

Fermilab

A sub-5 ps jitter Time-to-Digital Converter ASIC with Back-Gate Delay Tuning in 22 nm CMOS

FERMILAB-PUB-25-0014-ETD

DOI: [10.1016/j.nima.2025.170784](https://doi.org/10.1016/j.nima.2025.170784)

Accepted Manuscript

This manuscript has been authored by Fermi Forward Discovery Group, LLC
under Contract No. 89243024CSC000002 with the U.S. Department of Energy,
Office of Science, Office of High Energy Physics.

A sub-5 ps jitter Time-to-Digital Converter ASIC with Back-Gate Delay Tuning in 22 nm CMOS

Adam Quinn^{a,c,d}, Si Xie^{a,b,d}, Artur Apreysan^a, Farah Fahim^a, Sergey Los^a, Cristián Peña^a, Carlos Eugenio Perez Lara^{a,e}, Tom Zimmerman^a, and Davide Braga^a

^a*Fermi National Accelerator Laboratory, PO Box 500, Batavia, 60510-5011, IL, USA*

^b*California Institute of Technology, 1200 E California Blvd, Pasadena, 91125, CA, USA*

^c*A. Quinn is the corresponding author (aquinn@fnal.gov)*

^d*These authors contributed equally to this work.*

^e*Now with Hofstra University*

Abstract

We present the design of a Time-to-Digital Converter (TDC) ASIC together with performance characterization results at cryogenic temperature (6-8 K), and at room temperature using emulated Low-Gain Avalanche Detector (LGAD) signals. The TDC design uses a two-step architecture with a ring-oscillator based counter and a Vernier delay line fine TDC. The TDC is implemented in an FD-SOI process, and back-gate tuning is used not only to correct threshold variation due to cryogenic operation, but also as a novel way to tune TDC delay elements with very little overhead. Using this technique, we demonstrate a design with very low power (0.5 mW) and area (0.003 mm²). We present test results using the Fermilab Constant Fraction Discriminator (FCFD) ASIC to produce discriminated signals from an internal charge injection mechanism that mimics the waveform and signal amplitude of minimum ionizing particles impinging on LGAD sensors. We characterize the time precision of the full system and verify that the TDC ASIC contributes a negligible amount to the total system time precision, fully consistent with the expected jitter contribution of less than 5 ps. The results presented here demonstrate the utility of our TDC for applications in physics and quantum communications.

Keywords: Solid state detectors, Timing detectors, Particle tracking detectors (Solid-state detectors), Time-to-digital Converter, TDC, cryo-CMOS, SNSPD, LGAD

1 1. Introduction

2 Precise timing information plays a critical role in many detector systems
3 used for fundamental science ranging from applications as diverse as single
4 photon detectors for quantum communications [1] to tracking detectors for
5 future particle colliders [2]. For the former, exploiting and preserving the
6 exquisite temporal resolution of fast timing detectors such as superconducting
7 nanowire single photon detectors (SNSPDs), which have demonstrated
8 sub-3 ps precision [3], requires close integration with high-performance front-
9 end readout and time-tagging circuits capable of operating at cryogenic tem-
10 perature (4–20 K) at low power [4].

11 In the field of high energy particle physics, tracking detectors capable of
12 achieving 5–25 ps timing resolution with pixel sizes as small as $25 \times 25 \mu\text{m}^2$
13 are necessary for many proposed future particle colliders including the Muon
14 Collider [5], the FCC-hh [6, 7], and the Electron–Ion Collider (EIC) [8].
15 Extracting precision timing information from low gain avalanche detectors
16 (LGADs) in particular is currently a key focus for particle physics instru-
17 mentation [9, 10], as LGADs have been demonstrated to achieve 20–30 ps
18 time resolution, making them a leading candidate detector technology for
19 precision timing tracking detector systems [11, 12, 13, 14, 15]. TDC power
20 is expected to become among the dominant contributions to the total power
21 budget of these systems, as the TDC (unlike the front-end amplifier) will
22 not benefit from the reduction in input capacitance associated with smaller
23 pixels.

24 As such, the design and implementation of low-power front-end electronics
25 capable of extracting precision timing information from LGAD sensors repre-
26 sents a key technical milestone. Initial work has targeted TDC architectures
27 for the endcap timing layer of the CMS experiment at the Large Hadron Col-
28 linder [16] and general high-energy physics applications [17], but work remains
29 to simultaneously meet the challenging power, area, and performance require-
30 ments of future detectors. Our two-step time-to-digital-converter is designed
31 to minimize power and area consumption while providing picosecond resolu-
32 tion. Our design leverages back-gate biasing in the GlobalFoundries 22FDX
33 silicon-on-insulator node as a novel tuning mechanism for delay stages, as
34 well as a compensation strategy to enable operation from 4 Kelvin to room
35 temperature.

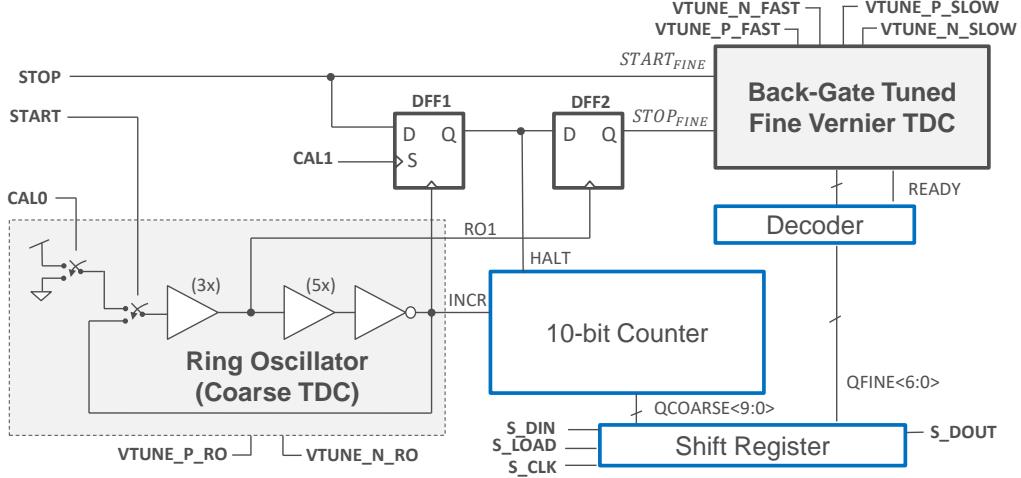


Figure 1: A block diagram of the TDC ASIC design, showing the coarse ring oscillator, DFF interlock, fine Vernier TDC, and serial readout. Bolded signals are inputs or outputs of the test ASIC.

36 In this paper, we present the design and performance characterization
 37 of our Time-to-Digital Converter (TDC) ASIC. We first describe the overall
 38 structure of the TDC in Section II, then focus on the implementation of
 39 the novel back-gate delay tuning technique in Section III. In Section IV, we
 40 present test results. Following the conventions in [18], we report the TDC’s
 41 timing resolution (i.e. bin size) as a function of the back-gate tuning voltage
 42 and precision or jitter (i.e. root-mean-square (rms) error) as a function of
 43 the measured time interval T_{in} . Finally, the jitter performance of the TDC is
 44 measured using the discriminator output signals from the Fermilab Constant
 45 Fraction Discriminator (FCFD) ASIC, presented in [19], which converts
 46 signal pulses into discriminated waveforms robust against amplitude-induced
 47 time-walk, mimicking the output signal of an LGAD detector.

48 **2. TDC Design and Readout**

49 Compact, low-power TDCs are highly desirable for quantum communica-
 50 tion applications in order to be closely integrated with cryogenic control
 51 and readout electronics, as well as for particle tracking applications where a
 52 large number of channels must be integrated to disambiguate particle tracks.
 53 However, timing performance, which encompasses both a fine time resolution

54 (small bin size) and high precision (low jitter), cannot be sacrificed in either
55 application, and sufficient dynamic range is necessary to allow synchronization
56 with a distributed system reference clock.

57 The TDC we present is designed with a two-step architecture consisting
58 of a ring-oscillator coarse TDC and a linear Vernier delay line fine TDC.
59 Both stages make use of the back-gate biasing capabilities of the Global-
60 Foundries 22FDX node to provide fine-tuning. A single-channel prototype
61 TDC is implemented with simple, low-speed readout capabilities, laying the
62 groundwork for a second ASIC integrating many channels with readout and
63 synchronization logic.

64 *2.1. Time-to-Digital Converter Design*

65 A generalized Time-to-Digital Converter produces a digital code which
66 represents the time interval T_{in} between the rising edges of two signals, gen-
67 erally termed *start* and *stop*. A two-step TDC like the design we present
68 consists of two components: a “coarse” TDC which produces an output dig-
69 ital code Q_{coarse} such that $T_{in} \approx T_{lsb(coarse)}Q_{coarse}$, and a “fine” TDC which
70 measures the error between the coarse prediction and the actual time interval,
71 producing an output Q_{fine} such that $T_{in} = T_{lsb(coarse)}Q_{coarse} + T_{lsb(fine)}Q_{fine}$.

72 Two-step TDCs can typically outperform single-step TDCs in terms of
73 the combination of dynamic range and resolution, since the circuits which
74 allow a fine TDC to achieve fine resolution typically scale poorly for large
75 values of T_{in} . However, a critical concern for two-step TDCs is the method
76 of coupling signals between the two stages, which must not introduce undue
77 jitter or nonlinearity.

