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Synchrobetatron resonances driven by dispersion in RF cavities are studied by using a Hamiltonian
formalism. Explicit expressions are given for the growth rate of betatron and synchrotron oscillation
amplitudes on resonance and with fast crossing of the resonance. The effect of distributed cavities is
also studied, and it is shown that resonances can be suppressed by proper arrangement of cavities. The
theory is shown to agree fairly well with the computer simulation for PETRA and some numerical
examples are given for the booster of the TRIUMF Kaon Factory project.

1. INTRODUCTION

Synchrobetatron resonances driven by dispersion in cavities was first observed in
NINA1 and several studies were made to understand the mechanism. 1

-
11 In

particular, Piwinski and Wrulich6 gave a satisfactory explanation of the mechan­
ism of the synchrobetatron resonance. The acceleration does not change the
instantaneous position and angle of the particle, but the equilibrium orbit, with
respect to which the betatron oscillation is measured, suddenly changes because of
the acceleration and a betatron oscillation is excited. Further, the betatron
oscillation leads to a change of the orbit length per revolution and thus to a
change of the beam position with respect to the phase. Thus the betatron
oscillation also affects the synchrotron motion. These two mechanisms of the
excitation of synchrobetatron resonance give a symplectic description, as shown
by the Hamiltonian formalism of the present paper. Piwinski and Wrulich gave an
analysis of the linear motion and an analysis of nonlinear synchrotron motion.
Though their analysis is extensive, their theory of nonlinear synchrotron oscilla­
tions cannot be used for quick and easy numerical evaluation of the resonance
effect.

The main purpose of this paper is to review the Hamiltonian formalism of
Chao, Morton,9" Suzuki,lO Corsten and Hagedoorn,ll and to develop a canonical
perturbation theory for the synchrobetatron resonance that can be used easily to
evaluate the numerical values of the effect. Some applications of the theory are
made to the Kaon Factory project at TRIUMF. Outlines of the present theory
were given in the design notes12

,13 for the Kaon Factory project, in which the
dispersion in the cavity sections is rather large14 because a lattice with a high
transition energy was desired.
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2. HAMILTONIAN AND AVERAGING METHOD

Starting from the well-known HamiltonianI5 for the single-particle motion under
electromagnetic fields and after several canonical transformations, we obtain

H -RPOK 2 R 2 RTlW~W2
--- X +-p ---=----

2 2po x 2Poc2{32

The derivation of the Hamiltonian (1) is given in the Appendix. Here,

1
TI==a-­

')'2

a == momentum compaction factor
(3, ')' == Lorentz factors

R == average radius
Po == central momentum

1 1 aB
K==-+--

p2 Bp ax
x == horizontal coordinate of betatron oscillations

Px == canonical momentum conjugate to x
c == light velocity

wrf== RF angular frequency

W = - !!.E , where !!.E is energy deviation from the synchronous value
wrf

V j == RF voltage for cavity j
cPs == synchronous RF phase

acP == RF phase relative to cPs
D j , Dj == dispersion and its derivative at cavity j.

In the Hamiltonian (1), the angular position (J is used as an independent variable.
The Hamiltonian (1) can be split into two parts H o and HI by expanding the

sinusoidal functions in Taylor series

(2)

where H o contains the terms quadratic in canonical variables and gives the
usual equations of synchrotron and betatron motions. HI denotes the perturba­
tion that gives rise to synchrobetatron resonance. The perturbation Hamiltonian
HI that gives rise to a synchrobetatron resonance v(3± mvs == n where m and n are
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positive integers, is

HI = am (A<f»m L eV (-D.~+D~~).
27T m ! j J J c(3po J c(3

(3)

Here,

{
(-1)m/2Sin<P (m=even) (4)

am = _(_1)(m+I)/2~s <Ps (m = odd)

If we take the case m = 1, we see that the equations of motion derived from (3)
are identical to the equations of motion given by Piwinski and Wrulich.6 Thus
their equations of motion are shown to be symplectic, as stated in the Introduc­
tion.

