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Abstract

The duality between type IIB superstring theory on a plane-wave background and a
particular large R-charge sector (‘BMN sector’) of four dimensional N' = 4 super Yang-
Mills gauge theory is a restatement of the AdS/CFT correspondence in the Penrose limit.
This plane-wave string / super Yang-Mills duality has drawn a lot of attention in recent
years due to the fact that type IIB superstring theory on plane-wave background is exactly
solvable.

In this thesis, we take an algebraic approach and first study the symmetry superalgebras
of type IIB superstrings and BMN matrix model on their respective maximally supersym-
metric plane-wave backgrounds and construct their zero-mode spectra. Then we study a
large number of non-maximally supersymmetric pp-wave algebras in ten and eleven dimen-
sions (whose maximal compact subsuperalgebras are in general semi-simple), which could
be obtained by various restrictions from the two maximally supersymmetric cases. We also
show how to construct their spectra, and in some chosen examples we explicitly list them.
Except for some ‘exotic’ special cases, we believe our study exhausts all possible interesting

pp-wave superalgebras of this kind in ten and eleven dimensions.
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Chapter 1

Introduction

Our main attempt in this introductory chapter is to show why the study of M-/super-
string theory on pp-wave backgrounds is important and how it is related to the AdS/CFT
correspondence.’ (See Section 1.1 for a short introduction to the AdS/CFT correspon-
dence.) We hope to give the reader a historical perspective of the development of this topic,
while keeping the discussion simple, without going into details or rigorous explanations.
Such details are reserved for the later chapters of this thesis.

String theory first originated in late 1960s from the idea of the Veneziano amplitude
[Ven68], which was proposed in the context of dual models for hadrons. The most intriguing
aspect of the Veneziano proposal was that the spectrum of the underlying theory must have
an infinite number of massive excitations (particles) with increasing spins. Therefore it was
clear that this theory could not be a conventional quantum field theory. Soon afterwards it
was found that such a theory exists in the form of a quantized string, which was followed
by the formulation of the Nambu-Goto action for bosonic strings [Nam70, Goto71] and the
introduction of the “fermionic” strings [Ram71, NS71].

However, results from deep inelastic scattering experiments in 1970s strongly supported
the parton model of hadrons and led to the establishment of QCD as the correct theory
of strong interactions, and the string approach to hadron physics was abandoned. On the
other hand, the realization that it is impossible to formulate a quantum theory of gravity
following the usual perturbative methods of point particle quantum field theory gave a new
role for string theory as a candidate for quantum gravity [SS74]. As a matter of fact, string
theory includes gravity in a very natural way, since it contains a spin two, massless particle
in its spectrum. There are no strongly interacting, massless, spin two hadrons, and gravity
is the only natural interaction for such particles.

Moreover, even though QCD triumphed over early string theories as the theory of strong
interactions, following the developments in late 1990s [Mald97, GKP98, Witt98a] many are
starting to believe that at least some strongly coupled gauge theories must have a dual
description in terms of strings. In fact, as early as in 1974, 't Hooft observed that the real

expansion parameter of an SU(N) gauge theory is not just the Yang-Mills coupling g%,M,

! Anti-de Sitter/Conformal Field Theory correspondence



2
but rather A = g%MN , and that any correlation function of an SU(N) gauge theory has a

double expansion in powers of 1/N?, as well as in A [tH74]. In this expansion, at large N
and finite 't Hooft coupling A, the correlators of the gauge theory are dominated by planar
diagrams, while the non-planar diagrams with genus h (i.e. for h > 0) are suppressed by a
factor (1 /N Z)h. It is quite remarkable that similarly in string theory, string loop diagrams
are suppressed by a factor gi", where gq is the string coupling constant and h is the genus
of the string worldsheet. This similarity suggested that at large N, an SU(N) gauge theory
in fact may behave like a free string theory with string coupling constant 1/N.

Following these observations, one would hope to see a rather general connection between
gauge theories at large N limit and string theories. The important fact is that these strings
(arising in the large N limit of field theories) are the same strings that describe quantum

gravity. The AdS/CFT correspondence becomes important in this context.

1.1 AdS/CFT correspondence

The current interest in string/gauge theory dualities was started by Maldacena’s conjecture,
now known as the AdS/CFT correspondence [Mald97]. In its strongest form, this correspon-
dence relates M-/superstring theory over the product spaces of (d + 1) dimensional anti-de
Sitter spaces with compact Einstein manifolds such as spheres?, to large N limits of certain
conformal field theories in d dimensions. Immediately after its proposal, this conjecture
was formulated in a more precise manner in [GKP98, Witt98a, Witt98b]. The AdS/CFT
correspondence represents a culmination of earlier work on the physics of N Dp-branes in
the near-horizon limit [BD88a, BD88b, GT93, GKP96, Kleb97, GK97, GKT97, DPS97,
Hyun97, MS97, SS97] and much earlier work on the construction of the Kaluza-Klein spec-
tra of ten dimensional type IIB supergravity compactified on AdSs x S5 (five dimensional
anti-de Sitter space times the five-sphere) [GM85, KRvN85] and eleven dimensional super-
gravity compactified on AdS7 x S* and AdSy x ST [PTvN84, GvNW85, GWS6] in terms of
some fundamental multiplets (‘singletons’ and ‘doubletons’). For a comprehensive review
of the topic, we refer the reader to [AGMOO099, DF02, Kleb00], and references therein.

The AdS/CFT conjecture is quite remarkable because it relates a theory of gravity, such
as string theory, to a theory with no gravity at all. Also, it relates highly non-perturbative
problems in a super Yang-Mills theory to problems in weakly coupled classical superstring
theories or in supergravity approximation. This is the most striking advantage of the
duality, namely its ability to relate a problem that appears to be intractable on one side to
something that stands a chance of solution on the other side.

In the original form of the duality in [Mald97], on one side (the ‘AdS’ side) we have
the ten dimensional type IIB superstring theory on AdSs x S° with the string coupling

2In the maximally supersymmetric case, this compact manifold is a sphere.
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constant gs, where the type IIB five-form flux through S° is an integer N. Also, the radii

of curvature of AdSs and S° are equal and are given by
LY = drgNa'? . (1.1)

On the other side of the duality (the ‘gauge theory’ side) we have four dimensional ' = 4
SU(N) super Yang-Mills theory, with Yang-Mills coupling g%M (= gs) in the conformal
phase. Maldacena’s conjecture establishes a dictionary between these two theories, includ-
ing their operator observables, states and correlation functions and therefore displays an
equivalence between the full dynamics of the two [Mald97, GKP98, Witt98a].

Even though the first indications of such an equivalence came from specific examples
in particular limits, Maldacena’s conjecture, in its strongest form, is widely expected to
hold for all values of N and all regimes of coupling 9\2(1\/[ = ¢gs. In the 't Hooft limit
(N — oo while keeping 't Hooft coupling A = g%MN fixed) we have the dual string theory
of the above super Yang-Mills theory in its weakly coupled regime (g5 < 1), and therefore
effectively in the form of a classical string theory on AdSs x S° (with no string loops). By
taking a further limit A = gsN — oo, it is clear from equation (1.1) that we can make the
worldsheet coupling of the string theory vo/ /L < 1, and therefore reduce the classical string
theory to classical type IIB supergravity on AdSs x S°. This means that in this A — oo
limit, the often intractable strong coupling dynamics of the super Yang-Mills theory can be
reformulated in a dual classical low energy supergravity theory, where they have a better
chance of solution. Similarly, it is expected that when the two dimensional worldsheet
theory is strongly coupled, its dual gauge theory enters its weakly coupled regime, where
perturbative methods work. It is this feature of the AdS/CFT correspondence that makes
it a strong/weak duality [AGMOO99, DF02, Kleb00].

The other remarkable feature of this correspondence is its holographic property [tH93,
Suss94, BS00] of relating a theory of gravity living in the bulk of AdSs, to a conformal
field theory without any gravity at all (in fact, with spin < 1 particles only) living on the
boundary. This means that all the degrees of freedom of the quantum theory of gravity
reside on the boundary of its spacetime region.

Due to many technical difficulties involved with the solving of even the free (g5 = 0)
AdS5 x S strings (which is a rather complicated two dimensional worldsheet theory), our
understanding of the string theory side of the duality beyond the low energy supergravity
limit is almost non-existent. Almost all the checks of the duality until recently had been
done in the supergravity limit on the string theory side, where we have to keep the AdS
radius large in order to trust the supergravity approximation (\/J /L < 1). It is therefore
an obvious question to ask if it is possible at all to go beyond the supergravity limit and

perform real string theory calculations to compare with the corresponding regime on the



gauge theory side.

The study of string theory on plane-wave backgrounds becomes important in this con-
text. It was shown recently in [MetOl, MTO02] that the string theory o-model, which is
difficult to solve on AdSs x S°, becomes exactly solvable on a plane-wave background that
is obtained as a specific limit of AdS5 x S° [Pen76, Guev00, BFHP01]. A proposal was put
forth in [BMNO2] on how the string spectrum (states) of this string theory translates into
the operators of a certain regime on the gauge theory side, starting an intensive study of

the plane-wave string / gauge theory duality in the ‘BMN limit’.

1.2 Plane-wave string / gauge theory duality

In [Pen76], Penrose showed that any spacetime (i.e., any solution of the Einstein field

equations) has a limit where it looks like a plane-wave:
ds®> = —2dudv — fry(u) 'z’ du? + da’dz’ . (1.2)

Here we have represented the two light-cone coordinates by u and v and the transverse
directions by I, J (see Section 3.1 for a complete discussion). This limit can be thought of
as a first-order approximation to the spacetime along a null-geodesic. Although Penrose’s
original work focused on four dimensional spacetimes, he pointed out that his argument
could be extended to any higher dimension without any difficulties. Giiven later showed that
Penrose’s idea could be applied to supergravity backgrounds in ten and eleven dimensions
as well [Guev00], by extending the limiting procedure to the other fields present in the
supergravity theory.

There are precisely four types of maximally supersymmetric solutions of eleven dimen-
sional supergravity that have been known for some time. Three of them are the familiar
cases of eleven dimensional flat space (Minkowski space and its toroidal compactifications),
AdS; x S* and AdSy x S7, and the fourth is the Kowalski-Glikman solution [Glik84]. Sim-
ilarly type IIB supergravity was originally known to have two maximally supersymmetric
solutions, one in ten dimensional flat space and the other in AdSs x S°, and recently it
was shown in [BFHPO1] that there is another maximally supersymmetric type IIB solution
which is analogous to the KG space. Even though these KG and BFHP solutions were orig-
inally constructed by solving the equations of motion, it was later shown that they could
be obtained as “Penrose limits” of AdSy4) x S47) and AdSs x S° respectively [BFHP02].

In addition, it turned out that once we go to the light-cone gauge, type IIB superstring
theory o-model reduces to a free, massive two dimensional model in the type IIB plane-
wave (BFHP) background [Met01, MT02], and therefore becomes exactly solvable (unlike
its counterpart in AdSs x S°).
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Then in [BMNO02] it was argued that in the AdS/CFT context, taking the Penrose limit

on the string theory side corresponds to restricting the gauge theory to operators with
a large charge under a certain U(1) subgroup of the R-symmetry group SU(4) ~ SO(6)
and simultaneously taking the large N limit. This sector of the four dimensional N = 4
SU(N) super Yang-Mills theory, named the BMN sector, consists of operators that have
large conformal dimension A and large R-charge J, such that A — J remains finite.

Interestingly the plane-wave string / gauge theory duality is perturbatively accessible
from either side of the correspondence [SS03, Plef03]. This gives us a novel opportunity to set
up a “dictionary” between string states and operators in the Super Yang-Mills theory, and
compare their spectra in a perturbative expansion on both sides of the duality. The plane-
wave string / gauge theory duality was the first successful attempt to test the AdS/CFT
correspondence outside the low energy supergravity regime.

For a detailed account of the development of the subject and various aspects of the

duality, we refer the reader to [SS03, Plef03] and the references therein.

1.3 In this thesis

As the last two sections suggest, it is important to study the plane wave string / gauge
theory duality in detail to understand the AdS/CFT correspondence better, as we attempt
to relate string theory to a gauge theory that describes real world physics.

In this thesis, we take an algebraic approach and study a broad class of pp-wave su-
peralgebras of ten and eleven dimensional supergravity and construct their spectra. Our
analysis includes not only the well-known maximally supersymmetric pp-wave algebras in
ten and eleven dimensions, but also an extensive list of non-maximally supersymmetric pp-
wave algebras as well. Furthermore, we explicitly identify the symmetry superalgebras of
some pp-wave solutions that have been constructed in the literature.

The organization of the thesis is as follows. In Chapter 2, we discuss the AdS/CFT
correspondence in detail, especially emphasizing its aspects that are relevant to our topic.
We first discuss a simple group theoretical argument that shows an equivalence between
the symmetry algebras underlying type IIB superstring theory on AdSs x S® and N = 4
SU(N) super Yang-Mills theory in four dimensions. Then we discuss the widely known
‘motivation’ for Maldacena’s conjecture, namely the study of a parallel stack of N Dp-branes
in the near-horizon limit and obtain the well-known relationship between the AdS radius
and Yang-Mills coupling. Next we state the AdS/CFT correspondence in precise terms and
discuss briefly how the duality relates the states of the string theory to the operators of the
gauge theory. We finish the chapter by pointing out the lack of calculational powers beyond
the supergravity limit on the string theory side and the necessity to broaden the range of

validity of the conjecture by carrying out real string theory calculations.
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Chapter 3 gives an introduction to the plane-wave string / gauge theory duality. We

first explain in Section 3.1 what pp-wave spacetimes are, and then describe in Section 3.2
how to take a Penrose limit of a given spacetime and obtain the corresponding plane-
wave background. In the next section (Section 3.3), we apply this procedure to obtain the
maximally supersymmetric plane-wave backgrounds in ten and eleven dimensions. We point
out that these backgrounds must also be supported with the appropriate fluxes, namely with
a five-form (self-dual) flux in the case of ten dimensional type IIB and a four-form flux in the
case of eleven dimensions. Then we move on to discuss two M- /superstring theory models
in these maximally supersymmetric plane-wave backgrounds in the next two sections. In
Section 3.4, we review the BMN matrix model of M-theory and show how its action can be
obtained from DO0-brane dynamics. Then we present its symmetry algebra in an SU(4) x
SU(2) basis, as discussed widely in the literature. Section 3.5 contains a similar account of
type IIB superstring theory on the maximally supersymmetric ten dimensional plane-wave
background, where we outline the essential details of the construction of the action from
Green-Schwarz formalism, its quantization (as given in [MT02]) and the symmetry algebra
of the theory following the widely known literature. Finally in Section 3.6, we state the
plane-wave string / gauge theory duality in more precise terms and describe the relationship
between string states on the string theory side and the large R-charge operators on the gauge
theory side in the BMN limit.

Chapter 4 in this thesis is a general review of the oscillator method, which we use to
realize the pp-wave algebras and construct their spectra. After giving a short overview in
Section 4.1, we explicitly outline how to construct unitary irreducible representations of
OSp(8*|4), OSp(8]4,R) and SU(2,2|4), which are the respective symmetry superalgebras
of eleven dimensional supergravity on AdS; x S* and AdSy x S7 and type IIB supergravity
on AdSs x S°.

Our main results are presented in Chapters 5 and 6. In Chapter 5, we discuss the
pp-wave superalgebras that can be obtained by starting from the eleven dimensional super-
gravity. We first devise an oscillator formalism for taking the pp-wave limit of any given
superalgebra with a 3-grading (with respect to a maximal compact subsuperalgebra)?, as
an Inénii-Wigner contraction [[W53]. We then apply it to the AdS7 x S* and AdS; x S7
superalgebras to obtain the eleven dimensional maximally supersymmetric pp-wave algebra,
su(4]2) ® b8 (where h”® denotes a super-Heisenberg algebra), and construct its zero-mode
spectrum. We also give a group theoretical interpretation of the parameter p, introduced in
[BEHP02], which is the ratio between the radii of curvature of the AdS space and the sphere

in the pp-wave limit, and show how this parameter fits into the oscillator formalism of pp-

3 A 3-grading with respect to a maximal compact subsuperalgebra g(o) is defined as: g = g<71)@g(0)®g(+1),
which simply means that the super-commutators of elements of grade k and [ (= 0,+1) spaces satisfy

[9“),9(”} C g™, with gt =0 for |k +1| > 1.
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wave superalgebras. Then by restricting the maximal compact part, su(4/|2), to its various
semi-simple subsuperalgebras, in Section 5.2 we obtain an extensive list of non-maximally
supersymmetric pp-wave algebras in eleven dimensions. It should be noted that some of
them can be compactified to ten dimensions to their respective type IIA theories. In all

(1) subspace form a super-Heisenberg algebra with

the pp-wave algebras, generators of g
the central charge. It is this generic feature of all pp-wave algebras that allows us to take
various decompositions of g(?) and obtain a variety of different pp-wave superalgebras with
different numbers of supersymmetries.

In Chapter 6, we carry out a similar analysis of ten dimensional type IIB pp-wave su-
peralgebras. We first obtain, by following the same methods, the pp-wave limit of the
symmetry superalgebra of type IIB superstrings on AdS5 x S° as an Inonii-Wigner contrac-
tion [IW53]. Once again we explain from a group theoretical point of view, the value of
p which corresponds to the pp-wave limit of AdSs x S°, as obtained by [BFHP02]. After
constructing the zero-mode spectrum of this type IIB pp-wave superalgebra, we proceed to
generate another extensive list of non-maximally supersymmetric pp-wave algebras in ten
dimensions by a restriction procedure similar to the one we followed in Chapter 5.

Chapter 7 finally concludes the thesis with a short summary and a discussion on some
of the open problems and future directions.

This thesis also contains two appendices. Appendix A contains the spectra of the eleven
dimensional and type IIB supergravity theories with maximal supersymmetry, obtained by
using the oscillator method (Chapter 4) as first presented in [GvNW85, GW86, GMS85].
Appendix B gives a dictionary between our oscillator realizations of the superalgebra gen-
erators in the eleven and ten dimensional maximally supersymmetric cases and those of
[BMNO2] and of [MT02]. One may obtain similar dictionaries in non-maximally super-
symmetric cases as well, between our oscillator realizations and the corresponding work in

literature by following the same methods.



Chapter 2

AdS/CFT Correspondence

As we discussed in the Introduction, there have been many indications that, at least
in the large N limit, SU(N) gauge theories have a dual description in terms of strings.
Maldacena’s conjecture [Mald97, GKP98, Witt98a] formalised this connection in a precise
way, which we are going to review in some detail in this chapter.

The AdS/CFT correspondence basically relates M- /superstring theory in an AdS space-
time to a certain conformal field theory living on the boundary of AdS. In that sense, this is
the most concrete example of a holographic duality. The best studied example of AdS/CFT
duality so far has been the relationship between type IIB superstrings on AdSs x S° and the
N = 4 super Yang-Mills theory living on the boundary of AdSs5. Similarly, in the other two
most commonly known cases - eleven dimensional M-theory on AdS; x S* and on AdSy x S7,
there exist dual conformal field theories, respectively in six and three dimensions. The six
dimensional dual gauge theory of M-theory on AdS7 is a (2,0) superconformal theory, and
the three dimensional dual gauge theory of M-theory on AdSy is an AN/ = 16 superconformal
theory. However, neither of these conformal theories is known explicitly.

Therefore our discussion in this chapter is mainly focused on the AdS5;/CFT, duality.
It seems very fitting, especially since when we move on to the next chapter where we
discuss the plane-wave string / gauge theory duality, we will again be considering the same
string/gauge theories. Also in this chapter, we shall see that one can identify three different
forms (levels) of the duality [DF02], the strongest being with the full quantum string theory,
the second being with classical string theory and finally the weakest form being with classical
supergravity on AdSs x S°. As mentioned before, we refer the reader for a more detailed
account to [AGMOO99, DF02, Kleb00].

2.1 A simple symmetry argument

As a matter of fact, the argument that the large N limits of gauge theories are related
to string theories is quite general and is valid for any gauge theory. As a simple example
[AGMOO99], one may consider a conformally invariant gauge theory (where the coupling
does not run), namely the SU(N) Yang-Mills theory in four dimensions with maximal

supersymmetry (N = 4). This theory contains, in addition to the gauge fields, four fermions
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and six scalar fields in the adjoint representation of the gauge group and has a global SU(4)

R-symmetry that rotates these fermions and scalar fields. Further, the conformal group in
four dimensions is SO(4,2) ~ SU(2,2), and therefore its full symmetry supergroup must
be SU(2,2) x SU(4) C SU(2,2|4)", which is the only supergroup that contains SU(4) and
SU(2,2) as its even subgroup.

Now if the duality conjecture is to be true, one would expect to see these symmetries
in the proposed dual string theory as well. Since our gauge theory in consideration is
supersymmetric, its dual string theory must be a superstring theory and therefore must
live in ten dimensions. The noncompact part of the even subgroup, SO(4,2), must be the
isometry group of its spacetime, and locally, only the five dimensional anti-de Sitter space
AdSs5 has SO(4,2) isometries. The five remaining dimensions, therefore, must constitute
the internal symmetry space, and since the gauge theory contains an SU(4) ~ SO(6) global
symmetry, it is natural to think of these five dimensions as a five-sphere S°, whose isometries
form SO(6). Therefore, after inclusion of supersymmetry, the full isometry supergroup of
AdS5 x S° background becomes SU (2, 2[4), which is identical to the N = 4 superconformal
symmetry. Thus it becomes clear that both N' = 4 SU(N) super Yang-Mills theory in
four dimensions and type IIB superstring theory on AdSs x S° have the same supergroup

underlying their symmetries.

2.2 Motivation: D-branes and black holes

The proposal of the AdS/CFT duality between string theories on AdS spaces and gauge
theories was motivated in part by the studies of D-branes and black holes in string theory.
D-branes in string theory are the analogs of solitons in quantum field theory, which are
basically the classical stationary solutions with localized energy densities in a subspace. In
particular, a Dp-brane is a (p+1) dimensional hyperplane in ten dimensional spacetime and
is a source for the (p+ 1)-form Ramond-Ramond gauge field. Also, they are BPS saturated
objects and preserve 1/2 of the supersymmetries in the bulk [Polch95]. In perturbative
string theory, these Dp-branes can be introduced in a very simple and natural way, as the
surfaces where open strings can end and on which these open strings are free to move. This
is true even in theories where all strings living in the bulk of spacetime are closed. In fact,
D-branes can be thought of as a source of closed strings in such theories. At the end points
of open strings living on a D-brane, the (p + 1) longitudinal coordinates satisfy Neumann
boundary conditions, while the remaining (9 — p) transverse coordinates satisfy Dirichlet
boundary conditions [Polch98b].

Another key feature of these D-branes is that they naturally realize gauge theories on

! As we shall see later, this supergroup SU(2, 2|4) is not simple, and therefore contains, not only SU(2,2) x
SU(4) as its even subalgebra, but also an abelian U(1).
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Figure 2.1: Open strings living on D-branes: (a) single D-brane, (b) well-separated D-
branes, (c) coincident D-branes.

their worldvolume. An open string whose both end points are attached to a single Dp-brane
can have arbitrarily short length and therefore must be massless. Thus its excitations give
rise to a massless U(1) gauge theory on the (p + 1) dimensional worldvolume of the brane
[Verl95, DF02]. Since these branes are 1/2 BPS, this U(1) gauge theory must have N' = 4
Poincaré supersymmetry. Now if we consider N parallel Dp-branes each separated by a
distances a, still the open strings that are attached to the same brane can have arbitrarily
small lengths, and therefore their excitations will generate a massless U(1)" gauge theory
with (maximal) N/ = 4 supersymmetry. On the other hand, the other open strings that
have their ends on different branes cannot have arbitrarily small mass (since their lengths
are bounded below by the ‘separation’ a). However in the limit where a < 1, when the
theory on the brane decouples from the bulk and all the branes stack together, all string
states would be massless, enhancing the U(1)"V symmetry to a full U(N) gauge symmetry
in (p+ 1) dimensions [DF02]. Clearly, the U(1) factor of U(N) corresponds to the overall
position of the branes and may be ignored in the consideration of the dynamics on the
branes [Witt97]. See Figure 2.1 [DF02].

However on the other hand, if N is large, this stack of branes, being a heavy object living
in a closed string theory (which is a theory of gravity), must curve spacetime. This may
be described by some classical metric and other background fields including the Ramond-
Ramond (p + 1)-form potential [AGMOO99, Kleb00].

These two descriptions of a stack of N Dp-branes, on one hand as a U(N) supersymmet-

ric gauge theory in its worldvolume and on the other hand as a classical Ramond-Ramond
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charged p-brane background of a closed superstring theory, was a prime motivation towards
understanding the duality between string theories and gauge field theories. However at the
same time, it should be noted that these two descriptions are perturbatively valid in differ-
ent regimes of their respective coupling constants. Perturbative field theory is valid when
gsIN is small, where gs is the string coupling constant, while the low energy gravitational
theory is perturbatively valid when gsN is very large (when the radius of curvature is much
larger than the string scale), as we shall see later in this chapter.

Now we consider some arrangements of D-branes, that give descriptions of some black
hole characteristics, which were historically instrumental in identifying the AdS/CFT du-

ality in the present form.

2.3 Parallel stack of Dp-branes

As we just mentioned, N parallel Dp-branes realize a (p+ 1)-dimensional U(NN) super Yang-
Mills theory in its worldvolume. The objective of this section is to draw some comparisons
with well studied charged black p-brane classical solutions [Kleb00].?

One may look for a black p-brane solution in type II string theory, carrying a charge
with respect to the Ramond-Ramond (p + 1)-form. (In type ITA, p is even and in type 11B,
p is odd.) Their metric is given by [HS96, DL91, DKL94]

ds? = H™2(r) <— F(r)dt? + Z(dazi)2> +H2(r) (7N (r)dr? +r2d02.,)  (2.1)
=1

where L B
H(r) =1+ <L>7 fr)=1- (@)7 ’ (2.2)

r T

and dﬂgfp is the metric of the (8 — p)-sphere [Kleb00]. The horizon is r = rp, and when
ro — 0 it becomes an extremal p-brane. These extremal solutions are also BPS saturated,
and they preserve 16 of the 32 supersymmetries of the type II theory. It is clear that in this
extremal limit (rg — 0), r < L at the horizon and therefore the longitudinal part of the
metric [Kleb00]

7-p P

0> @ - (7) 7 Yy

i=1

[NIES

-
(2.3)

— 0.

Thus, the area of an extremal p-brane horizon vanishes, which is consistent with the fact

2The p-branes were originally introduced as classical solutions to supergravity. Later, Polchinski showed
that D(irichlet)-branes give their full string theoretical description.
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that, if a stack of D-branes is in its ground state, then it should give a vanishing Bekenstein-
Hawking entropy. Obviously, for ro > 0, we have a non-extremal black p-brane.
Further, the dilaton field ® is given by [Kleb00]

(7 o

and therefore diverges in the extremal case (ro — 0) when r — 0 for all p except p = 3.

3—p

e = g7 () =

The extremal solution with p ## 3 has a singularity, and the supergravity description breaks
down near r — 0 forcing one to use the full string theory. For p = 3 (3-branes), ® stays

constant and the metric solution (equation (2.1)) takes the form

i —
d52:<1—|—L4>
7“

Therefore, by defining z = L?/r [Kleb00], it could be easily seen from this extremal 3-brane

N
D=

L*\?
(—dt2 + da? + da3 + dz%) + <1 + 7ﬂ4> (dr2 + 7“2ng) . (2.5)

metric, that when » — 0, i.e. in the throat limit (see Figure 2.2), the geometry becomes
the direct product of AdSs and S° - with equal radii of curvature L [GT93]:

L2
ds® = = (=dt® + di® + dz*) + L?dQ3 . (2.6)

The horizon is located at z = co. One may also find that the Ramond-Ramond four-form
potential of black 3-branes gives a self-dual five-form field strength, that has N units of flux
through this space. This field strength in the Einstein equation effectively gives a positive
cosmological constant on S° and a negative cosmological constant on AdSs. Further, both
AdSs and S® are maximally symmetric, and therefore the respective curvature tensors take
the form [Kleb00)]

1 1
Raped = ~7z (Gac9bd — YadJbe) Rijn = Iz (9ikgj1 — gugjk) - (2.7)

Thus, the near-horizon region is non-singular and all these curvature components become
small for large L.

Now, this geometry can be viewed as a semi-infinite throat of radius L, which opens up
into a flat ten dimensional space for r > L. (See [AGMO099, Kleb00] for a detailed discus-
sion.) This, in turn, justifies our discussion of black p-branes using classical supergravity,
which is applicable only when the curvature of the p-brane geometry is small compared to
the string scale (L > Va! ), where stringy corrections are negligible. To suppress string-loop
corrections, one needs to keep the effective string coupling e® small, and that is exactly what

one does by resorting to p = 3 (making the dilaton constant). (When p # 3, the supergravity
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Throat limit

Minkowski flat limit

Figure 2.2: (a) Minkowski region of AdS space (r > L); (b) Throat region of AdS space
(r<1L).

description is valid only in a limited region of spacetime.)

