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Optimal two-qubit circuits for universal fault-tolerant
quantum computation
Andrew N. Glaudell1,2,3,4✉, Neil J. Ross 5 and Jacob M. Taylor1,2

We study two-qubit circuits over the Clifford+CS gate set, which consists of the Clifford gates together with the controlled-phase
gate CS= diag(1, 1, 1, i). The Clifford+CS gate set is universal for quantum computation and its elements can be implemented fault-
tolerantly in most error-correcting schemes through magic state distillation. Since non-Clifford gates are typically more expensive to
perform in a fault-tolerant manner, it is often desirable to construct circuits that use few CS gates. In the present paper, we
introduce an efficient and optimal synthesis algorithm for two-qubit Clifford+CS operators. Our algorithm inputs a Clifford+CS
operator U and outputs a Clifford+CS circuit for U, which uses the least possible number of CS gates. Because the algorithm is
deterministic, the circuit it associates to a Clifford+CS operator can be viewed as a normal form for that operator. We give an
explicit description of these normal forms and use this description to derive a worst-case lower bound of 5log2ð1ϵÞ þ Oð1Þ on the
number of CS gates required to ϵ-approximate elements of SU(4). Our work leverages a wide variety of mathematical tools that may
find further applications in the study of fault-tolerant quantum circuits.
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INTRODUCTION
In the context of fault-tolerant quantum computing, operations
from the Clifford group are relatively easy to perform and are
therefore considered inexpensive. In contrast, operations that do
not belong to the Clifford group are complicated to execute fault-
tolerantly because they require resource-intensive distillation
protocols1. Since non-Clifford operations are necessary for
universal quantum computing, it has become standard to use
the number of non-Clifford gates in a circuit as a measure of its
cost. This fault-tolerant perspective on the cost of circuits has
profoundly impacted the field of quantum compiling and
significant efforts have been devoted to minimizing the number
of non-Clifford operations in circuits.
An important problem in quantum compiling is the problem of

exact synthesis: given an operator U known to be exactly
representable over some gate set G, find a circuit for U over G. An
exact synthesis algorithm is a constructive solution to this problem.
When the gate set G is an extension of the Clifford group, it is
desirable that the exact synthesis algorithm for G be efficient and
produce circuits that use as few non-Clifford gates as possible.
In the past few years, methods from algebraic number theory

have been successfully applied to the exact synthesis problem
associated to a variety of single-qubit2–8 and single-qutrit9–12 gate
sets. In many cases, the resulting exact synthesis algorithms
efficiently produce circuits that are optimal, in the sense that they
use the least possible number of non-Clifford gates. These
powerful exact synthesis methods were central in the develop-
ment of good unitary approximation methods, which play a key
role in the compilation of practical quantum programs2,3,7,8,13,14.
Exact synthesis algorithms also exist for various instantiations of

the multi-qubit compiling problem, though each suffers short-
comings in some respect. Optimal algorithms for two-qubit circuits
over continuous gate sets have been known for a number of
years15,16. Unfortunately, such gate sets are not well-suited for fault-

tolerant quantum computing. Multi-qubit exact synthesis algorithms
for universal and fault-tolerant gate sets were introduced more
recently17–27. Some of these algorithms, such as17,19–21,24–26, are
proper synthesis algorithms: they input a unitary matrix and
produce a circuit. Some other of these algorithms, such
as18,22,23,27, are better referred to as re-synthesis algorithms: they
input a circuit and produce an optimized circuit. Of course, a re-
synthesis algorithm can be used in conjunction with a synthesis
algorithm to obtain an alternative (and typically better) synthesis
algorithm. While the algorithms of refs. 17,20 are far from optimal, the
algorithms of19,21,24,26 synthesize provably optimal circuits by
cleverly utilizing certain properties of fault-tolerant gate sets
containing the Clifford group. However, the runtimes of these
optimal synthesis algorithms are exponential in both qubit count
and optimal circuit length. Powerful heuristics were introduced in26

achieving polynomial scaling with optimal circuit length. Unfortu-
nately, even this improved heuristic algorithm takes thousands of
seconds to compute optimal two-qubit circuits of practical size (40
non-Clifford operations) on modest hardware.
Not only are these multi-qubit exact synthesis algorithms

impractical in many cases, they also fail to shed much light on the
structure of optimal circuits. In the single-qubit case, intimate
knowledge of this structure for certain gate sets was developed by
describing optimal circuits via regular expressions or, equivalently,
automata28. Such descriptions are of theoretical interest, but also
have practical consequences. In particular, for certain single-qubit
gate sets these descriptions allowed researchers to derive a
rigorous lower-bound on the number of non-Clifford gates
required to approximate typical elements of SU(2)29. Analogous
statements about approximations of multi-qubit unitaries have
eluded researchers thus far.
In the present paper, we introduce an efficient and optimal

exact synthesis algorithm for a two-qubit gate set that is
appropriate for universal and fault-tolerant quantum computing.
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We focus on two-qubit circuits over the Clifford+CS gate set,
which consists of the Clifford gates together with the non-Clifford
controlled-phase gate CS= diag(1, 1, 1, i). The CS gate has
received recent attention as an alternative to the T-gate in
methods for fault-tolerant quantum computing30,31 and due to its
natural implementation as an entangling operation in certain
superconducting qubit systems32–35 whose fidelity is approaching
that of single-qubit gates36,37. Our algorithm produces an optimal
circuit in a number of arithmetic operations linear in the length of
the optimal decomposition. This is unlike existing multi-qubit
synthesis methods. Moreover, because our algorithm is determi-
nistic, the circuit it associates to a Clifford+CS operator can be
viewed as a normal form for that operator. We give an explicit
description of these normal forms in the language of automata
and use this description to derive a worst-case lower bound of
5log2ð1ϵÞ þ Oð1Þ on the number of CS gates required to ϵ-
approximate elements of SU(4). A Mathematica package imple-
menting our algorithm is freely available online38. This code is very
efficient, synthesizing optimal circuits of CS-count 10000 in 1.2 ±
0.1 s on modest hardware.
The paper is structured as follows. We first introduce a

convenient set of generators in Section “Generators”. Then, in
Section “The isomorphism SU(4) ≅ Spin(6)”, we describe the
exceptional isomorphism SU(4)≅ Spin(6). In Section “Exact synth-
esis”, we leverage this isomorphism to introduce an exact
synthesis algorithm for Clifford+CS operators. In Sections “Auto-
mata as tools for describing normal forms” and “The structure of
normal forms”, we use the theory of automata to study the
structure of the circuits produced by the exact synthesis
algorithm. We take advantage of this structure in Section “Lower
bounds” to establish a worst-case lower bound on the number of
non-Clifford resources required to ϵ-approximate elements of SU
(4) using Clifford+CS circuits. Finally, we conclude and discuss
avenues for future work in Section “Discussion”.