Now we use action-angle variables (Is, IfJs) and (Ix, t/Jx) for synchrotron and
betatron motion

(5)

(6)

(7)

(8)

where Vs and Vx are the synchroton and betatron tunes, (3x, ax are the amplitude
functions of Courant and Snyder,15 cPx is the betatron-oscillation phase angle,
given by Sds/vx(3x, h is the harmonic number and Wo is the angular revolution
frequency. The case below transition energy is assumed here. Above transition, Vs

in Eqs. (5) and (6) is replaced by -Vs' The canonical transformations (5) to (8) are
given by the generating function

(9)

F==
cPo(3vs 2

2h2 !7J IWo (A<p) tan (vsO + I/Js)

Pox 2
poax 2

--2-tan (vxcPx + IfJx)---.
(3x 2(3x

Perfo~ming the transformations (5) to (8) on the Hamiltonian and keeping only
slowly varying terms with vx ± mvs = n + £, where £« 1, we obtain.

and

R
H o = vx- 13x = 0 (average over the circumference) (10)

am cP: 1 (2Ix ) 1/2 1
HI = 211" m! c13 13xPo 2m

X [De,tt sin (e8 + t/Jx± mt/Js) + Ds,n cos (e8 + t/Jx± mt/Js)

+ Fe,n cos (e8 + t/Jx± mt/Js) - Fs,n sin (£8 + t/Jx± mlfJs)], (11)
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where cPm is the maximum phase of synchrotron oscillations given by

cPm = (2h 211"11 woIs) 1/2,

cpovs{3
and

F == D' (3x + Dax ,

Dc,n = L e~Dj cos ncPxj,
j

Ds,n = L eVjDj sin ncPxj,
j

Fc,n = Le~Fj cos ncPxj,
j

Fs,n =L e~Fj sin ncPxj,
j

(12)

(13)

(14)

the summation being done over one revolution. In the Hamilton (11), 4>x is
replaced by the smoothed variable o. In the Hamiltonian (11), a correction factor

Jm(cf>m)m! (~r
cPm

=1- cf>;" 2+ cf>;" 4 cf>~ 6+ ... (15)
(m + 1)2 (m + l)(m + 2)2! 2 (m + l)(m + 2)(m + 3)3! 2

should be multiplied; this comes from the terms LlcPnx and Ll4>npx for n> m.
We note that in Eq. (11), the perturbed Hamiltonian is proportional to I~/2.

Thus dt/JJdO is proportional to 1-;1/2 so that the angle variable o/x changes rapidly
as Ix becomes small. Therefore the condition of slowly varying o/x breaks down,
which is the assumption that leads to Eq. (11). This difficulty is associated with the
fact that the unperturbed Hamiltonian is quadratic in x and Px whereas the
perturbation Hamiltonian is proportional to x or Px. Thus, for small x and Px (and
accordingly for small Ix), the perturbed Hamiltonian becomes larger than the
unperturbed one. The numerical evaluation in Section 4, however, shows that the
condition do/xldO« Vx holds for quite small Ix. Thus, except for very small
emittance Ix, the present theory is still valid. The direct extension of the results of
this paper to very small Ix and Is (if m == 1) naturally gives a contradiction.

Now, we make a final canonical transformation from (Ix,s,o/x,s) to (ix,s, tbx,s)
defined by

The generating function is

Ix == Ix

tbx == o/x
is == Is

- e
O/S == O/S ± - o.

m

(16)

(17)
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Then the Hamiltonian is
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where the tildes in I, 0/ are now omitted for brevity.

