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Abstract We investigate the Casimir effect in the context of a nontrivial topology by means of a generalized
Matsubara formalism. This is performed in the context of a scalar field in D Euclidean spatial dimensions with d
compactified dimensions. The procedure gives us the advantage of considering simultaneously spatial constraints
and thermal effects. In this sense, the Casimir pressure in a heated system between two infinite planes is obtained
and the results are compared with those found in the literature.
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1. Introduction

The Casimir effect is a quantum phenomenon, having a
macroscopic manifestation. It has been originally
described as the attraction of two conducting, neutral
plates in vacuum, induced by changes in the zero-point
energy of the electromagnetic field [1]. The first
observation of the Casimir force was made by Sparnaay in
1956 [30]. A few decades later, a large number of
precise experimental evidences of Casimir physics was
found [31]. However, this is not an exclusive feature of
electromagnetic fields. It has been shown that any
relativistic field under the influence of external conditions
is able to exhibit an analogous kind of phenomenon [2].
This quantum vacuum effect is strongly dependent on the
material properties of the medium where the macroscopic
objects interact, on the nature of the quantum field, and on
the boundary conditions under investigation. It has been
related to many different physical situations ranging from
cosmology, condensed matter, atomic and molecular
physics to more recent developments in micro and
nanoelectricmechanical devices as discussed in the
reviews found in Refs. [3-11]. Moreover, it is a
well-known fact that thermal fluctuations also produce
Casimir forces. Pioneering works devoted to explain this
thermodynam- ical behavior are [12,13]. General
theoretical works on the subject are [14-21]. Controversial
results in realistic situations [22-29] were also explored.

On the other hand, the analysis of quantum field theory
models defined on toroidal spaces has been the focus of a
large number of investigations in theoretical foundations
and applications of the formalism: spontaneous symmetry
breaking drive by both temperature and spatial boundaries
[37], second-order phase transitions in superconducting films,
wires and grains [38,39,40], finite-size effects in the

presence of magnetic fields, finite chemical potential in
first-order phase transitions [41], and also the Casimir
effect [42-47]. It is well-known that one way to obtain
thermal effects in quantum field theories is to consider
the Matsubara formalism, in which a fourth dimension
(mathematically analogous to imaginary time) has a finite
extension equal to the inverse of temperature, 8, with a
periodic boundary condition. The application of this
procedure also to spatial dimensions has been introduced
by Birrell and Ford [48] in order to describe field theories
in spaces with finite geometries and has been generalized
to what came to be known as quantum field theories on
toroidal topologies [37,49,50,52,53]. This procedure can
also be called a generalized Matsubara formalism. In
general, this technique basically consists in considering
quantum fields defined on spaces with topologies of the

d
type (Sl) xRP~% with 1<d <D, where D represents

the total number of Euclidean dimensions and d the
number of compactified ones through the imposition of
periodic boundary conditions on the components of the
fields along them. One of these dimensions is
compactified in a circumference of length £, whereas

each of the spatial ones (i =1,...,d —1) in a circumference
of length L; and can be interpreted as boundaries of the

Euclidean space [50,52]. In short, this corresponds to
impose periodic (antiperiodic, for fermions) boundary
conditions for fields in D Euclidean dimensions with d
compactified ones.

In the present paper we revisit the Casimir effect, as an
application of the above mentioned generalized Matsubara
formalism. We investigate the pressure experienced by the
boundary in a compactified space when a scalar field is
heated. The starting point is the so-called “local formulation”,
introduced in [14], in which the pressure is associated with
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the 33 component of the energymomentum tensor.
Then, we follow the zeta-function regularization method
originally employed by Elizalde and Romeo [51] for the
computation of the Casimir energy. However, here we
employ a general formalism of field theories on toroidal
spaces as in Ref. [52], which allows to apply the method
for several simultaneously compactified dimensions. This
is the case, for instance, of thermal field theories with a
finite spatial extension, which needs the compactification
of both the imaginarytime dimension and a spatial one for
a unified approach for heated Casimir cavities.

We stress that in our computation with the toroidal
formalism periodic boundary conditions are implemented
both in imaginary time (circumference of length $) and the
third spatial coordinate (circumference of length L), by
construction. Moreover, as stated in [52], results for other
boundary conditions may be obtained from theperiodic
ones. For instance, the pressure for Dirichlet boundary
conditions (much studied in the literature) can be
determined by putting L = 2a in the expression from the
toroidal computation, where a is the distance separating
the parallel plates in Ref. [14].