78 The two-step architecture of our TDC (see Fig. 1) follows closely from
79 the design reported by Enomoto et al. [20], which uses a two-DFF interlock
80 to couple signals between a coarse ring oscillator and a fine Vernier TDC.
81 The basic operation of the TDC is as follows:

- 82 1. When the *start* signal arrives, the ring oscillator begins to oscillate,
83 and the coarse TDC begins to count.
- 84 2. When the *stop* signal arrives, it immediately asserts the start input to
85 the fine TDC ($start_{fine}$).
- 86 3. On the next assertion of the clock input to DFF1, *HALT* is asserted,
87 and the coarse TDC count is frozen.
- 88 4. On the next assertion of the clock input to DFF2, the stop input to
89 the fine TDC is asserted ($stop_{fine}$).

90 The use of two sequential flip-flops ensures that there is always a fixed de-
 91 lay T_{gd} between the halting of the coarse TDC and the assertion of $stop_{fine}$.
 92 So long as the dynamic range of the fine TDC is greater than $T_{lsb(coarse)}$,
 93 this ensures a highly linear TDC transfer function: the ring oscillator con-
 94 tributes no nonlinearity as the load capacitance for every cycle is identical,
 95 and the fine TDC, like all thermometer-coded TDCs, exhibits differential
 96 non-linearity (DNL) less than 1 LSB. DFF2 also suppresses any metastability
 97 that results from the clock and data inputs of DFF1 changing simultaneously
 98 before that metastability can propagate to the fine TDC.

99 The relationship between T_{in} and the TDC digital codes may be derived
 100 as follows, starting from the definition:

$$T_{in} = T(stop) - T(start) \quad (1)$$

101 Letting $T(start) = 0$ and noting that the $stop$ signal directly triggers
 102 $start_{fine}$ we have:

$$T_{in} = T(start_{fine}) \quad (2)$$

103 The characteristic equation of the fine TDC is: $T_{lsb(fine)}Q_{fine} = T(stop_{fine}) -$
 104 $T(start_{fine})$. Substituting (2) yields:

$$T_{in} = -T_{lsb(fine)}Q_{fine} + T(stop_{fine}) \quad (3)$$

105 Finally, due to the fixed propagation delay from DFF1 through DFF2,
 106 we note that: $T(stop_{fine}) = T_{lsb(coarse)}Q_{coarse} + T_{gd}$, so we have:

$$T_{in} = -T_{lsb(fine)}Q_{fine} + T_{lsb(coarse)}Q_{coarse} + T_{gd} \quad (4)$$

107 The three calibration parameters $T_{lsb(fine)}$, $T_{lsb(coarse)}$, and T_{gd} may be
 108 calculated by applying pulses of known length to the input of the TDC. After
 109 establishing these values, T_{in} may be calculated from Q_{coarse} and Q_{fine} .

110 It should be noted that some fixed offset T_{off} is practically present in any
 111 TDC due to wire delays and fixed mismatches, which must be calibrated for.
 112 In our TDC, this is absorbed into T_{gd} . Thus the use of the fixed flip-flop
 113 interlock does not introduce a new calibration parameter.

114 The coarse and fine TDC are both constructed of inverter-based delay
 115 cells. The coarse TDC is a ring oscillator composed of a loop of delay cells
 116 whose total delay determines $T_{lsb(coarse)}$. The fine TDC is a Vernier TDC
 117 (Fig. 2), a structure which uses two delay lines with slightly different delays
 118 to achieve sub-gate-delay timing resolution. The delay per stage of the delay

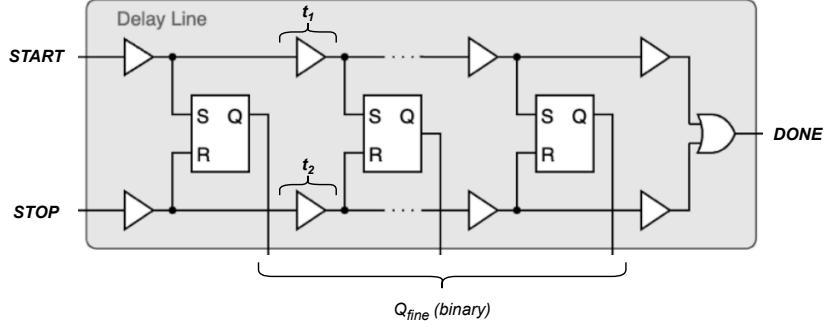


Figure 2: A diagram of a Vernier Delay Line based fine TDC. The TDC is tuned such that $t_1 - t_2 = T_{lsb(fine)} > 0$

119 lines attached to *start* and *stop* are t_1 and t_2 respectively, with $t_1 > t_2$
 120 such that the rising edge of *stop* eventually catches up to the rising edge
 121 of *start*. At each stage, the delay between *start* and *stop* should shrink
 122 by $t_1 - t_2 = T_{lsb(fine)}$. A latch (in the case of our TDC, a simple SR latch)
 123 compares which signal arrived first. The number of stages after which the
 124 *start* signal no longer arrives before the *stop* signal yields Q_{fine} .

125 *2.2. Test ASIC*

126 We implemented, manufactured, and tested a single-channel prototype
 127 of this TDC in GlobalFoundries 22FDX (Fig. 3). The TDC core described
 128 above was integrated with simple interfaces and a serial readout to enable
 129 testing and debugging, which are described in this section. In some cases,
 130 these interfaces limit the performance of the TDC.

131 A second version of this TDC has also been designed, which is currently
 132 under test. This future TDC version incorporates thirty-two channels which
 133 are synchronized to a shared reference clock using an on-ASIC PLL. Addi-
 134 tionally, this version uses a sophisticated asynchronous readout architecture
 135 which is designed to allow all channels to be read out at full rate using 1
 136 Gbps links.

137 In the test ASIC, all digital I/O signals including *start* and *stop* are 1.8
 138 V non-return-to-zero (NRZ) CMOS signals, driven by dedicated I/O cells.
 139 In an optimized system, the high-speed interfaces would be co-designed with
 140 the intended sensor. In the test ASIC, all six TDC core tuning voltages
 141 are exposed as I/Os for manual tuning, along with two additional tuning

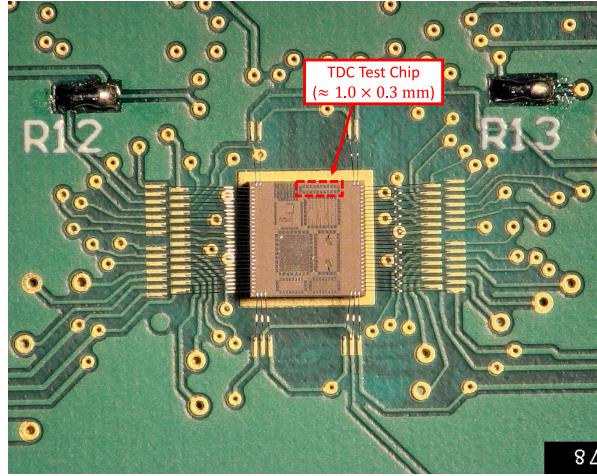


Figure 3: A die photograph of the TDC.

142 voltages which control the back-gate bias voltage applied to digital circuits,
 143 primarily for the purpose of compensating for cryogenic threshold voltage
 144 shift. Finally, the use of a local ring oscillator to drive the coarse TDC is not
 145 intended to be scalable due to the limits of accumulated jitter and variability
 146 between channels; a single-ended ring oscillator like the one in this design
 147 will also suffer from inherently very limited supply rejection [21], which we
 148 did not measure. Future versions of this TDC will retain the architecture
 149 and core circuitry of this design, but the coarse clock will be provided by a
 150 separate on-ASIC PLL.

151 In this prototype ASIC, programming configuration bits and reading out
 152 Q_{coarse} and Q_{fine} are both accomplished using a simple shift register. Each
 153 TDC count must be read from the shift register by an external controller
 154 before another count can be taken, which is the primary limit on readout
 155 speed in our tests reported below. The TDC architecture is designed to
 156 operate at 100 Mcounts/s; it is limited by the time taken for the Vernier
 157 delay line to converge on a value of Q_{coarse} .

158 The prototype TDC is implemented as a stand-alone sub-block in a larger
 159 3.0 mm \times 3.0 mm ASIC (Fig. 3). The block dimensions of 0.3 mm \times 1.0
 160 mm are dominated by the pad ring, while the TDC channel itself is 20 μ m \times
 161 150 μ m.

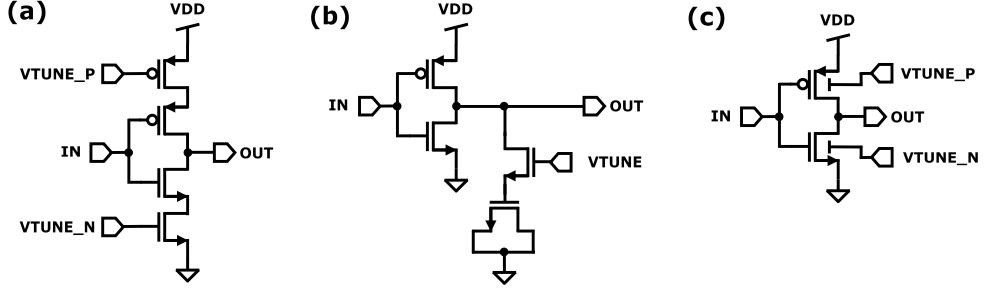


Figure 4: Three methods for tuning the delay of a single Vernier TDC delay cell: (a) current-starving, (b) load capacitance tuning, (c) back-gate delay tuning, the novel method reported in this paper.