3. DYNAMICS

The Hamiltonian (19) is the starting point of our discussion of beam dynamics and
we can derive various quantities from this. First we note, from the Hamiltonian
(19) and the canonical equations of motion, that a relation

mIx =F Is = constant (20)

holds below transition energy for the resonancevx ± mvs = n. Above transition
energy, the role of sum and difference resonances is interchanged. Below transi­
tion energy, the amplitude growth is limited for a difference resonance, but Is is
usually much larger than Ix and the growth in the amplitude of betatron
oscillations is important even for a difference resonance. For example, typical
maximum values of Ix and Is are I x '"'-' 1.5 X 10-4 eV sec (corresponding to
100 1Tmm mrad normalized emittance) and Is '"'-' 0.063/21T eV sec for the TRIUMF
Kaon Factory project.

Now we calculate the maximum growth rate per revolution of the beam size
-Jexf3x and the energy spread aEIE on resonance. From the Hamiltonian (19),

(21)

where
(22)

0/0 is a constant phase and the prime denotes differentiation with respect to e. The
change 8Ix per revolution of the action variable Ix is

(23)

and the emittance ex is equal to 2IJpo. Thus the maximum change 8(~exf3:~Jmax

per revolution of the betatron oscillation amplitude -Jexf3.x is

(24)

Similarly, remembering that the energy spread is related to Is as in Eq. (6), we
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obtain the maximum growth rate per revolution of energy spread on resonance as

(25)

(26)

Expressions similar to Eqs. (24) and (25) are given by Piwinski and Wruhich,6
but the present expressions are more easily adapted to numerical evaluation.

Now we consider the effect of fast crossing of the resonance. I? First we obtain
from the canonical equations of motion using the Hamiltonian (18)

1 2
O/S = ±-- (avx ± m avs )8 + o/sO'

47Tm

(27)

(28)

(30)

where avx and avs are the change of the tunes Vx and Vs per revolution, and o/so
and o/xo are constants. Here we neglect the perturbation Hamiltonian HI. From
the Hamiltonian (19), we also obtain

a cP
m

1 (21 )1/2 { 1 }
I~===F2m 2m ( m ) - __x A sin -(avx±mavs )(J2+o/b ,

'1T m - 1 ! c(3 (3xPo 47T

where o/b is another constant. The integral of Eq. (28) is given completely by
using the Fresnel integral,16 if we assume the interval 8 = -00 to +00. We assume
that the change of Is per resonance crossing als is small and obtain

\
aIs 1= laml <P:~ .J£xf3x A 1. (29)
Is 2m (m-l)! Is c(3 (3x ~allx±avsl

The change of betatron emittance aIx per resonance crossing is obtained from the
invariant (20) as

IaIx \ = ~, IaIs \ Is .
Ix m Is Ix

The change of the synchrotron tune lis is adiabatic, but the betatron tune Vx

changes rapidly due to space-charge detuning. The betatron tune changes as

(31)

(32)

where avx is the maximum detuning, cPmax is the maximum phase angle of the
bunch and a parabolic particle distribution is assumed. The phase cP changes with
time due to synchrotron oscillations. Then, the rms charge of ~vx is

IAvxlrms =Ai\ · Vs'TT( <Pm r,
cPmax

where cPm is the amplitude of synchrotron oscillations given by

cP = cPm sin (lIsO + ( 0 ). (33)
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Here 60 is the initial phase. Adding the effect of resonance crossings incoherently
for time t, we obtain

dIs = laml cP:~ Jf:xf3x A cPmax ( t ) 1/2

Is (m-1)I2m- 1 Is c{3 {3x cPm 1TdvxTo '

where To is the revolution period.

(34)

4. COMPARISON WITH SIMULATION FOR PETRA AND NUMERICAL
EXAMPLE FOR THE TRIUMF KAON FACTORY

We compare the present theory with a computer simulation for PETRA.6 The
input parameters for the simulation are shown in Table I. The results are
summarized in Tables II and III for 10" (one standard deviation) beam size and 10"
energy spread, and for 60" beam size and 60" energy spread, respectively. The
theoretical values are calculated by Eq. (24). We see from these tables that the
agreement between the theory and the simulation is fairly good except for the
m = 5, 60" beam-size case.