RESULTS
Generators
Throughout, we use N, Z, R, and C to denote the usual
collection of numbers, Zp to denote the collection integers
modulo p, and Z i½ � to denote the collection of Gaussian integers
(the complex numbers with integer real and imaginary parts). We
write ρ for the canonical homomorphism Z ! Z2 (if n 2 Z then
ρ(n) is the parity of n). For two integers n ≤m, we write [n,m] for
the set n; ¼ ;mf g � Z and simply write [m] for [1,m]. We view
scalars and vectors as matrices so that any concept defined for
matrices of arbitrary dimensions also applies to scalars and
vectors. Finally, for readability, we use the symbol ⋅ to denote the
zero entries of a matrix.
The single-qubit Pauli gates X, Y, and Z are defined as

X ¼
� 1

1 �

� �
; Y ¼

� �i

i �

� �
; and Z ¼

1 �
� �1

� �
:

These gates generate the single-qubit Pauli group
iaP ; a 2 Z4 and P 2 I;X; Y; Zf gf g. The two-qubit Pauli group, which
we denote by P, is defined as P ¼ iaðP � QÞ ; a 2 Z4 andf
P;Q 2 I; X; Y; Zf gg. The Clifford gates H, S, and CZ are defined as

H ¼ 1ffiffiffi
2

p
1 1

1 �1

� �
; S ¼

1 �
� i

� �
; and CZ ¼

1 � � �
� 1 � �
� � 1 �
� � � �1

2
6664

3
7775:

These gates are known as the Hadamard gate, the phase gate,
and the controlled-Z gate, respectively. The single-qubit Clifford
group is generated by H and S and contains the primitive 8th root
of unity ω ¼ e

iπ
4 . The two-qubit Clifford group, which we denote by

C, consists of the operators which can be represented by a two-
qubit circuit over the gate set H; S;CZf g. Equivalently, C is
generated by H⊗ I, I⊗ H, S⊗ I, I⊗ S, and CZ. Up to global phases,
the Clifford groups are the normalizers of the Pauli groups.
Clifford gates are well-suited for fault-tolerant quantum

computation but the Clifford group is not universal. One can
obtain a universal group by extending C with the controlled-phase
gate CS defined as

CS ¼

1 � � �
� 1 � �
� � 1 �
� � � i

2
6664

3
7775:

In what follows, we focus on the group G of operators which can
be represented by a two-qubit circuit over the universal gate set
H; S;CZ; CSf g. Equivalently, G is the group generated by H⊗ I, I⊗
H, S⊗ I, I⊗ S, CZ, and CS. We have P � C � G. We sometimes
refer to G as the Clifford+ CS group or Clifford+ controlled-phase
group. We know from17 that G is the group of 4 × 4 unitary
matrices of the form

1ffiffiffi
2

p k M (1)

where k 2 N and the entries of M belong to Z i½ �. In the fault-
tolerant setting, the CS gate is considered vastly more expensive
than any of the Clifford gates. As a result, the cost of a Clifford+
CS circuit is determined by its CS-count: the number of CS gates
that appear in the circuit. Our goal is to find circuits for the
elements of G that are optimal in CS-count.
We start by introducing a generalization of the CS gate which

will be helpful in describing the elements of G.

Definition 2.1
Let P and Q be distinct elements of Pn If g such that P and Q are
Hermitian and PQ= QP. Then R(P,Q) is defined as

RðP;QÞ ¼ exp
iπ
2

I � P
2

� �
I � Q
2

� �� �
:

We have R(Z⊗ I, I⊗ Z)= CS. Moreover, since C normalizes P and
CR(P, Q)C†= R(CPC†, CQC†) for every C 2 C, we know that RðP;QÞ 2
G for every appropriate P;Q 2 P. We record some important
properties of the R(P, Q) gates in the lemma below. Because the
proof of the lemma is tedious but relatively straightforward, it is
given in Supplementary Note 2.

Lemma 2.2
Let C 2 C and let P, Q, and L be distinct elements of P n If g.
Assume that P, Q, and L are Hermitian and that PQ=QP, PL= LP,
and QL=− LQ. Then the following relations hold:

CRðP;QÞCy ¼ RðCPCy; CQCyÞ; (2)

RðP;QÞ ¼ RðQ; PÞ; (3)

RðP;�PQÞ ¼ RðP;QÞ; (4)

RðP;�QÞ 2 RðP;QÞC; (5)

RðP;QÞ2 2 C; and (6)

RðP; LÞRðP;QÞ ¼ RðP;QÞRðP; iQLÞ: (7)

We will use the R(P,Q) gates of Definition 2.1 to define normal
forms for the elements of G. The equivalences given by Lemma
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2.2 show that it is not necessary to use every R(P, Q) gate and the
following definition specifies the ones we will be using.

Definition 2.3
Let T 1 and T 2 be the subsets of P ´P given below.

T 1 ¼ ðP;QÞ ; P 2 X � I; Y � I; Z � If g;Q 2 I � X; I � Y; I � Zf gf g
T 2 ¼ ðP;QÞ ; P 2 X � X; Z � X; Y � Xf g;Q 2 Y � Y; Z � Y; X � Yf g; and PQ ¼ QPf g:

The set S is defined as S ¼ RðP;QÞ ; ðP;QÞ 2 T 1 orf ðP;QÞ 2 T 2g.
The set S contains 15 elements which are explicitly listed in
Fig. 1. It can be verified that all of the elements of S are distinct,
even up to right-multiplication by a Clifford gate. It will
be helpful to consider the set S ordered as in Fig. 1, which is to
be read left-to-right and row-by-row. We then write Sj to refer to
the j-th element of S. For example, S1 is in the top left of Fig. 1, S5
is in the top right, and S15 is in the bottom right. The position of R
(P, Q) in this ordering roughly expresses the complexity of the
Clifford circuit required to conjugate CS to R(P, Q).
We close this section by showing that every element of G can be
expressed as a sequence of elements of S followed by a single
element of C.

Lemma 2.4
Let P and Q be distinct elements of P n If g such that P and Q are
Hermitian and PQ=QP. Then there exists P0;Q0 2 P and C 2 C
such that RðP0;Q0Þ 2 S and RðP;QÞ ¼ RðP0;Q0ÞC.
Proof
Let P= ip(P1⊗ P2) and Q= iq(Q1⊗Q2) with P1; P2;Q1;Q2
2 I; X; Y; Zf g. Since P and Q are Hermitian, p and q must be even.
Moreover, by Eqs. (3) and (5) of Lemma 2.2, we can assume
without loss of generality that p= q= 0 so that P= P1⊗ P2 and Q
=Q1⊗Q2. Now, if one of P1, P2, Q1, or Q2 is I, then we can use
Eqs. (3), (4) and (5) of Lemma 2.2 to rewrite R(P,Q) as with C 2 C
and ðP0;Q0Þ 2 T 1 as in Definition 2.3. If, instead, none of P1, P2, Q1,
or Q2 are I, then we can reason similarly to rewrite R(P, Q) as
RðP0;Q0ÞC with C 2 C and ðP0;Q0Þ 2 T 2. □

Proposition 2.5
Let V 2 G. Then V= R1⋯ RnC where C 2 C and Rj 2 S for
j ∊ [n].
Proof
Let V 2 G. Then V can be written as V= C1 ⋅ CS ⋅ C2 ⋅ CS ⋅… ⋅ Cn ⋅
CS ⋅ Cn+1 where Cj 2 C for j ∊ [n+ 1]. Since CS= R(Z⊗ I, I⊗ Z) we
have

V ¼ C1 � RðZ � I; I � ZÞ � C2 � RðZ � I; I � ZÞ � ¼ � Cn

� RðZ � I; I � ZÞ � Cnþ1:
(8)

Now, by Eq. (2) of Lemma 2.2, C1RðZ � I; I � ZÞ ¼ C1RðZ � I; I �
ZÞCy

1C1 ¼ RðP;QÞC1 for some P;Q 2 P. We can then apply Lemma
2.4 to get

C1RðZ � I; I � ZÞ ¼ RðP;QÞC1 ¼ RðP0;Q0ÞCC1 ¼ RðP0;Q0ÞC0

with C0 ¼ CC1 2 C and RðP0;Q0Þ 2 S. Hence, setting R1 ¼ RðP0;Q0Þ
and C0 ¼ C0C2, Eq. (8) becomes

V ¼ R1 � C0 � RðZ � I; I � ZÞ � ¼ � Cn � RðZ � I; I � ZÞ � Cnþ1

and we can proceed recursively to complete the proof.

