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Abstract: To explain the observed X-ray data in a black hole–accreting matter system and understand

the physical mechanisms behind QPOs, we have numerically modeled the dynamical and oscillation

properties of the shock cone formed around both slowly and rapidly rotating Hartle–Thorne black

holes, resulting from the mechanism of Bondi–Hoyle–Lyttleton (BHL). According to the numerical

simulations, an increase in the quadrupole parameter leads to a decrease in the shock cone opening

angle around the black hole. A larger quadrupole parameter results in more matter falling into the

black hole within the cone. The combination of the quadrupole parameter and black hole rotation

causes the matter inside the cone to exhibit chaotic motion. These dynamical changes and chaotic

behavior of the shock cones excite the fundamental oscillation modes. Moreover, new frequencies

have been formed due to the nonlinear coupling of the fundamental modes. Conversely, we have

numerically studied the behavior of cones formed around rapidly rotating Hartle–Thorne black holes and

found differences and similarities to those obtained from slowly rotating cases. Finally, comparing the

outcomes obtained from Hartle–Thorne gravity with the results from Kerr and Einstein–Gauss–Bonnet

(EGB) gravities reveals the impact of the quadrupole parameter on the shock cone and QPOs.

Keywords: numerical relativity; rotating black hole; alternative gravities; BHL; QPOs

1. Introduction

One of the keys to unraveling the mysteries of the universe is to fully understand
the nature and age of black holes and neutron stars. In this context, interpreting observed
X-ray data is crucial for understanding these enigmatic objects. X-ray binary systems are
among the most important sources of X-rays. In these systems, the compact object at the
center emits X-rays while pulling material from the donor star and forming an accretion
disk. If the compact object is a black hole, these observed X-rays could help reveal the
characteristics of these mysterious structures in the universe.

In black hole X-ray systems, the gravitational attraction of the black hole draws matter
from the donor star towards the black hole. This process initiates the formation of an
accretion disk around the black hole. The interaction between the newly formed disk
and the black hole leads to high X-ray luminosity. The period of this emission can vary
from a few days to a few months [1]. The formation of X-rays could be attributed to
instabilities and quasi-stable states in the disk. Transitions between these states can lead
to the formation of quasi-periodic oscillations (QPOs) on the disk. Understanding the
mechanisms behind these QPOs can contribute to our knowledge of the dynamic structure
of the disk and to estimating the physical properties of the black hole at the center, such
as its spin and mass. This information can provide answers to fundamental questions in
astrophysics, leading to a better understanding of the universe.

In black hole X-ray binary systems, QPOs are divided into two categories: low-
frequency and high-frequency QPOs. Low-frequency QPOs typically have a frequency
of less than 30 Hz and are further classified into types A, B, or C based on their distinct
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characteristics. High-frequency QPOs, on the other hand, are characterized by frequencies
greater than 30 Hz [2]. These low- and high-frequency QPOs can create nonlinear com-
binations, resulting in emissions at various frequencies [2,3]. Over the past twenty years,
thanks to the improved sensitivity of detectors, there has been a significant increase in
the number of these observations. Spectral analysis of X-ray data from various sources
has revealed the characteristics of many low- and high-frequency sources. Some notable
examples include GRO J1655-40 with frequencies observed at 300 Hz and 450 Hz [4], XTE
J1550-564 with frequencies ranging from 102 to 284 Hz [5], and GRS 1915+105 with frequen-
cies observed between 67 Hz and 170 Hz [6], among others. It has also been observed that
these frequencies often exhibit resonances, such as 3:2 and 5:3 ratios [7], and such resonant
states are commonly observed in QPOs. These observations contribute significantly to our
understanding of the dynamics of black hole systems and the physics of accretion disks.
The resonances and varied frequencies of QPOs help in probing the inner regions of these
disks and offer insights into the properties of the black holes themselves, such as their mass
and spin.

The numerical solution of general relativistic hydrodynamic equations plays a crucial
role in understanding the origin of QPOs in the vicinity of black holes [8–13]. By solving
these equations, researchers can explore the dynamic structure of the accretion disk around
black holes, the presence of shock waves, and other chaotic conditions that arise in regions
close to the black hole event horizon, where gravity is extremely strong [14–25]. Low-
and high-frequency QPOs, significant phenomena observed in these systems, have been a
subject of extensive research in the literature [4,26–28]. By examining these QPOs, scientists
aim to gain deeper insights into the complex dynamics of accretion disks and the influence
of the strong gravitational field of black holes [3,29]. These studies involve analyzing
how matter behaves in the extreme conditions near the black hole, including how it orbits,
the speeds it reaches, and the ways in which it emits radiation (like X-rays) as it falls into the
black hole. Understanding the generation and characteristics of these QPOs not only helps
in probing the environment near black holes [25] but also provides valuable information
about the properties of the black holes themselves, such as their mass, spin, and the nature
of their gravitational pull [30–34].

To contribute to the explanation of observational data of compact objects and to
investigate the source of electromagnetic emissions occurring around them, it is important
to understand the cause of the mass increase around these objects. One of the cases leading
to this mass increase is BHL accretion [35,36]. Initially proposed by Bondi and Hoyle,
and later developed by Lyttleton, this mass accumulation mechanism occurs as a result of
the movement of the compact object in the environment. Matter falling onto the moving
compact object begins to accumulate towards the other side due to the strong gravitational
attraction force and the velocity of the matter, thus forming a disk. Generally, as a result
of BHL, shock cones or bow shocks form around black holes. Through these mechanisms,
continuous accretion of matter onto the black hole is ensured, while also causing an increase
in the mass of the black hole. The formulation of the BHL accretion mechanism can be
found in work by Edgar [37], Giulini [38]. BHL accretion is important in explaining the
nature of QPOs (quasi-periodic oscillations) formed in regions near the horizon where
strong gravitational attraction forces, similar to black holes, predominate.

BHL accretion serves as a key process in forming either quasi-stable or stable accre-
tion disks around black holes. This phenomenon occurs when matter is drawn from an
upstream region into the black hole. The subsequent shock waves and physical events
within these accretion disks provide insights into the mechanisms behind the phenomena
observed in X-ray binary systems and active galactic nuclei (AGN). Extensively referenced
in astrophysical research, this accretion process is crucial in the formation of disks around
various black holes, including Schwarzschild [14,15,19,23,39,40], Kerr [16–18,21,41–43], and
other types of black holes [24,44], facilitated by theoretical [37] and numerical applications
of general relativistic hydrodynamics (GRH) and magnetohydrodynamics (MHD). An im-
portant observation from these studies is the formation of stable shock cones, which are
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instrumental in generating X-ray emissions near black holes and lead to the occurrence
of QPOs.