As a further numerical example, we apply the formulae obtained in Section 3 to
a version14 of the 3 GeV booster ring of the TRIUMF Kaon Factory project, in which
the dispersion in cavity sections is large because a lattice with a high trans­
itionenergy is desired. A layout of the machine is shown in Fig. 1 and the orbit
parameters are shown in Fig. 2. The superperiodicity of the machine is five and
the tune Vx is 4.24. Three of five long straight sections are filled with cavities. In
this configuration, the quantity A defined by Eq. (22) is 54.5 keV x 8.7 m.

After about 1 msec after injection (kinetic energy T = 458 MeV), the synchro­
ton tune Vs reaches a maximum of 0.04. The parameters at this instant are shown
in Table IV. The bucket is nearly stationary (maximum phase 176° --- -128°) and
the maximum phase angle of the bunch cPmax is about 27T/3. So we calculate the

TABLE I

Input Parameters for the Computer Simulation for PETRA

Energy E 23GeV
Circumference C 2304m
Momentum compaction factor a 0.00365
Harmonic number h 3840
Amplitude function (3x 20m
Dispersion D 2m
Beam size (J"x 2.7mm
Energy spread (J"E 1.4 x 10-3

Phase spread (J"q, 0.157 rad
Synchrotron tune Vs 0.125
Synchronous phase cPs 38°
RF voltage V 204MV
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TABLE II

Rise Time of Betatron-Oscillation Amplitude for 1(1" Beam Size
and 1(1" Energy Spread. The Simulation is done in Ref. (6)

m (Order of Resonance)

1
2
3

Simulation

19 I-tsec
360 I-tsec
34msec

Theory

19 I-tsec
612 I-tsec

18 msec

TABLE III

Rise Time of Betatron-Oscillation Amplitude for 6a Beam Size
and 6a Energy Spread. The Simulation is done in Ref. (6)

m (Order of Resonance)

1
2
3
4
5

Simulation

24l-tsec
48 I-tsec

312 I-tsec
1.02 msec

1.065 msec

Theory

21p,sec
113 p,sec
540 I-tsec

5.81 msec
48.0 msec

RF INJECTION

EXTRACTION

FIGURE 1 Layout of the TRIUMF Kaon Factory booster.
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FIGURE 2 Orbit parameters of the TRIUMF Kaon Factory booster.

quantities of synchrobetatron resonance for the particle at cPm = 7T'/2. The results
are shown in Table V. For the calculation of aIs/Is and alx/lx , Eqs. (30) and (34)
are used with To = 0.75 ILS, Llvx= 0.0945, <Pmax/<Pm = 4/3 and time duration t =

1 ms. We see from Table V that the effect is important up to m = 3.
As is seen from the formulae in Section 3, the effect of synchrobetatron

resonance is suppressed if the quantity A defined in Eq. (22) is made zero. One
method is, of course, to make the dispersion and its derivative at the cavity zero.
Another method is to use the phase relation given in Eq. (22). If the cavities are
placed symmetrically and the horizontal tune vx , and accordingly n, is chosen
properly, A becomes zero even if the dispersion and its derivative at the cavity

TABLE IV

Relevant RF-Related Parameters
of a Version of the TRIUMF

Kaon Factory Booster

T=458 MeV
Vs = 0.04
1111 = 0.45
h =35
<Ps = 4.27°
V = 490.6 KV/9 = 54.5 KV
f3x,av = 6.2 m
~ f3 x €x = 2.37 X 10-2 m
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TABLE V

