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Optimal two-qubit circuits for universal fault-tolerant

quantum computation

Andrew N. Glaudell'**** Neil J. Ross @’ and Jacob M. Taylor'?

We study two-qubit circuits over the Clifford+CS gate set, which consists of the Clifford gates together with the controlled-phase
gate CS =diag(1, 1, 1, ). The Clifford+CS gate set is universal for quantum computation and its elements can be implemented fault-
tolerantly in most error-correcting schemes through magic state distillation. Since non-Clifford gates are typically more expensive to
perform in a fault-tolerant manner, it is often desirable to construct circuits that use few CS gates. In the present paper, we
introduce an efficient and optimal synthesis algorithm for two-qubit Clifford+CS operators. Our algorithm inputs a Clifford+CS
operator U and outputs a Clifford+CS circuit for U, which uses the least possible number of CS gates. Because the algorithm is
deterministic, the circuit it associates to a Clifford+CS operator can be viewed as a normal form for that operator. We give an
explicit description of these normal forms and use this description to derive a worst-case lower bound of 5log, (1) + O(1) on the
number of CS gates required to e-approximate elements of SU(4). Our work leverages a wide variety of mathematical tools that may
find further applications in the study of fault-tolerant quantum circuits.
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INTRODUCTION

In the context of fault-tolerant quantum computing, operations
from the Clifford group are relatively easy to perform and are
therefore considered inexpensive. In contrast, operations that do
not belong to the Clifford group are complicated to execute fault-
tolerantly because they require resource-intensive distillation
protocols'. Since non-Clifford operations are necessary for
universal quantum computing, it has become standard to use
the number of non-Clifford gates in a circuit as a measure of its
cost. This fault-tolerant perspective on the cost of circuits has
profoundly impacted the field of quantum compiling and
significant efforts have been devoted to minimizing the number
of non-Clifford operations in circuits.

An important problem in quantum compiling is the problem of
exact synthesis: given an operator U known to be exactly
representable over some gate set G, find a circuit for U over G. An
exact synthesis algorithm is a constructive solution to this problem.
When the gate set G is an extension of the Clifford group, it is
desirable that the exact synthesis algorithm for G be efficient and
produce circuits that use as few non-Clifford gates as possible.

In the past few years, methods from algebraic number theory
have been successfully applied to the exact synthesis problem
associated to a variety of single-qubit®>® and single-qutrit® '? gate
sets. In many cases, the resulting exact synthesis algorithms
efficiently produce circuits that are optimal, in the sense that they
use the least possible number of non-Clifford gates. These
powerful exact synthesis methods were central in the develop-
ment of good unitary approximation methods, which play a key
role in the compilation of practical quantum programs®>7#1314,

Exact synthesis algorithms also exist for various instantiations of
the multi-qubit compiling problem, though each suffers short-
comings in some respect. Optimal algorithms for two-qubit circuits
over continuous gate sets have been known for a number of
years'>'®, Unfortunately, such gate sets are not well-suited for fault-

tolerant quantum computing. Multi-qubit exact synthesis algorithms
for universal and fault-tolerant gate sets were introduced more
recently'’™?’. Some of these algorithms, such as'”'922%25 are
proper synthesis algorithms: they input a unitary matrix and
produce a circuit. Some other of these algorithms, such
as'8222327 are better referred to as re-synthesis algorithms: they
input a circuit and produce an optimized circuit. Of course, a re-
synthesis algorithm can be used in conjunction with a synthesis
algorithm to obtain an alternative (and typically better) synthesis
algorithm. While the algorithms of refs. '72° are far from optimal, the
algorithms of'912426 synthesize provably optimal circuits by
cleverly utilizing certain properties of fault-tolerant gate sets
containing the Clifford group. However, the runtimes of these
optimal synthesis algorithms are exponential in both qubit count
and optimal circuit length. Powerful heuristics were introduced in*®
achieving polynomial scaling with optimal circuit length. Unfortu-
nately, even this improved heuristic algorithm takes thousands of
seconds to compute optimal two-qubit circuits of practical size (40
non-Clifford operations) on modest hardware.

Not only are these multi-qubit exact synthesis algorithms
impractical in many cases, they also fail to shed much light on the
structure of optimal circuits. In the single-qubit case, intimate
knowledge of this structure for certain gate sets was developed by
describing optimal circuits via regular expressions or, equivalently,
automata®. Such descriptions are of theoretical interest, but also
have practical consequences. In particular, for certain single-qubit
gate sets these descriptions allowed researchers to derive a
rigorous lower-bound on the number of non-Clifford gates
required to approximate typical elements of SU(2)%°. Analogous
statements about approximations of multi-qubit unitaries have
eluded researchers thus far.

In the present paper, we introduce an efficient and optimal
exact synthesis algorithm for a two-qubit gate set that is
appropriate for universal and fault-tolerant quantum computing.
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We focus on two-qubit circuits over the Clifford+CS gate set,
which consists of the Clifford gates together with the non-Clifford
controlled-phase gate CS=diag(1,1,1,/)). The CS gate has
received recent attention as an alternative to the T-gate in
methods for fault-tolerant quantum computing®>' and due to its
natural implementation as an entangling operation in certain
superconducting qubit systems>2~3> whose fidelity is approaching
that of single-qubit gates***’. Our algorithm produces an optimal
circuit in a number of arithmetic operations linear in the length of
the optimal decomposition. This is unlike existing multi-qubit
synthesis methods. Moreover, because our algorithm is determi-
nistic, the circuit it associates to a Clifford+CS operator can be
viewed as a normal form for that operator. We give an explicit
description of these normal forms in the language of automata
and use this description to derive a worst-case lower bound of
5log,(1) + O(1) on the number of CS gates required to e-
approximate elements of SU(4). A Mathematica package imple-
menting our algorithm is freely available online. This code is very
efficient, synthesizing optimal circuits of CS-count 10000 in 1.2 +
0.1 s on modest hardware.

The paper is structured as follows. We first introduce a
convenient set of generators in Section “Generators”. Then, in
Section “The isomorphism SU(4) = Spin(6)", we describe the
exceptional isomorphism SU(4) = Spin(6). In Section “Exact synth-
esis”, we leverage this isomorphism to introduce an exact
synthesis algorithm for Clifford+CS operators. In Sections “Auto-
mata as tools for describing normal forms” and “The structure of
normal forms”, we use the theory of automata to study the
structure of the circuits produced by the exact synthesis
algorithm. We take advantage of this structure in Section “Lower
bounds” to establish a worst-case lower bound on the number of
non-Clifford resources required to e-approximate elements of SU
(4) using Clifford+CS circuits. Finally, we conclude and discuss
avenues for future work in Section “Discussion”.

