
C
ER

N
-T

H
ES

IS
-2

01
8-

47
9

LDPC codes - new methodologies

by

Jan Brouĺım

Submitted to the Department of Applied Electronics and
Telecommunications

in fulfillment of the requirements for the degree of

Ph.D.

at the

UNIVERSITY OF WEST BOHEMIA

August 2018

Author .
Department of Applied Electronics and Telecommunications

24 August 2018

LDPC codes - new methodologies

by

Jan Brouĺım

Submitted to the Department of Applied Electronics and Telecommunications
on 24 August 2018, in fulfillment of the

requirements for the degree of
Ph.D. in Electronics

Abstract

Low Density Parity-Check (LDPC) codes have become very popular because of their
near Shannon limit performance when decoded using a probabilistic decoding algo-
rithm. This work proposes several methodologies related to LDPC codes, including
design of codes based on optimsation algorithms, mapping LDPC decoders onto par-
allel architectures, and improving performance of state-of-the-art decoders.

LDPC codes are random-based codes, defined in terms of parity-check matrices or
Tanner graphs. Parameters of Tanner graphs, particularly a degree distribution and
cycle occurrence, are crucial for probabilistic iterative decoders. Therefore, algorithms
for producing good codes are needed. In this work, an algorithm for producing codes
of large girth is proposed and evaluated. This algorithm is further utilsed for genetic
optimzation methods accelerated by coarse grained parallelzation. The proposed
methods are evaluated using different code lengths and redundancies.

The second part of this thesis is devoted to mapping LDPC decoders on parallel
systems, which are becoming very popular in modern communications systems. A
general method for mapping irregular LDPC codes is proposed and evaluated on GPU
platform using OpenCL and CUDA frameworks.

The last main part introduces algorithms for improving performance of LDPC
codes. Two main methods are proposed, a method based on backtracking codeword
estimations and a method based on using several parity-check matrices. The second
method, so called Mutational LDPC (MLDPC), utilses several parity-check matrices
produced by slight mutations which run in parallel decoders. Information from all
decoders is then used to provide the codeword estimation. The MLDPC is further
modified using information entropy and so called radius which provide the additional
improvement of the Bit Error Rate.

Thesis Supervisor: Doc. Dr. Vjačeslav Georgiev

Thesis Co-Supervisor: prof. RNDr. Tomáš Kaiser, DSc.

2

Acknowledgments

I would thank to my supervisors, Vjaceslav Georgiev and Tomas Kaiser, to take the

responsibility of this work and for giving me the opportunity to learn and develop

new skills in interesting fields.

I am particularly grateful for the assistance and useful discussions given by Alexan-

der Ayriyan, Stefan Berezny, Nikolaos Boulgouris, Sima Davarzani, Hovik Grigorian,

colleagues at the Faculty of Electrical Engineering in Pilsen, Institute of Experimental

and Applied Physics in Prague, Joint Institute of Nuclear Research, especially the

HybriLIT group, people involved in GBT Project at CERN, and specialists at Brunel

Language Centre.

My thanks also go to my family for providing the support during my study.

Declaration

I hereby declare that this thesis is my original work and that I have not used any

sources other than those listed. I further declare that only legal and licensed software

has been used. This thesis has not been submitted at any other institution in order

to obtain a degree.

..................................

