transformation (FT) in the calculation of the overlap integral.
The method of GEM + FT can be extended to the computation of any matrix elements for one-body
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and two-body operators expressed in terms of the nucleon degrees of freedom because the shell–
cluster matrix elements in the Fourier representation can be handled in a similar manner to the
mathematical technique using the so-called overlap matrix or B-matrix [7].

The organization of this article is as follows. In Sect. 2, the framework to calculate the shell–cluster
overlap integrals by Fourier transformation is explained. In Sect. 3, the results of the calculated
overlap of the core-plus-two-neutrons systems are presented. We discuss the basic features of the
overlap integral by varying the valence orbits and the sizes of the di-neutron clusters. Systematic
calculations of the shell–cluster overlap are done by varying the core nucleus. The CI effect on the
shell–cluster overlap is also investigated systematically. The final section is devoted to the summary
and discussion.

2. Theoretical framework

We formulate the computational method of the shell–cluster overlap integrals for a two-nucleon
configuration around a heavy inert core. In this section, we explain the main framework to compute
the overlap integrals; the detailed derivation process of the overlap integrals is described in the
appendix.

2.1. Model wave functions

The explicit expression for the single-particle orbit φ in the jj-coupling scheme around the core
nucleus is

φ
(τ)

nl 1
2 jjz

(r, ξ , η) = Rnlj(r)
[
Yl(r̂) ⊗ υ1/2(ξ)

]
jjz

ϒτ (η), (1)

where the wave functions of Rnlj(r), Yl(r̂), υ1/2(ξ), ϒτ (η) denote the radial, angular, spin, and isospin
parts, respectively. The respective arguments in these functions are the position vector r = (r, r̂), the
spin coordinate ξ , and the isospin coordinate η. The single-particle orbit is specified by the principal
quantum number (or number of the radial node) n, the orbital angular momentum l, the nucleon spin
1/2, the total angular momentum j, and its third component jz. τ specifies the third component of
the isospin for the nucleon, such as a proton (τ = p) or a neutron (τ = n).

In the shell model, the wave function of the M -scheme basis state for two nucleons with an inert
core is described as a Slater determinant of two single-particle wave functions and written as

�s = NA
{
φ(τ1)

a1
(r1)φ

(τ2)
a2

(r2)
}

. (2)

Here φ
(τi)
a (ri) shows the single-particle wave function for the ith valence nucleon, the explicit form

of which is shown in Eq. (1). The subscript ai in φ is the abbreviation of a set of the ith single-particle
orbit, ai ≡ (ni, li, ji, mi), while the vector ri contains a set of the coordinates for the single-particle
orbit, (ri, ξ i, ηi). In Eq. (2), A and N mean the anti-symmetrization operator for two nucleons and
the respective normalization constant, respectively.

The shell-model wave function in Eq. (2) does not have definite total spin J (J = j1 + j2) but it is
an eigenstate of the third component of the total spin of Jz = jz1 + jz2. This wave function is used
as a basis state for the configuration interaction (CI) calculations in the M -scheme codes (e.g., Ref.
[17]). We omit the wave function of the inert core since its contribution disappears in the resultant
expression owing to its orthogonality to the valence space.

The wave function of the di-nucleon (2n) cluster model is defined as

�c = NA {
χLM (R)ϕSSzTTz(ρ, ζ )

}
(3)
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with the core–2n relative wave function

χLM (R) = χ̂L(R)YLM (R̂). (4)

Here the core wave function is omitted again. χ̂L(R) and YLM (R̂) denote the radial and angular wave
functions for the core–2n relative motion with the orbital spin L and its third component M . R and R̂
are the coordinates between the center of mass of the two nucleons and the core and its unit vector,
respectively. ϕSSzTTz(ρ, ζ ) shows the internal wave function of the 2n cluster labeled by the intrinsic
spin S (third component Sz) and the isospin T (third component Tz). The 2n internal wave function
is given by the direct product of the spatial part of ϕ̂ν(ρ) and the spin–isospin part of uSSzTTz(ζ ) as

ϕSSzTTz(ρ, ζ ) = ϕ̂ν(ρ) · uSSzTTz(ζ ), (5)

which is a function of the relative coordinate of two nucleons, ρ, and a set of the spin and isospin
coordinates ζ . The spatial part of ϕ̂ν(ρ) is assumed to be a Gaussian function, ϕ̂ν(ρ) = ϕ̂ν(ρ) =
(ν/π)3/4 e− ν

2 ρ2
, which corresponds to the (0s)2 configuration in the harmonic oscillator potential

with a constant width ν.
The radial parts of the wave functions in the shell model Rnlj(r) in Eq. (2) and the 2n-cluster model

χ̂L(R) in Eq. (3) are solutions to the single-particle problem with a nuclear potential. In solving the
single-particle problem, we employ the basis expansion technique with a tempered Gaussian basis
[13]:

Rnlj(r) =
∑

i

C(nlj)
i · rl exp

(
−ν

(nlj)
i r2

)
(6)

χ̂L(R) =
∑

j

g(L)
j · RL exp

(
−α

(L)
j R2

)
. (7)

Here Ci and νi represent the variational parameters in the shell-model orbit for the ith basis, while
gj and αj show those in the 2n-cluster model for the jth basis function.

2.2. Computational condition for radial wave functions

In the present analysis, we employ the harmonic oscillator (HO) wave function for both of the wave
functions in the shell and cluster models to check the validity of our computational method, although
the method can be applied to any type of wave function. The width parameter bs (νs = 1/2b2

s ) in the
shell-model wave function is determined by bs = √

�/mω with �ω = 41A−1/3
C , where AC denotes

the core mass number. Since the radial part of the HO wave function in Eq. (1) is independent of the
spin and namely j, Rnlj(r, νs) can be replaced by Rnl(r, νs).