The Isomorphism SU(4)≅ Spin(6)
In this section, we describe the exceptional isomorphism SU(4)≅
Spin(6) which will allow us to rewrite two-qubit operators as
elements of SO(6). Consider some element U of SU(4). Then U acts
on C4 by left-multiplication. Moreover, this action is norm-
preserving. Now let ej

� �
be the standard orthonormal basis of C4.

From this basis, we construct an alternative six-component basis
using the wedge product.

Definition 2.6
(Wedge product). Let a ∧ b be defined as the wedge product of a
and b. Wedge products have the following properties given
vectors a; b; c 2 Cn and α; β 2 C:

● Anticommutativity: a ∧ b=− b ∧ a.
● Associativity: (a ∧ b) ∧ c= a ∧ (b ∧ c).
● Bilinearity: (αa+ βb) ∧ c= α(a ∧ c)+ β(b ∧ c).

Note that the anticommutation of wedge products implies that
a ∧ a= 0. We say that v1 ^ � � � ^ vk2

VkCn for vj 2 Cn. To
compute the inner product of two wedge products v1 ∧⋯∧ vk
and w1 ∧⋯∧wk, we compute

hv1 ^ � � � ^ vk;w1 ^ � � � ^ wki ¼ det hvq;wri
	 


where 〈vq,wr〉 is the entry in the q-th row and r-th column of
a k × k matrix.
Remark 2.7
The magnitude of a wedge product of n vectors can be thought of
as the n dimensional volume of the parallelotope constructed from
those vectors. The orientation of the wedge product defines the
direction of circulation around that parallelotope by those vectors.
The wedge product of two vectors inC4 can be decomposed into a
six-component basis as anticommutativity reduces the 16 potential
wedge products of elements of ej

� �
to six. We choose this basis as

B ¼ s�;12;34; sþ;12;34; s�;23;14; sþ;24;13; s�;24;13; sþ;23;14
� �

(9)

where

s± ;ij;kl ¼
i
1 ∓ 1
2ffiffiffi
2

p ei ^ ej ± ek ^ el
	 


: (10)

We note that B is an orthonormal basis and we assume that B is
ordered as in Eq. (9).

Definition 2.8
Let U ∊ SU(4) and U be its representation in the transformed basis.
Let v;w 2 C4 with v ^ w2

V2C4. Then the actions of U and U are
related by

Uðv ^ wÞ ¼ ðUvÞ ^ ðUwÞ:

To avoid confusion, we use an overline, as in O, to denote the SO
(6) representation of an operator or set of operators O. We are
now equipped to define the transformation from SU(4) to SO(6).

Definition 2.9
Let U ∊ SU(4) and let j, k ∊ [6]. Then the entry in the j-th row and k-
th column of the SO(6) representation U of U is

Uj;k ¼ hBj ;UBki (11)

Fig. 1 The 15 elements of S. These operators are one suitable choice for 15 RðP;QÞ gates which are not equivalent to each other up to
right-multiplication by Cliffords. All other choices are equivalent to this one up to right-multiplication by Cliffords. The ordering of S is given
by reading left-to-right and row-by-row.
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where Bj is the jth element in the ordered basis B, the action of U
on Bk is defined by Definitions 2.6 and 2.8, and the inner product is
defined by Definitions 2.6.
As an illustration of the process specified in Definition 2.9, we
explicitly calculate the SO(6) representation of a Clifford+CS
operator in Supplementary Note 1. Moreover, we provide code to
compute this isomorphism for any input with our Mathematica
package38.
Remark 2.10
The fact that this isomorphism yields special orthogonal operators
is ultimately due to the fact that the Dynkin diagrams for the Lie
algebras of SU(4), Spin(6), and SO(6) are equivalent. However, this
fact can be easily illustrated through the Euler decomposition of
SU(4)39. Direct calculation of U for the operator

U ¼

1 � � �
� 1 � �
� � α �
� � � α�

2
6664

3
7775

for ∣α∣= 1 and α= r+ ic with r; c 2 R yields

U ¼

1 � � � � �
� 1 � � � �
� � r � � c

� � � r c �
� � � �c r �
� � �c � � r

2
666666664

3
777777775

which is explicitly in SO(6). Computation of the other 14 Euler
angle rotations required for an SU(4) parameterization yields
similar matrices, likewise in SO(6). Since SO(6) is a group under
multiplication, the isomorphism applied to any U ∊ SU(4) yields
U 2 SOð6Þ.
We close this section by explicitly calculating the SO(6)
representation of each of the generators of G. We multiply the
generators by overall phase factors to ensure that each operator
has determinant one, and furthermore that single-qubit operators
have determinant one on their single-qubit subspace. Later, when
referring to gates or their SO(6) representation, we omit overall
phases for readability.

Proposition 2.11
The image of the generators of C in SO(6) are

ðωySÞ � I ¼

� �1 � � � �
1 � � � � �
� � 1 � � �
� � � 1 � �
� � � � 1 �
� � � � � 1

2
666666664

3
777777775
; I � ðωySÞ ¼

1 � � � � �
� 1 � � � �
� � 1 � � �
� � � � �1 �
� � � 1 � �
� � � � � 1

2
666666664

3
777777775
;

ðiHÞ � I ¼

� � 1 � � �
� �1 � � � �
1 � � � � �
� � � 1 � �
� � � � 1 �
� � � � � 1

2
666666664

3
777777775
; I � ðiHÞ ¼

1 � � � � �
� 1 � � � �

� 1 � � �
� � � � � 1

� � � � �1 �
� � � 1 � �

2
666666664

3
777777775
;

ωyCZ ¼

� �1 � � � �
1 � � � � �
� � � � � �1

� � � � �1 �
� � � 1 � �
� � 1 � � �

2
666666664

3
777777775
:

Proposition 2.12
The elements of S are given in Fig. 2.

Exact synthesis
In this section, we leverage the isomorphism SU(4)≅ Spin(6)
described in the previous section to find optimal decompositions
for the elements of G. We will be working extensively with the
matrix group

H ¼ 1ffiffiffi
2

p k M 2 SOð6Þ ; k 2 N;M 2 Z6 ´ 6

( )
: (12)

Note that H � SOð6Þ. Our interest in H stems from the
following observation.

Proposition 2.13
We have G � H.
Proof
The property holds for the generators of G by Propositions 2.11
and 2.12. □
In the remainder of this section, we prove the converse of
Proposition 2.13 by defining an algorithm which inputs an
element of H and outputs a product of generators. We start by
introducing a few notions that are useful in discussing the
elements of H.