On the gauge theory side, this limit L > v/a/ has the following meaning. Assuming the
ADM tension [ADMG62] of these N coincident D3-branes in the extremal case to be simply
N times the tension of a single D3-brane, [GKP96] found the relation

2
S L5 = Nﬁ (2.8)
K K

where Q5 = 73 is the volume of the unit five-sphere and k = /887Gy is the ten dimensional
gravitational constant. Since s can also be written as x = 877/2g,a’? [Kleb00] and the
Yang-Mills coupling gyn on the D3-branes is related to the string coupling gs via 9\2(1\/[ = gs,

one obtains
L' = 4ngd\ Na'? | (2.9)

the familiar relationship between the AdS radius and the Yang-Mills coupling.

Therefore, it becomes clear that the size of the throat depends on the gauge ('t Hooft)
coupling A = ¢3\N [AGMOO99, Kleb00]. It should be noted that, this result which
emerged from gravitational considerations of D3-branes, still managed to indicate an explicit
dependence on 't Hooft coupling. The limit L > vo/ simply implies that A > 1, which
belongs to the strong coupling regime of gauge theory, where perturbative field theory
approach does not hold. Interestingly enough, as we saw above, this is the regime where
the gravitational approach is valid (L > v/@’), and therefore we have a useful alternative

way to perform calculations in the strong coupling side of gauge theory.
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2.4 The AdS/CFT Conjecture

Maldacena’s observation [Mald97] was driven by the fact that, it is possible to take the
low-energy limit directly in the 3-brane geometry, and that it would be equivalent to the
throat limit » — 0. Thus, the “universal” region of the 3-brane geometry, which should be
directly identified with the N' =4 SU(N) super Yang-Mills theory in four dimensions, is
the throat (r < L), which according to the equation (2.6), is AdS5 x S° with equal radii of
curvature L [Kleb00].

One may also think of this identification in the context of absorption of massless particles
in the D-brane picture. When a particle coming from the asymptotic infinity is absorbed by
the stack of D-branes, it gives rise to an excitation in the gauge theory on its worldvolume.
On the other hand in the supergravity picture, this particle tunnelling into the r < L region
produces an excitation of the throat. As these two different pictures of the absorption
process give identical cross-sections, one may identify the excited states of N' = 4 super
Yang-Mills theory with those of AdSs x S° [AGMOO99, Kleb00]. Hence came Maldacena

conjecture that, the following two theories:

e Type IIB superstring theory with string coupling g on AdSs x S° where both AdSs

and S° have the same radius of curvature L, and with the integer five-form flux N

e N = 4 superconformal Yang-Mills theory in four dimensions, with gauge group SU(N)
and Yang-Mills coupling gym

along with the identifications:
Js = g5 L* = 4wg,Na'? (2.10)

are equivalent. The equivalence includes a precise map between the string states on the
string theory side and the local gauge invariant operators on the gauge theory side, as well
as a correspondence between the correlators on both theories. See [AGMOO099, DF02] and
the references therein for a complete discussion on the ‘dictionary’ between the two theories.

It should be noted here, that S® part on the string theory side appears only when the
gauge theory (large N conformal field theory) is maximally supersymmetric. For gauge
theories with reduced supersymmetry, this S® will be replaced by some other compact
Einstein space X°. However, as long as the conformal symmetry group is SO(4,2), the
AdS part of the background (which results in the compactification of type IIB theory on
X5 down to five dimensions) will remain as AdSs.

In conclusion, we stress that due to our inability so far to solve type IIB string theory on
AdS5 x S° background beyond the supergravity limit, it is necessary to explore new ways to
carry out real string theory calculations which can then be compared with the corresponding

regimes of the gauge theory to broaden the range of validity of the conjecture.
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Chapter 3

Plane-Wave String / Gauge Theory Duality

In this chapter, we first give an introduction to plane-wave backgrounds and show how
one can obtain them as a Penrose limit of any given spacetime. Then we review in detail,
two maximally supersymmetric plane-waves, one in eleven dimensions and the other in
ten dimensions, that we study extensively later in this thesis. We then proceed to give
a brief account of the BMN matrix model of M-theory on eleven dimensional maximally
supersymmetric plane-wave and type IIB superstring theory on ten dimensional maximally
supersymmetric plane-wave with the appropriate fluxes. Finally, we discuss the essence of
plane-wave string / gauge theory duality and a dictionary between string states and the

gauge theory operators in this BMN limit.

3.1 What are pp-waves?

In the discussion of pp-wave' spacetimes, there are three important classes discussed in the
literature, and we present them below in the decreasing order of generality.
First of all, pp-wave backgrounds in d spacetime dimensions are defined as spacetimes

which admit a covariantly constant null Killing vector field v*:
Vv, =0 vl =0 (uy,v=0,...,d—1). (3.1)
Their metrics, in the most general form, can be written in light-cone coordinates as [SS03]
ds’ = —2dudv — F(u,z!) du® + 2 Aj(u,z') dudz’ + gyx (u, 2! dz’dz® (3.2)

where I, J, K =1,...,d—2 are the (d—2) spatial directions transverse to the two light-cone
directions u and v. The metric on this transverse space is given by gsx (u,2!), which along
with the other coefficients F(u,z!) and Aj(u,x’) are determined by the (super)gravity
equations of motion.

The null Killing vector of the above pp-wave metric in equation (3.2) is clearly 9/0wv,

which can be shown to be covariantly constant by evaluating the I'y,, component of the

'Plane-fronted gravitational waves with parallel rays
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Christoffel symbol which vanishes identically.

In the case of pure gravity, vacuum Einstein equations demand that F(u,z!) satisfy the
transverse Laplace equation for all © and the transverse space be Ricci flat.

The most commonly considered pp-waves in the literature are constrained to have
Aj(u,z’) = 0 and gyx(u,z’) = 6k, and therefore their metrics are restricted to the
form

ds® = —2dudv — F(u,z!) du® 4+ dz’dz” . (3.3)

The existence of a covariantly constant null Killing vector implies that all the higher
dimensional operators built from curvature invariants vanish, and therefore there are no
a/-corrections to these pp-wave solutions of classical supergravity [AK88, HS90]. It should
be noted that g (u,z’) = 8k is essential for this o/-exactness, and in the absence of this
condition gk itself may receive o/-corrections [SS03].

A special subclass of pp-waves, known as plane-waves, admit a globally defined co-
variantly constant null Killing vector. For them, the function F(u,z!) is restricted to be
quadratic in the transverse coordinates, while still maintaining a possible dependence in the
light-cone coordinate u. These plane-wave metrics have an extra “plane-wave” symmetry
(hence the name), which contains the translations along the wavefronts in the transverse

directions. One may write the general form of these plane-wave metrics as
ds* = —2dudv — fr;(u) 'z’ du® + dz’ da’ (3.4)

where fr;(u) is symmetric. Following the supergravity equations of motion, it can be
shown that the trace of frs is related to any field strengths present in the theory, and in
the case of vacuum spacetimes, since the only non-vanishing component of the Ricci tensor
i8S Ruy = 3V (u,2l), fry is traceless.

By constraining plane-waves further by taking the u dependence out of f7;(u), one can
obtain yet another even more special class of metrics known as homogeneous plane waves,?

which have the form
ds? = —2dudv — fr; o'z’ du® 4 do’ dz’ (3.5)

where fr; are constants. (For example, the BFHP plane-wave metric in ten dimensions

[BFHPO1] - see Section 3.3 - which was also considered in [BMNO02], is a homogeneous

plane-wave with f7; = 207;. In such cases, the metric can be completely diagonalized.)
It should be noted that to specify the full plane-wave solution of some (super)gravity

theory, one also needs to specify the matter content.

2Some authors refer to these plane-waves as symmetric plane-waves, while reserving the term homogeneous
plane-waves for a broader class.
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3.2 Plane-wave geometry as a Penrose limit

Any given spacetime (i.e. any solution of the Einstein field equations) can be brought into
the plane-wave form via a limiting procedure known as the “Penrose limit” [Pen76]. This
procedure has been extended later to include supergravity spacetimes by Giiven [Guev(0].
The interesting result is that if one starts with a solution of a supergravity theory and takes
the Penrose limit of that solution, it produces a plane-wave which is still a supergravity
solution.

From an intuitive approach, taking the Penrose limit essentially means “zooming in”
on any null geodesic of the spacetime in consideration and re-expanding the transverse
coordinates. We can imagine an observer boosting up as close as possible to the speed of
light. As his worldline approaches the null geodesic near him, he must correspondingly
recalibrate his clock to run faster, so that the affine parameter along the null geodesic
remains invariant. The resulting effect is that he is zooming in only on a region that is
infinitesimally close to the null geodesic he is moving along. Therefore from the original
spacetime, the observer retains only a very narrow strip along the null geodesic, which is
then expanded to fill up “his” whole spacetime [Pen76]. As a ‘first order approximation’,
this new spacetime takes the form of a plane-wave, and the covariantly constant null Killing
vector corresponds to the null direction the observer is moving.

The resulting spacetime, in general, depends on the null geodesic chosen and therefore
a spacetime can have more than one Penrose limit [BFP02].

The basic algebraic procedure of taking the Penrose limit of a given spacetime can be

outlined as follows (see [SS03] for a comprehensive discussion):
e Find a null (light-like) geodesic in the spacetime metric;

e Choose a coordinate system where the metric takes the form

ds®> = R? [~2dudV +dV (dV + As(u, V, X)) dX7) + gyr (v, V, XT) dX7dX "] .
(3.6)
(Here, R is a parameter that we use to take the Penrose limit, and u parametrizes the
null geodesic. V represents the distance between such null geodesics, and X represent
the rest of the coordinates. It is important to note that any spacetime metric can be
brought to the above form [SS03].);

o After scaling V and X' as

which corresponds to the “zooming in”, take the limit R — oo. This implements the
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expansion of the narrow strip of spacetime along the null geodesic to fill up the whole

spacetime.

The transverse metric gy loses the v and 2! dependence in this limit, and the full

spacetime metric becomes
ds® = —2dudv + gk (v) dz’dz’ . (3.8)

If one now performs a coordinate transformation [SS03]

2l — hpy(u) 2’
L KL (3.9)
v vt g T Wy by a™a
where ;
hik 9" hyr = 0k1 Wiy = R (3.10)

the metric acquires the standard plane-wave form given in equation (3.4).

3.3 Penrose limit of AdS x S spaces

Now we discuss how one can take the Penrose limit of an AdS,, x S? type space and obtain
the corresponding plane-wave geometry. All the examples of plane-waves we discuss in this
thesis fall into this category and therefore we try to treat this section as a necessary step
towards our discussions to follow.

We start with the AdS, x S? metric in global coordinates [AGMOO99]:

ds® = R 45 [- cosh?r dr? + dr? + sinh? r dQZ_Q] + R [0082 6 dy* + db* 4 sin” 0 ng_z]
(3.11)
where Raqs and Rg are the radii of curvature of the AdS space and the sphere, respectively.

Then we boost our observer along a great circle (of radius Rg) of the sphere and identify

his null geodesic along the (’7’ — R]iis ) direction at r = 8 = 0. Finally we take the limit

of Raqs, Rs — oo while keeping the ratio

Raas
= 3.12
P = "R (3.12)
fixed and finite. By scaling the coordinates as
1
U_<T+ RS /l/}> U:Rids <7'— RS w)
2 Raqs Raas (3.13)
x Y '
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and substituting them in equation (3.11), we obtain
ds* = —2dudv — (x’x’ + p? yi,yi/) du® + datda’ + dy' dy” (3.14)

wherei=1,...,p—1landi =1,...,¢— 1.

It was shown in [BFHP02, BFP02], that in eleven dimensions one obtains the metric
of a maximally supersymmetric plane-wave if the parameter p = 2 or 1/2 (see equation
(3.12)), confirming the earlier results in [Glik84, CG84]. These two values of the parameter
p correspond to the Penrose limits of AdS; x S* and AdS, x S” spacetimes, respectively.
In ten dimensions, there is only one plane-wave solution with maximal supersymmetry,
obtained for p = 1 by taking the Penrose limit of AdS5 x S®. We later provide in Chapters
5 and 6, a group theoretical interpretation of this parameter and how it fits into the oscillator
formalism of the construction of pp-wave superalgebras.

It is important to note that, since the AdS space and the sphere are not Ricci flat,
these AdS x S geometries can be supergravity solutions only if they are supported by the
appropriate fluxes. Therefore in the cases of AdS; x S* and AdS,; x S7 one incorporates
a four-form flux of eleven dimensional supergravity, while in the case of AdSs x S° one
introduces a (self-dual) five-form flux of type IIB.

We now give the plane-wave metrics along with the corresponding fluxes that give rise
to maximally supersymmetric plane-wave backgrounds in eleven and ten dimensions. We
relabel the two coordinates in the light-cone directions u and v as * and z~ respectively
to agree with the widely followed conventions. We also introduce a mass parameter p by
rescaling + and z~ as

T — %:EJr and == — —x~

in the eleven dimensional case, and

_ oz
rt = pxt and 27 — —

I
in the ten dimensional case for future convenience.
Now from the equation (3.14), we obtain the following form for the eleven dimen-
sional maximally supersymmetric plane-wave background, also known as the KG (Kowalski-
Glikman) solution, with the four-form flux [Glik84, CG84, FPO1]:

05 = 2 da*dr — [(’;)2 fj(W + (&Y 29:(9;@")2] ey ey

=1 /=4 I=1 (315)
Fii93 = 1.

Similarly, the ten dimensional maximally supersymmetric plane-wave background with
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type IIB self-dual five-form flux is given by:

8 8
ds* = —2dxtda™ — p? Z(aﬁl)Q dat? + Z(de)Q
=1 =1 (3.16)

Fli1234 = Flysers = 24

Finally, we point out that by taking the mass parameter 4 — 0, we can contract the
plane-wave geometry (of ten or eleven dimensions) to flat Minkowski spacetime. Therefore,
at least on the string theory side, all results must agree with the well-known flat background
(Minkowski) case when p — 0.

We shall also see in Section 3.6, in the context of AdS/CFT duality this limit corresponds

to the strict strong coupling limit on the dual gauge theory side.

3.4 BMN matrix model of M-theory on the maximally su-

persymmetric plane-wave

Here we outline the matrix model proposed in [BMN02], now known as the “BMN model”,
to describe the DLCQ (discrete light-cone quantization) description of M-theory on the
maximally supersymmetric plane-wave background. It was later shown in [DSR02] that
this model may be derived directly as a discretized theory of supermembranes in the plane-
wave background and that the light-cone Hamiltonian of supermembranes on plane-waves
exactly corresponds to that of the BMN matrix model via matrix regularization.

We first construct the action of the BMN model, following closely the arguments in
[BMNO2] and the notation in [Kim04].

3.4.1 Action of the BMN model from the D0-brane dynamics

The action of a single DO-brane can be obtained by considering a superparticle moving
in the plane-wave background of equation (3.15) in the Green-Schwarz formulation. We
use superspace coordinates and supervielbeins of the plane-wave background (following the

notation in [Kim04]:
I = o LIyl
S=[dre (1) 577?§HTHT = [ dr |-IITII. + §H7HT (3.17)

where 7,5 = +,—,1,...,9and I = 1,...,9 are the eleven dimensional tangent space in-
dices, and Hf = 0.ZME ]\5 are the pullbacks from the eleven dimensional curved spacetime
spanned by superspace embedding coordinates ZM = (X*, ©%) to the worldline coordinate
7. Clearly, © is an SO(10,1) Majorana spinor, E,}; are the supervielbeins and e(7) is the

einbein of the worldline metric which is set to 1.
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The supervielbeins of the KG plane-wave can be easily obtained as a limit from those
of AdS; x S*? by substituting the following variables from the KG plane-wave metric
[KY03, Kim04]:

1
eff=e =1 ey —§G++
_ _ 1
EST=F" =1 E —§G++
1
w+17 == **6[G++
g (3.18)
I —
=Ty, = _581G++
I 1
1
Ryt = §M2 R=0

where
Gy = - [(’;)2 S+ (4Y’ i(Xi’V] , (3.19)
=1 =4

in the general formulae given in [{WPPS98]:

16
1 2n
E:D@+;MM DO

15
PO 1 .
E"=¢ I"DO+2Y ———OT"M?*"DO
e’ + 061" DO + ;(2714—2)! M
B 3.20
_ P (3.20)
DO =dO + ¢ T, © Fgy — w50
PN [0 _ A
(M?)% =2 (T?Sm @) Fstap <@ Fr)ﬁ
1 PPN P
+ g (T )" [0 (T By + 24 Ty 177)| ,
where T?gfaa is defined as
P 1 rr P
T?stuv _ Sl (F?stuv _8 5¥Ftuv]> ) (321)

The superparticle action in equation (3.17) also has k-symmetry, which should be gauge-

fixed by choosing the fermionic light-cone gauge. One can choose the gauge

rre=o0 Ort=o0 (3.22)

3The supervielbeins of AdS7 x S* were given in [{WPPS9S].
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and it makes M? = 0. Now after simplifying the rest of the equation (3.20) under this

gauge condition, one obtains the following expressions for the pullbacks [Kim04]:

Ot =dx+

1 _ i
I =dX~ — ;G.adX " +O07dO - % etOTr T2 (3.23)
! =dx?’.

Therefore, after also fixing the bosonic light-cone gauge
Xt =7 0, X =0 (3.24)
the superparticle action can be given in the following form:
1 9 2 1| /N2 3 . [ 2 9 ,
S = /dT {2 > (@0 x") =3 [(3) S (x?+ (6) Yo )2]

=1 i=1 i'=4 (3.25)

—Or 9,0+ % or 123 e} .

Since the SO(10,1) Majorana spinor © can be decomposed into the SO(9) Majorana
spinor ¥ due to the fermionic light-cone condition (3.22), one can rewrite the eleven dimen-
sional fermions and I'-matrices in terms of the nine dimensional ones. If one chooses the
representation [KY03, Kim04]:

0 il -(yHT 0 0 —il
ro_( ill16 rl— (v") f rio— [ thie (3.26)
Z]l16 @ @ Y Z]]_16 @

where v/ are the SO(9) y-matrices,* it is straight forward to see that

I R 0 O
"= (04T )—x/i(inw @) .
I 0 il '
r_f\/i(r r)_ﬁ<© @).

The fermionic light-cone gauge condition (equation (3.22)) therefore requires that © has

the form
1 [0 _ 1
= — = = —_— p— T
0= <‘1,> 6=0"C 23/4( ) (3.28)

“4Since the Hermitian conjugation of SO(10,1) I-matrices (for I =1,...,9) obeys (I'')T =T'!, the SO(9)
y-matrices are also required to satisfy (y')" =~7.
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where the charge conjugation matrix C' in eleven dimensions is chosen to be

C = ( o ﬂm) . (3.29)

Thus the superparticle action, in terms of SO(9) spinors, becomes

(4)" e+ (2) ]

+5 wtow—i % \11*%23\1/}.

9

S:/dT {;Z(&XI)Q—;

I=1

(3.30)

~

Next we consider the supersymmetry invariance of this action, and it is not difficult to

see that the following transformation [BMNO02] leaves the action invariant:

6XT = Wlnle(r)

o = —i . X1yle(r) —i % Xy Be(r) +i % X7y 41 2¢(1) (3.31)
e(r) = e 1277 |

Now one can generalize this single superparticle action to a multi-superparticle action
(i.e. an N DO-brane action with a non-abelian U(NN) gauge symmetry). However for that
purpose, there is an extra term (a Myers term [Myers99]) that should be added to the action
[BMNO2], in addition to the usual commutator terms. Therefore the generalized action in

terms of the N x N matrix valued fields X! and ¥ takes the form:
13 o 1 [ 2 3 N2 9
_ I L (M i\2 [ i'\2
S—/dTTr{Q;(ﬁTX )" -3 [(3) ;(X) +(6) Z4(X ) ]
= = =

32
+ % o v — i % uly 128y (3.32)

— il (XXX e+ 307 X7, X7) 4+ 5o Wiy (X7, 0] )

where ¢ is a Yang-Mills coupling with mass dimensions % In terms of the inverse of the

DO-brane mass R (= 1/myg), g is given by
1 (27d/)?

e (3.33)
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The new supersymmetry rules are

oXT = wine(r)

0 = —i aTXl'er( ) — gXZ i 123 e(r )+Z'%Xi/’7i/’)/1236(7')

(3.34)
+ o0 [X7, X7 elr)

e(t)=¢e 127123 €0 -

Finally, by introducing a gauge potential A, as an auxiliary matrix variable, we can
define the covariant derivative D, = 0; +1i g[A;, |. Also, after absorbing the coupling
parameter g into field variables as X! — X', g¥ — ¥ and gA, — A, [Kim04], the action

takes its final form:

1 1<
== Tr{ = DX]
ol {22

+3 L ytpw S Hoyta123g

(3.35)

Ny S 1 2 1
— it (XX ) e+ 7 (X X 45wl (X e] ]

3.4.2 Symmetry algebra of the BMN model

The Lagrangian of the DLCQ of M-theory on maximally supersymmetric plane-wave back-

ground can be given as (see equation (3.35)):

— 1 N2 _ RN e (BN 2
E_Tr{m(DTX) 2 [(3}2) (x7) +(6R> (X )]
+ % Ut D % Uiyl28g (3.36)

R

- z%eiijinXk +o X, xR 4 g wiy X1 W] }

after rescaling the field variables in equation (3.35) as

X' S Rsx! WS RIU A — RGA,
, , (3.37)
T— R3T w— R73p

in order to follow the literature [DSR02, Kim04].
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Therefore, one can calculate the canonical momenta of X! and ¥ as

0 1
Pr=———+L=—-D;X!
=90, xH” R
5 . (3.38)
¥ = = _gf
(0, V)
and obtain the BMN Hamiltonian:
H=Tr{P 0. X' +% 0,0} - L
1 2 1 1\ yrin2 1\ yrity2
=RTr{= (P “ (=) (x ) (X
r r{2(1)+2{(3R>( )+<6R>( )
. Bt 123 . M ivivk 1 I 2 Lo e
Al AIVEE) RN <) €5 GRS b 'C I 'Cl iy P D IR 7 I
TrRR YV Y IgR ik 7l =3 ¥ ]}
(3.39)

Clearly in flat spacetime, the center of mass degrees of freedom (zero-mode sector) of
the theory (i.e. the U(1) part) decouples from the interacting part (the SU(N) part). The
bosonic generators of the zero-mode sector are: X!, P, SO(3) rotation generators J¥,
SO(6) rotation generators J%7' | Hamiltonian H = —P~ and the light-cone momentum P,

The zero-mode harmonic oscillators can be written in terms of X and P! as follows:

) 1 [T 3R .
(R P oxi | 2 pt
“TVR r( 6r” "\ 2 )

(3.40)
.y 1 1% -1 3R i’
P =—Tr — X" +iy | —P" ] .
“~VR ( 2r” TN )
The light-cone momentum P is a central charge and is given by
L1
PT=_Tr(1). (3.41)

R

Before writing down the rotation generators in terms of the harmonic oscillators, we
need to decompose the SO(9) Majorana spinor ¥ in the SU(4) x SU(2) basis. This U,
which transforms as 16 of SO(9) breaks into (4,2) ® (4,2) of SU(4) x SU(2) as shown

below [DSR02]:
Yaa
U= 4
<€aﬁwTaﬁ> (3 2)

The SO(9) y-matrices therefore can be written as [DSR02]

i —O’i ® 1y O i O 1, ® Ei/
@) o' Ry 1y ®@3* O
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where o' are the usual SU(2) Pauli matrices and X are the SU(4) ~-matrices.
Therefore the SO(3) and SO(6) rotation generators take the form

JU = Tr (Pin — pixt— ot (o1 )waaﬁ)

. (3.44)

J =Ty <P’Xﬂ" —pi'x’ - QwT“a(Ei'j')a”wba> :
When the following (anti-)commutation relations are imposed on the field variables

[Xlgl ) P;r]m] =1 6IJ Okn Otm

(3.45)
{(waa)kla (ﬂﬁbﬁ)mn} =1 52555]“1 Otm,
we can calculate the bosonic part of the symmetry algebra [BMNO02, DSR02]:
[ai7 aTj_ — pt i
|:ai/; aTj/_ — P+ 67:/']‘/
[H, ai_] = —% at
[H, o | =L a7
i 6 (3.46)

[Jij cab| =i (5jkai — 5ikaj>
<1t 7] . WA WAV,
{J”,ak z(éﬂkalfézkcﬂ)

[Jij, Jkl' _; (5iljjk: _ stk gil _ sil ik 4 5jkjil)

|:J,L-/j/’ Jk/l/' — (6i/l/Jj/k/ - 5i/k/Jj/l/ - 6j/l/Ji/k/ +6j/k/J,L-/l/) .

The 32 supersymmetries in eleven dimensions decompose into 16 linearly realized super-
symmetries that act only on the (free) U(1) part of the theory and 16 nonlinearly realized
supersymmetries that act on the (interacting) SU (V) part.

The linearly realized supersymmetries are obtained from the following transformation
rules from the the BMN Lagrangian (equation (3.36)) [DSR02]:

oy X' =0
Snw =0
- 1 (3.47)
5,0 = ——
n \/ET/(T)

n(r) =7 g

where 79 is a constant SO(9) Majorana spinor. These transformations produce the 16
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kinematical supersymmetries:

1
= —Tr (¥ 3.48
Vi ) (3.48)
which in the SU(4) x SU(2) basis are given as
= T (o) (3.49)
ané \/E ac) - .

The nonlinearly realized, dynamical supersymmetries follow from the supersymmetry

transformations
6 X1 = VR Ulyle(r)
dew = VR Wie(r)

_ 71' 1.1 M i i 123 M i i 1923
56\11—\/E( RDTX v e(T) 23RX7’Y 6(7)+Z6RX vy e(T) (3.50)

—l—% [XI, XJ] ’y”e(r))
1237_

e(r) = e 127 €0

where €p is a constant SO(9) Majorana spinor. The 16 dynamical supersymmetries produced
by these transformations are [DSR02, Kim04]

Q:\/RTr <P171W_?5%Xi,yi7123\1,_NXi’,yz"7123‘l,_

i 5 (X7, x7] 7”\1}) (3.51)

which can be written in the SU(4) x SU(2) basis as [DSR02]

Qua = VR Tr {— (Pi + i%XZ) (0%), thus + (Pi/ — iéxi’) (zi’)ab cagtt”’
+%[X7,quﬂ<aw;2%ﬁ—%[Xﬂ,Xf}Gﬂ7>:wm (3.52)
+i [ X X (0),) () eat}

The supersymmetry algebra therefore takes the form [BMN02, DSR02]

ab

{@u QTW} = 20,00 H+ %6350”“ <o’€) j T4+ z’%ég (21"1");’ ST
{tuecr ™"} = o200 P

(o) Bt
{Quas avs} = —z'\/g (=) caspa”

(3.53)
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[Ha Qaa] - %Qaa

[H, q:raa} _ %qTaa '

3.5 Type IIB superstring theory on the maximally super-

symmetric plane-wave

Next we review type IIB superstring theory on the maximally supersymmetric ten dimen-

sional plane-wave background (equation (3.16)) and its quantization in the light-cone gauge.

3.5.1 Action of type IIB superstrings on plane-waves from the Green-

Schwarz formulation

Since there is a non-vanishing Ramond-Ramond background field strength present in this
theory, it is necessary to use the Green-Schwarz formulation of the superstrings, given in
terms of the worldsheet fields X*(7,0) and 04 (r,0) where p = 0,...,9 , A = 1,2 and
o =1,...,16. Tt should be noted that 62 are ten dimensional Majorana-Weyl spinors of
same chirality. The resultant action in the light-cone gauge was presented in [MT02], and

here we give a short review of their work. (See [SS03].)