The paper is organized as follows. In section Il the
Casimir pressure is linked to the vacuum expectation
value of the energy-momentum tensor for a scalar field in D
dimensions of the Euclidean space. The point-splitting
technique is used to write it in terms of the free scalar
propagator in Fourier space. In section 111 a corresponding
expression for the pressure is obtained when one of the
spatial dimensions is compactified with a finite extension.
The computation of the Casimir pressure follows a path
similar to that of the Elizalde—-Romeo method [51],
leading to a well-known result from the literature. In
section IV, we compute the Casimir pressure in the
configuration of a compactified spatial dimension in the
presence of a thermal bath. This can also be compared
with results found in the literature obtained from other
techniques. In section V we present our final comments.
Throughout this paper, we consider #=c=kg =1.

2. Energy-momentum Tensor Forscalar
Fields

We start by writing the Euclidean Lagrangian of the
free scalar field in a D-dimensional space,

Ce :%(aﬂqﬁ)z +%m2¢2, )

where m is the mass of the quanta of the scalar field.
With the help of the point-splitting technique, the vacuum
expectation value of the canonical energy-momentum
tensor T, can be written as [52]

T, :<O|TW|O>: lim 0, (x,x')<o‘T¢(x)¢(x')‘o>, ©)

where T denotes the time-ordered product of field
operators and OW(X, x') is a differential operator given

by [52]

O (X ) = 0,40, —%@W (0,0, +m* ), @

where 6u and a'ﬂ are derivatives acting on x# and x#,

respectively, and &, represents the components of the

metric tensor of the Euclidean space (Kronecker delta).
Defining the Euclidean Green function of the scalar field

as G(x—x'): i<O‘T {¢(x)¢(x' )}‘0> , We obtain

Ty = lim Oﬂv(x,x')[G(x—x')] (4)

Considering the Fourier integral of the Euclidean Green
function in momentum space,

N e dPk 1
G(X_X)ZJ_“(Zyr)Dk2+m2

eik(xfx') ®)

where k and x are D -dimensional vectors, we are
able to rewrite the vacuum expectation value of the
energy-momentum tensor in Eq. (4) as

0 de k kv 1
Ty = E 8, |. (6)
Hv J‘—oo(zﬂ_)D |:k2+m2 2 HV

3. Casimir Pressure in a Compactified
Space

In this section, we investigate the Casimir pressure for
the particular case of just one compactified spatial
dimension (d=1). It is sufficient to consider the 33
component of the energy-momentum tensor to obtain the
Casimir pressure resulting from a topological constraint
imposed by periodic boundary conditions on the field at
the parallel plates (taken as infinite planes) separated by a
fixed distance L inthe x3-direction.

From Eqg. (6), it is straightforward to write the bulk
expression

- 1 dPk k§—(kf+m2) @
. 27 (27)P | K +kZ+m? |

where kZ:k§+kE , and k, refers to the ( D-1)-

dimensional vector orthogonal to the 3-direction in
Fourier space.

Let us call 73 the response of vacuum fluctuations on

the plates, viewed as a topological constraint. We perform
this by means of the compactification of just one spatial
dimension. In order to obtain the Casimir pressure that
acts on the boundary of the compactified space, we shall
use the generalized Matsubara procedure, which is the
original contribution of the present manuscript. Basically,
in the general case, the technique consists in the
replacement of integrals in momentum space by sums,
namely,
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where the index j assumes the values j=1,2,...,D-1,
the momentum coordinate kj exhibits discrete values,

Zﬂ'nj
kJ:kn = s
J |_J

and Lj

spatial dimensions (compactification of D -1 spatial
coordinates). For practical purposes, let us compactify just
the x3-component of the vector x. With these ideas in
mind, the generalized Matsubara formalism enables us to

substitute the bulk expression of Eq.(7) by the following
one:

refer to the finite extension of each of the j

qP 1'&“ —(kL+m2)
L k§+kL+m2 '

®

Tss ZLO

Using  well-known  results from  dimensional

regularization techniques, we get,

F(s—D) D (9
1 2 1 2
v o)

P I(s
(47)2 (s) b
Jw dPk k2
—oo D
(27) [k%bﬂs
(10)
F(S_D_lj 5_9_1
D 1 2 X[ij 2
2 D T(s 2 '
(47)2 (s) b
we obtain
2 2
+o | lan® —c”|T(v)
el 3| 0
N=—o0 (an2+cz)
(11
(s—v)T(v-1)—*
(an2+cz)l/71 ’
s=1
where a=L"2, c¢=m/2x, -(D-1)/2, and
fs (v, L) afunction given by
fs(v,L)= L L (12)

2L (4z)™ (22) I (s)

Adding and subtracting the term CZF(V) to the

numerator of the first term on the right-hand side of
Eg. (11), we obtain

c RS 1
T =1 f(vL)|(2v-5-1) D, ————
n=—c0 (an2 +c2)
(13)
(- sy — = U

v
N=-o0 (an2 +c2)

s=1
where we have used the relation I'(v)=(v-1)I'(v-1).

