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Abstract

A precise determination of the top mass is one of the key goals of the LHC and future colliders. Since
power corrections are now becoming a source of worry for top-mass measurements, in these proceedings
I discuss the impact of linear infrared renormalons, which plague the definition of the top pole-mass m,
on observables expressed in terms of m and in terms of a short-distance mass.

1 Introduction

The top quark is one of the most peculiar particles predicted by the Standard Model and its phenomenol-

ogy is entirely driven by the large value of its mass mt. The most precise measurements of mt are based

on the use of Monte Carlo (MC) event generations and the current errors are of the order of several hun-

dreds of MeV. Thus, linear power corrections arising from the pole mass ambiguity, which is estimated to

be of the order of 110-250 MeV 1, 2), are becoming a major worry in top-mass measurements at hadron

colliders. Furthermore, even if the perturbative calculations implemented in the MC generators adopt the

pole-mass scheme, there is still no consensus in the theoretical community regarding the interpretation of

such measurements, due to the complicated interplay of hadronization and parton shower dynamics 3).

The purpose of these proceedings is not to investigate the relation between the pole and the MC mass

(see e.g. 4)), but instead to investigate the asymptotic behaviour of quantities calculated in terms of the

pole mass and of the MS mass (that we can consider as a proxy of all the short-distance mass schemes)

in a simplified theoretical frameworks where we understand some aspects concerning the non perturba-

tive corrections to the pole mass. We focus upon the case of single top production and we look at the

total cross section, which is known to be free from physical linear renormalons, the reconstructed-top

mass, which is highly sensitive to the value of mt, and leptonic observables, which are assumed to be

independent from non-perturbative QCD effects. More details can be found in Refs. 5, 6).
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2 QCD infrared renormalons

In gauge theories in general, and in QCD in particular, there is a certain class of Feynman graphs whose

number grows as the factorial of the order of the perturbative expansion in the strong coupling constant.

The resulting perturbative series is then divergent and it is typically treated as an asymptotic series. As

a consequence, there is an uncertainty in the value of the sum of the series of the order (ΛQCD/Q)p, being

Q the scale of the process, ΛQCD the infrared scale at which the validity of perturbative QCD breaks

down and p a positive integer. This is the so-called renormalon ambiguity 7).

Indeed, when we perform all-orders calculations, some contributions can be thought as NLO cor-

rections where the fixed-scale coupling is replaced with the running one. After the removal of the UV

and IR divergencies, the perturbative series will take the form

Q−p
∫ Q

0

d` `p−1 αs(`) ≈ Q−p
∞∑
i=0

αn+1
s (Q)

∫ Q

0
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where ` is the (real or virtual) gluon momentum, p is a positive integer and b0 is the one-loop QCD β

function

b0 =
11CA
12π

− nlTR
3π

, (2)

with nl being the number of light flavours. Since b0 is positive, the series in eq. 1 is not even Borel

resummable. The terms in the series will first decrease until

n!

p

(
2b0
p

)n
≈ (n+ 1)!

p

(
2b0
p

)n+1

αs(Q) ⇒ n ≈ p

2b0αs(Q)
. (3)

At this point, if we want to interpret the series as an asymptotic one, we need to truncate the expansion

and the size of the last term, which is also an indication of the ambiguity in our result, will be of the order

(ΛQCD/Q)p. The dominant ambiguities are the ones corresponding to p = 1, i.e. the linear renormalons,

and those affect the definition of the pole mass.

Performing all-order calculations is however not possible for any non-trivial gauge theory. To over-

come this task, we can imagine that the number of flavours nf is large and the dominant corrections arise

from g → qq̄ splittings. Thus, everytime we encounter a gluon line, we replace the free propagator with

the dressed one
−igµν

`2 + iη
→ −igµν

`2 + iη
× 1

1 + Π(`2 + iη, µ2)−Πct
, (4)

where µ2 is the renormalization scale, Π is the fermionic contribution to the vacuum polarization and

Πct is the counterterm we introduce to renormalize the strong coupling. In D = 4 − 2ε dimensions we

can write

Π(`2 + iη, µ2)−Πct = −αs(µ)
nfTR

3π

[
log
|`2|
µ2
− iπθ(`2) + C

]
+O(ε), (5)

where C is a renormalization-scheme dependent constant (C = −5/3 in the MS scheme). To recover

the non-abelian behaviour of QCD, we can imagine that nf is large and negative. At the end of the

computation we match the fictitious number of flavours nf with the real number of light flavours nl

nf → nl −
11CA

4
= −3πb0

TR
, (6)

so that the vacuum polarization appearing in the dressed gluon propagator takes the desired form

Π(`2 + iη, µ2)−Πct = αs(µ) b0

[
log
|`2|
µ2
− iπθ(`2) + C

]
+O(ε). (7)

This is the so-called large-b0 approximation 8, 9).
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Figure 1: Feynman diagram for Born W ∗ → Wbb̄ process, and samples of Feynman diagrams for the
virtual and the real-emission contributions and for the W ∗ → Wbb̄qq̄ production. The bubble denotes
the insertion of the vacuum polarization of eq. (7) in the gluon propagator.