3

Contents

1 Introduction 15

2 Error correction coding 18

2.1 History of error correction coding . 18

2.2 Shannon model . 19

2.3 Definitions . 20

2.3.1 Generator matrix . 22

2.3.2 Parity-check matrix . 22

2.3.3 Systematic form of coding . 22

2.3.4 Non-binary codes . 23

2.3.5 Communication channel models 23

3 LDPC codes 25

3.1 Background . 25

3.2 Encoding . 28

3.3 Tanner graphs . 28

3.4 Decoding . 29

4 Construction of LDPC codes 39

4.1 Generating LDPC matrices with large girth 40

4.2 Genetic optimization of LDPC codes 46

4.2.1 Optimization algorithm principle 46

4.2.2 Tanner graph mutations . 46

4

4.2.3 Recombination of Tanner graphs 47

4.2.4 Fitness function . 50

4.2.5 Parallelization . 53

4.3 Application of optimization tasks . 55

4.3.1 Sample optimization using mutations 55

4.3.2 Long run optimization of LDPC (128,64) code 57

4.3.3 Comparison of the optimized LDPC code with the RS code . . 59

4.3.4 Evaluation of parallelization 59

5 Mapping LDPC decoder onto parallel architectures 62

5.1 A general parallelization of LDPC decoders 63

5.2 OpenCL and CUDA implementation 65

5.3 Experimental evaluation . 68

6 Improving performance of LDPC decoders 72

6.1 Belief Propagation Based on Estimation Backtracking 72

6.1.1 Algorithm description . 75

6.1.2 Memory requirements . 75

6.1.3 Complexity requirements . 77

6.1.4 Comprehensive AWGN simulations 77

6.2 Mutational LDPC decoding . 81

6.2.1 Principle of Mutational LDPC decoding 82

6.2.2 Entropy based algorithm (MLDPCe) 84

6.2.3 Metric based algorithm (MLDPCr) 85

6.2.4 Memory and complexity requirements 89

7 Conclusions 94

A On GPU implementation of LDPC decoder 96

B Fully parallel LDPC decoder implementation in FPGA 99

C Burst correctability of optimized codes 105

5

D On Belief Propagation based on the Estimation Backtracking 107

E MLDPC BER simulations 111

F Feature based classification 113

6

List of Figures

2-1 Shannon’s conceptual diagram of the information transmission between

the source and the destination. 19

2-2 Extended diagram of the communication chain. 19

2-3 Historical milestones in coding theory. 20

3-1 Historical milestones related to LDPC codes. 27

4-1 Correction performance of 10% redundancy codes (12.5% for n=64). 42

4-2 Correction performance of 25% redundancy codes. 43

4-3 Correction performance of 50% redundancy codes. 44

4-4 Correction performance of 75% redundancy codes. 45

4-5 A diagram of the optimization process. 46

4-6 Breaking cycles in the Tanner graph as an example. 47

4-7 Adding a new edge connected with the node u : dG(u) = 1 as an example. 48

4-8 Generating the chromosome. Numbers are node degress corresponding

to the selected part of the graph. 50

4-9 A demonstrative evolution of the fitness function. The optimization

using only mutations is compared to the optimization using the com-

bination of the mutations and crossover operators. 54

4-10 The principle of the optimization algorithm. 54

4-11 Reproducing the next generations of Tanner graphs. 55

4-12 An optimization task using Tanner graph mutations 56

7

4-13 The optimization task run on (128,64) LDPC code to provide the best

performance at 10 decoding iterations. The initial population were

generated with the use of Algorithm 5. 57

4-14 Evolution of fitnes value of the optimization task LDPC (128,64), 10

decoding iterations). 58

4-15 Comparison of the genetically designed LDPC (120,88) with the RS

(15,11) code. 59

4-16 Fitness values for L = 4 and K = 100. 61

4-17 Fitness values for L = 4 and different sharing periods. 61

5-1 The acceleration dependence on the length of the code. Comparison

for OpenCL and CUDA frameworks (local group of 512 threads and

100 decoders working in parallel) against CPU implementation using

C++ compiler with O3 optimization. Time was mesuared for 10000

decoded codewords at Eb/N0 =2dB. 70

5-2 The acceleration dependence on the block (working group) for 100

decoders running in parallel. 70

5-3 Acceleration dependence on the number of decoders working in parallel

when the size of the working group is 512. 71

6-1 Bit error rate performance simulated on NASA CCSDS (256,128) stan-

dard. 78

6-2 Bit error rate performance simulated on MacKay’s (504,252) code. . 79

6-3 Bit error rate simulated on our irregular LDPC (128,64) code. The

original SP algorithm and the improved SP-BT are compared. 79

6-4 Bit error rate simulated on our irregular LDPC (128,64) code. The

original Bit-Flipping algorithm and the improved Bit-Flipping algo-

rithm with backtracking of estimations are compared. 80

6-5 Bit error rate simulated on our irregular LDPC (128,64) code. The

original Min-Sum algorithm and improved Min-Sum algorithm with

backtracking of estimations are compared. 80

8

6-6 State-of-the art LDPC decoding scheme. 84

6-7 The proposed MLDPC scheme. 84

6-8 Simulation on WiMAX 1056 code, 4 additional decoders were used. . 88

6-9 Simulation on WiMAX 1056 code, 19 additional decoders were used. 89

6-10 Simulation on CCSDS 128 code, 4 additional decoders were used. . . 89

6-11 Simulation on WiMAX 2304 code, 4 additional decoders were used. . 90

6-12 The Evolution of entropy values and distance values when the decoder

fails in the convergency. 91

6-13 The Evolution of entropy values and distance values when the decoder

oscillates. 92

A-1 Parity-check matrix divided into pages 97

A-2 Parity-check matrix and the principle of the parallelization 97

A-3 Tanner graph of the LDPC (14,7) code. 97

B-1 Flowchart of the decoder synthesis. 102

B-2 Variable node unit in the relation of message passing, where i is in

0...ctr1 − 1, ctr1 is the value after running Algorithm 20 and j is in

0...K − 1 . 102

B-3 Check node unit in the relation of message passing, where i is 0...ctr2−

1, ctr2 is the value after running Algorithm 20 and j is 0...K − 1 . . . 102

B-4 Simplified state diagram of the decoding algorithm. 103

D-1 Relative decoding time . 107

D-2 Hardware architecture outline. 108

D-3 Bit error rate simulated on irregular MacKay’s (504,252) code com-

pared for different number of iterations. The values are calculated

from 300 codewords for which the iterative decoding algorithm failed

at particular Signal-to-Noise Ratios. 109

F-1 The algorithm of learning a feature based classificator. 115

F-2 The algorithm for accelerating the evaluation function. 115

9

F-3 Required Signal to Noise Ratio against average variable node degrees. 116

F-4 Required Signal to Noise Ratio against average variable node degrees. 116

F-5 Required Signal to Noise Ratio against features. 116

10

List of Tables

2.1 Hamming (7,4) code and 4B/5B coding 21

4.1 Minimum Eb/N0 thresholds for a given BER = 10−4 before and after

the optimization. 55

4.2 The optimized (128,64) code. The parity-check matrix is listed in the

hexadecimal format. 58

4.3 Mean required number of generations for achieving a 100% correction

capability of single bit errors. 60

4.4 Minimum required number of generations for achieving a 100% correc-

tion capability of single bit errors. 60

4.5 Median required number of generations for achieving a 100% correction

capability of single bit errors. 61

5.1 Comparison for OpenCL and CUDA framework (local group of 512

threads and 100 decoders working in parallel) against the CPU im-

plementation using C++ compiler with O3 optimization. Time was

mesuared for 10000 decoded codewords at Eb/N0 =2dB. 71

6.1 Simulated Bit Error Rate values. There were 4 additional mutational

decoders used for simulations. R = k/n is the code rate. Similarly, 4

additional decoding attemps were used for dithered algorithm [32] . . 93

A.1 Addresses used for message calculation outgoing from variable nodes. 97

A.2 Addresses used for message calculation outgoing from check nodes. . . 98

A.3 Comparison of chosen OpenCL and CUDA syntax rules 98

11

B.1 Synthesis results. The number of required ALMs is compared for dif-

ferent code lengths. 103

B.2 Addresses used for message calculation outgoing from check nodes. . . 104

C.1 Correcting capabilities measured for ultra short block lengths 106

C.2 Correcting capabilities measured by the ratio of frames which are able

to be corrected by the decoder . 106

C.3 Correcting capabilities measured by the ratio of frames which are able

to be corrected by the decoder . 106

C.4 Correcting capabilities measured by the ratio of frames which are able

to be corrected by the decoder . 106

D.1 Error correcting capability measured on our (128,64) LDPC code. . . 110

D.2 Error correcting capability measured on NASA CCSDS (256,128) LDPC

code. 110

D.3 Error correcting capability measured on MacKay’s (504,252) LDPC code.110

E.1 Error correcting capability measured o MacKay’s (504,252) LDPC code

using MLDPC. 111

E.2 CCSDS 256, 4 additional decoders. 111

E.3 LDPC (128, 64), 4 additional decoders. 112

F.1 Comparison of times required for formal description and comprehensive

simulation. 114

F.2 Comparison of times required for formal description and comprehensive

simulation. 115

12

List of Symbols

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BFS Breadth-First Search

BPSK Binary-Phase Shift Keying

DVB-S Digital Video Broadcasting - Satellite

DVB-T Digital Video Broadcasting - Terrestrial

FPGA Field Programmable Gate Array

G Generator matrix

GPU Graphics Processing Unit

H Parity-Check matrix

LDPC Low Density Parity-Check

MLDPC Mutational LDPC

MLDPCe MLDPC using information Entropy

MLDPCr MLDPC using Radius

SNR Signal-to-Noise Ratio

13

The place where this text has been mostly written :-)

14

Chapter 1

Introduction

With the increasing development of electronics and telecommunication technologies,

there was a need for definitions, new terminology and a generalization of communi-

cation processes. The first theoretical contribution to the generalization of a data

transmission was made by Shannon’s work in 1948 [46], where he defined quantities

connected with a new discipline called information theory, established limits for com-

munication processes between a source and a destination and introduced a schematic

diagram (Fig. 2-1) of a general communication model.