Definition 2.14
Let V 2 H. We say that ‘ 2 N is a denominator exponent of V ifffiffiffi
2

p ‘
V 2 Z6 ´ 6. The least such ℓ is the least denominator exponent

of V, which we denote by lde(V).

Lemma 2.15
Let U 2 G and suppose that lde ðUÞ ¼ k. Then any Clifford+CS
circuit for U has CS-count at least k.
Proof
The only generators with a factor of 1=

ffiffiffi
2

p
in their SO(6)

representation are the elements of S. Thus, for a least
denominator exponent of k there must be at least k of these
operators, each of which requires a single CS gate. □

Definition 2.16
Let V 2 H and let ℓ be a denominator exponent of V. The ℓ-residue
of V is the binary matrix ρ‘ðVÞ 2 Z6´ 6

2 defined by

ðρ‘ðVÞÞi;j ¼ ρðð
ffiffiffi
2

p ‘
VÞi;jÞ

where ρ : Z ! Z2 is the canonical (parity) homomorphism.
The residue matrices introduced in Definition 2.16 are important
in the definition of the exact synthesis algorithm. Indeed, the ℓ-
residue of a Clifford+CS operator U determines the element of S
to use in order to reduce the least denominator exponent of U
(although not uniquely, as we discuss below). Similar residue
matrices are used in the study of other fault-tolerant circuits17,28.
Recall that if A is a set, then a partition of A is a collection of
disjoint nonempty subsets of A whose union is equal to A. The set
of all partitions of a set A is denoted BA. Let p and p0 be two
partitions of A. If every element of p is a subset of an element
of p0 then we say that p0 is coarser than p and that p is finer than p0.

Definition 2.17
Let N 2 Z6 ´ 6

2 be a binary matrix with rows r1,…, r6 and let p ¼
p1; ¼ ; pq
� �

be a partition of the set [6]. Then N has the patternp if
for any pj in p and any j1, j2 ∊ pj we have rj1 ¼ rj2 . In this case we
also say that N has a ∣p1∣ ×… × ∣pq∣ pattern.

Definition 2.18
Let V 2 H with lde(V)= ℓ. We define the pattern map p : H !
B½6� as the function which maps V to the pattern of ρℓ(V). We say

A.N. Glaudell et al.
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that p ¼ pðVÞ is the pattern of V. If V1 and V2 are two elements of
H, we say that V1 is finer than V2 or that V2 is coarser than V1 if
these statements hold for pðV1Þ and pðV2Þ.
Remark 2.19
In a slight abuse of notation, we extend the pattern map to any
valid representation of a Clifford+CS operator. Given a Clifford
+CS operator with SU(4) representation U which can be written as
a wordW over the generators and with SO(6) representation U, we
set pðUÞ ¼ pðWÞ ¼ pðUÞ. This extension is unambiguous after
fixing our transformation from SU(4) to SO(6), as p is insensitive to
relative phase changes in U. We incorporate all relational notions
described in Definition 2.18 in this extension.
We now analyze the image in SO(6) of certain subsets of G. We
start by showing that the image of the Clifford group C is exactly
the collection of elements of H with least denominator 0. In other
words, C is the group of 6-dimensional signed permutation
matrices.

Lemma 2.20
Let V 2 H. Then lde(V)= 0 if and only if V 2 C.

Proof
The least denominator exponent of H � I, I � H, S� I, I � S, and
CZ is 0. Thus, if U 2 C then lde ðUÞ ¼ 0. For the converse, let C1 and
C2 be the Clifford operators (ω†S)⊗ I and (H⊗ H)(ω†CZ)(Z⊗ Z),
respectively. Then

C1 ¼

� �1 � � � �
1 � � � � �
� � 1 � � �
� � � 1 � �
� � � � 1 �
� � � � � 1

2
666666664

3
777777775

and C2 ¼

� � � � � �1

1 � � � � �
� 1 � � � �
� � 1 � � �
� � � 1 � �
� � � � 1 �

2
666666664

3
777777775
:

The operators C1 and C2 generate V 2 H ; lde ðVÞ ¼ 0f g. Hence, if
V 2 H and lde(V)= 0 then V can be expressed as a product of the
image of Clifford gates. □

Lemma 2.21
Let V 2 H. Then lde(V)= 1 if and only if V ¼ RC for some R 2 S
and some C 2 C. Furthermore, V has a 2 × 2 × 2 pattern.

Fig. 2 The 15 elements of S. These are the images of the 15 elements of S under the action of the SU(4) ≅ Spin(6) isomorphism. Each matrix
may be associated with a unique pairing of rows and columns.
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Proof
The rows of V have unit norm and are pairwise orthogonal. Hence,
up to a signed permutation of rows and columns, there is only one
such matrix, e.g.,

1ffiffiffi
2

p

1 �1 � � � �
1 1 � � � �
� � 1 �1 � �
� � 1 1 � �
� � � � 1 �1

� � � � 1 1

2
666666664

3
777777775
¼ S6: (13)

By Proposition 2.5 the proof is complete, since Clifford operators
correspond to signed permutations by Lemma 2.20. □

Lemma 2.22
Let V 2 H with lde(V)= k ≥ 2. Then V has either a 2 × 2 × 2 or 2 × 4
pattern.
Proof
Let V 2 H. Since V is orthogonal, we have V†V= I. Hence,
ð
ffiffiffi
2

p k
VÞ

y
ð
ffiffiffi
2

p k
VÞ ¼ 2k I. Since k ≥ 2, this implies that the inner

product of any column of
ffiffiffi
2

p k
V with itself is congruent to 0

modulo 4. Similarly, the inner product of two distinct columnsffiffiffi
2

p k
V is congruent to 0 modulo 4. Letting, M= ρk(V), we then have

the column relations

X
l

M2
lm ¼ 0mod 4 (14)

X
l

MlmMln ¼ 0mod 2 form≠ n (15)

as well as analogous row relations. For x 2 Z, x2 ¼ 0mod 4 if and
only if x ¼ 0mod 2. Hence, there must be exactly zero or four odd
entries in every column (or row) of M by Eq. (14). By Eq. (15), we
see that the inner product of any two distinct rows must be even.
Up to a permutation of rows and columns, we can then deduce
that M is one of the two matrices below, which completes the
proof.

1 1 1 1 � �
1 1 1 1 � �
1 1 1 1 � �
1 1 1 1 � �
� � � � � �
� � � � � �

2
666666664

3
777777775

or

1 1 1 1 � �
1 1 1 1 � �
1 1 � � 1 1

1 1 � � 1 1

� � 1 1 1 1

� � 1 1 1 1

2
666666664

3
777777775

(16)

□

Corollary 2.23
Let V 2 H with lde(V)= k ≥ 1. Then V has either a 2 × 2 × 2 or 2 × 4
pattern.