RESULTS
Generators

Throughout, we use N, 7, R, and C to denote the usual
collection of numbers, Z, to denote the collection integers
modulo p, and Z]i] to denote the collection of Gaussian integers
(the complex numbers with integer real and imaginary parts). We
write p for the canonical homomorphism 7Z — 7, (if n € 7 then
p(n) is the parity of n). For two integers n < m, we write [n, m] for
the set {n, ... ,m} C Z and simply write [m] for [1, m]. We view
scalars and vectors as matrices so that any concept defined for
matrices of arbitrary dimensions also applies to scalars and
vectors. Finally, for readability, we use the symbol - to denote the
zero entries of a matrix.
The single-qubit Pauli gates X, Y, and Z are defined as

vl )

These gates generate the single-qubit Pauli  group
{i%; a € ZsandP € {I,X,Y,Z}}. The two-qubit Pauli group, which
we denote by P, is defined as P={i"(P® Q);a¢c Zsand
P,Q e {l,X,Y,Z}}. The Clifford gates H, S, and CZ are defined as

-1

These gates are known as the Hadamard gate, the phase gate,
and the controlled-Z gate, respectively. The single-qubit Clifford
group is generated by H and S and contains the primitive 8th root
of unity w = e%. The two-qubit Clifford group, which we denote by
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C, consists of the operators which can be represented by a two-
qubit circuit over the gate set {H,S,CZ}. Equivalently, C is
generated by H® I, I®Q H,S® 1,1 ® S, and CZ. Up to global phases,
the Clifford groups are the normalizers of the Pauli groups.

Clifford gates are well-suited for fault-tolerant quantum
computation but the Clifford group is not universal. One can
obtain a universal group by extending C with the controlled-phase
gate CS defined as

i

In what follows, we focus on the group G of operators which can
be represented by a two-qubit circuit over the universal gate set
{H, S, CZ,CS}. Equivalently, G is the group generated by H® I, | ®
H S®I, 1®S, CZ, and CS. We have P C C C G. We sometimes
refer to G as the Clifford + CS group or Clifford + controlled-phase
group. We know from'” that G is the group of 4x4 unitary
matrices of the form

1
Vi (M
where k € IN and the entries of M belong to Z[i]. In the fault-
tolerant setting, the CS gate is considered vastly more expensive
than any of the Clifford gates. As a result, the cost of a Clifford +
CS circuit is determined by its CS-count: the number of CS gates
that appear in the circuit. Our goal is to find circuits for the
elements of G that are optimal in CS-count.

We start by introducing a generalization of the CS gate which
will be helpful in describing the elements of G.

Definition 2.1
Let P and Q be distinct elements of P\{/} such that P and Q are
Hermitian and PQ = QP. Then R(P, Q) is defined as

wro-en(s ()(57)

We have R(Z® I,| ® Z) = CS. Moreover, since C normalizes P and
CR(P, Q)C" = R(CPC', CQCT) for every C € C, we know that R(P, Q) €
G for every appropriate P,Q € P. We record some important
properties of the R(P, Q) gates in the lemma below. Because the
proof of the lemma is tedious but relatively straightforward, it is
given in Supplementary Note 2.

Lemma 2.2

Let CeC and let P, Q, and L be distinct elements of P\ {/}.
Assume that P, Q, and L are Hermitian and that PQ =QP, PL=LP,
and QL = — LQ. Then the following relations hold:

CR(P,Q)C" = R(CPC', CQC), )
R(P,Q) = R(Q,P), €)
R(P,—PQ) = R(P,Q), @
R(P,—Q) € R(P,Q)C, (5)
R(P,Q)* € C, and (6)
R(P,L)R(P,Q) = R(P,Q)R(P,iQL). @)

We will use the R(P,Q) gates of Definition 2.1 to define normal
forms for the elements of G. The equivalences given by Lemma
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RX®I,I®X)
R(Z®I1,1®X)
RX®X,ZRY)

RY®I,I®Y)
RX®I,I®Z)
R(Z®X,Y®Y)

Fig. 1

R(ZoI,I® Z)
RX®ILIQY)
RY®X,X®Y)

The 15 elements of S. These operators are one suitable choice for 15 R(P, Q) gates which are not equivalent to each other up to
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RY®ILI®Z) R(Z&IIRY)
RY®LI®X) RX®XY®Y)
R(Z®X,X®Y) RY®X,ZR®Y)

right-multiplication by Cliffords. All other choices are equivalent to this one up to right-multiplication by Cliffords. The ordering of S is given

by reading left-to-right and row-by-row.

2.2 show that it is not necessary to use every R(P, Q) gate and the
following definition specifies the ones we will be using.

Definition 2.3
Let 74 and 7, be the subsets of Px P given below.

Ti1={(P,Q;Pe{X® LY® ,LZ® I},Qe{l® X,|® Y,/® Z}}
T,={(P,Q;Pe{X® X,Z® X,Y® X},Qe{Y® Y,Z® Y,X® Y}, andPQ = QP}.

The set S is defined as S = {R(P,Q); (P,Q) € T or (P,Q) € T, }.
The set S contains 15 elements which are explicitly listed in
Fig. 1. It can be verified that all of the elements of S are distinct,
even up to right-multiplication by a Clifford gate. It will
be helpful to consider the set S ordered as in Fig. 1, which is to
be read left-to-right and row-by-row. We then write S; to refer to
the j-th element of S. For example, S; is in the top left of Fig. 1, Ss
is in the top right, and S5 is in the bottom right. The position of R
(P,Q) in this ordering roughly expresses the complexity of the
Clifford circuit required to conjugate CS to R(P, Q).

We close this section by showing that every element of G can be
expressed as a sequence of elements of S followed by a single
element of C.

Lemma 2.4

Let P and Q be distinct elements of P \ {/} such that P and Q are
Hermitian and PQ = QP. Then there exists P',Q € P and C€C
such that R(P,Q") € S and R(P,Q) = R(P,Q)C.

