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Abstract: Methods of determining, from small-variable asymptotic expansions, the characteristic
exponents for variables tending to infinity are analyzed. The following methods are considered: diff-
log Padé summation, self-similar factor approximation, self-similar diff-log summation, self-similar
Borel summation, and self-similar Borel-Leroy summation. Several typical problems are treated. The
comparison of the results shows that all these methods provide close estimates for the large-variable
exponents. The reliable estimates are obtained when different methods of summation are compatible
with each other.

Keywords: small-variable asymptotic expansions; large-variable exponents; diff-log Padé summation;
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1. Introduction

In many physics problems, one needs to find out the behavior of a function at large
variables tending to infinity. However this function is defined by such complicated equa-
tions that it can be found only as an asymptotic expansion for small variables. Then the
problem arises: How is it possible to extrapolate the small-variable expansion to the large
values of the variable, and even to the variable tending to infinity?

The class of functions that exhibits power-law behavior at large variables is quite wide.
The problem of finding out the large-variable behavior of power-law functions happens in
many applications, where the most important point is to characterize the type of the power
law, as the related characteristic exponent sheds light on the physical processes responsible
for the particular asymptotic behavior. The typical example is the determination of critical
exponents at phase transitions. This problem is known to be straightforwardly reducible,
by the change of variables, to the definition of the characteristic exponent at infinity [1].

Another well-known problem is the determination of the tail characteristic exponents
of distributions exhibiting power laws, such as the Pareto law [2] and Zipf law [3]. The
character of the large-variable behavior of a distribution describes the type of the variable
mean, and its variance, which portray the properties of the considered system [1,3].

Important information on the properties of many-body systems, e.g., on spatial struc-
ture, collective excitations, and impenetrable obstacles can be derived from the study of the
large-variable tails in scattering theory [4], inverse scattering problem [5,6], and structural
phase transitions [7].

To be more precise, suppose that we are interested in a real function f(x) of a real
variable x. The function is assumed to be sign-definite. Without loss of generality, it is
sufficient to consider non-negative (positive-valued) functions. It may happen that the
most important information required for us is the tendency of the function to infinity, where
it may possess the asymptotic behavior
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f(x) ~ BxP (x — 00) . 1)

In many cases, it is even not the whole function which is important, but the character
of its approach to infinity, that is, the characteristic large-variable exponent . However, the
problem is aggravated by the complexity of the equations, defining the function f(x), to
such an extent that all we are able to derive is the truncated asymptotic expansion at small
variables,

fx) = fi(x)  (x—=0), @

having the form of a finite series

k
fk(x) = Z anxn 7 (3)
n=0

where gy > 0. For simplicity, we may set a9 = 1, which is equivalent to considering the
function f(x)/ay.

Thus, we are put in front of the difficult task: How, knowing only the truncated series
(3), valid for x — 0, could we extract the large-variable exponent § at x — o0? As is evident,
the direct application of the Padé summation [8] of series (3) is not applicable. This is
because the Padé approximant Py, (x) at large x behaves according to the law xM~N, that
is, it is actually not defined, as far as M and N can be arbitrary, provided that M + N = k.
The standard way of finding out the characteristic exponents of large-variable behavior
is the diff-log Padé summation [8,9]. However, the question arises: How trustworthy is
the result of this method? This question is especially significant when there is no firm
information of the exact value of the sought exponent.

In such a case, the main method of proving the reliability of numerical results is
the method of validation using other solutions [10], when there exist several methods of
calculating the quantity of interest and all of them yield the results compatible with each
other. This technique compares the results to be validated with the results obtained through
other numerical methods. In other words, several methods to solve the problem validate
each other if the different used techniques give close results.