Bosonic sector

The bosonic string o-model action in the plane-wave background (equation (3.16)) can be

written as [Polch98a]

Sp / d*o g Gy 0, X1 0pX"

- 4o’
1

4o’

(3.54)

/ d’0 g (—20. X0, X~ + 0u X0 X" — p2(X')?0, X T, XT)

where G, is the spacetime metric, gqp is the worldsheet metric (with —g-» = goo = 1) and
I =1,...,8 are the transverse directions. One must now fix the two dimensional gauge

symmetry, first by choosing

V=99"=n" — T = Moo = 1 (3.55)

and then by fixing the residual worldsheet diffeomorphism invariance by imposing [MT02,
SS03]
Xt =dptr pt>0. (3.56)
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It is important to note that in this gauge, X~ is completely determined in terms of X' as
[SS03]

1
8O—X_ - ﬁaUXI&-XI
a’p

3.57)
1 (
OrX™ =5 (0:X10- X" + 0, X710, X" — (na/pt)? X' X7)
and therefore the action in equation (3.54) becomes quadratic in X':
1 2ra’pt
Sp=-— [dr do [0- X0, X" — 9, X0, X" — ®X,?] . (3.58)
v e% 0

The equations of motion and closed string boundary conditions for X! are, therefore
(02 — 02 —p?) X' =0; X! (o +2md/pt) = X' (0) (3.59)

and their solution can be written as a mode expansion [MT02, SS03]

1
X' = :Ué cos Ut + Epé sin put
1

[of & i i
+1/= Z [a£ exp </+(wn7 + na)> +al exp </+(wn7' - n0)>
2 = /Wn, a'p o'p

1 _ 1
+all exp <a’p+ (WnT + no)) + all exp <oz’p+ (WnT — no’))]

(3.60)

wp = \/n2 + (/upT)? (n>0). (3.61)

The conjugate momenta are defined as

where

_ 1
27l

P! . x1 (3.62)

and the following canonical commutation relations are then imposed on X! and P!:
[XI(O', ), PY(d, )| = i6!75(0 — o). (3.63)

This produces

(3.64)
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One may also define the zero-mode oscillators

1 +

I _ =1 I . [HPT T

ap = ag = \/7]90 —1 xg (3.65)
2upt 2

for later convenience. They also satisfy, [a{] , af)’ q =17,
Now using the light-cone action obtained in equation (3.58), one can calculate (the

bosonic part of) the light-cone Hamiltonian

1

4o

2wa/pt
Hp / do [(27a))*Pr* + (0, X")* + p* X/ (3.66)
0

which can be expressed in terms of the left- and right-moving oscillators (al, and a’) of the
mode expansion as [MT02, SS03]

1 o 1t 8
Hp = MaéTa(I) + e E wn, (a{jafl + a{jaf) +4p+ i E W, . (3.67)
n=1 n=1

Clearly, the last two terms in the above Hamiltonian are the zero point energy due to
bosonic oscillators.

Finally, we must mention that all physical excitations of closed strings are subject to
the condition [MT02, SS03]

o0 o0
Zn alfal = Zn altal . (3.68)
n=1 n=1

Fermionic sector
The fermionic sector of the Green-Schwarz action for type IIB superstrings is [GSW87b]

1

Sr

/an [\/TQ(GA)TQG%AC 0 X" T (Dy) 5 ©F

— (04T (03) 4c 0u XM T (Dy)C @B} + 0%

v e%

(3.69)

where ©4 (A = 1,2) are two fermionic worldsheet fields which are 32-component ten di-
mensional Majorana-Weyl spinors of the same chirality, and (f)b)CB is the pullback given
by

(Dy)% = 6% 0y + 0 X"(2) % (3.70)
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where Q, can be written as [MT02, SS03]

Q_=0
1 .
()% = —§M2 T8 + 2% (01234 4 T578) T4 (0%) % (3.71)

e
(QI)AB — ZZ F+ (F1234 + F5678) FI<J2>AB )

Here, I'* are the I'-matrices in ten dimensions.

Now by gauge-fixing the k-symmetry to obtain physical degrees of freedom via®
rte4=o, (3.72)

which implies
oMHTr’'eP =0 VvA,B Q4,08 =0, 3.73
B

and using the worldsheet diffeomorphism invariance condition in equation (3.56), the action
becomes (after some simplifications) [MT02, SS03]

Sp=—

. ot
47:a, /dT /02m "o [@T 8,0 + 09,0t 00,0 +6'9,0! — 26t r1234@] .
(3.74)
It must be noted that the last term in the above expression is a mass term resulting from
the Ramond-Ramond five-form flux of the background.

Due to the SO(4) x SO(4) symmetry imposed by the five-form flux, it would be con-
venient at this point to introduce SO(4) x SO(4)" representations for the spinors. Under
SO(4) x SO(4)’, © decomposes into O,z ® Hdﬁ, where «, 8 and &, 3 are Weyl indices of the
two SO(4) groups.

Hence the fermionic action becomes [SS03]
i e ot 6.0 4 09 5.4t 84 gled g gt
Sp = ~ired /dT/O do |:0aﬁ 0-0%7 + 0% 0:0] 5 + 00 0,0°7 + 077 0,0/ 5

+00 0,07+ 070,07 +0,50,0% + 0197 9,01 (3:75)

~2ip 6], 56 + 2ip 0" ﬁedﬂ'

"Equation (3.72) reduces the ten dimensional fermions to SO(8) representations. Since both ' and
6 have the same ten dimensional chiralities, they both end up in the same 8-component SO(8) fermionic
representation, 8.
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Now 0,3 and 0% have decoupled from each other. The equations of motion are

(0 +05) (0a5 +0hs) = it (005 — 0Ls)

(3.76)
(0 = 95) (0o = 0L5) = itt (B3 + 01,5
whose solution has the following mode expansion [MT02, SS03]:
1 .
0 = ——0gexpiur
p+
1 wp, + n )
_n)0 —
+ WZ [ o — p—n)On exp< a/p+(wn7—|—na)>
W + 1 i ‘ 3.77
+ o (14 p_pn)0B) exp (W(wnT + na)) (3.77)
Wy, — 1
+ o (1 — pn) Oy exp <—a/p+(wn7 - n0)>
w ~ 1
+ ;w (1 + pn) 01 exp (W(wnT - na))}
n
where N
wpEtn
Ptn = &7 wp = \/n2 + (upT)?. (3.78)

Quantization of these fermionic fields is achieved by imposing the canonical quantization

conditions
{HQB(U, T), 92,5,(0', T)} = 2ma’ 6% (52, §(o —d'), (3.79)

which implies

{%,%}:n
{%“@}:&mn:{ﬁuﬁ}.

The fermionic part of the light-cone Hamiltonian, therefore becomes [MT02, SS03]:

1 Si o 8 ii
n=1 n=1

(3.80)

Hr = 000 +
Thus, finally we can write down the full light-cone Hamiltonian (= Hp + Hp) as

H=p (aéTaé + 9890)

( "ol +alfal + 676, + 016, ) (3.82)

As one would expect, the zero point energy of the bosonic sector exactly cancels out that
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of the fermionic sector.

3.5.2 Symmetry algebra of type IIB superstring theory on plane-wave
background

In this section, we obtain the (super)commutation relations of the symmetry algebra of
the above type IIB superstring theory on plane-wave background. There are 30 bosonic
generators and 32 supersymmetry generators in this superalgebra.

First, we give the realization of bosonic generators (light-cone momentum P+, light-cone
Hamiltonian H, SO(4), SO(4)' rotation generators J¥, J*J" and transverse momenta P’
and “boosts” J*!) in terms of the string modes [MT02, SS03]:

Pt =pT1
P =H
g 2ma/pt o i b 5t i g
Ji = /0 do | (X'PI = XTP) = (eaﬁ ()%, 0% + 6] (o7)%, 6 )}
o 2ma/pt [ g g { T !5\ B t N8 i
(3 (2 {2 7 «Q 1 QU
JJ:/O do (X PJ—XJP)—W(eaﬂ(aﬂ)ﬁ7+9dﬁ.(af)797)]
2ra’pt - M
K= / do |sin pr P! + —,XI oS ,m'}
0 L 2o
2wa/pt _
L! :/ do cos,uTPI . /XI sin,m'}
0 L 2o
(3.83)
It is easy to see that P! and J*! are linear combinations of K! and L':
P! = cospurL! + sin ur K
(3.84)

1
JH == (— sin pr L +cosm’KI) .
"

Out of 32 supersymmetry generators, 16 are kinematical supersymmetries, which we
denote by ¢ag, Qo qLﬁ and qj; 5 They transform in the complex 8 of SO(8) and are
proportional to 6,3 and 0@,6':

\/Q 2wa/pt

= V= dod
QCxﬁ 27'('0/ 0 7 b
T et (3.85)
q.5= dof . ;.
[e76] 2ol B af

On the other hand, the remaining 16 supersymmetries are dynamical supersymmetries
(Qaﬁv Qap and their Hermitian conjugates), which transform in the 8. of SO(8). They
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depend not only on 6,3 and 9@5’7 but also on X' and P’, so that their anti-commutator
would generate the Hamiltonian [MT02, SS03].

1 [emapt A o , N
Qup = - /0 do [(2770/19Z —ipX') (") 9:;6 + (27T0/PZ +ipX" ) (o )ﬂ-'y Qlw
110, X (0')g] 0,5+ 0, X7 (o) ] 964
1 [2melpt . o , RO
Qap = ooy /0 do [(271'&’]3Z —ipX') (0", (9:[/5 + (271'&’]32 +ipX" ) (o )ﬁ'y OI.W.)

Fi0,X (09)1 05+ 10,7 (57 0]
(3.86)

If we realized the above generators in terms of the oscillators of the mode expansions, we
would see that the kinematical generators (gag, ¢ &b their Hermitian conjugates, K’, and
L'), which have linear dependence on the string worldsheet fields, only depend on the zero
modes. However on the other hand, the dynamical generators (Q > Q43, their Hermitian
conjugates, H, J;; and Jy ;) depend on all string modes (including zero modes).

The U(1) charge generated by P* is the center of the superalgebra. The rest of the

bosonic generators satisfy the following commutation relations [MT02, SS03]:

[T, qag] = %(Uij )o@y [J” : ng} = %(0” ol 4
|:Ji/j/ ’ qaﬁ:| _ %(Ji/j/)ﬁ’y oy [Ji’j’,qd6:| _ %(O_z’]’)ﬁ’y Qe (387)
[P™, da) = i1t dag [P‘ : qdfg} = —iftqy
ij Loy g L(o) ]
[J , Qag} = 5(0 )a Q.4 [J7, Qap] = 5(‘7 )a' Qi
[‘ﬁlj/ ’ Qaﬁ} - %(0 " ,)57 Qi [‘]i/j, ’ Qaﬁ} - %(UZ jl)ﬁﬁ Qo
i N if 1 B iy
[K" Qaﬁ} - 3("% %55 [K ’Qaﬁ} - MQ(‘U ?ﬁ e (388)
[KZ, Qaﬁ] = 5(01)53 v [Kz ) Qdﬂ} = 5(02 )ﬁfy qasy
LY Qus] = =500 0y L7, Q) = 5") ] 4on
[Li, Qdﬂ] = g(al)a Qv [Ll/, Qaﬁ} = %(U‘/)B’y ey
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{qaﬁ, qTO‘,’g/} = 2P+5g'5g/ {%ﬁ'» ch’v’ﬁ"} _ 2p+5g’5§’

{405 @7} = ilo") ] (L' + K7) {aos. @7} = i(o") 08 (L7 + K7)
{ng, QTO/B/} = i(ai)da/5§, (Li — KZ) {qaﬁ'v QTO'/ﬁ’} _ i(Uil)ﬁﬂ/5g/ (Li’ B Ki’)
{Qaﬁ, QT"“"”} = 25355"7{ +ip(o™ )aa’(sg’ T 4 (ot ﬁﬂ’ag/ﬂi’
{Q 3 QT“'ﬁ'} = 20800 H +ip(o™) 00 T + it [ 88 I

(3.89)

3.6 Plane-wave string / gauge theory duality

The AdS/CFT correspondence establishes a clear duality between type IIB superstring
theory on AdSs x S° and N/ = 4 super Yang-Mills theory in four dimensions. Since the
maximally supersymmetric plane-wave background (supported by a constant self-dual five-
form Ramond-Ramond flux) in ten dimensions was obtained as a Penrose limit of AdSs x
5%, it is natural for one to expect that there must be a dual gauge theory description of
this plane-wave string theory. In [BMNO02], the authors did exactly that by proposing a
novel duality relating type IIB string theory in a maximally supersymmetric plane-wave
background to N'= 4 SU(N) super Yang-Mills theory in four dimensions in a particular
large N, large R-charge limit.

First of all, to see how the Penrose limit R — oo translates into the dual gauge theory, we
study how the AdS energy E ~ 0; and the angular momentum in the 1 direction J ~ —0d,,

+

relate to the light-cone coordinates ™ and their conjugate momenta:

H=p =04+ =p(0+0p) =p(E—-J)
PP =0 = e (- 0y) = = (E+ ) (390)
pR? pR?

Therefore it is clear that in the R — oo limit, a generic excitation (corresponding to

a string state in this background) would have a vanishing p™ momenta, unless its angular
momentum J grows with R as J ~ R?. On the other hand, in order to maintain a finite
energy (the eigenvalue of H), one also needs to keep F =~ J in the Penrose limit. It should
be noted that the BPS condition E > |.J| makes sure that p* are always non-negative. To
understand what this limit means on the gauge theory side, we now recall that the AdS
energy F is identified with the conformal dimension A of a composite super Yang-Mills
operator, while the angular momentum J corresponds to the charge of a U(1) subgroup of

the SO(6) R-symmetry group of N’ = 4 super Yang-Mills theory.
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Therefore the first part of the plane-wave / super Yang-Mills duality is a statement relat-

ing the light-cone Hamiltonian of the plane-wave string theory and the conformal dimension
and the R-charge operator J of the super Yang-Mills theory [BMNO02, SS03, Plef03]:

—=A-J. (3.91)
W
This is the central relation in the BMN correspondence.
We also have R* = 4o/ 2g%{-MN from the AdS/CFT correspondence. Therefore when
we take the Penrose limit by making R — oo, J ~ R? translates into the gauge theory limit

as

J~VN (3.92)

where we take the limit N — oo according to the AdS/CFT correspondence, while keeping
gywM fixed and finite. Keeping gy finite corresponds to a finite value of the string coupling
constant g5 = g%M on the string theory side.

It is worth stressing the fact that the finite light-cone energy requirement E ~ J allows

only those super Yang-Mills operators with
AxJ (3.93)

survive the BMN limit and correspond to finite light-cone energy states on the string theory

side.
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Chapter 4

Oscillator Construction of Positive Energy UIRs of

Noncompact Supergroups

Here in this chapter, we give a short account of the oscillator construction of the pos-
itive energy unitary irreducible representations (UIRs) of noncompact supergroups. This
account, by no means constitutes a comprehensive introduction to the oscillator method,
and it only intends to provide a sufficient ‘working knowledge’ to apply this method to the
scope of this thesis. We focus only on those supergroups that are relevant to our work and

confine our discussion to the aspects that are essential here.

4.1 A short review of the oscillator method

The general oscillator method for constructing the lowest (or highest) weight type UIRs
of noncompact groups was first given in [GS82a]. This method yields the lowest weight,
positive energy UIRs of a noncompact group (belonging to the holomorphic discrete series)
over the Fock space of a set of bosonic oscillators.

In the oscillator method, in order to construct the positive energy UIRs of a noncompact
group, one first realizes the generators of the group as bilinears of these bosonic oscillators
that transform in a certain finite dimensional representation of its maximal compact sub-
group. The minimal realization of these generators requires either one or two sets (depend-
ing on the noncompact group) of bosonic annihilation and creation operators, transforming
irreducibly under its maximal compact subgroup.

These minimal positive energy UIRs are fundamental in the sense that all the other
positive energy UIRs belonging to the holomorphic discrete series can be obtained from
these minimal representations by a simple tensoring procedure. These fundamental UIRs are
called singletons or doubletons, respectively, depending on whether the minimal realization
requires one or two sets of such oscillators [GM85, GvNW85, GWS&6].

The general oscillator construction of the lowest (or highest) weight representations of
noncompact supergroups was given in [BG83, Gun88]. It was further developed and applied
to the calculation of spectra of Kaluza-Klein supergravity theories in [GM85, GvNWS5,
GW&86] and to AdS/CFT dualities in [GMZ98a, GMZ98b, GM98, GT99, FGTO01].
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A simple noncompact (super)group G that admits UIRs of the lowest weight type has a
maximal compact sub(super)group G(9), such that G/G(¥ is a Hermitian (super)symmetric
space. This maximal compact sub(super)group GO has an abelian factor, i.e. GO =
H x U(1), and the Lie (super)algebra g of G has a 3-grading with respect to the Lie
(super)algebra g(® of G(©):!

This simply means that the (super-)commutators of elements of grade k& and [ (= 0,+1)

spaces satisfy
6,90} C g+ (4.2)

with g*+0) =0 for |k +1] > 1.
The 3-grading is determined by the generator E of the U(1) factor of the maximal

compact sub(super)group as follows:

[E’g(ﬂ)} — gD

[E’g<—1>} — _g=b (4.3)

If F is the energy operator, then the lowest weight UIRs correspond to positive energy
representations. To construct these representations (of the lowest weight type) in the Fock
space JF of all the oscillators, one chooses a set of states |(2), called a “lowest weight vector” or
a “ground state”, which transforms irreducibly under G(*) = H x U(1) and is annihilated by
all the generators in g{~1) subspace.? Then by successively acting on |2) with the generators

in g(*1), one obtains an infinite set of states
O (0 A Al (1) B (4.4)

which forms a UIR of the lowest weight (positive energy) type of G. Any two [Q2) that
transform in the same irreducible representation of G0 = H x U(1) will lead to two
equivalent UIRs of G. Moreover, we note that all the UIRs of G can be obtained this way,
by starting from all possible irreducible representations |2) of GO,

The irreducibility of the resulting representation of the noncompact (super)group G

follows from the irreducibility of the “lowest weight vector” |Q2) with respect to the maximal

'Even though all the supergroups we come across in this thesis admit a 3-grading with respect to their
maximal compact subsupergroups, there are other supergroups which do not admit such a 3-grading. How-
ever, as we discuss in Chapter 7, they have a 5-grading with respect to their maximal compact subsuper-
groups.

2Tt should be noted that, even though sometimes in literature |Q2) is referred to as a lowest weight vector
or a ground state, it in general consists of a set of states in the Fock space that transforms irreducibly under

GO,
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compact sub(super)group G(©).

The noncompact supergroups, too, admit either singleton or doubleton representa-
tions corresponding to some minimal fundamental UIRs, in terms of which one can con-
struct all the other UIRs of the lowest weight type belonging to the holomorphic dis-
crete series by a simple tensoring procedure. For example, the noncompact supergroups
of type OSp(2N|2M,R), with the even subsupergroup SO(2N) x Sp(2M,R), admit sin-
gleton representations, while OSp(2N*|2M) and SU(N, M|P), with even subsupergroups
SO*(2N) x USp(2M) and SU(N, M) x SU(P) x U(1) respectively, admit doubleton rep-
resentations [GM85, GvNWS85, GW86, Gun00].

4.2 Oscillator construction of the positive energy UIRs of
eleven dimensional supergravity compactified on AdS x S

spaces

There are two well known eleven dimensional supergravity solutions with 32 supersymme-
tries on AdS x S spaces. One is the N' = 4 supergravity in d = 7 AdS space, which has
OSp(8*|4) as its symmetry group, and the other is the N/ = 8 supergravity in d = 4 AdS
space, which has OSp(8|4,R) as its symmetry group.

In this section, we outline the construction of the positive energy UIRs of these two su-
pergroups using the oscillator method, which we later use in our study of the corresponding

pp-wave superalgebras.

4.2.1 Symmetry supergroup OSp(8*|4) of AdS; x S* compactification

The compactification of eleven dimensional simple supergravity on four-sphere leads to
maximal N = 4 supergravity in seven dimensional AdS space. The symmetry supergroup
of this d = 7 supergravity is OSp(8*|4) ~ OSp(6,2|4), whose even subgroup is SO*(8) x
USp(4) = SO(6,2) x SO(5). It was shown in [GvNWS&5], how to construct all the positive
energy unitary representations of this supergroup using the oscillator method, and here we

present only a brief summary of the results that are relevant to the scope of this thesis.

Representations of SO*(8) ~ SO(6,2) via the oscillator method

The noncompact group SO*(8), which is isomorphic to SO(6,2) is the conformal group in
d = 6 as well as the anti-de Sitter group in d = 7.

The 3-grading (as in equations (4.1)-(4.3)) of the Lie algebra s0*(8) ~ s0(6,2) is defined
with respect to its maximal compact subalgebra u(4) = su(4) @ u(1).

To construct the positive energy UIRs of SO*(8), one introduces an arbitrary number P

pairs (“generations” or “colors”) of bosonic annihilation and creation operators a;(K), b;(K)
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and a'(K) := a;(K)t, ¥(K) := b;(K)" (i = 1,2,3,4 ; K = 1,..., P), which transform as
4 =[+] and 4 =[] representations of the maximal compact subgroup U(4) = SU(4)xU(1)?

and satisfy the usual canonical commutation relations:

ai(K),a?(L)] = 616k, [bi(K), /(L
[ai(K),a;(L)] = 0 = [a'(K),d’ (L)] (4.5)
[b:(K), b;(L)] = 0 = [bf '

The Lie algebra s0*(8) is now realized as bilinears of these bosonic oscillators in the

following manner:

The generators of g{=1) and g(+1) subspaces commute to give
| Aig, AM] = gEMY; - ointy — EM + sl (4.7)

The generators M ij form the Lie algebra u(4), while A;; and A%, both transforming as 6
of su(4) with opposite charges under the u(1) generator M?, extend this u(4) to the Lie
algebra s0*(8). The u(1) charge M’ gives the AdS energy

1., 1

where Ng = @’ - @; + b' - b; is the bosonic number operator.

The vacuum state |0) is defined by:
a;(K)|0) = 0 = b;(K)[0) (4.9)

where i1 =1,2,3,4 ; K=1,...,P.

Now the lowest weight UIRs of SO*(8) =~ SO(6,2) can be constructed by choosing sets
of states |€2), that transform irreducibly under the maximal compact subgroup SU(4) xU(1)
and are annihilated by all the generators in g(~1) subspace, A;;. These UIRs, constructed by
acting on |Q) repeatedly with the elements of g(+), A¥ (as in equation (4.4)), are uniquely
determined by these lowest weight vectors |2) and can be identified with AdS fieldsin d =7
or conformal fields in d = 6 [GVYNWS85, GT99, FGT01].

3 The Young tableau D corresponds to the contravariant fundamental representation of SU(n), and E]
corresponds to the covariant fundamental representation of SU(n).
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It should be noted that, if one chooses only one pair of these oscillators (i.e. P = 1),
that results in constructing all the doubleton representations of SO*(8). They do not have
a Poincaré limit in d = 7. The Poincaré mass operator in d = 6 vanishes identically
for these representations, and therefore they correspond to massless conformal fields in
d = 6. The tensoring of two copies of these doubletons, or in other words taking P = 2,
produces massless representations of AdS7, but in the CFTg sense they correspond to
massive conformal fields. Tensoring more than two copies of doubletons (P > 2) leads
to representations that are massive both in the AdS7 and CFTy sense [GvNWS85, GT99,
FGTO01].

Representations of USp(4) =~ SO(5) via the oscillator method

Unlike SO*(8) ~ SO(6,2), the group USp(4) ~ SO(5) is compact. Therefore, the UIRs
of SO(5) are obviously expected to be finite dimensional. To meet this requirement, to
construct all the UIRs of USp(4) =~ SO(5), one introduces P pairs of fermionic annihilation
and creation operators a,(K), 8,(K) and o*(K) := a,(K)T, B4 K) := B, (K)" (u=1,2 ;
K =1,...,P), which transform as 2 =[] and 2 =] ], respectively, with respect to the
subgroup U(2) = SU(2) x U(1). They satisfy the canonical anti-commutation relations:

{au(K), a”(L)} = 6,0k {Bu(K), 8"(L)} = 0,0k L
{au(K), o (L )} = 0= {a"(K),a"(L)} (4.10)
{Bu(K), B (L)} = 0 = {#"(K), 3"(L)} .

The Lie algebra so(5) is now realized as the following bilinears of these fermionic oscil-

lators:
Ayu:&u'gy+&u'gu:&(u'gu) - EE]
M@:@M.ij_ﬁy.gu (4.11)
A ) - (.

Therefore, the generators of g(=1) and g(*1) subspaces satisfy
(A, A7P] = 67 MF, + 65 M7, + oy MP, + 00 M°, . (4.12)

The above M’} generate the Lie algebra u(2), and A, and A", both transforming as 3 of
su(2) with opposite charges with respect to the u(1) generator, extend it to that of so(5).
This u(1) charge, also with respect to which the 3-grading is defined, is

1 1
J==-M{ ==-Np— P 4.13
2 o 2 F ) ( )
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where Np = a* - d,, + " - 3, is the fermionic number operator.

Once again, the vacuum state is annihilated by all the annihilation operators:
a,(K)|0) = 0 = 6,(K) |0) (4.14)

forall p=1,2 ; K=1,...,P.

The choice of the lowest weight vectors |2) (that transform irreducibly under U(2) and
are annihilated by the generators of g(-1) subspace) and the construction of the represen-
tations of USp(4) ~ SO(5) are now done analogous to the previous section. However, as
mentioned before, due to the fermionic nature of the oscillators in this case, equation (4.4)

produces only finite dimensional representations.

Representations of OSp(8*|4) via the oscillator method

The superalgebra o0sp(8*|4) has a 3-grading with respect to its maximal compact subsuper-
algebra u(4]2), which has an even part u(4) © u(2).
Therefore, to construct the UIRs of OSp(8*|4), one defines the U(4/|2) covariant super-

oscillators as follows:

au(K) oK)
bi(K) 4 o [V(EK) 1
na(K) = <@L(K)> = n(K) :==na(K)"' = (ﬂ“(K)) =

where A =1,2,3,4/1,2 ; K =1,..., P. They satisfy the super-commutation relations:
[6a(5), % (L)} = 686k [na(K),nP (L)} = Fokr (4.16)
where the super-commutators are defined as
[€A(K), EP(L)} = Ea(B)EP (L) — (—1)1esVADIEB (L)ey (k)

etc., with degA = 0 (degA = 1) if A is a bosonic (fermionic) index.
Now, the Lie superalgebra osp(8*|4) can be realized as the following bilinears:

Aap = €47 — - €p = &4 - g :
MA =4 g+ (—1)(desd)(desB) 7y A (4.17)
AV =g g =

Clearly, MAB generate the g(0) subsuperalgebra u(4|2), while A and A4E which corre-
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spond to g(~1) and g(*1) subspaces respectively, extend this to the full osp(8*|4) superalge-
bra. It is worth noting that the above 3-grading is defined with respect to the abelian u(1)
charge in u(4]2) = su(4/2) ® u(1):

1

=5 (Ng+ Np) + P=E+J. (4.18)

1
C = §MAA
It is also useful to note that, sixteen of the supersymmetry generators (Q° p = M , and
Q"; == M?;) belong to the subspace g9, and the other sixteen (Q;, = A;, and Q7 := A7)
belong to the subspace g(~1) @ g(t1).
The super-Fock space vacuum |0) is defined by

§a(K)10) = 0 =na(K)|[0) (4.19)

where A = 1,2,3,4]|1,2 ; K = 1,...,P. Given this super-oscillator realization, one can
easily construct the positive energy UIRs of OSp(8*|4) by first choosing sets of states |€2)
in the Fock space F that transform irreducibly under U(4|2) and are annihilated by all
the generators of g(—!) subspace, i.e. A, and then repeatedly acting on them with the
generators of g(+1), A7

By choosing only one pair (P = 1) of super-oscillators, one can build all the doubleton
representations of OSp(8*|4), and they do not have a Poincaré limit in d = 7. On the other
hand by choosing two pairs (P = 2) and more than two pairs (P > 2), one can obtain all
the massless and massive representations, respectively.

In [GvNWS85, PTvN84], the spectrum of the eleven dimensional supergravity compact-
ified to AdS7 over S* was shown to fit into an infinite tower of UIRs of OSp(8*|4). The
“CPT self-conjugate” doubleton supermultiplet, obtained by starting from |2) = |0) for
P =1, decouples from the spectrum as local gauge degrees of freedom, but the entire physi-
cal spectrum can be obtained by tensoring an arbitrary number of its copies and restricting
ourselves to the “C'PT self-conjugate” vacuum supermultiplets. For the sake of completion,
we present the results of [GvNWS85] in Table A.1 of Appendix A.

4.2.2 Symmetry supergroup OSp(8]4,R) of AdS, x S” compactification

The compactification of eleven dimensional supergravity to AdS, space on the seven-sphere,
S7, results in N = 8 supergravity with the symmetry supergroup OSp(8|4, R), which has an
even subgroup SO(8) x Sp(4,R). The compact group SO(8) plays the role of the internal
symmetry group of this supergravity theory, while Sp(4,R) acts as the isometry group of
the AdS space in d = 4. In [GWS&6], the authors presented a detailed account of how to
construct all the positive energy UIRs of this supergroup, and here we give just a brief

outline of their results that are pertinent to the work of this thesis.
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Representations of Sp(4,R) ~ SO(3,2) via the oscillator method

The noncompact group Sp(4,R) ~ SO(3,2) is the AdS group in four dimensions, as well as
the conformal group in three dimensions.