Proof

Let P=P(P,®P,) and Q=i(Q;®Qy) with Py,P,,Q:,Q,
€ {I,X,Y,Z}. Since P and Q are Hermitian, p and g must be even.
Moreover, by Egs. (3) and (5) of Lemma 2.2, we can assume
without loss of generality that p=g =0 so that P=P, ® P, and Q
=Q; ® Q,. Now, if one of Py, P,, Q,, or Q, is I, then we can use
Egs. (3), (4) and (5) of Lemma 2.2 to rewrite R(P, Q) as with C € C
and (P, Q") € T, as in Definition 2.3. If, instead, none of P;, P, Q,,
or Q, are /, then we can reason similarly to rewrite R(P,Q) as
R(P',Q)CwithCeCand (P,Q)eT,.1

Proposition 2.5

Let Ve G Then V=R;--R,C where CcC and R €S for
jelnl.

Proof

Let V € G. Then V can be written as V=C;-CS5-C,-CS-...-C,-
CS - Cyyq Where G € C for je[n+ 1]. Since CS=RZ® 1,1 ® Z) we
have

V=C-RZ® II® Z) - C2-RZ® I1® Z)-... -Cp

(8)
RZ® 11® Z)-Coss.

Now, by Eq. (2) of Lemma 2.2, GGR(Z® 1,I® Z)=CGR(Z® I,I®
Z)Ci ¢y = R(P,Q)C, for some P, Q € P. We can then apply Lemma
24 to get

GRZ® I1® Z) =R(P,Q)C, =R(P,Q)CC;, = R(P,Q)C’

with C' = CC; € C and R(P', Q') € S. Hence, setting Ry = R(P', Q')
and C' = C'Cy, Eq. (8) becomes

V=R -C-RZ® 1I® Z)-... - Ca-RZ® 1,1® Z) Cppr

and we can proceed recursively to complete the proof.

Published in partnership with The University of New South Wales

The Isomorphism SU(4) = Spin(6)

In this section, we describe the exceptional isomorphism SU(4) =
Spin(6) which will allow us to rewrite two-qubit operators as
elements of SO(6). Consider some element U of SU(4). Then U acts
on C* by left-multiplication. Moreover, this action is norm-
preserving. Now let {¢;} be the standard orthonormal basis of c*.
From this basis, we construct an alternative six-component basis
using the wedge product.

Definition 2.6

(Wedge product). Let a A b be defined as the wedge product of a
and b. Wedge products have the following properties given
vectors a,b,c € C" and a,8 € C:

® Anticommutativity: aAb=—b Aa.
® Associativity: (@aAb)Ac=aA(bAC).
® Bilinearity: (aa+ Bb) Ac=alaAc)+ Bb Ac).

Note that the anticommutation of wedge Eroducts implies that
ana=0. We say that vi A --- A ve A"C" for v; e C". To
compute the inner product of two wedge products v; A --- A Vg
and w; A - A Wy, we compute

(ViAo A viewy A - A wy) = det((vg, wy))

where (vg, w;) is the entry in the g-th row and r-th column of
a kx k matrix.

Remark 2.7

The magnitude of a wedge product of n vectors can be thought of
as the n dimensional volume of the parallelotope constructed from
those vectors. The orientation of the wedge product defines the
direction of circulation around that parallelotope by those vectors.
The wedge product of two vectors in C* can be decomposed into a
six-component basis as anticommutativity reduces the 16 potential
wedge products of elements of {e;} to six. We choose this basis as

B = {5_1234,5+12.34,5— 23,14, S+24.13, S— 2413, S4+.23.14 | 9)
where

RS

I 2
Ss ik :ﬁ(ei/\ etec A e). (10)

We note that B is an orthonormal basis and we assume that B is
ordered as in Eq. (9).

Definition 2.8

Let U e SU(4) and U be its representation in the transformed basis.
Letv,w € C* withv A we A\>C* Then the actions of U and U are
related by

UvA w)=(Uv)A (Uw).

To avoid confusion, we use an overline, as in O, to denote the SO
(6) representation of an operator or set of operators O. We are
now equipped to define the transformation from SU(4) to SO(6).

Definition 2.9
Let UeSU(4) and let j, k € [6]. Then the entry in the j-th row and k-
th column of the SO(6) representation U of U is

Uik = (B, UBx) (1)
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where B; is the jth element in the ordered basis B, the action of U
on By is defined by Definitions 2.6 and 2.8, and the inner product is
defined by Definitions 2.6.

As an illustration of the process specified in Definition 2.9, we
explicitly calculate the SO(6) representation of a Clifford+CS
operator in Supplementary Note 1. Moreover, we provide code to
compute this isomorphism for any input with our Mathematica
package®,

Remark 2.10

The fact that this isomorphism yields special orthogonal operators
is ultimately due to the fact that the Dynkin diagrams for the Lie
algebras of SU(4), Spin(6), and SO(6) are equivalent. However, this
fact can be easily illustrated through the Euler decomposition of
SU(4)*°. Direct calculation of U for the operator

for |a|=1 and a=r+ic with r,c € R yields
rn . . LT

<l
I

which is explicitly in SO(6). Computation of the other 14 Euler
angle rotations required for an SU(4) parameterization yields
similar matrices, likewise in SO(6). Since SO(6) is a group under
multiplication, the isomorphism applied to any UeSU(4) yields
U € SO(6).

We close this section by explicitly calculating the SO(6)
representation of each of the generators of G. We multiply the
generators by overall phase factors to ensure that each operator
has determinant one, and furthermore that single-qubit operators
have determinant one on their single-qubit subspace. Later, when
referring to gates or their SO(6) representation, we omit overall
phases for readability.

Proposition 2.11
The image of the generators of C in SO(6) are

r- -1 . . . .1 1
1 . L |
— 1 - 1 :
w' X = ® (W' =
(WiS) @ 1 1 I® (w's) 1
1 - 1
L -1
r 1 cT 1 -
-1 1
T — 1 : . 1
(H)y® I = 1 , 1@ (H) = 1
1 - -1
L 1] 1
c_q _
1
—1
wiCZ =
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Proposition 2.12
The elements of S are given in Fig. 2.

Exact synthesis

In this section, we leverage the isomorphism SU(4) = Spin(6)
described in the previous section to find optimal decompositions
for the elements of G. We will be working extensively with the
matrix group

H= %MeSO(e);keN,MeZM ) (12)
V2

Note that H C SO(6). Our interest in H stems from the
following observation.

Proposition 2.13

We have G C H.

Proof _

The property holds for the generators of G by Propositions 2.11
and 2.12.

In the remainder of this section, we prove the converse of
Proposition 2.13 by defining an algorithm which inputs an
element of H and outputs a product of generators. We start by
introducing a few notions that are useful in discussing the
elements of H.

