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1. Introduction 

The Casimir effect is a quantum phenomenon, having a 
macroscopic manifestation. It has been originally 
described as the attraction of two conducting, neutral 
plates in vacuum, induced by changes in the zero-point 
energy of the electromagnetic field [1]. The first 
observation of the Casimir force was made by Sparnaay in 
1956 [30]. A few decades later, a large number of  
precise experimental evidences of Casimir physics was 
found [31]. However, this is not an exclusive feature of 
electromagnetic fields. It has been shown that any 
relativistic field under the influence of external conditions 
is able to exhibit an analogous kind of phenomenon [2]. 
This quantum vacuum effect is strongly dependent on the 
material properties of the medium where the macroscopic 
objects interact, on the nature of the quantum field, and on 
the boundary conditions under investigation. It has been 
related to many different physical situations ranging from 
cosmology, condensed matter, atomic and molecular 
physics to more recent developments in micro and 
nanoelectricmechanical devices as discussed in the 
reviews found in Refs. [3-11]. Moreover, it is a  
well-known fact that thermal fluctuations also produce 
Casimir forces. Pioneering works devoted to explain this 
thermodynam- ical behavior are [12,13]. General 
theoretical works on the subject are [14-21]. Controversial 
results in realistic situations [22-29] were also explored. 

On the other hand, the analysis of quantum field theory 
models defined on toroidal spaces has been the focus of a 
large number of investigations in theoretical foundations 
and applications of the formalism: spontaneous symmetry 
breaking drive by both temperature and spatial boundaries 
[37], second-order phase transitions in superconducting films, 
wires and grains [38,39,40], finite-size effects in the 

presence of magnetic fields, finite chemical potential in 
first-order phase transitions [41], and also the Casimir 
effect [42-47]. It is well-known that one way to obtain 
thermal effects in quantum field theories is to consider 
the Matsubara formalism, in which a fourth dimension 
(mathematically analogous to imaginary time) has a finite 
extension equal to the inverse of temperature, β, with a 
periodic boundary condition. The application of this 
procedure also to spatial dimensions has been introduced 
by Birrell and Ford [48] in order to describe field theories 
in spaces with finite geometries and has been generalized 
to what came to be known as quantum field theories on 
toroidal topologies [37,49,50,52,53]. This procedure can 
also be called a generalized Matsubara formalism. In 
general, this technique basically consists in considering 
quantum fields defined on spaces with topologies of the 

type ( )1 d D d−× , with 1 d D≤ ≤ , where D  represents 

the total number of Euclidean dimensions and d  the 
number of compactified ones through the imposition of 
periodic boundary conditions on the components of the 
fields along them. One of these dimensions is 
compactified in a circumference of length β , whereas 
each of the spatial ones ( 1, , 1i d= … − ) in a circumference 
of length iL  and can be interpreted as boundaries of the 
Euclidean space [50,52]. In short, this corresponds to 
impose periodic (antiperiodic, for fermions) boundary 
conditions for fields in D  Euclidean dimensions with d  
compactified ones. 

In the present paper we revisit the Casimir effect, as an 
application of the above mentioned generalized Matsubara 
formalism. We investigate the pressure experienced by the 
boundary in a compactified space when a scalar field is 
heated. The starting point is the so-called “local formulation”, 
introduced in [14], in which the pressure is associated with 
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the 33 component of the energymomentum tensor.  
Then, we follow the zeta-function regularization method 
originally employed by Elizalde and Romeo [51] for the 
computation of the Casimir energy. However, here we 
employ a general formalism of field theories on toroidal 
spaces as in Ref. [52], which allows to apply the method 
for several simultaneously compactified dimensions. This 
is the case, for instance, of thermal field theories with a 
finite spatial extension, which needs the compactification 
of both the imaginarytime dimension and a spatial one for 
a unified approach for heated Casimir cavities. 

