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Abstract. One of the compact objects that are attractive for investigating their energy
conditions is quark stars. The existence of radial and tangential pressure differences in quark
stars can cause anisotropic effects on the stars. We focus on and examine the energy conditions
of quark stars using the Einstein Field Equation Solution. The energy stability of an anisotropic
quark star can be determined by evaluating the profile of the pressure and energy density of the
star using the anisotropic EOS as an input. The used equation is the extended MIT Bag Model,
which involves the constant B and interaction parameter a4 and the corresponding parameters
of anisotropic part. It is known that parameter a4 affects the mass distribution of quark stars
to be more anisotropic. This anisotropic pressure also affects the energy condition profile of the
star. We find the energy state of an anisotropic quark star satisfies the energy state of an ideal
fluid.

1. Introduction
For a compact object like a quark star, the properties such as mass and radius depend on the
EOS of matter model and the gravity theory used. General relativity is usually used to limit
theoretical possibilities of the gravity theory. However, the quark star pressure is commonly
assumed as an isotopically perfect ideal fluid. On the other hand, other studies have shown
that solid bodies have an anisotropic distribution of pressure, such as quark stars. Therefore, to
have more realistic description, we need to use anisotropic EOS model. Anisotropy is modeled
in two forms of expression for pressure. Radial pressure is written as linear EOS, while complex
expression that depends on radial coordinates is tangential pressure [5]. Neutron stars are stars
that result from supernova explosions. When the red supergiant collapses are more violent,
it takes a denser solid object, namely a neutron star, to maintain its shape. However, when
a supernova for a massive star is denser than a neutron star and when the collapse does not
cause the pressure inside the star to be no more intense to form a black hole, a sea of quarks is
formed. Thus, a quark star can be considered as intermediate compactness between a neutron
star and a black hole. Vergara et al. [1] recently describe the interaction of quarks in anisotropic
quark stars using anisotropic EOS known as the modified MIT bag Model which involves the
bag constant B term, interaction term with parameter a4, and other correction terms including
the logarithmic and anisotropic pressure terms. Meanwhile, in reference [2], Setiawan et al.
investigated the energy conditions in anisotropic neutron stars using several anisotropic models.
Energy conditions analyses are needed to check how realistic the EOS used to describe stars.
The quark star matter model proposed by Vergara et al. [1], it is not yet been extensively
studied previously. In this proceeding, we investigated the energy condition of quark stars based
on the EOS proposed in Ref. [1] using the standard Einstein Field Equation Solution.
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2. EOS Equation
The EOS equation for quark stars is the extended MIT bag proposed in Ref. [1], can be expressed
as
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Where P is the radial pressure, ϵ is the energy density, a4 is the parameter from the QCD
correction on the pressure, mS is the quark strange mass whose value is 100 MeV and B is the
bag constant whose values set from 52MeV/fm3 to 92MeV/fm3.
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where P⊥ is the tangential pressure, PC and ϵC being the radial pressure and the energy density,
respectively, at the center of the star, B⊥ and a⊥4 are the contributing parameters on the
tangential component of the pressure. The values of B⊥ and a⊥4 are set in the same range
of values B and a4.

3. TOV Equation
The TOV equation is an equation that can be used to calculate the mass and radius of a star.
This equation is obtained by solving the Einstein Field Equation and the Energy Momentum
Tensor. The general expression for an anisotropic quark star (in c= 1 unit) is given by
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where r is the radial coordinate, ϵ(r) and P (r) are the density and pressure, respectively of the
star at radius r. The quantity m(r) is the total mass of the star within r.

4. Energy Conditions
In this work, we use the TOV equations to calculate the profiles of the matter quantities.
Then, the results are compared with the corresponding quantities required by ideal fluid energy
conditions. If these energy conditions are satisfied by the obtained EOS profiles of the anisotropic
quark stars, then we obtain a stable anisotropic quark star. Meanwhile, the energy conditions
should be met by an ideal fluid EOS profile are [6-10]

1. P ≥ 0, P⊥ ≥ 0, and ϵ ≥ 0, means that inside the star, radial pressure, tangential pressure,
and energy density have to be positive.

2. P
′
= dP

dr ≤ 0 and ϵ
′
= dϵ

dr ≤ 0, means that inside the star, the gradient of radial pressure
pressure and energy density have to be negative.

3. V P 2

S = dP
dr ≤ 1 and V

P 2
⊥

S = dP⊥
dr ≤ 1 means that inside a star, the speed of sound for both

radial and tangential pressures is always lower than the speed of light.

4. ϵ ≥ P⊥ and ϵ ≥ P means that inside a star, the energy density has to be higher than radial
and tangential pressure.

5. The strong energy conditions are met for ϵ+ P + 2P⊥ ≥ 0 and ϵ+ P⊥ ≥ 0.
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Figure 1. The mass-radius relation of anisotropic quarks with B = B⊥ = 52MeV/fm3 and
a4 = 0.7 by varying the value of a⊥4

Figure 2. The mass-radius relation of anisotropic quarks with B = B⊥ = 92MeV/fm3 and
a4 = 0.7 by varying the value of a⊥4

6. −1 ≤ V
P 2
⊥

S − V P 2

S ≤ 1 where −1 ≤ V
P 2
⊥

S − V P 2

S ≤ 0 and 0 ≤ V
P 2
⊥

S − V P 2

S − 1 means that the
acceptable range of difference between the speed of sound in the radial and tangential directions
is in the range between -1 and 1.