In the 2n-cluster model, the internal wave function of the 2n cluster shown in Eq. (5) is set to the
singlet even state, corresponding to a di-neutron or di-proton cluster. In the present calculation, we
do not solve the 2n wave function around a core nucleus but assume a simple Gaussian function
of ϕ̂ν(ρ) ∝ e− ν

2 ρ2
with a 2b width parameter of b2n and ν = 1/2b2

2n. The parameter ν is handled
as a free parameter in the calculation of the shell–cluster overlap. As for the wave function for the
core–2n relative motion, χLM (R) in Eq. (4), we do not solve the wave function but assume the simple
HO wave function. The width parameter is set to bc = bs/

√
2 and α = 1/2b2

c , in which the factor
of

√
2 originates from the mass number of 2n cluster. In the exact definition of the cluster wave

function, this factor should be taken to the reduced mass number (
√

μ) of core–2n but we use the
approximation of the heavy core system (

√
μ → √

2). The radial part of the HO wave function with
α is expanded by the Gaussian bases as shown in Eq. (7).
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In addition, we must consider the Wildermuth condition in the 2n-cluster wave function to exclude
the Pauli forbidden states from the core–2n relative motion [26]. The forbidden states are evaluated by
counting the total oscillator quanta N for the lowest allowed state. For instance, in the 16O + 2n system,
the relative motion of χLM (R) must satisfy the condition of N ≥ 4, and hence N < 3 is forbidden,
if we assume the filling configuration for the 16O core, namely (0s0p)-closed configurations. If the
core nucleus is not an LS-closed nucleus (16O and 40Ca) but a jj-closed one (28Si, 32S, and so on),
the allowed state is not necessarily specified only by N . However, we assume that χLM (R) has the
lowest allowed N with the lowest filling configuration of the core nucleus.

2.3. Calculation of overlap integral by Fourier transformation

We calculate the overlap integral of Eqs. (2) and (3), 〈�s|�c〉. In evaluating the overlap, we assume
that the mass of the core nucleus is heavy, and the origin of the coordinates of the two nucleons
(r1, r2) and the core–2n coordinate (R) is the center of mass in the core nucleus. Even if we introduce
the approximation of the heavy core, we must consider the coordinate rearrangement of (r1, r2) ↔
(R, ρ) in a normal way to calculate the overlap integral [13]. The introduction of the coordinate
rearrangement is similar to the so-called hybrid calculation with T- and V-type bases in the core + n
+ n system [14].

Here we calculate the overlap integral on the basis of the Fourier transformation to avoid complexity
in the coordinate rearrangement. In order to use the Fourier transformation, first we introduce the
center-of-mass motion of the 2n cluster, G(R) = (4ν/π)3/4 e−2νR2

, and its reciprocal function
G−1(R) for the cluster wave function as follows:

�c = NA {χLM (R)ϕST (ρ, ζ )}
= NA {

χLM (R)G−1(R) · G(R)ϕST (ρ, ζ )
}

= NA {χ̃LM (R) · G(R)ϕST (ρ, ζ )} (8)

with χ̃LM (R) = χLM (R)G−1(R). Here the third components of the spin and isospin (Sz, Tz) in ϕSSzTTz

are omitted for simplicity. The spatial part in the product of GϕST becomes

G(R)ϕST (ρ, ζ ) ∝ G(R)ϕ̂ν(ρ) = N1e−νr2
1 · N2e−νr2

2 (9)

with the normalization constants of N1 = N2 = (2ν/π)3/4. The function of Nie−νr2
i (i = 1, 2)

represents the 0s orbits in the harmonic oscillator potential. If we introduce the Fourier representation
for χ̃LM (R),

χ̃LM (R) = 1√
(2π)3

∫
dK X̃LM (K)e−iK ·R, (10)

and use the relation R = (r1 + r2) /2, the 2n-cluster wave function in Eq. (8) becomes

�c ∝
∫

dK X̃LM (K)A
{

e−i K
2 ·r1−νr2

1 · e−i K
2 ·r2−νr2

2

}
. (11)

Here the normalization constants are omitted. The overlap of the shell-model wave function in Eq. (2)
and the cluster-model one in Eq. (3) with the Fourier representation in Eq. (11) can be calculated
by employing the mathematical technique of the overlap B-matrix [7], which is composed of the
overlaps of a set of single-particle orbits described by the single-particle coordinates, ri. Since all
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of the wave functions in Eqs. (2) and (11) are written in terms of (r1, r2), we can easily apply the B-
matrix framework. Moreover, the momentum representation of X̂LM (K) in the integrand in Eq. (11)
can be expressed by the superposition of the tempered Gaussian functions, which are written in
terms of the coefficients in the Gaussian expansion, gj and αj in Eq. (7), and the internal width of
the 2n cluster, ν. Therefore, the momentum integration appearing in the overlap of 〈�s|�c〉 with the
Fourier representation for �c in Eq. (11) can be done analytically, and the series of computational
techniques can be easily extended to the calculation for four-nucleon systems.

After doing an analytic integration over the momentum K , we obtain a simple expression

〈�s|�c〉 = 〈�s(n, l, j, jz, τ )|�ν
c (LMSSzTTz)〉

= F(LSSzTTz, l, j, jz, τ ) · Gν(L, n, l, j)

× δ(M + Sz,
2∑

i=1

jzi), (12)

where the bold symbols denote sets of quantum numbers of two nucleons, such as n = (n1, n2),
l = (l1, l2). The 2n-cluster-model wave function �c depends on the internal width parameters of
the 2n cluster, ν, which is specified by the superscript in the first and second lines of Eq. (12).
The Kronecker delta in the last line guarantees the conservation of the z-component of angular
momentum.

In the second line of Eq. (12), the basic structure of the overlap integration is shown; specifically,
the overlap integral is given by the direct product of the kinematic part F and the dynamical part G. F
is determined by angular momentum algebra independent of the details of the radial wave functions,
while G is calculated from two elements of the radial wave function: Rnlj(r) in the shell model and
χ̂L(R) in the cluster model. G contains the set of variational parameters shown in Eqs. (6) and (7):
(Ci, νi) and (gj, αj). Thus, this part depends on the nuclear potential employed in solving the radial
wave function.

The separable expression in Eq. (12) is useful to interpret the computational results for the overlap
integrals in terms of the matching between the angular momentum scheme and the radial wave func-
tions. This is an advantage arising from the Fourier transformation. The final expression becomes
complicated if we employ the standard technique of coordinate rearrangement using the transforma-
tion of (r1, r2) ↔ (R, ρ) [13,14]. An explicit expression for the overlap integral in Eq. (12) is shown
in the appendix in the case of the spin-singlet (S = Sz = 0), isospin-triplet (T = |Tz| = 1) pair of
the two nucleons.