3 Single-top production at all orders

We now calculate the process of single-top production and decay, W ∗ → tb̄ → Wbb̄, at all-orders in the

large-b0 approximation. Explicative examples of the diagrams that must be considered are illustrated

in Fig. 1. We stress that together with the virtual and real corrections where the gluon line has been

dressed, we also need to include the contribution arising from a real g → qq̄ splitting.

The expression for the total-cross section1 in presence of selection cuts (that we denote with Θ(Φ),

being Φ a phase space point) is given by

σ =

∫
dΦ

dσ

dΦ
Θ(Φ) = σ(0) − 1

πb0

∫ ∞
0

dλ
d

dλ

[
T (λ)

αs(µ)

]
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[
πb0αs(λe

−C/2)
]

(8)

where σ(0) is the Born cross section, C is the renormalization-scheme dependent constant that we choose

in such a way that

αs(λe
−C/2) = αs(λ) + α2

s(λ) b0 C +O(α3
s) ≡ αs(λ) +

α2
s(λ)
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[(
67
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]
= αCMW
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where CMW denotes the Catani-Marchesini-Webber renormalization scheme for the strong coupling 11),

also known as the Monte Carlo scheme. The function T (λ) is given by

T (λ) = σ(1)(λ) +
3λ2

2TRαs(µ)

∫
dΦg∗dΦdec

dσ
(2)
qq̄ (Φ)

dΦ
[Θ(Φ)−Θ(Φg∗)] , (10)

where σ(1)(λ) is the O(αs) cross section calculated with a gluon of mass λ, σ
(2)
qq̄ is the leading-order cross

section for the process W ∗ →Wbb̄qq̄, Φg∗ is the phase-space for the production of a heavy gluon of mass

λ, Φdec the phase-space for its decay into a qq̄ pair (so that the total phase space Φ can be written as

dΦ = dλ2

2π dΦg∗dΦdec). Thus we see that the factor T (λ) − σ(1)(λ) takes into account the fact that the

event in which the qq̄ pair has been clustered in a massive gluon g∗ can lead to different kinematics with

respect to the full event. This term is closely related to the Milan factor 10).

It is easy to check that the O(αs) expansion of eq. 8 is given by σ(0) + σ(1)(0), as expected. From

eq. 8 we also see that we have a linear renormalon if

dT (λ)

dλ

∣∣∣
λ=0
6= 0, (11)

1We can obtain the expression of the average value of an observable O from the one of the total

cross-section replacing Θ(Φ) with Θ(Φ)
σ(0)

[
O(Φ)− 〈O〉(0)

]
in T (λ), where 〈O〉(0) is the Born prediction.
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Figure 2: In the left pane the small-λ behaviour for T (λ) for the total cross section with cuts calculated
in the pole scheme for several jet radii. In the right panel the slope of T (λ) at λ = 0 for the pole and the
MS scheme.

so we will focus our attention on the small-λ behaviour of the function T (λ) to assess the presence of

linear renormalons.

4 Results

In this section we present the most relevant phenomenological results of Ref. 5). The center-of-mass

energy is chosen to be E = 300 GeV, the W mass is set to 80.4 GeV and the bottom mass is set to 0.

We choose the complex pole scheme for a consistent treatment of top-offshell effect

m2 = m2
0 − im0Γt, (12)

where m0 = 172.5 GeV, Γt = 1.3279 GeV. We choose m0 as renormalization scale. We use the e+e−

version of the anti-kT algorithm to reconstruct the b and b̄ jets. If not specified, we require the b and the

b̄ jets to be separated and to have a minimum transverse momentum of 25 GeV.

4.1 Cross section

For the total cross section without cuts the function T (λ) reduces to σ(1)(λ). For small values of λ, the

linear λ term is due to the pole-mass counterterm and is equal to

dT (λ)

dλ

∣∣∣
λ=0

= αs(µ)
CF
2

∂σ(0)(m,m∗)

∂Re(m)
, (13)

where Re(m) denotes the real part of the top mass. By expanding eq. (8) in series of αs(µ), we find that

the minimal term is reached at the 8th order and leads an ambiguity of relative order 5× 10−4.