Definition 2.14

Let V € H. We say that £ € N is a denominator exponent of V if
V2V € Z8%®. The least such £ is the least denominator exponent
of V, which we denote by Ide(V).

Lemma 2.15

Let U € G and suppose that Ide (U) = k. Then any Clifford+CS
circuit for U has CS-count at least k.

Proof

The only generators with a factor of 1/y/2 in their SO(6)
representation are the elements of S. Thus, for a least
denominator exponent of k there must be at least k of these
operators, each of which requires a single CS gate. []

Definition 2.16
Let V € H and let £ be a denominator exponent of V. The £-residue
of V is the binary matrix p,(V) € 75 defined by

(V) = p((V2'V),)

where p : Z — 7, is the canonical (parity) homomorphism.

The residue matrices introduced in Definition 2.16 are important
in the definition of the exact synthesis algorithm. Indeed, the £-
residue of a Clifford+CS operator U determines the element of S
to use in order to reduce the least denominator exponent of U
(although not uniquely, as we discuss below). Similar residue
matrices are used in the study of other fault-tolerant circuits'”%,
Recall that if A is a set, then a partition of A is a collection of
disjoint nonempty subsets of A whose union is equal to A. The set
of all partitions of a set A is denoted %,. Let p and p’ be two
partitions of A. If every element of p is a subset of an element
of p’ then we say that p’ is coarser than p and that p is finer than p'.

Definition 2.17

Let N € Z5*° be a binary matrix with rows ry,...,rs and let p =
{p1, ... .py} be a partition of the set [6]. Then N has the patternp if
for any p; in p and any j;, j, € p; we have r;, = r;,. In this case we
also say that N has a |p;| X ... X |pg| pattern.

Definition 2.18

Let V € H with Ide(V) =£. We define the pattern map p: H —
A as the function which maps V to the pattern of p,(V). We say

Published in partnership with The University of New South Wales



1 A | 1
1 -1 1
1] 1 1 . 1 =1
. . . 1 -1 1
. 1 1_ .
1 1 . 1 -1
| —1 1 1
1 -1 1 1
V2 L—1 V2
1 1
. 1 ' 1_ .
(1 . —1] (1
1 -1 1 -1
1 |- 1 1 - - 1 1
. . . 1 1 . 1
_1 1_ .
(1 1 - ] (1
1 . 1 1
1 . . 1 - 1 1
Vo |-1 - -1 V2 |1
. —1 . . 1 .
| -1 1] - -1
(1 =1 ] (1
. 1 . 1 . . 1
1 . . 1 . . 1 1
1 . . . 1 . —1 .
| -1 - - 1 - -1

. 1 -1
-1 1 .
. 1 . . 1 - . —1
1 1 Vol - -1 41
1 . . . . 1 1
-1 1] i 1 1]
i S -
1 1
- | 1 1 -1
1 1 V2 1 1 -
1 - 1 -1
-1 1] i 11|
-1 ] [1 1 - i
| -1
. 1 (-1 - 1 -
1 1 vel- 1 - 1 -
1 . . . . . 1 —1
-1 1] i 1 1]
-1 i 1 - 1]
1 1 -1
1 1 1 1
1 - V2 -1 1
-1 1 1 1
1] -1 1]
1 ] [1 . 1]
1 1 1
1 1 1 . . |
-1 1 Vol -1 - 1
1 . . . —1 . 1 .
1_ _,1 . . . 1_
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Fig.2 The 15 elements of S. These are the images of the 15 elements of S under the action of the SU(4) = Spin(6) isomorphism. Each matrix

may be associated with a unique pairing of rows and columns.

that p = p(V) is the pattern of V. If V; and V, are two elements of
'H, we say that V; is finer than V, or that V, is coarser than V; if
these statements hold for p(V4) and p(V5).

Remark 2.19

In a slight abuse of notation, we extend the pattern map to any
valid representation of a Clifford+CS operator. Given a Clifford
+CS operator with SU(4) representation U which can be written as
a word W over the generators and with SO(6) representation U, we
set p(U) = p(W) = p(U). This extension is unambiguous after
fixing our transformation from SU(4) to SO(6), as p is insensitive to
relative phase changes in U. We incorporate all relational notions
described in Definition 2.18 in this extension.

We now analyze the image in SO(6) of certain subsets of G. We
start by showing that the image of the Clifford group C is exactly
the collection of elements of 7 with least denominator 0. In other
words, C is the group of 6-dimensional signed permutation
matrices.

Lemma 2.20 -~
Let V € H. Then Ide(V) =0 if and only if V € C.

Published in partnership with The University of New South Wales

Proof

The least denominator exponentof H® ,/® H,S® I,I® S, and
CZis 0. Thus, if U € C then Ide (U) = 0. For the converse, let C; and
G, be the Clifford operators (W' ®/ and (HRH(W'CZ® 2),
respectively. Then

-1 ... P, |

and G =

1 e

The operators C; and C, generate {V € H; Ide (V) = 0}. Hence, if
V € H and Ide(V) = 0 then V can be expressed as a product of the
image of Clifford gates. []

Lemma 2.21

Let V € H. Then Ide(V) =1 if and only if V = RC for some R€ S
and some C € C. Furthermore, V has a 2 x 2 X 2 pattern.

npj Quantum Information (2021) 103
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Proof

The rows of V have unit norm and are pairwise orthogonal. Hence,
up to a signed permutation of rows and columns, there is only one
such matrix, e.g.,

Si-

N

-

-
Il
&l
(o))
=
@

By Proposition 2.5 the proof is complete, since Clifford operators
correspond to signed permutations by Lemma 2.20. ]

Lemma 2.22

Let V € H with Ide(V) =k = 2. Then V has eithera2x2x2or2x4
pattern.

Proof

Let V & H. Slnce V is orthogonal, we have V'V=1I Hence,
(\/_ V) (\/_ V) = 2. Since k=2, this implies that the inner
product of any column of v/2'V with itself is congruent to 0
mo,gulo 4. Similarly, the inner product of two distinct columns
V2"V is congruent to 0 modulo 4. Letting, M = py(V), we then have
the column relations

Z/VI,Zm:Omod4 (14)
!

ZM,mM,n =0mod 2form=n (15)
I

as well as analogous row relations. For x € Z, x> = 0mod 4 if and
only if x = 0mod 2. Hence, there must be exactly zero or four odd
entries in every column (or row) of M by Eq. (14). By Eq. (15), we
see that the inner product of any two distinct rows must be even.
Up to a permutation of rows and columns, we can then deduce
that M is one of the two matrices below, which completes the
proof.