Since Shannon’s work, the topic of error detection and error correction codes, re-

lated to channel coding, has seen significant growth. The first serious discussion of

error correction codes emerged in Hamming’s work in 1950 [22], where Hamming pro-

vided a method for the correction of single bit and the detection of double bit errors

with minimum redundancy being added to the data transmitted. Since the second half

of 20th century, error correction codes have attracted much attention in research work

and have been utilized in many applications, including space photography transmis-

sion, television broadcasting services, Ethernet, or wireless communication networks.

Since the invention of correction codes and establishment of space programmes,

space agencies, i. e. NASA and ESA, have become a common user of these codes.

Reed-Muller codes [49],[44] found an application in transmission of Mars photographs

in the Mariner spacecraft mission between 1969 and 1977. Reed-Solomon codes [53]

and convolutional codes were used on the Voyager 1 space probe mission, whereas

15

a Golay code [25] was used on the Voyager 2 (both were launched in 1977). The

New Horizon spacecraft, currently enroute to Pluto, uses turbo codes [62] for space

transmission and Reed-Solomon codes in an internal system.

Although Hamming codes are still used in random access memories, more robust

codes are commonly deployed. Reed Solomon codes have become familiar on compact

discs, digital versatile discs, Blu-Ray discs, or hard discs. They are also used as a

coding technique at CERN for data transmission from detectors or as an outer code to

convolutional codes in television broadcasting standards (DVB-T, DVB-S). However,

DVB-S2 (ratified in 2005) [88] and DVB-T2 (2006) standards use a combination of

BCH [7] and LDPC codes [86]. LDPC codes were further standardized as an option

to other coding schemes for communication networks, such as 10 Gigabit Ethernet

(10GBASE-T) in 2006, WiMAX (802.16e) in 2006 , WiFi (802.11n in 2009 or 802.11ac

in 2014 [87]). As can be seen from the number of applications with LDPC codes, which

is increasing, these codes have became the very popular coding technique used for

an establishment of reliable data transmission. Another interesting coding technique

includes polar codes [2]. Also these codes have seen growing interest because of their

low coding complexity.

Low Density Parity-Check (LDPC) codes were introduced by Gallager [24] in 1962.

Since MacKay’s rediscovery [37] in 1995, the past two decades have seen increasingly

rapid advances in the field of LDPC codes. There is a growing number of applications

with LDPC codes and Sum-Product (SP) decoding [70]. Recently, the Progressive-

Edge Growth (PEG) [74] construction has been becoming popular. It was said, ”The

PEG construction creates matrices with very large girth. This construction has proved

to produce the best known Gallager codes.” (MacKay, 2008). Moreover, LDPC codes

can be constructed in a wide variety of block lengths or redundancies, and the decoder

is able to report that the block has been incorrectly decoded, which is not a common

behavior of all decoders associated with different types of codes.

This text is organized as follows. Chapter 2 provides general ideas of error cor-

rection coding. Chapter 3 presents LDPC codes in terms of their history, principles

of contruction, encoding and decoding. Chapter 4 introduces innovative construction

16

methods, applied in combination with genetic optimization algorithms. A perfor-

mance of the proposed methods is evaluated and new codes are compared to the

codes of the same length. Chapter 5 proposes a general method for the paralleliza-

tion of irregular LDPC codes. Benchmarks are performed using GPU platform. In

Chapter 6, several methodologies improving performance of decoders are proposed

and the performance is compared to the state-of-the art decoders using the same

LDPC code.

17

Chapter 2

Error correction coding

2.1 History of error correction coding

Since Hamming reported the first generalized correction codes there has been an in-

creasing amount of interest in this field. In 1954, D. Muller published a paper on the

application of Boolean algebra to electrical circuits and error detection [44], where

he established the minterm terminology. Working independently of Muller, I. Reed

reported codes with bit error correctability greater than two [49]. Codes that came

from their work are currently known as Reed-Muller. In 1955, P. Elias introduced

convolutional codes [17] and later, in 1957, E. Prange introduced cyclic codes [48].

This trend was followed by BCH and Reed-Solomon codes in 1960 [7], [53]. The first

mention of LDPC codes appeared in Gallager’s work in 1962 [24], but this work did

not have a considerable impact for several decades. Afterwards, in 1993, there was

a revolution with the introduction of turbo codes [62], whose decoding performance

was significantly closer to Shannon’s bound than any other codes published previ-

ously. In 1995, MacKay and Neal rediscovered Gallager’s LDPC codes [37], which

had been neglected for over 30 years (few mentions by Zyablov, Pinsker and Tanner

[85], [56]). MacKay’s rediscovery of LDPC codes in 1995 [37] has heightened the need

for other studies on those codes. In 1998, Davey and MacKay proposed non-binary

LDPC codes, which outperformed turbo codes [14], [15]. Spielman also showed that

binary LDPC codes using heuristic construction can surpass turbo codes in terms of

18

correction capability [54].

2.2 Shannon model

The Shannon model (Fig. 2-1) divides the communication process into separate blocks

with specific functions. Data provided by an information source are transmitted and

passed through a noisy channel to a receiver, where they are processed and transferred

to a destination. Today, the transmitter is often divided into the source encoder and

the channel encoder, according to the theory introduced by Shannon. Additionally,

a modulator can be located between the channel encoder and the channel if it is not

considered as a part of the channel encoder. Similarly, the receiver can be divided

into a demodulator, a channel decoder, and a source decoder (Fig. 2-2).

Transmitter Channel Receiver Destination

Noise source

Information
source

Message Message

Figure 2-1: Shannon’s conceptual diagram of the information transmission between
the source and the destination.

Source
encoder

Channel
encoder

Information
source

Modulator

Channel

Demodulator
Channel
decoder

Source
decoder

Destination

Noise source

Figure 2-2: Extended diagram of the communication chain.

19

1948 2018

1948

InformationPtheory

1950

First error correction codes

1993

TurboPcodes

1962

LDPCPcodes

1998

LDPCPsurpassedPturboPcodes1995

RediscoveryPofPLDPCPcodes

1981

TannerPgraphs

1960

Reed-SolomonPcodes

Figure 2-3: Historical milestones in coding theory.

2.3 Definitions

Alphabet A is said to be the set of q symbols, usually considered that A forms a field.

A block code over an alphabet A is a set of qk vectors (codewords) of length n.

A block code C is a linear (n,k) code if and only if its qk codewords form a k-

dimensional vector subspace of the vector space Fnq over a field Fq, where Fnq is a

space of qn vectors. The number n is the length of the code and the number k is the

dimension of the code. The examples of linear and nonlinear codes can be seen in

Table 2.1.

The Hamming distance d between vectors x and y of equal length (|x|=|y|) is the

number of positions where the corresponding elements are different,

d(x,y) =

|x|∑
n=1

di (2.1)

di =

0 for xi = yi

1 for xi 6= yi

(2.2)

The minimum distance dmin of a block code C is the smallest Hamming distance

between any two codewords in the code C.