The 3-grading of the Lie algebra sp(4,R) ~ s0(3,2), as usual, is defined with respect to
its maximal compact subalgebra u(2) = su(2) @ u(1).

Therefore, to construct the positive energy UIRs of Sp(4,R), one introduces an arbi-
trary number n “colors” of bosonic annihilation and creation operators. However, unlike
in the previous case of SO*(8), where one had to choose an even number of oscillators
a;i(1),...,a;(P) ; bj(1),...,b;(P), here one also has the freedom of choosing an odd num-
ber.

Choosing an even number of oscillators constitutes taking n = 2P annihilation operators
a;(K), bij(K) and their Hermitian conjugate creation operators a'(K), b*(K) (i = 1,2 ;
K =1,...,P), which transform covariantly and contravariantly in 2 = [¢] and 2 =[]
representations, respectively, with respect to SU(2). On the other hand, an odd number
n = 2P 4 1 of oscillators can be chosen by taking an extra oscillator ¢; and its Hermitian
conjugate ¢!, in addition to the above 2P oscillators. One then imposes the following

canonical commutation relations on them:
[ai(K),d’(L)] = 876k, [0i(K), ¥ (L)] = 6J6kr,  [ei, @] =& (if present). (4.20)

Thus, the Lie algebra sp(4,R) is realized as bilinears of these bosonic oscillators in the

following manner:

-

I . €

Aij :ai‘bj%—aj-bi—kecicj :a(i-b]-)—i-ic(icj) = EE]

Mij =a- ﬁj + gj . 52 -+ % (CiCj + Cjci) (4.21)
AT =G B4 B pedd =a0 B+ Sdie) = [T

where € = 0 (¢ = 1) if the number of oscillators n is even (odd). The generators of g(~1)

and gt subspaces commute as follows:
| Aig, AM] = EMY 4 S0 + SF MY+ sl (4.22)

The generators M ij form the maximal compact subalgebra u(2) of sp(4,R), while A;; and
A% both transforming as 3 of su(2) with opposite charges under the u(1) generator M?;,
extend it to the Lie algebra sp(4,R). This u(1) charge M?, is given by

1 1

E= M= Np+P+ % (4.23)
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where Ng = a' - d@; + bi - 1_7; + € ¢’¢; is the bosonic number operator.

The vacuum state |0) is annihilated by all a;(K) and b;(K) (: =1,2 ; K =1,...,P),
as well as, if present, by all ¢; (i = 1,2). The lowest weight UIRs of Sp(4,R) ~ SO(3,2)
can now be constructed, as explained before, by choosing sets of states |€2) that transform
irreducibly under U(2) = SU(2) x U(1) and are annihilated by all the generators in g(~1)
subspace, and acting repeatedly on them with the generators of g(*+1).

By choosing a single oscillator (which corresponds to P = 0, and hence n = 1), one can
construct both singleton representations of Sp(4,R), and they do not have a Poincaré limit
in d =4 [FF78, Frons75]. These are the same representations of AdSy group SO(3,2) that
were discovered by Dirac [Dirac63] and were referred to as the “remarkable representations”.
By the AdS/CFT duality, these representations correspond to massless conformal fields in
three dimensions. Tensoring two copies of these singletons (taking n = 2) produces massless
representations of AdSy, which are, however, massive in the CFT3 sense. When more than

two copies are tensored together (n > 2) they lead to representations that are massive in
both AdSs and CFT3 [GWS6].

Representations of SO(8) via the oscillator method

The compact group SO(8) has a 3-grading structure with respect to its subgroup U(4) =
SU(4) x U(1). Therefore, to construct the positive energy UIRs of SO(8), one introduces
fermionic annihilation and creation operators that transform as 4 =[e] and 4 = | repre-
sentations of SU(4).

To work with an even number of fermionic oscillators (n = 2P), one may take a,(K),
Bu(K) (n=1,2,3,4 ; K =1,...,P) and their Hermitian conjugates o*(K), f*(K) into
consideration, but on the other hand, to work with an odd number of oscillators (n = 2P+1),
one should take into account, in addition to the above, another oscillator v,, and its conjugate

~*. They satisfy the canonical anti-commutation relations:

{ou(K),a” (L)} = 5Z6KL {Bu(K), 8" (L)} = 5Z5KL V') = 5Z (if present)
(4.24)
while all the other anti-commutators vanish.

The Lie algebra so0(8) is realized as bilinears of these fermionic oscillators as follows:
I - =z €
Ay = Ay Py = Gy - By + €y = al - By) T W) = E
oy - S o€
MMV = aM Oy — ﬁu : ﬁ“ + 5 ('7“71/ - '71/7“) (4-25)

AV — —'u.gl/_*V.gﬂ+€7u,yv:O—;[#.BV]+§7[#7V} _ H
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The generators of g+ subspaces satisfy
(A, A7P] = 65 MF, — 61 M, — 6y M?P, + 60 M°, . (4.26)

The generators M*, form the subalgebra u(4) of so(8) and A,, and A", both of which
transform as 6 with respect to su(4) with opposite charges under the u(1) generator M,
extend it to the Lie algebra s0(8). The u(1) charge, with respect to which the 3-grading is
defined, is given by

1 1

where Np = a* - a, + gr - EH + € Yy,

As usual, the vacuum state |0) is annihilated by all the annihilation operators a,(K),
Bu(K) and v, (if present) for all values of 1 and K. The choice of the lowest weight vectors
|2) (that transform irreducibly under SU(4) x U(1) and are annihilated by the generators
in g-Y) and the construction of the representations of SO(8) now proceed analogous to
the previous cases. Once again, because of the fermionic nature of the oscillators, equation

(4.4) produces only finite dimensional representations, as one would expect for the compact

group SO(8).

Representations of OSp(8|4,R) via the oscillator method

The superalgebra osp(8|4,R) has a 3-grading with respect to its maximal compact subsu-
peralgebra u(2|4), which has an even part u(2) & u(4).
Therefore, to construct the UIRs of OSp(8|4,R), one defines the U(2|4) covariant super-

oscillators as follows:

au(K) ' (K)
bi(K) b'(K)
na(K) = (6”([()) = [ A (K) == na(K)" = (ﬁ“(K)) =/ (4.28)

where A = 1,2[1,2,3,4 ; K = 1,...,P. They satisfy the canonical super-commutation

relations:
[€a(K), %)} = 656k [na(K),nP (L)} = 6%okr  [Ca,¢P}=65.  (4.29)

Now, in terms of these super-oscillators, the Lie superalgebra osp(8|4,R) has the follow-
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ing realization:
Aap =Ea i +1ia-€p + € Calr
- €
= &4 1) + 5 0(alB) = 1
MA _ EA . 53 + (_1)(degA)(degB)ﬁB . ,r—’»A
+ 5 (¢ + (~n) eIt )
AAB:gA'ﬁB"i'ﬁA'EB_‘_eCACB
_ JdA =B) | € A(AsB) -
g 4 £ ¢ A7 -

(4.30)

It is easy to see that, M“; generate the subsuperalgebra g =u(2/4), and Asp and AAB
extend it to the full superalgebra osp(8|4,R). The abelian u(1) charge which defines the
above 3-grading is given by

1 1
CziMAAzi(NB+NF)—P—g:E+J. (4.31)
Once again in this case, sixteen of the supersymmetry generators (Q° p = M n and

Q"; == M?;) reside in the subspace g9, and the other sixteen (Qip = Ay and Q7¥ := AIY)
reside in g(-=1) @ g(+b).

The super-Fock space vacuum |0) is defined, as usual, by
§a(K)[0) = 0 =na(K)|0) (4.32)

where A =1,2|1,2,3,4 ; K = 1,...,P. Therefore, one can construct the positive energy
UIRs of OSp(8|4,R) by first choosing sets of states |€2) in the Fock space F that transform
irreducibly under U(2|4) and are annihilated by g(~!), and then by repeatedly acting with
the generators of g(t1).

By choosing a single set of super-oscillators (i.e. by choosing e = 1, P = 0, and therefore
making n = 1), one can build both singleton supermultiplets of OSp(8|4,R). They do
not have a Poincaré limit in d = 4, and they correspond to the local gauge modes of the
supergravity theory. On the other hand, if one chooses two pairs (n = 2) of super-oscillators
(i.e. tensoring of two copies of singletons), it produces all the massless supermultiplets of
OSp(8l4,R). By considering more than two copies (n = 2P + € > 2), one can obtain all the
massive supermultiplets [GW86].

The spectrum of the S7 compactification of the eleven dimensional supergravity (by
starting from the lowest weight vector |2) = |0), as obtained in [GWS&6] is presented in
Table A.2 of Appendix A.
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4.3 Oscillator construction of the positive energy UIRs of

ten dimensional type 1IB supergravity compactified on

AdS5 X S5

The chiral N = 2, d = 10 supergravity theory [GS82b, GS83, SW83] can be considered
as the massless sector of type IIB superstrings in ten dimensions. When compactified on
five-sphere S° into the five dimensional AdS space, the spectrum of this theory falls into
the UIRs of the N' =8, d = 5 AdS supergroup SU(2,2[4).

In this section, we explain how to construct the positive energy UIRs of SU(2,2|4) using
the oscillator method, since we intend to use some of these results and the spectrum later

in this thesis in our study of type IIB pp-wave superalgebras.

4.3.1 Symmetry supergroup SU(2,2|4) of AdSs; x S® compactification of
type IIB supergravity

As mentioned above, SU(2,2|4), with the even subsupergroup SU(2,2) x SU(4) x U(1),*
is the centrally extended symmetry group of type IIB superstring theory on AdSs x S°.
It is also the N' = 4 extended conformal supergroup in d = 4. The construction of the
positive energy UIRs of this supergroup has been studied extensively in the literature using
the oscillator method in [GM85, GMZ98a, GMZ98b], and here we outline only the basic

method and some important results that we would later use in our study.

Representations of SU(2,2) via the oscillator method

The positive energy UIRs of the covering group SU(2,2) of the conformal group SO(4,2)
in d = 4 have been studied extensively by Fradkin (see [Frad96] and the references therein).
The group SO(4,2) is also the AdS group in five dimensions. Below we describe how
to construct the positive energy UIRs that belong to the holomorphic discrete series of
SU(2,2).

The maximal compact subgroup of SU(2,2) is SU(2) x SU(2) x U(1). We denote these
two SU(2) subgroups as SU(2)r, and SU(2)g, and the U(1) generator as E. This generator
is the AdS energy operator in d = 5 (also the conformal Hamiltonian in d = 4), and it
determines the 3-grading of the Lie algebra su(2,2).

To construct the relevant positive energy representations, we realize as usual, the gen-

erators of the Lie algebra su(2,2) as bilinears of an arbitrary number P pairs of bosonic

“By modding out the U(1) generator, which commutes with the rest of the supergroup (acting as a
central charge), one obtains the supergroup that is denoted by PSU(2,2|4). The tower of Kaluza-Klein
supermultiplets of type IIB supergravity carries zero central charge. Sometimes in the literature, e.g. in
[GMS5], SU(2,2|4) is denoted as U(2,2[4) to stress the fact that it contains an abelian ideal. However, we
stick to the notations SU(2,2|4) and PSU(2,2|4) throughout this thesis to denote these superalgebras.
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annihilation and creation operators a;(K), b.(K), a'(K) := a;(K)" and b"(K) := b.(K)'
(i,j=1,2 ;r,s=1,2and K = 1,..., P), that transform in the fundamental representa-

tions of the two SU(2) subgroups. They satisfy the canonical commutation relations:
[ai(K),d’(L)] = 5]5KL [b,.(K), b (L)] = 650kt
[a;(K),a =0= [az (K ,aj(L)] (4.33)
[b-(K), b ( )]

||
||
=S
<
—~
=3
S
w
—~
h
=

L'y = -d; - 50N,

R',=1b" by — ééng (4.34)
E:%(&” @ + by *’") %(N + Ny + P

Ar=a-v = (O.0)

and the noncompact generators A;. and A close into the compact subalgebra g(o) =
su(2) @ su(2)r du(l):

[Agr, A7) = 6517, + 1 RS, + 663 E . (4.35)

Clearly, Lij and R", in equation (4.34) generate su(2); and su(2)g, respectively. The
number operators N, and N, corresponding to a- and b-type oscillators are given by N, =
C_L’ZC_I:Z andNb:gr-gT.

The vacuum state is annihilated by all the annihilation operators:
a;(K)[0) =0 = b,(K) |0) (4.36)

for all values of i, and K.

Now, the positive energy UIRs of SU(2,2) are uniquely defined by the lowest weight vec-
tors |2) that transform irreducibly under the maximal compact subgroup SU(2) x SU(2) x
U(1) and are annihilated by all the generators of g(~1) (i.e. by all A;.). Then by acting on
these |Q) repeatedly with the generators of g(+1) (i.e. with A™), one generates an infinite set
of states that forms the basis of the corresponding UIR of SU(2,2) (as shown in equation
(4.4)). These UIRs can then be identified with AdS fields in d = 5 or conformal fields in
d = 4 [GM85, GMZ98a, GMZ98b].

The minimal oscillator realization of SU(2,2) requires a pair of oscillators, i.e. P = 1.



50

The resulting representations are the doubleton representations, and they do not have a
Poincaré limit in d = 5 [GM85, GMZ98a, GMZ98b|. The Poincaré mass operator in d = 4
vanishes identically for these representations and hence they correspond to the massless
conformal fields in four dimensions [GMZ98b].

The massless representations of AdSs are obtained by taking two pairs (P = 2) of
oscillators. For P > 2, the resulting representations of SU(2, 2) are all massive. Considered
as the four dimensional conformal group, all the UIRs of SU(2,2) with P > 2 correspond
to massive conformal fields [GM85, GMZ98a, GMZ98b].

Representations of SU(4) via the oscillator method

The isometry group of five-sphere is SO(6) ~ SU(4). The Lie algebra su(4) has a 3-graded
decomposition with respect to its subalgebra g(® = su(2) @ su(2) ® u(1). Therefore, the
su(4) generators can be realized as bilinears of P pairs of fermionic oscillators a, (K), B, (K),
a*(K) and [¥(K), that transform in the fundamental representations of the two SU(2),
which we denote as SU(2)p, and SU(2)p,, respectively. These fermionic oscillators satisfy

the canonical anti-commutation relations:

{au(K), (L)} = 6,0k {B.(K), B7(L)} = 050K
{au(K), au (L )} =0 ={"(K),a"(L)} (4.37)
{Bu(K), 6-(L)} = 0= {B*(K), 57 (L)}

where p,v=1,2 ; w,7=1,2and K =1,..., P.

Then the su(4) generators are realized as:
Apo =B = (1 ,[2])
M*b, =a*-d, — %5,’,‘]\7&
g %531\% (4.38)
(&M-&u—ﬁw-&) Z%(Na—i-Nﬁ)—P
A =g §o = (0,0)

DN | =

J

where N, = a* - @, and Ng = ﬁ” . Ew are the fermionic number operators. The bilinear
operators A, and A*“ belong to the subspaces g1 and gtV respectively, and hence

close into g(®) = su(2) ® su(2) ® u(1) under commutation:
[Ape, AT = 65,MY, + 0,57, + 6,0, 7 . (4.39)

The vacuum state |0) is annihilated by all the fermionic annihilation operators a,(K),
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Bu(K) for all values of u, w and K. One can now construct the UIRs of SU(4) in the
SU(2) x SU(2) x U(1) basis by choosing sets of states |Q2) in the Fock space of the fermionic
oscillators that transform irreducibly under g(® = su(2)@®su(2)®u(1) and are annihilated by
all the g(~1) generators, Ay,. Then by acting on |Q2) with gt generators AH“ repeatedly,
one creates a finite number of states (because of the fermionic nature of the oscillators) that

form the basis of an irreducible representation of the compact group SU(4).

Representations of SU(2,2[4) via the oscillator method

The generator of the abelian factor U(1)z in the even subgroup of SU(2,2|4) commutes
with all the other generators and, thus acts like a central charge. Therefore, su(2,2/4) is
not a simple Lie superalgebra. By factoring out this abelian ideal, one obtains a simple Lie
superalgebra, denoted by psu(2,2[4), whose even subsuperalgebra is simply su(2,2) @ su(4).
Both SU(2,2|4) and PSU(2,2|4) have an outer automorphism group U(1)y that can be
identified with a U(1) subgroup of the SU(1,1)global X U(1)iocal sSymmetry of type IIB
supergravity in ten dimensions [GM85, GMZ98a, GMZ9I8b].

The superalgebra su(2,2[4) has a 3-graded decomposition (equations (4.1)-(4.3)) with

respect to its maximal compact subsuperalgebra

g = su(2]2) ® su(2[2) G u(1)

(4.40)
= psu(22) @ psu(2[2) @ u(l)x, ®u(l)x, Bu(l)z

where each psu(2(2)° has an even subalgebra su(2) @ su(2) such that one su(2) comes from
su(2,2) and the other from su(4).

The Lie superalgebra su(2,2]4) can be realized in terms of bilinear combinations of
bosonic and fermionic annihilation and creation operators &4 (K), nas(K), £4(K) 1= &4(K)T
and n™ (K) := na(K)T, which transform covariantly and contravariantly, respectively, un-
der the two SU(2|2) subsupergroups of SU(2,2|4):

() (j@) - @) ) :=5A<K>*=<C”(K)) - (@

v (K) (

S

ﬁj(?)) - LE) M) ::nM<K>*:(br(K>)) - 0.0)

(4.41)

where ¢ = 1,2 ; u=1,2 ;r=1,2 ;w =12 ; K =1,...,P and satisfy the super-

® Any su(n|n) type superalgebra has a u(1) charge that commutes with all the other generators, and hence
acting as a central charge. The superalgebra obtained by modding out this u(1) is denoted by psu(n|n).
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commutation relations
[€a(K),65(L)} = 650kL [mas (K),n™ (L)} = 6376k - (4.42)

Then the generators of SU(2,2[4) can be given in terms of the above super-oscillators

as

Aav =Ea-iw = (,04)
Mg =& &5
MY =i iy

A =g = (11, 1A)

(4.43)

It is clear that M5 and M™, above generate the two subsuperalgebras su(2y|2p, ) and
su(2r|2p, ), respectively. The central charge Z and the other two u(1) charges inside the
two su(2]2) subsuperalgebras (equation (4.40)) are given by

1
Z = X1~ Xy =5 (Nat Na— Ny — Np)
1 1
X, = QMA = 5(Na+Noé) (4.44)
1 1

The generators A4y and AAM then extend this g(®) subsuperalgebra to the full su(2,24)
superalgebra. The 3-grading of su(2,2]4) is defined with respect to the following u(1)

generator, which is a linear combination of X; and Xs:

1
C:X1+X2:§(Na+Nb+Na+Nﬁ):E+J. (4.45)

w )

Q“. := M*“) of this superalgebra belong to the subspace g(*) and the rest (Qi, == Ai, ,
Qry = Ary , Q¥ = A% | Q™ := A™) belong to the subspace gl @ g+,
The super-Fock space vacuum |0) is defined by

Half of the supersymmetry generators (Qiu = ./\/liu , Q=M Q= M

£4(K)10) = 0 = nu (K) |0) (4.46)

where A = 1,2|11,2 ; M = 1,2|1,2 ; K = 1,...,P. Given the above super-oscillator
realization, one can easily construct the positive energy UIRs of SU(2,2|4) by choosing sets
of states |€2) in the super-Fock space that transform irreducibly under SU(2|2) x SU(2|2) x
U(1) and are annihilated by the generators in g1, and then by repeatedly acting on them

with the generators in g{*!). As mentioned previously, the irreducibility of the resulting
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positive energy UIRs of SU(2, 2|4) follows from the irreducibility of the lowest weight vectors
|Q2) under SU(2|2) x SU(2|2) x U(1).

Due to the fermionic nature of the SU(2)r, and SU(2)p, oscillators, these positive
energy UIRs of SU(2,2|4) decompose, in general, into a direct sum of finitely many positive
energy UIRs of SU(2,2) transforming in certain representations of the internal symmetry
group SU(4).

By choosing just one pair of super-oscillators (P = 1), one can construct all the dou-
bleton supermultiplets of SU(2,2|4). Since the Poincaré limit of these doubleton supermul-
tiplets in d = 5 is singular, they can be interpreted as conformal superfields living on the
boundary of the AdSs space, where su(2,2[4) acts as the N' = 4 conformal superalgebra.
In particular, for P = 1, the C PT self-conjugate N’ = 8 doubleton AdS supermultiplet that
is obtained by starting from the lowest weight vector |Q2) = |0) is simply the N' = 4 super
Yang-Mills multiplet in four dimensional Minkowski space. The maximum spin range of the
general doubleton supermultiplets is 2.

By tensoring two doubleton supermultiplets (by taking P = 2), one may obtain the
massless AdS supermultiplets in d = 5, which have a maximum spin range of 4. On the
other hand, the tensoring of more than two doubletons (P > 2) generates all the massive
supermultiplets in AdSs with spin range up to 8.

We give the spectrum of AdSsx S° compactification of type IIB supergravity, as obtained
in [GMS85], in Table A.3 in Appendix A.
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Chapter 5

Eleven Dimensional PP-Wave Superalgebras

In this chapter we discuss the pp-wave superalgebras that can be obtained by starting
from eleven dimensional M-theory superalgebras. We first explain in detail what it means
algebraically to take the pp-wave limit of a superalgebra using the oscillator method, and
then explain how one can obtain very easily the spectra of the pp-wave limits of M-theory
over AdS7xS* and AdS,xS” spaces, starting from the oscillator construction of the Kaluza-
Klein spectra of the eleven dimensional supergravity over the corresponding spaces (as given
in Section 4.2). In the pp-wave limit, both M-theory superalgebras osp(8*|4) and osp(8|4, R)
lead to the same pp-wave superalgebra which still preserves all 32 supersymmetries.

Then we consider taking various restrictions of this maximally supersymmetric pp-wave
algebra, to obtain a large number of non-maximally supersymmetric pp-wave algebras and
their zero-mode spectra. Even though we do not call this a complete classification of
all eleven dimensional pp-wave superalgebras, we believe that except for some “exotic”
special cases, we have exhausted all the interesting possibilities, whose maximal compact

subsuperalgebras are semi-simple.

5.1 Maximally supersymmetric pp-wave algebra in eleven di-

mensions

As described in Chapter 3, ‘any spacetime has a plane-wave as a limit’ [Pen76]. Taking a
particular Penrose limit of any solution of Einstein gravity would lead to a plane-wave back-
ground (see Section 3.2). In particular, Penrose limits of AdS x S type backgrounds result
in plane-wave geometries with supersymmetry (Section 3.3). The symmetry superalgebra
of a supersymmetric pp-wave background can be obtained, from an algebraic point of view,
by an Inoénii-Wigner contraction [IW53] from the corresponding symmetry superalgebra of
the AdS x S space [HKS02b, FGP02].

Now, to obtain the corresponding maximally supersymmetric pp-wave superalgebra
in eleven dimensions, one performs the following contraction of osp(8*|4) or osp(8]4,R)
[FGPO02]. First of all, it is clear that, since the general oscillator realization of superalge-

bras corresponds to taking the direct sum of an arbitrary number of ‘colors’ P of oscillators,
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the only free parameter available for an Inonii-Wigner contraction is P. When one normal
orders all the generators, this parameter P appears explicitly in the super-commutators of
the form [g(*l), g(“)}. More specifically, the generators that explicitly depend on P after
normal ordering are precisely the u(1) generators E and J, that determine the 3-grading
of the AdS and internal symmetry subalgebras of osp(8*|4) and osp(8|4,R) (as given in
equations (4.8), (4.13) and (4.23), (4.27) respectively). At this point, it is important to re-
call that the maximal compact subsuperalgebra of both osp(8*|4) and osp(8|4, R) is u(4/2).
These u(4|2) subsuperalgebras have abelian factors u(1)c:

u(4)2) = su(4)2) @ u(l)c (5.1)

given by C' = E + J in both cases (see equations (4.18) and (4.31)) that have explicit
P-dependence. It is also clear that the following unique linear combinations of F and J,

which reside inside the su(4|2) part:

su(4)2) D su(4) ® su(2) @ u(l)q (5.2)
are P-independent:
iE+J=1(Np+2N for osp(8*|4
ool i (NB ) p(87[4) (5.3)
E+1J=2%1(2Ng+ Np) for osp(8|4,R)

We shall then define re-normalized generators

Aap — Aap =1/ %AAB A s 4B = | %AAB (5.4)

belonging to g+ subspaces and the P-dependent generator
A
C— =C
P

belonging to g(® = u(4/2) subspace, and take the limit P — oo to obtain the pp-wave
superalgebra (A being a freely adjustable parameter) corresponding to each case. Note that
su(4/2) part of g(© is unchanged.

It is evident that in this limit, the generators belonging to the re-normalized subspace

31 @ g+ form a Heisenberg superalgebra:

[AAB,ACD } = A(—1)(degO)(degD) 5C 5D} (5.5)

along with C' g A, which becomes the central charge. One may denote this Heisenberg
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superalgebra by h?®, since it contains 9 pairs of bosonic generators and 8 pairs of fermionic
generators. On the other hand, the generators in g(®) subspace (modulo P-dependent C),
that do not depend explicitly on P (assuming all the generators are in normal ordered
form), will survive this limit intact. The P-independent u(1) generator G plays the role
of the Hamiltonian (up to an overall scale factor), and SU(4) x SU(2) ~ SO(6) x SO(3)
becomes the rotation group.

At this point, we make an interesting observation regarding the parameter p (equation
(3.12)) that was introduced in Section 3.3. It was shown in [BFHP02, BFP02] that one
obtains the maximally supersymmetric plane-wave metric in eleven dimensions for two
(and only two) values of this parameter, p = 2,1/2. There was a geometric interpretation
of these values, as the ratios of the radii of curvature of the AdS space and the sphere
in the Penrose limits of AdS7; x S* and AdSy x S7, respectively. Here we give a group
theoretical interpretation of that result and show how these values appear again in our
oscillator formalism of the pp-wave limit.

By following the geometric arguments in [BFHP02, BFP02] and our realization of the
AdS x S algebras in oscillator method, it is not difficult to see that the generators E
and J simply correspond to the translation generators % and —%, respectively. Also, it
must be clear that the generator that corresponds to the translations along the direction
v o~ (7‘ — %w> (which represents the distance between the null geodesics in plane-wave
spacetime - see equation (3.13)) must always return finite eigenvalues. Note that there is
no such requirement on u on the other hand, which parametrises the direction of those null
geodesics. From equation (5.3) above, we see that E + pJ for p = 2,1/2 (in AdS7 x S*
and AdS; x S” respectively) is the unique generator that is independent of P and therefore
remains finite in the P — oo pp-wave limit.

It is important to note that both superalgebras 0sp(8*|4) and 0sp(8]4, R) lead to the same
pp-wave superalgebra under the above contraction. This is not quite surprising, especially
since both these superalgebras have the same maximal compact subsuperalgebra (modulo
the overall u(1) charge C), and re-normalizing and taking the limit P — oo are done in
both cases the same way.

Thus the maximally supersymmetric pp-wave algebra in eleven dimensions is unique,
which could be obtained by starting from either of the eleven dimensional maximally su-
persymmetric AdS x S algebras (osp(8*[4) or 0sp(8|4,R)), and it is the semi-direct sum of
a compact subsuperalgebra 1(4|2)/C and a Heisenberg superalgebra h?8:

su(4)2) ® 8.

Therefore, from now on for the rest of this chapter, we only work with the AdS; x S4

symmetry superalgebra osp(8*|4) with the understanding that the same results can be
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equally established by starting from the AdS; x S” symmetry superalgebra osp (8|4, R).

It should also be noted that our above prescription to obtain the corresponding pp-wave
algebra of a given superalgebra is quite general. In essence, one can apply this method to any
superalgebra that admits a 3-grading with respect to its maximal compact subsuperalgebra

as follows:!

e Normal order all the generators of the superalgebra, and identify the u(1) generators
that explicitly depend on the number of colors P. These are the generators that

determine the 3-grading of the AdS and the internal symmetry subalgebras;

e Re-normalize all the generators in g~ @& g(*1) subspace by a factor proportional to
1/ VP and the above mentioned u(1) generator in g(© that explicitly depends on P
by a factor proportional to 1/P;

e Take the limit P — oo in all the super-commutation relations;

and it produces the corresponding pp-wave superalgebra.

To construct a UIR of the resulting pp-wave superalgebra in our case in discussion,
namely su(4/2) ® h%8, we choose a set of states |€2) that transforms irreducibly under
su(4]2) and is annihilated by §(~ generators. Then by acting on |Q> with g(+1) generators
repeatedly, we obtain a UIR of the pp-wave superalgebra.

There are infinitely many such lowest weight vectors |Q), but [2) = |0) is the only §(®
invariant state with zero U(1)¢ charge (i.e. with a zero eigenvalue of the Hamiltonian).