We stress that in our computation with the toroidal 
formalism periodic boundary conditions are implemented 
both in imaginary time (circumference of length β) and the 
third spatial coordinate (circumference of length L), by 
construction. Moreover, as stated in [52], results for other 
boundary conditions may be obtained from theperiodic 
ones. For instance, the pressure for Dirichlet boundary 
conditions (much studied in the literature) can be 
determined by putting L = 2a in the expression from the 
toroidal computation, where a is the distance separating 
the parallel plates in Ref. [14]. 

The paper is organized as follows. In section II the 
Casimir pressure is linked to the vacuum expectation 
value of the energy-momentum tensor for a scalar field in D 
dimensions of the Euclidean space. The point-splitting 
technique is used to write it in terms of the free scalar 
propagator in Fourier space. In section III a corresponding 
expression for the pressure is obtained when one of the 
spatial dimensions is compactified with a finite extension. 
The computation of the Casimir pressure follows a path 
similar to that of the Elizalde–Romeo method [51], 
leading to a well-known result from the literature. In 
section IV, we compute the Casimir pressure in the 
configuration of a compactified spatial dimension in the 
presence of a thermal bath. This can also be compared 
with results found in the literature obtained from other 
techniques. In section V we present our final comments. 
Throughout this paper, we consider 1.Bc k= = =  

2. Energy-momentum Tensor Forscalar 
Fields 

We start by writing the Euclidean Lagrangian of the 
free scalar field in a D-dimensional space, 

 ( )2 2 21 1 ,
2 2E mµφ φ= ∂ +  (1) 

where m  is the mass of the quanta of the scalar field. 
With the help of the point-splitting technique, the vacuum 
expectation value of the canonical energy-momentum 
tensor Tµν  can be written as [52] 

 ( ) ( ) ( )0 0 lim , 0 0 ,
x x

T x x T x xµν µν µν φ φ′ ′
′→

= =  (2) 

where T  denotes the time-ordered product of field 
operators and ( ),x xµν

′  is a differential operator given 

by [52] 

 ( ) 21, ,
2

x x mµν µ ν µν σ σδ′ ′ ′ = ∂ ∂ − ∂ ∂ +   (3) 

where µ∂  and µ
′∂  are derivatives acting on xµ  and x µ′ , 

respectively, and µνδ  represents the components of the 
metric tensor of the Euclidean space (Kronecker delta). 
Defining the Euclidean Green function of the scalar field 

as ( ) ( ) ( ){ }0 0G x x i T x xφ φ′ ′− = , we obtain 

 ( ) ( )lim , .
x x

x x G x xµν µν
′ ′

′→

 = −  
   (4) 

Considering the Fourier integral of the Euclidean Green 
function in momentum space, 

 ( )
( )

( )
2 2

1 ,
2

D ik x x

D
d kG x x e

k mπ

′⋅ −∞′
−∞

− =
+∫  (5) 

where k  and x  are D -dimensional vectors, we are  
able to rewrite the vacuum expectation value of the 
energy-momentum tensor in Eq. (4) as 

 
( ) 2 2

1 .
22

D

D

k kd k
k m

µ ν
µν µνδ

π

∞

−∞

 
= − 

+ 
∫  (6) 

3. Casimir Pressure in a Compactified 
Space 

In this section, we investigate the Casimir pressure for 
the particular case of just one compactified spatial 
dimension ( 1d = ). It is sufficient to consider the 33 
component of the energy-momentum tensor to obtain the 
Casimir pressure resulting from a topological constraint 
imposed by periodic boundary conditions on the field at 
the parallel plates (taken as infinite planes) separated by a 
fixed distance L  in the 3x -direction. 

From Eq. (6), it is straightforward to write the bulk 
expression 

 
( )

( )2 2 2
3

33 2 2 2
3

1 ,
2 2

D

D

k k md k
k k mπ

⊥∞

−∞
⊥

 − +
 =  + +  

∫  (7) 

where 2 2 2
3k k k⊥= + , and k⊥  refers to the ( 1D − )-

dimensional vector orthogonal to the 3-direction in 
Fourier space. 