Numerical modeling of accretion disks and uncovering the resulting physical mech-
anisms would contribute to explaining some observational data. Studying these models
using different gravities obtained from solving the Einstein equations would aid in com-
paring the numerical data with observational data and understanding the nature of the
X-rays emitted in such astrophysical events. One of these gravities is Hartle–Thorne.
The Hartle–Thorne metric describes the geometry in the region where the gravitational
field of a slowly rotating and slightly deformed compact object is strong. This metric is
defined based on three different multipole moments: the mass, rotation, and quadrupole
parameters of the compact object [45,46]. The Hartle–Thorne solution not only describes
the spacetime outside the compact object but also defines the gravitational field inside it.
Hartle–Thorne gravity has a more general solution compared to Kerr [45,47]. While the
Kerr solution is only applicable to rotating black holes, the Hartle–Thorne solution can be
applied to a wide range of compact objects. On the other hand, since the Hartle–Thorne
metric includes the quadrupole parameter due to the deformation of the rotating object,
variations in spacetime with this parameter provide explanations for different astrophysical
phenomena. The Hartle–Thorne solution approaches the Kerr solution in the case of slow
rotation of the compact object. Thus, it can be used in scenarios involving slowly rotating
black holes [48–50]. Describing the spacetime around the black hole with the Hartle–Thorne
metric could lead to alternative solutions to events, such as understanding the mass ac-
cretion scenarios around these objects and uncovering different physical mechanisms that
may occur.

We use BHL accretion to describe the structure of the shock cone around both slowly
and rapidly rotating Hartle–Thorne black holes. This allows us to determine the physical
characteristics of the resulting shock waves and the QPO oscillation frequencies, all in
relation to the quadrupole moment (q) of Hartle–Thorne gravity. We also compare our
findings with previous studies and models of Schwarzschild, Kerr, and EGB black holes,
revisited here based on the spin parameter of the black hole used in this paper. This
comparison highlights how the shock wave properties differ in the context of Hartle–
Thorne gravity. Our focus is on examining how this gravity, originally formulated for
slowly rotating compact objects [50,51], interacts with the matter surrounding a rapidly
rotating black hole. This investigation aims to understand the dynamics of such systems
under the influence of gravity in rapidly rotating conditions. Finally, we shed light on how
observational data can be explained using QPOs derived from all these gravities, focusing
particularly on the novel contributions of Hartle–Thorne gravity in this field.

In this article, all calculated physical parameters vary depending on the mass of the
central black hole. This variability allows the calculations to explain the X-ray data observed
in systems with either stellar-mass or supermassive black holes. If the mass of the central
black hole is the only known parameter, it can be used in geometrized units to express
the rest-mass density, mass accretion rate, oscillation frequency, and other parameters in
the SI unit system. Throughout the paper, unless explicitly stated otherwise, we adopt the
convention of using geometrized units, where c and G are set to 1.

2. Equations

2.1. Hartle–Thorne Spacetime Metric

The existing studies on the physical properties of the shock cone formed around black
holes, using Schwarzschild and Kerr geometries, are important for understanding one
aspect of the universe nature. However, these models are somewhat limited. The Hartle–
Thorne model not only incorporates the rotation parameter of the black hole into the
calculations but also accounts for the effects of the quadrupole parameter. Thus, by present-
ing a more general and realistic model, it can reveal the physical properties of the shock
cone around black holes more accurately. The data obtained from the Hartle–Thorne black
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hole model can be used to explain the physical reasons behind observational data taken
from complex astrophysical systems.

The Hartle–Thorne metric is one of the solutions of General Relativity that describes
the spacetime around a rotating compact object with static and axial symmetry. This
metric, resulting from the rotation of the object, extends the geometry by including small
distortions in the surrounding spacetime, known as the quadrupole parameter, going a step
beyond the Kerr black hole. Particularly applied to slowly rotating neutron stars [48,49],
this metric can also be applied to black holes [48,50], allowing for different modeling of
the compact object gravitational field. The quadrupole parameter is, in fact, a result of the
shape change caused by the rotation of the compact object.

The Hartle–Thorne metric describes the spacetime around slowly rotating black holes,
and this description depends on the parameters of the mass quadrupole moment Q and
angular momentum (a = J/M2). The dimensionless quadrupole moment parameter is
defined as (q = Q/M3) This metric has been developed as a solution to the Einstein
field equations in a vacuum, taking into account the mass, angular momentum, and mass
quadrupole moment of the black hole. The Hartle–Thorne metric includes calculations
up to the second order of angular momentum and the first order of the mass quadrupole
moment, allowing for a detailed examination of the spacetime around black holes within
the Theory of General Relativity. The Hartle–Thorne spacetime metric is cited in [50,51] as:

ds2 = −

(

1 −
2M

r

)

(

1 + 2 f1P2(Cosθ) + 2

(

1 −
2M

r

)−1 J2

r4

(
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)

)

dt2

+

(

1 −
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r

)−1
(
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(
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r
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)
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−
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r
Sin2θdtdϕ + r2[1 − 2 f3P2(Cosθ)]dθ2r2[1 − 2 f3P2(Cosθ)]Sin2θdϕ2,

where P2(Cosθ) = 1
2

(

3Cos2θ − 1
)

, f1 = J2
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(
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. P2(Cosθ) is the second Legendre polynomial

of the first kind. Q1
2 and Q2

2 are the associated Legendre polynomials of the second kind

which are Q1
2 =

(

x2 − 1
)1/2

(

3x
2 ln x+1

x−1 − 3x2−2
x2−1

)

and Q2
2 =

(

x2 − 1
)

(

3
2 ln x+1

x−1 − 3x3−5x
x2−1

2
)

as

a function of x which is x = r
M − 1.

The Hartle–Thorne metric, which is an extension of the Schwarzschild metric, in-
corporates the effect of the rotation parameter and describes the spacetime around black
holes. Figure 1 illustrates the variation in the horizon of the Hartle–Thorne black hole with
respect to the black hole rotation parameter. As seen in the figure, the smallest horizon
occurs at q = 0 where r = 2M. For q > 0, it is observed that the horizon moves away
from 2M. On the other hand, the black hole rotation parameter slightly decreases the size
of the horizon. In other words, at the same q, the horizon approaches 2M slightly. This
demonstrates that the Hartle–Thorne metric behaves similarly to the Kerr metric [50].

To address the GRH equations within the spacetime matrix, it is necessary to estab-
lish the lapse function and shift vectors within the Hartle–Thorne coordinate framework.
The connection between the four-dimensional metric gab and the three-dimensional metric
γij, along with the lapse function and shift vectors, is described as follows [52]:

(

gtt gti

git γij

)

=

(

(βkβk − α2) βk

βi γij

)

, (2)

where i, j, k = 1, 2 and 3, the lapse function for Hartle–Thorne spacetime metric is
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and the shift vectors can be represented as
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r
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Figure 1. The variation in the horizon of the Hartle–Thorne black hole is dependent on both the black

hole rotation parameter and quadrupole moment. As q increases, the horizon moves further away

from 2M, while as a/M increases, it approaches 2M slightly.

