

## Study of complete and incomplete fusion reactions at above the barrier energy using $^{19}\text{F} + ^{93}\text{Nb}$ system

Sabir Ali<sup>1,\*</sup>, Muntazir Gull<sup>2</sup>, Sunil Dutt<sup>3</sup>, Md. Moin Shaikh<sup>4</sup>, Suhail A. Tali<sup>2</sup>, S. Kumar<sup>3</sup>, Chandra Kumar<sup>3</sup>, I. Ahmed<sup>3</sup>, I. A. Rizvi<sup>5</sup>, Rakesh Kumar<sup>3</sup>, and Avinash Agarwal<sup>6</sup>

<sup>1</sup>MANUU Polytechnic Darbhanga, Maulana Azad

National Urdu University, Hyderabad - 500032, INDIA

<sup>2</sup>Department of Physics, Central University of Kashmir, Ganderbal (J&K) - 191201, INDIA

<sup>3</sup>Inter University Accelerator Centre, New Delhi - 110067, INDIA

<sup>4</sup> Department of Physics, Chanchal college,  
Chanchal, Malda (W.B)- 732123, INDIA

<sup>5</sup> Department of Physics, Aligarh Muslim University, Aligarh - 202002, INDIA and

<sup>6</sup>Department of Physics, Bareilly College, Bareilly - 243005, INDIA

### Introduction

During the last few decades several studies has been carried out to explore the influence of projectile breakup on fusion suppression at above the barrier energies [1, 2]. Breakup of the incident projectile, due to excessive Coulomb repulsion between the projectile and target, opens the doorway for a new class of reaction. Complete fusion (CF) and incomplete fusion (ICF) is most important among them. When the incident projectile, either as a single entity or in parts, fuses with the target nucleus it is called complete fusion. It was also observed that only a part of the incident projectile fuses with the target nucleus leading to incomplete fusion reaction. ICF reaction was first observed by Britt and Quinton [3] and later on enormous studies have been carried out to explore the dependency of ICF reaction dynamics on various entrance channel parameters. According to sum-rule model, proposed by Wilczynska *et al.* envisaged that CF process is localized in angular momentum space below certain critical value called critical angular momentum ( $\ell_{crt}$ ) [4]. Total fusion cross section is the algebraic sum of CF and ICF *i.e.*  $\sigma_{TF} = \sigma_{CF} + \sigma_{ICF}$ . Present work deals with the measurement of excitation function (EF) of evaporation residues (ERs) populated

through  $^{19}\text{F} + ^{93}\text{Nb}$  reaction at  $E_{lab} \approx 65\text{-}100$  MeV.

### Experimental Details

Experiment was performed at Inter University Accelerator Centre (IUAC) New Delhi using 15UD Pelletron accelerator facility.  $^{93}\text{Nb}$  target foils were prepared at target lab of IUAC using rolling technique. Target foils of  $^{93}\text{Nb}$  were irradiated with  $^{19}\text{F}$  beam at  $E_{lab} \approx 100$  MeV. Target foils along with Al degrader foils were placed in the form of stack foil arrangement. Thickness of  $^{93}\text{Nb}$  and Al degrader foils ranges from 1.70-2.02 mg/cm<sup>2</sup> and 1.30-1.70 mg/cm<sup>2</sup> respectively so that irradiation of target foils span over an energy range of  $E_{lab} \approx 65\text{-}100$  MeV. Thickness of target and degrader foils were measured by weighing as well as by  $\alpha$  transmission method. Stack of  $^{93}\text{Nb}$  target and Al degrader foils were irradiated with a beam current of  $\approx 35$  nA for  $\approx 8$  hrs. Soon after the stopping of beam current, activity of the populated ERs were recorded offline using the high purity Ge (HPGe) detector coupled to a CAMAC based data acquisition system.

