
Petaminer: using ROOT for efficient data storage in MySQL 
database

J Cranshaw1, D Malon1, A Vaniachine1, V Fine2, J Lauret2 and P Hamill3,4

1Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
2Physics Department, Brookhaven National Laboratory, Upton, NY 11973 USA
3Tech­X Corporation, 5621 Arapahoe Ave, Suite A, Boulder, CO 80303, USA

4paulh@txcorp.com

Abstract. High Energy and Nuclear Physics (HENP) experiments store Petabytes of event data 
and Terabytes of calibration data in ROOT files. The Petaminer project is developing a custom 
MySQL storage engine to enable the MySQL query processor to directly access experimental 
data stored in ROOT files. Our project  is addressing the problem of efficient  navigation to 
PetaBytes of HENP experimental  data described  with event­level  TAG metadata,  which  is 
required  by  data   intensive  physics  communities   such  as   the  LHC and RHIC experiments. 
Physicists need to be able to compose a metadata query and rapidly retrieve the set of matching 
events,  where improved efficiency  will  facilitate   the discovery  process  by permitting rapid 
iterations  of  data evaluation and retrieval.  Our custom MySQL storage  engine  enables  the 
MySQL query  processor   to  directly  access  TAG data stored   in  ROOT TTrees.  As ROOT 
TTrees   are   column­oriented,   reading   them   directly   provides   improved   performance   over 
traditional   row­oriented  TAG databases.  Leveraging   the   flexible   and  powerful  SQL query 
language to access data stored in ROOT TTrees, the Petaminer approach enables rich MySQL 
index­building capabilities for further performance optimization.

1.  Introduction
The Petaminer project [5] is part of the effort to provide physicists with efficient tools for query and 
analysis of very large­scale data generated by High Energy and Nuclear Physics (HENP) experiments, 
for example ATLAS at the Large Hadron Collider (LHC). Such experiments store Petabytes of data in 
ROOT   files   described   with   TAG   metadata   and   have   challenging   goals   for   access   to   this   data. 
Physicists  need to be able  to compose a metadata query and rapidly retrieve  the set  of  matching 
events. These skimming operations will be the first step in data analysis. Improved efficiency will 
facilitate the discovery process by permitting rapid iterations of data evaluation and retrieval.

To  address   this  problem,  we  have  prototyped a  custom MySQL storage  engine   to  enable   the 
MySQL query processor  to directly access TAG data stored  in ROOT TTrees.   In addition  to  the 
efficient SQL query interface to the data stored in ROOT TTrees,  the Petaminer technology links 
MySQL index­building capabilities to FastBit bitmap indexing of the data in ROOT TTrees, providing 
further optimization to TAG query performance. A preliminary report of this work was made at the 

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042036 doi:10.1088/1742-6596/219/4/042036

c© 2010 IOP Publishing Ltd 1



ACAT 2008 workshop [6].  This paper reports  specific performance results  we achieved by using 
FastBit indexing to optimize reads of data stored in ROOT. 

2.  Approach
Petaminer   integrates   several   middleware   components   into   a   custom   MySQL   database   engine. 
MySQL [7], ROOT [8], and FastBit [9] are standard tools. The custom code developed for this project 
resides in the Petaminer MySQL storage engine. MySQL's open storage engine plugin architecture 
makes writing a custom engine straightforward. Users interact with the MySQL engine via standard 
SQL APIs using command­line clients or other tools compatible with MySQL. Figure 1 shows the 
high­level Petaminer architecture. 

Figure 1. The Petaminer architecture.

The most important advantage of this approach is that data remains in the ROOT files rather than 
necessitating a bulk copy from ROOT into standard database tables. Since the TAG metadata schema 
evolves   over   time,   using   conventional   database   tables   would   require   corresponding   schema 
maintenance, and copied data would have to be periodically reloaded, a major operational burden for 
experiments producing very large volumes of data.