Although the Fourier transformation is useful in deriving the final expression of the overlap integral,
there is a dangerous region in the integration over the momentum K , where the Fourier transformation
is impossible to define. In Eqs. (8), (10), and (11), we have introduced the Fourier representation for
χ̃LM (R), which is given by the product of the core–2n relative wave function χLM (R) and G−1(R),
being the inverse of the wave function of the center of mass in the 2n cluster. Since G−1(R) ∼ e2νR2

is a divergent function, the product of χLM (R)G−1(R) ∝ χ̂L(R)G−1(R) is not necessarily converged
in the asymptotic region of R → ∞.

Let us consider the divergent property in the K integration more clearly by showing an example of
the harmonic oscillator (HO) wave function. If the radial part of the core–2n relative wave function,
χ̂L(R), is given by the pure HO wave function, χ̂L(R) has the functional form of (polynomial function)
× e−αR2

, where α corresponds to the width parameter of the employed HO potential. Thus, the
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asymptotic behavior in χ̂L(R)G−1(R) is determined by the Gaussian function of e−(α−2ν)R2
. If the

condition α > 2ν is fulfilled, the momentum integration in the Fourier transformation in Eq. (10) is
safely defined but the transformation is not well defined in the condition α ≤ 2ν because χ̃LM (R) ∝
χ̂L(R)G−1(R) is not a spatially localized function.

The final expression for the overlap integral shown in Eq. (12) is analytically derived by assuming
the condition α > 2ν. Therefore, we are to check the validity of the final expression of Eq. (12)
in the region of α ≤ 2ν, where the Fourier transformation is originally impossible to define, by
comparison with the computational result using the coordinate rearrangement.

2.4. Configuration interaction

The expression of the overlap integral in Eq. (12) is calculated for the single configuration of the
shell-model state �s but we can extend this single shell-model configuration to the superposition of
the various configurations as follows:

�s(a,b) = NA
{
φ(τ1)

a (r1)φ
(τ2)
b (r2)

}
�CI

s =
∑
a,b

C(a,b)�s(a,b), (13)

where the subscripts a and b represent a set of the quantum numbers of the single-particle orbit
shown in Eq. (1).

As explained in the previous section, the individual bases of �s(a,b) do not have a definite total
angular momentum but they have a good quantum number of the third component of the total spin
of Jz = jz1 + jz2. Coupling to the good quantum number of the total spin J = j1 + j2 can be
achieved by the superposition of the M -scheme basis [17]. Specifically, the total spin of the two
nucleons is generated by superposing the different configurations with various jz1 and jz2 on the
mixing amplitude C(a,b) in Eq. (13), and this mixing amplitude plays the role of the Clebsch–Gordan
coefficients.

In recent studies, several computational codes for large-scale CI calculations have been developed.
Here we use the KSHELL code to perform the CI calculation [17]; this code is easy to apply to various
systems with jj-closed cores. The code is tuned for massively parallel computations by employing
the thick-restart block Lanczos method [17]. The source of the computational program is publicly
available, and the details of this code can be seen in Ref. [17]. By performing the CI calculations,
we obtain the mixing amplitude C(a,b), which is used for calculating the overlap integral of the
multi-CI-configuration �CI

s and the 2n-cluster configuration �c according to the superposition in
Eq. (13).

3. Results
3.1. Validity of Fourier transformation

The overlap integral is calculated for the system of the 16O core plus two neutrons (n), where two
neutrons occupy the 0d5/2 orbit with jz1 = −jz2 = 5/2. Here the shell model configuration is given
by the direct product in Eq. (2). There are other combinations of jz1 and jz2, such as jz1 = −jz2 = 3/2
and 1/2, but the magnitude of the overlap is almost independent of the combination of jz1 and jz2. The
jz dependence arises from the kinetic part F in Eq. (12) but the dependence is weak if the total spin
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Fig. 1. Magnitude of the overlap integral calculated for the 16O + n + n system. The abscissa and the ordinate
represent the width parameter of the di-neutron cluster and the magnitude of the overlap, respectively. The
solid curve denotes the result calculated from Fourier transformation, while the open circle shows the result
from coordinate rearrangement.

of the individual single-particle orbits (j1 and j2) is fixed. Thus, we focus on the specific combination
of jz1 = −jz2 = 5/2 to discuss the basic behavior of the overlap.

The orbital angular momentum is set to L = M = 0 for the 16O − 2n cluster wave function.
The width parameter of the 16O–2n cluster is fixed to α = 0.39 fm−2, which is evaluated from
�ω = 41 · 16−1/3 MeV, while the internal parameter ν for the 2n cluster is varied. The ν dependence
of the shell–cluster overlap integral between 16O + n + n and 16O + 2n is shown in Fig. 1. The solid
curve shows the calculated result by the Fourier transformation, while the open circles represent that
obtained from the calculation of the coordinate rearrangement.

In Fig. 1, we can see the increasing behavior from zero at ν = 0 to the maximum peak at ν ∼ 0.19
fm−2, and the magnitude decreases gradually as ν gets larger. Since we set α = 0.39 fm−2 for
the core–2n relative HO wave function, the position at ν ∼ 0.19 fm−2 satisfies α = 2ν, which
corresponds to the boundary of the definition of the Fourier transformation discussed in Sect. 2.3.
In the region of ν < 0.19 fm−2 (α − 2ν > 0), the function of χ̃LM (R) ∝ χ̂L(R)G−1(R) becomes a
damping function in R → ∞, while it is a non-converged function in the region of ν ≥ 0.19 fm−2

(α − 2ν ≤ 0), and hence the Fourier transformation in Eq. (11) cannot be defined. In spite of that,
the result of the Fourier transformation (solid curve) gives the same result as that obtained from the
calculation of the coordinate rearrangement (open circles). This agreement means that the Fourier
transformation can be applied to any range of internal 2n-widths independent of the width parameter
of the core–2n relative wave function.