20

Table 2.1: Hamming (7,4) code and 4B/5B coding

codeword cmessage m
Hamming (7,4) 4B/5B

0000 0000000 11110
0001 0001111 01001
0010 0010110 10100
0011 0011001 10101
0100 0100101 01010
0101 0101010 01011
0110 0110011 01110
0111 0111100 01111
1000 1000011 10010
1001 1001100 10011
1010 1010101 10110
1011 1011010 10111
1100 1100110 11010
1101 1101001 11011
1110 1110000 11100
1111 1111111 11101

dmin = min
c1,c2∈C ∧ c1 6=c2

d(c1, c2), (2.3)

The Hamming weight w(c) of a codeword c is the number of nonzero elements of

the codeword.

The entropy H(X) is a measure of the amount of uncertainty (average amount of

self-information) associated with a discrete random variable X . For a source X with

probabilities P (X = xi), where xi ∈ {x1...xN} , the entropy is:

H(X) = −
N∑
i=1

(P (xi) log2 P (xi)) [Sh]. (2.4)

The information rate R of code C is given by:

R =
logq|C|
n

, (2.5)

where q is the number of symbols in the alphabet and n is the length of the

21

codeword.

For a block code C = (n, k) the information rate becomes:

R =
logq

∣∣qk∣∣
n

=
k

n
, (2.6)

where k is the length of the information message.

The redundancy r of the code is the difference between the length of the codeword

and the length of the information message, r = n− k.

2.3.1 Generator matrix

Every linear block code C can be described in terms of the k by n generator matrix G.

The rows of G generate C. The codeword c can be represented as a linear combination

of the row vectors of G. The information vector (message) is denoted as m. Then,

c = mG. (2.7)

2.3.2 Parity-check matrix

A parity check matrix H, associated with a linear block code C, is a matrix satisfying

the formula:

GH> = 0. (2.8)

Any vector v of length n is a codeword if and only if it meets the following

condition:

vH> = 0. (2.9)

A product of the multiplication vH> is called the syndrome s.

2.3.3 Systematic form of coding

Consider information symbols (elements of m) as the elements of the information

vector m. When the systematic form of coding is applied, information symbols are

22

then written in the same order both in the codeword and in the original message.

The systematic form of the generator matrix is the following: G = [P | I] or [I |P],

where I is the k by k identity matrix and P is a part of G matrix.

2.3.4 Non-binary codes

So far, only binary representations of the generator and a parity check matrix have

been considered. Linear block codes can be generalized using finite field arithmetic,

which is illustrated in following paragraphs.

The modular arithmetic with congruence modulo n relation is considered. If n is

a prime, such an arithmetic generates a field, which can be utilized for computations

with linear block codes. Because of the binary channels generally used in communi-

cations, Galois fields (GF) of 2p polynomials are generally utilized. Such a field is

created by any irreducible polynomial.

2.3.5 Communication channel models

There are two groups of mathematical models of communication channels, analogue

and digital. Analogue channels, including Additive White Gaussian Noise (AWGN)

or Rayleigh fading model, work with analogue messages being transmitted. Digi-

tal channel models, involving Binary Symmetric Channel (BSC) or Binary Erasure

Channel (BEC), consider the messages as digital variables. The capacity associated

with the channel is a measure first used by Shannon [46]. The definition in terms of

entropy is the following:

The channel capacity C is the upper bound on the information being transmitted

between the input and output (maximum mutual information),

C = max {I(X, Y)} = max {H(Y)−H(Y |X)} , (2.10)

where H(Y) is the destination entropy, H(Y |X) is the conditional entropy, and

I(X, Y) is the mutual information. If H(Y |X) = 0, there are no errors in the trans-

mission and the capacity is maximum. As the symbol duration Ts is known, the

23

maximum bandwidth in bits per second can be determined by:

C ′ =
C

Ts
[bit/s, Sh/s]. (2.11)

For BSC, the capacity is given:

C = 1−H = 1 + p log2 p+ (1− p) log2(1− p) [Sh] (2.12)

Related to the AWGN channel, the maximum rate of transmitted information is

given by the Shannon-Hartley theorem, which can be written in the following formula:

C = B log2

(
1 +

PS
PN

)
[bit/s], (2.13)

where B is the bandwith, PS is the power of the signal, PN is the power of the

noise.

24

Chapter 3

LDPC codes

Low Density Parity-Check (LDPC) codes are defined in terms of sparse parity check

matrices (described in Section 2.3.2). Suppose a parity-check matrix H associated

with the linear block code C. If the matrix H is sparse, the code C is said to be the

LDPC code. If the column weights in the matrix H are all the same and row weights

are all the same, the LDPC code is regular. If not, it is irregular. It has been shown

that irregular codes perform better [35].

LDPC construction, encoders, decoders, and historical milestones are outlined in

the following chapter.

3.1 Background

Although only the regular form of the parity-check matrix was considered by Gallager,

irregular constructions have become familiar because of their better performance. The

first report on irregular codes was published by Luby, Mitzenmacher, Shokrollahi and

Spielman in 1998 [35], followed by MacKay, Wilson and Davey in 1999 [38]. In 2001,

a powerful code design, which is based on appropriate degree distribution in a Tan-

ner graph, was presented by Richardson, Shokrollahi and Urbanke [50]. However,

regular codes have been studied comprehensively in MacKay’s work [39]. In 2003,

Fossorier studied Quasi-Cyclic (QC) codes, based on circulant permutation matrices

[21]. Later, in 2004, Vasic showed several combinatorial constructions of parity-check

25

matrices [64], and Tian, Jones, Villasenor and Wesel studied an effect of the graph

connectivity on the correction capability [61]. Probably still the best known code was

identified in the work of Chung, Forney, Richardson and Urbanke [13]. Further, in

2004, Thorpe, Andrews, Dolinar proposed the construction of LDPC codes based on

protographs [60]. Hu, Eleftheriou and Arnold, discovered in 2001 and generalized in

2005 an algorithm (the Progressive Edge-Growth (PEG)) based on a Tanner graph

construction in terms of a tree structure [73], [74]. During the past ten years, this algo-

rithm has become a general standard for the design of good codes. Numerous studies

have attempted to modify PEG construction in order to achieve better performance.

In 2010, Zheng, Lau and Tse presented a PEG modification improving performance

at the error floor region [84]. Uchoa, Healy, de Lamare and Souza [63] introduced

PEG techniques for fading channels in 2011. Our work on LDPC codes started in

2012 [10] with the utilization in a microcontroller and it was followed with probably

the first direct application of genetic optimization methods on code construction in

2013 [11]. This work has led to results pointed out in Section 4.2. Furthermore, the

genetic construction can be naturally optimized to all possible channels and decoding

algorithms, where it outperformes state-of-the art solutions

Decoding algorithms used for LDPC codes are suboptimal and the convergence

to the minimum distance codeword is not guaranteed. Thus, the correction perfor-

mance depends both on the code and the decoding algorithm used. Several decoding

methods, which differed in the performance and required number of operations, were

presented in the literature. Soft-decision algorithms working on Tanner graphs were

introduced by Wiberg [70]. Nonbinary and Fast Fourier Transform (FFT) versions

were pointed by Davey in 1999 [16] and later, in 2004, log-domain FFT decoding

was described by Byers and Takawira [9]. The work of Yedidia, Freeman and Weiss

from 2001 contributed to generalization of Belief Propagation (BP) algorithms [76],

including the decoding algorithms above.