Petaminer also leverages the advantages of data storage in ROOT, which was designed for large 
scale physics data. ROOT stores TAG metadata in column­oriented TTrees, which are more efficient 
for   read­only   queries   than   a   conventional   database's   row­oriented   storage.   Figure   2   compares 
conventional database row­oriented data structure and ROOT's column oriented format.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042036 doi:10.1088/1742-6596/219/4/042036

2



Figure 2. Row­oriented database format versus ROOT column­oriented data structure.

Conventional databases such as MySQL normally store table data as rows, which is advantageous for 
row­based writes, updates and transactions. However, querying a column can require accessing data 
across the entire table since all values are distributed across all rows. A column­oriented data structure 
is more efficient for read access since all values of an attribute are stored continuously. Also, column 
orientation  permits   efficient,   lossless   run­length  encoding   [10]  compression  of  values,  which  can 
greatly reduce the storage size (and thus the read time) of fields containing a limited set of discrete 
values, as is common in TAG metadata. Since most physicists perform reads much more often than 
writes, the read performance advantage of column­orientation is desirable. Furthermore, ROOT files 
can be distributed across storage devices, so do not have the size limitations of regular database tables. 
Reads   across   ROOT   files   via   XROOTD   [11,12]   or   a   similar   distributed   storage   protocol   can 
potentially   be   parallelized   using   multiple   processes,   offering   further   potential   for   performance 
improvement.

Making the ROOT data accessible via MySQL also improves flexibility by adding SQL syntax and 
standard  database   tools   to  ROOT  data   access  mechanisms  which   currently  use  a   low­level  C++ 
interpreter.

By creating a custom storage engine and a  C wrapper  to  ROOT's  C++ API,  we  implemented 
middleware that maps SQL constructs such as tables and columns to ROOT structures such as TTrees 
and attributes. Table 1 below gives a simple example of this mapping.

Table 1. Parallel ROOT and MySQL Constructs

ROOT MySQL

TFile MyData.root {
TTree tree {
      TBranch<Int_t> a1
      TBranch<Float_t> a2
      TBranch<Char_t> a3
   }
}

TABLE MyData {
   a1 INT,
   a2 DOUBLE,
   a3 VARCHAR
}

This automated mapping permits standard SQL statements such as:
   SELECT a1, a2 FROM MyData WHERE a1 > 100;

to map to corresponding ROOT selection and read operations and return the matching values as a SQL 
result   set.   Many   MySQL   compatible   tools   support   performing   such   SQL   operations,   including 
command­line clients, spreadsheets, data mining applications, and Web­based GUIs. The MySQL API 
can   also   be   utilized   in   virtually   every   popular   programming   language.   Thus,   this   functionality 
maximizes the ease of access to data stored in ROOT without requiring an application to be tied to 
ROOT itself.

Once this basic functionality was in place, we turned to improving the performance of queries 
using   the   Petaminer   engine.   Here,   we   built   upon   previous   ROOT­FastBit   work   [13]   to   create 
middleware enabling the FastBit indexer to create and use indices of ROOT file contents. Petaminer 
maps MySQL indexing­related operations to ROOT­FastBit calls.  This SQL command to create a 
table with an index named index1:

  CREATE TABLE MyData (a1 INT, INDEX index1(a1));

is translated by the Petaminer storage engine into the ROOT­FastBit calls:

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042036 doi:10.1088/1742-6596/219/4/042036

3



  TFile* file = new TFile(“MyData.root”);
  TTree *tree = (TTree*) file­>FindObject("tree");
  TBitmapIndex index;
  index.Init();
  char indexLocation[16] = "data/test";
  index.ReadRootWriteIndexFile(tree, indexLocation);
  index.BuildIndex(tree, "a1", indexLocation);

When a MySQL query is performed against the table, the FastBit index is used to retrieve the set of 
values   matching   the   WHERE   clause.   Depending   on   the   data   distribution   and   WHERE   clause 
parameters, this can be much more efficient than a non­indexed read, which scans all entries in the 
file.