When the MS scheme is employed, such linear renormalon disappears and the behaviour of the

perturbative series improves, no visible minimum arises considering the first 10th orders and the relative

corrections are smaller then 10−5 already from the 4th order.

However, when selections cuts to identify the final state are introduced, the benefit of using the

MS scheme is reduced. The requirement that the b and the b̄ jets are separated and have a minumum

69



0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

W ∗ → tb̄→ Wbb̄ 〈M〉
[ T̃

(λ
)
−
T̃

(0
)] /α

S

λ [GeV]

R = 0.9 Γt = 1.33 GeV

R = 1.2 Γt = 1.33 GeV

R = 1.5 Γt = 1.33 GeV

Γt = 10−3 GeV

Γt = 10−3 GeV

Γt = 10−3 GeV

−0.5

0

0.5

1

1.5

2

2.5

0.6 0.8 1 1.2 1.4

W ∗ → tb̄→ Wbb̄, Γt = 1.3279 GeV, 〈M〉

1/
α

S
d
T̃

(λ
)/

d
λ
∣ ∣ ∣ λ=0

R

pole

MS

0

Figure 3: In the left pane the small-λ behaviour for T (λ) for the reconstructed-top mass calculated in the
pole scheme for several jet radii using Γt = 1.3279 GeV (solid lines) and Γt = 10−3 GeV (dashed lines).
In the right panel the slope of T (λ) at λ = 0 for the pole and the MS scheme.

transverse momentum of 25 GeV introduces a linear term whose magnitude grows with the inverse of the

jet radius, as was found in other contexts as well 12, 13). This behaviour is illustrated in Fig 2.

4.2 Reconstructed-top mass

We define the reconstructed-top mass M as the mass of the system comprising the final-state W boson

and the b-jet. As for the case of the cross section, selection cuts introduce a linear-λ term in the function

T (λ), whose magnitude is proportional to the inverse of the jet radius.

For vanishing top width, M approaches the pole mass when a large jet radius is adopted, thus

reducing the renormalon ambuiguity. On the other hand, the use of a short distance scheme like the MS

would introduce a term of the form

1

αs(µ)

dT (λ)

dλ

∣∣∣
λ=0

= −CF
2

∂M(m,m∗)

∂Re(m)
≈ −CF

2
= −0.667, (14)

and thus have a worse perturbative expansion. This behaviour is due to the fact that this observable

contains a physical renormalon that cancels with the pole renormalon if the pole scheme is adopted.

The inclusion of finite-width effects slightly modifies the slope of the function T (λ) in the range

λ < Γt, as can be seen from the left panel of Fig. 3. In the right panel of the same figure we see that for

large jet radii there is still a large cancellation between the physical renormalon present in the definition

of M and the one in the pole mass. In the MS scheme we do observe a cancellation between the jet

renormalon and the one in M for jet radii of the order of 0.9. However, conversely to the previous case,

this cancellation is accidental and cannot be taken as indication of a small overall ambiguity as the two

effects should be considered independent source of errors.

4.3 Leptonic observables

The last observable we consider is the average value of the energy of the final-state W boson, 〈EW 〉,
which can be considered as a proxy of all leptonic observables. For this analysis we do not impose any

selection cuts to avoid to be contaminated by jet renormalons.
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We find that in the narrow-width approximation, 〈EW 〉 has a linear renormalon both in the pole and

in the MS scheme. Conversely to the case of the total cross section, if we compute EW in the laboratory

frame the calculation cannot be factorized between production and decay, thus spoiling the cancellation

of the linear λ term in 〈EW 〉. This cancellation takes place only if EW is computed in the top frame.

When a finite width is employed, the top can never be on-shell as p2
t is real, thus a linear λ term

can develop only if the pole mass counterterm is used. However, this is also telling us that we can start

appreciating the good convergence of the MS scheme at orders n = 1 + log(m/Γt) ≈ 6, as it can be seen

from Tab. 1.