Recently, researchers have shown an increased interest in the connection of neural

networks and LDPC codes. A relationship between message passing and continuous

Hopfield networks was revealed by Ott and Stoop in 2007 [47]. In 2009 Karami, Attari

26

and Tavakoli presented perceptron neural networks for LPDC decoders [27] and later,

in 2013, Anton, Ionescu, Tutanescu, Mazare and Serban presented an application with

parallel Hopfield networks [1].

However, far too little attention has been paid to the multi-edge codes discovered

by Richardson and Urbanke in 2004 [52]. This work was followed by Liva and Chi-

ani [34] in 2007, where they provided a novel extrinsic information transfer analysis

for protograph and multi-edge codes. Obata, Yung-Yih, Kasai and Pfister showed

properties of multi-edge codes on binary erasure channels in 2013 [45].

Several patents have been granted for encoding or decoding implementations in

hardware for special purposes (e.g. US 7,543,212 B2 or US 7,499,490 B2 in 2009) and

several hardware implementations have been published [67], [80]. Nevertheless, very

few studies have examined scalable implementations of decoders for irregular codes in

Field-Programmable Gate Arrays (FPGA) (e.g. [57]). Important milestones covering

LDPC codes are presented in the work of Bonello, Chen and Hanzo in 2011 [8]. The

selected milestones are pointed out in Fig. 3-1

X995 3MX8

X995

RediscoveryloflLDPC

X996

SumBproductlandlminBsumlalgorithm

X998

FirstlnonBbinarylLDPCV
FirstlirregularlLDPCV

LDPClcodesloverperformedlturbolcodes

3MM.

QuasiBcycliclLDPCV
FirstlprotographlLDPCV

IntroductionloflmultiBedgelcodes

3MMX

PEGlalgorithm

3MM6

AdaptivelbelieflpropagationV
GeneticlalgorithmlbasedldecoderlforlLDPCl

DVBBT3lstandardV
WiMAXVlXMlGigabitlEthernetlratification

3MM5

GeneralisationloflPEGV
DVBBS3lstandard

3MXO

OurldirectlimplementationloflGAlforlLDPCldesign

3MX3

DitheredlLDPCldecoding

3MM9

8MXTXXnlratification

3MX.

8MXTXXaclratification

3MX8

OurlMutationallLDPCldecoding

Figure 3-1: Historical milestones related to LDPC codes.

27

3.2 Encoding

The encoding of LDPC codes is performed by the multiplication of an information

vector m with the generator matrix G. Because LDPC codes are often defined by

a parity-check matrix H solely, there is a need for finding the generator matrix G,

which satisfies Eq. 2.8. This can be done by the principle described below.

It is assumed that the parity-check matrix H is in the systematic form H = [P | I].

A relation between G and H is given by:

G =
[
I | −P>

]
⇐⇒ H = [P | I] , (3.1)

where I is the k by k identity matrix.

3.3 Tanner graphs

The Tanner graph is a graph representation of linear block codes, which provides a

support for decoding algorithms of LDPC codes. A parity-check matrix H of a linear

block code C is considered as a part of an adjacency matrix of a bipartite undirected

graph (Fig. 3.2). Nodes associated with columns of H are said to be the variable

nodes, symbol nodes, or bit nodes, whereas nodes associated with rows of H are

called the check nodes. Edges occur between these nodes. The edges are being used

for passing messages between two sets of nodes. Note that the full adjacency matrix

of the Tanner graph has the form:

A =

 0 H

H> 0

 . (3.2)

The set of all edges in the Tanner graph is defined by:

E , {{ci, vj} : Hi,j 6= 0} , (3.3)

28

or in terms of node indices:

E , {(i, j) : {ci, vj} ∈ E}. (3.4)

A degree distribution function describes a distrubution of degrees in a graph.

Associated to Tanner graphs, an ensemble of irregular codes is specified by two degree

distributions, λ(x) and ρ(x),

λ(x) =
dvmax∑
i=2

λix
i−1, (3.5)

ρ(x) =
dcmax∑
j=2

ρjx
j−1, (3.6)

where λi is the fraction of edges that belongs to degree-i variable nodes, ρj is the

fraction of edges that belong to degree-j check nodes, dvmax is the maximum variable

node degree, and dcmax is the maximum check node degree.

3.4 Decoding

The decoding of LDPC codes is usually performed by iterative Belief Propagation

(BP) algorithms [70], [76] which work on the Tanner graph [56]. There are two

groups of algorithms - hard decision and soft decision, which performs better in terms

of correction capabilities. The soft decision decoding is described in the following

sections.

Sum-Product algorithm

The Sum-Product (SP) algorithm is the algorithm based on probabilistic iterative de-

coding of LDPC codes. The algorithm works in several steps : Initialization, Iterative

process, and Termination.

The first step of the algorithm is the initialization, when the decoder receives

a possibly corrupted codeword from a communication channel. During the iterative

29

process, message passing through edges is being performed. Values sent from variable

nodes to check nodes are denoted as qij, values outgoing from check nodes to variable

nodes are denoted as rij. The algorithm is terminated when the corrected codeword

is achieved or after a certain number of iterations is reached. If the algorithm is

interrupted after the specific number of iterations, the decoding is considered as

unsuccessful.

Two sets of node indices are given, Mj and Ni. Mj is the set of all check node

indices that are connected with the variable node j, while Ni is the set of all variable

node indices that are connected with the check node i.

Mj , {i : (i, j) ∈ E},

Ni , {j : (i, j) ∈ E}.
(3.7)

Consider the codeword sent into the channel to be denoted as c and the possibly

corrupted message received from the channel as y. Bits in these vectors are denoted

as cj and yj, where j = 1 . . . n. In the initialization step, conditional probabilities

P (cj | yj) are calculated and these values are sent to check nodes.

The conditional probabilities are defined as:

pj(0) , P (cj = 0 | yj), (3.8)

pj(1) , P (cj = 1 | yj), (3.9)

after the calculation, these values are sent to check nodes as messages qij,

qij(0) = pj(0), qij(1) = pj(1). (3.10)

The calculation of conditional probabilities for several channels, Binary Symmetric

Channel (BSC), Binary Erasure Channel (BEC), Binary Symmetric Channel with

Errors and Erasures (BSEC), and AWGN channel with Binary-Phase Shift Keying

(BPSK), can be performed using the formulas below.