Let us call 33
c  the response of vacuum fluctuations on 

the plates, viewed as a topological constraint. We perform 
this by means of the compactification of just one spatial 
dimension. In order to obtain the Casimir pressure that 
acts on the boundary of the compactified space, we shall 
use the generalized Matsubara procedure, which is the 
original contribution of the present manuscript. Basically, 
in the general case, the technique consists in the 
replacement of integrals in momentum space by sums, 
namely, 
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 1
2

j

j n j

dk
Lπ

+∞

=−∞
→ ∑∫  

where the index j  assumes the values 1, 2, , 1j D= … − , 
the momentum coordinate jk  exhibits discrete values,  

 
2

,j
j n j

j

n
k k

L
π

= =  

and jL  refer to the finite extension of each of the j  
spatial dimensions (compactification of 1D −  spatial 
coordinates). For practical purposes, let us compactify just 
the 3x -component of the vector x . With these ideas in 
mind, the generalized Matsubara formalism enables us to 
substitute the bulk expression of Eq.(7) by the following 
one: 

 
( )

( )2 2 21

33 1 2 2 2
1 .

2 2

D nc
D

n n

k k md k
L k k mπ

−+∞ ⊥∞ ⊥
−−∞

=−∞ ⊥

 − +
 =  + +  

∑ ∫  (8) 

Using well-known results from dimensional 
regularization techniques, we get, 

 

( )

( ) ( )

2 2

2
2

2

1

2

1 12 ,
4

D

D s

Ds

D

d k

k b

Ds

s b

π

π

∞

−∞

−

 + 
 Γ −    = × Γ  

∫

 (9) 

 

( )

( ) ( )

2

2 2

1
2

2
2

2

1
1 12 ,

2
4

D

D s

Ds

D

d k k

k b

Ds
D

s b

π

π

∞

−∞

− −

 + 
 Γ − −    = × Γ  

∫

 (10) 

we obtain 

 

( )
( ) ( )

( )

( ) ( )
( )

2 2

33
2 2

12 2

1

,

11 ,

c
s

n

s

an c
f L

an c

s
an c

ν

ν

ν
ν

ν ν

+∞

=−∞

−

=

  − Γ =  
  + 


− − Γ − 
+ 

∑

 (11) 

where 2 ,a L−=  / 2 ,c m π=  ( )1 / 2,s Dν = − −  and 

( ),sf Lν  a function given by 

 ( )
( ) ( ) ( ) ( )2 1

1 1, .
2 4 2

s s
f L

L sν ν
ν

π π− −
=

Γ
 (12) 

Adding and subtracting the term ( )2c νΓ  to the 
numerator of the first term on the right-hand side of  
Eq. (11), we obtain 

 

( ) ( )
( )

( )
( )

33 12 2

2

2 2

1

1, 2 1

12 1 ,

c
s

n

n
s

f L s
an c

c
an c

ν

ν

ν ν

ν

+∞

−
=−∞

+∞

=−∞
=

 
 = − − 
  + 


− − 
+ 

∑

∑



 (13) 

where we have used the relation ( ) ( ) ( )1 1ν ν νΓ = − Γ − . 
Recalling the general definition of themultidimensional 
Epstein--Hurwitz zeta function [51,54,55,56], 

 
( )

( )

2
1

2 2 2
1 1

, ,1

; , ,

,

c
d d

d d
n nd

Z a a

a n a n c
ν

ν
+∞ −

… =−∞

…

= + + +∑ 

 (14) 

In the particular case of one-dimensional compactification 
( 1d = ), the above formula simplifies to  

 ( ) ( )2 2 2
1 ; .c

n
Z a an c

ν
ν

+∞ −

=−∞
= +∑  (15) 

Substituting the previous expression into Eq. (13), the 
pressure can then be rewritten as 

 
( ) ( ) ( )

( ) ( )

2
33 1

22
1

1

, 2 1 1;

2 1 ; .

c c
s

c

s

f L s Z a

c Z a

ν ν ν

ν ν
=

 = − − − 
− − 



 (16) 

Following Ref [37], these zeta functions can be 
evaluated on the whole complex plane by means of an 
analytic continuation along lines similar to those described 
in Refs. [51,54,55,56] 

 

( )

( )

2
1

2

2
1

2

1 1 2

2 22
1

1, , 11

22
1

12

; , ,

2 1
22

2 2 ...