M1
1
1
1

1 -] M1
| . 1
1
1

or (16)

S S S
[ G G (Y
—_

—_

_ A A
_ =

O

Corollary 2.23
Let V € H with Ide(V) =k=>1.Then V has eithera2x2x2or2x4
pattern.

Lemma 2.24

LetVeH and assume that Ide(V) = k= 1. If R € S is finer than V,
then Ide (R V)=k—1.

Proof

For simplicity, we assume that p(R) = {{1,2},{3,4},{5,6}}. The
cases in which p(R) is another pattern are treated similarly. For j e
[6], let r; denote the rows of v/2'V. Since p(V) is coarser than
p(R), we have r; =ry, r3 =14, rs = rs modulo 2. This implies that r; +
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ry=rs+r,=rs+rg=0 modulo 2. Hence

11 . . . . r rn—rn n

-1 1 . . . . r rn+r r
L R ) I EChet) B N
\/ikﬂ . o211 i . rs \/ikﬂ rs4ra \/ik—1 rf,
. . . -1 Is rs —re rg
-1 1 Is rs +re A
where each r' is a vector of integers. []
Lemma 2.25
Let V € H with Ide(V) = 1. Then there exists R € S such that
Ide (R V) =Ide (V) —1.
Proof

By inspection of Fig. 2 we see that for every 2x 2 x 2 pattern g
there exists R € S such that p(R) = g. As a result, if p(V) is a 2 x
2x2 or a 2 x4 pattern, then there exists R € S such that R has a
pattern finer than p(V). By Corollary 2.23, p(V) is in facta 2 x2x 2
row-pattern or a 2 x4 row-pattern and thus there exists R € S
such that R is finer than V. We can then conclude by Lemma
224. ]

Theorem 2.26

We have G = H.

Proof

G C H by Proposition 2.13. We now show H C G. Let V € H. We
proceed by induction on the least denominator exponent of V. If
Ide(V) = 0 then, by Lemma 2.20, V € C and therefore V € G. Now if
Ide(V) > O,Jet R be the element of S with the lowest index such
that Ide (R'V) = k — 1. Such an element exists by Lemma 2.25. By
theTlnductlon _hypothesis we have RV ¢ G which implies that
RRV)=VeGO

The proof of Theorem 2.26 provides an algorithm to decompose
an arbitrary element of G into a product of elements of S, followed
by an element of C. In the proof, there is freedom in choosing
the element of S used to reduce Ide (V). If there is more than one
generator with a finer pattern than V, we must make a choice.
The ordering imposed on S in Section “Generators” is used to
make this choice in a uniform manner: we always choose the
element of S of lowest index. As a result, the exact synthesis
algorithm becomes deterministic. The ambiguity in the choice of
generator is a consequence of the relations given in Lemma 2.2. In
particular, we have

R(P,L)R(P,Q) = R(P,Q)R(P,iQL) = R(P,iQL)R(P, L)

and these three distinct sequences of generators denote the same
operator. This is the source of the three-fold ambiguity in
choosing a finer 2 x 2 x 2 pattern for a given 2 x 4 pattern.

We will sometimes refer to the association between elements of S
and patterns used in the exact synthesis algorithm of Theorem
2.26 as the first finer partition association, or FFP for short. The
association is explicitly described Table 1.

Theorem 2.27

If Uis a Clifford+CS operator such that Ide (U) = k, then U can be
represented by a Clifford+CS circuit of CS-count k. This circuit is
optimal in CS-count and can be constructed in O(k) arithmetic
operations.

Proof

Let U be as stated. If k=0, then U belongs to C and U is therefore
a Clifford. If k>0, then as in Theorem 2.26, there is a unique
Rk € S given by FFP such that Ide (Rk U) = k — 1. By induction on
the least denominator exponent, we have a deterministic
synthesis algorithm to find a sequence such that

U=Rc---R-C

which then implies that U=R,--- R,C. Each of these k steps
involves a constant number of basic arithmetic operations. This
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as implemented in our Mathematica code®®.

CS-count Mean time (s) Std. Dev. (s)
10 0.0138 0.0044
100 0.0281 0.0051
1000 0.1135 0.0091
10,000 1.1883 0.0897

Each run has constant overhead from computing the SO(6) representation
for each unitary. Deviations from linearity are due to arithmetic operations
on increasingly large integers. Each mean and standard deviation is
computed using a sample of 1000 runs with pseudorandomly generated
operators known to have the given minimal CS-count. Times are measured
using Mathematica’s in-built AbsoluteTiming function. Computations
performed on a laptop with an Intel(R) Core(TM) i7 CPU running at 2.6 GHz
with 6 cores and 16 GB of RAM runnning macOS Catalina version 10.15.7.

circuit has CS-count k, which is optimal by Lemma 2.15. []

Our Mathematica package®® implements the algorithm referred to
in Theorem 2.27 as well as a significant amount of other tools for
two-qubit Clifford + CS circuits. Testing of the performance of this
algorithm on a modest device is presented in Table 2.

Automata as tools for describing normal forms

In the previous section, we introduced a synthesis algorithm for
Clifford+CS operators. The algorithm takes as input a Clifford+CS
matrix and outputs a circuit for the corresponding operator. The
circuit produced by the synthesis algorithm is a word over the
alphabet SUC. Because the algorithm is deterministic, the word it
associates to each operator can be viewed as a normal form for
that operator. In the present section, we use the language of
automata to give a detailed description of the structure of these
normal forms. We include the definitions of some basic concepts
from the theory of automata for completeness. The reader looking
for further details is encouraged to consult®.

In what follows we sometimes refer to a finite set £ as an
alphabet. In such a context, the elements of X are referred to as
letters, =" denotes the set of words over X (which includes the empty
word €), and the subsets of 3" are called languages over =. f we X is
a@@ word over the alphabet 3, we write |w| for the length of w.

Published in partnership with The University of New South Wales

Table 1. The elements of S and the explicit row patterns they are associated with under FFP.