2.2. EGB and Kerr Spacetime Matrices

Four-dimensional Einstein–Gauss–Bonnet gravity, as proposed by Glavan and Lin [53],
Ghosh and Kumar [54], represents a significant advancement in gravitational theory that
describes the spacetime around black holes by bypassing Lovelock theorem. It is entirely
independent of Ostrogradsky instability. Initially, this theory delineates the geometry of
a static, spherically symmetric black hole, which, unlike the Schwarzschild black hole,
features two horizons instead of one, determined by the EGB constant. A rotating EGB
black hole model has also been introduced [24,55]. Despite ongoing debates in the scientific
community regarding its validity, there have been efforts to apply it both numerically and
theoretically to various astrophysical systems to derive solutions. This black hole model,
offering an alternative solution that depends on the EGB coupling constant beyond the
Schwarzschild and Kerr black holes, plays a crucial role in spherically symmetric systems
to unravel the universe’s mysteries. Further details about EGB black holes can be found
in Donmez [24], Glavan and Lin [53], Ghosh and Kumar [54], Donmez et al. [56], and their
cited works.

EGB gravity presents a unique alternative to traditional gravitational theories by
offering distinct solutions within the framework of Einstein equations [57]. This theory is
distinguished by its inclusion of an alpha (α) parameter, which is absent in Kerr gravity,
which defines the gravitational field around the rotating black hole. The impact of the
α parameter becomes particularly significant in regions close to black holes, serving as
a crucial tool for elucidating various observed astronomical phenomena. By including
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terms of a higher order in curvature than those found in General Relativity, the α parameter
enriches our understanding of black hole behavior under extreme conditions and within
the context of higher-dimensional spacetime. The metric for EGB is detailed in [24,54,56].

ds2 = −
∆2 − a2sin2θ

Σ
dt2 +

Σ

∆2
dr2 − 2asin2θ

(

1 −
∆2 − a2sin2θ

Σ

)

dtdϕ + Σdθ2 +

sin2θ

[

Σ + a2sin2θ

(

2 −
∆2 − a2sin2θ

Σ

)]

dϕ2, (5)

where Σ = r2 + a2 cos2 θ, ∆2 = r2 + a2 + r4

2α

(

1 −
√

1 + 8αM
r3

)

. Within this framework,

the variables M, α, and a represent the black hole mass parameter, the Gauss–Bonnet
coupling constant, and the black hole spin, respectively. The lapse function is given by α̃ =
√

a2(1− f (r))2

r2+a2(2− f (r))
+ f (r), while the shift vectors are defined as βi =

(

0, 0, ar2

2πα

(

1 −
√

1 + 8παM
r3

))

.

The function f (r) is determined by the expression f (r) = 1 + r2

2α

(

1 −
√

1 + 8αM
r3

)

. In the

GRH equations, the gamma matrix, symbolized as γi,j, outlines the three-dimensional
space. It is extracted from the metrics gab applicable to both Kerr and EGB gravities. Here,
the Latin indices i and j range from 1 to 3.

The gravitational force of the Kerr black hole is very strong due to its rotation pa-
rameter, which significantly warps the surrounding spacetime. This effect is particularly
important when exploring the properties of accreting matter in the inner area, where
the Kerr metric is the most suitable tool for analysis. The metric of the Kerr black hole,
expressed in Boyer–Lindquist coordinates, is defined as follows [16,52].

ds2 = −

(

1 −
2Mr

∑
2

)

dt2 −
4Mra

∑
2

sin2θdtdϕ +
∑

2

∆1
dr2 +

2

∑ dθ2 +
A

∑
2

sin2θdϕ2, (6)

where A = (r2 + a2)2 − a2∆sin2θ and ∆1 = r2 − 2Mr + a2. The shift vector and lapse
function of the Kerr metric are given by shift vector (βi): βt = 0, βr = 0, and βθ = −2Mar

A .

The lapse function is α̃ =
√

∆1
A .

2.3. General Relativistic Hydrodynamic Equations

Modeling the shock cone around black holes, formed as a result of BHL accretion using
different gravitational theories, can lead to various physical processes on the cone and
also to the formation of different QPO frequencies. In this article, to model the shock cone
around Kerr, EGB, and Hartle–Thorne black holes, we numerically solved two-dimensional,
General-Relativity-based hydrodynamic equations on the equatorial plane in an ideal fluid
state, neglecting the effect of the magnetic field. The conserved form of the GRH equations
is given as follows [58,59]:

∂U

∂t
+

∂Fr

∂r
+

∂Fϕ

∂ϕ
= S. (7)

The vectors U, Fr, Fϕ, and S are associated with the conserved variables, the fluxes in
the r and ϕ directions, and the source terms, respectively. These conserved variables are
determined based on the primitive variables, as demonstrated in the following description:

U =





D
Sj

τ



 =





√
γWρ

√
γhρW2vj√

γ(hρW2 − P − Wρ),



 (8)

and the fluxes are
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




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α̃
(

vi − 1
α̃βi

)

D

α̃
((
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α̃βi

)

Sj +
√

γPδi
j

)

α̃
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α̃βi

)

τ +
√

γPvi
)











(9)

and,

S⃗ =







0

α̃
√

γTabgbcΓc
aj

α̃
√

γ
(

Ta0∂aα̃ − α̃TabΓ0
ab

)






(10)

where Γc
ab is the Christoffel symbol, h = 1 + ϵ + P/ρ represents the enthalpy,

W = (1 − γa,bvivj)1/2 denotes the Lorentz factor, and vi = ui/W + βi represents the three-
velocity of the fluid. ϵ, γi,j, γ, gab, ρ, ua, p, and h are the internal energy, the three-metric
which defines the space curvature, the determinant of the three-metric, the four-metric of
the curved spacetime, the rest-mass density, the four-velocity of the fluid, the fluid pressure,
and the specific enthalpy, respectively. The indices a, b, and c range from 0 to 3.

3. Initial and Boundary Conditions

BHL accretion describes a mass accretion mechanism that occurs as a result of matter
from the interstellar environment falling towards the black hole due to the movement
of the black hole at the center. We model the shock cone formed by the matter falling
towards the black hole from one side of a spherical surface by numerically solving the
hydrodynamic equations of the General Theory of Relativity, thereby trying to understand
the mechanism of the accreting matter and the physical properties of the shock cone. In this
paper, while doing this, we use different gravities to understand the parameters that are
effective in that gravity for the formation of the shock cone and the characteristics of the
QPO frequencies that occur in the meantime. For numerical modeling, we define the
density of the matter falling towards the black hole as ρ = 1. We calculate the pressure
of the falling matter using the ideal gas equation P = (Γ − 1)ρϵ with the speed of sound
C∞ = 0.1. Here, the adiabatic index is Γ = 4/3. Also, the radial, Vr =

√
γrrV∞ cos(ϕ),

and angular, Vϕ = −
√

γϕϕV∞ sin(ϕ), velocities defined in BHL accretion have been used.
As seen, these velocities are defined depending on the gas asymptotic speed V∞. The
dependence of the shock cone on the asymptotic speeds in different gravities is explained
in [14,16,17,19,21,39–42,44,56]. The matter is sent to the computational domain with the
defined density, pressure, and velocities from the outer boundary, thereby forming the
shock cone and its instabilities using an asymptotic V∞ = 0.2. Here, the value V∞ = 0.2
is defined as the most effective asymptotic speed value for producing QPOs according
to [16,17,56]. Other parameters required for these models are summarized in Table 1.