2

2

c
d d

d

d
d

d
d j j

d
j jj n j

d

d d

dn nd

d
d

d

Z a a

d
a a c

n n
K c

c a a

nn
c a a

nn
K c

a a

ν

ν

ν

ν

ν

ν

π ν
ν

π
π

π

π

−

−
∞

−= =

−
∞

… =

−

…

  = Γ − Γ  

   
   + +
   
   

 
 + + +
 
 

 
 × + +
 
 

∑ ∑

∑







 (17) 
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where ( )K zν  denotes modified Bessel functions of the 
second kind. For 1d = , the analytical continuation above 
is reduced to 

 

( )
( )

1
22

1 2 1

1
2

1
1 2

2 1 1;
22

2 2 .

c

n

Z a
a c

n nK c
c a a

ν

ν

ν

πν ν
ν

π π

−

−∞

−=

  = Γ − Γ  


   +       

∑

 (18) 

After some algebraic manipulations, we notice the 
presence of terms which are independent of the variable L, 
and for this reason are considered unphysical. Neglecting 
these terms, we can show that 

 

( ) ( )

( )

2 2
33

1 2

1
2

11 2

12 1
2

1 .

D D
c

D
n

D

D
n

m D K mnL
L n

mL K mnL
n

π

∞

=

−∞

−=


   = −      


  −     

∑

∑



 (19) 

The formula above corresponds to a general expression 
for the Casimir pressure exerted by the vacuum uctuations 
on the boundaries of the compactified manifold formed of 
two parallel planes separated by a length L. The result 
presented in Eq. (19) is the Casimir vacuum radiation 
pressure for a massive scalar field submitted to periodic 
boundary conditions in D dimensions and is in agreement 
with Refs. [7,57,58]. 

For a 4-dimensional Euclidean space, we obtain [58] 

 
( ) ( )

( )

2

33 22 2 2
1

1
1

1, 3
2

1 .

c

n

n

mL m K mnL
L n

mL K mnL
n

π

∞

=

∞

=


= − 




+ 


∑

∑



 (20) 

From the following asymptotic formula of the Bessel 
function, 

 ( ) ( )12 ,K z zν ν
ν ν− −≈ Γ  (21) 

evaluated for small values of its argument ( )~ 0z  and  
 e ( ) 0,ν >  we obtain the small-mass limit Casimir 
pressure ( 1mL ) 

 ( )
2

33 4,0 ,
30

c L
L

π
= −  (22) 

where we have neglected terms of ( )2m . The vacuum 

fluctuation Casimir force per unit area is a finite negative 
expression which suggests that the radiation pressure 
tends to diminish the distance L  between the planes. 

An interesting comment we present to finalize this 
section is that the corresponding negative Casimir 
pressure between two infinitely parallel planes, when  
 

one imposes to the massless scalar field Dirichlet 
boundary conditions, that is, 3 3( 0) ( ) 0,x x Lφ φ= = = =  is 
immediately recovered when the plane separation distance 
a  is equal to the half circumference length L  of the 
space dimension under compactification. 

4. Thermal Effects 

In this section, thermal and boundary effects are  
treated simultaneously through the generalized Matsubara 
prescription. We then consider a D  -dimensional  
space with a double compactification ( 2d = ) of the 
Euclidean space corresponding to a compactified spatial 
dimension with length L  and a compactification of the 
imaginary-time dimension with length β . In other words, 
we take the simultaneous compactification of both the 0x  
and 3x  coordinates of the vector x . 