Lemma 2.24
Let V 2 H and assume that lde(V)= k ≥ 1. If R 2 S is finer than V,
then lde ðRTVÞ ¼ k � 1.
Proof
For simplicity, we assume that pðRÞ ¼ 1; 2f g; 3; 4f g; 5; 6f gf g. The
cases in which pðRÞ is another pattern are treated similarly. For j ∊
[6], let rj denote the rows of

ffiffiffi
2

p k
V . Since pðVÞ is coarser than

pðRÞ, we have r1≡ r2, r3≡ r4, r5≡ r6 modulo 2. This implies that r1 ±

r2≡ r3 ± r4≡ r5 ± r6≡ 0 modulo 2. Hence

R
T
V ¼ 1ffiffiffi

2
p kþ1

1 1 � � � �
�1 1 � � � �
� � 1 1 � �
� � �1 1 � �
� � � � 1 1

� � � � �1 1

2
666666664

3
777777775

r1
r2
r3
r4
r5
r6

2
666666664

3
777777775
¼ 1ffiffiffi

2
p kþ1

r1 � r2
r1 þ r2
r3 � r4
r3 þ r4
r5 � r6
r5 þ r6

2
666666664

3
777777775
¼ 1ffiffiffi

2
p k�1

r01
r02
r03
r04
r05
r06

2
666666664

3
777777775
:

where each r0 is a vector of integers. □

Lemma 2.25
Let V 2 H with lde(V) ≥ 1. Then there exists R 2 S such that
lde ðRTVÞ ¼ lde ðVÞ � 1.
Proof
By inspection of Fig. 2 we see that for every 2 × 2 × 2 pattern q
there exists R 2 S such that pðRÞ ¼ q. As a result, if pðVÞ is a 2 ×
2 × 2 or a 2 × 4 pattern, then there exists R 2 S such that R has a
pattern finer than pðVÞ. By Corollary 2.23, pðVÞ is in fact a 2 × 2 × 2
row-pattern or a 2 × 4 row-pattern and thus there exists R 2 S
such that R is finer than V. We can then conclude by Lemma
2.24. □

Theorem 2.26
We have G ¼ H.
Proof
G � H by Proposition 2.13. We now show H � G. Let V 2 H. We
proceed by induction on the least denominator exponent of V. If
lde(V)= 0 then, by Lemma 2.20, V 2 C and therefore V 2 G. Now if
lde(V) > 0, let R be the element of S with the lowest index such
that lde ðRTVÞ ¼ k � 1. Such an element exists by Lemma 2.25. By
the induction hypothesis we have R

T
V 2 G which implies that

RðRTVÞ ¼ V 2 G. □
The proof of Theorem 2.26 provides an algorithm to decompose
an arbitrary element of G into a product of elements of S, followed
by an element of C. In the proof, there is freedom in choosing
the element of S used to reduce lde ðVÞ. If there is more than one
generator with a finer pattern than V , we must make a choice.
The ordering imposed on S in Section “Generators” is used to
make this choice in a uniform manner: we always choose the
element of S of lowest index. As a result, the exact synthesis
algorithm becomes deterministic. The ambiguity in the choice of
generator is a consequence of the relations given in Lemma 2.2. In
particular, we have

RðP; LÞRðP;QÞ ¼ RðP;QÞRðP; iQLÞ ¼ RðP; iQLÞRðP; LÞ
and these three distinct sequences of generators denote the same
operator. This is the source of the three-fold ambiguity in
choosing a finer 2 × 2 × 2 pattern for a given 2 × 4 pattern.
We will sometimes refer to the association between elements of S
and patterns used in the exact synthesis algorithm of Theorem
2.26 as the first finer partition association, or FFP for short. The
association is explicitly described Table 1.

Theorem 2.27
If U is a Clifford+CS operator such that lde ðUÞ ¼ k, then U can be
represented by a Clifford+CS circuit of CS-count k. This circuit is
optimal in CS-count and can be constructed in OðkÞ arithmetic
operations.
Proof
Let U be as stated. If k= 0, then U belongs to C and U is therefore
a Clifford. If k > 0, then as in Theorem 2.26, there is a unique
Rk 2 S given by FFP such that lde ðRTkUÞ ¼ k � 1. By induction on
the least denominator exponent, we have a deterministic
synthesis algorithm to find a sequence such that

U ¼ Rk � � � R1 � C
which then implies that U= Rk⋯ R1C. Each of these k steps
involves a constant number of basic arithmetic operations. This
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circuit has CS-count k, which is optimal by Lemma 2.15. □
Our Mathematica package38 implements the algorithm referred to
in Theorem 2.27 as well as a significant amount of other tools for
two-qubit Clifford + CS circuits. Testing of the performance of this
algorithm on a modest device is presented in Table 2.

Automata as tools for describing normal forms
In the previous section, we introduced a synthesis algorithm for
Clifford+CS operators. The algorithm takes as input a Clifford+CS
matrix and outputs a circuit for the corresponding operator. The
circuit produced by the synthesis algorithm is a word over the
alphabet S ∪ C. Because the algorithm is deterministic, the word it
associates to each operator can be viewed as a normal form for
that operator. In the present section, we use the language of
automata to give a detailed description of the structure of these
normal forms. We include the definitions of some basic concepts
from the theory of automata for completeness. The reader looking
for further details is encouraged to consult40.
In what follows we sometimes refer to a finite set Σ as an

alphabet. In such a context, the elements of Σ are referred to as
letters, Σ* denotes the set of words over Σ (which includes the empty
word ε), and the subsets of Σ* are called languages over Σ. If w ∊ Σ* is
a@@ word over the alphabet Σ, we write ∣w∣ for the length of w.

Finally, if L and L0 are two languages over an alphabet Σ then their
concatenationL � L0 is defined as L � L0 ¼ ww0 ; w 2 L andw0 2 L0f g.

Definition 2.28
A nondeterministic finite automaton is a 5-tuple (Σ,Q, In, Fin, δ)
where Σ and Q are finite sets, In and Fin are subsets of Q, and
δ : Q´ ðΣ∪ εf gÞ :! PðQÞ is a function whose codomain is the
power set of Q. We call Σ the alphabet, Q the set of states, In and
Fin the sets of initial and final states, and δ the transition function.
Remark 2.19
definition 2.28 is slightly non-standard. indeed, automata are
typically defined as having a single initial state, rather than a
collection of them. one can then think of definition 2.28 as
introducing a collection of automata: one for each element of In.
Alternatively, definition 2.28 can also be recovered from the usual
definition by assuming that every automaton in the sense of
definition 2.28 in fact has a single initial state s0 related to the
elements of In by δ(s0, ε)= In. we chose to introduce automata as in
definition 2.28 because this results in a slightly cleaner presentation.
It is common to define an automaton A= (Σ,Q, In, Fin, δ) by
specifying a directed labeled graph called the state graph of A.
The vertices of the graph are labeled by states and there is an edge
labeled by a letter w ∊ Σ between vertices labeled q and q0 if
q0 2 δðq;wÞ. The initial and final states are distinguished using
arrows and double lines, respectively. For brevity, parallel edges are
drawn only once, with their labels separated by a comma.
Example 2.30
The state graph for a nondeterministic finite automaton A= (Σ,Q, δ,
In, Fin) is depicted below.

Here, Q ¼ q0; q1; q2; q3f g, Σ ¼ 0; 1f g, the collection of initial states
is In ¼ q0f g, the collection of final states is Fin ¼ q3f g, and we
have, e.g., δðq0; 1Þ ¼ q0; q1f g.
An automaton A= (Σ,Q, In, Fin, δ) can be used to specify a language
LðAÞ � Σ�. Intuitively, LðAÞ is the collection of all the words over Σ
that specify a well-formed walk along the state graph of A. The
following definition makes this intuition more precise.

Table 1. The elements of S and the explicit row patterns they are associated with under FFP.