In our simulation, the computational grid is arranged with equal spacing in both radial
and angular directions. This setup includes Nr = 1024 cells radially and Nϕ = 256 cells angu-
larly. The simulation space radial boundaries are set at rmin = 3.7 M for the inner boundary
and rmax = 100M for the outer boundary. Angularly, the boundaries are determined at
ϕmin = 0 and ϕmax = 2π.

The simulation duration (tmax = 35,000 M) extends well beyond the time required for
the shock cone to reach a steady state, including the development of a steady shock cone. It
is observed that the primary features of the simulation results, including the occurrence of
QPOs, the development of instabilities, the occurrence of shock waves, and the trends in
accretion rates, are not significantly affected by changes in grid resolution [24,44,56].

The correct treatment of boundaries is essential in numerical simulations to prevent
unrealistic results. For the inner boundary, we apply an outflow boundary condition to
allow the gas to fall into the black hole through straightforward zeroth-order extrapolation.
At the outer boundary, gas is consistently injected with the initially mentioned density,
velocities, and pressure in the upstream region of the computational domain, and an
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outflow boundary condition is employed on the downstream side of the computational
domain. Along the ϕ-direction, periodic boundary conditions are employed to maintain
the continuous behavior of the simulation.

Table 1. The initial model adopted for the numerical simulation of Kerr, Gauss–Bonnet, and Hartle–

Thorne metrics. Model, type, α, a/M, q, and τss are the name of the model, gravity, Gauss–Bonnet

coupling constant, black hole rotation parameter, quadrupole parameter, and time required to reach

the steady state, respectively.

Model Type α(M2) a/M q τss/M

SCH Schwarzschild − − – 3100

K04 − 0.4 – 2600
K09 Kerr − 0.9 – 2350

K0_EGB1 0.63 0 – 3500
K0_EGB2 −3.7 0 – 3200

K04_EGB1 Gauss-Bonnet 0.63 0.4 – 3100
K04_EGB2 −3.89 0.4 – 2900
K09_EGB1 0.054 0.9 – 2600
K09_EGB2 −3.61 0.9 – 2400

K04_HT1 – 0.4 0 2400
K04_HT2 – 0.4 0.5 2550
K04_HT3 – 0.4 1 2700
K04_HT4 – 0.4 2 2800
K04_HT5 Hartle-Thorne – 0.4 3 2900
K04_HT6 – 0.4 4 3000
K04_HT7 – 0.4 5 3100

K09_HT1 – 0.9 0 2200
K09_HT2 – 0.9 0.5 2250
K09_HT3 – 0.9 0.8 2230
K09_HT4 Hartle-Thorne – 0.9 1 2800
K09_HT5 – 0.9 2 2900
K09_HT6 – 0.9 3 3000
K09_HT7 – 0.9 5 3200

4. BHL Accretion around a Slowly Rotating Black Hole in Hartle–Thorne Gravity:
a/M = 0.4

This work aims to advance our theoretical understanding in astrophysics by providing
significant insights into black holes and the dynamics of matter around them. Hartle–
Thorne black holes, as an important application of General Relativity Theory, enable us to
gain more information about these mysterious objects in the universe through such research.

The Hartle–Thorne metric is an extended version of the Schwarzschild metric, de-
signed to understand the spacetime structure around slowly rotating black holes. The
Hartle–Thorne solution can be applied to various scenarios involving rotating compact
objects, such as neutron stars or black holes, regardless of whether the mass around the
compact object is low or high. This metric takes into account the black hole rotational
parameters and quadrupole moment, providing a more realistic spacetime model. In this
context, studying the shock cones that form around slowly rotating black holes is crucial.
Unlike the Kerr solution, the Hartle–Thorne metric examines the effects of quadrupole
moments on QPOs in the shock cone formed around rotating black holes. This examination
is critically important for understanding the QPO phenomena observed in high-energy
astrophysics and X-ray timing. The Hartle–Thorne metric demonstrates how spacetime
is warped around a rotating black hole, particularly how light bends near the surface
of the black hole. This bending of light is vital for understanding the structure and dy-
namics of the shock cone around black holes. Additionally, understanding the effect of
the quadrupole parameter on spacetime can contribute to explaining some unexplained
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observational data. The numerical results obtained from this study aid in comprehending
complex problems in high-energy astrophysics.

4.1. Dynamics of Shock Cones around a Hartle–Thorne Black Hole

In the vicinity of a slowly rotating Hartle–Thorne black hole, the behavior of the shock
cone formed as a result of BHL accretion, according to the quadrupole parameter, is shown
in Figure 2. Figure 2 demonstrates how the density, represented by color, contour lines,
and a velocity vector plot on the equatorial plane, changes with the quadrupole parameter.
A value of q = 0 emphasizes that near the horizon of the black hole, the mass distribution
shows an ideal symmetric distribution, while q = 5 indicates a significant deviation from
spherical symmetry in this distribution. As seen in Figure 2, the contour lines representing
density undergo changes near the black hole, both inside and outside the shock cone.
Especially inside the shock cone, the flattening of these lines has increased, indicating
that, due to the influence of the quadrupole parameter, the situation has evolved from a
spherically symmetric to an elliptical one. This change definitively affects the behavior of
the QPOs trapped inside the shock wave. In addition to these, by drawing a velocity vector
graph, we can see how matter falls into the black hole and how the shock cone continuously
feeds on matter. Additionally, it has been observed that the stagnation point is formed
at almost the same point (r ∼ 25 M) inside the shock cone in all models. In other words,
as matter within the cone with r < 25 M falls towards the horizon of the black hole, it is
also pushed outward. The continuously falling matter in a strong gravitational field can
continuously generate X-ray emissions.

The location of the shock wave and the opening angle of the cone near the black hole
horizon change the physical properties of the X-rays occurring in that area, and conse-
quently, the QPO frequencies. Figure 3 shows how the dynamic structure of the shock cone,
formed around the slowly rotating (a/M = 0.4) Hartle–Thorne black hole, changes with the
quadrupole parameter. On the left side of the figure, the change in density with azimuthal
length at r = 3.88 M is presented. The positions of the shock waves and the presence
of the cone are clearly visible. The right part of the same figure illustrates the change
in the opening angle of the formed shock cone depending on q. As seen in both graphs,
the opening angle decreases as q increases. At the same time, the amount of matter within
the cone also tends to decrease. These changes in the cone affect the physical properties
of the X-rays and, thus, the QPOs generated by the interaction of the black hole with the
shock cone. Moreover, the interaction of the stationary shock waves formed around the
black hole leads to the formation of nonlinear chaotic behaviors. These behaviors cause the
nonlinear coupling of the fundamental oscillation frequencies and lead to the formation of
new observable modes.