3.  Results
Performance   benchmarking   for   FastBit­indexed   ROOT   data   was   undertaken   by   generating   data 
containing randomly distributed numerical values, in order to avoid a non­uniform data distribution 
that could affect indexing performance either favorably or unfavorably, as well as many columns of 
different data types that are representative of TAG metadata in HENP production data. Identical data 
was used in  tables read by the Petaminer engine and the standard MySQL engine.  The data was 
indexed using both FastBit and standard MySQL indexing. Queries to select a subset of the values 
were   performed   repetitively   to   generate   average   timings.   The   specific   query   timings   here   were 
generated with a standard MySQL configuration on x86_64 Linux (Fedora 8, 2x2.66 GHz CPU, 3 GB 
RAM). Similar comparative timings are seen on different systems. Figure 3 below shows average 
query  times using  the Petaminer  and MySQL engines  with TAG metadata  sizes   from 105  to  108 

entries.

Figure 3. Query timings for Petaminer and MySQL engines (log­log scale). Petaminer Indexed 
queries were indexed using FastBit. MySQL Indexed queries used standard MySQL indexing.

4.  Conclusions

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042036 doi:10.1088/1742-6596/219/4/042036

4



Non­indexed queries performed using the Petaminer engine were about 40% faster than non­indexed 
queries on the same data stored in conventional MySQL tables.  This confirms the hypothesis that 
ROOT's column­oriented data organization offers advantages in read performance over conventional 
row­oriented database storage.

ROOT reads indexed by FastBit were about 10x faster than non­indexed ROOT reads. This is 
consistent   with   previously   published   ROOT­FastBit   performance   results,   and   suggests   that   the 
Petaminer interface to FastBit does not incur a significant performance penalty.

Conventional MySQL indexed queries on the randomly distributed data performed 5­6x faster than 
FastBit­indexed queries, which demonstrates the value of Petaminer's capability to enable choosing an 
indexing strategy that is best suited for scientific data mining. This also suggests that more effort can 
be made to optimize Petaminer's  FastBit­based indexing functionality.  Related work suggests  that 
bitmap indexing can be highly performant in similar HENP analysis scenarios [14].

References

5 Petaminer project page, https://ice.txcorp.com/trac/ petaminer
6 P. Hamill, J. Cranshaw, D. Malon and A. Vaniachine, Petaminer: Efficient Navigation to Petascale Data 

Using Event­Level Metadata, Argonne National Laboratory Preprint ANL­HEP­CP­09­5, January 26, 2009, 
to appear in the Proceedings of the XII International Workshop on Advanced Computing and Analysis  
Techniques in Physics Research (ACAT 2008), Erice, Italy, November 3­7, 2008

7 MySQL main page, http://www.mysql.com
8 R. Brun, F. Rademakers, ROOT ­ An Object Oriented Data Analysis Framework, Nucl. Inst. & Meth. in 

Phys. Res. A 389 (1997) 81­86. See also http://root.cern.ch.
9 Kesheng Wu. FastBit: an efficient indexing technology for accelerating data­intensive science, J. Phys.: 

Conf. Ser. 16, pp 556­560.
10 Run­length encoding http://en.wikipedia.org/wiki/Run­length_encoding
11  A. Hanushevsky and A. Dorigo and F. Furano, The Next Generation Root File Server, Proc. CHEP 2004, 

2004.
12  XROOTD software is available at http://xrootd.slac.stanford.edu
13 K. Stockinger, K. Wu, R. Brun, P. Canal, Bitmap Indices for Fast End­User Physics Analysis in ROOT, 

Lawrence Berkeley National Laboratory Paper LBNL­58426, July 26 2005.
14  K. Wu, J. Gu, J. Lauret, A. M. Poskanzer, A. Shoshani, A. Sim, and W. Zhang. Grid Collector: Facilitating 

Efficient Selective Access from Data Grids. In Proceedings of International Supercomputer Conference 2005, 
Heidelberg, Germany.

17th International Conference on Computing in High Energy and Nuclear Physics (CHEP09) IOP Publishing
Journal of Physics: Conference Series 219 (2010) 042036 doi:10.1088/1742-6596/219/4/042036

5