Thus, to make the results of calculations trustworthy, it is necessary to have several
techniques in addition to the standard diff-log Padé summation. It is the goal of the present
paper to suggest and analyze several methods allowing us to determine the large-variable
exponent and to compare their predictions between themselves and with the most known
method of the diff-log Padé approximation. We consider new methods involving self-
similar factor approximants. The methods to be analyzed are introduced in Section 2. These
are the standard diff-log Padé summation, the method of self-similar factor approximants,
the method combining the diff-log transformation with self-similar factor approximants,
and the approach employing Borel summation in combination with self-similar factor
approximants. In the following sections, we apply these methods to several asymptotic
series with the structure typical of many physics problems.

2. Retrieving Large-Variable Exponents

The necessity of having several methods for finding large-variable exponents is dic-
tated by two reasons. First, some of the methods might be not applicable for particular
cases, which could be compensated by the use of other methods. Second, as has been ex-
plained above, when several ways of calculating the exponents are available, it is possible
to check their consistency and, thus, to validate their use.

2.1. Diff-Log Padé Transformation

The most well known and usually employed method for defining characteristic ex-
ponents is the diff-log Padé transformation [8,9]. For a given function f(x) the diff-log
transformation is defined as

D(x) = % In f(x) . @



Symmetry 2022, 14, 332

30f15

When the value of f(xp) at some point x( is known, the inverse transformation

becomes
X

.ﬂx»:fww<mp{A D@)w}. )

If the function at large x — oo behaves as in (1), the large-variable exponent is given
by the limit

0

p= lim xD(x). ©)

In practical applications we have, not a function, but the truncated series (3). Then its
diff-log transform reads as

Di(x) = o I filx), 7)

where the right-hand side is expanded in powers of x, yielding the series

k
Dy(x) = ) _ byx" (x —0). 8)
n=0

The coefficients by, are uniquely defined through the coefficients a,, provided both
sides of Equation (7) have the same number of terms. For expansion (8), one constructs the
Padé approximants
. by + ZZ:l Cpx™

14yt g, xm

m=1
with 2n 4+ 1 = k and the coefficients ¢, and d, being defined through b,. This makes it
straightforward to define the approximations for the large-variable exponent as

Puna[ Di(x) ] ©

Br = lim xPy/pin[ Di(x) . (10)

As

Pl D))= 22 (1) (e,

we come to the exponents
Cn

.511:

This is the standard scheme for determining the characteristic exponents. By the
change of variables, the same scheme can be applied for the estimation of critical exponents
at finite values of variables.

. 11
dn+1 ( )

2.2. Self-Similar Factor Approximants

Recently, a new approach of extrapolating asymptotic series has been advanced [11-14]
called the method of self-similar factor approximants. This approach allows for a direct
definition of characteristic exponents by extrapolating the initial series (3) to the form

N
s =T1a+ 4", @)
i=1
in which
[ k/2, k=246,...
N"_{ (k+1)/2, k=1,35... (13)

The parameters A; and n; are uniquely defined by the accuracy-through-order proce-
dure from equating the like-order terms in the expansions at small x:

fe() =~ fi(x)  (x=0). (14)
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This procedure yields the equations

Ni
Y Al =] (m=12,...k), (15)

with the right-hand side

B (_1)11171 5 qm ) . m Y

= Gr—oyr Im gom I +n§“”x ‘

Equations (15) uniquely define all parameters A; and #; for the even orders k of
expansion (3). For the odd orders k, an additional normalization condition is required
which, based on scaling arguments, implies that one of the A; can be set to one [14,15]. The
other possibility could be by optimizing the factor approximant (12) with respect to one
of A j- Both ways lead to close results [16], due to which we use the simplest variant of
setting one of A; to one. Recall that by agreement we keep in mind real functions. Therefore
form (12) also has to be real. This requires that either all A; are non-negative and 7; real,
or Aj and n; can be complex, but entering the product (12) in complex conjugate pairs, so
that their product remains real. Occasionally arising complex-valued approximants are
discarded.