162 3. Back-Gate Delay Tuning Technique

163 In any Vernier delay line TDC, a method of fine-tuning the delay of
 164 TDC delay cells on a sub-gate-delay level is necessary, and the delay tuning
 165 technique has a direct impact on the TDC's resolution via the relationship
 166 $t_1 - t_2 = T_{lsb(fine)}$, where t_2 and t_1 are the (tuned) delays of individual cells
 167 in the fast and slow delay chains respectively.

168 For a rising (falling) edge, the propagation delay of a CMOS inverter
 169 stage is set by the time it takes for current through the drain of the PMOS
 170 (NMOS) I_D to charge (discharge) the capacitance of the output node C_Z
 171 sufficiently that the voltage at Z crosses the threshold voltage of the next
 172 stage [22]. This leads to the two conventional strategies for tuning the delay
 173 of a CMOS inverter: current-starving, which limits I_D , and load capacitance
 174 tuning, which increases C_Z [23]. Conventionally, current-starving is imple-
 175 mented by placing additional transistors in series with the PMOS and NMOS
 176 gates of the inverter to limit current draw from the supply. In our TDC,
 177 however, we leverage the back-gate bias capabilites of the GlobalFoundries
 178 22FDX fully-depleted silicon-on-insulator (FDSOI) process to directly con-
 179 trol the conductivity of the delay cell NMOS and PMOS, setting I_D and thus
 180 the delay of each cell. While the use of FDSOI technology to trade digital
 181 performance versus power, and to mitigate the effects of cryogenic operation,
 182 are widely reported [24], this is to our knowledge the first reported use of
 183 this technology to calibrate the resolution of a Vernier TDC.

184 Schematic implementations of the three approaches, including our own,
 185 are shown in Fig 4. The most striking advantage of our approach is the com-
 186 pactness of the layout. Both conventional approaches require adding several

187 additional transistors to the unit delay cell, while ours does not. Because
188 these additional transistors are responsible for providing currents or capaci-
189 tance that is robust against process variation, they may dwarf the size of the
190 delay element (the inverter) itself. The jitter of a CMOS ring oscillator is
191 dominated by white noise and flicker noise from two-level fluctuations in tran-
192 sistor channels [25], so these additional transistors also contribute potential
193 noise. Finally, the additional capacitance increases the power consumption
194 of the fine TDC.

195 The substrate taps required to bias the NMOS and PMOS transistors
196 in our process do require some layout area, but these taps need not be ex-
197 tremely close to the delay elements, and can be shared between multiple
198 delay elements. In total, we expose six tuning voltage, which are all exter-
199 nally controllable in our test chip: separate NMOS and PMOS back-gate bias
200 voltages for the ring oscillator, and for the slow and fast delay lines of the fine
201 TDC. For convenience in testing, we chose to make the bias voltages for both
202 NMOS and PMOS greater than zero, which required using different thresh-
203 old voltage flavors for PMOS (regular V_t) and NMOS (super-low V_t) in the
204 GF22FDX process. Without this constraint, slightly higher performance and
205 a more compact layout could be achieved.

206 Crucially, the same back-gate bias voltages can also be used to negate the
207 characteristic threshold voltage increase observed at cryogenic temperatures
208 [26], maintaining the same TDC resolution across temperature.

209 4. Experimental Results

210 We characterize the TDC ASIC by measuring the TDC resolution as a
211 function of the back-gate tuning voltage, the TDC jitter as a function of
212 the delay between the start and stop signals (T_{in}), and the TDC power as a
213 function of the count rate.

214 4.1. Test Chip Readout

215 In our experiment, a microcontroller (Arduino Portenta) is used for digital
216 control and readout of the ASIC, as shown in Figure 5. The microcontroller
217 interfaces with the ASIC through a simple serial interface (S_CLK, S_DIN,
218 S_DOUT). In order to prevent shift register action from affecting the internal
219 state of the TDC, two additional signals gate the transfer of data between the
220 shift register and the TDC’s internal shadow registers: S_PASS is asserted
221 to pass control bits from the shift register into the shadow registers, and

222 S_LOAD is asserted to retrieve data (i.e. Q_{coarse} and Q_{fine}) from the shadow
 223 registers and place that data in the scan chain.

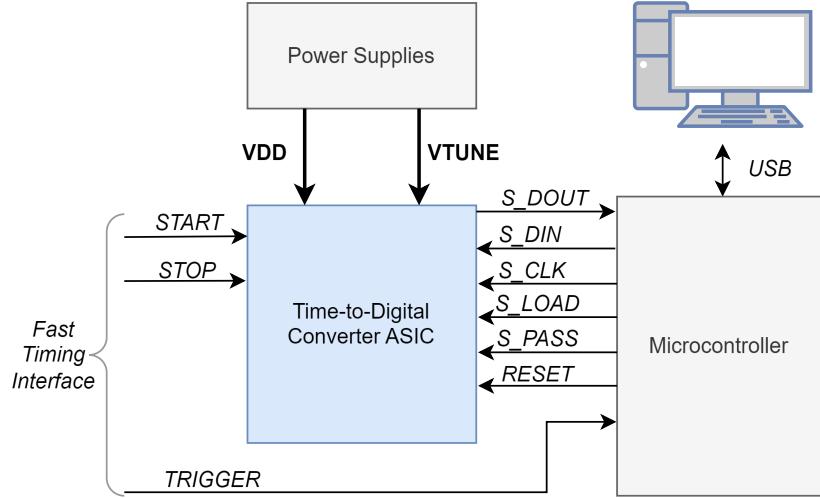


Figure 5: A block diagram illustrating the interfaces between our TDC ASIC and our test setup, including power, digital readout / control, and fast timing interfaces.

224 A trigger signal is supplied directly from the timing source to the micro-
 225 controller, which tells the microcontroller when to retrieve a new measure-
 226 ment from the ASIC. The precise timing of the trigger signal is unimportant:
 227 Q_{coarse} and Q_{fine} are determined exclusively by $T_{in} = T(stop) - T(start)$.
 228 However, one trigger pulse must be sent for each START/STOP pair to en-
 229 sure the microcontroller retrieves the current count before it is overwritten
 230 by the next count.

231 *4.2. ASIC Characterization Using Pulse Generator*

232 For independent characterization of our TDC we used a Berkley Nucle-
 233 onics Model 745-OEM Digital Delay Generator to supply the START/STOP
 234 and trigger signals. The 745-OEM instrument has a delay resolution of 1
 235 ps and specified RMS jitter of better than $T_{j,rms} = 5 \text{ ps} + \text{delay} \times 10^{-8}$,
 236 or approximately 5 ps for signals in the range of interest. The jitter of our
 237 specific instrument was measured to be 3.5 ps using a 20 GHz oscilloscope
 238 at 2 ns delay.

239 To calibrate the TDC for each test condition, we performed measurements
 240 of three fixed input time differentials (0ps, 100ps, and 10ns) supplied by the

241 745-OEM and averaged the TDC response for each over a large number of
 242 cycles to mitigate jitter. This yielded a system of three equations which can
 243 be solved for the calibration constants $T_{lsb(fine)}$, $T_{lsb(coarse)}$, and T_{gd} (see Sec
 244 2).

245 *4.2.1. TDC Resolution vs Tuning Voltage*

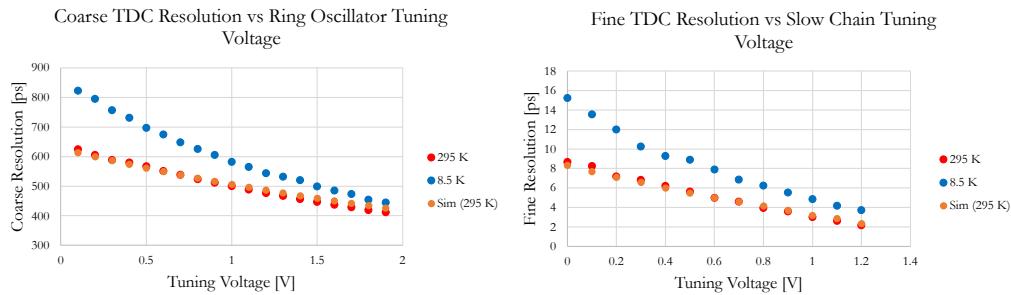


Figure 6: Resolution of the coarse and fine TDCs as a function of back-gate tuning voltage.

246 In order to assess the tunability of the ASIC, we define two tuning pa-
 247 rameters $V_{tune(coarse)}$ and $V_{tune(fine)}$. The actual tuning voltages for the ASIC
 248 are derived from these parameters as shown in Table 1. The expressions
 249 are defined such that an increase in $V_{tune(coarse)}$ decreases the coarse TDC
 250 resolution, and an increase in $V_{tune(fine)}$ decreases the fine TDC resolution,
 251 while keeping NMOS and PMOS drive strengths roughly balanced. Nominal
 252 values are $V_{tune(coarse)} = 1V$ and $V_{tune(fine)} = 0.55V$.

ASIC Tuning Voltage	Expression from Tuning Parameters
VTUNE_N_RO	$V_{tune(coarse)}$
VTUNE_P_RO	$2 - V_{tune(coarse)}$
VTUNE_N_FAST	1.9 V (fixed)
VTUNE_P_FAST	0.1 V (fixed)
VTUNE_N_SLOW	$V_{tune(fine)}$
VTUNE_P_SLOW	$2 - V_{tune(fine)}$

Table 1: Expressions for ASIC tuning voltages as a function of tuning parameters.