Effects of Synchrobetatron Resonance for cbm = 7T/2

1
2
3
4
5
6
7
8

3.5 x 10-4 m/turn
1.1 x 10-5

4.3 X 10-5

6.6 X 10-7

1.4 X 10-6

1.4 x 10-8

2.0x 10-8

1.5 X 10-10

0.20
3.0x 10-3

2.2x 10-2

4.8 x 10-4

2.9 X 10-3

2.0x 10-5

2.2x 10-4

3.4x 10-7

13.0
0.10
0.49
0.01
0.04

2x 10-4

2x 10-3

3 X 10-6

are not zero. This is seen from Eq. (14). The latter method is employed at
TRIUMF.13 The cavities are placed in a three-fold symmetry (the machine
superperiodicity is chosen to be six) and the tune is chosen to be Vx = 5.25 (n = 5),
which is not a multiple of three. The effect of distributed cavities on the
synchrobetatron resonance was studied extensively and the method mentioned
above to suppress the resonance was used at SPEAR.4

,7 The formalism used in
this paper gives a general description of the effect.

Finally we check how rapidly O/X changes with 8. With the numerical values
used in this section o/~ = 0.0013 for the maximum betatron emittance of Ix =
1.5 X 10-4 eV sec. This is much smaller than the tune Vx- Thus the assumption
used in Section 2 applies even to very small Ix.

5. CONCLUSIONS

A Hamiltonian formalism is developed for the synchrobetatron resonance driven
by dispersion in cavities. The canonical perturbation theory using the Hamiltonian
of Eq. (1) gives some useful formulae shown in Section 3 that can be easily used
for numerical evaluation of the effect. The effect of distributed cavities is also
studied. If cavities are placed symmetrically and the horizontal betatron tune Vx is
chosen properly, synchrobetatron resonance can be suppressed. Although this fact
has been known for some time, it is given mathematical expression by the
formalism of the present paper. The theory is also shown to agree with computer
simulations for PETRA.6
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APPENDIX

The Hamiltonian for the synchrobetatron resonance driven by dispersion in
cavities was studied by Chao, Morton,9 Suzuki,IO Corsten and Hagedoorn. 11 We
derive it here for the sake of completeness. We start with the Hamiltonian E for
the particle motion under Lorentz force. 15

E = c{mZc
z

+ (1 + ~/p)Z (Ps - eAs)z+ (Px - eAxf

+ (Py - eAyffZ + e<l>, (A.1)

where the time t is used as an independent variable. In Eq. (A. 1), we use a plane
curvilinear coordinate system (x, y, s) with the radius of curvature p. We neglect
torsion. Here x is the horizontal coordinate, y is the vertical coordinate and s is
the orbit length. Ax,y,s is the vector potential, <I> is the scalar potential, PX,y,s is the
canonical momentum, e is the elementary charge, c is the velocity of light and m
is the rest mass.

We neglect any static electric field and put <I> = O. If we neglect the edge effects
of the magnets, Ax = A y = 0 for the magnets. We only consider the accelerating
field of the RF cavity, neglect Ax and A y , and put Ax = A y = 0 for the cavity. We
further neglect vertical motion and put y and Py to be zero.

The Hamiltonian is further simplified by taking the orbit length s as an
independent variable. In this case,15 the Hamiltonian H o is given by

H o= -Ps

= -(1 + x/p)[(~r-mZcz- p~ f/Z - eA.,

and (x, px) and (t, - E) become canonical variables.
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The electric field E s is given by

E == _ aAs

s at

== I VjDp(S - Sj) sin (wrft + <POj),
j

(A.3)

where Vi is the voltage gain due to the cavity j located at S == Sj, wrf is the angular
frequency and <POj is the initial phase. The function Dp (s) is a periodic delta
function with the period of the circumference 27TR. The summation over j runs
over the circumference. The vector potential is given by

(A.4)

(A.S)

when wrf is constant as in an electron synchrotron. Even when wrf changes, as in
proton synchrotrons, Eq. (A.4) holds to a good approximation because wrf/wrf« 1
generally where wrf is the derivative of Wrf with respect to the time.