At large x, the factor approximant (12) results in the behavior

fi(x) = BexPr (x = o0), (16)
with the amplitude
Ne o
— ]
By = j|:1| A (17)

and the characteristic exponent

N
,Bk = Z 7/1]‘ . (18)
j=1

2.3. Self-Similar Diff-Log Transformation

As factor approximants provide an efficient tool for extrapolating asymptotic series,
it looks reasonable to try to use in the diff-log transformed expansion (8), instead of Padé
approximants, the self-similar factor approximants. That is, we sum the series (8) to the
self-similar approximant

N
Dii(x) = b [ [(1+Lx)" , (19)

j=1

instead of the Padé approximant (9). As has been explained below Equation (15), consider-
ing real functions, the parameters L; and n; are to be such that the approximant (19) is real
valued. This requires that either L; are non-negative and 1, real, or L; and 1; can be complex,
but entering the product (12) in complex conjugate pairs, so that their product remains
real. To make meaningful definition (6), the factor approximant (19) is complemented by
the condition

N
Y mj=—1. (20)
j=1

Then the large-variable limit of (19) becomes

Dj(x) =~ Dy % (x — o), (21)
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with the amplitude
Ne
— j
Dk_bOHL]. ) (22)
j=1
Thus the characteristic exponent
1 *
Pr = lim xDg(x) (23)
becomes
Ny m,
Pr=Dr=bo]]L;". (24)
j=1
2.4. Self-Similar Borel Summation
The Borel transformation of the series (3) is
Bu(x) = 3" @ 25
r(x) =) o (25)

The resulting series can be summed by means of self-similar factor approximants,

Ny
Bi(x) = [(1+ M;x)% .
j=1

Then the sought function is approximated by the expression
fi(x) = / eBi (xt) dt .
0
The Borel transform (26) at large x behaves as
Bf(x) ~ Cyx (x = o),
where
Ny ; Ni
Ck:HMj’ Uk:ZSj.
j=1 j=1
Therefore, the sought function (27), in the limit of large x, reduces to
fr(x) ~ Ckx”k/ e~ !t dt (x — 00) .
0
As a result, the large-variable behavior of the function acquires the form
fi(x) = BexPr (x —» o),

with the amplitude
By =CiI (0 +1)

and the large-variable exponent

N
Br=0r=)_sj-
=1

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

It is worth mentioning that the Padé summation of the Borel transform (25) cannot be
used here. This is because, employing a Padé approximant Py;,n(x), we would find for
the large-variable exponent ¢ the undefined value M — N that, in addition, can only be

an integer.
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2.5. Simplified Self-Similar Borel Summation

As is shown in the previous section, the large-variable exponent of the sought func-
tion (27) coincides with that for the self-similar Borel transform (26), that is B = o;. Of
course, the transform B/ (x) itself is rather different from the function f(x), being con-
nected with the latter through the integral (27). Instead of taking the integral, the function
fi (x) can be reconstructed from B} (x) by the method of self-similarly corrected Padé
approximants [17,18]. For this purpose, one can look for the function

fi(x) ~ B{(x) Pyp(x) (2n=k), (34)

defining the parameters of the diagonal Padé approximant from the accuracy-through-
order procedure by equating the like-order terms of the small-variable expansion of (34)
and of the given expansion (3). We have checked by several examples and found that
the so reconstructed approximation provides the accuracy comparable to that given by
the method of self-similarly corrected Padé approximants [17,18]. The correctness of the
large-variable behavior is guaranteed by the equality (33).

2.6. Self-Similar Borel-Leroy Summation

A variant of the integral transform, slightly generalizing the Borel summation method,
is the Borel-Leroy transform that for the truncated series (3) reads as

k an ;
Bi(x,u) =Y CES ) X", (35)

where u plays the role of a control parameter that has to be chosen so that to improve the
convergence of the sequence of approximants, if needed. Summing up the latter series by
means of self-similar factor approximants yields

Ny

[T+ Ax)". (36)

a0
Bf =—
k (xl M) T (1 ¥ M)
Accomplishing the inverse Borel-Leroy transformation gives the approximation for

the sought function

Fix) = / ¢~ BY (tx, 1) dt . (37)
0
At large values of the variable, the self-similar Borel-Leroy transform behaves as
B} (x,u) =~ Cp(u)xP (x = 00), (38)
with the amplitude
Ni
agp n;
= — A . /
i) = 5 5 114 (39)
]_
and the exponent
N
Br = Br(u) =) n;. (40)
j=1