For BSC channel, we can express the initial messages as:

30

pj(0) =

 1− p, for yj = 0

p, for yj = 1
, (3.11)

pj(1) = 1− pj(0) =

 p, for yj = 0

1− p, for yj = 1
, (3.12)

where p ∈ [0, 1] is the crossover probability (probability of an error) and yj ∈ {0, 1}

is the received symbol.

For BEC, the probabilities are given as:

pj(0) =


0, for yj = 1

1, for yj = 0

1/2 , for yj = e

, (3.13)

pj(1) =


1, for yj = 1

0, for yj = 0

1/2 , for yj = e

, (3.14)

where yj ∈ {0, 1, e} is the received symbol.

Calculation of the probabilities of BSEC is the following:

pj(0) =


1− p, for yj = 0

p, for yj = 1

1/2 for yj = e

, (3.15)

pj(1) = 1− pj(0) =


p, for yj = 0

1− p, for yj = 1

1/2 for yj = e

. (3.16)

AWGN channel with BPSK modulation, which is often used in simulations:

pj(0) =
1

1 + e2yj/σ2 , (3.17)

31

pj(1) = 1− pj(0) =
1

1 + e−2yj/σ2 , (3.18)

where yj ∈ R is the received symbol.

Algorithm 1 Message passing - Sum Product algorithm

1: procedure Values to Check Nodes
. First half on an iteration
Input: p, r
Output: q

2: for all j ∈ [0, |M|) do
3: for all i ∈ [0, |N |) do
4: qi,j(0) = pj(0)
5: qi,j(1) = pj(1)
6: for all i′ ∈Mj \ i do
7: qi,j(0) = qi,j(0)ri′,j(0)
8: qi,j(1) = qi,j(1)ri′,j(1)
9: end for

10: end for
11: end for
12: end procedure

13: procedure Values to Variable Nodes
. Second half on an iteration
Input: q
Output: r

14: for all j ∈ [0, |M|) do
15: for all i ∈ [0, |N |) do
16: ri,j(0) = 1
17: ri,j(1) = 1
18: for all j′ ∈ Ni \ j do
19: ri,j(0) = ri,j(0)(1− 2qi,j′(1))
20: end for
21: ri,j(0) = 1/2 + 1/2ri,j(0)
22: ri,j(1) = 1− ri,j(0)
23: end for
24: end for
25: end procedure

The values of pj are passed to check nodes as qij messages. After passing qij,

32

Algorithm 2 Soft-decision decoding

1: procedure DecodeAWGN . SP algorithm
Input: y – output from a demodulator
ITERATIONS – maximum number of iterations
σ – variance of the channel
Output: ĉ

2: q =Initialize(p, σ) . See Algorithm 3
3: r =Values to Variable Nodes(q) . See Algorithm 1
4: ĉ =Calculate Estimation(r) . See Algorithm 4
5: if ĉH> = 0 then return ĉ
6: end if
7: for it ∈ (0, ITERATIONS) do
8: q =Values to Check Nodes(r) . See Algorithm 1
9: r =Values to Variable Nodes(q) . See Algorithm 1

10: ĉ =Calculate Estimation(r) . See Algorithm 4
11: if ĉH> = 0 then return ĉ
12: end if
13: end for
14: end procedure

Algorithm 3 Soft-decision decoding - initialization

1: procedure Initialize . Probabilities for AWGN
Input: y, σ
Output: q

2: for all yj ∈ y do
3: pj = 1.0/(1 + exp(−2yj/σ

2))
4: end for
5: for all j ∈ [0, |M|) do
6: for all i ∈ [0, |N |) do
7: qi,j = pj
8: end for
9: end for

10: end procedure

values rij are calculated and passed back to the variable nodes, as follows:

rij(0) =
1

2
+

1

2

∏
j′∈{Ni\j}

(1− 2qij′(1)) , (3.19)

rij(1) = 1− rij(0) (3.20)

33

Algorithm 4 Soft-decision decoding - estimation

1: procedure Calculate Estimation
Input: p, r
Output: ĉ

2: for all j ∈ [0, |M|) do
3: Qi,j(0) = pj(0)
4: Qi,j(1) = pj(1)
5: for all i ∈Mj do
6: Qi,j(0) = Qi,j(0)ri,j(0)
7: Qi,j(1) = Qi,j(1)ri,j(1)
8: end for
9: if Qi,j(0) > Qi,j(1) then ĉj = 0

10: else ĉj = 1
11: end if
12: end for
13: end procedure

After the variable nodes receive the values of rij, a new estimation ĉ of the code-

word c is calculated.

Qj(0) = Kj · p(0) ·
∏
i∈Mj

rij(0), (3.21)

Qj(1) = Kj · p(1) ·
∏
i∈Mj

rij(1), (3.22)

the constant Kj is chosen to satisfy Qj(0) +Qj(1) = 1,

ĉj =

 1, for Qj(1) > Qj(0)

0, otherwise
. (3.23)

If ĉ is a codeword of the code (the product of ĉH> is equal to the zero vector), the

decoding is stopped. If not, the decoding process continues with the next iteration.

Then, values qij are calculated as follows:

qij(0) = Kijp(0)
∏

i′∈{Mj\i}

ri′j(0), (3.24)

34

qij(1) = Kijp(1)
∏

i′∈{Mj\i}

ri′j(1), (3.25)

where Kij is the normalization constant to satisfy: qij(0) + qij(1) = 1.

These values are sent to check nodes and the second half of the iteration continues

to Eq. 3.19 and 3.20.

Log-domain decoding

In order to decrease the number of multiplications being used in the decoding process,

the log-domain decoding has been proposed. Assume the surjective function L,

L : L (x, y) = ln
x

y
. (3.26)

Consider this function applied on initial probabilities and messages being passed

through the Tanner graph,

L(pj) , L(pj(0), pj(1)) = ln
pj(0)

pj(1)
, (3.27)

L(rij) , L(rij(0), rij(1)) = ln
rij(0)

rij(1)
, (3.28)

L(qij) , L(qij(0), qij(1)) = ln
qij(0)

qij(1)
. (3.29)

For AWGN channel, the initial probability is given by:

L(pj) = −2yi
σ2
. (3.30)

For Rayleigh fading channel, the initial probabilities can be expressed as (e. g.

[28]):

L(pj) = −2yi
σ2
α, (3.31)

where α is the normalized Rayleigh fading factor with E [α2] = 1 and probability

density function p(α) = 2αe−α
2
, and yj ∈ R is the received symbol.