253 To generate each of the two plots in Figure 6 we swept one tuning pa-
 254 rameter while keeping the other constant. For each tuning voltage value, we

255 took three measurements of known-length pulses and recorded the output
256 code from the TDC, then solved this system of three equations as described
257 in 2.1 to find the coarse and fine TDC resolution $t_{R(\text{coarse})}$ and $t_{R(\text{fine})}$, which
258 are plotted for two measurement temperatures (295 and 8.5 Kelvin). We
259 also present simulation results using foundry PDK models and extracted
260 parasitics, which closely agree with the measured results at room tempera-
261 ture. Calibrated cryogenic transistor models were not available at the time
262 of publication.

263 When the tuning voltage is held constant, we observe that a larger resolu-
264 tion is measured at cryogenic (8.5 K) temperature versus room temperature.
265 This effect primarily results from the well-known threshold shift of CMOS
266 devices at cryogenic temperature [27], which increases the propagation de-
267 lay of both ring oscillator stages and Vernier delay line stages [28]. This
268 effect can be mitigated in some cases by choosing a different tuning voltage
269 to compensate for threshold voltage shift. Due to larger overall delays, the
270 tuning slope is also approximately twice as large at cryogenic temperatures:
271 we measured 216 ps/V (coarse) and 9.59 ps/V (fine) at 8.5K, versus 118
272 ps/V (coarse) and 5.40 ps/V (fine) at room temperature. Differential non-
273 linearity is not characterized, but expected to be $\propto T_{lsb(\text{fine})}$ due to the TDC
274 architecture as described previously.

275 *4.2.2. TDC Jitter*

276 We assessed the jitter of our TDC in isolation by fixing the START/STOP
277 delay (T_{in}) and taking a large number of samples to build a code distribu-
278 tion. Results as a function of T_{in} are shown in Fig 7. For small values of
279 T_{in} , the core TDC circuits demonstrate jitter below the measurement floor
280 of the 745-OEM instrument, resulting in an approximately flat measured
281 jitter value in the range of a few picoseconds. For larger values of T_{in} , ac-
282 cumulated flicker noise around the test chip ring oscillator is the dominant
283 noise source, resulting in a roughly linear correlation between jitter and T_{in}
284 ($\sigma(T_{in}) \approx 0.001T_{in}$). Future ASICs which incorporate an on-chip PLL will
285 not exhibit this artifact, which should extend the range over which our TDC
286 exhibits picosecond jitter. Even if limited to the regime in which it achieves
287 few-picosecond jitter, our TDC can still provide adequate coverage for many
288 important particle physics applications, such as timing readout for detectors
289 at the LHC. For example, several readout chips designed for LHC precision
290 timing detectors incorporate TDCs with dynamic range at or below 10 ns,
291 such as ETROC [29] for the CMS MIP Timing Detector and ALTIROC [30]

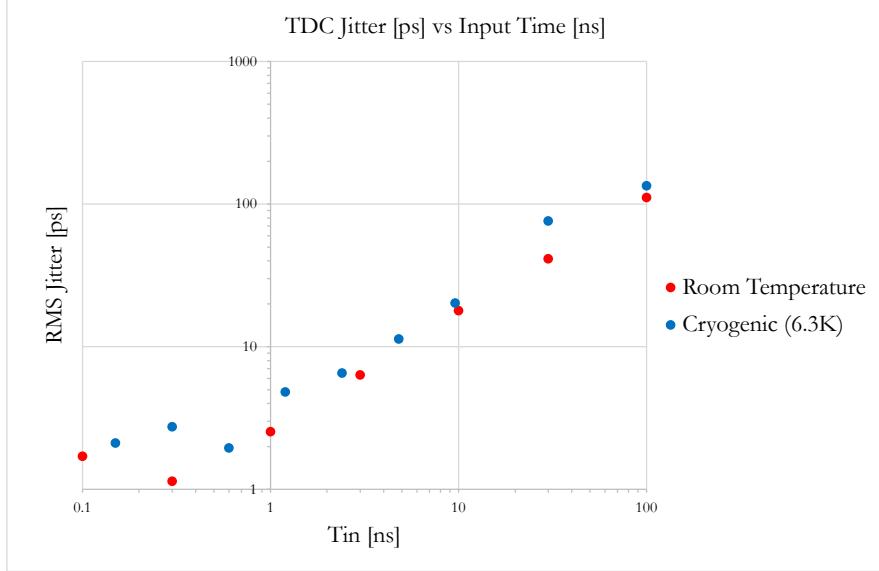


Figure 7: TDC jitter results as a factor of $T_{in} = T(\text{stop}) - T(\text{start})$. See note below on temperature.

for the ATLAS High-Granularity Timing Detector. Other applications such as time-domain multiplexing of megapixel arrays [31] for time-resolved imaging in astronomy are also competitive at jitter below 20 ps.

We measured the performance of the TDC at both room temperature and cryogenic temperature (6.3 degrees Kelvin). The measurement temperature differs from the previous experiment (8.5K) because different instrumentation of our closed-cycle cryostat results in a different heat load and thus a different minimum achievable temperature.

Because the contribution of thermal noise is already small (<1 ps rms, from simulation) and flicker noise is not reduced by low temperature [32], no significant advantage is obtained from cryogenic operation. In fact, because the tuning voltage is identical, the cryogenic TDC bin size is slightly larger, resulting in slightly higher jitter.

4.2.3. TDC Power

Our TDC operates in an asynchronous, event-driven fashion, which means that its power consumption is highly dependent on the rate of counts, as well as the average time (t_{RO}) that the ring oscillator must be active in order to resolve each count, which is dependent on the length of START and STOP

310 pulses. For test purposes, we can control the value of t_{RO} arbitrarily by
 311 setting the length of these pulses. Figure 8 illustrates power consumption at
 312 cryogenic and room temperature up to 1 Mcps, the limit of our test stand,
 313 for t_{RO} values of 100 and 200 nanoseconds. We observe that both quiescent
 314 and dynamic power consumption are reduced at cryogenic temperature, due
 315 to lower leakage current and slower operation of the TDC at nominal tuning
 316 levels.

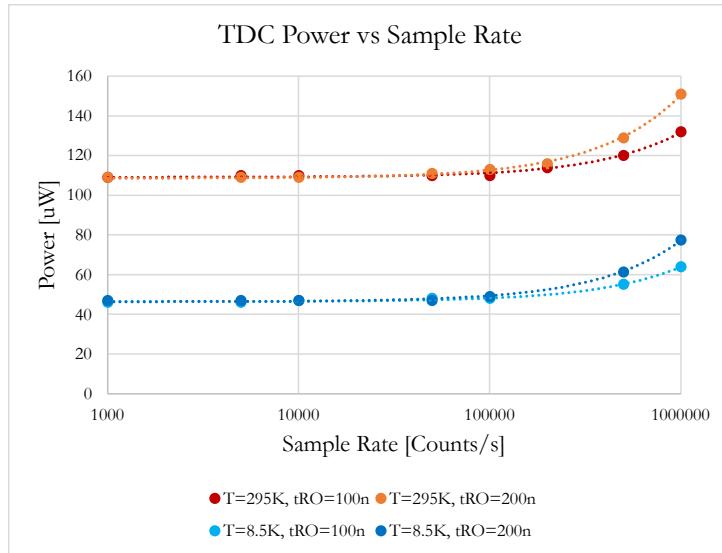


Figure 8: Measured TDC power as a factor of temperature, count rate, and average ring oscillator run time per count (t_{RO}) for count rates up to 1 M counts per second, the limit of our test stand.

Figure of Merit	295 K	8.5 K
Quiescent Power ($P_{Quiescent}$, μW)	109	46.6
Energy per fine ADC Conversion (E_{fine} , pJ)	3.30	3.03
Ring Oscillator Power (P_{RO} , μW)	193	142
Estimated Channel Power at 100 kcps (μW)	110	47
Estimated Channel Power at 100 Mcps (μW)	632	492

Table 2: TDC channel power for count rates of 100 kcps and 100 Mcps, assuming $t_{RO} = 10\text{ns}$

317 Although our test stand is only capable of driving pulses up to 1 Mcps,
 318 the TDC is capable of operating with input count rates of at least 100 Mcps.

319 Using the data from Figure 8, we can estimate the breakdown of power
 320 consumption per block, and use these numbers to estimate power at 100
 321 Mcps as $P(f_{\text{samp}}) = P_{\text{ROT}} t_{\text{RO}} f_{\text{samp}} + E_{\text{fine}} f_{\text{samp}} + P_{\text{Quiescent}}$. To calculate the
 322 power figures of merit in Table 2, we assume $t_{\text{RO}} = 10\text{ns}$, which means that
 323 at an input count rate of 100 Mcps, the ring oscillator is constantly running,
 324 which is a conservative estimate.