Following the same steps as in the previous sections, 
the stress tensor component 33

c  given by Eq. (7) now 
becomes 

 
( )

( )

2

33 2
,1 2
2 2 2 2
1 2
2 2 2 2
1 2

1
2 2

D
c

D
n n

n n

n n

d k
L

k k k m

k k k m

β π

−+∞ ∞ ⊥
−−∞

=−∞

⊥

⊥

=

 − − +
 ×  + + +  

∑ ∫

 (23) 

Using dimensional regularization, Eqs. (9) and (10), the 
previous formula is rewritten as 

( )
( )

( ) ( )

2 2 2
1 1 2 2

33
2 2 2,1 2 1 1 2 2

12 2 2,1 2 1 1 2 2
1

,

, ,

1

c
s

n n

n n
s

a n a n c
f L

a n a n c

s

a n a n c

ν

ν

ν
ν β

ν ν

+∞

=−∞

+∞

−
=−∞

=

   − − Γ   =  
   + + 


− Γ − 

− 
  + +  

∑

∑



(24) 

where 2
1 ,a L−=  2

2 ,a β −=  / 2 ,c m π=  

( )2 / 2,s Dν = − −  and ( ), ,sf Lν β  is a function given by 

 ( )
( ) ( ) ( ) ( )2 1

1 1, , .
2 4 2

s s
f L

L sν ν
ν β

β π π− −
=

Γ
 (25) 

Adding and subtracting the term ( ) ( )2 2
2 2a n c ν+ Γ  in 

the numerator of the first term on the right-handside of  
Eq. (24), we obtain  

 

( ) ( ) ( ){
( ) ( ) ( )

( )

33

2 22
2 1 2 2 1 2

2
2 2 1 2

2 1

, , 1 2 1

1; , 2 1 ; ,

2 1; , ,

c
s

c c

c

s

f L s

Z a a c Z a a

a Z a a
a

ν β ν ν

ν ν ν

ν
=

= Γ − − −

× − − −

∂ + − ∂ 



 (26) 
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where we have used the definition of the two-dimensional 

Epstein-Hurwitz zeta function, ( )
2

2 1 2; ,cZ a aν , obtained 
from Eq. (14) for 2d = . From Eq. (17), we get for 2d =  

 

( )
( ) ( ) ( )

2
2 1 2 2 1

1 2
1

1 1
1

1 111
1

2 2
1

2 212
1

2 2
2 1 2

1 2, 11 2

2 2
1 2

1
1 2

2 1; , 1
2

2 2

2 2

2

2 .
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n

n

n n
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a a c

n n
K c

c a a

n n
K c

c a a

n n
c a a

n n
K c

a a

ν

ν

ν

ν

ν

ν

ν

πν ν
ν

π
π

π
π

π

π

−

−∞

−
=

−∞

−
=

−
∞

=

−


= Γ −

Γ 

   
+       

   

   
+       

   

 
 + +
 
 

 
 × +
 
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∑

∑

∑

 (27) 

Substituting Eq. (27) in Eq. (26), splitting 33
c  into 

three terms, 33 n n n n1 2 1 2
,c c c c= + +     after removing 

removing nonphysical terms, we have  
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1
n1 1 2 111

1
21 1

2
1 111

1
1
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4 , , 2 2
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2 ,

c
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n
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π
π

π

−∞

=
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−
=

−

=

 
= − −   

 

   
× −      

   

 
×    

∑

∑



(28) 

which corresponds to the contribution to the Casimir 
pressure due to vacuum fluctuations only. Using the 
definition (25), for 2

1a L−= , 2
2a β −= , / 2c m π= , 

( )2 / 2s Dν = − − , Eq. (19) the result shown in the 
previous section is recovered. 

Also, 
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yields 
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which is the Casimir force formula due exclusively to the 
thermal uctuations. The final form of Eq. (30) was 
obtained by means of the useful recurrence formula for 
Bessel functions, 
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zα α α
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For 4D = , we find 
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Using Eq. (21), we obtain the small-mass limit for the 
purely thermal Casimir pressure ( 1mβ  ) 
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which is in accordance with the well-known Stefan-
Bolztmann thermal radiation pressure result. This is a 
finite positive force per unit area which is more intense 
than vacuum radiation Casimir pressure for low values of 
β  (high-temperature or classical limit). 