If no channel state information is available, we can calculate with the approxima-

35

tion:

L(pj) = −2yi
σ2
E[α]. (3.32)

It can be derived that L(rij) values are determined as:

φ(x) , − ln
(

tanh
x

2

)
= ln

ex + 1

ex − 1
, (3.33)

L(rij) =
∏

j′∈{Ni\j}

sign (L(qij′)) · φ

 ∑
j′∈{Ni\j}

φ |L(qij′)|

 . (3.34)

The precise calculation of φ can consume a prohibitively long time. In order to

decrease the number of operations, the following simplification is often applied:

L(rij) ≈
∏

j′∈{Ni\j}

sign (L(qij′)) ·min |L(qij′)| . (3.35)

The algorithm using the equation above is usually referred as the Min-Sum algo-

rithm [70].

Values of L(qij) are calculated by the summation:

L(qij) = L(pj) +
∑

i′∈{Mj\i}

L(rij), (3.36)

and the estimation ĉ is given by:

L(Qj) = L(pj) +
∑
i∈Mj

L(rij), (3.37)

ĉj =

 1, for L(Qj) < 0

0, otherwise
. (3.38)

Sum-Product algorithm for non-binary codes

The SP algorithm for non-binary LDPC codes was generalized by Davey’s and Mackay’s

work [14]. Their non-binary LDPC codes [15] were the first LDPC codes that sur-

passed turbo codes at decoding performance.

36

The values of rij(a) are calculated as follows:

rij(a) =
∑

c : cj=a∧ c·h>i =0

 ∏
j′∈{Ni\j}

(qij′(cj′))

 , (3.39)

which is the sum over all codewords which have the symbol a at the position j

and satisfy the i-th parity check, and c ∈ C. The probability that the symbol at j-th

position is equal to a is determined by this formula. The vector hi denotes the i-th

row of the parity-check matrix.

The values of qij(a), which are being passed from the variable to the check nodes,

are determined by:

qij(a) = Kij · p(a) ·
∏

i′∈{Mj\i}

ri′j(a), (3.40)

The constant Kij is chosen to satisfy
∑
a∈A

qij(a) = 1.

The estimation is realized by:

x̂j = argmax
a

p(a)
∏

i∈{Mj}

rij(a)

 . (3.41)

The initial probabilities are calculated proportional to the channel properties. For

the AWGN channel using BPSK modulation, it is:

pj(a) = p(yj | cj = a) ∝
k∏
i=1

e
((yj BIN)k−(−1)ti)2

2σ2 , (3.42)

tai is chosen with respect to a and i.

Adaptive decoding, modifications

One of the most perspective methods of improving the correction performance of the

decoder is the usage of an adaptive technique of decoding, firstly presented in [29],

and tested on LDPC codes by Mobini in 2011 [40]. In this method, the outgoing

messages are replaced by:

q′ij = αqije
−β|qij |. (3.43)

37

where α ∈ (0, 1] and β ∈ [0,∞) are chosen by solving an optimization task for

particular codes.

Gallager’s construction

This is is the original Gallager’s construction of regular H matrix. The weight of row

vectors of the parity-check matrix is denoted as k, the weight of column vectors of

the parity-check matrix is denoted as j, and the length of a codeword is denoted as

n.

Considering the matrix A0,

A0 =


1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 (3.44)

of the dimension n/k by n, the matrix H is then given as:

H =


π1(A0)

π2(A0)
...

πj(A0)

 (3.45)

where πi are random column permutations of A0. However, irregular forms of

H matrices perform better under the SP decoding. Some construction methods are

summarized in the following chapter and methods based on large girth construction

and genetic optimization algorithms are proposed in this work.

38

Chapter 4

Construction of LDPC codes

Numerous studies have been focused on construction algorithms of LDPC codes dur-

ing past decades. In general, these algorithms create the parity-check matrices, which

define LDPC codes and associated Tanner graphs. The construction of a parity-check

matrix can be performed either in structured (e.g. geometry based methods) and un-

structured ways (e.g. PEG [73] or by Gallager’s construction (Section 3.4)).

Kou, Lin and Fossorie summarized the construction of LDPC codes based on

finite geometries [30] in 2001. Large-girth construction based on graphical models was

presented in work of Zhang and Moura [81] in 2003. Later, in 2004, Moura, Lu and

Zhang summarized structured construction methods [43] and Vasic and Milenkovic

introduced several combinatorical construction methods in [65]. Significant family of

structured codes are Quasi-Cyclic (QC) LDPC codes [21], constructed by Fossorier

in 2004.

In 2001, Richardson, Shokrollahi and Urbanke introduced a powerfull construction

algorithm working with degree distributions in the Tanner graph [50]. In 2003, the

algorithm using a new metric called Extrinsic Message Degree (EMD) in order to

avoid short cycles was proposed by Tian, Jones, Villasenor and Wessel [58].

The Progressive Edge Growth (PEG) algorithm, firstly presented in 2001 [73] a

summarized in 2005 [74], outperformed codes constructed by the methods above.

Several modifications of PEG was published [84], [63]. Good degree distributions

might by designed using the density evolution method [33], [13], [51] and passed as

39

an input of the PEG algorithm.

This chapter proposes methodologies for designing LDPC codes and associated

Tanner graphs of large girths, and direct application of genetic optimization algo-

rithms.

4.1 Generating LDPC matrices with large girth

The proposed algorithm for generating Tanner graphs is based on sequential usage

of Breadth-First Search (BFS) and addition of edges with avoidance of short cycles.

The diversity of candidate solutions can be tuned by parameters σv, σc, and cycle

lengths, as can be seen in Algorithm 5.

The algorithm progressively iterates over nodes and calculates distances (denoted

as d(c, v)) between nodes. If any distance is higher than a given cycle parameter and

a degree is lower than the desired degree, a new edge is added between the nodes c

and v. The parameter cycle is being changed from the value cyclestart to cyclestop and

it is decreasing.

The proposed algorithm can be used solely for a construction of large girth graphs

or as a part or genetic optimization tasks. The performance evaluation of codes

produced by this algorithm is also presented. For genetic optimization tasks, this

algorithm is used for producing the initial population, as described in the following

sections.

40

Algorithm 5 Large girth graph construction

1: procedure Generate graph

Input: vreq - requested variable nodes,
creq - requested check nodes,
cyclestart - length of the longest cycle in the first iteration
cyclestop - length of the longest cycle in the last iteration
dv0 - design degree of the variable nodes
dc0 - design degree of the check nodes
σv - standard deviation of variable node degrees
σc - standard deviation of check node degrees
Output: (CN,VN)-bipartite graph G

2: for cycle = cyclestart downto cyclestop do
3: dv = dv0 + σvr, r ∈ N (0, 1)
4: dc = dc0 + σcr, r ∈ N (0, 1)
5: for all v ∈ V N do
6: for all c ∈ CN do
7: if deg(v) < dv and deg(c) < dc then
8: if d(c, v) > cycle then
9: add e = (c, v) to the set E

10: end if
11: end if
12: end for
13: end for
14: end for
15: for all v ∈ V N do
16: if deg(v) < 2 then
17: e = (c : (c ∈ G,max{k|v →k c}), v)
18: add e to the set E
19: end if
20: end for
21: for all v ∈ CN do
22: if deg(c) < 2 then
23: e = (c, v : (v ∈ G,max{k|c→k v}))
24: add e to the set E
25: end if
26: end for
27: end procedure