Therefore, at large values of x, function (37) acquires the form
fi(x) = Bp(u)xPr  (x = ), (41)

where the exponent By is defined in (40) and the amplitude is

Ny )
Bi(1) = Ce(u)T(1 + u + ) = W aOHA7] . 42)
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Remark 1. Aiming at comparing the methods of defining the large-variable exponents, we consider
several examples whose asymptotic expansions possess the structure typical of many problems in
physics and applied mathematics. Our main aim is to study whether the methods described above
can provide reasonably accurate evaluation of the large-variable exponents for the typical cases where
not so many terms of asymptotic expansions (usually not more than about ten) are available. This is
the standard situation in the majority of physical problems of interest. The related typical feature of
the overwhelming realistic problems is that the general expressions for the expansion coefficients are
not known, hence the convergence of the sequence of approximants cannot be checked explicitly. In
such a case, one can talk only about numerical convergence that can be observed by comparing the
numerical values of the available approximants. Under numerical convergence, one understands the
apparent approach to a limit of the given finite sequence of numerical results. throughout this paper,
we discuss only this numerical convergence.

3. Partition Function of Anharmonic Model

Let us start with the standard touchstone that is always considered when studying new
methods. This is the partition function of the so-called zero-dimensional anharmonic model

Z= \/1% /jo exp(—¢* - g9*) dg, (43)

with the coupling parameter ¢ > 0. Expanding the integrand in powers of g leads to the
divergent series (3) with the coefficients

o= C0r (s 1). s

The strong-coupling form of (43) is

Z(g) ~1.022765 g7 %% (g — o). (45)

Using the methods described above for defining the large-variable exponents By for
different approximants, we obtain the following results.

(i) In the case of the standard diff-log Padé transformation of Section 2.1, we have the
exponents

Bz = —0.1290, Bs = —0.1484 , Bz = —0.1610, B9 = —0.1700,

numerically converging from above to the exact value —0.25.
(ii) Applying the self-similar factor approximants of Section 2.2, we find for the even
approximants

Bs = —0.1290, Be = —0.1484, Bs = —0.1610, B10 = —0.1700,
and for the odd orders,
B3z = —0.3462, Bs = —0.2551, By = —0.2227, Bo = —0.2087 .

One can notice monotonic numerical convergence from above for the even approxi-
mants to the exact value 0.25.
(iii) The self-similar diff-log transformation of Section 2.3 yields for the even orders

B2 = —0.2281, Bs = —0.1940, Be = —0.1868, Bs = —0.1853,
and the odd approximants are

B3 =—01368, Ps=-01586, Py=-01721, Po=—0.1813.
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Here, the role of even and odd approximants is interchanged due to the additional
constraint (20). Odd approximants demonstrate numerical convergence from above.
(iv) The self-similar Borel summation of Section 2.4 gives for the even approximants

B2 = —0.2069, P4 =—02257, PB¢=—-02330, Pg=—-02369, PBg=—0.23%,
and for the odd orders
B3 = —0.2364, Bs = —0.2309, B9 = —0.2419..

Again, the even approximants monotonically converge from above. The odd approxi-
mant for B7 is not defined, as it becomes complex valued.

Comparing the accuracy of the approximants, we see that the self-similar Borel summa-
tion provides a slightly better accuracy than other methods and that the even approximants
are better than odd.

(v) It is interesting that using the self-similar Borel-Leroy summation it is possible
to find the exact value of the large-variable amplitude. To this end, let us consider the
second-order self-similar approximant for the Borel-Leroy transform (36)

1

- B2
Tt (14 Ax)Pz, (46)

By (x,u) =

for which we have

Ao 35T2(2+u) —3T(1+ u)T (3 +u)
N AT(24+u)T (3 +u)

_ 30(1 4 u)l(3 4 u) B
P2= 3T(1+u)l(3+u) —35I2(24u) Pa(u) .