The changes in the radial and angular velocities of the shock cone around black holes
lead to alterations in the characteristic structure of the X-rays produced. In Figure 4, at
r = 3.88 M, the changes in the radial (see the left graph) and angular (see the right graph)
velocities of the cone, and consequently the shock cone resulting from BHL accretion, are
presented in relation to the quadrupole parameter. As observed in the right graph, at the
boundaries of the shock cone, i.e., where the stationary shock waves are located, the matter
falling towards the black hole slows down, while inside and outside the cone, the matter
accelerates as it falls towards the black hole. Simultaneously, as seen in the left figure, where
the radial velocity decreases at the shock waves, the angular velocity increases. The increase
in radial velocity leads to a rise in the matter temperature and thus to the emission of
high-energy X-rays. Simultaneously, the change in radial velocity at a fixed r = 3.88 M leads
to variations in the observed X-rays and consequently changes in the QPO frequencies. On
the other hand, the changes in angular velocity and high angular velocity cause broadening
due to the Doppler effect. This broadening plays an effective role in the variations in X-rays
at the boundaries of the shock cone. The formed shock cone and slowing shock waves lead
to the formation of different QPO frequencies. They also contribute to chaotic behavior,
which in turn helps in the generation of various QPO frequencies.
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Figure 2. These snapshots refer to the variation in the logarithmic density and the structure of shock

waves around the black hole with a/M = 0.4, depicted on the equatorial plane with color, contour

lines, and a velocity vector plot. To observe the change in density and shock cones near the black hole

horizon, and how they are affected by the Hartle–Thorne quadrupole parameter (q), the focus is on

a region from [xmin, ymin] → [−60M,−60M] to [xmax, ymax] → [60 M, 60 M]. This representation is

plotted much later after the shock cone has reached a steady state, specifically around t = 30,000 M.

Particularly, the influence of q on the dynamics of the shock cone is clearly visible in the region near

the black hole horizon, where the gravity is very strong. The influence of q on the dynamics of the

shock cone is moderate (not strong), with changes in density from ∼136 to ∼93 and at shock opening

angles from 1.2 to 0.9 rad for q = 0 to 5.
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a/M = 0.4

Figure 3. This figure depicts how the opening angle of the shock cone formed around the black hole

with a/M = 0.4 changes depending on the value of the parameter q. It has been observed that q not

only affects the amount of matter around the black hole and within the shock cone but also alters

the cone opening angle. In both graphs presented, it is apparent that as the value of q increases,

the opening angle of the cone decreases. This change in the cone opening angle, in turn, leads to

variations in the trapped QPO frequencies within the cone. This phenomenon highlights the complex

interplay between the physical parameters of the black hole and the dynamic properties of the matter

and radiation in its vicinity.
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Figure 4. The variation in the radial and azimuthal velocities at a specific point, r = 3.88 M,

in relation to the azimuthal angle for a/M = 0.4. The left graph demonstrates how the radial

velocity decreases at the location of the shock wave, indicating that the speed of matter falling

towards the black hole is slowing down. On the other hand, the right graph shows that within the

shock wave, the azimuthal velocity of the trapped matter is nearly zero. This essentially means

that the matter is falling directly towards the black hole and accreting within the cone, without

significant azimuthal (or tangential) movement. This observation is crucial in understanding the

dynamics of matter in the vicinity of the black hole, especially how it behaves when influenced by

shock waves and gravitational forces.

4.2. The Shock Cone Instability around the Hartle–Thorne Black Hole

The stability of the shock cone and the emergence of quasi-periodic behavior are
crucial for revealing the physical characteristics of the cone and explaining the observed
spectral data. In Figure 5, at r = 3.88 M, the changes in the mass accretion rate and the
behavior over time of the m = 1 mode after reaching saturation are considered for different
quadrupole parameter scenarios. As observed in the left part of the figure, after the shock
cone reaches a steady state, the mass accretion rate exhibits fluctuations around a certain
value, indicating signs of instability even in the steady state. This phenomenon is noted for
quadrupole values of q = 3 and below, while for higher values of q, either no significant
change is observed or the changes are not as pronounced as for lower values. Particularly,
for q = 5, the mass accretion exhibits a steady state without oscillations. On the other
hand, as the value of q increases, the amount of matter falling into the black hole increases,
leading to a decrease in the amount of matter in the shock cone. The right graph in Figure 5
illustrates the power of the mode, showing an increase in instability until it reaches a
steady state and saturation around t = 5000 M. From this point onwards, the shock cone
maintains its steady state, indicating that different modes of QPO frequencies are regularly
formed and propagated in such systems.
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Figure 5. The changes in instability of the accreting matter and the resulting shock cone around

the black hole with a/M = 0.4 after reaching the steady state, as related to the parameter q, are

demonstrated. The left graph shows that at r = 3.88 M, the mass accretion rate for certain q values

continues to oscillate around an equilibrium point even after reaching the stable state. The right

graph, however, indicates that each model reaches a stable state around the same time, approximately

at t = 4000 M.

4.3. QPOs around the Hartle–Thorne Black Hole

The instability of the shock cone around black holes, which is directly proportional
to the instability of the mass accretion rate, seen in Figure 5, leads to the excitation of
QPO modes. If the shock cone oscillates around a certain value after reaching saturation,
it enables the observation of these modes through telescopes, as these modes can be
continuously produced within the cone. The shock cone confines oscillation modes within
itself and excites them, leading to the formation of QPOs. These modes arise due to
pressure differences. According to our understanding and the literature [42,60], two
different pressure modes are excited within the cone. These correspond to the frequencies
generated by exciting the mode confined within the cone in the azimuthal direction, referred
to as fsh. This entirely depends on the shock cone opening angle. A smaller opening angle
results in a higher oscillation frequency. On the other hand, the excitation of modes
trapped in the radial direction between the stagnation point within the cone and the black
hole horizon is referred to as fEH In Figure 6, the instability formed around the slowly
rotating Hartle–Thorne black hole is examined to reveal the QPO behaviors generated by
these shock cones through a power spectrum analysis (PSD). We plot two different PSD
lines for each value of q. The first one is obtained from the mass accretion rate acquired
throughout the simulation time after the shock cone reaches the steady state (t∼2200 M).
The other one, on the other hand, is calculated during the time span from well after the
shock cone reached a stable state, specifically from t∼20,000 M to tmax = 35,000 M. These
two different PSD plots demonstrate that most of the frequencies formed within the cone
are not transient but genuine modes, as mentioned above, after the shock cone reached
the steady state. These modes continue to occur continuously afterward. In other words,
as long as the shock cone exists and the same physical conditions are maintained, the same
frequencies are consistently observed. The QPO frequencies arising within the shock
cone, dependent on the quadrupole parameter, have been identified. As depicted in the
figure, at each q value, QPO modes are observed to be trapped inside the cone, forming
fundamental modes. These modes typically correspond to the first two peaks observed in
each q. Additionally, due to the chaotic structure of the shock cone, these modes exhibit
non-linear coupling or resonance conditions, resulting in the emergence of new frequencies.
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Generally, these frequencies are observed to follow the 1:2:3... ratio, aligning with findings
from observational studies. Notably, around q = 1, where the oscillation amplitude is
high, the power of the frequencies is also significant, indicating that the frequencies in this
scenario have higher observability. As a result, in the case of a/M = 0.4, q = 1 has the
potential to explain observational data. The results obtained for this quadrupole parameter
can be compared with the QPOs obtained from black hole observations to estimate not
only the mass of the black hole but also its spin parameter. In conclusion, the shock cone
formed around the Hartle–Thorne black hole, exhibiting rich oscillation characteristics,
can be utilized to understand the physical properties of the black hole by comparing the
results obtained here with observations. The PSD derived from the mass accretion rate
data acquired long after the shock cone attained its steady state, along with the peaks
marked by the dashed line in Figure 6, possesses characteristics suitable for comparison
with observations and can be regarded as persistent.
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Figure 6. The behavior of the power spectrum density with respect to frequency is shown for