Generator Associated patterns under first finer partition (FFP)

RX®1,1®X) {{1,4},{2,3},{5,6}},{{1,4},{2,3,5,6}},{{2,3},{1,4,5,6}}, {{5,6},{1,2,3,4}}
RY®ILI®Y) {{1,3},{2,5},{4,6}},{{1,3},{2,4,5,6}},{{2,5},{1,3,4,6}},{{4,6},{1,2,3,5}}
RZ®I1®2) {{1,2},{3,6},{4,5}},{{1,2},{3,4,5,6}},{{3,6},{1,2,4,5}},{{4,5},{1,2,3,6}}
RY®II®2) {{1,3},{2,6},{4,5}},{{2,6},{1,3,4,5}}

RZ®II®Y) {{1,2},{3,5},{4,6}},{{3,5},{1,2,4,6}}

RZ®II®X {{1,2},{3,4},{5,6}},{{3,4}.{1,2,5,6}}

RX®11®2) {{1,6},{2,3},{4,5}},{{1,6},{2,3,4,5}}

RX®1,IQY) {{1,5},{2,3},{4,6}},{{1,5},{2,3,4,6}}

RY®II®X) {{1,3},{2,4},{5,6}},{{2,4},{1,3,5,6}}

RX®X,Y®Y) {{1,4},{2,5},{3,6}}

RX®X,Z®Y) {{1.4},{2,6}.{3,5}}

RZ®X,Y®Y) {{1.6},{2,5},{3,4}}

RY®XX®Y) {{1,5},{2,4},{3,6}}

RZX,XR®Y) {{1,5},{2,6},{3,4}}

RY®X,ZQY) {{1,6},{2,4},{3,5}}

Table 2. Performance of the algorithm (in seconds) of Theorem 2.27 Finally, if L and L' are two languages over an alphabet X then their

concatenationL o L' is defined as Lo L' = {ww'; w € Landw’ € L'}.

Definition 2.28

A nondeterministic finite automaton is a 5-tuple (Z,Q,In,Fin,6)
where ¥ and Q are finite sets, In and Fin are subsets of Q, and
6:Qx(Xu{e}) :— 2(Q) is a function whose codomain is the
power set of Q. We call X the alphabet, Q the set of states, In and
Fin the sets of initial and final states, and 6 the transition function.
Remark 2.19

definition 2.28 is slightly non-standard. indeed, automata are
typically defined as having a single initial state, rather than a
collection of them. one can then think of definition 228 as
introducing a collection of automata: one for each element of In.
Alternatively, definition 2.28 can also be recovered from the usual
definition by assuming that every automaton in the sense of
definition 2.28 in fact has a single initial state s, related to the
elements of In by (s, £) = In. we chose to introduce automata as in
definition 2.28 because this results in a slightly cleaner presentation.
It is common to define an automaton A= (%, Q,In,Fin,6) by
specifying a directed labeled graph called the state graph of A.
The vertices of the graph are labeled by states and there is an edge
labeled by a letter weX between vertices labeled g and g if
q € 6(g,w). The initial and final states are distinguished using
arrows and double lines, respectively. For brevity, parallel edges are
drawn only once, with their labels separated by a comma.
Example 2.30

The state graph for a nondeterministic finite automaton A= (%, Q, §,
In, Fin) is depicted below.

0,1
D@
— 40 q1 a2 a3

Here, Q = {44,941, 95,95}, £ = {0, 1}, the collection of initial states
is In = {qo}, the collection of final states is Fin = {g;}, and we
have, e.g, 6(qo, 1) = {d0,q1 }-

An automaton A = (%, Q, In, Fin, 8) can be used to specify a language
L(A) C Z*. Intuitively, L£(A) is the collection of all the words over ¥
that specify a well-formed walk along the state graph of A. The
following definition makes this intuition more precise.
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Fig. 3 The automaton S, 3 o €. The set of states of this automaton
is {1,2,3,0',7,... ,k'}, which is the disjoint union of the states
{1,2,3} of S5 and the states {0, 1, ... , k} of €. The initial states are
{1,2,3}, those of & 3, and the final states are {1’, ... ,k’}, those of
€. Because ©;3 has Fin ={1,2,3} and € has In ={0'}, the
transition function 6 of Si30C is such that
6(1,€) = 6(2,€) = 6(3,¢€) = {0'}. Otherwise, § behaves like the
transition function for S;3 on the subset of states {1,2,3} and
like the transition function for € on the subset of states
{0,7, ... ,K'}.

Definition 2.31
Let A=(Z, Q,In,Fin, ) be an automaton. Then Aaccepts a word

W=W, - W,,eZ if there exists a sequence of states sg, 51, ..., S, €
Q such that

1. speln,

2. s54q€68(s;, wiq) forje {0,...,m—1}, and

3. SpeFin.

The set of words accepted by A is called the language recognized
by A and is denoted L(A).

Example 2.32 The alphabet for the automaton A given in
Example 230 is £ ={0,1}. The language recognized by A is
L(A) = {w € ¥ ; thethirdrightmostletterof w is1 }.

If a language is recognized by some nondeterministic finite
automata then that language is called regular. The collection of
regular languages is closed under a variety of operations. In
particular, regular languages are closed under concatenation.

Definition 2.33

Let A=(Z,Q,In,Fin,8) and A’ = (£,Q,In’,Fin’, &) be two auto-
mata. Then the concatenation of A and A’ is the automaton Ao
A = (X,Q",In,Fin’ ") where Q" = QU Q is the disjoint union of
Qand Q and

6(q,s) g € Q\Fin,
5'(q.s) = 6(qg,s) g € Fin ands#¢,
' 8(g,s)UIn’ g € Fin ands = ¢,and
5(a,5) qcQ.

Proposition 2.34

Let A and A’ be automata recognizing languages L and L,
respectively. Then Ao A’ recognizes Lo L.

An example of the concatenation of two automata is provided in
Fig. 3 and Example 2.38 based off of the automata defined in
Definitions 2.36 and 2.37 below.
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The structure of normal forms

We now consider the alphabet SUC and describe the words over
S UC that are output by the synthesis algorithm of Theorem 2.27.

Definition 2.35

Let U € G. The normal form of U is the unique word over SUC
output by the synthesis algorithm of Theorem 2.27 on input U. We
write V' for the collection of all normal forms.

To describe the elements of A/, we introduce several automata. It
will be convenient for our purposes to enumerate the elements of
C. We therefore assume that a total ordering of the 92160
elements of C is chosen and we write C; for the j-th element of C.

Definition 2.36
Let k = |C| and X = SUC. The automaton € is defined as € =
(%,[0,k], {0}, [k], 6¢) where, for s€[0,k] and £ €%, we have

86(5,0) {{j} if s=0 and /=, and
(5. 0) =
€ & otherwise.

Definition 2.37
Let ¥ =SUC. The automaton S, is defined as S, =
(%, [m], [n,m], [m],6em) where, for se[m] and £ €%, we have

Sem(s,0) = {t: p(S)Np(S) = g} if £=S; and
- 16} otherwise.