Since the entire Kaluza-Klein spectrum of the eleven dimensional supergravity over
AdS7 x S§* fits into short unitary supermultiplets of O.Sp(8*[4) with the ground state |Q) =
|0) (with zero central charge), the zero-mode spectrum of the pp-wave superalgebra relevant
to supergravity must be the unitary supermultiplet obtained by starting from |Q) = |0).

Note that, since SU(4|2) D SU(4) x SU(2), §tV) generators can be denoted as follows
in SU(4) x SU(2) Young tableau notation:

% ’SU(M) =H . De@ oo, m) SUese) (5.6)

Since §(=1 generators are the Hermitian conjugates of §(+1) generators, they have a similar
decomposition in the SU(4) x SU(2) basis. In this decomposition, it is easy to identify A% =
(H, 1) and A* = (1, (1) as the (6 + 3 =) 9 bosonic generators in a*1 | which together
with their Hermitian conjugate counterparts in (=, produce translations (g(+1 +4g(-1)
and boosts (@(‘H) - iﬁ(_l)) in the 9 transverse directions of eleven dimensional pp-wave

spacetime.

1See Chapter 7 for a discussion on the pp-wave limits of other superalgebras that do not admit a 3-grading,
but have a 5-grading with respect to a maximal compact subsuperalgebra.
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(01, 0J) are the 8 supersymmetries Q% in 31 with which we act on the lowest weight
vector |Q) = |0) to obtain the entire unitary supermultiplet [FGP02]. We present our results
in Table 5.1 below. The first column gives the SU(4) x SU(2) Young tableau of the state.
Then we list the eigenvalues of the Hamiltonian H (i.e. rescaled G, in order to obtain energy

increments in integers - see equation (5.3)):

1

=3

(N +2Np) , (5.7)

the number of bosonic/fermionic degrees of freedom Ny, SU(4) Dynkin labels and the
SU(2) spin of these states. Our definition of Dynkin labels is such that, the fundamental
representation corresponds to (1,0,0). Strictly speaking, SU(n) Young tableau have only
(n — 1) rows. However, throughout this thesis, to show explicitly the full oscillator content

of each state, we keep the n'® rows as well.

Table 5.1: The zero-mode spectrum of the maximally

supersymmetric pp-wave algebra in eleven dimensions,

su(4)2) © b8,
SU(4) x SU(2) SU(4) SU(4) x SU(2) SU(4)
Young tableau Ngior | Dynkin | SU(2) || Young tableau Nios | Dynkin | SU(2)
(bosonic states) | H | (B) labels spin (fermionic states) | H | (F) labels spin
11,1) 0| 1 |(0,00)| 0 o, o) 1| 8 |[(1,0,0)0] 42
[mu=) 2| 10 | (2,0,0)| 0 I, 3140 | (1,10 | 3
B, =) 2| 18 | (0,1,0) | 1 [EN===) 3116 |(0,01)| 2
[a=R==) 4120 | (0,20 0 | [EHP 5040 | (0,1,1) | 1
[ERzaa) 4| 45 | (1,0,1) | 1 Ejgﬂﬂ> 5| 16 | (1,000 32
Qo) 4] 5 |00 | 2 |[BEF)  |7| s 0o 3
[==N=az) 6| 10 | (0,0,2) | 0
‘Eﬂ 5333> 6| 18 | (0,1,0) | 1
@ 5333> 8| 1 |(0,00) ]| 0
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Table 5.1: (continued)

SU(4) x SU(2) SU(4) SU(4) x SU(2) SU(4)

Young tableau Nyof Dynkin SU(2) Young tableau Nyof Dynkin SU(2)

(bosonic states) | H (B) labels spin (fermionic states) | H (F) labels spin
128 128

5.2 Non-maximally supersymmetric pp-wave algebras in ele-

ven dimensions

From the discussion in Section 5.1, it is clear that a generic pp-wave superalgebra is the
semi-direct sum of a compact subsuperalgebra and a Heisenberg superalgebra. In the above
maximally supersymmetric case in eleven dimensions, 16 (kinematical) supersymmetries
belong to the Heisenberg superalgebra h*%, and the other 16 (dynamical) supersymmetries
belong to the compact subsuperalgebra g(©) = su(4/2).

Now starting from this maximally supersymmetric eleven dimensional pp-wave algebra
su(4]2) ® b%®, one can obtain a number of non-maximally supersymmetric pp-wave al-
gebras, by restricting g(®) to a subsuperalgebra of su(4/2). In this section, we present an
extensive list of such cases and give the corresponding zero-mode pp-wave spectra of some
of them. In all these cases, it is important to note that all 16 kinematical supersymmetries
are inherently preserved.

Once again, we recall that in the remainder of this chapter we adhere to the oscillator
realization of su(4/2) ® h”® that came from the AdS superalgebra osp(8*|4), where the
oscillators that transform in the fundamental representation of SU(4) are bosonic in nature,
while those that transform in the fundamental representation of SU(2) are fermionic. The
conclusions, including the structure of the non-maximally supersymmetric pp-wave algebras
we obtain and their zero-mode spectra, will not change if one followed the other possibility

(i.e. work with SU(4) fermionic oscillators and SU(2) bosonic oscillators).
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5.2.1  [su(2]2) @ su(2)] © H¥°

We first consider the decomposition of su(4|2) into its even subalgebra su(4) @ su(2) G u(1)
as in equation (5.2). Since this su(2) comes from the internal symmetry part usp(4) ~ so(5)
of osp(8*|4), and is realized in terms of fermionic oscillators, we denote it by su(2)r. The

u(1) charge is given by the equation (5.3):
1
G:Z(NB-FQNF). (5.8)
Then we decompose su(4) into
su(4) D su(2)p, dsu(2)p, ®u(l)p (5.9)

and relabel a;(K), a'(K), bj(K), b'(K), for i = 1,2 as am(K), a™(K), bn(K), b™(K)
(m =1,2) and for i = 3,4 as a,(K), a"(K), b.(K), b"(K) (r = 3,4). Thus, the generators
of su(2)p, are realized in terms of the a and b type oscillators, while the generators of
su(2), are realized in terms of the @ and b type oscillators. The u(1) charge that appears

in this decomposition is given by

1
D= (Np, —Ng,) (5.10)

where Np, = am - é_[m + l;m . I:m and Np, = ar- E_i, + Z’" . Z:);,. Therefore, Ng = Np, + Np,.
Now we combine su(2)p, and su(2)r along with the following linear combination of G
and D:
G+ %D _ % (N, + N#) (5.11)

to form su(2(2) as 2
su(2)p, ®su(2)r @ u(l)GJr%D C su(2]2) = psu(2)2) @ u(l)G+%D . (5.12)
Now the compact part of the pp-wave superalgebra has the decomposition
0@ = su(4|2) o su(2)2) ® su(2)z, ® u(l) (5.13)

and therefore, the SU(4|2) covariant super-oscillators must be decomposed in the SU(2(2) x

2 As mentioned before in this thesis, for any su(n|n) type superalgebra, su(n|n) = psu(n|n) © u(1).
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SU(2) basis as

(5.14)

where

EM(K) = (am(K)> M(K) = (gjg;) . (5.15)

It is now possible to see how g(iU spaces decompose with respect to this new basis
SU(2|2) x SU(2). For example,

gt :% ’SU(4\2) B (% ’ 1> eld.L)e <1 ’ ED ’szf(zBlpp)st(g)Bg
g 7B — g[M VY g ((5]\4 s 7. ﬁM) (5.16)

+ (@i - ) e b

It is clear, that there is a singlet in §(*1) with respect to the new compact subsuperalge-
bra su(2|2) @ su(2). In the literature, a compactification of this eleven dimensional pp-wave
solution to ten dimensions has been considered [HS02a, HS02b, KS03]. It is this single non-
compact generator al . gs} = (1 , H) in g-tb (and the corresponding Hermitian conjugate
generator c:i[?. . gs] in @(_1)) that corresponds to the transverse direction in eleven dimensions,
along which the compactification was performed. Hence in ten dimensional superalgebra,
these two singlets in §& drop out.

We also discard the compact generators of the type ./\/lM,, and M®y (8posonic + Stermionic)
- see equation (4.17) - and the u(1) generator in g(® that commutes with su(2|2) @ su(2)
(equation (5.13)). We denote this new compact subsuperalgebra su(2|2) @ su(2) by g(©.
Thus, there are only 8 supersymmetry generators and 10 bosonic generators in §(°). Nine of
these bosonic generators are rotation generators, that belong to the rotation group SU(2) x
SU(2) x SU(2) = SO(3) x SO(3) x SO(3) and u(l)GJr%D in su(2|2) plays the role of the

Hamiltonian (up to a rescaling factor):
‘H = Np, + Nr. (5.17)

It is useful now to write the above decomposition of the §(*1) space (after compactifi-
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cation), in the SU(2)p, x SU(2)r x SU(2)p, basis:

6 Bluian - B

g ’SU(4|2) ( ’ >@(|Z]7D)‘SU(231|2F)><SU(2)BQ
=H.1.)e@, 0, ) (1,0,1) (5.18)

©®

@ 1,0ed,0,0 ‘SU(2)31><SU(2)F><SU(2)BQ

Clearly, ((7, 0, 1)@ (1, 0], O)) are the supersymmetries in §(t1) of the pp-wave superalgebra
(i.e. kinematical supersymmetries), with which we act on |Q) to construct the entire unitary
supermultiplet. Now they transform as 4 + 4 in the SU(2)p, x SU(2)r x SU(2)p, basis,
where Q™" = ([J, (1, 1) increase energy by 2 units, while Q"* = (1, [J, [J) increase energy
by 1 unit (see equation (5.17)).

The 8 bosonic generators remaining in §(+1) and their hermitian conjugate counterparts
in §(=V produce translations (§(+1 44 §(=) and boosts (§(+1) —i g(=1) in the 8 transverse
directions in this ten dimensional type ITA background.

This pp-wave superalgebra has a total of 24 supersymmetries (8 in gD, 8 in gV and

8 in Q(O)), and the symmetry superalgebra of this type IIA pp-wave solution is,
su(2[2) & su(2)] © b*F

Now we construct the zero-mode spectrum of this pp-wave superalgebra in the basis
SU(2)p, x SU(2)r x SU(2)p,, by starting from the ground state |[Q) = |0) (Table 5.2).
The first column on each side gives the SU(2)p, x SU(2)r x SU(2)p, Young tableau of the
state. Then we list the eigenvalues of the Hamiltonian H (according to equation (5.17)),

the number of degrees of freedom and the SU(2) spin of these states.

Table 5.2: The zero-mode spectrum of the type
ITA pp-wave superalgebra with 24 supersymmetries,
su(2[2) & su(2)] © b%.

SU2)B, x SU(2)r SU(2)p, x SU2)F

x SU(2)s, x SU(2)s,

Young tableau Nyof SU(2) Young tableau Naot SU(2)
(bosonic states) H (B) spin (fermionic states) H (F) spin

1,1,1) 0| 1 10,00 || 100 1] 4]0z 3)




Table 5.2: (continued)

SU(2)p, x SUQ2)r SU2)p, x SU2)F
X SU(2), x SU(2)B,

Young tableau Nyof SU(2) Young tableau Nyof SU(2)
(bosonic states) (B) spin (fermionic states) H | (F) spin
11,0,H) 3 | (0,1,0) || |o,o,1) 2 1 4 | (340
1,8, ) 3 | (0,0,1) || |[LELE 31 4 1(0,53)
o) 12 | (3:1,3) | lbaoB 4 8 | (330
[ENER=) 4 1(3,0,3) || bEmD) 4112 | (3,31
11,65, 6) 1| (0,0,0) || |oHLE) 41 4 |(350
o, 1) 3 | (1,0,0) | |o,H%0) 5112 | (Lg:3)
B, 1) 3 | (0,1,0) || |3,om,0) 51 8 1(0,3,3)
R 12 | (3,1,3) | BED) 51 4 ](0,3,3)
o, ) 4 | (3,0,3) || BEED 6| 4 |(330
oo, 5B 9 | (1,1,0) | BB 6| 4 | (330
[BENSENES) 9 | (1,0,1) || |, ERLE) 712 | (1,5,3)
[a¥==azyz) 5 | (0,2,0) || |BEH) 71 8 [(0,3,3%)
BE=,m) 9 | (0,1,1) | BERE) T4 (033
BET.6) 3 | (0,1,0) || FHHZH) 8| 8 |(33,0)
B, 55,8) 1| (0,0,0) || |FERm) 8| 12 | (3,31
B B5,0) 12 | (3:1,3) | FLERD 8| 4 | (330
[SRN=EN=) 4 (30,3 | BEO 91 4 | (0,3 3)
oo, FFR, F) 3 | (1,0,0) || |7 EHFE 10| 4 | (330
BB 3 | (0,1,0) || |H.EHFH) 11| 4 |(0,373)
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Table 5.2: (continued)

SU(2)31 XSU(?)F SU(2)31 XSU(Z)F

x SU(2) B, x SU(2) B,

Young tableau Naot SU(2) Young tableau Naot SU(2)
(bosonic states) H (B) spin (fermionic states) H (F) spin
IH, 9, 1) 8 1 (0,0,0)

(Epaasetay) 9 | 12 | (3,1,3)

B BB EP) 91 4 | (3:05)

(RRNEERRAE) 10| 3 | (0,1,0)
B, B ) 10| 3 | (0,0,1)
[RENSRE=EE) 12| 1 | (0,0,0)

128 128

5.2.2  [su(3|2) @u(l)] ®© p*°
Once again, we first decompose su(4|2) into its even subgroup su(4) @ su(2) & u(l)g as in
equations (5.2) and (5.8)), and then break su(4) into

su(4) Dsu(3) du(l)p (5.19)

and relabel a;(K), a'(K), bi(K), b'(K) for i = 1,2,3 as am(K), &™(K), by (K), b™(K)
(m=1,2,3) and for i =4 as a4(K), &‘i(K), by(K), b*(K). Therefore, it is useful to define
the number operators Np, = am - gm T pm. bm and Np, = at. 54 + bt 54, such that we have

Np = Np, + Np,. The u(1)p charge can be written as

1 1
D= M* = Np, — 1V =7 (BNp, = Np,) . (5.20)

Now we combine su(3)p, and su(2)r along with the following linear combination of G
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and D: ) ) )
—-D==-N —N, 21
S (5.21)
to form su(3|2) as
su(3) ®su(2) ® u(l)G_%D C su(3|2). (5.22)

Thus, the compact part of the pp-wave superalgebra now has the decomposition
0@ = su(42) D su(32) ® u(1) (5.23)

where the u(1) charge that commutes with su(3|2) is given by

1 1
G_Dzi(NBl_'_NF)_i By - (524)
Therefore, the SU(4|2) covariant super-oscillators need to be decomposed, this time, in

the SU(3|2) x U(1) basis as

(k) = (j;@) — ) ea(K)
A (K) = (;;((f;{))) —  ME) e INK),  ete o
where
(k) = (;Eg) () = (%;) . (5.2

The subspace §(+Y) (and similarly §-) now decomposes with respect to this new
compact basis SU(3|2) x U(1)g_p as

B~ B
8 ’srj(4|2) ( ’ ) e (4.0 ‘SU(3\2)><U(1)G_D
ﬁA-ﬁB}ZS[MﬁN}@((SM-E‘*—E‘*-EM) (5.27)
+ (@)
In the SU(3) x SU(2) x U(1)g—p basis, the above decomposition takes the form:

gty :% % 1 0
8 ‘SU(4|2) ’ ) ) ’SU(3|2)><U(1)G,D
1, ) e @O, ) e (1, T, 1) (5.28)

(D,l,O)@(l,D,O)‘

-
-

SU(3)xSU(2)xU(1)a—p
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The generators Q™" = ([, [1, 1) and Q* = (1, (], 0) are the supersymmetries in g{*!)
of this pp-wave superalgebra (i.e. kinematical supersymmetries), and they now transform
as 6 + 2 under SU(3) x SU(2) x U(1)g—p.

From g(®) subspace, since we only retain the su(3|2) @ u(1)g_p part, we must eliminate
generators of the form M, and M*y; as usual (6 bosonic and 4 fermionic), and therefore,
this pp-wave superalgebra has 28 supersymmetries (8 in ¢+, 8 in g1 and 12 in §(® =
su(3[2) ¢ u(l)).

The number of bosonic generators that remain in the maximal compact subsuperalgebra
3 is 13. Twelve of them are rotation generators, that belong to SU(3) x SU(2) x U(1)
and the other one is the Hamiltonian. Once again we rescale it, so that we obtain energy

increases of the states in integer steps:
H =2Np, +3Np (5.29)

Thus, it is clear that the 6 of the kinematical supersymmetries, Q™" = (1, [J, 1) increase
energy by 5 units, while the other 2, Q* = (1, 1, 0) increase energy by 3 units.

The symmetry superalgebra of this pp-wave solution is

[su(3]2) ® u(1)] ® b™°.

We must mention that, this solution is not found in the literature for obvious reasons that
it has a (“generalized”) rotation group SU(3) x SU(2) x U(1), which does not have a usual
direct product structure of SO(m)’s. However, it still can be considered as a “generalized”
non-maximally supersymmetric pp-wave algebra which is a semi-direct product of a compact
subsuperalgebra and a Heisenberg superalgebra. It would be an interesting problem to
investigate what type of a metric and a flux would give rise to this particular symmetry
superalgebra.

Now we construct the zero-mode spectrum of this pp-wave superalgebra, in the basis
SU(3) x SU(2) x U(1)g_p, by starting from the ground state |Q2) = |0) and present our
results in Table 5.3.



Table 5.3:

mensional pp-wave superalgebra with 28 supersymmetries,

[su(3[2) & u(1)] ® H”*.

The zero-mode spectrum of the eleven di-

SU(3) x SU(2) SU(3) x SU(2)
x U(l)a-p SU(3) x UMa-p SU(3)

Young tableau Naof | Dynkin | SU(2) || Young tableau Ngor | Dynkin | SU(2)
(bosonic states) | H | (B) labels spin (fermionic states) | H | (F) labels spin
1,1,0) 0 1 |0 | 0 |10 3 2 | (0| 1
11,80 6| 1 |@©0| 0 | ol 50 6 | (1,0 | 1
o, 1) 8|1 9 | (10| 1 o, 4, 1) 1| 6 | (0 | 1
5,5, 1) 81 3 | (LO)| 0 | =2 13| 12 | (2,0) | 1
I, 5, 2) 10| 6 | (2,00 | 0 H, oo, 2) 13| 12 | (0,1) 3
B, o, 2) 0] 9 |01 1 5,5, 2) 130 6 | (0,1) | 3
I, 2) 16 6 | (200 0 | FPE3) 15| 16 | (1,1) | 1
BB 2) 169 |01 1 | [Hoo3) 15| 4 | (00 | 3
P, H-, 3) 18 24 | (1,1) | 1 I, 5, 3) 21| 16 | (1,1) | 4
I, 3) 18] 8 | (1,1) 0 B.5,3) 21| 4 | (0,0) 3
oo, 3) |18 5 | (0,0) | 2 3,5, 4) 23| 12 | (0,2) | 3
5,52 3) 181 3 | (0,0 ] 1 B, 4) 23| 12 | (L,0) | 3
/8,5, 4) 20| 6 | (0,2) 0 5B 4) 23| 6 | (1,0) :
5B 4) 20 9 | (1,0) 1 [SSNE=EN:) 25 | 6 | (0,1) :
|5, 7, 4) 26| 6 | (0,2) | 0 B, B, 5) 310 6 | (0,1) | 3
| H4) |26 9 | (1,0) 1 |, P 6) 331 2 | (0,0 :
[HE=5) |28 9 | (0,1) 1

67



Table 5.3: (continued)
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SU(3) x SU(2) SU(3) x SU(2)
x Ul)g-p SU(3) x U()g-p SU(3)
Young tableau Ngor | Dynkin | SU(2) Young tableau Ngof | Dynkin

(bosonic states) | H (B) labels spin (fermionic states) | H (F) labels

SU(2)

spin

EERs) |28 3 | (01) ] 0
A6 |30 1 | (00)| 0
[ E.6) |36 1 | (0,0) | 0

128 128

5.2.3 [su(1]2) @ su(3)] ® p°°

In this case, after the decomposition of su(4) into su(3) & u(1)p (according to equations
(5.19) and (5.20)) and relabeling the bosonic oscillators as &y, (K), a™(K), by (K), b™(K)
(for i = 1,2,3) and a4(K), a*(K), by(K), b*(K) (for i = 4), we use the following linear

combination of G = % (Np +2Np) and D = 1 (3Np, — Np,):

1

4
1

G+D=Np, + 5 Nr,

and su(2)r to form su(1]2).

Now, the compact part of the pp-wave superalgebra has the decomposition
9@ = su(4]2) D su(1]2) ®su(3) @ u(l)GJr%D

where

1 1 1
G+§D: 5(]\732 +NF)+6N31'

(5.30)

(5.31)

(5.32)

Therefore, we must decompose the SU(4|2) covariant super-oscillators in the SU(1|2) x
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SU(3) basis as

EA(K) = (‘”(K)> K e a(K)

ae(K) (5.33)
n(K) = (2;(5()) — (K) @ b™(K), etc.
where . y
() = (a((f( ) 7"K) = (;fg) . (534

The decomposition of §(t1) space (and similarly g=b space) with respect to this new
compact basis SU(1]2) x SU(3) takes the form

g :% ’SU(4\2) B (% ’ 1) o(d.Lh)e (LED ’SU(1\2)XSU(3)
@t =dn e (&b - a i) o

b (87— 85 ) @i

In the SU(2) x SU(3) basis, this decomposition is obviously identical to equation (5.28):

gty :% ’SU(4\2) - @ ’ 1) eJ.LD)e (1 ’ B) ’SU(1|2)XSU(3)

(5.36)
@, Ve @ Ve, Dea e (1,

SU(2)xSU(3)

Again in this case, the supersymmetries in g, Q% = (7, 1) and Q™ = (I, ),
transform as 2 + 6 under SU(2) x SU(3).

From the subspace g(®), this time we eliminate generators of the form M¥%_ and My
(6 bosonic and 12 fermionic), and the u(1) generator in equation (5.31), since we want
to retain only the su(1]2) @ su(3) part. Therefore, this pp-wave superalgebra has only 20
supersymmetries (8 in Y, 8 in g and 4 in §(0 = su(1]2) ® su(3)).

The number of bosonic generators that remain in the new compact subsuperalgebra §(®)
is 12. Eleven of them are rotation generators, that belong to SU(2) x SU(3) and the other
one is the Hamiltonian (= G + D). Once again we rescale it, so that we obtain energy

increments of the states in integers:
H:2N32+NF. (5.37)

Therefore, two kinematical supersymmetries, Q* = ({7, 1) increase energy by 3 units,

and the remaining six, Q™" = (J, [J) increase energy by 1 unit.
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We must mention again, that this solution is not found in literature on the study of
possible pp-wave solutions in eleven dimensions either, for the same reason that its rotation
group contains an SU(3) part, which does not have an isomorphic orthogonal group SO(m).

The symmetry superalgebra of this pp-wave solution is clearly
su(1]2) @ su(3)] ® b°%.

The zero-mode spectrum of this pp-wave superalgebra, in the basis SU(2) x SU(3),
obtained by starting from the ground state |Q) = |0) is identical to that in Table 5.3 as
far as the transformation properties of the states are concerned, and therefore we do not
intend to reproduce it here. The states, however, differ in energies from those in Table 5.3

(see equation (5.37)).

5.2.4 [su(4|1) du(1)] ®© p**°

This time, we break the su(2) subalgebra of su(4[2) D su(4) @ su(2) @ u(1)g and rename
the fermionic oscillators as o (K), &(K), B1(K), BY(K) (for p = 1) and as(K), a%(K),
Bo(K), B*(K) (for u = 2). The u(1)p charge that arises in the breaking of su(2) is

F=Np — Np, (5.38)
where Np, = ol dq + Bl ‘Bl and Np, = &% g+ (2. 35. Then we form su(4|1) (which is

spanned by all the bosonic oscillators a, b and the fermionic oscillators ¢, 5) by combining
su(4) and the following linear combination of G = § (Np + 2Np) (equation (5.8)) and F:

1 1
G+ §F = ZNB + Np, (5.39)
so that we can write
su(4) @ u(l)GJr%F C su(4]1). (5.40)

We must therefore break SU(4|2) covariant super-oscillators, in the SU(4|1) x U(1) basis,

into:

() = (ZL@) — M) @)
) (5.41)
A = — 3 etc
i (K) = (BM(K)> i (K) ® B2(K), et

where

1 (K) = (f‘%) i (K) = (?i(K)> . (5.42)
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The maximal compact subsuperalgebra g(®) has now decomposed into
su(4]2) D su(4]1) S u(l) (5.43)

where the u(1) charge is given by

1 1 3

With respect to this new compact basis SU(4|1) x U(1)y5_ 15, 67V space (and similarly
2

a(=1 space) has the following decomposition:

Q(H) :% ‘SU(4\2) - (% ’ 1) o(d,2)e0,3) ‘SU(4|1)><U(1)2G%F
A Bt = g[M VY g ((gM . 52 _ &2 ﬁM) (5.45)
i (52,51\7_51\/.52)) @5(2'52)

In the SU(4) x U(1)2G7%F basis, this decomposition takes the form:

A<+1>:% - % 1 2) @ (1
g ‘SU(4|2) ( ’ )@(Z’ )& ( ’3)‘SU(4|1)><U(1)2G%F

=H- Ve, e, 1) (5.46)

@@, 2)el,2)e(1,3) ‘SU(4)XU(1)
2

G-LF

Naturally, all 8 supersymmetries in the g(*!) space (and similarly, all 8 in the g(=!
space) are preserved, but now they transform as 4 + 4 of SU(4) x U(1): Q" = (0, 1) and
Q? = (1, 2).

From g(© subspace, we eliminate generators of the form MM, and M2N (2 bosonic
and 8 fermionic) to retain only the su(4(1) @ u(1)y,_ 1p part, and therefore, this pp-wave
superalgebra also has 24 supersymmetries (8 in gt 8 in g(=1 and 8 in §(© = su(4|1) ®
u(l)).

The number of bosonic generators that remain in §(¥) is 17. Sixteen of them are rotation
generators, that belong to SU(4) x U(1) ~ SO(6) x SO(2) and the other one, which is the
u(1) charge inside su(4|1) (see equations (5.40) and (5.39)) is the Hamiltonian. Once again

we rescale it, so that we obtain energy increases of the states in integer steps:

Therefore, it is clear that half of the kinematical supersymmetries in §(t1, (77, 1) in-
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crease energy by 5 units, while the other half ({7, 2) increase energy by only 1 unit.

The symmetry superalgebra of this pp-wave solution in eleven dimensions is
[su(4/1) @ u(1)] ® h7°.

Now we construct the zero-mode spectrum of this pp-wave superalgebra, in the basis
SU(4) x U(1)2G_%F, by starting from the ground state [Q2) = [0) (Table 5.4).

Table 5.4: The zero-mode spectrum of the eleven di-

mensional pp-wave superalgebra with 24 supersymmetries,

[su(4/1) & u(1)] ® H”*.