Generator Associated patterns under first finer partition (FFP)

R(X⊗ I, I⊗ X) 1; 4f g; 2; 3f g; 5; 6f gf g; 1; 4f g; 2; 3; 5; 6f gf g; 2; 3f g; 1; 4; 5; 6f gf g; 5; 6f g; 1; 2; 3; 4f gf g
R(Y⊗ I, I⊗ Y) 1; 3f g; 2; 5f g; 4; 6f gf g; 1; 3f g; 2; 4; 5; 6f gf g; 2; 5f g; 1; 3; 4; 6f gf g; 4; 6f g; 1; 2; 3; 5f gf g
R(Z⊗ I, I⊗ Z) 1; 2f g; 3; 6f g; 4; 5f gf g; 1; 2f g; 3; 4; 5; 6f gf g; 3; 6f g; 1; 2; 4; 5f gf g; 4; 5f g; 1; 2; 3; 6f gf g
R(Y⊗ I, I⊗ Z) 1; 3f g; 2; 6f g; 4; 5f gf g; 2; 6f g; 1; 3; 4; 5f gf g
R(Z⊗ I, I⊗ Y) 1; 2f g; 3; 5f g; 4; 6f gf g; 3; 5f g; 1; 2; 4; 6f gf g
R(Z⊗ I, I⊗ X) 1; 2f g; 3; 4f g; 5; 6f gf g; 3; 4f g; 1; 2; 5; 6f gf g
R(X⊗ I, I⊗ Z) 1; 6f g; 2; 3f g; 4; 5f gf g; 1; 6f g; 2; 3; 4; 5f gf g
R(X⊗ I, I⊗ Y) 1; 5f g; 2; 3f g; 4; 6f gf g; 1; 5f g; 2; 3; 4; 6f gf g
R(Y⊗ I, I⊗ X) 1; 3f g; 2; 4f g; 5; 6f gf g; 2; 4f g; 1; 3; 5; 6f gf g
R(X⊗ X, Y⊗ Y) 1; 4f g; 2; 5f g; 3; 6f gf g
R(X⊗ X, Z⊗ Y) 1; 4f g; 2; 6f g; 3; 5f gf g
R(Z⊗ X, Y⊗ Y) 1; 6f g; 2; 5f g; 3; 4f gf g
R(Y⊗ X, X⊗ Y) 1; 5f g; 2; 4f g; 3; 6f gf g
R(Z⊗ X, X⊗ Y) 1; 5f g; 2; 6f g; 3; 4f gf g
R(Y⊗ X, Z⊗ Y) 1; 6f g; 2; 4f g; 3; 5f gf g

Table 2. Performance of the algorithm (in seconds) of Theorem 2.27
as implemented in our Mathematica code38.

CS-count Mean time (s) Std. Dev. (s)

10 0.0138 0.0044

100 0.0281 0.0051

1000 0.1135 0.0091

10,000 1.1883 0.0897

Each run has constant overhead from computing the SO(6) representation
for each unitary. Deviations from linearity are due to arithmetic operations
on increasingly large integers. Each mean and standard deviation is
computed using a sample of 1000 runs with pseudorandomly generated
operators known to have the given minimal CS-count. Times are measured
using Mathematica’s in-built AbsoluteTiming function. Computations
performed on a laptop with an Intel(R) Core(TM) i7 CPU running at 2.6 GHz
with 6 cores and 16 GB of RAM runnning macOS Catalina version 10.15.7.
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Definition 2.31
Let A= (Σ, Q, In, Fin, δ) be an automaton. Then Aaccepts a word
w=w1⋯wm ∊ Σ* if there exists a sequence of states s0, s1,…, sm ∊
Q such that

1. s0 ∊In,
2. sj+1 ∊δ(si,wj+1) for j 2 0; ¼ ;m� 1f g, and
3. sm ∊ Fin.

The set of words accepted by A is called the language recognized
by A and is denoted LðAÞ.
Example 2.32 The alphabet for the automaton A given in
Example 2.30 is Σ ¼ 0; 1f g. The language recognized by A is
LðAÞ ¼ w 2 Σ� ; thethirdrightmostletterof w is1f g.
If a language is recognized by some nondeterministic finite
automata then that language is called regular. The collection of
regular languages is closed under a variety of operations. In
particular, regular languages are closed under concatenation.

Definition 2.33
Let A= (Σ,Q, In, Fin, δ) and A0 ¼ ðΣ;Q0; In 0; Fin 0; δ0Þ be two auto-
mata. Then the concatenation of A and A0 is the automaton A �
A0 ¼ ðΣ;Q00; In ; Fin 0; δ00Þ where Q00 ¼ Q t Q0 is the disjoint union of
Q and Q0 and

δ00ðq; sÞ ¼

δðq; sÞ q 2 Q n Fin ;
δðq; sÞ q 2 Fin and s≠ ε;

δðq; sÞ∪ In 0 q 2 Fin and s ¼ ε; and

δ0ðq; sÞ q 2 Q0:

8>>><
>>>:

Proposition 2.34
Let A and A0 be automata recognizing languages L and L0,
respectively. Then A � A0 recognizes L � L0.
An example of the concatenation of two automata is provided in
Fig. 3 and Example 2.38 based off of the automata defined in
Definitions 2.36 and 2.37 below.

The structure of normal forms
We now consider the alphabet S ∪ C and describe the words over
S ∪ C that are output by the synthesis algorithm of Theorem 2.27.

Definition 2.35
Let U 2 G. The normal form of U is the unique word over S ∪ C
output by the synthesis algorithm of Theorem 2.27 on input U. We
write N for the collection of all normal forms.
To describe the elements of N , we introduce several automata. It
will be convenient for our purposes to enumerate the elements of
C. We therefore assume that a total ordering of the 92160
elements of C is chosen and we write Cj for the j-th element of C.

Definition 2.36
Let k ¼ jCj and Σ ¼ S ∪ C. The automaton C is defined as C ¼
ðΣ; ½0; k�; 0f g; ½k�; δCÞ where, for s ∊ [0, k] and ℓ ∊ Σ, we have

δCðs; ‘Þ ¼
jf g if s ¼ 0 and ‘ ¼ Cj; and

+ otherwise:

�

Definition 2.37
Let Σ ¼ S ∪ C. The automaton Sn;m is defined as Sn;m ¼
ðΣ; ½m�; ½n;m�; ½m�; δS;mÞ where, for s ∊ [m] and ℓ ∊ Σ, we have

δS;mðs; ‘Þ ¼
t ; pðSsÞ \ pðStÞ ¼ +
� �

if ‘ ¼ Ss and

+ otherwise:

(

Example 2.38. To illustrate Defiitions 2.33, 2.36, and 2.37, the
automaton S1;3 � C is represented in Fig. 3. It can be verified that
the words C2, S2S1C1, and S3S1S2Ck are accepted by S1;3 � C
while the words S1S1C4 and S3C7S1 are not. Note in particular
that if C1 is the symbol for the identity, then S3C1 is distinct (as a
word) from S3. The former is accepted by S1;3 � C while the latter
is not. Despite the state graph of S1;3 being fully-connected, full-
connectivity does not necessarily hold for state graphs of other
Sn;m automata.
We will use the automata introduced in Definitions 2.36 and 2.37
to describe the elements of N . Our goal is to show that

N ¼ LðS1;3 �S4;9 �S10;15 � CÞ (17)

We start by establishing a few propositions.