Example 2.38. To illustrate Defiitions 2.33, 2.36, and 2.37, the
automaton ;3 o € is represented in Fig. 3. It can be verified that
the words C;, $,51C1, and S38515,Ck are accepted by ©;30€
while the words §;51C4 and S5C;S are not. Note in particular
that if C; is the symbol for the identity, then S3C; is distinct (as a
word) from S3. The former is accepted by &, 3 o € while the latter
is not. Despite the state graph of &, 3 being fully-connected, full-
connectivity does not necessarily hold for state graphs of other
Spm automata.

We will use the automata introduced in Definitions 2.36 and 2.37
to describe the elements of A/. Our goal is to show that

N =L(S130C490C0150€)

We start by establishing a few propositions.

(17)

Proposition 2.39

We have L(€)L(Sy150€)L(S190Si0150€)L(S130Ce 0S19,15 0 €),
where ¢ denotes strict inclusion.

Proof

By Definitions 2.36 and 2.37. []

We emphasize that the inclusions in Proposition 2.39 are strict.
This implies that £L(S;3 0 S49 0 S19,15 © €) can be written as the
disjoint union of L(€), £L(S115 0 €), and L(S19 0 Syg15 0 €). The
lemmas below show that these languages correspond to disjoint
subsets of N and, in combination, suffice to prove Eq. (17).

Lemma 2.40

Let U be a word over SUC. Then U € L(€) if and only if U e N
and U has length 1, i.e, U € C.

Proof

By Definition 2.36 and Theorem 2.27. ]

Lemma 2.41

Let U be a word over SUC. Then U € £L(Sy,15 0 €) \ £(€) if and
only if U € N and U has a 2x 2 x 2 pattern.

Proof

First, note that £(C) is the set of words of length 1 accepted by
S1.15 o €. This means that £(S; 150 €) \ L(€) consists of all the
words of length k=2 accepted by & ;50 €. Furthermore, by
Lemma 2.20, there are no normal forms of length 1 which have a
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2 x 2 x 2 pattern. Thus, to prove our lemma it suffices to establish
the following equality of sets

{U€£(617150(£); ‘U' Zk} :{UGN;
|U| = kand p(U)isa2x 2x 2 pattern } (18)
for all k= 2. We proceed by induction on k.

® Note that, by definiton of G506 we have
{U€ L(S1150€); |U| =2} = SC. Every element of SC has
a 2x2x2 pattern by Lemma 2.21. Moreover, for U= SC with
Se S and CeC, p(SC) = p(S). Thus, SC must also be the
unique word produced by the synthesis algorithm on input U
and hence U € N. This accounts for all words of length 2 in
N. Therefore Eq. (18) holds when k = 2.

® Now suppose that Eq. (18) holds for some k=>2. Let U €
L(S1,15 0 €) be a word of length k whose first letter is S € S.
Then UeN and p(U)=p(S) is a 2x2x2 pattern.
Furthermore, the least denominator exponent of U is k —
1. We will show that Eq. (18) holds for k + 1 by establishing
two inclusions. Because it will sometimes be convenient
to refer to submatrices, if M is an n x n matrix and x, y C [n],
we write

Mix; y]

for the submatrix of M formed from the rows with index in x
and the columns with index in y.

C: Suppose that U = S'U is a word of length k+ 1 accepted by
L(S1,15 0 €). Then by Definition 2.37 we have p(§) Np(S) = .
Let {a,b} € p(5), and let r, and r, be the corresponding rows of
the residue matrix of U. Explicitly, we have

_ r
pir U0k l6] = ||
)
with ro# 1, as {a, b} is not a subset of any element of p(U). Direct
calculation of the rows of the residue matrix for U yields

0(0)[{a.b}: 6] = [’“ " “’].

ra+rp

We conclude that {a,b} is a subset of an element of p(U).
Furthermore, by Lemma 2.22 and Eq. (16) we see that, since r, +
r,#0, p(U) cannot be a 2x4 pattern, and therefore
{a,b} € p(U’). As this holds for all {a,b} € p(§'), we conclude
that p(§') = p(U'). Thus, by the induction hypothesis, S'U will
be the word produced by the synthesis algorithm when applied to
U'. Hence, U € N and p(U') is a 2 x 2 X 2 pattern.

D:Suppose that U’ is a normal form of length k + 1 witha 2 x 2 x
2 pattern. Write U’ as U’ = S’V for some unknown normal form V.
We then have p(§) =p(l/). Let {a,b} € p(§) and let the
corresponding rows of the residue matrix of V be r, and r,.
Explicitly, we have

pua (V)la.byile] = | |.

ra
v
Direct calculation of the rows of the residue matrix for U yields

pul)lfa. b6 = 77 .

Since p(U') is not a 2 x 4 pattern, we conclude that r, + r, # 0 and
thus that r, # r,. Therefore, there is no element of cardinality four
in p(V). Since Ide(V) >0, p(V) must then be a 2x2x2 pattern.
Consequently, we have V=U as defined above. Because
{a,b}¢ p(U) = p(S), we know p(S') N p(S) = . Given that §' =
Sy and S = §j, we conclude that j € 8¢ 15(j', ' = Sj). Because S =
S is the first letter of the word U, we know the initial state of U
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must be j. Therefore, by the induction hypothesis, U' = S'U is
accepted by S; 150 C.

We have shown that Eq. (18) holds for words of length k+ 1 if it
holds for words of length k. This completes the inductive step. []
Lemma 2.41 characterized the normal forms that have a 2 x2 x 2
pattern. The two lemmas below jointly characterize the normal
forms that have a 2 x 4 pattern. Because their proofs are similar in
spirit to that of Lemma 241, they have been relegated to
Supplementary Note 3.

Lemma 2.42
Let U be a word over SUC. Then U e L(S190Si0150€¢)\
L(S1150€) if and only if U € N and U has a 2 x4 pattern with

pU) N {{xy}; (y) € Bx[4,6]} = &.

Lemma 2.43

Let U be a word over SUC. Then U € L(S130 G490 S1p150€) \
L(S190Si9150€) if and only if U € A and U has a 2 x 4 pattern
with p(U) N {{x,y}; (x,y) € (3],[4,6])} = .

Theorem 2.44

Let U be a word over SUC. Then U € L(S13 0 S49 0 Syg15 0 €) if
and only if U € V.