〈EW 〉 [GeV]

pole scheme MS scheme

i ci ci α
i
s ci ci α

i
s

1 −1.435 (0)× 101 −1.552 (0)× 100 −7.192 (0)× 100 −7.779 (0)× 10−1

2 −4.97 (4)× 101 −5.82 (4)× 10−1 −3.88 (4)× 101 −4.54 (4)× 10−1

3 −1.79 (5)× 102 −2.26 (6)× 10−1 −1.45 (5)× 102 −1.84 (6)× 10−1

4 −6.9 (4)× 102 −9.4 (6)× 10−2 −5.7 (4)× 102 −7.8 (6)× 10−2

5 −2.9 (3)× 103 −4.4 (5)× 10−2 −2.4 (3)× 103 −3.5 (5)× 10−2

6 −1.4 (3)× 104 −2.2 (4)× 10−2 −1.0 (3)× 104 −1.7 (4)× 10−2

7 −8 (2)× 104 −1.3 (4)× 10−2 −5 (2)× 104 −8 (4)× 10−3

8 −5 (2)× 105 −9 (4)× 10−3 −2 (2)× 105 −4 (4)× 10−3

9 −3 (2)× 106 −7 (4)× 10−3 −1 (2)× 106 −2 (4)× 10−3

10 −3 (2)× 107 −6 (5)× 10−3 0 (2)× 106 −1 (5)× 10−4

Table 1: Coefficients of the perturbative expansion of the average W -boson energy in the pole and
MS-mass schemes.

The last undesirable feature connected to the use of this observable is the reduced sensitivity to the

top mass. Indeed, for our choice of the center-of-mass energy d〈EW 〉/dm ≈ 0.1, while in the top frame

d〈EW 〉/dm ≈ 0.4.

5 Conclusions

In these proceedings we have summarized the method introduced in Ref. 5) to evaluate all-orders correc-

tions in the large-b0 approximation. When the method is applied to processes involving a decaying top

quark, we can predict which observables are affected by linear renormalons if the pole or a short-distance

mass scheme is adopted. This method is also sensitive to linear corrections associated with jets.

The total cross section does not display linear renormalons related to the top mass if a short distance

scheme is adopted. This is the case for leptonic observables only if a finite width Γt is employed, unless

such observables are computed in the top frame. This also implies that the good convergence of leptonic-

observables predictions will manifest only at high orders (n ≥ 1+log(m/Γt) ≈ 6). The reconstructed-top

mass is affected by a physical renormalon that partially cancels with the one contained in the pole mass

definition. This cancellation is almost exact for Γt → 0 if the jet radius is large enough.
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for useful comments on the manuscript.

References

1. M. Beneke, P. Marquard, P. Nason and M. Steinhauser, Phys. Lett. B 775 (2017) 63

doi:10.1016/j.physletb.2017.10.054 [arXiv:1605.03609 [hep-ph]].

2. A. H. Hoang, C. Lepenik and M. Preisser, JHEP 1709 (2017) 099 doi:10.1007/JHEP09(2017)099

[arXiv:1706.08526 [hep-ph]].

3. M. Butenschoen, B. Dehnadi, A. H. Hoang, V. Mateu, M. Preisser and I. W. Stewart, Phys. Rev.

Lett. 117 (2016) no.23, 232001 doi:10.1103/PhysRevLett.117.232001 [arXiv:1608.01318 [hep-ph]].

4. A. H. Hoang, S. Plätzer and D. Samitz, JHEP 1810 (2018) 200 doi:10.1007/JHEP10(2018)200

[arXiv:1807.06617 [hep-ph]].

5. S. Ferrario Ravasio, P. Nason and C. Oleari, JHEP 1901 (2019) 203 doi:10.1007/JHEP01(2019)203

[arXiv:1810.10931 [hep-ph]].

6. S. Ferrario Ravasio, arXiv:1902.05035 [hep-ph].

7. M. Beneke, Phys. Rept. 317 (1999) 1 doi:10.1016/S0370-1573(98)00130-6 [hep-ph/9807443].

8. M. Beneke and V. M. Braun, Phys. Lett. B 348 (1995) 513 doi:10.1016/0370-2693(95)00184-M [hep-

ph/9411229].

9. P. Ball, M. Beneke and V. M. Braun, Nucl. Phys. B 452 (1995) 563 doi:10.1016/0550-3213(95)00392-6

[hep-ph/9502300].

10. Y. L. Dokshitzer, A. Lucenti, G. Marchesini and G. P. Salam, Nucl. Phys. B 511 (1998) 396 Erratum:

[Nucl. Phys. B 593 (2001) 729] doi:10.1016/S0550-3213(97)00650-0, 10.1016/S0550-3213(00)00646-5

[hep-ph/9707532].

11. S. Catani, B. R. Webber and G. Marchesini, Nucl. Phys. B 349 (1991) 635. doi:10.1016/0550-

3213(91)90390-J

12. G. P. Korchemsky and G. F. Sterman, Nucl. Phys. B 437 (1995) 415 doi:10.1016/0550-3213(94)00006-

Z [hep-ph/9411211].

13. M. Dasgupta, L. Magnea and G. P. Salam, JHEP 0802 (2008) 055 doi:10.1088/1126-

6708/2008/02/055 [arXiv:0712.3014 [hep-ph]].

72