Proposition 2.39
We have LðCÞLðS1;15 � CÞLðS1;9 �S10;15 � CÞLðS1;3 �S4;9 �S10;15 � CÞ,
where⊊ denotes strict inclusion.
Proof
By Definitions 2.36 and 2.37. □
We emphasize that the inclusions in Proposition 2.39 are strict.
This implies that LðS1;3 �S4;9 �S10;15 � CÞ can be written as the
disjoint union of LðCÞ, LðS1;15 � CÞ, and LðS1;9 �S10;15 � CÞ. The
lemmas below show that these languages correspond to disjoint
subsets of N and, in combination, suffice to prove Eq. (17).

Lemma 2.40
Let U be a word over S ∪ C. Then U 2 LðCÞ if and only if U 2 N
and U has length 1, i.e, U 2 C.
Proof
By Definition 2.36 and Theorem 2.27. □

Lemma 2.41
Let U be a word over S ∪ C. Then U 2 LðS1;15 � CÞ n LðCÞ if and
only if U 2 N and U has a 2 × 2 × 2 pattern.
Proof
First, note that LðCÞ is the set of words of length 1 accepted by
S1;15 � C. This means that LðS1;15 � CÞ n LðCÞ consists of all the
words of length k ≥ 2 accepted by S1;15 � C. Furthermore, by
Lemma 2.20, there are no normal forms of length 1 which have a

Fig. 3 The automaton S1;3 � C. The set of states of this automaton
is 1; 2; 3; 00; 10; ¼ ; k0f g, which is the disjoint union of the states
1; 2; 3f g of S1;3 and the states 0; 1; ¼ ; kf g of C. The initial states are
1; 2; 3f g, those of S1;3, and the final states are 10; ¼ ; k0f g, those of
C. Because S1;3 has Fin ¼ 1; 2; 3f g and C has In ¼ 00f g, the
transition function δ of S1;3 � C is such that
δð1; εÞ ¼ δð2; εÞ ¼ δð3; εÞ ¼ 00f g. Otherwise, δ behaves like the
transition function for S1;3 on the subset of states 1; 2; 3f g and
like the transition function for C on the subset of states
00; 10; ¼ ; k0f g.
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2 × 2 × 2 pattern. Thus, to prove our lemma it suffices to establish
the following equality of sets

U 2 LðS1;15 � CÞ ; jUj ¼ k
� �

¼ U 2 N ;f
jUj ¼ k andpðUÞ is a2 ´ 2 ´ 2 pattern g (18)

for all k ≥ 2. We proceed by induction on k.

● Note that, by definition of S1;15 � C, we have
U 2 LðS1;15 � CÞ ; jUj ¼ 2
� �

¼ SC. Every element of SC has
a 2 × 2 × 2 pattern by Lemma 2.21. Moreover, for U= SC with
S 2 S and C 2 C, pðSCÞ ¼ pðSÞ. Thus, SC must also be the
unique word produced by the synthesis algorithm on input U
and hence U 2 N . This accounts for all words of length 2 in
N . Therefore Eq. (18) holds when k= 2.

● Now suppose that Eq. (18) holds for some k ≥ 2. Let U 2
LðS1;15 � CÞ be a word of length k whose first letter is S 2 S.
Then U 2 N and pðUÞ ¼ pðSÞ is a 2 × 2 × 2 pattern.
Furthermore, the least denominator exponent of U is k−
1. We will show that Eq. (18) holds for k+ 1 by establishing
two inclusions. Because it will sometimes be convenient
to refer to submatrices, if M is an n × n matrix and x, y ⊆ [n],
we write

M½x; y�
for the submatrix of M formed from the rows with index in x
and the columns with index in y.

⊆: Suppose that U0 ¼ S0U is a word of length k+ 1 accepted by
LðS1;15 � CÞ. Then by Definition 2.37 we have pðS0Þ \ pðSÞ ¼ +.
Let a; bf g 2 pðS0Þ, and let ra and rb be the corresponding rows of
the residue matrix of U. Explicitly, we have

ρk�1ðUÞ½ a; bf g; ½6�� ¼
ra
rb

� �
with ra ≠ rb as a; bf g is not a subset of any element of pðUÞ. Direct
calculation of the rows of the residue matrix for U

0
yields

ρkðU
0Þ½ a; bf g; ½6�� ¼

ra þ rb
ra þ rb

� �
:

We conclude that a; bf g is a subset of an element of pðU0Þ.
Furthermore, by Lemma 2.22 and Eq. (16) we see that, since ra+
rb ≠ 0, pðU0Þ cannot be a 2 × 4 pattern, and therefore
a; bf g 2 pðU0Þ. As this holds for all a; bf g 2 pðS0Þ, we conclude
that pðS0Þ ¼ pðU0Þ. Thus, by the induction hypothesis, S0U will
be the word produced by the synthesis algorithm when applied to
U0. Hence, U0 2 N and pðU0Þ is a 2 × 2 × 2 pattern.
⊇ : Suppose that U0 is a normal form of length k+ 1 with a 2 × 2 ×
2 pattern. Write U0 as U0 ¼ S0V for some unknown normal form V.
We then have pðS0Þ ¼ pðU0Þ. Let a; bf g 2 pðS0Þ and let the
corresponding rows of the residue matrix of V be ra and rb.
Explicitly, we have

ρk�1ðVÞ½ a; bf g; ½6�� ¼
ra
rb

� �
:

Direct calculation of the rows of the residue matrix for U
0
yields

ρkðU
0Þ½ a; bf g; ½6�� ¼

ra þ rb
ra þ rb

� �
:

Since pðU0Þ is not a 2 × 4 pattern, we conclude that ra+ rb ≠ 0 and
thus that ra ≠ rb. Therefore, there is no element of cardinality four
in pðVÞ. Since lde(V) > 0, pðVÞ must then be a 2 × 2 × 2 pattern.
Consequently, we have V= U as defined above. Because
a; bf g =2 pðUÞ ¼ pðSÞ, we know pðS0Þ \ pðSÞ ¼ +. Given that S0 ¼
Sj0 and S ¼ Sj , we conclude that j 2 δS;15ðj0; S0 ¼ Sj0 Þ. Because S ¼
Sj is the first letter of the word U, we know the initial state of U

must be j. Therefore, by the induction hypothesis, U0 ¼ S0U is
accepted by S1;15 � C.
We have shown that Eq. (18) holds for words of length k+ 1 if it
holds for words of length k. This completes the inductive step. □
Lemma 2.41 characterized the normal forms that have a 2 × 2 × 2
pattern. The two lemmas below jointly characterize the normal
forms that have a 2 × 4 pattern. Because their proofs are similar in
spirit to that of Lemma 2.41, they have been relegated to
Supplementary Note 3.

Lemma 2.42
Let U be a word over S ∪ C. Then U 2 LðS1;9 �S10;15 � CÞ n
LðS1;15 � CÞ if and only if U 2 N and U has a 2 × 4 pattern with
pðUÞ \ x; yf g ; ðx; yÞ 2 ½3� ´ ½4; 6�f g≠+.

Lemma 2.43
Let U be a word over S ∪ C. Then U 2 LðS1;3 �S4;9 �S10;15 � CÞ n
LðS1;9 �S10;15 � CÞ if and only if U 2 N and U has a 2 × 4 pattern
with pðUÞ \ x; yf g ; ðx; yÞ 2 ð½3�; ½4; 6�Þf g ¼ +.