Proof

If |U] = 1 then the result follows from Lemma 2.40. If |U| > 1, then U
has a 2x2Xx2 or a 2x4 pattern and the result follows from
Proposition 2.39 and Lemmas 2.41, 2.42 and 2.43.[]

Lower bounds

Recall that the distance between operators U and V is defined as
| U—V|=sup{|| Uv =W ;|| v|[=1}. Because G is universal,
for every ¢>0 and every element UeSU(4), there exists V € G
such that ||U— V| <e. In such a case we say that V is an e-
approximation of U. We now take advantage of Theorem 2.44 to
count Clifford+CS operators and use these results to derive a
worst-case lower bound on the CS-count of approximations.

Lemma 2.45

Let n > 1. There are 86400(3 - 8" — 2 - 4") Clifford+CS operators of
CS-count exactly n.

Proof

Each Clifford+CS operator is represented by a unique normal form
and this representation is CS-optimal. Hence, to count the number
of Clifford+CS operators of CS-count n, it suffices to count the
normal forms of CS-count n. By Theorem 2.44, and since Clifford
operators have CS-count 0, a normal form of CS-count n is a word

W = WiWaW3Wy (19)

such that w, € 5(613), Wy € [,(643), w3 € 5(610’15), Wy € E(G)
and the CS-counts of w;, w,, and wz sum to n. There are
(6-8"14+6-4""1+3.2" 7). |C| (20)

words of the form of Eq. (19) such that exactly one of w,, w,, or ws
is not &. Similarly, there are

( Z 18 - 22"—3—/ 4 Z 18- 23!7—4—2/ + Z 36 - 23”—5—]) . |C|

0</<n 0</<n 0<j<n
(21

words of the form of Eq. (19) such that exactly two of w,, w,, or ws
are not &. Finally, the number of words of the form of Eq. (19) such
that w;, wy, and ws are not € is

( >y 108-23”6f2’> -lc) (22)

0</<n—j0<j<n

Summing Egs. (20), (21) and (22) and applying the geometric
series formula then yields the desired result. []
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Corollary 2.46

For n € N, there are %980 (45.8" — 35 .4" + 4) distinct Clifford
+CS operators of CS-count at most n.

Proof

Recall that the Clifford+CS operators of CS-count 0 are exactly the
Clifford operators and that |C| = 92160. The result then follows
from Lemma 2.45 and the geometric series formula.

Proposition 2.47

For every e € R, there exists UeSU(4) such that any Clifford
+CSe-approximation of U has CS-count at least 5log,(1/e) — 0.67.
Proof

By a volume counting argument. Each operator must occupy an ¢-
ball worth of volume in 15-dimensional SU(4) space, and the sum
of all these volumes must add to the total volume of SU(4) which
is (v/2°) /3. The number of circuits up to CS-count n is taken from
Corollary 2.46 (we must divide the result by two to account for the
absence of overall phase w in the special unitary group) and a
15-dimensional e-ball has a volume of

15
2

—

—
+
—_

~—

Let U be an element of G of determinant 1. By Eq. (1) of Section
“Generators”, U can be written as
1
V2

where k € N and the entries of M belong to Z[i]. We can
therefore talk about the least denominator exponent of the SU(4)
representation of U. We finish this section by relating the least
denominator exponent of the SU(4) representation of U and the
CS-count of the normal form of U.

Proposition 2.48

Let U be an element of G of determinant 1, let k be the least
denominator exponent of the SU(4) representation of U, and let k’
be the CS-count of the normal form of U. Then

k-3
Tgk’§2k+2.

Proof

The CS-count of the normal form of U is equal to the least
denominator exponent of the SO(6) representation of U. Eq. (11)
then implies the upper bound for k’. Likewise, examination of
Theorem 2.44 reveals that the CS operators in the circuit for U
must be separated from one another by a Clifford with a least
denominator exponent of at most 2 in its unitary representation.
Combining this with the fact that the largest least denominator
exponent of an operator in C is 3, we arrive at the lower bound
for k'.

Remark 2.49

It was established in ref. & that, for single-qubit Clifford+T
operators of determinant 1, there is a simple relation between
the least denominator exponent of an operator and its T-count: if
the least denominator exponent of the operator is k, then its T-
count is 2k — 2 or 2k. Interestingly, this is not the case for Clifford
+CS operators in SU(4), as suggested by Proposition 2.48. Clearly,
the CS-count of an operator always scales linearly with the
least denominator exponent of its unitary representation. For
large k, computational experiments with our code®® suggest that
most operators are such that k' ~ k, though there are examples
of operators with k' ~ 2k. One example of such an operator
is RX®LI®ZRX®LIRX)RZ 1,12 X)RZ®I,12Z)" for
m e N.

npj Quantum Information (2021) 103

DISCUSSION

We described an exact synthesis algorithm for a fault-tolerant
multi-qubit gate set which is simultaneously optimal, practically
efficient, and explicitly characterizes all possible outputs. The
algorithm establishes the existence of a unique normal form for
two-qubit Clifford+CS circuits. We showed that the normal form
for an operator can be computed with a number of arithmetic
operations linear in the gate-count of the output circuit. Finally,
we used a volume counting argument to show that, in the typical
case, e-approximations of two-qubit unitaries will require a CS-
count of at least 5log,(1/¢).

We hope that the techniques developed in the present work can
be used to obtain optimal multi-qubit normal forms for other two-
qubit gate sets, such as the two-qubit Clifford+T-gate set. Indeed, it
can be shown that the SO(6) representation of Clifford+T operators
are exactly the set of SO(6) matrices with entries in the ring
71/+/2]. Further afield, the exceptional isomorphism for SU(8)
could potentially be leveraged to design good synthesis algorithms
for three-qubit operators. Such algorithms would provide a
powerful basis for more general quantum compilers.

An interesting avenue for future research is to investigate
whether the techniques and results presented in this paper can be
used in the context of synthillation. Quantum circuit synthesis and
magic state distillation are often kept separate. But it was shown
in ref. *' that performing synthesis and distillation simultaneously
(synthillation) can lead to overall savings. The analysis presented
in ref. *' uses T gates and T states. Leveraging higher-dimensional
synthesis methods such as the ones presented here, along with
distillation of CS states, could yield further savings.

METHODS

All results were produced theoretically or computationally, with the
requisite methods described at length in each section.

DATA AVAILABILITY

The sets of various CS-count operators used to generate the algorithmic performance
information in Table 2 are available at ref. 3,

CODE AVAILABILITY

The Mathematica package referenced throughout the paper and its documentation
are publically available from the repository at ref. %,
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