325 *4.2.4. Summary of Figures of Merit*

Reference	Dutton 2015 (ISSCC)	Roy 2017 (TRPMS)	Zhang 2019 (JSSC)	Nolet 2020 (IET)	Talala 2023 (JSSC)	Pass 2023 (ICEE)	This Work	
Technology (nm)	130	65	180	65	110	65	22 FDSOI	
# of Channels	1	4	144 x 6 x 2	1	256	Sim	1	
Cryogenic Results	None	None	None	None	None	None	8.5 K	
Resolution (ps)	71	6.9	48.8	5.5	25.4	20	295K	8.5K
							6.20	8.52
TDC Area (mm²)	0.03	0.00125	0.025	0.00151	0.024	0.002704	0.003	
TDC Power (mW)	14.1	0.16	2.9	0.02	0.11	0.32	295K	8.5K
							0.63	0.49
Range (ns)	18.8	3	200	4	3.25	168	**	
Conversion Rate (MS/s)	14000	5	666	1	0.28	5	100	
Figure of Merit (Rate/Res.\timesPow.\timesArea)	466	3620	188	5470	4.2	289	295K	8.5K
							8530	7980

Figure 9: Summary of figures of merit compared to selected recent TDC designs. References in order of appearance: [33] [34] [35] [36] [37][38]

326 The figures of merit of the TDC design are presented in Figure 9. The
 327 figures in the table are calculated by setting the TDC tuning voltages to their
 328 nominal settings, and conservatively assuming an input count rate of 100
 329 Mcps and $t_{\text{RO}} = 10\text{ns}$. In reality, the TDC's power and resolution are highly
 330 dependent on count rate and tuning voltages as detailed in the previous
 331 sections. The range of our TDC is practically limited by the accumulation
 332 of jitter on the ring oscillator; given a maximum jitter specification for the
 333 TDC, the maximum allowable range is the T_{in} value which corresponds to
 334 that level of jitter in Figure 7. To avoid making an arbitrary assumption
 335 about required jitter, we do not report a single range value in this table.

336 *4.3. ASIC Characterization Using Emulated LGAD Signals*

337 To characterize the performance of our TDC with realistic emulated
 338 LGAD signals, we use the FCFD front-end readout ASIC [19]. As shown

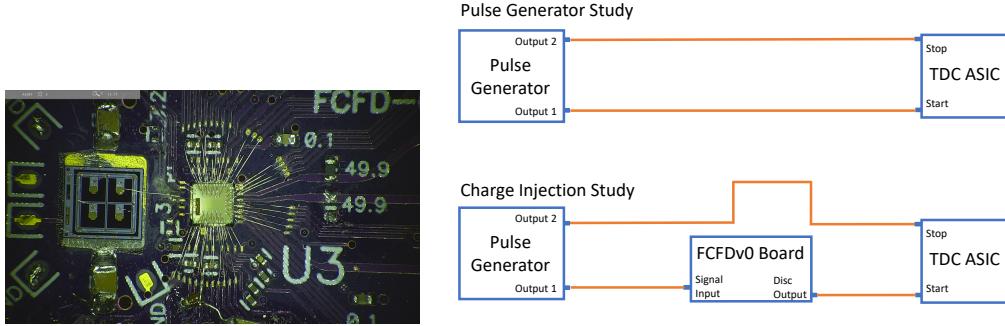


Figure 10: Left: A photograph of the FCFD characterization board showing the FCFD ASIC wire-bonded to an LGAD sensor. Right: schematic diagrams of the pulse generator test measurement (top) and the FCFD charge injection test measurement (bottom).

339 in Figure 10, we insert the FCFD ASIC into the signal path between the
 340 745-OEM pulse generator and the TDC. The FCFD output is used as the
 341 TDC start signal, while the second output of the pulse generator is used
 342 as the stop signal. When triggered by the pulse generator, the FCFD gen-
 343 erates discriminated LGAD signal pulses using an internal pulse injection
 344 circuit, achieving overall jitter better than 9 ps. In order to ensure that the
 345 stop signal from the pulse generator arrives later than the start signal from
 346 the FCFD output, we introduce a physical delay using longer cables for the
 347 pulse generator output. Characteristic waveforms for both setups are shown
 348 in Figure 11.

Figure 11: Waveforms of the signals tested acquired by oscilloscope. Left: waveforms for two pulse generator signals to represent the start and stop signals. Right: waveforms for the charge injection trigger (green) and FCFD response (yellow).

349 The Arduino-based readout system described above is used to capture

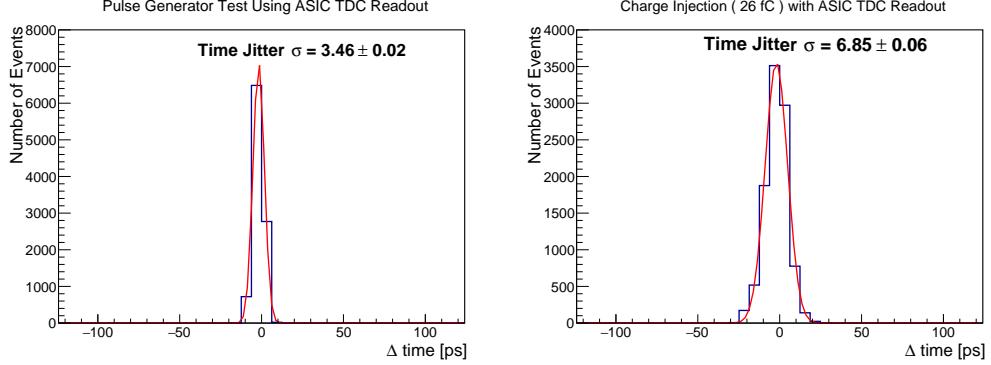


Figure 12: Histograms of the measured time difference between the start and stop signals using our TDC readout for the pulse generator test (left) and one of the charge injection measurements (right).

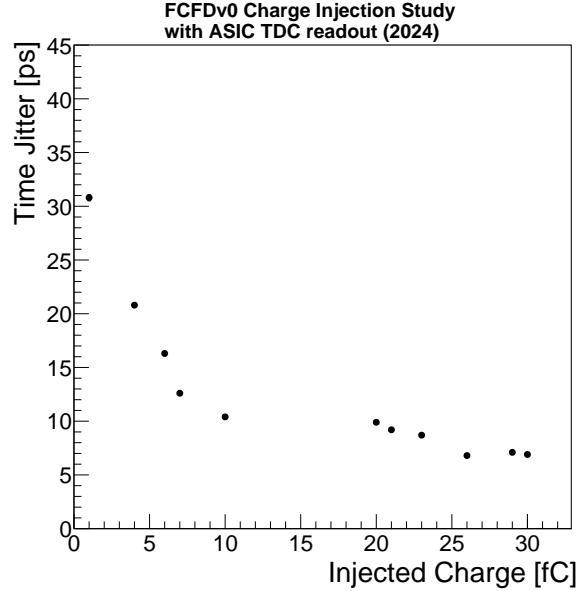


Figure 13: The measured time precision is shown as a function of the injected charge. The internal charge injection mechanism of the FCFD ASIC is used to produce signals and the TDC ASIC is used to read out and digitize the time stamps.

350 the elapsed time (Δt) between the start and stop signals reported by the
 351 TDC. To characterize jitter, we capture a large number of samples of Δt and
 352 fit the resulting distribution to a Gaussian function, where σ corresponds to

353 timing precision, or jitter.

354 Using the built-in switches, the FCFD ASIC can generate charge injection
355 waveforms from various datasets corresponding to signals with injected
356 charge ranging from 1–30 fC. In Figure 12, we show histograms of the Δt distribution
357 with only the pulse generator (left) compared to the FCFD ASIC
358 with emulated charge injection of 26 fC (right). We measure a TDC precision
359 of 3.5 ps, which is a fraction of the intrinsic jitter of the charge injection
360 mechanism. In Figure 13 we show measured time precision as a function of
361 the injected charge. The results are consistent with previously reported mea-
362 surements using an oscilloscope readout [19]. These measurements confirm
363 that the contribution of the TDC to the time precision of the full system is
364 below 4 ps, achieving the original design parameters.

365 5. Conclusions and Outlook

366 Development of low-power, high-resolution TDCs for applications in high
367 precision timing is one of the key challenges towards implementation of large-
368 scale 4D-tracking detectors. Similarly, applications with novel quantum sen-
369 sors require very high precision TDCs that are capable of operating in ultra-
370 cold environments.

371 In this paper we presented a novel TDC design architecture, and the char-
372 acterization results of the test ASIC in various configurations, at both room
373 and cryogenic temperature. The design makes use of the back-gate biasing
374 capabilities of the GlobalFoundries 22FDX node to provide fine-tuning for the
375 coarse and fine TDC stages. Using the GF 22FDX node allowed us to design
376 a low complexity, small footprint TDC with no noise contribution from bias
377 circuits and separate tuning voltages. Our measurements using both a pulse
378 generator and a dedicated LGAD front-end readout ASIC demonstrate that
379 the compact TDC design achieves better than 4 ps timing resolution, with a
380 power consumption below 630 and 110 μW at 100 and 0.1 Mcounts/second
381 respectively.

382 Acknowledgments

383 This document was prepared using the resources of the Fermi National
384 Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office
385 of Science, Office of High Energy Physics HEP User Facility. Fermilab is
386 managed by Fermi Forward Discovery Group, LLC, acting under Contract

387 No. 89243024CSC000002. This work was funded by the U.S. DOE Of-
388 fice of Science Research Program for Microelectronics Codesign through the
389 HYDRA project “Hybrid Cryogenic Detector Architectures for Sensing and
390 Edge Computing enabled by new Fabrication Processes” (LAB 21-2491).
391 This work has also been supported by funding from the California Institute
392 of Technology High Energy Physics under Contract DE-SC0011925 with the
393 U.S. Department of Energy.

394 **References**

395 [1] R. Valivarthi, S. I. Davis, C. Peña, S. Xie, N. Lauk, L. Narváez, J. P.
396 Allmaras, A. D. Beyer, Y. Gim, M. Hussein, G. Iskander, H. L. Kim,
397 B. Korzh, A. Mueller, M. Rominsky, M. Shaw, D. Tang, E. E. Wollman,
398 C. Simon, P. Spentzouris, D. Oblak, N. Sinclair, M. Spiropulu, Tele-
399 portation systems toward a quantum internet, *PRX Quantum* 1 (2020)
400 020317. doi:10.1103/PRXQuantum.1.020317.
401 URL <https://link.aps.org/doi/10.1103/PRXQuantum.1.020317>

402 [2] D. Berry, V. Cairo, A. Dragone, M. Centis-Vignali, G. Giacomini,
403 R. Heller, S. Jindariani, A. Lai, L. Linssen, R. Lipton, C. Madrid,
404 B. Markovic, S. Mazza, J. Ott, A. Schwartzman, H. Weber, Z. Ye, 4-
405 Dimensional Trackers (2022). arXiv:2203.13900.