Recalling the general definition of themultidimensional
Epstein--Hurwitz zeta function [51,54,55,56],

2
Z§ (viay,....aq)

) +§ . s o\ (14)
= Wy +---+aqng +C s

n,..,Ng =—»

In the particular case of one-dimensional compactification
(d =1), the above formula simplifies to

28 (via)= 3, (an?+c?) . 15)

Substituting the previous expression into Eg. (13), the
pressure can then be rewritten as

Tas = { fs (v, L)[(ZV—S—].) Zfz(v—l;a)
~2c?(v-1) Zfz(v; a)}}szl.

Following Ref [37], these zeta functions can be
evaluated on the whole complex plane by means of an
analytic continuation along lines similar to those described
in Refs. [51,54,55,56]

2
Z§ (viag,....aq)
d

272 { 1 ( dj
= rv-—
a--ag T(v)2c®d 2

d
V_E n
+2Z Z{ J K d[ZﬁC—JJ+... 1
j=inj=1 C\/7 "2 \/a
d

(16)

V— 7] aq

2
n n
x K d(Zm Ly dj
2
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where K, (z) denotes modified Bessel functions of the

second kind. For d =1, the analytical continuation above
is reduced to

1

AR
Jar(v)l2c? 2
(18)

SR

After some algebraic manipulations, we notice the
presence of terms which are independent of the variable L,
and for this reason are considered unphysical. Neglecting
these terms, we can show that

2
z (via)=

75 - z(%jg - D)i(ﬁjgm (o)

_mLZ( jD_l B (mnL) |.

2

The formula above corresponds to a general expression
for the Casimir pressure exerted by the vacuum uctuations
on the boundaries of the compactified manifold formed of
two parallel planes separated by a length L. The result
presented in Eqg. (19) is the Casimir vacuum radiation
pressure for a massive scalar field submitted to periodic
boundary conditions in D dimensions and is in agreement
with Refs. [7,57,58].

For a 4-dimensional Euclidean space, we obtain [58]

2

il {32 Ky (mnL)

27212 | fan?

+mLi%Kl(an)}.

n=1

T (Lm)=-
(20)

From the following asymptotic formula of the Bessel
function,

K, (2)=2" 27T (v), @1)

evaluated for small values of its argument (z ~O) and

R e (v)>0, we obtain the small-mass limit Casimir
pressure (mL <« 1)

7[2

T35 (L,0)=———,
33( ) 30L4

(22)

where we have neglected terms of (’)(mz). The vacuum

fluctuation Casimir force per unit area is a finite negative
expression which suggests that the radiation pressure
tends to diminish the distance L between the planes.

An interesting comment we present to finalize this
section is that the corresponding negative Casimir
pressure between two infinitely parallel planes, when

one imposes to the massless scalar field Dirichlet
boundary conditions, that is, ¢(x3 =0)=¢(x3 =L)=0, is
immediately recovered when the plane separation distance
a is equal to the half circumference length L of the
space dimension under compactification.

4. Thermal Effects

In this section, thermal and boundary effects are
treated simultaneously through the generalized Matsubara
prescription. We then consider a D -dimensional
space with a double compactification (d=2) of the
Euclidean space corresponding to a compactified spatial
dimension with length L and a compactification of the
imaginary-time dimension with length 8. In other words,

we take the simultaneous compactification of both the xg
and x5 coordinates of the vector X .