We depart from the treatment of Ref. (10) and include the rest mass in order
for the theory to be applicable to proton synchrotrons. We expand the kinematic
terms in Eq. (A.2) and obtain

dE dE2 dE2 x dE P~
H o == -----+ --+-

c(3 2c(3Eo 2c(3 3Eo p c(3 2Po

Po 2 1, )+-2 Kx --LJ eVjD(S-Sj) cos (wrft+<POj ,
wrf j

where

and

1 1 aB
K==-+-­

p2 Bp ax '

dE==E-Eo

(A.6)

(A.7)

(A.8)

Here the relation (3Eo == ecBp is used and a constant term -Po is neglected.
Now we introduce a dispersion function D that satisfies the differential equa­

tion
1

D"+KD==-
P

where the prime denotes differentiation with respect to~We make a canonical
transformation from (x, Px) and (t, -E) to (x, Px) and (t, -dE), which is defined by

_ dE,
Px = Px - c{3 D ,

1 dE
x==x---D

(32 Eo '

dE==E-Eo

_ D D'
t == t +-- Ii - - x.

(32Eo x c(3

(A.9)
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This canonical transformation is due to Corsten and Hagedoorn11 and its generat­
ing function F is given by

F=p- (x_l.-ii.E D)+ ii.E D'x-(ii.E+E)t
x (32 Eo c(3 0

-lDD' dE
2

2 c(33Eo '

The transformed Hamiltonian H 2 is

Hi = - dE _2 (D_~) dE
2

+2P~+~PoKi2
c(3 2 P "1 2 c(33Eo 2 Po

eVsin <Ps (_ D _ D'_)- t---p +-x
27TR (32Eo x c(3

1 { (_ D D') }-.-L eVjS(s - Sj) cos wrf t --2- K+- X + t/JO j
Wrf j (3 Eo c(3

Now we introduce the angular position 0 defined by

S
0=­

R

(A.10)

(A.11)

(A.12)

The periodic delta function Spes - Sj) is expanded in a Fourier series and we get

Spes - Sj) cos (wrft + <POj) = _1_ f {exp [i(n8 +Wrft + <POi - n8i )]
47TR n=-oo

+exp [i(nO - Wrft - <POj - nOj)] (A.13)

Equation (A.13) is the expansion of the standing-wave field in travelling waves.
We keep only terms that give constant acceleration; that is, we take only terms
with n = ± h, where h is the harmonic number defined by

Wrf = hwo. (A.14)

(A.1S)

Here Wo is the angular revolution frequency of the synchronous particle. Then we
have the expansion

( _ 1 (_ hs )
Sp S - Sj) cos (wrft + <POj) = 27TR cos wrft - R + <POj + hOj •

For proper phasing, <POj + hOj should be an integer multiple of 27T and we assume
this in the following.

We now make another canonical transformation defined by

ii.Ew=-­
Wrf

_ hs
<P = wrft - R '

(A.16)
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and whose generating function F is

F -- (. - hS)w
== xpx + wrft - R .

The transformed Hamiltonian H 2 is

(A.17)

(A.18)

H I (D 1) 2 2 POKx 2
p~

2== - --- W W +--+-
2c(33Eo P "1 2 rf 2 2po

1 ( p~ , X)- 2 LeVj cos <b -wrfDj--+wrfDj -
1rRWrf j c(3po c(3

sin cPs, ( p~ , X)
- 2 R i.J eVi cP - wrfDj --+ wrfD j - •

1r wrf j c13po c(3

In the Hamiltonian (A.18), the independent variable is the orbit length s. We
multiply Eq. (A.18) by R when we use the angular position () as an independent
variable. We also average the Hamiltonian (A.18) over one revolution; then, the
DIp term becomes the momentum compaction factor cx. The Hamiltonian (A.18),
in which the tildes are taken out, the multiplication by R is done to make () an
independent variable and <p is put equal to <Ps +a<p, is Eq. (1) in the text.