406 [3] B. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A.
407 Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M.
408 Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody,
409 C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E.
410 Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale,
411 M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov,
412 M. D. Shaw, K. K. Berggren, Demonstration of sub-3 ps temporal
413 resolution with a superconducting nanowire single-photon detector, *Nature
414 Photonics* 14 (4) (2020) 250–255.

415 [4] J. Chang, J. Gao, I. Esmaeil Zadeh, A. W. Elshaari, V. Zwiller,
416 Nanowire-based integrated photonics for quantum information and
417 quantum sensing, *Nanophotonics* 12 (3) (2023) 339–358.

418 [5] C. Accettura, D. Adams, R. Agarwal, C. Ahdida, C. Aimè, N. Ama-
419 pane, D. Amorim, P. Andreetto, F. Anulli, R. Appleby, A. Apresyan,

420 A. Apyan, S. Arsenyev, P. Asadi, M. A. Mahmoud, A. Azatov, J. Back,
421 L. Balconi, L. Bandiera, R. Barlow, N. Bartosik, E. Barzi, F. Batsch,
422 M. Bauce, J. S. Berg, A. Bersani, A. Bertarelli, A. Bertolin, F. Boattini,
423 A. Bogacz, M. Bonesini, B. Bordini, S. Bottaro, L. Bottura, A. Braghieri,
424 M. Breschi, N. Bruhwiler, X. Buffat, L. Buonincontri, P. Burrows,
425 G. Burt, D. Buttazzo, B. Caiffi, M. Calviani, S. Calzaferri, D. Cal-
426 zolari, R. Capdevilla, C. Carli, F. Casaburo, M. Casarsa, L. Castelli,
427 M. G. Catanesi, G. Cavoto, F. G. Celiberto, L. Celona, A. Cerri, G. Ce-
428 sarini, C. Cesarotti, G. Chachamis, A. Chance, S. Chen, Y.-T. Chien,
429 M. Chiesa, A. Colaleo, F. Collamati, G. Collazuol, M. Costa, N. Craig,
430 C. Curatolo, D. Curtin, G. D. Molin, M. Dam, H. Damerau, S. Dasu,
431 J. de Blas, S. D. Curtis, E. D. Matteis, S. D. Rosa, J.-P. Delahaye,
432 D. Denisov, H. Denizli, C. Densham, R. Dermisek, L. D. Luzio, E. D.
433 Meco, B. D. Micco, K. Dienes, E. Diociaiuti, T. Dorigo, A. Dudarev,
434 R. Edgecock, F. Errico, M. Fabbrichesi, S. Farinon, A. Ferrari, J. A. F.
435 Somoza, F. Filthaut, D. Fiorina, E. Fol, M. Forslund, R. Franceschini,
436 R. F. Ximenes, E. Gabrielli, M. Gallinaro, F. Garosi, L. Giambastiani,
437 A. Gianelle, S. Gilardoni, D. A. Giove, C. Giraldin, A. Glioti, M. Greco,
438 A. Greljo, R. Groeber, C. Grojean, A. Grudiev, J. Gu, C. Han, T. Han,
439 J. Hauptman, B. Henning, K. Hermanek, M. Herndon, T. R. Holmes,
440 S. Homiller, G. Huang, S. Jana, S. Jindariani, Y. Kahn, I. Karpov,
441 D. Kelliher, W. Kilian, A. Kolehmainen, K. Kong, P. Koppenburg,
442 N. Kreher, G. Krintiras, K. Krizka, G. Krnjaic, N. Kumar, A. Lechner,
443 L. Lee, Q. Li, R. L. Voti, R. Lipton, Z. Liu, S. Lomte, K. Long,
444 J. L. Gomez, R. Losito, I. Low, Q. Lu, D. Lucchesi, L. Ma, Y. Ma,
445 S. Machida, F. Maltoni, M. Mandurrino, B. Mansoulie, L. Mantani,
446 C. Marchand, S. Mariotto, S. Martin-Haugh, D. Marzocca, P. Mastrapa-
447 pasqua, G. Mauro, A. Mazzolari, N. McGinnis, P. Meade, B. Mele,
448 F. Meloni, M. Mentink, C. Merlassino, E. Metral, R. Miceli, N. Mi-
449 las, N. Mokhov, A. Montella, T. Mulder, R. Musenich, M. Nardecchia,
450 F. Nardi, N. Neufeld, D. Neuffer, Y. Onel, D. Orestano, D. Paesani,
451 S. P. Griso, M. Palmer, P. Panci, G. Panico, R. Paparella, P. Par-
452 adisi, A. Passeri, N. Pastrone, A. Pellecchia, F. Piccinini, A. Portone,
453 K. Potamianos, M. Prioli, L. Quettier, E. Radicioni, R. Radogna,
454 R. Rattazzi, D. Redigolo, L. Reina, E. Ressegueie, J. Reuter, P. L. Ribani,
455 C. Riccardi, L. Ricci, S. Ricciardi, L. Ristori, T. N. Robens, W. Rode-
456 johann, C. Rogers, M. Romagnoni, K. Ronald, L. Rossi, R. Ruiz, F. S.
457 Queiroz, F. Sala, P. Sala, J. Salko, P. Salvini, E. Salvioni, J. Santi-

458 ago, I. Sarra, F. J. S. Esteban, J. Schieck, D. Schulte, M. Selvaggi,
 459 C. Senatore, A. Senol, D. Sertore, L. Sestini, V. Sharma, V. Shiltsev,
 460 J. Shu, F. M. Simone, R. Simoniello, K. Skoufaris, M. Sorbi, S. Sorti,
 461 A. Stamerra, S. Stapnes, G. H. Stark, M. Statera, B. Stechauner, D. Stolarski,
 462 D. Stratakis, S. Su, W. Su, O. Sumensari, X. Sun, R. Sundrum,
 463 M. J. Swiatlowski, A. Sytov, B. T. Kuchma, T. M. P. Tait, J. Tang,
 464 J. Tang, A. Tesi, P. Testoni, B. Thomas, E. A. Thompson, R. Torre,
 465 L. Tortora, L. Tortora, S. Trifinopoulos, I. Vai, R. Valente, R. U. Valente,
 466 M. Valente, A. Valenti, N. Valle, U. van Rienen, R. Venditti,
 467 A. Verweij, P. Verwilligen, L. Vittorio, P. Vitulo, L. Wang, H. Weber,
 468 M. Wozniak, R. Wu, Y. Wu, A. Wulzer, K. Xie, A. Yamamoto, Y. Yang,
 469 K. Yonehara, A. Zaza, X. Zhao, A. Zlobin, D. Zuliani, J. Zurita, Towards
 470 a Muon Collider (2023). arXiv:2303.08533.

471 [6] E. Sicking, Detector requirements for future high-energy collider
 472 experimentsTREDI 2020, Vienna, Austria (2020).
 473 URL <https://indico.cern.ch/event/813597/contributions/3727952/>

474 [7] C.-E. Wulz, Report from ecfa, the european committee for fu-
 475 ture accelerators, EPJ Web of Conferences 95 (2015) 06003.
 476 doi:10.1051/epjconf/20149506003.

477 [8] R. Abdul Khalek, A. Accardi, J. Adam, D. Adamiak, W. Akers,
 478 M. Albaladejo, A. Al-bataineh, M. Alexeev, F. Ameli, P. Antonioli,
 479 N. Armesto, W. Armstrong, M. Arratia, J. Arrington, A. Asaturyan,
 480 M. Asai, E. Aschenauer, S. Aune, H. Avagyan, C. Ayerbe Gayoso,
 481 B. Azmoun, A. Bacchetta, M. Baker, F. Barbosa, L. Barion, K. Barish,
 482 P. Barry, M. Battaglieri, A. Bazilevsky, N. Behera, F. Benmokhtar,
 483 V. Berdnikov, J. Bernauer, V. Bertone, S. Bhattacharya, C. Bis-
 484 solotti, D. Boer, M. Boglione, M. Bondì, P. Boora, I. Borsa, F. Bossù,
 485 G. Bozzi, J. Brandenburg, N. Brei, A. Bressan, W. Brooks, S. Bu-
 486 falino, M. Bukhari, V. Burkert, N. Buttimore, A. Camsonne, A. Ce-
 487 lentano, F. Celiberto, W. Chang, C. Chatterjee, K. Chen, T. Chetry,
 488 T. Chiarusi, Y.-T. Chien, M. Chiosso, X. Chu, E. Chudakov, G. Cicala,
 489 E. Cisbani, I. Cloet, C. Cocuzza, P. Cole, D. Colella, J. Collins, M. Con-
 490 stantinou, M. Contalbrigo, G. Contin, R. Corliss, W. Cosyn, A. Cour-
 491 toy, J. Crafts, R. Cruz-Torres, R. Cuevas, U. D'Alesio, S. Dalla Torre,
 492 D. Das, S. Dasgupta, C. Da Silva, W. Deconinck, M. Defurne, W. De-
 493 Graw, K. Dehmelt, A. Del Dotto, F. Delcarro, A. Deshpande, W. Det-