Following the same steps as in the previous sections,
the stress tensor component 7z given by Eq. (7) now
becomes

40~ sz
T3 = ZﬂLnlngw -

kﬁl—kﬁz—(kL+m2) 23)
2

X

krzn+k§2+kf+m

Using dimensional regularization, Egs. (9) and (10), the
previous formula is rewritten as

+90 [alnf —a,n3 —CZJF(V)

72’;%: fS(V'ﬂ’L) Z 9 2 oV
m,n2=-% I:a.lnl +ayn; +C :|

(24)

~ f (s—v)I'(v-1)

- 2 2 27t
M,n2=— |:alnl +ayn; +C :I
s=1

where @ = L2, a, = B2, c=m/2r,
—-(D-2)/2, and fs(v,A,L) isa function given by
fs (v, L) = L 1 (25)

2BL (az)*™ (22 V1 (s)

Adding and subtracting the term (a2n§+c2)l"(v) in

the numerator of the first term on the right-handside of
Eq. (24), we obtain

T35 = { fs(v,8,L)T (v-1)[(2v-s-1)

2 2
xZ§ (v-Lay,ap)-2c? (v-1)Z§ (via,ay) (26)

2
+2a, izg (v-1, al,az)}} ,
6a2 sl
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where we have used the definition of the two-dimensional

2
Epstein-Hurwitz zeta function, Z3 (v;a;,a,), obtained
from Eq. (14) for d =2. From Eq. (17), we get for d =2

2
Z5 (via,ap) = r(v-1)

2r 1
a1a2 F(V) ZCZ(V%I‘)
I v-1
Ty n
K 1 27C—=—
—1(#5 J V [ @J
o v-1
ﬂ'nz
+2) K,q|2rc—==| (27)
nz—l(cx/_ j ( @ ]
> > v-1
+22 i z ,ni+n—2
m.np=1 C\V\yq a

2 2
XK”[ZHC 1_J |
‘l 2

Substituting Eq. (27) in Eg. (26), splitting T3°3 into

three terms, 7'3%_70 +T° +7T°¢

o’ after

removing

removing nonphysical terms, we have

s=1

]

which corresponds to the contribution to the Casimir
pressure due to vacuum fluctuations only. Using the

definition (25), for a = L2, a, =ﬁ’2 , c=m/2r ,

—(D-2)/2, Eq. (19) the result shown in the
previous section is recovered.
Also,
4

T =

n2 \&a
i ( 2 Jsz 2[272’Cn—2]
Ve
np=1 C\/g \/g
© N v-1 n (29)
—2¢? 2 ] K, [ZﬂC—ZJ

v-2
ﬂ'nz J K

o0
%nZI{ C\/g

fs(v. 8. L) (2v-s-2)

+ Zaz

D
a3 ([z,m)zz[zlJ2 > [L]Z Kp (mpny), (30)
3 no=1 N, P}
which is the Casimir force formula due exclusively to the
thermal uctuations. The final form of Eqg. (30) was
obtained by means of the useful recurrence formula for
Bessel functions,

Ko (2) =Ko (2)=—22K, (2). (3D
For D=4, we find
m2 ) 1 2 ( )
7° (B, K 32
e (FM)= (zwjnﬁ[ j z(méne)

Using Eq. (21), we obtain the small-mass limit for the
purely thermal Casimir pressure (mfg <« 1)

22

908*
which is in accordance with the well-known Stefan-
Bolztmann thermal radiation pressure result. This is a
finite positive force per unit area which is more intense

than vacuum radiation Casimir pressure for low values of
S (high-temperature or classical limit).

If we plot the ratio between the thermal radiation pressure
for the massive scalar field (Eg. (32)) and the massless one
(Eg. (33), as a function of the dimensionless parameter
mg, the normalized thermal Casimir force per unit area

(33)

78 e(5.0)-

Tncz (B, m)/Tnc2 (3,0) presents the typical monotonically

decreasing shape for increasing values of the parameter
mg.

Finally, the formula

c _ 87T
nny

XKV 2[27[(: —+ J
2 i n1 n2
nmpei| € \/ al
[ 2
XKVl[Zﬂ'C n—1+n2}
&
© 2
+2&2— —1 n—2
8a2n1n2_1
2 2
XKV_Z[Z,,C /L”_z] }
& @

(34)



International Journal of Physics 256

or
D b
© 1 2
nlnz(Lﬂm):4( J 2 212 272
m.np=1l /N[ L= +n5 8
(1-D)néL? +nf
X
nfL? +ng 2
xKD(m\/nlzL2+n§ﬂ2j (35)
2
B+1
0 5 1 2
-m n L
Z_ 1 2,2 . 2.2
m.np= L +nyp

gives the corrections to the Casimir pressure in a compact
space in the presence of a massive scalar field heated at
temperature 1/ S . In order to obtain the final form of the

above expression, we have used the recurrence formula
given by Eq. (31). Considering D =4, we get

2| 2,2 _ 272
3" -ny B8
nlnz(Lﬂm): (ﬂ'j

2
n1,n2=1(n12 L2+ n%ﬂz)

x Ky (m,/nlsz + ngﬂzj

I S .