Theorem 2.44
Let U be a word over S ∪ C. Then U 2 LðS1;3 �S4;9 �S10;15 � CÞ if
and only if U 2 N .
Proof
If ∣U∣= 1 then the result follows from Lemma 2.40. If ∣U∣ > 1, then U
has a 2 × 2 × 2 or a 2 × 4 pattern and the result follows from
Proposition 2.39 and Lemmas 2.41, 2.42 and 2.43.□

Lower bounds
Recall that the distance between operators U and V is defined as
k U � V k¼ sup k Uv � Vv k ; k v k¼ 1f g. Because G is universal,
for every ϵ > 0 and every element U ∊ SU(4), there exists V 2 G
such that ∥U− V∥ ≤ ϵ. In such a case we say that V is an ϵ-
approximation of U. We now take advantage of Theorem 2.44 to
count Clifford+CS operators and use these results to derive a
worst-case lower bound on the CS-count of approximations.

Lemma 2.45
Let n ≥ 1. There are 86400(3 ⋅ 8n− 2 ⋅ 4n) Clifford+CS operators of
CS-count exactly n.
Proof
Each Clifford+CS operator is represented by a unique normal form
and this representation is CS-optimal. Hence, to count the number
of Clifford+CS operators of CS-count n, it suffices to count the
normal forms of CS-count n. By Theorem 2.44, and since Clifford
operators have CS-count 0, a normal form of CS-count n is a word

w ¼ w1w2w3w4 (19)

such that w1 2 LðS1;3Þ, w2 2 LðS4;9Þ, w3 2 LðS10;15Þ, w4 2 LðCÞ
and the CS-counts of w1, w2, and w3 sum to n. There are

ð6 � 8n�1 þ 6 � 4n�1 þ 3 � 2n�1Þ � jCj (20)

words of the form of Eq. (19) such that exactly one of w1, w2, or w3

is not ε. Similarly, there are

X
0< l < n

18 � 22n�3�l þ
X

0< l < n

18 � 23n�4�2l þ
X

0< j < n

36 � 23n�5�j

 !
� jCj

(21)

words of the form of Eq. (19) such that exactly two of w1, w2, or w3

are not ε. Finally, the number of words of the form of Eq. (19) such
that w1, w2, and w3 are not ε is

X
0< l < n�j

X
0< j < n

108 � 23n�6�j�2l

 !
� jCj (22)

Summing Eqs. (20), (21) and (22) and applying the geometric
series formula then yields the desired result. □
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Corollary 2.46
For n 2 N, there are 46080

7 ð45 � 8n � 35 � 4n þ 4Þ distinct Clifford
+CS operators of CS-count at most n.
Proof
Recall that the Clifford+CS operators of CS-count 0 are exactly the
Clifford operators and that jCj ¼ 92160. The result then follows
from Lemma 2.45 and the geometric series formula.

Proposition 2.47
For every ϵ 2 R> 0, there exists U ∊ SU(4) such that any Clifford
+CSϵ-approximation of U has CS-count at least 5log2ð1=ϵÞ � 0:67.
Proof
By a volume counting argument. Each operator must occupy an ϵ-
ball worth of volume in 15-dimensional SU(4) space, and the sum
of all these volumes must add to the total volume of SU(4) which
is ð

ffiffiffi
2

p
π9Þ=3. The number of circuits up to CS-count n is taken from

Corollary 2.46 (we must divide the result by two to account for the
absence of overall phase ω in the special unitary group) and a
15-dimensional ϵ-ball has a volume of

π
15
2

Γ 15
2 þ 1
	 
 ϵ15:

Let U be an element of G of determinant 1. By Eq. (1) of Section
“Generators”, U can be written as

U ¼ 1ffiffiffi
2

p k M

where k 2 N and the entries of M belong to Z i½ �. We can
therefore talk about the least denominator exponent of the SU(4)
representation of U. We finish this section by relating the least
denominator exponent of the SU(4) representation of U and the
CS-count of the normal form of U.

Proposition 2.48
Let U be an element of G of determinant 1, let k be the least
denominator exponent of the SU(4) representation of U, and let k0

be the CS-count of the normal form of U. Then

k � 3
2

	 k0 	 2k þ 2:

Proof
The CS-count of the normal form of U is equal to the least
denominator exponent of the SO(6) representation of U. Eq. (11)
then implies the upper bound for k0. Likewise, examination of
Theorem 2.44 reveals that the CS operators in the circuit for U
must be separated from one another by a Clifford with a least
denominator exponent of at most 2 in its unitary representation.
Combining this with the fact that the largest least denominator
exponent of an operator in C is 3, we arrive at the lower bound
for k0. □
Remark 2.49
It was established in ref. 8 that, for single-qubit Clifford+T
operators of determinant 1, there is a simple relation between
the least denominator exponent of an operator and its T-count: if
the least denominator exponent of the operator is k, then its T-
count is 2k− 2 or 2k. Interestingly, this is not the case for Clifford
+CS operators in SU(4), as suggested by Proposition 2.48. Clearly,
the CS-count of an operator always scales linearly with the
least denominator exponent of its unitary representation. For
large k, computational experiments with our code38 suggest that
most operators are such that k0 
 k, though there are examples
of operators with k0 
 2k. One example of such an operator
is RðX � I; I � ZÞRðX � I; I � XÞRðZ � I; I � XÞRðZ � I; I � ZÞ½ �m for
m 2 N.

DISCUSSION
We described an exact synthesis algorithm for a fault-tolerant
multi-qubit gate set which is simultaneously optimal, practically
efficient, and explicitly characterizes all possible outputs. The
algorithm establishes the existence of a unique normal form for
two-qubit Clifford+CS circuits. We showed that the normal form
for an operator can be computed with a number of arithmetic
operations linear in the gate-count of the output circuit. Finally,
we used a volume counting argument to show that, in the typical
case, ϵ-approximations of two-qubit unitaries will require a CS-
count of at least 5log2ð1=ϵÞ.
We hope that the techniques developed in the present work can

be used to obtain optimal multi-qubit normal forms for other two-
qubit gate sets, such as the two-qubit Clifford+T-gate set. Indeed, it
can be shown that the SO(6) representation of Clifford+T operators
are exactly the set of SO(6) matrices with entries in the ring
Z½1=

ffiffiffi
2

p
�. Further afield, the exceptional isomorphism for SU(8)

could potentially be leveraged to design good synthesis algorithms
for three-qubit operators. Such algorithms would provide a
powerful basis for more general quantum compilers.
An interesting avenue for future research is to investigate

whether the techniques and results presented in this paper can be
used in the context of synthillation. Quantum circuit synthesis and
magic state distillation are often kept separate. But it was shown
in ref. 41 that performing synthesis and distillation simultaneously
(synthillation) can lead to overall savings. The analysis presented
in ref. 41 uses T gates and T states. Leveraging higher-dimensional
synthesis methods such as the ones presented here, along with
distillation of CS states, could yield further savings.

METHODS
All results were produced theoretically or computationally, with the
requisite methods described at length in each section.

DATA AVAILABILITY
The sets of various CS-count operators used to generate the algorithmic performance
information in Table 2 are available at ref. 38.

CODE AVAILABILITY
The Mathematica package referenced throughout the paper and its documentation
are publically available from the repository at ref. 38.
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