a/M = 0.4 after reaching steady-state conditions. A straight line is obtained from the PSD of the

mass accretion rate, seen in Figure 5, throughout the simulation immediately after reaching stability,

while a dashed line is obtained from the PSD of the mass accretion rate after t = 20,000 M. As seen,

the resulting fundamental modes and their nonlinear couplings generate persistent QPOs. The first

and second genuine modes are different, as are the subsequent non-linear couplings. However, in all

cases presented, the formation of 1:2:3... ratios is observed.

5. BHL Accretion around a Rapidly Rotating Black Hole in Hartle–Thorne Gravity:
a/M = 0.9

The Hartle–Thorne metric is obtained by extending the Schwarzschild metric to
include the rotation parameter. In mathematical terms, this extension is made under
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the assumption that the rotation parameter is much less than the speed of light. Therefore,
the theory may not fully represent models of rapidly rotating black holes [47,52]. Although
Hartle–Thorne gravity is suitable for describing the spacetime around slowly rotating
black holes, modeling the structure of the shock cone formed by BHL accretion for rapidly
rotating black holes would add scientific richness to the literature. Such modeling can help
us better understand the dynamics of rapidly rotating black holes. The shock cone around a
rapidly rotating black hole can be examined by comparing it with the Kerr metric or slowly
rotating Hartle–Thorne black holes. This comparison can reveal the effects of black hole
rotation speeds along with the quadrupole moment on the complex observed astrophysical
phenomena. In particular, studying the similarities and differences between QPOs in
rapidly and slowly rotating black holes can lead to a better understanding of these complex
phenomena. Comparing the QPO formations within shock waves of slowly rotating black
holes and Kerr black holes can provide important information about the origin and nature
of these oscillations. This information, especially in the interpretation of observational
data such as X-ray timings, can be useful. A detailed analysis of these dynamic structures
around black holes can make significant contributions to testing the predictions of General
Relativity and understanding the complex processes around black holes.

5.1. Dynamics of Shock Cones around the Hartle–Thorne Black Hole

The structure of the cone formed around the rapidly rotating Hartle–Thorne black hole,
as shown in Figure 7, and its dependence on the quadrupole parameter have been revealed.
Here, at r = 3.88 M, the rest-mass density of the shock cone and the opening angle of the
cone have been plotted for different values of q. It can be observed that the obtained results
are similar to those for the slow-rotating black hole model presented in Section 4. It is clearly
seen that the only difference is the larger opening angle in the rapidly rotating black hole,
indicating that the black hole rotation parameter more prominently affects the cone.
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a/M = 0.9

Figure 7. Same as Figure 3, but for a/M = 0.9.

Analogous to Section 4, the variations in radial and azimuthal velocities dependent
on the quadrupole parameter are plotted in Figure 8. It has been observed that the results
exhibit similarities with the cone structure formed around the slowly rotating black hole.
As previously mentioned, the influence of the black hole rotation parameter on the dynamic
structure of the cone near the black hole horizon is clearly evident. This influence, coupled
with the changing opening angle of the cone, means that the QPO frequencies around the
black hole would display different behaviors.
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Figure 8. Same as Figure 4, but for a/M = 0.9.

5.2. The Shock Cone Instability around the Hartle–Thorne Black Hole

To understand the instability behavior of the shock cone, reveal its oscillation attribute,
and determine the saturation time, Figure 9 depicts the mass accretion rate and the time
evolution of mode power in the case of a rapidly rotating black hole, a/M = 0.9, similar to
the model around a slow-rotating black hole discussed earlier in Section 4. Although the
instability behaviors of the shock cone appear similar in both slow- and fast-rotating black
hole scenarios, especially for large quadrupole parameters (q > 2), it is observed that the
shock cone exhibits strong instability even after reaching a steady state. This suggests that,
particularly for large q values, the oscillations trapped within the cone could be strongly
formed and excited even after the cone reaches a steady state. This could enhance their
observability, and the oscillation modes obtained for these large q values can be used to
explain observational results.
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Figure 9. Same as Figure 5, but for a/M = 0.9.
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5.3. QPOs around the Hartle–Thorne Black Hole

A rapidly spinning Hartle–Thorne black hole (a/M = 0.9) is theoretically impossible.
However, the fact that the numerically obtained results can be compared with observations
and shed light on certain cases indicates the value of the studies conducted. Simultaneously,
we also open a discussion area in the literature.

We examine the behavior of quasi-periodic oscillations (QPOs) for rapidly rotating
black hole models. In the case of a rapidly spinning black hole, as explained in Section 4.3,
two different PSDs have also been conducted for each PSD plot. This enables the determi-
nation of which peaks are transient and which ones are persistent. As depicted in Figure 9,
unlike the slowly rotating case, it has been observed that for each quadrupole parameter,
after reaching a steady state around a certain value, instability arises. In the slow-rotating
black hole model, no instability is observed for q > 3. Therefore, no corresponding QPOs
have formed for these cases. However, for every q value of the rapidly spinning black
hole, significant instability and QPO frequencies, as shown in Figure 10, have emerged.
It has been noted that the genuine modes, fsh and fEH , explained in Section 4.3 manifest
in these models. Furthermore, nonlinear couplings and resonance conditions have led to
modes occurring outside of the fundamental modes. The PSD conducted using the mass
accretion rate data obtained well after the shock cone reached the steady state and the
peaks indicated by the dashed line in Figure 10 are of a nature that can be compared to
observations and considered persistent.
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Figure 10. Same as Figure 6 but for a/M = 0.9.

It is natural for oscillation frequencies to differ for each q value because the azimuthal
and radial QPO modes generated and excited within the cone depend entirely on the
shock cone opening angle and the distance between the stagnation point and the black hole
horizon. These variations are evident in Figures 7 and 8.