The large-variable exponent —1/4 can be derived from the scaling relations for the
partition function (43). Thence it should be: (1) = —1/4, which results in the control
parameter # = —0.25. Substituting this parameter into the amplitude (42) gives B(u) =
1.02277, which coincides with the amplitude in the asymptotic form (45).

= A(u),

4. Quartic Anharmonic Oscillator

The other touchstone for checking new methods is the one-dimensional quartic oscil-
lator with the Hamiltonian in dimensionless units

1 4 1
H=—---"—5+=-x2 4 47
2dx2+2x+gx, 47)

in which x € (—00,00) and g > 0. One usually calculates the ground-state energy E(g) of
this oscillator.

The expansion of E(g) in powers of the coupling ¢ results in a divergent series of
type (3). The coefficients a,, can be found in Refs. [19,20]. The strong-coupling behavior is

E(g) ~ 0.667986 ¢'/3 (g — o0) . (48)

The summary of the results obtained by different methods are as follows.
(i) Diff-log Padé transformation (Section 2.1) yields the strong-coupling exponents

B3 =02312, B5=02570, By =02719, Pog=02817.

There exists monotonic numerical convergence from below to the exact value 1/3.
(ii) Self-similar factor summation (Section 2.2) gives the even approximants

By =02312,  Be=02570, Pg=02719,  Pyg=02817
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and the odd approximants
B3 =0.5903, Bs = 0.4092, B7 = 0.3510, B9 = 0.3276 .

Even approximants monotonically converge from below.
(iif) Self-similar diff-log transformation (Section 2.3) results in the even approximants

B> = 0.3803, B4 =0.3170, Be = 0.3033, Bs = 0.29%,
and in the odd approximants
B3 = 0.2408 , Bs = 0.2674, By =0.2818, Bo = 0.2909 .

Again, we have to remember that here, due to the constraint (20), the role of the
even and odd approximants is interchanged. Here, the odd approximants monotonically
converge from below.

(iv) Self-similar Borel summation (Section 2.4) leads to the even approximants

Bp=03, By=02891, Bg=03119, Bip=03219,
and to the odd approximants
Bz = 0.2368, Bs = 0.3305, By = 0.3147, Bo = 0.3203 .
Even approximants converge from below to the exact value 1/3.

5. Expansion Factor of Polymer Chain

The theory of the excluded volume effect in a polymer chain has been one of the central
problems in the field of polymer solution theory. The net effect of the excluded volume
interaction between segments of the polymer chain is usually repulsive and leads to an
expansion of the chain size. There have been many attempts to understand, quantitatively,
this effect over the past several decades [21,22]. When the excluded volume interaction
is very weak, a perturbation theory for the ratio of the mean square end-to-end distance
of the chain to its unperturbed value can be developed and can be reduced to a series in
a single dimensionless interaction parameter g. This ratio, called expansion factor «(g),
derived by means of perturbation theory [21,22] with respect to the coupling parameter g,
results in a series (3) with the coefficients

=1, a= 1, = —2.075385396 a3 = 6.296879676

3 7
ay = —25.05725072 a5 = 116.134785, ag = —594.71663 .
The strong-coupling behavior has been found numerically [23] in the form

w(g) ~ 1.5309 x03544 (49)

The following results are obtained.
(i) Diff-log Padé transformation (Section 2.1) leads to

B3 =03400,  PBs=0.3477,

These values approach the exponent 0.3544 from below.
(ii) Self-similar factor approximants (Section 2.2) give in even orders

Bs=03400,  Be=0.3477.
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and in odd orders
B3 =0.4399, Bs = 0.3641 .

Even approximants are closer to the test value 0.3544.
(iii) Self-similar diff-log transformation (Section 2.3) provides in even orders

By =03795, B4 =03542,

and in odd orders
B3 = 0.3430, Bs = 0.3488 .