SUM) X U()yg_ 1 SU@) | SUM@) x U()ye_ 15 SU(4)
Young tableau Nyof | Dynkin || Young tableau Naot | Dynkin
(bosonic states) H | (B) | labels || (fermionic states) H | (F) | labels

11,0) 01 1 ](0,00) |52 1| 4 | (1,00
|9, 4) 2 | 6 |(0,1,0) || |56) 31 4 |(0,0,1)
)E,8> 411100051 51 4 |(1,0,0)
I, 3) 6 | 10 | (2,00 | |75) 71 20 | (1,1,0)
5, 3) 6| 6 |(0,1,0) | |E5) 7 4 |001)
5, 7) 8 | 15 | (1,0,1) ‘53,9> 9 | 4 |(1,0,0)
jE 7) s 1 |(0,00) | |4 11] 20 | (1,1,0)
5, 2) 10| 6 |(0,1,0) | [F4) 1] 4 |001)
|5, 6) 12| 20 | (0,2,0) | |2,8) 13 20 | (0,1,1)
7, 6) 12| 15 | (1,0,1) ‘Ej,s> 13| 4 |(1,0,0)
)E 6) 12| 1 | (0,00 || 53) 15| 4 |(0,01)
)Eﬂ 10> 14| 6 | (0,1,0) || [F7) 17| 20 | (0,1,1)
I, 5) 16| 15 | (1,0,1) ‘Eﬂ 7) 17| 4 | (1,0,0)
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Table 5.4: (continued)

SU(4) x U(1)2G_%F SU(4) SU(4) x U(1)2G_%F SU(4)
Young tableau Nyof Dynkin Young tableau Nyof Dynkin
(bosonic states) H (B) labels (fermionic states) H (F) labels

,5> 16| 1 |(0,0,0) @,11> 19| 4 |(0,0,1)

18] 10 | (0,0,2) ‘Ej@ 21| 4 | (1,0,0)

H HA
Ne) o)
~— ~—

18] 6 |(0,1,0) @,1@ 23| 4 |(0,0,1)
20| 1 |(0,0,0)

22| 6 |(0,1,0)

O 0 o
\.Lu \;Jk
o~
=

HH
—_
N}

~_

24 | 1 |(0,0,0)

128 128

5.2.5 [su(2[1) ®su(2[1)] © h**

Now in this case, again we take the decomposition of su(4]2) into its even subalgebra

su(4)p © su(2)r @ u(l)G:i(NB—s-QNF)

as in equations (5.2) and (5.8), and then break su(4)p into

su(2)p, ®su(2)p, ® u(l)Dzé(NBfNB,z)

as in equations (5.9) and (5.10). Next we break su(2)p as well, into F} and F parts, as
done in the previous case in Section 5.2.4.
Now we combine the F} part (spanned by &, 3 oscillators) with su(2)p, (spanned by
&, b oscillators) to form one su(2[1). It should be noted that, the u(1) charge inside this
su(2p, |1p ) is:
2G+ D+ F = Np, + 2Np, . (5.48)
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Similarly, we combine the F part (spanned by &, 3) with su(2)p, (spanned by @, b) to
form a second su(2|1). The u(1) charge inside this su(2p,|1r,) is given by

2G—-—D —F = Np,+2Np, . (5.49)
Now, the decomposition of the compact part of the pp-wave superalgebra reads as
0@ = su(4)2) > su(2[1) ® su(2|1) & u(1)aepir (5.50)

where the u(1) charge
2D+ F = Np, + N, — N, — Np, (5.51)

commutes with both su(2|1).
Now it clear that we must decompose the SU(4|2) covariant super-oscillators in this
new SU(2|1) x SU(2|1) basis as:

B a'(K) N ~
€)= (OMK)) — e )
$K) (5.52)
Al . M R cte
" (K) = <5M(K)) (K)ot (K), et
where
_ [a™(K) (K
s () ()
R @ (K) R b (K) >
G I )

The subspace g(*1) then decomposes with respect to the new basis SU(2|1) x SU(2|1)

gty :% ‘SU(4I2) B <% ’ 1) eld.)e (1%) ’smu)xSU(?ll)
g[A.ﬁB}:g[M.ﬁN}@((gM.ﬁS_ﬁM.gS)

+(gR‘ﬁN_ﬁR.*N>)@g[R.ﬁS}'

as

(5.54)

In the SU(2)p, X U(l)NBl+2NF1 x SU(2)p, X U(l)NB2+2NF2 basis, the above decompo-
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sition takes the form:

gty :% ‘5U<4|2> - <% ' 1) e(d.)e (1%> ‘SU<2|1)xSU(2I1>

=H.2.1,0)8(@,3,1,00®(1,4,1,0)
®0,1,0,)e@,1,1,2)®((1,2,0,)®(1,2,1,2) (5.55)
®(1,0,H,2)®(1,0,0,3)
@(1,0,1,4)’

SU(2) gy xU()np, +2np, XSU(2) By xU(L)Np, +2np,

The kinematical supersymmetries in g(*1) in this new basis have decomposed as 2+ 2 +
24+42: Q™ =(1,3,1,0,Q™=(1,1,1,2),Q"'=(1,2,0,1)and Q"% = (1, 0, 1, 3).

From the original g(®) subspace, we eliminate generators of the form MMR and M* N
(10 bosonic and 8 fermionic), and the u(1) generator, 2D+ F', in equation (5.50). Therefore,
this pp-wave superalgebra has 24 supersymmetries (8 in §(+9, 8 in gV and 8 in g(® =
su(2(1) @ su(2[1)).

The number of bosonic generators that remain in the new compact subsuperalgebra
3 is 8. Seven of them are rotation generators, that belong to SU(2) x SU(2) x U(1) ~
SO(3) x SO(3) x SO(2) and the other one is the Hamiltonian. A priori it seems that the
Hamiltonian of this superalgebra is not unique. There are two u(1) charges inside the two
subsuperalgebras, so one might choose any linear combination of them as the Hamiltonian.
In fact, what we have in this case is a one-parameter family of solutions with the same
symmetry superalgebra, which differ only in the energies of the states. For an arbitrary
real parameter k, we could choose any linear combination (Np, +2Np,) + k (Np, + 2Np,)
as the Hamiltonian as long as it is bounded from below. Here we choose k = 1 in our
construction of the zero-mode spectrum and rescale it, so that we obtain energy increases

of the states in integer steps:

1

H=3

(]\TB1 + 2]\/}71 + N32 + 2NF2) (5.56)
Therefore, all 8 supersymmetries in g{*1) increase energy by the same amount, which
we have chosen to be 1.

The symmetry superalgebra of this pp-wave solution is
su(2]1) & su(2]1)] © b5

The zero-mode spectrum of this pp-wave superalgebra, in the basis SU(2)p, X
U(l)NBl+2NF1 x SU(2)p, X U(l)NBQJerFQ, obtained by starting from the ground state

\Q> = |0) is given in Table 5.5. It should be noted that in this spectrum, some states



occur with multiplicity greater than 1.

Table 5.5: The zero-mode spectrum of the eleven di-
mensional pp-wave superalgebra with 24 supersymmetries,
[su(2[1) @ su(2|1)] ® h*8.

SUQ2)B, x U(1)Ng, +2Np, X SUQ2)p, X U()Np, +2Np X

SU(2)B, x U)Np,+2Np, SU2)B, x U)Np, +2Np,

Young tableau Naot | SU(2) || Young tableau Ngor | SU(2)
(bosonic states) H | (B) spin (fermionic states) (F) spin
11,0, 1,0) 0| 1 | (0,0) | 1,0,0,3) 2 | (0,3)
11,0,H, 6) 2 1 |(0,0) [ ]1,2,0,1) 2 | (0,3)
|1,2,cm,4) 2 3 |(0,1) | |51,1,2) 2 | (3,0
11,2,05,4) 2 1 |(0,0) || |5,3,1,0) 2 | (3,0
11,4, 2) 20 1 |(0,0) | |1,2,F7) 2 | (0,3)
51,5, 5) 2| 4 | (39 || 1,455 2 | (0,3)
|7, 3,0,3) x 2 21 8 | (3.3 | I=1LE8) 2 | (3,0)
5, 5,0,1) 21 4 (.3 I53,m6) 6 | (31
o, 4,1,2) 2 3 | (1,0) || |7,3,8,6) x2 4 | (3,0
F,2,1,4) 2 1 | (0,0) | |o5,0,4) 6 | (3,1
F,4,1,2) 2 1 |(0,0) || |7,5H4) x2 4 | (3,0
7, 6,1,0) 20 1 ](0,0) | |77,52) 2 | (3,0)
11, 4,[, 8) 41 1 |(0,0) || |/7,4,0,5) 6 |(1,3)
Io, 3,4, 9) 41 4 |33 | Im,6,03) 6 | (L,3)
o, 5,7, 7) x 2 41 8 | (3.3 || B2o7) 2 | (0,3)
I, 7,57, 5) 4] 4 | (33 | B4o5) x2 4 1(0,3)
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SU(2)31 X U(l)NBl +2Np, X

SU2)B, x U)Ng, +2Np,

SU(?)B1 X U(l)NB1+2NF1 X

SU2)y, x U)Ng, +2Np,

Young tableau Naot | SU(2) || Young tableau Ngot | SU(2)
(bosonic states) (B) spin (fermionic states) (F) spin
I, 4,5, 8) 3 1 (1,0) || |B,6,0,3) x 2 4 1(0,3)
I, 6,13, 6) 9 | (1,1) || |B8,mo,1) 2 1(0,3)
o, 6,5, 6) 3 | (1,0) || [#.5,1,4) 2 | (3.0
I, 8,H, 4) 3 | (1,0) || |7,7,1,2) 2 | (3,0)
E,2,5, 10) 1| (0,0) || |5, 10) 2 | (3,0)
B, 4,0, 8) 3101 | I57,H8) 2 | (3:0)
I 4,6,8) x 2 2 | (0,0) || |m,6,H,9) 6 | (L3)
B, 6,1, 6) 3| (0,1) || |8, 7) 6 | (13)
|5, 6,6, 6) > 3 3| (0,0) | IB4,5,11) 2 1 (0.3)
F, 8,0, 4) 3 1 (0,1) || |5,6,,9) x 2 4 1(0,3)
F,8,8,4) x 2 2 | (0,0) || |B,8F,7) x2 4 1(0,3)
£, 10,5,2) 1| (0,0) || 3,10, 5) 2 | (0,3)
H,5,0,7) 4 | (5:3) || 5810 2 | (3,0
/P, 7,0,5) x 2 8 | (3,4 | F7.m8) 6 | (3,1
F,9,0,3) 4 | (3:9) | IB7.8.8) x2 4| (3.0)
I, 8,1,4) 1 1 (0,0) || |H,9,m,6) 6 | (31)
|, 8,FH, 10) 3 | (1,0) || |F%,9,5,6) x2 4 |(3,0)
B, 6,65, 12) 1| (0,0) || [F%11,5,4) 2 | (3,0)
B, 8,H, 10) 1 | (0,0) || H8,0.7) 2 1(0,3)




Table 5.5: (continued)

78

SU(2)31 X U(l)NBl +2Np,

SU2)B, x U)Ng, +2Np,

SU(?)B1 X U(l)NB1+2NF1 X

SU2)y, x U)Ng, +2Np,

Young tableau Nyot SU(2) Young tableau Ngot | SU(2)
(bosonic states) (B) spin (fermionic states) (F) spin
[ERDASERS 1| (0,0) || [F310,0,5) 2 | (0,3)
=, 7,5, 11) 4 [ (59 || 9.5, 12) 2 | (3,0
59,57, 9) x 2 8 | (3:3) || B 11,E5,10) 2 | (5,0
11,5 7) 4 | (3.3) | [H10,511) 2 | (0,3)
5, 8,5, 10) 1 ] (0,0) || [H12,,9) 2 1 (0,3)
[, 10,0, 8) 3 (0,1
|, 10,H, 8) 1 (0,0)
I, 12,H, 6) 1 | (0,0)
B, 12,55, 12) 1 | (0,0)
128 128
5.2.6 [su(2|1) @ su(l]l) @ u(l)] ® h°

To obtain this particular pp-wave superalgebra, we can start from the superalgebra we just

discussed in the previous section, [su(2[1) @ su(2[1)] ® h?®, and decompose only one su(2|1)

into su(1/1) @ u(1).?

If we are breaking the second su(2|1) in equation (5.50), we first obtain two u(1) charges

as follows:

3The subsuperalgebra su(1|1) consists of two fermionic generators and one bosonic generator.

su(2[1) D su(2) ®u(l)

%NBQ-FNFQ

su(2) D u(l)N33 ~Ng,

(5.57)
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See equation (5.49). We have used the notation, Np, = 53-53—1—53-83 and Np, = 54-54+g4-g4.
Therefore, Np, = N, + Np,.

Then we form an su(1|1), which is spanned by the bosonic oscillators as(K), a3(K),
b3(K), b*(K) and the fermionic oscillators ao(K), a2(K), f2(K), 3*(K). The following

linear combination of the two u(1) charges in equation (5.57) must be inside this su(1|1):
1 1
<2NBQ+NF2)+2(NB3—NB4)=NB3+NF2. (5.58)
The g(© space, therefore, has now decomposed into
su(4]2) D su(2|1) @ su(1]1) ®u(l). (5.59)

In the decomposition of SU(4|2) covariant super-oscillators into the SU(2|1) x SU(1]1) x
U(1) basis we can retain the same super-oscillators in equation (5.53) that realized the first

su(2|1) and just decompose the other super-oscillators as
- "K a’(K

gR(K) — 2( ) _ ~2(
(K) a*(K

R () = ( i K>> . (ZZS(K)) ® H(K).

™

o

(5.60)

S

*(K)

@

The decomposition of (1) space, in the SU(2|1) x SU(1|1) x U(1) basis takes the form:

Q(H):%‘SU(W):(%’1’1)@(2] ,Z],l)@(lz,l,[])@(l,%,l)

(5.61)
o(1,10,0)|

SU(2|1)xSU(1[1)xU(1)

and therefore, the 8 kinematical supersymmetries in §(*1) can be identified easily.

Again, from the g(® subspace, we keep only the generators that belong to su(2[1) @
su(1]1) @ u(l) (6 bosonic and 6 fermionic), and eliminate the rest. Therefore, this pp-
wave superalgebra has 22 supersymmetries (8 in g(*D, 8 in g1 and 6 in §(0 = su(2[1) &
su(1|1) @ u(1)). Five of the bosonic generators that remain in §(°) are rotation generators
that belong to SU(2) x U(1) x U(1) = SO(3) x SO(2) x SO(2) and the other generator
is the Hamiltonian. Since there are two subsuperalgebras su(2|1) and su(1]1) in §©, we
again obtain a one-parameter family of Hamiltonians - a linear combination of the two u(1)
charges inside these superalgebras. We choose the simple sum of the two here in our study

and rescale it, as we did before in the previous case, so that we obtain energy increases of
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the states in integer steps:
H = Np, + 2Np, +2Np, + 2Np, (5.62)
The symmetry superalgebra of this pp-wave solution in eleven dimensions is
[su(2|1) @ su(1]1) ® u(1)] ® h”°.

The zero-mode spectrum of this pp-wave superalgebra can be obtained by acting on the
lowest weight vector ’Q> = |0) with the kinematical supersymmetries in g(*1). We skip
listing the spectrum explicitly, since it is a straightforward exercise when the kinematical

supersymmetries are known.

5.2.7 su(2[1) © b8

By starting from the maximal compact subsuperalgebra we discussed in the section 5.2.5, we
can form another maximal compact subsuperalgebra by taking the diagonal subsuperalgebra
of su(2|1) & su(2|1).

In terms of oscillators, we identify the indices M < R in equations (5.52) and (5.53) in
order to form the diagonal subalgebra.

The subspace g(t?) decomposes in this new diagonal SU(2|1) as:

gty :% ’sv(m) - (% ’ 1) o, )e (1%) ‘SU(zu)XSU@lU

- % VA @% @% ‘SU(?\l) (5.63)

diag
= 2) @4 1,4 2
3x (. )edx@ye3x L, Ho 2| 0

where the U(1) charge, which plays the role of the Hamiltonian is given by
‘H=Np+2Np. (5.64)

Now one can easily identify the kinematical supersymmetries in g(*1) in this new basis
as 4 x (O, 3), which transform in SU(2) x U(1) as 4 x 2.

Since we formed a diagonal subsuperalgebra from the previous compact subsuperalgebra
3 = su(2/1) © su(2|1), we now have only 4 bosonic and 4 fermionic generators left in the
new g0 = 51(2|1)diag. Therefore, this pp-wave superalgebra has 20 supersymmetries (8 in
g, 8in g and 4 in g©).

The new §(© contains only 3 rotation generators, and the symmetry superalgebra of

this pp-wave solution is

su(2[1) ® h28.
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Since it is possible to obtain the zero-mode spectrum of this pp-wave superalgebra, from
that of [su(2|1) @ su(2|1)] ® h*® in Section 5.2.5, by simply taking the tensor product of

the corresponding super Young tableau, we leave it out of this thesis.

5.2.8 [su(l|l) ®u(l)] ®© p**°

Here we can start from the previous case where the compact subsuperalgebra is su(2|1), and
first decompose it into su(2) @ u(1). Then after breaking su(2) further into its u(1) charge,
we can combine these two u(1) generators to form an su(1|1) subsuperalgebra along with
two supersymmetry generators from su(2|1).

We eliminate the other two supersymmetries, as well as the remaining three bosonic

generators. Then, our new compact subsuperalgebra becomes
8@ = su(1)1), (5.65)

making the total number of supersymmetries in the algebra 18. The u(1) charge inside
su(1|1) acts as the Hamiltonian of this algebra.
The decomposition of §(+1) subspace with respect to the new basis SU(1|1) has the

form:

gty :% ‘SU(4|2) = 3x % g% ‘smzu)diag
- 3><(%,O)@élx([],l)@(]Z]Z],O)@(l,Z)

Now one can identify the supersymmetry generators in §*, with which we must act
on a lowest weight vector to generate a UIR, in the same way as before. The zero-mode

Q> = |0).

spectrum once again corresponds to the lowest weight vector

5.2.9 [su(3|1) @ su(l|1)] ® h*

In this case, we first break su(4)p into su(3) @u(1)p as in equations (5.19) and (5.20). Then
we break su(2)r as well, into its u(1) charge as first done in Section 5.2.4.
Next we combine & (K), &(K), 81(K), 3*(K) oscillators with su(3) to form su(3[1) as

su(3) e u(l) C su(3|1) (5.67)

where the u(1) charge contained in su(3|1) can be identified as

1 1 1
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We recall that G, D and F are given by G = 1 (Np +2Np), D = 1 (3Np, — Np,) and
F = Np, — Np,.
Next we combine ay(K), &*(K), f2(K), ?(K) oscillators with the remaining bosonic
oscillators (of the type @, and b) to form 5u( |1). Note that the u(1) charge inside this
su(1(1) is

1
G+D—§F:NB2+NF2. (5.69)

Therefore we must now consider the decomposition of SU(4|2) covariant super-oscillators
in the SU(3|1) x SU(1|1) basis as follows:

§A<K>=<‘”(K) — M(K) @ ER(K)

. (5.70)
() = (;ff?)) — ME eI, e
where
&M (K) = (ZT%) WM (K) = (l;((?)
» o (5.71)
() (a?)) () = <g((?)>
The g(© subspace has now decomposed into
su(4)2) D su(3|1) & su(1]l) ®u(l). (5.72)

Furthermore, the §(+1) subspace decomposes, in this SU(3|1) x SU(1|1) basis as:

g :% ‘SU(4|2) - (% ’ 1) ed.)e (1 ’ %> ‘SU(3|1)XSU(1\1) (5.73)

and therefore, in the SU(3) X U(1)np, +3Np X U(1)Np,+Np, basis, we can write:

gty :% ‘SU(4|2) B <% ’ 1) o4, ) (1 ’ %) ‘SU(3|1)XSU(1\1)

={H 2,0e@,4,00©(1,6,0)
@2x([,1,1)®2x(1,3,1)
@2><(1,0,2)‘

(5.74)

SUB)XU(W)np, +anp, XU()Np, +Np,

From this decomposition, one can identify the 8 kinematical supersymmetries in §(*% as
(0,4,08(@, 1, 1)s(1, 3, 1)&(1, 0, 2). They transform in the SU(3) XU (1) Ny, +3np, X
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U(1)Np,+Np, basisas 3+3+1+ 1.

Again, from the g(®©) subspace, we must eliminate generators of the form MMR and
M (8 bosonic and 8 fermionic), and the u(1) generator that commutes with both su(3|1)
and su(1|1) (see equation (5.72)), since we want to keep only the su(3|1) & su(1|1) part.
Therefore, we obtain a pp-wave superalgebra that has 24 supersymmetries (8 in @(H), 8 in
gV and 8 in §(©) = su(3|1) ® su(1|1)).

The number of bosonic generators that is left in the remaining compact subsuperalgebra
3© is 10. Nine of them are rotation generators, that belong to SU(3) x SU(1) and the
other one is the Hamiltonian. Once again we obtain a one-parameter family of Hamiltonians,
(%NB1 + NFI) + Kk (NB, + Np,), as in Section 5.2.5. We choose again for simplicity x = 1,
and rescale it as we did before, so that the energy increases of the states come in integer
steps:

H:%(NBI+3NF1+3NB2+3NF2) (5.75)

Thus, we immediately notice that the 6 the kinematical supersymmetries, Q™! =
(1, 4,0) and Q™ = (O, 1, 1) increase energy by 2 units, while the other 2 kinemati-
cal supersymmetries Q* = (1, 3, 1) and Q*? = (1, 0, 2) increase energy by 3 units.

The symmetry superalgebra of this pp-wave solution in eleven dimensions is
[su(3[1) @ u(1[1)] ® H™*°.

Once again we note that, due to the presence of an SU(3) in the rotation group of this
superalgebra, it is not among those pp-wave solutions that are considered in literature.

Finally we give the zero-mode spectrum of this pp-wave superalgebra, in the SU(3) x
U(1)Np, +3Np, X U(1)Np,+Np, basis, obtained by starting from the ground state 1Q) = |0)
(Table 5.6). Once again, some states of this spectrum appear with multiplicity greater than
1.



Table 5.6:

The zero-mode spectrum of the eleven di-

mensional pp-wave superalgebra with 24 supersymmetries,
su(3|1) @ su(1]1)] © bo.

SUB) x U(1) Ny, +3Np, SU3) x U(1) Ny, +3Np,
X U(L)Np,+ N, SUB) || x U)Np,+Np, SU(3)
Young tableau Ngot | Dynkin || Young tableau Ngot | Dynkin
(bosonic states) H | (B) labels (fermionic states) (F) labels
1,0,0) 0 1 | (0,0 | p1,1) 3 | (1,0)
o, 5, 1) 41 6 | (2,0) | |n,4,0) 3 | (1,0)
A, 2,2) 41 3 | (0,1) | [1,0,2) 1 | (0,0)
H,5,1) 41 3 | (0,1) | 1,3,1) 1 | (0,0)
F, 8,0) 41 3 | (0,1) | 5,6,2) 8 | (1,1)
o, 1,3) 51 3 | (1,0) || 9,1 8 | (1,1)
3,4, 2) x 2 5 6 | (1,0) | [53,3) 1 | (0,0)
0,7,1) 51 3 | (1,0) | [56,2) 1 | (0,0
11,3,3) 6 1 | (0,0 |]591) 1 | (0,0)
I, 10, 2) 8| 6 |(0,2) |[512,0) 1 | (0,0)
H.7,3) 8| 3 | (1,0) || |,5,3) 6 | (2,0)
H,10,2) 8| 3 | (1,0) || |m9,8,2) 6 | (2,0
57 13,1) 8| 3 | (1,0) || |5,2,4) 3 | (0,1)
I, 6,4) 9 | 8 | (1,1) || B,5,3) x2 6 | (0,1)
57, 9,3) x 2 9 | 16 | (1,1) || |5,8,2) x 2 6 | (0,1)
I, 12,2) 9 | 8 | (1,1) | B11,1) 3 | (0,1)
5.3,5) 9 | 1 |(0,0) || |74,4) 3 | (1,0)
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Table 5.6: (continued)

SUB) x U\)Ng, +3Np,

SUB) x U(1)Ng, +3Np,

X U(D)Np, + N, SUB) || x U)np,+np, SU(3)
Young tableau Ngot | Dynkin || Young tableau Ngot | Dynkin
(bosonic states) H | (B) labels (fermionic states) H | (F) labels
5,6,4) x 2 91 2 | (0,0 | |5,73) 8| 3 | (1,0)
H9,3) x 2 9 | 2 | (0,0) | |F11,3) 10 3 | (0,1)
H,12,2) x 2 9| 2 |(0,0) | |HH14,2) 10 3 | (0,1)
. 15,1) 9| 1 | (0,0) | |F,10,4) 11| 6 | (0,2
I, 8, 4) 10 6 | (2,0) | |#,13,3) 11| 6 | (0,2
I, 1,3) 10 3 | (0,1) || [§.7.5) 11| 3 | (1,0)
H,5,5) 10| 3 | (0,1) || [5,10,4) x 2 11| 6 | (1,0)
A,8,4) 10| 3 | (0,1) || [513,3) x 2 11| 6 | (1,0
I, 15,3) 12| 1 | (0,0) || [,16,2) 11| 3 | (1,0
7, 11,5) 131 3 | (0,1) || [F,9,5) 12 8 | (1,1)
[, 14, 4) x 2 13 6 | (0,1) || |F7,12,4) 12 8 | (1,1)
. 17,3) 13| 3 | (0,1) || [56,6) 12| 1 | (0,0)
5, 13, 5) 14 6 | (0,2) | [H9.5) 120 1 | (0,0)
57, 10,6) 14| 3 | (1,0) || [512,4) 12| 1 | (0,0)
H,13,5) 14| 3 | (1,0) | [515,3) 12 1 | (0,0)
5, 16,4) 14| 3 | (1,0) || |H 15,5) 151 3 | (0,0)
I, 18,6) 18| 1 | (0,0) || | 18,4) 15 1 | (0,0)

|, 14,6) 16| 3 | (0,1)

[54,17,5) 16| 1 | (0,1)
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Table 5.6: (continued)

SUB) x U\)Ng, +3Np,

SUB) x U(1)Ng, +3Np,

X U()Ng,+Np, SUB) || x UL)Np,+Ng, SU(3)

Young tableau Ngof | Dynkin Young tableau Ngot | Dynkin

(bosonic states) (B) labels (fermionic states) (F) labels
128 128

86



87

Chapter 6

Ten Dimensional Type IIB PP-Wave

Superalgebras

We follow an analysis similar to that in Chapter 5, here in our study of the pp-wave
superalgebras that can be obtained by starting from the symmetry algebra of the ten dimen-
sional type IIB superstring theory. We first show using the oscillator method, how to obtain
the spectrum of the pp-wave limit of type IIB superstring theory over AdSs x S°, starting
from the oscillator construction of the Kaluza-Klein spectrum of the ten dimensional type
IIB supergravity over AdSs x S°, which we outlined in Section 4.3. The resulting pp-wave
superalgebra of type IIB superstrings still preserves all 32 supersymmetries, and hence can
be called the maximally supersymmetric type IIB pp-wave algebra.

Then we take various restrictions of this maximally supersymmetric pp-wave algebra,
and obtain many non-maximally supersymmetric type IIB pp-wave algebras and their zero-

mode spectra.

6.1 Maximally supersymmetric type IIB pp-wave algebra

Just as in the case of eleven dimensions, the symmetry superalgebra of the pp-wave limit of
type IIB superstring theory over AdS5x .S° can be obtained by an Inénii-Wigner contraction
[[W53] of the corresponding AdS; x S symmetry algebra su(2,2[4) [FGP02, HKS02a].

The number of colors P of oscillators again plays the role of the contraction param-
eter, and we normal order all the generators of the superalgebra before evaluating their
super-commutators. The parameter P once again appears explicitly, only in the super-
commutators of the form [g(_l), g(+1)}, and more specifically, in the u(1) generators E
and J (equations (4.34) and (4.38)), that determine the 3-grading of the AdS and internal
symmetry (R-symmetry) algebras su(2,2) and su(4) of su(2,2[4)*:

1 1
E= Np+P J=5Np—P (6.1)

Here we have defined the bosonic and fermionic number operators as Ng = N, + N, and

'"We recall that su(2,2[4) = psu(2,2[4) ® u(1)z, where Z was given in equation (4.44).
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Np = N4 + Ng, respectively. We see that, when P — oo the eigenvalues of

1

E —
J2

(Np — Np) 4+ 2P (6.2)
which are P-dependent become large, while those of
1
E+J:§(NB+NF) (6.3)

which are P-independent stay finite. Note that this P-dependent generator (E — J) is the
sum of super-traces of the two su(2|2) subsuperalgebras of su(2,2[4), and the P-independent
generator (F + J) is simply the sum of two u(1) charges X; and X5 inside the two su(2|2)’s
(see equations (4.43) and (4.44)).

We can see once again that our generators E and J simply correspond to the translation

generators a% and —%, respectively, in the geometric realization in [BFHP02, BFP02].

Therefore, translations along the null geodesic u ~ (T + %@Z)) mean that we are considering
large eigenvalues of the generator F — pJ for p = 1. (We recall from section 3.3 that
maximally supersymmetric pp-wave limit of AdS5 x S° corresponds to p = 1.) This is
exactly what we have obtained in equation (6.2) for large P. On the other hand, the
generator that represents translations along the direction v ~ (T — %1/)) isE+pJ=E+J
(equation (6.3)), and its eigenvalues are finite in the pp-wave (P — o0) limit.

Therefore from a group theoretical point of view, the parameter p is once again deter-
mined by the requirement that the eigenvalues of the generator that corresponds to the
translations along the direction v must be finite in the contraction limit (P — o0).

(#1) subspaces as

Aapr — AAM = \/E’AAM AAM JAM \/E.AAM (6.4)

and the P-dependent generator in g(®) subspace as

We shall then re-normalize the generators in the g

A
E—J —(E—-J 6.5
(B = J)— 5 (B ) (65)
where ) is once again a freely adjustable parameter. We finally take the limit P — oo in
all super-commutators to obtain the corresponding pp-wave algebra.
In this pp-wave limit, once again the re-normalized subspace §(~1 @ §(+1) form a Heisen-

berg superalgebra:
[Aaar s AN} = 3 (—1) e8P0V o) (6.6)

P—oo

along with (E — J) — A, which becomes the central charge. We denote this Heisenberg

superalgebra by h®8, since it contains 8 pairs of bosonic and 8 pairs of fermionic generators.
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The generators in g(® subspace (modulo E — J), that do not depend explicitly on P

(assuming all the generators are in normal ordered form), are unaffected by this limit. The
P-independent linear combination of E and .J, that is still remaining in §(®) = g /(E —.J),
plays the role of the Hamiltonian (up to an overall scale factor) in the new algebra. The
rest of the subspace §(°), namely SU(2)1, x SU(2)g x SU(2)p, x SU(2)p, = SO(4) x SO(4)
has now become the rotation group.