### Results

In the  $^{19}\text{F} + ^{93}\text{Nb}$  reaction at  $E_{lab} \approx 65\text{-}100$  MeV, a total of twelve ERs were populated through various reaction channel. Among the populated ERs, residues populated through  $xn$  or  $pxn$  channel have the sole probability of get-

\*Electronic address: [sabirjhk@gmail.com](mailto:sabirjhk@gmail.com)

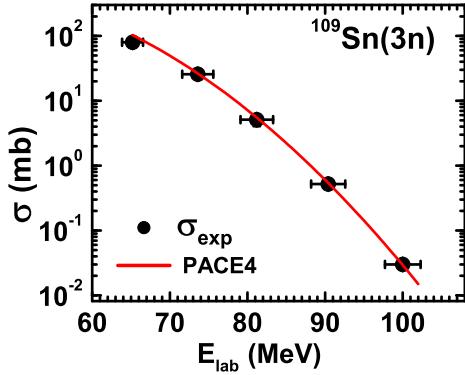



FIG. 1: Experimentally measured (solid bullets) and PACE4 calculated (solid lines) EF of residue  $^{109}\text{Sn}$  populated through  $3n$  channel.

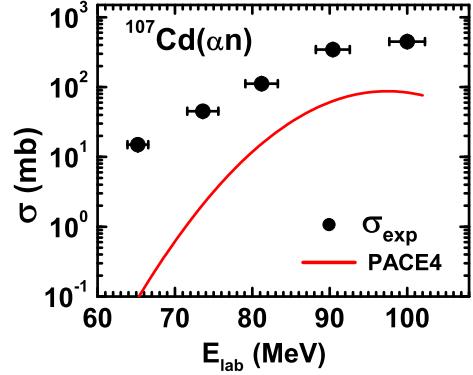



FIG. 2: Experimentally measured (solid bullets) and PACE4 calculated (solid lines) EF of residue  $^{107}\text{Cd}$  populated through  $\alpha n$  channel.

ting populated through the CF process. Complete fusion of incident projectile  $^{19}\text{F}$  with the  $^{93}\text{Nb}$  target leads to the formation of excited intermediate compound system  $^{112}\text{Sn}^*$  which further cools down through the emission of nucleon(s). EF of the ERs populated through different fusion processes were analysed in the frame work of statistical model code PACE4 [5]. Code PACE4 is based on Hauser-Feshback theory of compound nucleus decay and incorporate the contribution arising from CF process only. Experimentally measured EF of ERs populated through  $xn$  or  $pxn$  channel were well reproduced by the PACE4 calculations which can be inferred from Fig. 1 showing the EF of residue  $^{109}\text{Sn}$  populated through  $3n$  channel. Contrary to residues populated through  $xn$  or  $pxn$  channel, residues populated through  $\alpha$  emitting channels have the dual probability of getting populated through CF as well ICF process. Fig. 2 shows the experimentally measured and PACE4 calculated EF of residue  $^{107}\text{Cd}$  populated through  $\alpha n$  channel. As it can be seen, experimentally measured EF shows an advancement over the PACE4 calculations.

## Conclusion

In the present work experimentally measured EF of the ERs populated through CF

and/or ICF processes in the  $^{19}\text{F} + ^{93}\text{Nb}$  reaction at  $E_{lab} \approx 65-100$  MeV were analysed in the frame work of statistical model code PACE4. It was observed that experimental EF of residues populated through  $xn$  or  $pxn$  channels were well reproduced by the statistical model code PACE4 suggesting their evolution through CF process. On the other hand experimentally measured EF of ERs populated through  $\alpha$  emitting channels shows an advancement over the PACE4 prediction which confirm the contribution of ICF process in addition to CF process in their origin.

## References

- [1] Sabir Ali *et al.*, Phys. Rev. C **100**, 064607 (2019).
- [2] Muntazir Gull *et al.*, Phys. Rev. C **98**, 034603 (2018).
- [3] H. C. Britt and A. R. Quinton, Phys. Rev. **124**, 877 (1961).
- [4] K. Siwek-Wilczynska *et al.*, Phys. Rev. Lett. **42**, 1599 (1979).
- [5] A. Gavron, Phys. Rev. C **21**, 230 (1980).