6. BHL Accretion around the Kerr and EGB Black Holes

Our main focus in this article is on modeling the structural behavior of the shock
cone formed in Hartle–Thorne gravity due to the BHL accretion mechanism. This article
investigates how Hartle–Thorne gravity theory, which is used to understand the dynamic
structure of slowly rotating neutron stars, can be applied around a Hartle–Thorne black hole
in various accretion scenarios using GRH. In this study, we also discuss the applicability of
Hartle–Thorne gravity to rapidly rotating black holes for a/M = 0.9. In this context, we
model the shock cone structure around Kerr and EGB black holes to make comparisons.
This section reproduces how shock cones are formed for different black hole rotation
parameters and EGB parameters, previously modeled numerically around non-rotating [44]
and rotating [24] black holes. Later, the results produced here are compared with the models
for Hartle–Thorne black holes.

Figure 11 depicts the data for non-rotating EGB and Schwarzschild black holes using
different values of α. The mass accumulation rate, QPO behavior, rest-mass density at
r = 3.88 M, and radial and angular velocities are plotted to understand the dynamics of
the shock cone. In each model, it has been found that the shock cone exhibits substantial
oscillations, which persist even after the cone reaches saturation. The observed instability
leads to the creation of fundamental QPO frequencies. The frequencies are determined
using the mass accretion rate data obtained long after the shock cone reaches its steady state.
As confirmed in Sections 4.3 and 5.3, the frequencies are a result of trapped modes within
the shock cone and persist continuously. The dynamics of the cone and the oscillation
modes trapped within it show clear evidence of variations at negative and positive α. This
demonstrates that the variation in α significantly impacts the dynamical behavior of the
shock cone around black holes in EGB gravity. Such changes in the shock cone structure
and the trapped modes provide a crucial perspective on the complex physics of the cone
and its interaction with the black hole, particularly in the context of EGB gravity.

Similar to Figure 11, Figure 12 presents calculations for the same physical parameters
but for a rotating black hole with a spin parameter of a/M = 0.4 in both Kerr and EGB
scenarios. Although generally similar behaviors are observed, the influence of the black
hole spin parameter is particularly noticeable in the density and velocity graphs. Addi-
tionally, the calculated QPO frequencies appear more distinct and clear in this scenario.
The observed harmonic ratios of 1:2:3... are also clearly visible here. These observations
highlight the significant impact of the spin parameter on the physical characteristics of
the shock cone and the QPO frequencies. The differences between the Kerr and EGB
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models, in terms of how rotation affects their properties, are of particular interest. They
provide valuable insights into the complexities of gravitational interactions in the vicinity
of rotating black holes, especially in alternative theories of gravity like EGB. Such findings
are crucial for advancing our understanding of high-energy astrophysical phenomena and
the fundamental nature of gravity.
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Figure 12. Same as Figure 11 but for a/M = 0.4.

Similar to Figures 11 and 12, Figure 13 unveils the shock cone structure and oscillation
frequencies for the rapidly rotating black hole in both Kerr and EGB gravities. The impact
of the black hole rotation on the structure of the shock cone is clearly observed. The QPO
frequencies and their nonlinear couplings in these models have created a more complex
structure. Furthermore, the influence of the α parameter on the structure of the shock cone and
its oscillations is evident. This demonstrates how the rotation of the black hole significantly
affects the behavior of the shock cone and the resulting QPO frequencies. In the case of rapidly
rotating black holes, these results provide a deeper understanding of the complex interactions
between the black hole spin, the shock cone structure, and QPOs. Such studies are crucial for
understanding astrophysical phenomena in strong gravitational environments.
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Figure 13. Same as Figure 11 but for a/M = 0.9.
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7. Comparison of Hartle–Thorne Gravity with Schwarzschild, Kerr, and EGB Gravities

Figure 14 illustrates the changes in the density of the cone and its contour lines to
investigate the effect of the Hartle–Thorne spacetime metric on the shock cone near the
black hole horizon and to compare the results with those of a Kerr black hole. The snapshots
in the top row show the dynamic structure of the shock cone close to the black hole horizon
for both slowly and rapidly rotating Kerr black holes. Although the frame-dragging effect is
not clearly visible due to the inner boundary of the computational area being at r = 3.8 M,
this effect slightly appears in the case of a/M = 0.4 and is more distinct at a/M = 0.9. In
this study, we investigated the changes in the dynamic structure of the shock cone using
Hartle–Thorne in conjunction with EGB gravity. Within the framework of EGB gravity, we
compared the extreme states of the EGB coupling constant with those of Hartle–Thorne,
Schwarzschild, and Kerr black holes. In the extreme case where α∼−3.7, as observed in
Donmez [24], the black hole horizon is located at r∼3.5 M. To ensure a reliable comparison,
we set the inner boundary of the calculation domain at r = 3.8 M in all models.

At a/M = 0.9, the shock waves of the cone are warped due to the black hole rotation.
The effect of rotation is also visible in the contour lines within the shock cone. The Hartle–
Thorne gravity, without the quadrupole parameter, affects the structure of the shock cone,
as seen in the middle row of the same figure. The same behaviors observed in the Kerr
models are also exhibited. The bottom row of Figure 14 shows the changes in the dynamic
structure of the shock cone when the quadrupole parameter is q = 5. Here, it is found that
the quadrupole parameter reduces the shock opening angle of the cone and causes a greater
suppression of contour lines. In other words, the contour lines have become more curved,
and the ellipticity ratio has significantly increased. This led to a noticeable change within
the cone. This is an expected result, as the quadrupole introduces a more elliptical shape
by suppressing the polar geometry of spherical symmetry. This change causes variations in
the frequencies of the QPO modes trapped within the shock cone. It also triggers a chaotic
structure within the cone, facilitating the observation of new frequencies through changes
in the behaviors of nonlinear couplings. This chaotic structure allows for the observation
of new frequencies resulting from these nonlinear interactions. Additionally, the velocity
vector plots also show how the flow velocity of matter changes, especially in the region
near the black hole horizon inside the cone. This would affect the formation of QPOs. This
situation is clearly observed in Figures 6 and 10 as well.

As previously discussed, the shock cone formed as a result of BHL accretion traps
oscillation modes within the cone, leading to the excitation of these modes. Observing these
phenomena helps reveal the physical characteristics of the central black hole. Figure 15
compares the fundamental mode frequencies and their nonlinear couplings excited by the
shock cones around slowly rotating (left graph, a = 0.4) and rapidly rotating (right graph,
a = 0.9) black holes across various gravities. In the case of the slowly rotating black hole,
the same fundamental mode frequencies, f1 = 5.5 Hz, f2 = 11 Hz, and f3 = 19 Hz, occur
in Kerr, EGB, and Hartle–Thorne gravities. However, the frequencies resulting from the
nonlinear coupling of these two fundamental modes show variations in different gravities.
This could be an important finding, indicating how different gravitational theories can
produce varied effects on the dynamics of matter surrounding dense astrophysical objects
like black holes. Similarly, calculations have also been made for the fundamental modes
trapped by shock cones around rapidly rotating black holes. As seen in the right graph,
the fundamental mode frequencies are excited at q1 = 4.2 Hz, q2 = 13 Hz, and q3 = 20.4 Hz.
Almost the same modes occur in all three gravitational models. However, as with the slowly
rotating black hole model, the nonlinear couplings of these modes differ from one another.
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Figure 14. Same as Figure 2 but for the models of slowly and rapidly rotating black holes. The dynamic

structure of the shock cones formed around the Kerr and Hartle–Thorne black holes is shown. We

focus on the region near the horizon to see more details. The effect of q on the structure of the cone

has been clearly demonstrated.