All these values are close to each other.
(iv) In the case of the self-similar Borel summation (Section 2.4), we find the even
approximants
Bo=04614, B, =03184  Be=03726,

and the odd approximants
B3 =0.2417, Bs = 0.4489 .

6. Massive Schwinger Model

The massive Schwinger model in Hamiltonian lattice theory [24,25] describes quantum
electrodynamics in two space-time dimensions. Its features include such properties of
quantum chromodynamics as confinement, chiral symmetry breaking, and a topological
vacuum. Due to this, the model has attracted much attention. It is perhaps the simplest non-
trivial gauge theory, and this makes it a standard test-bed for the trial of new techniques
for the studies. The main characteristic of interest in the Schwinger model is the spectrum
of bound states, more specifically the lowest two bound states and the energy gap between
them that can be calculated perturbatively.

Let us consider the energy gap between the lowest and first excited states of the vector
boson as a function A(z) of the variable z = (1/ga)*, where g is a coupling parameter and
a, lattice spacing. This energy gap at small z can be represented as a series

A(z) ~ ) ayz" (z—0), (50)

with the coefficients
ap =1, a =2, a, = —10 a3 = 78.66667 , ay = —736.2222,

a5 = 7572929,  ag = —82,736.69,  ay = 942,803.4,
ag = —1.108358 x 107, a9 = 1.334636 x 10%, a9 = —1.637996 x 10° . (51)

In the continuous limit, where the lattice spacing tends to zero, the variable z tends to
infinity. Then the gap acquires the limiting form

A(z) ~ 05642 z/% (2 = o). (52)

(i) Using the diff-log Padé transformation (Section 2.1), we find the large-variable
exponents

B3 =0.1845, B5=01933, By =01983,  Bg = 02023,

which are below the value 0.25.
(if) Employing self-similar factor approximants (Section 2.2), we have the even approx-
imants

By =0.1845, Be = 0.1933, Bs =0.1983, B1o = 0.20234 ,
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and the odd approximants
B3z = 02714, Bs = 0.2140, B7 = 0.2036, Bo = 0.20233 .
(iii) Self-similar diff-log transformation (Section 2.3) produces the even approximants
B2 = 0.2014, B4 =0.1970,
and the odd approximants
B3 =0.1882, Bs = 0.1991.

The higher-order approximants are discarded, being complex-valued.
(iv) Making use of the self-similar Borel summation (Section 2.4) gives oscillating even
approximants

B =02857, By =01230, Be=02643, Pg=0.1547,  Pyo = 0249,

while the odd approximants oscillate so widely that they lose their meaning.

One often assumes that the Borel method improves the results of series summation.
However, it is necessary to be cautious. Thus, the considered above Schwinger model
shows that Borel summation can produce nonmonotonic sequences of approximants, as
compared to the direct self-similar summation of the given series.

7. Equation of State for Hard-Disc Fluid

The fluid of hard discs of diameter a5, which approximately equals the scattering
length for these objects, is an important model often used as a realistic approximation
for systems with more complicated interaction potentials. The equation of state connects
pressure P, temperature T, and density p. One often considers the ratio

Z=—
_ 53)
where the Planck constant is set to one, which is called compressibility factor. This factor is
studied as a function of the packing fraction, or filling,

7T
=Tpa. (54

It is known [26,27] that the compressibility factor exhibits critical behavior at the filling
fc =1, where

Zo (fe=f)""  (f=f—0). (55)

The exponent a has not been calculated exactly, but it is conjectured [26,27] to be
around o = 2.