494 mold, R. De Vita, M. Diefenthaler, C. Dilks, D. Dixit, S. Dulat, A. Dumitru, R. Dupré, J. Durham, M. Echevarria, L. El Fassi, D. Elia,
495 R. Ent, R. Esha, J. Ethier, O. Evdokimov, K. Eyser, C. Fanelli,
496 R. Fatemi, S. Fazio, C. Fernandez-Ramirez, M. Finger, M. Finger,
497 D. Fitzgerald, C. Flore, T. Frederico, I. Friščić, S. Fucini, S. Furletov,
498 Y. Furletova, C. Gal, L. Gamberg, H. Gao, P. Garg, D. Gaskell,
499 K. Gates, M. Gay Ducati, M. Gericke, G. Gil Da Silveira, F.-X.
500 Girod, D. Glazier, K. Gnanvo, V. Goncalves, L. Gonella, J. Gonzalez Hernandez, Y. Goto, F. Grancagnolo, L. Greiner, W. Guryn,
501 V. Guzey, Y. Hatta, M. Hattawy, F. Hauenstein, X. He, T. Hemmick,
502 O. Hen, G. Heyes, D. Higinbotham, A. Hiller Blin, T. Hobbs,
503 M. Hohlmann, T. Horn, T.-J. Hou, J. Huang, Q. Huang, G. Huber,
504 C. Hyde, G. Iakovidis, Y. Ilieva, B. Jacak, P. Jacobs, M. Jadhav,
505 Z. Janoska, A. Jentsch, T. Jezo, X. Jing, P. Jones, K. Joo,
506 S. Joosten, V. Kafka, N. Kalantarians, G. Kalicy, D. Kang, Z. Kang,
507 K. Kauder, S. Kay, C. Keppel, J. Kim, A. Kiselev, M. Klasen, S. Klein,
508 H. Klest, O. Korchak, A. Kostina, P. Kotko, Y. Kovchegov, M. Krelinia,
509 S. Kuleshov, S. Kumano, K. Kumar, R. Kumar, L. Kumar,
510 K. Kumerički, A. Kusina, K. Kutak, Y. Lai, K. Lalwani, T. Lappi,
511 J. Lauret, M. Lavinsky, D. Lawrence, D. Lednicky, C. Lee, K. Lee,
512 S. Lee, S. Levorato, H. Li, S. Li, W. Li, X. Li, X. Li, W. Li, T. Ligonzo,
513 H. Liu, M. Liu, X. Liu, S. Liuti, N. Liyanage, C. Lorcé, Z. Lu, G. Lucero,
514 N. Lukow, E. Lunghi, R. Majka, Y. Makris, I. Mandjavidze, S. Mantry,
515 H. Mäntysaari, F. Marhauser, P. Markowitz, L. Marsicano, A. Mastroserio,
516 V. Mathieu, Y. Mehtar-Tani, W. Melnitchouk, L. Mendez, A. Metz,
517 Z.-E. Meziani, C. Mezrag, M. Mihovilović, R. Milner, M. Mirazita,
518 H. Mkrtchyan, A. Mkrtchyan, V. Mochalov, V. Moiseev, M. Mondal,
519 A. Morreale, D. Morrison, L. Motyka, H. Moutarde, C. Muñoz Camacho,
520 F. Murgia, M. Murray, P. Musico, P. Nadel-Turonski, P. Nadolsky,
521 J. Nam, P. Newman, D. Neyret, D. Nguyen, E. Nocera, F. Noferini,
522 F. Noto, A. Nunes, V. Okorokov, F. Olness, J. Osborn, B. Page,
523 S. Park, A. Parker, K. Paschke, B. Pasquini, H. Paukkunen, S. Paul,
524 C. Pecar, I. Pegg, C. Pellegrino, C. Peng, L. Pentchev, R. Perrino,
525 F. Petriello, R. Petti, A. Pilloni, C. Pinkenburg, B. Pire, C. Pisano,
526 D. Pitonyak, A. Poblaguev, T. Polakovic, M. Posik, M. Potekhin,
527 R. Preghenella, S. Preins, A. Prokudin, P. Pujahari, M. Purschke, J. Pybus,
528 M. Radici, R. Rajput-Ghoshal, P. Reimer, M. Rinaldi, F. Ringer,
529 C. Roberts, S. Rodini, J. Rojo, D. Romanov, P. Rossi, E. Santopinto,
530
531

532 M. Sarsour, R. Sassot, N. Sato, B. Schenke, W. Schmidke, I. Schmidt,
 533 A. Schmidt, B. Schmookler, G. Schnell, P. Schweitzer, J. Schwiening,
 534 I. Scimemi, S. Scopetta, J. Segovia, R. Seidl, S. Sekula, K. Semenov-
 535 Tian-Shanskiy, D. Shao, N. Sherrill, E. Sichtermann, M. Siddikov,
 536 A. Signori, B. Singh, S. Širca, K. Slifer, W. Slominski, D. Sokhan,
 537 W. Sondheim, Y. Song, O. Soto, H. Spiesberger, A. Stasto, P. Stepanov,
 538 G. Sterman, J. Stevens, I. Stewart, I. Strakovský, M. Strikman,
 539 M. Sturm, M. Stutzman, M. Sullivan, B. Surrow, P. Svihra, S. Syrit-
 540 syn, A. Szczepaniak, P. Sznajder, H. Szumila-Vance, L. Szymanowski,
 541 A. Tadepalli, J. Tapia Takaki, G. Tassielli, J. Terry, F. Tessarotto,
 542 K. Tezgin, L. Tomasek, F. Torales Acosta, P. Tribedy, A. Tricoli,
 543 Triloki, S. Tripathi, R. Trotta, O. Tsai, Z. Tu, C. Tuvè, T. Ullrich,
 544 M. Ungaro, G. Urciuoli, A. Valentini, P. Vancura, M. Vandenbroucke,
 545 C. Van Hulse, G. Varner, R. Venugopalan, I. Vitev, A. Vladimirov,
 546 G. Volpe, A. Vossen, E. Voutier, J. Wagner, S. Wallon, H. Wang,
 547 Q. Wang, X. Wang, S. Wei, C. Weiss, T. Wenaus, H. Wennlöf, N. Wick-
 548 ramaarachchi, A. Wikramanayake, D. Winney, C. Wong, C. Woody,
 549 L. Xia, B. Xiao, J. Xie, H. Xing, Q. Xu, J. Zhang, S. Zhang, Z. Zhang,
 550 Z. Zhao, Y. Zhao, L. Zheng, Y. Zhou, P. Zurita, Science Requirements
 551 and Detector Concepts for the Electron-Ion Collider: EIC Yellow
 552 Report, Nucl. Phys. A 1026 (2022) 122447. arXiv:2103.05419,
 553 doi:10.1016/j.nuclphysa.2022.122447.

554 [9] W. Zhang, H. Sun, C. Edwards, D. Gong, X. Huang, C. Liu, T. Liu,
 555 T. Liu, J. Olsen, Q. Sun, X. Sun, J. Wu, J. Ye, L. Zhang, A low-
 556 power time-to-digital converter for the cms endcap timing layer (etl)
 557 upgrade, IEEE Transactions on Nuclear Science 68 (8) (2021) 1984–
 558 1992. doi:10.1109/TNS.2021.3085564.

559 [10] F. Nolet, N. Roy, S. Carrier, J. Bouchard, R. Fontaine,
 560 S. Charlebois, J.-F. Pratte, 22 uw, 5.1 ps lsb, 5.5 ps rms jitter
 561 vernier time-to-digital converter in cmos 65 nm for single photon
 562 avalanche diode array, Electronics Letters 56 (9) (2020) 424–426.
 563 arXiv:<https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/el.2019.4105>,
 564 doi:<https://doi.org/10.1049/el.2019.4105>.
 565 URL <https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/el.2019.4105>

566 [11] A. Apresyan, W. Chen, G. D’Amen, K. F. Di Petrillo, G. Giacomo-
 567 mini, R. Heller, H. Lee, S. Los, C. S. Moon, A. Tricoli, Measure-

568 ments of an AC-LGAD strip sensor with a 120 GeV proton beam,
 569 JINST 15 (09) (2020) P09038. arXiv:2006.01999, doi:10.1088/1748-
 570 0221/15/09/P09038.

571 [12] R. Heller, C. Madrid, A. Apresyan, W. Brooks, W. Chen, G. D'Amen,
 572 G. Giacomini, I. Goya, K. Hara, S. Kita, S. Los, A. Molnar, K. Nakamura,
 573 C. Peña, C. S. Martín, A. Tricoli, T. Ueda, S. Xie, Characterization
 574 of BNL and HPK AC-LGAD sensors with a 120 GeV proton beam,
 575 JINST 17 (05) (2022) P05001. arXiv:2201.07772, doi:10.1088/1748-
 576 0221/17/05/p05001.

577 [13] C. Madrid, R. Heller, C. San Martín, S. Nanda, A. Apresyan, W. Brooks,
 578 W. Chen, G. Giacomini, O. Kamer Köseyan, S. Los, C. Peña, R. Rios,
 579 A. Tricoli, S. Xie, Z. Ye, First survey of centimeter-scale AC-LGAD strip
 580 sensors with a 120 GeV proton beam (2022). arXiv:2211.09698.