3.2. Orbit dependence of overlap integral

We investigate the relationship between the overlap integral and the shell-model orbits. To see the
orbit dependence in the shell–cluster overlap, systems composed of two neutrons plus LS-closed
cores, 16O and 40Ca, are considered. In the following results, the width parameter of the 2n cluster
is fixed to be ν = 0.082 fm−2. This width parameter reproduces the root-mean-squared radius of a
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Fig. 2. Left: magnitude of the overlap in the 16O core plus two neutrons. The ordinate shows the magnitude
of the overlap, while the shell-model orbits occupied by two neutrons are shown in the abscissa. Right: Same
as the left panel except for a 40Ca core.

deuteron,
√〈r2〉 ∼ 2.1 fm. In Fig. 2, the magnitudes of the overlap integrals in 16O + n + n and 40Ca

+ n + n are shown in the left and right panels, respectively. In both panels, the ordinate means the
magnitude of the overlap, while the shell-model configurations for the two neutrons are labeled in
the abscissa. Here the relative spin of core–2n is set to L = M = 0, and (S, T ) = (0, 1) is assumed
for the spin–isospin configuration in the 2n cluster. In the shell-model wave function, two neutrons
form the zero pair as J = j1 + j2 = 0, which is given by the two-neutron wave functions

�J=0
s = 1√

1 + δj1,j2

1√
2!A

[
φ

(n)
j1 (r1) ⊗ φ

(n)
j2 (r2)

]
J=Jz=0

, (14)

where the core wave function is omitted. When two neutrons occupy a common shell-model orbit,
an extra factor of 1/

√
1 + δj1,j2 is needed in addition to the normalization constant for the anti-

symmetrization 1/
√

2!.
In the two panels of Fig. 2, we can see characteristic peak structures at the specific orbits: s and p

orbits with the 16O core (left) and p orbits with the 40Ca core (right). The magnitude of the overlap
is enhanced when the shell-model orbits have low orbital angular momenta, such as l = 0 and 1, in
both of the core nuclei but it decreases in orbits with higher orbital angular momenta, such as the f
and g orbits. This tendency is reasonable because the 2n-cluster configuration is set to the s-wave
state: L = M = 0 for the core–2n relative motion and S = 0 for the 2n cluster. Shell-model orbits
with lower orbital spins have a large overlap with the spinless state of the 2n cluster.

It is very interesting to decompose the overlap integral into two parts, the kinematic part F and the
dynamical part G, according to Eq. (12). F and G are given by the angular momentum algebra and
the spatial distribution of the radial wave functions, respectively. The results of the decomposition
are shown in Fig. 3, in which the left and right panels show the results of 18O = 16O + n + n and
42Ca = 40Ca + n + n, respectively. In both panels, the solid lines represent the magnitudes of the
overlap integrals, which are the same as the lines in Fig. 2, while the dotted and dashed lines show
the kinematic part F and the dynamical part G, respectively.

When we focus on the dashed line (dynamical part G) in the left panel, its magnitude for (1s1/2)
2

is the lowest of all orbits. However, the amplitude in the dotted line (kinematic part F) is the highest,
and this highest value of F leads to the maximum of the final overlap shown by the solid line. Thus,
the enhancement at (1s1/2)

2 in 18O is due to the predominance of the kinematic part F . On the other
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Fig. 3. Decomposition of the overlap integral into kinematic (F) and dynamical (G) parts. The left and right
panels show the result of 16O + n + n and 40Ca + n + n, respectively. In both panels, the ordinate shows the
magnitude of the overlap, F and G, while the abscissa represents the shell-model configuration for two valence
neutrons. F and G are plotted by dotted and dashed lines, respectively. The solid lines show the overlaps and
are the same as the solid lines in Fig. 2.

hand, in the (1p3/2)
2 orbit shown by the right-most point in the left panel, both of the F and G parts

coherently enhance the overlap, which is shown as the solid line.
The tendency that is confirmed in the p-wave orbit in 18O can also be seen in the result of 42Ca

in the right panel. The overlap in 42Ca is enhanced at the (1p3/2)
2 and (1p1/2)

2 orbits, and these
enhancements originate from the coherent enhancement of the kinematic part F (dotted line) and
the dynamical part G (dashed line).

In marked contrast to the results for the s and p orbits, the overlap integral is suppressed in the shell-
model orbit with higher orbital angular momentum, such as the f and g orbits. In these higher orbits,
the reduction of the overlap is due to simultaneous suppression in both F and G. Since we assume
a spinless structure for the 2n cluster (L = S = 0), the overlap with the shell-model configuration
with the higher orbital spin is considered to be suppressed.

3.3. Systematic analysis of core + n + n systems

We extend the analysis of the overlap integral to various systems with jj-closed cores: 16O, 28Si, 32S,
40Ca, 56Ni, 56Ge, and 76Sr. In Fig. 4, we show the systematics of the overlap integral for the jj-closed
core-plus-two-neutrons systems. The dotted line shows the overlap calculated from the neutron pair
with Jz = jz1 + jz2 = 0 in the shell-model orbit, while the solid line denotes the overlap with the
spin-zero pair of the shell-model orbits, J = j1 + j2 = 0. In the Jz = 0 configurations, we consider
only combinations of the maximum |jz1| and |jz2|, such as jz1 = −jz2 = 5/2 in (0d5/2)

2, because
the overlap does not strongly depend on the combination of jz1 and jz2. Here the J = 0 states are
normalized to unity by introducing the extra factor of 1/

√
1 + δj1,j2 as pointed out in Eq. (14).

In the Jz = 0 configuration (dotted line), the total spin of two neutrons in the shell-model orbit is
not a good quantum number, and hence the difference between the dotted line (Jz = 0) and the solid
line (J = 0) corresponds to the effect of the angular momentum projection. The angular momentum
projection from Jz = 0 to J = 0 enhances the magnitude of the overlap integral except for (1s1/2)

2

with 28Si and (1p1/2)
2 with 76Sr, in which the Jz = 0 pair is equivalent to the J = 0 pair due to

the Pauli principle. The enhancement in the shell–cluster overlap projected to J = 0 (solid line) is
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Fig. 4. Systematics of the overlap amplitude calculated with various cores. In the abscissa, the core nucleus and
the shell-model orbit occupied by two neutrons are specified. The dotted line shows the results calculated with
the shell-model configuration of Jz = 0, while the solid one shows the results of the J = 0 pair configuration.

natural because the 2n-cluster wave function has a total spin of zero with L = S = 0 in the present
condition.