np=1 >
.2 (n12L2+n§,82)2
xKl(m\/nfL2+n§ﬁ2 ﬂ

which is valid for arbitrary values of m, L and . Using

Eg. (21), we can show that in the small-mass case it
reduces to

(36)

7o (LAOF-2 ¥ o,

7o, nz—l(nl L2 +n2p )

(37

To clarify our results, we can show that the small-mass
limit given by Eq. (37) can be written as

Tron, (LB, ok [3f )+&s(¢)], (38)
where =L/ and
0 4
(&)= G 9
87 n1,n2=1[(§n1)2+(n2)2}
) 3.2
s(£)=-1 :iz > @M (49

24 (em)? +(m |

The function f (&) obeys the inversion symmetry

formula,
f(&)=¢& 1 EJ.
(&)=¢ [5

This is an intriguing expression, known as temperature
inversion symmetry, that enables us to obtain the low
and high-temperature limits after simple algebraic
manipulations, (see Refs. [14,18,59-65] for more details).
Following [14], the particular low-temperature limit
(S >1) can be more easily performed after we compute

the sum over index ny in Eq. (39)

(41)

a1 £ & coth(any /&)
_? Z _4_5 Z -3
np=1M2 np=1 nz (42)
I OO S S
2 Z:: Ssmhz(ﬁnz/f)'
In the limit & > 1, the approximations
coth(zn, / &) =1, (43)
sinh(zny /&) = Lemale (44)

are valid. Substituting Eqgs. (43) and (44) into Eq. (42),
and performing the sum over index n, , we find, for

Exl,

2 3
f (é:) =79[_0é:4 _%72.)53 _24;2 (1+§je—2ﬁ/§ +(9(e_4”’5),

(45)

Inserting the above formula into Eq. (38), we can show
that

2
LAz (1+ L je‘z”ﬁ’ L (46)
908% ,BL3 27

In this sense, in the low-temperature limit (L < 8),

collecting all the contributions, the final form of Casimir
pressure in the massless case reads

”1”2( v )=_

47r o 2BIL

(47)
3oL ﬁL?’

TH(L B0 ———

If we neglect the exponential factor, the Casimir
pressure due exclusively to the vacuum uctuations is
dominant in this regime.

The high-temperature limit is also easily found by
means of the inversion symmetry relation given by Eq.
(41). Applying this formula in Eq. (45), we get

2 £(3
f(é){—o—%:—zefz (uﬂ%jez”f
+O(e_4”5).

Substituting Eq. (48) into Eq. (38), we find

(48)
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c 4 _5(3)

Tong (L4 ):30L4 s (49)
L [4rL7 BL 4] orup,
pel > B 7

Finally, in the high-temperature limit ( L> g8 ),

computing all terms,the final form of Casimir pressure is
written as follows:

= <)
908* B3
2
_% %-F%'Fi e_2”|-/ﬂ.
prl ps B om
Notice that if we neglect the exponential factor, the
Casimir pressure for large temperature is given by the

T55(L. B.0)
(50)

classical thermal radiation pressure ﬂ2/(90ﬁ4) plus a

negative linear correction factor proportional to ,B_l.

5. Final Remarks

In the present work we investigate some aspects of the
Casimir effect in the context of field theories in nontrivial
topologies. In particular, we revisited the Casimir effect
for a massive scalar field in a heated compact space by
means of the generalized Matsubara formalism. The usual
attractive response of quantum and thermal fluctuations
are obtained and our results are in accordance with those
found in the literature. One may notice that all thermal

contributions to the Casimir pressure, given by Tncz and

Tnclnz, vanish in the zero-temperature (8 — oo ) limit,

remaining the pure dependence on the distance L

between plates, which has a well-known L4 dependence
in the small- L limit for a four-dimensional space. Also,
the bulk limit L — « reduces all expressions in D=4 to

the Stefan--Boltzmann law ﬂ“‘ .

A rather peculiar aspect of the generalized Matsubara
formalism is related to the renormalization of the
expressions. Usually, in the Casimir context, the divergent
terms are taken care of by subtraction of the bulk integral,
without compactifications (see [52]). Here, there is no
need to do so, as was also remarked by Elizalde and
Romeo [51]. It is sufficient to obtain correct physical
expressions to renormalize by subtracting the divergent
term of the expansion of the Epstein--Hurwitz zeta

2
functions Z§ , as it does not depend on the physical
parameters L or S.
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