The compressibility factor for low-density has been found [28,29] by perturbation
theory as an expansion in powers of the filling f. Nine terms of this expansion are available:

Z ~1+42f +3.12802f3 + 4.25785f° + 5.3369 f* + 6.36296 f> +

4 7.35186f° + 8.3191f7 4+ 9.27215f% + 10.2163f7, (56)

where f — 0. In order to reduce the consideration to the same type of problems as treated
above, we make the substitution

x x f
=Tz

_ f
=1z’ x—fc_f—ﬁ. (57)

f
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Then
x—=0 (f=0), x—o0 (f—fe—0), (58)
and the compressibility factor at the critical point behaves as
Z o« ¥ (x = 00). (59)
With substitution (57), the compressibility factor Z, as a function of x becomes
Z ~ 1+ 2x 4 1.12802x + 0.00181x> — 0.05259x*+
+0.05038x° — 0.03234x° + 0.01397x” — 0.0033x® + 0.00618x” , (60)

where x — 0. Thus the problem reduces to the prediction of the large-variable exponent «,
being based on the small-variable expansion (60).
(i) Using the standard diff-log Padé transformation, we have

a3 = 1.6186, a5 = 1.8498, a7 = 1.8663, w9 = 3.2337,

with the approximation values increasing above 3.
(ii) Self-similar factor approximants give in even orders

ag = 1.6186, e = 1.8498 , ag = 1.8663,
and in odd orders,
a3 = 2.1294 , ns = 1.8432, a7 = 1.8400 .

The even approximants increase, while the odd approximants decrease. Again we see
that the diff-log Padé approximants of order k coincide with the self-similar approximants
of order k + 1.

(iii) Self-similar diff-log transformation results in the even approximants

ny =2.1432, ny = 1.8727, ng = 1.8546,
and odd approximants
a3 = 1.6995, a5 = 1.8478, w7 = 1.8628 .

These values are close to the exponents obtained by direct self-similar summation of
series (60), without the diff-log transformation.
(iv) Self-similar Borel summation leads to the even approximants

xy = 1.3928, ng = 19772, xg = 1.6042, ng = 1.8890,
and to the odd approximants
a3 = 1.5642, w5 = 1.9476 , w7 = 1.6660 ng = 1.9058 .

As is seen, these values are close to 2.

(v) Self-similar Borel-Leroy summation requires to be explained in a bit more details.
We follow Section 2.6, except that now, instead of the exponent f; we write a;. All
other steps are the same. For the series (60), we define the Borel-Leroy transform (35),
construct the self-similar approximant (36), make the inverse transformation (37), consider
the large-variable limit (38), and find the exponent (40) that now reads as ay(u). The
control parameter u can be defined from the optimization conditions [16,30-32]. The
minimal derivative condition is spoiled by multiple solutions, while the minimal difference
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condition in the form ay(u) = a3(u), yields the unique solution u = 0.35165. Using this
control parameter, we obtain in even orders

ay, = 1.4797, ag = 19700, ng = 1.6614 , ng = 19164,
and in odd orders
a3 = 14797, a5 = 1.9431, w7 = 1.6996 a9 = 1.9290 .

Considering the largest-order self-similar approximants, depending on the used
method, we have in the even orders 1.866, 1.855, 1.889, and 1.916, which gives the av-
erage 1.882. In the odd orders, we have 1.840, 1.863, 1.906, and 1.929, which results in the
average 1.885. Thus, we can make the prediction for the exponent as 1.884 4 0.02.

8. Discussion

The problem of defining large-variable characteristic exponents is considered. We
analyze and compare different methods: the standard approach using diff-log Padé trans-
formation, and several novel methods involving the use of self-similar factor approximants.
It is worth noting that the form of the self-similar approximants is not postulated ad hoc,
but follows from self-similar approximation theory, where these approximants represent
fixed points of renormalization group equations [31].

The suggested methods are developed for the application to difficult problems charac-
terized by three features. First, the number of terms in an asymptotic expansion is not large,
often containing just a few terms. Second, the general explicit expression for expansion
coefficients is not available, hence it is not known what the properties of the sought function
are. Third, the expansion variable is not small, but rather large and even tending to infinity.
In such a situation, the sole known way of estimating the efficiency of a summation method
is based on (i) the observation of apparent numerical convergence (that should not be
confused with convergence in strict sense) and (ii) the verification of the compatibility of
the results obtained by several available methods. The developed methods are applicable
to any series and the results are trustful provided they satisfy the above requirements. The
methods are straightforward and do not involve any fitting parameters.