In Fig. 4, prominent enhancements appear at the configurations of (1s1/2)
2 with 28Si and (1p)2

with 56Ni and 76Sr. As we have confirmed in Fig. 2, the magnitude of the overlap with the core of
16O and 40Ca is increased when two neutrons occupy shell-model orbits with lower orbital angular
momenta, such as l = 0 and 1. Similar enhancements also occur in the systematic calculations with
various jj-closed cores; specifically, the overlaps increase when two valence neutrons can occupy
the s or p orbits due to full occupation of the low-lying orbits below the s or p orbits by the core
nucleus.

Since the magnitude of the overlap integral depends on the width parameter of the 2n cluster, ν, we
should check the width dependence in the systematic calculation of the overlap. The ν dependence
of the shell–cluster overlap is shown in Fig. 5. In this figure, the dotted line shows the overlap
calculated with the 2n-width of ν = 0.082 fm−2, while the solid line shows the overlap with the
reduced 2n-width, ν = 0.26 fm−2. The former width is fixed to reproduce the root-mean-squared
radius of the deuteron (∼ 2.1 fm), while the latter one is frequently used in the α-cluster model
[5–7].

The 2n-width based on the deuteron (dotted line) enhances the overlap in the heavier cores of 56Ni,
64Ge, and 76Sr but the width determined from the size of the α cluster gives a large overlap in lighter
cores such as 16O, 28Si, and 32S. The difference using these widths is the smallest in the 40Ca core.
As can be seen in Fig. 5, the peak–valley structure is invariant in the variation of the width parameter
for the 2n cluster, although the magnitude of the overlap slightly depends on the setting of the width
parameter. We can clearly confirm the enhancements in the overlap due to the occupation of the s
and p orbits by valence two neutrons even if the width parameters are varied over a reasonable range.
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Fig. 5. Systematics of the overlap in core + n + n systems with different width parameters for the 2n cluster
(ν). The solid line shows the overlap calculated by the width parameter of ν = 0.26 fm−2, while the dotted
one represents the result with the parameter of ν = 0.082 fm−2. Both lines are the results of the J = 0 pair of
two neutrons, and the dotted line is the same as the solid line shown in Fig. 4.

Table 1. Interactions and model spaces used in the configuration interaction calculation. All of the interactions
are equipped with the computational code of KSHELL [17].

Core Interaction Model space
16O, 28Si, 32S SDPF-M [27] 1s0d, 0f7/2, and 1p3/2

40Ca, 56Ni GXPF1A [28] 1p0f
64Ge, 76Sr JUN45 [29] 1p, 0f5/2, and 0g9/2

The result in Fig. 4 is obtained by assuming naive shell-model configurations for the valence two
neutrons, i.e. the occupation of the lowest orbit around the core. In realistic nuclei, however, there
must be an effect from the configuration interaction (CI), and we should check the CI effect on the
systematics in the overlap integral. In order to see the CI effect on the shell–cluster overlap, we have
performed a CI calculation employing the computational code of KSHELL [17]. The interactions
and model spaces used are listed in Table 1. Here we use the interactions of SDPF-M [27], GXPF1A
[28], and JUN45 [29].

For example, the SDPF-M interaction [27] is applied to systems with cores of 16O, 28Si, and 32S
plus two valence neutrons, and the CI calculations are performed for the two neutrons. The full
configuration is considered in the calculation of 16O + n + n, while the model space is truncated
for the cores in the calculations of 28Si + n + n and 32S + n + n; specifically, 12 nucleons in 28Si
and 16 nucleons in 32S around 16O are frozen in the (0d5/2)

12 and (0d5/2)
12(1s1/2)

4 configurations,
respectively. The truncations are applied in the same manner for the other cases except for the 40Ca +
n + n case, and all nucleons contained in the individual cores around 40Ca are fixed at the lowest shell-
model configurations: (0f7/2)

16 in 56Ni, (0f7/2)
16(1p3/2)

8 in 64Ge, and (0f7/2)
16(1p3/2)

8(0f5/2)
12 in

76Sr.
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Fig. 6. Comparison of overlaps with and without configuration interaction (CI). The dotted line shows the
results without CI, while the results with CI are plotted by the solid line. The core nucleus and the lowest orbit
occupied by two neutrons are shown in the abscissa. The dotted line shows the result of the J = 0 pair for a
two-neutron configuration, which is the same as the solid line in Fig. 4 and the dotted one in Fig. 5

A comparison of the results with and without the CI effect is shown in Fig. 6. In this figure, the
dotted line shows the overlap without CI, which should be called the “uncorrelated pair of nucleons”
in the naive shell-model picture, while the solid line describes the “correlated pair of two nucleons”
taking into account the CI effect summarized in Table 1. The result with CI (solid line) is more
enhanced than that without CI (dotted line) by a factor of about 1.3–3, except for the 76Sr core. The
formation of a 2n cluster with a spatially localized configuration requires a mixture of higher orbital
spin due to the uncertainty relation of �L · �θ ∼ � with the fluctuation of the orbital spin �L and
the opening angle of correlated pairs of nucleons �θ [30]. Since the CI effect generates a mixture
of excited orbits with higher orbital spins, the enhancement of the overlap with the 2n cluster by the
CI effect is considered to be a natural result.

The small enhancement at the 76Sr core is due to the insufficiency of the model space. In the
present CI calculation of 76Sr + n + n, the interaction of JUN45 is employed as shown in Table 1
but the active configuration in the CI calculation for two neutrons is limited to (0g9/2)2 because all
1p0f orbits are exactly occupied by the 76Sr core and two neutrons. Furthermore, the coupling of the
1p1/2 and 0g9/2 orbits is small due to the large difference in the orbital angular momentum. These
are the reasons why the CI effect is minor in the present calculation for 76Sr + n + n.