We can therefore finally write down the superalgebra of the pp-wave limit of type 1B
superstring theory on AdSs x S® background. It is obviously a semi-direct sum of the

compact subsuperalgebra g(*)/(E — .J) and the Heisenberg superalgebra h%S:
[psu(2]2) @ psu(2(2) ® u(1)] ® H*°

where the u(1) charge is given by 3 (N, + Ny + Ny + Ng). We remind the reader that
still there is a u(1) charge Z = 1 (N, — N, + Ny — Ng), which commutes with the entire
pp-wave superalgebra as an overall central charge.

Now to construct a UIR of this pp-wave superalgebra, we again choose a set of states
Q) that transforms irreducibly under g = psu(2|2) & psu(2/2) @ u(1) and is annihilated
by (-1 generators.? Then by acting on ]Q) with §(+1) generators repeatedly, we obtain a
UIR of the pp-wave superalgebra.

Again in this case, there are infinitely many such lowest weight vectors |Q2), but [Q2) = |0)
is the only §(©) invariant state with zero U(1)g, charge (i.e. with zero eigenvalue of the
Hamiltonian). Also, since the entire Kaluza-Klein spectrum of ten dimensional type I1IB
supergravity over AdSs x S° fits into short unitary supermultiplets of SU(2,2|4) with lowest
weight vector |2) = |0) (with Z = 0), the zero-mode spectrum of the pp-wave superalgebra
must be the unitary supermultiplet obtained by starting from |Q> = 10).

Even though SU(2,2|4) admits doubleton supermultiplets (P = 1) with AdS energy
range AFE = 2, massless supermultiplets (P = 2) with AE = 4 and massive BPS supermul-
tiplets (P = 3) with AE = 6, in the pp-wave limit we find that there are no analogs of such
supermultiplets which have AE < 8. We also recall that, for P > 4, the AdS energy range
of BPS multiplets corresponding to the Kaluza-Klein modes of IIB supergravity is always
AFE =8.

Next we express the §(+1) generators in the SU(2); x SU(2)p, x SU(2)r x SU(2)p,

2If one incorporates the central charge Z into the discussion, then an additional condition must be
imposed, namely all representations must carry the eigenvalue Z = 0.
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basis in the Young tableau notation:

iV = (.10

=0,1,0,)e @, 1,1, 006 @1,0,0,1) (6.7)

PSU(2|2)x PSU(2|2)

e,0,1,0 ‘SU(Q)Lst(z)F1 xSU(2)rxSU(2)

The generators in §(~1 are the Hermitian conjugates of those in §(*), and they have
a similar decomposition in the SU(2)r x SU(2)p, x SU(2)r x SU(2)p, basis. It is easy
to identify that A" = (0, 1,1, 1) and A* = (1,3, 1, ) are the (4 + 4 =) 8 bosonic
generators in §(*), which together with their Hermitian conjugate counterparts in g=%,
produce translations (§(+1) +i g(=1)) and boosts (§(+1) —i g(=1)) in the 8 transverse directions
of ten dimensional type IIB pp-wave spacetime.

On the other hand, (71, 1, 1,0) @ (1,1, [J, 1) are the 8 supersymmetries Q% @ Q"*
in g1 with which we must act on the lowest weight vector |2) = |0) to obtain the entire
unitary supermultiplet [FGP02]. We present our results in Table 6.1 below. The first
column on each side gives the SU(2)r, x SU(2)p, x SU(2)r x SU(2)p, Young tableaux of

the states. Then we list the eigenvalues of the Hamiltonian H (i.e. E 4 J given in equation

(6.3)): |
the number of bosonic/fermionic degrees of freedom Ngof and the SO(4) = SU(2), xSU(2)r
and SO(4)' = SU(2)p, x SU(2)p, labels of these states. This table clearly agrees with the

zero mode spectrum given in [MT02].

Table 6.1: The zero-mode spectrum of the maximally su-
persymmetric type IIB pp-wave algebra in ten dimensions,
[psu(2(2) @ psu(2[2) @ u(1)] © H**.

SU@2)L x SU(2)r, SU@2)L x SU2)r,

x SU(2)r x SU(2)r

X SU(2)p, X SU(2)p,

Young tableau Naot | SO(4) | SO(4) || Young tableau Naoz | SO(4) | SO(4)
(bosonic states) H | (B) | labels | labels || (fermionic states) | H | (F) | labels | labels
11,1,1,1) 0| 1 | (0,0)| (0,0) || 1,0,0,1) 1) 4 |01 QE0




Table 6.1: (continued)
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SU(Q)L X SU(2)F1

SU(2)L X SU(Z)F1

x SU(2) g x SU(2)r

x SU(2)r, x SU(2)r,

Young tableau Naof | SO(4) | SO(4) || Young tableau Naoz | SO(4) | SO(4)
(bosonic states) (B) | labels | labels || (fermionc states) (F) | labels | labels
1,006, 1) 3 | (0,0) | (1,0) | [m,1,1,5) 4| (3,0 ] (0,3)
1,8,m, 1) 31 (0,1) | (0,0) || [LELELD) 410,330
Io,0,0,0) 16 | (3:3) | (3:3) || bmBO) 12 | (3,0) | (L,3)
o, 1, 1,5) 3 | (1,0) | (0,0) || [7,B,m0) 12 | (3,1) | (0,3)
B.1,1,m) 31 (0,0) | (0,1) || [m,o,0.8) 12 | (1,3) | (3,0)
|16, 1) 1| (0,0) | (0,0) | [B,0.0,c0) 121 (0,3) | (3,1)
o, B0 16 | (3:3) | (3,3) || S LLE) 4| (3.0) ] (0,3)
o, ,6,8) 9 | (1,0) | (1,0) || |nEBED) 4 (3,0 ] (0,3
[EENENRERE) 9 | (1L,1) | (0,0) | LB 12 | (1,3) | (3,0)
B8, ™) 9 | (0,0) | (1,1) | BEREF D) 12| (0,3) | (3:1)
8.8, ) 9 | (0,1) | (0,1) | [FmBH) 12 | (3,0) | (1,3)
00,8 16 | (3.3) | (3:3) | PETE) 12 | (5.1) | (0,3)
B 1,1,68) 1| (0,0) | (0,0) || |Ho0H) 41(0,5) | (3,0
o, B3, 66, B) 3 | (1,0) | (0,0) | [FHBEP 4 (3,0 ] (0,3)
B.6B. B ) 31 (0,0) | (0,1) | BRFD 410,530
[EaN=aNENEs) 16 | (3:3) | (3:3)

I8, o, B, 6B) 3 1 (0,0) | (1,0)

B85 31 (0,1) | (0,0)
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Table 6.1: (continued)

SU12)L x SU(2)p, SU(2)L x SU(2)p,

x SU(2)r x SU(2)r

x SU(2)p, x SU(2)p,

Young tableau Naos | SO(4) | SO(4)" || Young tableau Naot | SO(4) | SO(4)
(bosonic states) H | (B) | labels | labels || (fermionic states) | H | (F) | labels | labels

BEEEB [ 8] 1 | (0,0 (0,0

128 128

6.2 Non-maximally supersymmetric type IIB pp-wave alge-

bras in ten dimensions

It is clear from the previous section that just as in eleven dimensions (Chapter 5), a generic
type IIB pp-wave superalgebra in ten dimensions is also the semi-direct sum of a compact
subsuperalgebra and a Heisenberg superalgebra. Once again, in the maximally supersym-
metric case, 16 (kinematical) supersymmetries belong to the Heisenberg superalgebra h%8
and the other 16 (dynamical) supersymmetries belong to the compact subsuperalgebra
g = psu(2|2) @ psu(2)2) @ u(1).

Realization of the generators of psu(2|2) in oscillator method is not straightforward.

To avoid this complication, we incorporate the overall central charge
1
Z = g(Na—ijLNa—Nﬁ) (6.9)

to the g(® part of the maximally supersymmetric pp-wave algebra. Then by combining it
with the other u(1) charge in g(®:

1
GZE—i-J:i(Na—i-Nb—i-Na—i-Ng), (6.10)

3Generators of psu(2|2), if properly realized, should give no u(1) (central) charge under (anti-
)commutation among themselves.
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we form two u(1) generators

G+Z=N,+ N, =2X;

(6.11)
G—Z:Nb+N6:2X2

which are exactly the u(1) generators we need to turn the two subsuperalgebras psu(2|2)

into two su(2|2)s. Thus, the compact part of the pp-wave superalgebra becomes
0@ = su(22) @ su(22). (6.12)

Note that the Hamiltonian is the sum of the u(1) charges inside these su(2|2), X; + X2 (up
to an overall factor).

Now starting from this maximally supersymmetric ten dimensional type IIB pp-wave
algebra, we follow the same methods we utilised in Chapter 5 to obtain a number of non-
maximally supersymmetric pp-wave algebras, by restricting g(®) to one of its subsuper-
algebras. We present in this section, an extensive list of such cases and calculate their
corresponding zero-mode pp-wave spectra. In all these cases, it is once again important to

note that all 16 kinematical supersymmetries are preserved.

6.2.1 [su(2)2) ®su(2]l) ®u(l)] © H*°
It is easy to see that to obtain the desired maximal compact subsuperalgebra su(2[2) @
su(2|1) @ u(1), we must first decompose one of the su(2|2) subsuperalgebras® into
su(2[2) D su(2)g © 5u(2)r, O w(1)2x,=N,+N; - (6.13)
We then break su(2)g, into its u(1) charge, given by
Fy = Ngi — Nay (6.14)

and relabel the fermionic oscillators 3y (K), f1(K) and (3(K), B%(K) as f1(K), fL(K) and
By(K), B2(K), respectively. Note that Ng = Gl G and Ngy = 32 - 35, and therefore
Ng = Ng1 + Nga.

Then we combine f1(K) and $'(K) with b,.(K) and b"(K), along with the following

linear combination of X9 and Fb:

1 1
X9 + §F2 = iNb + Nﬂl (6.15)

4We arbitrarily choose the second su(2|2), which is realized in terms of b and 3 type oscillators.
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to form su(2|1). The decomposition of the original compact subsuperalgebra 9(© now reads

g(o) = s5u(2[2) @ su(22)

(6.16)
D su(2]2) @ su(2]1) ® u(1)2x, -

Therefore, as usual, we must break one set of SU(2|2) covariant super-oscillators (those
contain b and [ type oscillators) into SU(2|1) x U(1) basis. Note that the other set of
SU(2|2) covariant super-oscillators, £4(K) and £4(K) are unaffected by this decomposition.

Now at our disposal, we have one set of the original SU(2|2) covariant super-oscillators
(unchanged) and another set that has now decomposed into SU(2|1) x U(1):

() = (;:,((?)) — P e PE) (6.17

where M =1,2|1,2 and R = 1,2|1, and

i b (K
K = 1( ap (6.18)
BK)
From g(*), we retain only the su(2|2) @ su(2|1) @ u(1) part and eliminate the rest.

Therefore, this new compact subsuperalgebra §(®) contains 12 bosonic generators (7 from
su(2|2), 4 from su(2|1) and u(1)) and 12 fermionic generators (8 from su(2|2) and 4 from
su(2(1)).

It is also helpful to see how g spaces decompose with respect to this new basis
SU(2|12) x SU(2|1) x U(1). For example,

g1

gD =
=4, SU(2/2)xSU(2|2)

=1, J.De(ad.1,1) (6.19)

SU(2J2)x SU@21)xU(1)ax,
¢t =t gtedt. g
and in SU(2), x SU(2)p, x SU(2)r x U(1)2x,+m, X U(1)2x, basis it reads as

gtV =@, 1,01, Ve @, 1,1,2, ) (1,0,0,1, )®1,0,1, 2, 1)

®@,1,1,0,H)e1,0,1,0,1)
SU(2)L XSU(Q)Fl XSU(2)R><U(1)2X2+F2><U(1)2X2

(6.20)

Since g is the direct sum of two superalgebras, su(2|2) and su(2|1), the Hamiltonian

could be any linear combination of the two u(1) charges inside them. Here we simply choose
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their sum as the Hamiltonian of our algebra:
H = Ng+ Ny + Ny +2Ng; . (6.21)

Clearly, two supersymmetries (CJ, 1, 1, 2, 1) increase energy by 3 units, four supersym-
metries (1,0, 0, 1, 1) increase energy by 2 units and the remaining two supersymmetries
(0, 1,1,0, 1) increase energy by 1 unit, according to equation (6.21).

The 8 bosonic generators in §(t1) and their hermitian conjugate counterparts in §(—1)
produce translations (g(+" +i (=) and boosts (g*1 —i g(=1) in the 8 transverse directions
in this ten dimensional type IIB pp-wave background.

This pp-wave superalgebra has a total of 28 supersymmetries (8 in gt 81in gV and
12 in @(0)), and the symmetry superalgebra of this type IIB pp-wave solution is,

[su(2|2) @ su(2|1) @ u(1)] ® 8.

Now we construct the zero-mode spectrum of this pp-wave superalgebra in the basis
SU2)L x SU22)p, x SU22)r x U(1)ax,+1, X U(1)2x,, by starting from the ground state
|Q2) = |0) (Table 6.2). The first column gives the SU(2) x SU(2) g, X SU(2) g x U (1)2 x4 1y X
U(1)2x, Young tableau of the state, and the remaining columns give the eigenvalues of the
Hamiltonian H (according to equation (6.21)), the number of degrees of freedom and the
SU(2) spin of these states.

Table 6.2: The zero-mode spectrum of type IIB

pp-wave  superalgebra  with 28  supersymmetries,
[su(2]2) @ su(2[1) @ u(1)] © hB2.

SU(Q)L X SU(?)F1 SU(?)L X SU(Q)Fl

x SU(2)r x SU(2)r

X U(1)axq+Fy x U(L)2xa41,

X U(1)2x, x U(1)2x,

Young tableau Naotg SU(2) Young tableau Naog SU(2)
(bosonic states) H (B) spin (fermionic states) H (F) spin
11,1,1,0,0) 0 1 | (0,00 | [51,1,01) 1] 2 | (4,00
‘E’l’l’o’2> 2 1 (07070) ‘17D7D’1’1> 2 4 (07%7%)




Table 6.2: (continued)

SU@2)L x SU(2)r, SU@2)L x SUQ2)r,

x SU(2)r x SU(2)r

X U(1)axq+Fy X U(D)2xy+Fy

x U(1)2x, x U(1)2x,

Young tableau Not SU(2) Young tableau Not SU(2)
(bosonic states) (B) spin (fermionic states) H | (F) spin
I5,1,1,4,2) 1 | (0,0,0) | |z,1,1,2,1) 31 2 | (3,00
|o,0,0, 1, 2) 8 | (3.3.3) || ILR.E.3,3) 41 4 |(0,33)
11,m0,5, 2, 2) 3 1(0,1,0) || |H,0,0,1,3) 41 4 | (0
I1,8,m,2,2) 3 1 (0,0,1) || |2,m,F,2,3) 51 6 | (3,1,0)
Im,1,1,2,2) 3 | (1,0,0) || |9,F,m,2,3) 51 6 |(3,01)
7, 1,1,2,2) 1 | (0,0,0) || |5, 1,1,2,2) 51 2 | (3,00
Io,0,0, 3, 2) 8 | (3,4 )] Imoo3,3) 6 | 12 | (1,11
B, .5, 2,4) 3 | (0,1,0) || |F,o,0,3,3) 6 4 |03,
IB,B,m, 2,4) 3 |(0,0,1) || [3,00,8, 4, 3) 71 6 | (31,0
o, P, 7, 3, 4) 8 |34 bBm4,3) 71 6 |(3,01)
P, 0,0, 3,4) 8 [(3,3,3) | F1,1,4,3) 71 2 | (5,00
|1,FH, A, 4,4) 1 | (0,0,0) || |F,0,0,5,3) 8| 4 |(0,3,3)
|, o, [, 4, 4) 9 | (1,1,0) || |H,F%F,3,5) 81 4 | (0]
|, B, 0, 4, 4) 9 | (1,0,1) || |o,F5,FH.4,5) 9| 2 | (3,00
B, o, 5, 4, 4) 3 | (0,1,0) || |[F7,0,F,4,5) 91 6 | (31,0
5,5, o, 4, 4) 3 | (0,0,1) || |[F,F,,4,5) 91 6 |(3,01)
IFH,1,1,4,4) 1 | (0,0,0) || |moBH,5,5) |10 12 | (1,3,3)
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Table 6.2: (continued)

SU(Q)L X SU(2)F1 SU(?)L X SU(?)F1
x SU(2)r x SU(2)r
X U(1)2xy+Fy X U(1)2xy+Fy
x U(1)2x, x U(1)2x,
Young tableau Naot SU(2) Young tableau Naog SU(2)
(bosonic states) H (B) spin (fermionic states) H (F) spin
|D7H:‘75:|7574> 9 8 (%7%a%) E?vaaj7575> 10 4 (07%7%)
F.oos4) | 9] 8 | (553 || Hoo55 |10 4 |03 7)
|, o, B, 6, 4) 10| 3 | (0,1,0) || [o,H.H,6,5) | 11| 2 | (3,0,0)
|E7E7D:‘7634> 10 3 (0703 1) Ejvmaa7675> 11 6 (57170)
|5, H3, FH, 4, 6) | 1 | (000 || IHHm6,5) 11| 6 | (3,0,1)
LEE,5,6) | 11| 8 | (3,33 | BEETS) |12 4 [(0,3,3)
oo, L, 6,6) | 12 3| (1,0,0) || [EEL6.7) |13 2 | (3,0,0)
BHEH6,6) |12 1 | (0,0,0) || [BEF7.7) | 14| 4 | (0,3 3)
|-, 0,1, 6, 6) 12| 3 | (0,1,0) || FREB.HE,8,7) |15] 2 | (3,0,0)
‘B}? H? Dj? 67 6> 12 3 (07 07 1)
LEE7.6) | 13| 8 | (3:3:3)
|H, H, B, 8, 6) 4] 1 | (0,0,0)
|5, H, 64, 8,8) |16 | 1 | (0,0,0)

128 128

[su(2|1) ® su(2]1) ® u(l) ®u(l)] © b
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In the same way as in the above case, we can break the first su(2|2) as well into su(2|1)Gu(1).
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The decomposition of the original compact subsuperalgebra g(®) then reads

a9 = su(2]2) ® su(2)2)

(6.22)
D su(2[1) @ su(2[1) @ u(l)ex, ® u(l)ax, -

Therefore, we break each set of SU(2|2) covariant super-oscillators into SU(2|1) x U(1)

basis:

EA(K) (““K)> . HE) e @(K)

~ k)
) (6.23)
M _ N R 32
() = (ﬁ%m) ) © 3 (K)
where A, M =1,2|1,2 and I, R = 1,21, and
ey [ @'(K) Ry _ [ DT(K)
{1(K) = <a1 (K>) i) = ( N (K)> . (6:24)

From g9, we retain only the su(2|1) ®u(1) @ su(2|1) ®u(1) part and eliminate the rest.
Therefore, this new compact subsuperalgebra §(©) contains 10 bosonic generators (4 each
from the two su(2|1) plus the two u(1)) and 8 fermionic generators (4 from each su(2|1)).

In this new SU(2|1) x U(1) x SU(2|1) x U(1) basis, g*!) space decomposes as:

S(41) _
8 Aa.14) ‘SU(2\2)><SU(2|2)

=1, 1,1, H)e(],1,1, )& 1,1,[],1)

@(1,1,1,1)’ (6.25)

SU2I1)xU(1)ax, xSU(2[1)xU(1)2x,

FAGM T SR g il R g 52 iR g &2 32
and in SU(2)r x U(1)ax,+m X U(l)ax, X SU(2)r x U(1)2x,+F, X U(1)2x, basis it reads as

gtV =0, 1,1,0,1,)®e(1,2,1,0,1, )e @, 1,1,1,2, )@ (1,2,1,1,2,1)
®(1,0,1,0,1,1)®(1,0,1,1,2, )& (3,1,1,1,0,1)®(1,2,1,1,0,1)

@®(1,0,1,1,0,1)
SU(Q)LXU(1)2X1+F1XU(1)2X1XSU(Q)RXU(1)2X2+F2XU(1)2X2

(6.26)

Since §© is the direct sum of two su(2|1) subsuperalgebras, the Hamiltonian could be

any linear combination of the two u(1) charges inside them. We simply choose their sum as
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our Hamiltonian:
H=N,;+ 2N +Nb+2N51. (627)

Clearly, four supersymmetries (1,2, 1,1, 1, 1)&(J, 1, 1, 1,2, 1) increase energy by
3 units and the other four supersymmetries (1,0, 1,0, 1,1)®(d, 1,1, 1,0, 1) increase
energy by 1 unit according to equation (6.27).

This pp-wave superalgebra has a total of 24 supersymmetries (8 in gD, 8 in gV and

8 in Q(O)), and the symmetry superalgebra of this type IIB pp-wave solution is,
[su(2[1) & su(2[1) @ u(1) @ u(1)] © h°.

Since the construction of the zero-mode spectrum in this case can be done quite similar
to that in the previous example, we do not intend to do it here explicitly. The lowest weight

vector corresponding to the zero-mode spectrum is once again |Q) = |0).

6.2.3 [su2]l)®u(l)] © H*°

Starting from the previous case of §(® = su(2]1) @ su(2[1) ® u(1) ® u(1), we can take the
diagonal subalgebra of su(2|1) @ su(2|1) and form the maximal compact part of a new
pp-wave superalgebra. For this we must identify I < R in equation (6.23).

Now the §(©) space of this new pp-wave superalgebra will become

5(0)

g = su2|l) © u(l)2x, +2X,=Np+Np - (6.28)

From this §(?), we keep only the su(2[1) @ u(1) part and eliminate the rest of the genera-
tors. Therefore, this new compact subsuperalgebra §(®) contains 5 bosonic generators and
4 fermionic generators.

In this new SU(2|1) x U(1) basis, g+ space decomposes as:

i =1,

(2]2)x SU(2|2)

(6.29)
_ D@ %,2 s2x([.2)a& (1,2
(’ZZ] ) < > (Z ) ( )‘SU(QI)XU(1)2X1+2X2
and in SU(2)p+r X U(D)aox,+2x,+ 7 +5 X U(1)ax, +2x, basis it reads as
T =(m,2,29e2x@,3,22{H, 2,2)@(1,4,2)@2x (O, 1, 2)
(6.30)

@(1,2,2)@(1,0,2)‘

SU(2)L+r*xU(1)2x; +2X5+F +Fo XU (1)2x +2X,

The Hamiltonian must clearly be the u(1) charges inside su(2|1). After rescaling to
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make the energy increments of the states integer values, we obtain:
H = Ng+ 2Ny +Nb+2N51 . (6.31)

Clearly, four supersymmetries 2 x ({1, 3, 2) increase energy by 3 units and the other
four supersymmetries 2 x (0J, 1, 2) increase energy by 1 unit according to equation (6.31).
This pp-wave superalgebra has a total of 20 supersymmetries (8 in gt 81in gV and

4 in Q(O)), and the symmetry superalgebra of this type IIB pp-wave solution is,
[su(2(1) @ u(1)] ® H*°.

The construction of the zero-mode spectrum in this case is once again straightforward,
and we leave it out of this thesis. The lowest weight vector corresponding to the zero-mode
spectrum is once again |Q) = |0).

6.2.4 [su(2]2) ®su(l]l)] © h**

In this case, we can decompose one of the su(2|2) subsuperalgebras (we choose the second
su(2|2) again) into
su(2(2) D su(2)r @ su(2)r, © u(1)2x,=N, +N;s (6.32)

and then break su(2)g into its u(1) charge:
R= Ny — Ny (6.33)
and su(2)p, into its u(1) charge:
Fy = Ng — Ngs. (6.34)

We then relabel the bosonic oscillators by (K), b'(K) and by(K), b%(K) as by (K), b*(K) and
bo(K), b*(K), and fermionic oscillators 31 (K), BY(K) and 82(K), B2(K) as f1(K), 3*(K)
and ,BQ(K), 52(K), respectively. Note that Ny; = bl - 51, Ny = b2 52, Ngi = 51 . 51 and
Ngo = 32 . 52, and therefore N, = Ny + Ny and Ng = Ng; + Nps.

Then we combine £1(K) and 3*(K) with by (K) and b'(K), along with the following

linear combination of Xo, R and Fb:
1 1
X9+ §R + §F2 =Ny + Ngl (6.35)

to form su(1|1). The decomposition of the original compact subsuperalgebra g(®) now takes
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the form

0) —
g su(2[2) @ su(2)2) (6.36)

Therefore, as usual, we then break one set of SU(2|2) covariant super-oscillators (those
contain b and [ type oscillators) into SU(1|1) x U(1) x U(1) basis:

() = (;;((?)) — P e P () © () (657

where M = 1,2|1,2 and R = 1|1, and

. b (K
i (K) = <51((K))> - (6.38)

From g, we retain only the su(2|2) @ su(1|1) @ u(1) ®u(1) part and eliminate the rest.
Therefore, this new compact subsuperalgebra g(®) contains 10 bosonic generators (7 from
su(2[2), 1 from su(1]1) and two u(1) charges) and 10 fermionic generators (8 from su(2|2)
and 2 from su(1[1)).

Next we demonstrate how §*1) spaces decompose with respect to the new basis SU(2|2)
xSU(1|1) x U(1) x U(1). For example,

i =(1.)

SU(2]2)xSU(2|2)

= , ,1,0)B 2 x , 1,11
. ) (1 ) SU@2)xSUALXUW2x,xUW) x, 1 15,

gA-ﬁM=€A~ﬁR€BgA~EQ@€A-52.
(6.39)

Since §(©) is the direct sum of two superalgebras, su(2|2) and su(1]1), the Hamiltonian
could be any linear combination of the two u(1) charges inside them. Here we simply choose

their sum as the Hamiltonian of our algebra:
H=N,+ N,+ Np1 + Ngl . (6.40)

In the SU(Z)L X SU(Q)Fl X U(l)X2+%R+%FQ X U(1)2X2 X U(1)2X27%R7%F2 basis, the
eight supersymmetries decompose as (J,1,1,1,0)@®(1,0,1,1,00® (J,1,0,1,1)®
(1,0, 0, 1, 1), and therefore the first four of them increase energy by 2 units while the
other four increase energy by 1 unit (see equation (6.40)).

The full pp-wave superalgebra of this solution, which has a total of 26 supersymmetries
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(8 in g1, 8in g and 10 in §(©), can be written as
su(2[2) © su(1[1) © u(1) ® u(1)] © h*°.

Once again, it is a simple exercise to construct the zero-mode spectrum of this pp-wave
superalgebra in the basis SU(2)r x SU(2)p, X u(1)2x, X W(1)x, 1p 1p,, by starting from
2 2

the ground state |Q2) = |0), so we do not intend to produce the spectrum here in this thesis.

6.2.5 [su(2]1) ®su(1]l)] © p®°

Starting from the previous case (Section 6.2.4), we can obtain this pp-wave algebra by

decomposing the remaining su(2|2) subsuperalgebra into
su(2|2) D su(2)L @ su(2)p S u(l)ax,=N,+N, (6.41)
and then by breaking su(2)p into its u(1) charge:
Fi = Na1 — Na2 (6.42)

in the same way as before.
Then we combine ¢ (K) and &'(K) with a;(K) and a*(K), along with the following

linear combination of X7 and Fi:
2X1+F1 =N, + 2N (6.43)

to form su(2|1). Therefore the decomposition of the original compact subsuperalgebra g

now has the following form:

g = su(2]2) ® su(2]2)

(6.44)
D su(2]1) @ su(l]l) @ u(l)ax, ®u(l)ax, @ u(l)XQ_%R_%F2 .

Therefore, as usual, we now break the first set of SU(2|2) covariant super-oscillators as
well into SU(2|1) x U(1) basis:

g%K):(“i(K))) s H(K) 3 &2(K) (6.45)

BA(K) = (‘?i(m) | (6.46)
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From g(?), we keep only su(2|1)®su(1|1)@u(1)@u(1)@du(1) and eliminate the rest. There-
fore, this new compact subsuperalgebra §(9) contains 8 bosonic generators and 6 fermionic
generators.
The decomposition of the g+ space with respect to this new basis SU(2|1) x SU(1]1) x
U(1) x U(1) x U(1) has the form

S(+1) _
8 A, ’SU(2|2)><SU(2|2)

=(,],1,1,0®2x(],1,1,1,)®(1,[[],1,1,0)

(6.47)
@2x(1,1,1,1,1))

SU2ID)xSUAL)XUWax, xUWaxy XUy, 1 11,

EAGM — ¢l Rl Rad Rod Fod Podl 2.