5. Results and Discussion
The mass-radius relation for spherically symmetric solutions of anisotropic quark stars is
calculated for these cases where the difference in the hydrostatic equation between the tangential
and radial pressures is not zero. The anisotropy at the level of the tangential component of
the pressure is confirmed by equations 1 and 2 due to spherical symmetry, then the radial
constituents a4 and B are fixed, while the tangential constituents a⊥4 are varied and the bag
constant B⊥ is fixed. The first solution for the anisotropic quark stars is shown in figure 1,
when the value is set to B = B⊥ = 52MeV/fm3 and a4 = 0.7 while a⊥4 is varied. It is obtained
that the more a smaller a4 value, it will increase the higher the mass and radius of the anisotropic
quark star, where the star mass reaches ≈ 2M⊙. In Figure 2, by increasing the value of the bag
constant both in the radial and tangential directions to B = B⊥ = 92MeV/fm3, the results do
not change much compared to the value of B = B⊥ = 52MeV/fm3. Based on Figure 1 and 2,
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Figure 3. The radial pressure-radius relation of anisotropic quarks with B = B⊥ =
52MeV/fm3 and a4 = 0.7 by varying the value of a⊥4

Figure 4. The tangential pressure-radius relation of anisotropic quarks with B = B⊥ =
52MeV/fm3 and a4 = 0.7 by varying the value of a⊥4

Figure 5. The energy density-radius relation of anisotropic quarks with B = B⊥ =
52MeV/fm3 and a4 = 0.7 by varying the value of a⊥4
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Figure 6. The sound of speed for radial pressure-radius relation of anisotropic quarks with
B = B⊥ = 52MeV/fm3 and a4 = 0.7 by varying the value of a⊥4

Figure 7. The sound of the speed of tangential pressure - radius relation of anisotropic quarks
with B = B⊥ = 52MeV/fm3 and a4 = 0.7 by varying the value of a⊥4

we can see that parameter a⊥4 controls the maximum mass and radius values of the star. This
can be seen from the significant change in the mass-radius relation between the quark stars,
where parameter a⊥4 affects the mass distribution on the surface of the star. This indicates that
on the surface of anisotropic quark stars, the mass distribution becomes more anisotropic and
this observed effect is controlled by the a⊥4 parameter. Meanwhile, varying the B constant does
not result in significant change in the observed mass-radius relation of anisotropic quark stars.
Figure 3 shows the result that inside the star, the radial pressure is positive for each increase in
the radius of the star. However, the pressure in the radial direction decreases as the radius of the
star increases. This shows that at the center of the star, the radial pressure is maximum, while
at the star’s surface it is minimum. Figure 4 shows a similar result in the radial pressure, that
inside the star, the tangential pressure is also positive for each increase in the radius of the star.
The image also shows that the tangential pressure decreases as the radius of the star increases.
The tangential pressure is maximum at the center, while the minimum is at the surface. Figure
5 shows that inside a star, the energy density is also positive for each increase in the radius
of the star. It can be seen that at the center, the energy density of the star is maximum and
decreases as the radius of the star increases. Based on these results, we can see that in the
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center, the density of quark stars is greater than at the star’s surface. It can be seen that the
smaller the value of a⊥4 , the greater the pressure on the star on the surface. This shows that
the parameter a⊥4 affects the pressure and density of the star on the star’s surface. Figures 6

and 7 show the results for V P 2

S − V
P 2
⊥

S ≤ 1 (in the range of values 0.1-0.3). This result is still
acceptable for the relativistic limit where in stars, both the radial and tangential speed of sound

are always less than the speed of lightV P 2

S ≤ VS = 1 and V
P 2
⊥

S ≤ VS = 1. This result is still
within the QCD limit where the maximum sound speed limit is QCD VS = 0.3. Based on the
energy condition profile, we can see that all quark star energy conditions correspond to ideal
fluid conditions. These results also prove that the Einstein Field Equation can be used to check
the energy conditions of anisotropic quark stars which results in stable quark star conditions.

6. Conclusion
In this work, we calculated the pressure profiles both in the radial P (r) and tangential P⊥
directions, and the energy density ϵ(r) using the TOV and EOS equations of anisotropic quark
stars to determine the energy conditions required filled with anisotropic quark stars. Based on
the results obtained, it can be concluded that the parameter a⊥4 controls the mass distribution
of anisotropic quark stars on the surface because on the surface of anisotropic quark stars, the
mass distribution becomes more anisotropic. And also, the distribution of pressure in both
radial and tangential directions and the energy density from the center to the surface of the star
is getting smaller. This is because it is denser at the center than at the surface of the star. In
addition, the parameter a⊥4 also controls the distribution of pressure and energy density, where
the distribution becomes uneven on the star’s surface. The speed of sound in both the radial
and tangential directions still meets the realistic limit, and also the QCD limit was ≤ 1 for
the realistic limit (not exceeding the speed of light) and ≤ 0.3 for the QCD limit. Hence, we
conclude that within the model parameters that we used, the profiles obey the energy conditions.
It means that the corresponding quark stars are stable.
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