Although a spherical shape is assumed for the 76Sr core in the present CI calculation, the 76Sr
nucleus is a strongly deformed nucleus with a prolate shape, which can be described by a large-scale
CI calculation based on the active model space of the 1p0f and 0g1d shells built on the 56Ni core
[31]. The analysis in Ref. [31] showed that the quasi-SU(3) coupling of the 0g9/2 and 1d5/2 orbits
plays an important role in reproducing the large collectivity in 76Sr. Therefore, the deformation effect
in 76Sr should be taken into account in a realistic calculation of the shell–cluster overlap integrals.
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From a comparison of the solid line with the dotted one in Fig. 6, we can understand that the CI
effect does not change the peak–valley structure, which was originally generated in the calculation
without the CI effect, too much. Specifically, the feature of the enhancement (suppression) at the 1s
and 1p (0f and 0g) orbits is unchanged even if the CI effect is taken into account. Roughly speaking,
the CI effect enhances the magnitude of the overlap but its amount is almost constant over all of the
core systems except for the 76Sr core. Thus, the peak structure without CI survives after switching
on the CI effect, and we can trace the original peak structure, which appears in the naive shell-model
configuration, from the CI solutions.

4. Summary

In summary, we have formulated a computational technique to calculate the overlap integral of the
shell model and the cluster model by showing examples of the core plus valence two nucleons. The
formulation is achieved by introducing the Gaussian expansion method (GEM) [13,15,16] and the
Fourier transformation (FT) in the basic expression of the overlap integral. In the computational
method of GEM + FT, we can apply the standard technique of the B-matrix to the calculation of the
shell–cluster overlap integral, and hence an extension to more complicated problems is also possible
in a straightforward manner. Furthermore, the final expression of the overlap integral derived from
the Fourier transformation becomes simple; it is given by the direct product of the kinematic part and
the dynamical part. The former is calculated from the Clebsch–Gordan coefficients in the angular
momentum algebra, while the latter is defined by the integration of the radial wave function.

It is instructive to emphasize the advantages of the GEM + FT method in practical applications. In
this method, we can use an arbitrary functional form for the relative wave function between the core
and the valence particles (core–nucleons and core–cluster), which is prepared by the superposition
of Gaussian bases. Flexible treatment of the relative wave functions is quite important in application
to realistic systems in extreme conditions, such as weakly bound resonant or heavy-core-plus-α
systems. In the former case, the wave functions are spatially extended, while the wave function
reveals highly oscillating behavior in the latter case. GEM + FT can handle both of these extreme
conditions in a simple mathematical formula, and this is superior to the traditional computational
method, the Talmi–Moshinsky transformation [18,19]. In the GEM + FT method, the internal wave
function of the cluster is assumed to be the 0s wave function in the harmonic oscillator potential but
this assumption is expected to be valid at least for the 3H, 3He, and α clusters according to previous
studies using cluster models [5–7].

In order to check the validity of the computational method of the shell–cluster overlap using GEM +
FT, we apply the method to the system of 16O plus two neutrons.Although the Fourier transformation
is not necessarily defined in the whole parameter space, composed of the width parameters for the
2n internal motion and the core–2n relative one, we have demonstrated that the computation by
the Fourier transformation gives the same result as that using the coordinate rearrangement in the
whole parameter space. This result demonstrates the validity of our framework based on the Fourier
transformation, and hence we can safely apply this method to general systems.

We have calculated the shell–cluster overlap in systems with LS-closed cores, 16O and 40Ca nuclei,
plus two neutrons based on the harmonic oscillator (HO) wave function. As for the 2n-cluster wave
functions, the Wildermuth condition is considered in the core–2n HO wave function. We have found
that the shell–cluster overlap integral is prominently enhanced if two neutrons occupy shell-model
orbits with the lower orbital angular momenta, such as the 1s and 1p orbits.
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The total magnitude of the overlap is decomposed into the kinematic part and the dynamical part to
see the origin of the enhancement in these orbits with lower angular momenta. The enhancement in
the 1s orbit is mainly caused by the enhancement in the kinematic part, while both of the contributions
increase in the overlap with the 1p orbit. As the orbital angular momentum in the shell-model orbit
is higher, such as in the 0f and 0g orbits, both of the contributions decrease, which leads to the
suppression of the total magnitude of the overlap. These results are quite valid because we assume
a spinless structure for the 2n cluster, and shell-model orbits with lower orbital spins must have a
large overlap with a spinless 2n cluster.

The tendency for the enhanced overlap in the s and p orbits can also be seen in the systematic
calculation by varying the core nuclei. Here we have assumed jj-closed cores, and the overlap integral
of the shell-model configuration (core + n + n) and the cluster-model one (core + 2n) is evaluated. As
confirmed in the calculations of 16O + n + n and 40Ca + n + n, the magnitude of the overlap integrals
is enhanced at the occupation of the 1s1/2, 1p3/2, and 1p1/2 orbits, which correspond to the 28Si,
56Ni, and 76Sr cores, respectively. We have investigated the effect of the total spin projection for the
shell-model configuration by comparing the Jz = 0 pair with the J = 0 pair. The spin projection for
the shell-model configuration enhances the magnitude of the shell–cluster overlap but the effect of
the projection is not so important for the peak structure in the shell–cluster overlap.

Finally, a calculation of the configuration interaction (CI) is performed for the valence two neutrons,
and the CI effect is taken into account in the evaluation of the overlap integrals. The formulation of
our overlap integrals is based on the M -scheme in the CI calculation, and it can be directly combined
with the M -scheme CI calculation. In the present analysis, we have employed the computational
code of KSHELL [17].

The CI effect increases the magnitudes of the overlap integrals and the formation probability of the
2n cluster is enhanced by the CI effect. This is a reasonable consequence of the uncertainty relation
of �L ·�θ ∼ � for the fluctuation of the orbital angular momentum �L and the opening angle of the
two nucleons �θ measured from the center of the core nucleus. Since the CI effect takes into account
the large fluctuation in �L by superposing the shell-model orbits with higher L, �θ is reduced after
including the CI effect. A similar enhancement to it has already been pointed out in the study of the
di-neutron correlation on the basis of the Hartree–Fock–Bogoliubov calculation in medium-heavy
nuclei [30].