Once again, since g is the direct sum of two superalgebras, su(2|1) and su(1|1), the
Hamiltonian could be any linear combination of the two u(1) charges inside them. We again

choose their sum as the Hamiltonian of our algebra:
H = N4+ 2Nu1 + Ny1 + Ng; . (6.48)

From the above decomposition, it is possible to identify the eight kinematical supersym-
metry generators in §(*1) and determine how they increase energy of the states.
This pp-wave superalgebra has a total of 22 supersymmetries (8 in Q(H), 8 in ﬁ;(*l) and

6 in §(9), and the full pp-wave algebra can be written as
[su(2]1) ® su(1]1) @ u(1) ® u(l) ®u(1)] ® H*°.

Once the kinematical supersymmetries in §(t1) are identified, it is easy to construct
the zero-mode spectrum of this pp-wave superalgebra, by starting from the ground state
2) = 0).

6.2.6 [su(1]1) @ su(1]1)] ® h**

The construction of this superalgebra can be done easily by starting from the previous case
in Section 6.2.5 and then decomposing su(2|1) into su(1|1) @ u(1). Therefore, the original
compact subsuperalgebra g(®) = su(2|2) @ su(2|2) now takes the form:

g(o) = s5u(2[2) @ su(22)
D 511(1’1) @5u(1|1) (&) u(l)gxl b u(1)2X2 b u(l)Xl7%L71F1u(1)X27%R7%F2

2

(6.49)

where X1, Xo, R, F1 and F; are defined as before and L is defined as L = Ng1 — Ngo.
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We must now decompose the SU(2|2) covariant super-oscillators in the following manner:

(6.50)

X a(K) b (K)
¢ (K) = | itE) = | : (6.51)
pHEK)

From g(©), we retain only su(1]1) @ su(1]1) ® u(1) ®u(1) du(1) ®u(1) and eliminate the
rest. Therefore, this new compact subsuperalgebra §(°) contains 6 bosonic generators and
4 fermionic generators.

The subspaces §(=!)

u(l) @u(l) @ u(l) as, for example,

decompose with respect to this new basis su(1|1) ®su(1]1) ®u(l) ®

d=(1.1)

SU(2]2)xSU(2|2)
:(IZ7]Z71’1’070)@2X(|Z7171717071)@2X(17Z717171’0)

®4x(1,1,1,1,1,1)
SU1)xSU(1[1)xU(1)x U (1) xU(1)x U(1)

FAGM — ¢l FR e Radl RPaoi fei Roil P
@52-7‘7R@52-i;2@572-§2

(6.52)

where the four u(1) charges were given in the equation (6.49).
Since there are two superalgebras inside §(?), the Hamiltonian of this pp-wave superal-
gebra is a linear combination of the two u(1) charges inside the two u(1|1). If we simply

choose their sum as the Hamiltonian of our algebra, we have:
H = Ngi + Na1 + Np1 + Ngl . (6.53)

Now we can determine how the 8 kinematical supers_ymmetries in 3t are going to
increase energy of the states. Two supersymmetries (8_21 . Bl a_‘nd ol bl) increase energy by
2 units, and four other supersymmetries (&‘1 . 52, a2 - Bl, &L-b2 and G2 - bl) increase energy
by 1 unit. However the remaining two supersymmetries (52 . 52 and a2 - gz) do not change
energy at all.

The full pp-wave superalgebra of this solution, which has a total of 20 supersymmetries
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(8 in g1, 8in g and 4 in §(V), can be written as
[su(1]1) @ su(1]1) @ u(1) @ u(l) du(l) du(1)] @ h8.

Once again, we note that the zero-mode spectrum of this pp-wave superalgebra is con-
structed by choosing the lowest weight vector \Q> = |0) and acting on it with the above

mentioned 8 supersymmetries in §(*t1).

6.2.7 su(l]l) ® h*°

Since we have already constructed the pp-wave superalgebra [su(1]1) @ su(1]1) & u(1)
@ u(l)®u(l)du(l)] ® h®8, in Section 6.2.6, we can now take the diagonal subsuper-
algebra of su(1]1) @ su(1|1) and combine the remaining u(1) charges appropriately to form
the maximal compact part of this new superalgebra.

This new §(© will have 3 bosonic generators (one of which is the Hamiltonian) and 2
supersymmetries, thereby making the total number of supersymmetries of this solution, 18.

The full pp-wave superalgebra of this solution is
[su(1]1) @ u(l) @ u(l)] ® h*°.
where the two u(1) charges are given by

2X1+2Xo = N+ Np
1 (6.54)

1
X1+X2—§(L—|—R) 2(F1+F2):Na2+Na2+NbQ+NI@2.

The Hamiltonian is
H = Na1i + Noa + N1 + Npi - (6.55)

The zero-mode spectrum of this pp-wave superalgebra can also be constructed by start-

ing from the ground state |Q> = |0) and acting on it with the 8 supersymmetries in §(*t1).

6.2.8 su(22) ® h*S

The simplest way to obtain this superalgebra is by taking the diagonal subsuperalgebra of
the maximal compact part su(2|2) @ su(2]2) of the original type IIB pp-wave superalgebra
(see the discussion in the beginning of Section 6.2).

The new §(© will now have 7 bosonic generators (6 rotation generators that belong to
the rotation group SU(2) x SU(2) ~ SO(3) x SO(3) and the Hamiltonian) and 8 super-

symmetries, thereby making the total number of supersymmetries of the solution, 24.



The Hamiltonian is the u(1) charge that is inside su(2[2):

1
=5

The full pp-wave superalgebra of this solution is

su(2)2) ® b*°
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(6.56)

and its zero-mode spectrum, which we obtain by starting from the ground state |Q) = |0)

is given in Table 6.3.

Table 6.3: The zero-mode spectrum of type IIB pp-

wave algebra with 24 supersymmetries in ten dimensions,

su(2(2) © b5

SU(2) x SU(2) SU(2) x SU(2)

Young tableau Naos | SU(2) || Young tableau Naot | SU(2)
(bosonic states) H | (B) spin (fermionic states) (F) spin

11,1) 0 1 |(0,0) | |70) x 2 8 | (3,1
|, o) 21 9 | (LY | jmmH) x2 16 | (3,3)
|o,B) x 3 2 9 | (1,0) || BP0 x 2 16 | (3.2)
B, o) x 3 219 1(0,1) | H.E) x6 24 | (3,3)
B.8) 2| 1 |(0,0) | [F™H) x2 16 | (33)
m=u=Nzs) 41 5 | (2,0) || EHHD) x2 16 | (3.3)
HEHD) x4 | 4 36 | (1,1) || [HH) x6 24 | (3,3)
B E) x3 | 4] 9 | (L,0) || [HFEP) x2 8 | (3:3)
|FH, o) 415 (0,2

A %3 [ 4] 9 |(0,1)

IFH, ) x 6 41 6 |(0,0)




Table 6.3: (continued)

SU(2) x SU(2)

SU(2) x SU(2)

Young tableau Ngot | SU(2) Young tableau Nyof SU(2)
(bosonic states) (B) spin (fermionic states) (F) spin
=, H) 9 | (L1
. HH) < 3 9 | (1,0
HB, ) = 3 9 1(0,1)
B, HB) 1 1(0,0)
|, B 1 1(0,0)
128 128
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Chapter 7

Conclusions

In this thesis we presented an extensive list of pp-wave superalgebras of supergravity
theories in ten and eleven dimensions and constructed the respective zero-mode spectra in
some interesting cases. Some of these pp-wave solutions have already been constructed in
the literature following field theoretical methods, but in almost all of that work (especially
in non-maximally supersymmetric cases) the underlying pp-wave symmetry superalgebras
of those solutions have not been identified. However, applying our methods we determined
explicitly all these symmetry superalgebras, which would now allow someone to study their
respective zero-mode spectra.

Using the oscillator formalism, we were able to devise a method for taking the pp-wave
limit of any given superalgebra that has a 3-grading with respect to a maximal compact
subsuperalgebra. In addition to the maximally supersymmetric solutions in ten and eleven
dimensions, we obtained a large number of non-maximally supersymmetric solutions as well,
which preserve less than 32 supersymmetries.

By their very nature, all pp-wave solutions preserve at least half of the supersymmetries
(i.e. all sixteen kinematical supersymmetries), and depending on the maximal compact part
they retain they have some extra dynamical supersymmetries left.

In the eleven dimensional case, our list of non-maximally supersymmetric pp-wave al-
gebras contained those that preserve 18, 20, 22, 24 and 28 supersymmetries, and in type
1IB case we obtained solutions with 18, 20, 22, 24, 26 and 28 supersymmetries. Many of
these solutions have already been discussed in the literature in great detail [CLP02, GH02,
Mich02, 0OS03, Sak03, BR02, HS02a, HS02b, KS03, AGGP02].

In particular, we note that the pp-wave superalgebra we presented in Section 5.2.1,
[5u(2)2) @ su(2)] ® b8, is the symmetry algebra of the N' = (4,4) type IIA pp-wave
solution discussed in [HS02a, HS02b, KS03]. The authors in their work, considered the

following type IIA pp-wave background in ten dimensions:

ds? = —2datda™ — [<§>2 i(:ﬂi)g + <%)2 Z(:Bl/)Qi dzt? + Z(dxl)z
1 =5

Frios=p  Fra=-—
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obtained by dimensional reduction from the eleven dimensional maximally supersymmetric
pp-wave. They also constructed the type ITA GS action by starting from the supermembrane
action in eleven dimensions and calculated the spectrum, which agreed with our results
in Table 5.2. However, this solution is different from another type ITA solution with 24

supersymmetries constructed in [AGGP02]:

8 8
ds? = 2dztde — |4p2(@?)? + 12 ()2 dat? + 3 (da)? 72)
=3 I=1 :

By = —2ua® Fio34 = 4p.

These are just two examples of several non-maximally supersymmetric pp-wave solutions
proposed in literature in the past two years. One noticeable difference in our work is that
we find a pp-wave superalgebra, [su(3]2) @ u(1)] ® b?® with 28 supercharges in eleven
dimensions, which has not been discussed presently in the literature. However, we believe
that by choosing an appropriate flux, one can break the SU(4) ~ SO(6) part of the SU(4) x
SU(2) =~ SO(6) x SO(3) symmetry of the original eleven dimensional pp-wave metric into
an SU(3) part (see Section 5.2.2).

It is important to note that ‘reversing’ a pp-wave limit of a superalgebra is not unique.
The best example is in eleven dimensions, where both AdS; x S* and AdSs x S symmetry
superalgebras osp(8*|4) and o0sp(8]4,R) lead to the same maximally supersymmetric pp-
wave algebra su(4/2) @ h”8. Therefore, reversing the pp-wave ‘contraction’ of su(4/2) ® h?8
would not give us a unique solution.

Nevertheless, the study of pp-wave limits of M-/superstring theories is very important
(in addition to giving us a new regime where the AdS/CFT correspondence can be tested)
because of the information it can provide about the original theory, and therefore it is a
very crucial step towards understanding the full M- /superstring theory beyond their already
known supergravity levels. Especially, one could hope that by studying the massive modes
of pp-wave solutions in the weakly coupled type IIA superstring theory, we would learn
more about the massive modes of the original M-theory, which are hitherto unknown.

All the spectra we discussed in this thesis were restricted to the zero mode sectors of
their respective theories. Since the oscillator formalism we used in our work originally came
from the studies of supergravity, this was not a surprise. At the same time, it is not difficult
to extend the oscillator method to the study of higher (non-zero) modes of these theories
due to the following observation.

The higher modes of type IIB superstring theory in pp-wave background contribute
only to the semi-simple part of the pp-wave superalgebra [MT02]. This means that only
the transverse excitations in the pp-wave background are contributing to §(®) = psu(2/2) @
psu(2]2)@u(1). In another example, it was shown in [KS03] that V' = (4, 4) type ITA pp-wave
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solution with 24 supercharges (whose symmetry superalgebra is [su(2[2) @ su(2)] ® h%%)

also displays the same behavior.

Assuming that the same holds true in general for any pp-wave superalgebra, we can write
down the “exact” realization of a pp-wave algebra (including the non-zero mode sector) in
a general case by introducing an extra index to our oscillators (e.g. aén) (K) to represent the
n* mode) and taking the direct sum of an infinitely many such sets (n = 1,2, ...) [FH:wip].
Such non-zero mode spectra would consist of not just short multiplets, as zero-mode spectra
do, but also longer multiplets, even through they contribute to the Hamiltonian in the same
way as the zero-modes.

Concluding this discussion, we mention that our study has shed some light on the
algebraic aspects of pp-wave superalgebras in ten and eleven dimensions and clarified some
unresolved points. Our simple algebraic methods were able to capture many powerful
features and give a valuable insight into the study of these superalgebras. We now conclude
this thesis with a list of few interesting unanswered problems in the field, which in our
opinion are ideal to be analysed by the oscillator method by using the techniques of taking

pp-wave limits that were developed in our work.
PP-wave limit of a superalgebra with a Kantor structure

As we mentioned before, our method of taking the pp-wave limit using the oscillator for-
malism can be applied to any symmetry (super)algebra that admits a 3-grading (Jordan
structure), as in equation (4.1), with respect to a compact sub(super)algebra of maximal
rank. Even though, many superalgebras that have applications in superstring theory and
supergravity, such as su(m,n|p), osp(2n*|2m) and osp(2n|2m,R) admit a Jordan struc-
ture, not every Lie superalgebra has a 3-grading with respect to some maximal compact
subsuperalgebra.'

The Kantor construction? of all finite dimensional Lie algebras was generalized to include
Lie superalgebras in [BG79, Gun88]. Those (super)algebras with a Kantor structure admit

a 5-grading with respect to a compact sub(super)algebra of maximal rank:
g=g Ve g(—%) og? @ g(+%) @ gty (7.3)
where the (super)commutators of elements of grade k and [ (=0, +1, £1) satisfy
[g“ﬁgm}é;g%+” (7.4)

with g*+0) = 0 for |k + 1] > 1.

'Neither do Lie algebras Gz, Fy and Es.
2which is basically an extension of the Tits-Koecher method to include all finite dimensional simple Lie
algebras, including G2, Fy and Ejg



111

All finite dimensional noncompact superalgebras admit a 5-grading. For example, the
superalgebra osp(2n + 1|2m,R), which has an even subalgebra so(2n + 1) & sp(2m,R),
admits a 5-grading even though it does not admit a usual 3-grading with respect to a
maximal compact g(®. For n = 0, m = 16 (i.e. osp(1]32,R)), this superalgebra has
applications in string theory as the ‘generalized’” AdS supergroup of M-theory, and also
as the superalgebra that underlies F-theory, M-theory and type IIA and type IIB string
theories [BvP00a, BvP0Ob].

It is still an open problem to obtain the pp-wave limit of a theory whose symmetry
superalgebra does not have a Jordan decomposition. This issue has not been considered
in the literature so far, and therefore it would be an interesting problem to extend our
oscillator formalism of taking the pp-wave limit to include those superalgebras that admit

only a Kantor structure.
Infinite spin superalgebras

Higher spin gauge theories have been generating a lot of renewed interest lately, especially
in the light of the works of Vasiliev, Fradkin, Sezgin and Sundell (see [FV87, FV88, KVZ00,
Vas01, SS98, SS99, SS01] and the work that followed) and more recently with the proposal of
a general relation between higher spin massless gauge fields in AdS, and large N conformal
theories with N-component vector fields in d = 3 [KP02].

These higher spin gauge theories are based on the infinite dimensional higher spin sym-
metries, which are realized by the algebras of oscillators carrying spinorial representations
of the spacetime symmetry groups [Gun89]. Methods first developed in [Gun89] and some
of our own previous work [FGTO01] can be used to write down explicitly these infinite spin
AdS superalgebras and study their unitary representations. The oscillator method seems
to be a very convenient tool to handle such superalgebras. Therefore, classifying all the
unitary representations of these infinite spin superalgebras in the oscillator language and
investigating whether there is a consistent way to obtain a pp-wave limit of such infinite-spin
superalgebras would help any further studies of the subject. The methods we have already
employed in other cases in this thesis would be helpful to, first show the existence of such
a limit and then study the group theoretical aspects of the problem.

In another related issue, the study of higher spin superalgebras can be carried into the
recent work going on in understanding the AdS/CFT correspondence in the perturbative
regime of the gauge theory (see [BBMS04] and the references therein). The AdS/CFT
duality in this regime is poorly understood at present except in the BMN limit. As the AdS
radius reduces towards its minimal value (~ v/a’), the supergravity description breaks down
and the string modes of the theory are no longer irrelevant. The dual gauge theory then
enters its perturbative regime and at vanishing coupling point the dynamics are governed

by the presence of infinitely many higher spin symmetries. In the case of AdS5;/CFTy
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duality, the N' = 4 super Yang-Mills theory develops a higher spin symmetry hs(2,2(4). It
would be interesting to study the AdS/CFT correspondence in this limit and understand
the duality between these higher spin conserved currents of the gauge theory and the higher
spin symmetry on AdS side.

Conformal superfields in the pp-wave limit

Following the work in [AS02, Met03], one may also attempt to take the pp-wave limit of
conformal fields in the superfield formulation. Instead of working in a (manifestly unitary)
compact basis, as we have been doing in our current work on pp-wave superalgebras, if we
go to a (manifestly covariant) noncompact supercoherent state basis [GMZ98b, FGT01],
where the representations are labeled by the superspace coordinates, we can apply our
methods to study such conformal fields in the pp-wave limit. However, once again a better
understanding of the pp-wave limits of superalgebras with a Kantor decomposition is a
prerequisite for such a study as these supercoherent state bases induce a 5-grading in their

respective superalgebras.
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Appendix A

Eleven dimensional and type IIB supergravity

spectra on AdS x S spaces

In this appendix, we give the spectra of the eleven dimensional and type IIB supergravity
theories with maximal supersymmetry, obtained by applying the oscillator method described
in Chapter 4 [GvNWS85, GW86, GMS85].

A.1 Spectrum of eleven dimensional supergravity on
AdS7 X 54

The oscillator realization of O.Sp(8*|4), the symmetry superalgebra of the eleven dimensional
supergravity on AdS; x S* was given in Section 4.2.1. The spectrum, obtained by starting
from the lowest weight vector |Q) = |0) was first constructed in [GvNWS85]. We present
their results for reference here in Table A.1.

Dynkin labels of an SU(n) representation, which has m; boxes in the i*" row, are defined
as

(M1, ma, ..., My)yp = (M1 —mMma, Mg —m3, ..., Mp_1 —My)p - (A.1)

On the other hand, Dynkin labels of a USp(2n) representation can be written in terms

of the Young tableau labels and the number of ‘colors’ as

(mi,ma, ..., Mp)yp = (Mp—1— My, Mp—2 —Mp_1, ..., M1 —ma, P—mi)y . (A.2)



Table A.1: The spectrum of the eleven dimensional super-

gravity compactified on AdS7 x S%.

SU4) x SU?2) | SU4)p USp(4)p AdS Field in
Young tableau labels labels energy d=17
P>1

|0, 0) (0,0,0) (0, P) 2P scalar
o, 0) (1,0,0) | (1,P—1) | 2P+ 1 | spinor
I, B) (2,0,0) | (0,P—1) | 2P+1 | \/Gupy
P>2

H, o) (0,1,0) | (2,P—2) | 2P +1 vector
I, 5P (1,1,0) | (1,P—2) | 2P + 2 | gravitino
[BRYE) (0,2,0) | (0,P—2) | 2P +2 | graviton
P=>3

‘E’ DI[> (0,0,1) | (3,P—3) | 2P+ % spinor
5, 55) (1,0,1) | (2,P—3) | 2P +2 (ap
[ESYEER) (0,1,1) | (1,P—3) | 2P+ 5 | gravitino
[HED) [ 0.0.2) | (0,P=3) | 2P+3 | Jaas,
P>4

E, Djjj> (0,0,0) | (4,P—4) | 2P+2 | scalar
‘Eﬂ BID> (1,0,0) | (3,P—4) | 2P+ 2 | spinor
‘?, Bﬂjj> (0,1,0) | (2,P—4) | 2P+3 | vector
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Table A.1: (continued)

SU(4) x SU(2) | SU4)p USp(4)p AdS Field in

Young tableau labels labels energy d=17

, 0,0,1) | (1,P—4) | 2P+ I | spinor
) |00 | ( ) L
@ 5333> (0,0,0) | (0,P—4) | 2P +4 | scalar

A.2 Spectrum of eleven dimensional supergravity on

AdS4 X S7

In Table A.2 we give the spectrum of the eleven dimensional supergravity on AdS, x S7,
following the oscillator realization of OSp(8|4,R) given in Section 4.2.2. This was first
constructed in [GWS&6].

The Gelfand-Zetlin labels of an SO(8) representation, whose SU(4) Young tableaux is
(my, ma, mg) is given by

N 1 1 1
n— "L Z(my+me—ms), =(m1 —ms +ms), —(—my +ms + ms) (A.3)
2 72 2 2 oz

where n is the number of ‘colors’ and Np is the fermionic number operator. The same
representation in Dynkin notation can be written as
Np

1
<n—2—2(m1+TTL2—m3),m2—m37m1_m27m3) : <A4)
D



Table A.2: The spectrum of the eleven dimensional super-

gravity compactified on AdSy x S”.

SU(2) x SU(4) | Spinand | AdS SO(8)c_z SO(8)p
Young tableau parity energy labels labels
n>1

10, 0) 0t n (n,0,0,0) (n,0,0,0)
[aX=) 3 | 5t3|(—333-3) | (01010
n =2

I, ) 1= [ 241] (n—1,1,0,0) | (n—2,1,0,0)
I, o) 0" | 24+1| (n—1,1,1,-1) | (n—2,0,2,0)
[a==R=) 5 | 5+3| -33.53) | (@-2001)
‘m@ 2 | 242| (n=20,00 | (n-2000)
n>=3

.67 3 | 5+3|(-333-3 | (-3110
=) 1t 242 (n—2,1,1,0) | (n—3,0,1,1)
o) |3 [ e-bbhD | o300
n=4

[Eajas) 0F | 24+2| (n—2,2,0,0) | (n—4,2,0,0)
) bolsel| - RRRD | o410
‘53:3@ 1= | 243 (n=31,00) | (n—4,1,0,0)
[aaan==) 0~ 243 (n—3,1,1,1) | (n—4,0,0,2)
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Table A.2: (continued)

SU(2) x SU(4) | Spinand | AdS SO(8)G_z SO(8)p

Young tableau parity energy labels labels

e, ) b 5tE| (-5 55 | (n-4,000)
‘BEEEL %> o+ nyyq (n—4,0,0,0) (n—4,0,0,0)

A.3 Spectrum of type IIB supergravity on AdSs; x S°

Finally we give the spectrum of type IIB supergravity on AdSs x S° in Table A.3, follow-
ing the oscillator realization of SU(2,2|4) given in Section 4.3.1. This spectrum was first
constructed in [GMS85].

Table A.3: The spectrum of the IIB supergravity compacti-
fied on AdSs x S°.

SO(4) =
SU(Q)L X SU(Q)Fl SU(Q)LX Field of SU(4) U(l)y
xSU((2)r X SU(2)F, SU2)r AdS UIR of Dynkin quantum
Young tableau labels energy | SU(2,2[4) labels number
P>1
0) 0,00 | P oM (0, P,0) 0
0,1, 1,0) o) | P+i| AP JoP-11)
|1’D7Da]~> (07%) P+% )‘(—1) (17P_170) _%
o, 1, 1,0) 1,00 | P+1| AW | (©,P-1,0| 1
11,0, o, 1) 01 |P+1| A% |@©OP-10] -1




Table A.3: (continued)

SO(4) =

SU2)L x SU(2)p, SU(2) L x Field of SU(4) Uy
xSU2)r x SU2)r, | SU(2)r AdS UIR of Dynkin quantum
Young tableau labels energy | SU(2,2/4) labels number
P>2

11,5, 1) 0,00 | P+1| ¢ | (2,P-20)| -1
|o, 0,0, 0) (3,4) | P+1 Al(}) (1,P—2,0) 0
5,1, 1,m) 0,00 | P+1| ¢® | (0,P—-2,2) 1
11,55, 1) 01 | P+2| X\ |aq,Pr-20| -3
I, 8, 0, ) Gy | P+3| Y P21 -}
I, 0,0, ) LYy |(Pp+3| o) | (1,P-20 1
o, 1,1, L0 | P+3| A\ |oP-21)| 3
11,5, 1) 0,00 | P+2| ¢® | (0,P-21)| -2
o, B, oo, ) 1,1) | P+2| hw |(0,P=20)] 0
I, 1, 1,F9) 0,00 | P+2| o¢® (0, P —2,0) 2
P>3

[ER==Nak=) Lo | P+2| X\ |@Pr-31| -1
H, o, 0, o) 0,4) | P+3 A®) (1,P—3,2) :
o, [, 0, o) ALY | Py2| AP | (1,P-31)| -1
[E=Na=R=N=) 1,00 | P+2| AY |(@2,P-30] o0
I8, B, o, ) 0,1) | P+2| A% |@©P=-32] o
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Table A.3: (continued)

50(4) =
SU22)L x SU2)p, SU(2) 1, x Field of SU(4) U(l)y
xSU(2)r x SU(2)F, SU2)r AdS UIR of Dynkin quantum
Young tableau labels energy | SU(2,2[4) labels number
P, 0,0, AL | Py2| AP | (,P-31)| 1
o, B3, 5, o) Lo | P+3| XY |,P-31) | -3
o, .. Ly [ P+3| 2 |@P-30] -1
.8 = ) Gy [ P+3| % |oP-31)| 1L
B, 0,0, 60 0L | P+3| XY |a,pP=30 | 32
[s=N==N==l=) 1,00 | P+3| A | (©,P-30 | -1
[z=R=R=aNzx) 0,1 | P+3| A% |(0,P-30) ]| 1
P>4
BB m) (0,0) | P+2| oW | (2,P—-4,2) 0
B, o) 0.4 | P+3| AP Japr-42)| -1
B, 0,8, 5) L0 | P+3| AP l@epr-an| 1
5. 5, 5, o) 0,00 | P+3| 6O | (2,P-4,2)| -1
... ALY | P+3| AP | (L,P-41)] o0
B, 0,8, 0,00 | P+3| ¢® | (2,P—4,0) 1
[EpN=aNz=t=s) Loy | P+I] MO fo,p-a1)| -1
BEFD 0.4 | P+3| A9 Japr-40 | |
[S=N==g==Nas) (0,0) | P+4| ¢©® | (0,P—4,0) 0
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Appendix B

An Oscillator Dictionary

In this appendix, we present a dictionary between our oscillator realizations of the
superalgebra generators in eleven and ten dimensional maximally supersymmetric cases
and those in [BMNO02] and in [MT02].

B.1 BMN oscillators in eleven dimensions

Bosonic zero-mode oscillators in equation (3.40) can be realized as

o \/ 55 (az an . 3 i=1,...,3
NEaS ) -y i =4,....9

/N

(B.1)
¥ v/ 325 (@) 5 i=1,...,3
a = ,
Vs (T ) i =4,....9.
where I = 1,...,9, o' are Pauli matrices and X are SU(4) y-matrices. In the P — oo
limit, these bosonic zero-mode oscillators satisfy
[dl, aJ] =7, (B.2)

The BMN fermionic zero-mode oscillators (presented in the SU(4) x SU(2) basis in

[BMNO2]) have already been realized in terms of our oscillators in Section 4.2.1.
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B.2 Type IIB oscillators in ten dimensions

Bosonic zero-mode oscillators in equation (3.65) can be realized as

I #(O‘I)w—’l.br I:17 74
%0 = 1 (-4  =p . 3
55 (0 at - ¥ I1=5,...,8
o), b
~I # (EI) bT ’ 6’5 I= 1a 74
ag = .
° (@Y, I=5,....8

We have used the notation
I _ . I .
o = (1,i0) g = (1,—ic) (B.4)

where ¢ are the Pauli matrices. In the P — oo limit, the above bosonic zero-mode oscillators
satisfy
al, al] = 6 (B.5)

Similarly, the 16-component spinors 6§ are given by

o = (f;j) % = (4 0) (B.6)

where a =1,...,8 and
wa_ ﬁ<(0a)iwd‘i.gw+i(aa)pr&#'gr> azl,...74
0= - R
& (@) G ai+i(@ )" b G)  a=5,....8
. (B.7)
&a o ﬁ ((Ea)wZ 5(4) C_iz =1 (Ea)ru br : 07;;) a = 1, ,4
0 1 ( 0a74) i B'w i (0a74) an . 53‘) a=>5 ]
4P w ur 9y Y
In the P — oo limit, they satisfy
{06, 68} = () (B.8)

where o, 3 =1,...,16.
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