One should not confuse the calculation of the large-variable exponents, where the
variable of interest tends to infinity, with the calculation of critical exponents for which the
extrapolation to only finite values of variables is required, as for instance in the problem of
summation of epsilon expansions, where at the end one sets ¢ = 1. Thus, rather precise
values for critical exponents have been found by means of self-similar approximants [31,33],
agreeing well with other methods of summation and Mote Carlo simulations summarized
in Refs. [34,35]. The extrapolation of asymptotic series to the values of the variable tending
to infinity is a more complicated task even for simple problems.

In order to decide on the accuracy of the used methods, it is possible to compare
the upper-order results for each considered case, obtained by different methods. For
compactness, we shall denote the methods by the corresponding abbreviations: Diff-Log
Padé transformation (DLP); Self-Similar Factor approximants (SSF); Self-Similar Diff-Log
transformation (SSDL); and Self-Similar Borel summation (SSB).

For the anharmonic model of Section 3, we have:

Bo = —0.1700 (DLP), B19 = —0.1700 (SSF), o = —0.1813 (SSDL), P19 = —0.2394 (SSB) .

The result of the SSB is the closest to the exact value f = —0.25.
In the case of the anharmonic oscillator of Section 4 the results are:

Bo = 02817 (DLP),  B1g=02817(SSF),  Bo =0.2909 (SSDL), P10 = 0.3219 (SSB).

The value given by SSB is the closest to the exact § = 1/3.
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For the polymer chain of Section 5, we find:
Bs = 03477 (DLP),  Be =0.3477 (SSF),  PBs =0.3488(SSDL), B¢ = 0.3726 (SSB).

The closest to the exact 8 = 0.3544 is the result of SSDL.
For the massive Schwinger model of Section 6, we find:

Bo = 02023 (DLP),  B1g=0.2023(SSF),  Bo=0.1991(SSDL),  Pio = 0.2496 (SSB).

The result of SSB is the closest to the exact § = 0.25.
In the case of the hard-disc fluid of Section 7, we obtain:

w9 = 32337 (DLP),  ag=1.8663(SSF),  ay =1.8628(SSDL), ¢ = 1.9058 (SSB).

The closest to the conjectured & = 2 is the result of SSB. The use of the self-similar
Borel-Leroy transformation slightly improves the result giving ag = 1.9290.

The main conclusions are as follows:

(i) It turns out that the direct summation of asymptotic series by means of self-similar
factor approximants gives the results coinciding with the standard method of diff-log Padé
transformation. Moreover, the large-variable exponents f; of the latter method coincide
with the exponents By 1 of the first method. This can be explained by the fact that Padé
approximants are just a particular case of factor approximants.

(ii) In the methods, employing self-similar factor approximants, even approximants
demonstrate better numerical convergence than odd approximants. The reason for that is
the use for the odd approximants of an additional normalization constraint. The general
feature of the self-similar factor approximants is their self-organized structure prescribed by
renormalization-group procedure [31]. Therefore, usually, the lesser imposed constraints,
the better the numerical convergence of the approximants.

(iii) The cases where the self-similar Borel summation is well defined lead to more
accurate results. However, sometimes it may produce strongly oscillating sequences of the
approximants, and even may stop existing in the real-valued range.

(iv) All results are compatible with each other, which validates their use. This is a
principal point, as in order to obtain reliable estimates of calcualtions, it is necessary to
have in hands several methods demonstrating the compatibility of results between the
different techniques. This is why the novel methods, considered in the present paper, are of
high importance, as they provide the tool for checking the compatibility between different
approaches, hence they demonstrate the reliability of the obtained results.

As is possible to conclude from the comparison of different approaches, the method
of self-similar factor approximants is comparable in accuracy with the method of diff-log
transformation, while the self-similar Borel summation can provide more accurate results.
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