Although the CI effect increases the magnitude of the overlap, its amount is almost constant in all
of the systems with the jj-closed core. Therefore, the regularity of the enhanced overlap due to the
occupation of the 1s and 1p orbits survives after including the CI effect. This consequence is expected
to be valid, at least for spherical core systems, and we can expect enhancement of the overlap integrals
on the basis of the naive shell-model configuration in such spherical systems. Moreover, there is a
possibility that the regularity relevant to the 1s and 1p orbits can be generalized to other cluster
systems, deuteron, tritium, 3He, and α, because all of these clusters are constructed from a direct
product of the 0s single-particle orbit, which is similar to the 2n clusters treated here. A systematic
analysis of the shell–cluster overlap with these 0s clusters is now in progress.
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A. Appendix

In this appendix, we show the expression of the overlap integral of the shell-model and cluster-model
wave functions in core-plus-two-neutrons systems.

A.1. Definition of wave functions

The shell-model wave function of the two valence neutrons, which move around the heavy core, is
written in symbolic form as follows:

�s = NsA {φ1(r1, σ 1)φ2(r2, σ 2)}, (A.1)

with the normalization constant of Ns = 1/
√

2!. φi(ri, σ i) denotes the single-particle wave function
for the ith neutron with spatial (ri) and spin (σ i) coordinates. Here the isospin part is omitted for
simplicity. The subscript i in φi represents a set of quantum numbers: the radial node number n, the
orbital spin l, the total spin j, its third component jz for the ith neutron, and hence i ≡ (ni, li, ji, jzi).
In Eq. (A.1), the core part in the wave function is omitted, and we consider only the two neutron
degrees of freedom. Since the single-particle wave functions of the two valence neutrons and those
in the core wave function are orthogonal to each other, the core part vanishes in the final expression
of the overlap integral.

The explicit form of the single-particle wave function is given by

φnljjzτ (r, σ ) =
∑
mν

〈 l m
1

2
ν | j jz 〉Rnlj(r)Ylm(r̂)v1/2ν(σ ), (A.2)

which is composed of the radial function Rnlj(r), the spherical harmonics Ylm(r̂) with the third
component of the orbital spin m, and the spin function v1/2ν(σ ) with the third component of the
nucleon spin ν. The bracket shows the Clebsch–Gordan coefficient to generate the good quantum
number of the total spin j.

The radial wave function of Rnlj in the individual single-particle wave functions is expanded by
the tempered Gaussian function as

Rnlj(r) =
∑

a

C(nlj)
a · rl exp(−ν

(nlj)
a · r2), (A.3)

where C(nlj)
a and ν

(nlj)
a mean the expansion coefficient and the width parameters for the ath basis in

the quantum state described by n, l, and j.
On the other hand, the wave function of the cluster model is set to

�c = NcA
{
χLM (R) · ϕν(ρ, σ 1, σ 2)

}
(A.4)

with a normalization constant of Nc = 1/
√

2!. Again, the core wave function and the isospin function
for the two neutrons are dropped for simplicity. χLM (R) represents the core–2n relative wave function,
which is a direct product of the radial part χ̂L(R) and the angular part YLM (R̂):

χLM (R) = χ̂L(R)YLM (R̂). (A.5)
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Here R describes the core–2n relative coordinate with the radial part R and the angular part R̂. The
radial part of the relative wave function is expanded by the tempered Gaussian, which is similar to
the treatment in Eq. (A.3),

χ̂L(R) =
∑

j

g(L)
j · RL exp

(
−α

(L)
j R2

)
, (A.6)

which contains the expansion parameters of g(L)
j and α

(L)
j .

In Eq. (A.4), ϕν(ρ, σ 1, σ 2) shows the internal wave function of the 2n cluster depending on the n–n
relative coordinate ρ and the spin coordinate (σ 1, σ 2). The superscript ν denotes the width parameter
for the radial wave function. The explicit expression of the 2n internal wave function is given by

ϕν(ρ, σ 1, σ 2) = ϕ̂ν(ρ)
[
v 1

2
(σ 1) ⊗ v 1

2
(σ 2)

]
S=0,Sz=0

= ϕ̂ν(ρ)
∑
ν′

1,ν′
2

〈1

2
ν′

1
1

2
ν′

2|00〉v 1
2 ν′

1
(σ 1)v 1

2 ν′
2
(σ 2), (A.7)

which contains the radial function of

ϕ̂ν(ρ) =
(

2νr

π

) 3
4

e−νrρ
2

(A.8)

with the width parameter of νr = ν/2. The internal function in Eq. (A.7) with Eq. (A.8) describes
the 2n cluster with the spin singlet pair (S = Sz = 0), corresponding to the (0s1/2)

2 configuration in
a simple harmonic oscillator potential with a width of ν.

A.2. Shell–cluster overlap by Fourier transformation

We calculate the shell–cluster overlap of 〈�s|�c〉 using the definitions of the wave function explained
before. In the calculation of the overlap, first we introduce the wave function for the center-of-mass
motion of the 2n cluster, G(R) = (4ν/π)3/4 e−2νR2

, and its inverse G−1(R) for the cluster wave
function as

�c = NcA
{
χLM (R)ϕν(ρ, σ1, σ2)

}
= NcA

{
χLM (R)G−1(R) · G(R)ϕν(ρ, σ1, σ2)

}
= NcA

{
χ̃LM (R) · G(R)ϕν(ρ, σ1, σ2)

}
(A.9)

with χ̃LM (R) = χLM (R)G−1(R). The spatial part in the product of Gϕν becomes the direct product
of the single-particle wave function in the 0s orbit.

Second, we introduce the Fourier representation for χ̃LM (R):

χ̃LM (R) = 1√
(2π)3

∫
dK X̃LM (K)e−iK ·R. (A.10)

The integrand X̃LM (K) can be expressed by the internal width of the 2n cluster, ν, and the expansion
coefficients, gj and αj, in the relative wave function χLM (R) in Eq. (A.6). After simple calculations
with the relation in the coordinate of R = (r1 + r2) /2, we can obtain the following expression for
the overlap:

〈�s|�c〉 = 〈�s(n, l, j, jz)|�ν
c (LM )〉
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= F(L, l, j, jz) · Gν(L, n, l, j) · δ(M ,
2∑

i=1

jzi), (A.11)

which has a simple product of F and Gν . In this expression, the bold symbols represent the set of
quantum numbers for the two neutrons, such as n = (n1, n2), l = (l1, l2), and so on, while δ in the
second line shows a Kronecker delta to guarantee the conservation of the third component of the
total spin.