581 [14] J. Ott, S. Letts, A. Molnar, E. Ryan, M. Wong, S. M. Mazza, M. Nizam,
 582 H. F.-W. Sadrozinski, B. Schumm, A. Seiden, K.-W. T. Shin, R. Heller,
 583 C. Madrid, A. Apresyan, W. K. Brooks, W. Chen, G. D'Amen, G. Gi-
 584 acomini, I. Goya, K. Hara, S. Kita, S. Los, K. Nakamura, C. Peña,
 585 C. San Martin, T. Ueda, A. Tricoli, S. Xie, Investigation of sig-
 586 nal characteristics and charge sharing in ac-lgads with laser and test
 587 beam measurements, Nucl. Instr. and Meth. A 1045 (2023) 167541.
 588 doi:<https://doi.org/10.1016/j.nima.2022.167541>.

589 [15] M. Tornago, R. Arcidiacono, N. Cartiglia, M. Costa, M. Ferrero,
 590 M. Mandurrino, F. Siviero, V. Sola, A. Staiano, A. Apresyan,
 591 K. Di Petrillo, R. Heller, S. Los, G. Borghi, M. Boscardin, G.-F.
 592 Dalla Betta, F. Ficarella, L. Pancheri, G. Paternoster, H. Sadrozin-
 593 ski, A. Seiden, Resistive ac-coupled silicon detectors: Prin-
 594 ciples of operation and first results from a combined analysis of
 595 beam test and laser data, Nucl. Instr. and Meth. A 1003 (2021).
 596 doi:<https://doi.org/10.1016/j.nima.2021.165319>.

597 [16] W. Zhang, H. Sun, C. Edwards, D. Gong, X. Huang, C. Liu, T. Liu,
 598 T. Liu, J. Olsen, Q. Sun, X. Sun, J. Wu, J. Ye, L. Zhang, A low-
 599 power time-to-digital converter for the cms endcap timing layer (etl)
 600 upgrade, IEEE Transactions on Nuclear Science 68 (8) (2021) 1984–
 601 1992. doi:10.1109/TNS.2021.3085564.

602 [17] S. Altruda, J. Christiansen, M. Horstmann, L. Perktold, D. Porret,
 603 J. Prinzie, Picotdc: a flexible 64 channel tdc with picosecond resolution,
 604 Journal of Instrumentation 18 (07) (2023) P07012. doi:10.1088/1748-
 605 0221/18/07/P07012.
 606 URL <https://dx.doi.org/10.1088/1748-0221/18/07/P07012>

607 [18] P. Gui, Analog-to-digital converters and time-to-digital converters
 608 for high-energy physics experiments, Nuclear Instruments and
 609 Methods in Physics Research Section A: Accelerators, Spectrometers,
 610 Detectors and Associated Equipment 1057 (2023) 168649.
 611 doi:<https://doi.org/10.1016/j.nima.2023.168649>.
 612 URL <https://www.sciencedirect.com/science/article/pii/S0168900223006393>

613 [19] S. Xie, A. Apresyan, R. Heller, C. Madrid, I. Dutta, A. Hayrapetyan,
 614 S. Los, C. Pena, T. Zimmerman, Design and performance of the Fermilab
 615 Constant Fraction Discriminator ASIC, Nucl. Instrum. Meth. A 1056
 616 (2023) 168655. arXiv:2306.07387, doi:10.1016/j.nima.2023.168655.

617 [20] R. Enomoto, T. Iizuka, T. Koga, T. Nakura, K. Asada, A 16-bit 2.0-
 618 ps resolution two-step tdc in 0.18- μ m cmos utilizing pulse-shrinking
 619 fine stage with built-in coarse gain calibration, IEEE Transactions on
 620 Very Large Scale Integration (VLSI) Systems 27 (1) (2019) 11–19.
 621 doi:10.1109/TVLSI.2018.2867505.

622 [21] B. Razavi, The ring oscillator [a circuit for all seasons] (2019).
 623 doi:10.1109/mssc.2019.2939771.
 624 URL <http://dx.doi.org/10.1109/MSSC.2019.2939771>

625 [22] C. Sodini, 6.012 microelectronic devices and circuits lecture notes (2007).
 626 URL <https://web.mit.edu/course/6/6.012/>

627 [23] B. Markovic, A. Dragone, Tdc development for future detectors: Initial
 628 technology evaluation (6 2021).

629 [24] S. Ong, L. Chan, K. Chew, C. Lim, W. L. Oo, A. Bellaouar,
 630 C. Zhang, W. Chow, T. Chen, R. Rassel, J. Wong, C. Wan, J. Kim,
 631 W. Seet, D. Harame, 22nm fd-soi technology with back-biasing ca-
 632 pability offers excellent performance for enabling efficient, ultra-low
 633 power analog and rf/millimeter-wave designs, in: 2019 IEEE Radio

634 Frequency Integrated Circuits Symposium (RFIC), 2019, pp. 323–326.
 635 doi:10.1109/RFIC.2019.8701768.

636 [25] A. Abidi, Phase noise and jitter in cmos ring oscillators,
 637 IEEE Journal of Solid-State Circuits 41 (8) (2006) 1803–1816.
 638 doi:10.1109/JSSC.2006.876206.

639 [26] C. Enz, A. Beckers, F. Jazaeri, Cryo-cmos compact modeling, in: 2020
 640 IEEE International Electron Devices Meeting (IEDM), IEEE, 2020, pp.
 641 25–3.

642 [27] W. Clark, B. El-Kareh, R. Pires, S. Titcomb, R. Anderson, Low
 643 temperature cmos-a brief review, Components, Hybrids, and Man-
 644 ufacturing Technology, IEEE Transactions on 15 (1992) 397 – 404.
 645 doi:10.1109/33.148509.

646 [28] H. Bohuslavskyi, S. Barraud, V. Barral, M. Cassé, L. Le Guevel,
 647 L. Hulin, B. Bertrand, A. Crippa, X. Jehl, G. Pillonnet, A. G. M.
 648 Jansen, F. Arnaud, P. Galy, R. Maurand, S. De Franceschi, M. San-
 649 quer, M. Vinet, Cryogenic characterization of 28-nm fd-soi ring oscilla-
 650 tors with energy efficiency optimization, IEEE Transactions on Electron
 651 Devices 65 (9) (2018) 3682–3688. doi:10.1109/TED.2018.2859636.

652 [29] H. Sun, et al., Characterization of the CMS Endcap Timing Layer read-
 653 out chip prototype with charge injection, JINST 16 (06) (2021) P06038.
 654 arXiv:2106.00174, doi:10.1088/1748-0221/16/06/P06038.

655 [30] C. Agapopoulou, et al., Performance of a front-end prototype ASIC for
 656 the ATLAS High Granularity timing detector, JINST 18 (08) (2023)
 657 P08019. arXiv:2306.08949, doi:10.1088/1748-0221/18/08/P08019.

658 [31] B. G. Oripov, D. S. Rampini, J. Allmaras, M. D. Shaw, S. W. Nam,
 659 B. Korzh, A. N. McCaughan, A superconducting nanowire single-
 660 photon camera with 400,000 pixels, Nature 622 (7984) (2023) 730–734.
 661 arXiv:2306.09473, doi:10.1038/s41586-023-06550-2.

662 [32] G. Kiene, S. İlik, L. Mastrodomenico, M. Babaie, F. Sebastian, Cryo-
 663 genic characterization of low-frequency noise in 40-nm cmos, IEEE Jour-
 664 nal of the Electron Devices Society (2024).

665 [33] N. A. W. Dutton, S. Gnechi, L. Parmesan, A. J. Holmes, B. Rae, L. A.
 666 Grant, R. K. Henderson, 11.5 a time-correlated single-photon-counting
 667 sensor with 14gs/s histogramming time-to-digital converter, in: 2015
 668 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of
 669 Technical Papers, 2015, pp. 1–3. doi:10.1109/ISSCC.2015.7062997.

670 [34] N. Roy, F. Nolet, F. Dubois, M.-O. Mercier, R. Fontaine, J.-F. Pratte,
 671 Low power and small area, 6.9 ps rms time-to-digital converter for 3-
 672 d digital sipm, IEEE Transactions on Radiation and Plasma Medical
 673 Sciences 1 (6) (2017) 486–494. doi:10.1109/TRPMS.2017.2757444.

674 [35] C. Zhang, S. Lindner, I. M. Antolović, J. Mata Pavia, M. Wolf, E. Char-
 675 bon, A 30-frames/s, 252×144 spad flash lidar with 1728 dual-clock 48.8-
 676 ps tdc, and pixel-wise integrated histogramming, IEEE Journal of Solid-
 677 State Circuits 54 (4) (2019) 1137–1151. doi:10.1109/JSSC.2018.2883720.

678 [36] F. Nolet, N. Roy, S. Carrier, J. Bouchard, R. Fontaine,
 679 S. Charlebois, J.-F. Pratte, 22 μ w, 5.1 ps lsb, 5.5 ps rms jitter
 680 vernier time-to-digital converter in cmos 65 nm for single photon
 681 avalanche diode array, Electronics Letters 56 (9) (2020) 424–426.
 682 arXiv:<https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/el.2019.4105>,
 683 doi:<https://doi.org/10.1049/el.2019.4105>.
 684 URL <https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/el.2019.4105>

685 [37] T. Talala, E. Parkkinen, I. Nissinen, Cmos spad line sensor with fine-
 686 tunable parallel connected time-to-digital converters for raman spec-
 687 troscopy, IEEE Journal of Solid-State Circuits 58 (5) (2023) 1350–1361.
 688 doi:10.1109/JSSC.2022.3212549.

689 [38] M. H. Pass, S. M. Sayedi, S. A. R. A. Mehr, A low-power cyclic vernier
 690 time-to-digital converter for in pixel applications, in: 2023 31st Interna-
 691 tional Conference on Electrical Engineering (ICEE), 2023, pp. 925–929.
 692 doi:10.1109/ICEE59167.2023.10334853.