The shock cone formed around the black hole leads to the confinement of excited QPO
modes due to the interaction between the shock cone and the black hole, causing these
modes to be excited more intensely. Additionally, chaotic behavior within the shock cone
results in the emergence of new nonlinear oscillation modes. These modes can be utilized
to explain certain QPO frequencies observed in astronomical data. Figure 16 illustrates
the general behavior of the shock cone around a rapidly rotating Hartle–Thorne black
hole, demonstrating its similarity to the behavior around a slowly rotating Hartle–Thorne
black hole. In both cases of rotation parameters, the opening angle of the shock cone
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exhibits similar behavior depending on the quadrupole parameter. It is evident that the
primary differences arise from the rotation parameter rather than the quadrupole parameter.
Therefore, investigating the structure of the shock cone around a rapidly rotating Hartle–
Thorne black hole contributes additional insights to the literature and can be used to explain
some of the observed phenomena. The numerical results obtained in this study suggest the
possible existence of a rapidly rotating Hartle–Thorne black hole.
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8. Discussion and Conclusions

In this article, we reveal the dynamic structure of the shock cone formed around the
Hartle–Thorne black hole as a result of BHL accretion and examine how the trapped QPO
frequencies within the cone depend on various parameters, such as the black hole spin
(a/M) and the quadrupole parameter (q). Although Hartle–Thorne gravity is theoreti-
cally defined for slowly rotating black hole models, we have also numerically modeled
scenarios around rapidly spinning Hartle–Thorne black holes, further contributing to the
literature and sparking new discussions in this field. Furthermore, to compare the re-
sults obtained from Hartle–Thorne gravity with those from different gravitational models,
we have also modeled the same problem within the frameworks of Schwarzschild, Kerr,
and EGB gravities.

The numerical simulations show that the opening angle of the shock cone around the
slowly rotating Hartle–Thorne black hole, the instability of the shock cone, the amount
of matter accreting within the cone, and the intensity of the shock waves are not only
dependent on the rotation parameter of the black hole but also strongly linked to the
quadrupole parameter of Hartle–Thorne gravity. It is observed that as the quadrupole
parameter q increases, the opening angle of the shock cone decreases, and more matter falls
into the black hole. This implies that nonlinear behaviors become more pronounced as
q takes larger values. Additionally, the instability behavior is found to decrease after the
quadrupole parameter exceeds 2. These instabilities, being the source of oscillation modes
that form or are trapped within the cone, lead to the creation of genuine QPO frequencies
and their superposition, resulting in new frequencies. The fundamental QPO frequencies
are the result of the behavior of matter oscillating in the azimuthal and radial directions
due to pressure differences. Because the matter trapped within the shock cone begins to
undergo these oscillations, it generates the fundamental QPO genuine modes. These modes
generally correspond to the most prominent first two peaks in the PSD graph. The decrease
in the intensity of these instabilities leads to a reduction in the strength of QPOs and the
disappearance of potential new frequencies or ratios. This means that in situations where
q > 2, the number of observable frequencies is diminished.

According to theory, Hartle–Thorne gravity describes the spacetime around slowly
rotating black holes. In our study, we also numerically address the scenario where the black
hole is rapidly spinning, revealing how this affects the structure of the shock cone around
the black hole [49]. Similar to the model for a slowly rotating black hole, the structure
of the shock cone can be comparable. However, the shock cone is observed to be more
warped due to the influence of the black hole rotation parameter. It is shown that shock
cone instability is very strong at every value of the quadrupole parameter, a behavior not
observed in models of slowly rotating black holes. This suggests that the observability
of QPO frequencies in the interaction of the rapidly spinning Hartle–Thorne black hole
with the shock cone could be higher compared to the slowly rotating models. However, it
is important to mention that the model for a rapidly spinning black hole is exclusively a
numerical approximation. It could be used to explain some observational results and may
open new discussions in the field.

The results obtained from Hartle–Thorne gravity are compared with those from Kerr
and EGB gravities. We focus on the impact of the quadrupole parameter on the shock
cone structure and the resulting QPO frequencies. It is observed that the QPO modes and
their nonlinear couplings exhibit different behaviors at different values of the quadrupole
parameter. This finding can be used to explain certain observed black hole sources whose
physical mechanisms remain unexplained. Furthermore, the comparison reveals that the
quadrupole parameter suppresses the density within the shock cone and leads to a more
elliptical structure. Such effects provide sufficient reasons for the emergence of different
oscillation frequencies. This insight enhances our understanding of black hole physics,
especially in the context of rapidly rotating black holes and their complex interactions with
the accretion disk.
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As a result of the conducted PSDs for both slowly and rapidly rotating black holes, it
has been concluded that the majority of frequencies present in all gravities are persistent.
Through PSDs conducted at different time intervals, it has been found that genuine modes
trapped within the shock cone and their nonlinear coupling occur at the same frequency.
This implies that the shock cone, which we have characterized based on numerical modeling
and the parameters defining the gravity, serves as a physical mechanism for the formation of
QPO frequencies. This mechanism, as previously mentioned in various studies [16,42,60,61],
can be utilized to explain QPO data observed from different sources. Thus, the physical
characteristics of the source, such as mass and rotation parameters, can be determined.
The obtained results can then be compared with observations.

Finally, it has been observed in all models that a 1:2:3... ratio forms after the shock
cone reaches its saturation point. These ratios indicate a harmonic relationship among QPO
frequencies. The presence of this harmonic relationship suggests the existence of a physical
mechanism or condition in the regions close to the black hole horizon. Additionally, these
harmonics result from nonlinear couplings, which in turn indicate the presence of nonlinear
behavior. The study further shows that the quadrupole parameter of the Hartle–Thorne
black hole definitely triggers nonlinear phenomena. We reach this conclusion from the
simulations conducted. The implications of such results are significant in the field of
astrophysics. It also points to complex interactions in the vicinity of black holes, which
are particularly influenced by the geometry and the gravitational field defined by the
Hartle–Thorne metric. Understanding these nonlinear behaviors and their effects, such as
the quadrupole parameter, is crucial for developing more accurate models around black
holes. This knowledge not only helps in explaining the observed phenomena around black
holes but also enriches the theoretical framework of our understanding of these objects.
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