F is composed of several kinematic factors and Clebsch–Gordan coefficients and is written as

F(L, l, j, jz) =
∑
ν1,ν2

〈1

2
ν1

1

2
ν2|SSz〉 (−1) jz1+jz2−Sz fL(l1, jz1 − ν1, l2, jz2 − ν2, L, M ) (A.12)

with the definition of fL given by

fL(l1, jz1 − ν1, l2, jz2 − ν2, L, M ) = L̂−1(−1)M 〈l1 0 l2 0|L 0〉

×
{
〈l1jz1 − ν1

1

2
ν1|j1jz1〉 〈l2jz2 − ν2

1

2
ν2|j2jz2〉 〈l1 jz1 − ν1 l2 jz2 − ν2|L M 〉

− 〈l1jz1 − ν2
1

2
ν2|j1jz1〉 〈l2jz2 − ν1

1

2
ν1|j2jz2〉 〈l1 jz1 − ν2 l2 jz2 − ν1|L M 〉

}
. (A.13)

In Eqs. (A.12) and (A.13), l̂ is defined as l̂ = √
2l + 1, and the subtraction in Eq. (A.13) arises from

the anti-symmetrization of the two neutrons.
On the other hand, the factor Gν in Eq. (A.11) is determined by the radial wave function, and its

explicit form becomes

Gν(L, n, l, j) = (πν)
3
4 l̂1 l̂2 (−2)L

(√
2i
)−(L+l1+l2)

(l1 + l2 + L + 1)!!

×
∑
j,a,b

g(L)
j (α

(L)
j − 2ν)

1
2 (l1+l2−L) C∗

a

(ν∗
a + ν)l1+ 3

2

C∗
b

(ν∗
b + ν)l2+ 3

2

×
[

2ν∗
a + αj

ν∗
a + ν

+ 2ν∗
b + αj

ν∗
b + ν

]−1
2 (l1+l2+L+3)

, (A.14)

where the parameters Ca, Cb, νa, and νb correspond to the expansion coefficients in the radial wave
function of the single-particle orbit in Eq. (A.3). Here the superscript of the single-particle state (nlj)
in the individual coefficients is omitted for simplicity. gj and αj are the expansion coefficients for
the radial wave function in the cluster model with L, which is given in Eq. (A.6), while ν shows the
internal width of the 2n cluster contained in Eq. (A.8).

A.3. Shell–cluster overlap by coordinate rearrangement

We can also calculate the shell–cluster overlap by employing the coordinate rearrangement, which
is given by

R = r1 + r2

2
(A.15)

ρ = r1 − r2. (A.16)

R represents the center-of-mass coordinate of the two valence neutrons, which is the same as the
core–2n relative coordinate in the present calculation, while ρ denotes their relative coordinate.
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According to the relationship between Eqs. (A.15) and (A.16), we can directly calculate the overlap
integral. The computational result on the basis of the coordinate rearrangement becomes

〈�s|�c〉 = 2
∑
ν′

1,ν′
2

〈l1jz1 − ν′
1

1

2
ν′

1|j1jz1〉 〈l2jz2 − ν′
2

1

2
ν′

2|j2jz2〉 〈1

2
ν′

1
1

2
ν′

2|00〉

× M(νr)(n1, l1, m′
1, n2, l2, m′

2, L) (A.17)

with the abbreviation of m′
i = jzi − ν′

i . Here M(νr) is defined as

M(νr)(n1, l1, m′
1, n2, l2, m′

2, L) =
(

2νr

π

) 3
4 √

4π L̂
∑
abj

C∗
a C∗

b g(L)
j (−1)m′

1+m′
2 l̂1 l̂2

×
∑
λ1λ2

√√√√( 2L
2λ1

) (
1

2

)λ1+λ2 ∑
μ1μ2

〈λ1μ1λ2μ2|LM 〉K(ν1,νb,νr ,αj)(l1, λ1, μ1, l2, λ2, jz1 , ν′
1, jz2 , ν′

2),

(A.18)

where K contains the radial integration and 3j symbol as

K(νa,νb,νr ,αj)(l1, λ1, μ1, l2, λ2, jz1 , ν′
1, jz2 , ν′

2) =
∑
λμ

(−1)μλ̂2

×
(

l1 λ λ1

0 0 0

)(
l1 λ λ1

−m′
1 −μ μ1

)(
l2 λ λ2

0 0 0

)(
l2 λ λ2

−m′
2 μ μ2

)

× I(νa,νb,νr ,αj)(l1, λ1, l2, λ2, λ). (A.19)

I is calculated from the double integration of the radial wave function, and its explicit form is

I(νa,νb,νr ,αj)(l1, λ1, l2, λ2, λ) =
√

π

2βr1r2

∫
r2

1dr1

∫
r2

2dr2

× rl1+λ1
1 e−(ν∗

a +νr+ 1
4 αj)r2

1 Jλ(βjr1r2) rl2+λ2
2 e−(ν∗

b +νr+ 1
4 αj)r2

2 , (A.20)

which contains a modified Bessel function in the integrand:

Jλ(x) =
√

π

2x
Jλ+1/2(x). (A.21)

Here J denotes the normal Bessel function, and βj is given by βj = 2νr − αj/2. In all of the
expressions, the superscripts in parentheses, (νa, νb, νr , αj) in K, represent the set of width parameters
for the radial wave functions, while the variables in the arguments of the individual functions show
the set of quantum numbers.

As can be understood from the final expression in Eq. (A.17), the overlap integral in the method
of the coordinate rearrangement has the structure of multiple summations, in which the Clebsch–
Gordan coefficients and the radial integration get entangled. The final expression of the overlap
obtained by the coordinate rearrangement is much more complicated than the expression by the
Fourier transformation in Eq. (A.11), which is given as the simple product of the angular momentum
part and the radial integration part.
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