If we plot the ratio between the thermal radiation pressure 
for the massive scalar field (Eq. (32)) and the massless one 
(Eq. (33), as a function of the dimensionless parameter 
mβ , the normalized thermal Casimir force per unit area 
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, / ,0c cmβ β   presents the typical monotonically 

decreasing shape for increasing values of the parameter 
mβ . 
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gives the corrections to the Casimir pressure in a compact 
space in the presence of a massive scalar field heated at 
temperature 1/ β . In order to obtain the final form of the 
above expression, we have used the recurrence formula 
given by Eq. (31). Considering 4D = , we get  
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which is valid for arbitrary values of m , L  and β . Using 
Eq. (21), we can show that in the small-mass case it 
reduces to 
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To clarify our results, we can show that the small-mass 
limit given by Eq. (37) can be written as 
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The function ( )f ξ  obeys the inversion symmetry 
formula, 

 ( ) 4 1 .f fξ ξ
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This is an intriguing expression, known as temperature 
inversion symmetry, that enables us to obtain the low  
and high-temperature limits after simple algebraic 
manipulations, (see Refs. [14,18,59-65] for more details). 
Following [14], the particular low-temperature limit 
( 1β  ) can be more easily performed after we compute 
the sum over index 1n  in Eq. (39) 

 
( ) ( )

( )

4 3
2

2 4 3
1 12 22 2

2

2 2
1 2 22

coth /1
2

1 1 .
2 sinh /

n n

n

n
f

n n

n n

π ξξ ξξ
ππ

ξ
π ξ

∞ ∞

= =

∞

=

= −

−

∑ ∑

∑
 (42) 

In the limit 1,ξ   the approximations 

 ( )2coth / 1 ,nπ ξ ≈  (43) 

 ( ) /22
1sinh / ,
2

nn eπ ξπ ξ ≈  (44) 

are valid. Substituting Eqs. (43) and (44) into Eq. (42), 
and performing the sum over index 2n , we find, for 

1ξ  , 
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Inserting the above formula into Eq. (38), we can show 

that 
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In this sense, in the low-temperature limit ( L β ), 
collecting all the contributions, the final form of Casimir 
pressure in the massless case reads 
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If we neglect the exponential factor, the Casimir 
pressure due exclusively to the vacuum uctuations is 
dominant in this regime. 

The high-temperature limit is also easily found by 
means of the inversion symmetry relation given by Eq. 
(41). Applying this formula in Eq. (45), we get 
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Substituting Eq. (48) into Eq. (38), we find 
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Finally, in the high-temperature limit ( L β ), 
computing all terms,the final form of Casimir pressure is 
written as follows:  
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Notice that if we neglect the exponential factor, the 
Casimir pressure for large temperature is given by the 
classical thermal radiation pressure ( )2 4/ 90π β  plus a 

negative linear correction factor proportional to 1β − . 

5. Final Remarks 

In the present work we investigate some aspects of the 
Casimir effect in the context of field theories in nontrivial 
topologies. In particular, we revisited the Casimir effect 
for a massive scalar field in a heated compact space by 
means of the generalized Matsubara formalism. The usual 
attractive response of quantum and thermal fluctuations 
are obtained and our results are in accordance with those 
found in the literature. One may notice that all thermal 
contributions to the Casimir pressure, given by 

2
c

n  and 

n n1 2
c , vanish in the zero-temperature ( β →∞ ) limit, 

remaining the pure dependence on the distance L  
between plates, which has a well-known 4L−  dependence 
in the small- L  limit for a four-dimensional space. Also, 
the bulk limit L →∞  reduces all expressions in 4D =  to 
the Stefan--Boltzmann law 4β − . 

A rather peculiar aspect of the generalized Matsubara 
formalism is related to the renormalization of the 
expressions. Usually, in the Casimir context, the divergent 
terms are taken care of by subtraction of the bulk integral, 
without compactifications (see [52]). Here, there is no 
need to do so, as was also remarked by Elizalde and 
Romeo [51]. It is sufficient to obtain correct physical 
expressions to renormalize by subtracting the divergent 
term of the expansion of the Epstein--Hurwitz zeta 

functions 
2c

dZ , as it does not depend on the physical 
parameters L  or β . 
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