41

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=24, deg

v
=3, cycle

min
=4

FER, deg
c
=24, deg

v
=3, cycle

min
=4

BER, deg
c
=32, deg

v
=4, cycle

min
=4

FER, deg
c
=32, deg

v
=4, cycle

min
=4

BER, deg
c
=50, deg

v
=5, cycle

min
=4

FER, deg
c
=50, deg

v
=5, cycle

min
=4

uncoded

(a) LDPC (64,56).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=30, deg

v
=3, cycle

min
=4

FER, deg
c
=30, deg

v
=3, cycle

min
=4

BER, deg
c
=40, deg

v
=4, cycle

min
=4

FER, deg
c
=40, deg

v
=4, cycle

min
=4

BER, deg
c
=40, deg

v
=4, cycle

min
=6

FER, deg
c
=40, deg

v
=4, cycle

min
=6

uncoded

(b) LDPC (128,115).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=30, deg

v
=3, cycle

min
=4

FER, deg
c
=30, deg

v
=3, cycle

min
=4

BER, deg
c
=40, deg

v
=4, cycle

min
=4

FER, deg
c
=40, deg

v
=4, cycle

min
=4

BER, deg
c
=40, deg

v
=4, cycle

min
=6

FER, deg
c
=40, deg

v
=4, cycle

min
=6

uncoded

(c) LDPC (256,230).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=30, deg

v
=3, cycle

min
=4

FER, deg
c
=30, deg

v
=3, cycle

min
=4

BER, deg
c
=30, deg

v
=3, cycle

min
=6

FER, deg
c
=30, deg

v
=3, cycle

min
=6

BER, deg
c
=40, deg

v
=4, cycle

min
=4

FER, deg
c
=40, deg

v
=4, cycle

min
=4

uncoded

(d) LDPC (512,461).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=30, deg

v
=3, cycle

min
=4

FER, deg
c
=30, deg

v
=3, cycle

min
=4

BER, deg
c
=40, deg

v
=4, cycle

min
=4

FER, deg
c
=40, deg

v
=4, cycle

min
=4

BER, deg
c
=40, deg

v
=4, cycle

min
=6

FER, deg
c
=40, deg

v
=4, cycle

min
=6

uncoded

(e) LDPC (1024,922).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=30, deg

v
=3, cycle

min
=6

FER, deg
c
=30, deg

v
=3, cycle

min
=6

BER, deg
c
=40, deg

v
=4, cycle

min
=6

FER, deg
c
=40, deg

v
=4, cycle

min
=6

BER, deg
c
=50, deg

v
=5, cycle

min
=6

FER, deg
c
=50, deg

v
=5, cycle

min
=6

uncoded

(f) LDPC (2048,1843).

Figure 4-1: Correction performance of 10% redundancy codes (12.5% for n=64).

42

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=12, deg

v
=3, cycle

min
=4

FER, deg
c
=12, deg

v
=3, cycle

min
=4

BER, deg
c
=16, deg

v
=4, cycle

min
=4

FER, deg
c
=16, deg

v
=4, cycle

min
=4

BER, deg
c
=16, deg

v
=4, cycle

min
=6

FER, deg
c
=16, deg

v
=4, cycle

min
=6

uncoded

(a) LDPC (64,48).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=12, deg

v
=3, cycle

min
=4

FER, deg
c
=12, deg

v
=3, cycle

min
=4

BER, deg
c
=12, deg

v
=3, cycle

min
=6

FER, deg
c
=12, deg

v
=3, cycle

min
=6

BER, deg
c
=16, deg

v
=4, cycle

min
=4

FER, deg
c
=16, deg

v
=4, cycle

min
=4

uncoded

(b) LDPC (128,96).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=12, deg

v
=3, cycle

min
=6

FER, deg
c
=12, deg

v
=3, cycle

min
=6

BER, deg
c
=12, deg

v
=3, cycle

min
=8

FER, deg
c
=12, deg

v
=3, cycle

min
=8

BER, deg
c
=16, deg

v
=4, cycle

min
=6

FER, deg
c
=16, deg

v
=4, cycle

min
=6

uncoded

(c) LDPC (256,192).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=12, deg

v
=3, cycle

min
=6

FER, deg
c
=12, deg

v
=3, cycle

min
=6

BER, deg
c
=12, deg

v
=3, cycle

min
=8

FER, deg
c
=12, deg

v
=3, cycle

min
=8

BER, deg
c
=16, deg

v
=4, cycle

min
=6

FER, deg
c
=16, deg

v
=4, cycle

min
=6

uncoded

(d) LDPC (512,384).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=12, deg

v
=3, cycle

min
=8

FER, deg
c
=12, deg

v
=3, cycle

min
=8

BER, deg
c
=12, deg

v
=3, cycle

min
=10

FER, deg
c
=12, deg

v
=3, cycle

min
=10

BER, deg
c
=16, deg

v
=4, cycle

min
=6

FER, deg
c
=16, deg

v
=4, cycle

min
=6

BER, deg
c
=16, deg

v
=4, cycle

min
=8

FER, deg
c
=16, deg

v
=4, cycle

min
=8

uncoded

(e) LDPC (1024,768).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=3, deg

v
=12, cycle

min
=8

FER, deg
c
=3, deg

v
=12, cycle

min
=8

BER, deg
c
=3, deg

v
=12, cycle

min
=10

FER, deg
c
=3, deg

v
=12, cycle

min
=10

BER, deg
c
=4, deg

v
=16, cycle

min
=6

FER, deg
c
=4, deg

v
=16, cycle

min
=6

BER, deg
c
=4, deg

v
=16, cycle

min
=8

FER, deg
c
=4, deg

v
=16, cycle

min
=8

uncoded

(f) LDPC (2048,1536).

Figure 4-2: Correction performance of 25% redundancy codes.

43

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=6, deg

v
=3, cycle

min
=6

FER, deg
c
=6, deg

v
=3, cycle

min
=6

BER, deg
c
=6, deg

v
=3, cycle

min
=8

FER, deg
c
=6, deg

v
=3, cycle

min
=8

BER, deg
c
=8, deg

v
=4, cycle

min
=4

FER, deg
c
=8, deg

v
=4, cycle

min
=4

uncoded

(a) LDPC (64,32).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=6, deg

v
=3, cycle

min
=8

FER, deg
c
=6, deg

v
=3, cycle

min
=8

BER, deg
c
=6, deg

v
=3, cycle

min
=6

FER, deg
c
=6, deg

v
=3, cycle

min
=6

BER, deg
c
=8, deg

v
=4, cycle

min
=6

FER, deg
c
=8, deg

v
=4, cycle

min
=6

BER, deg
c
=8, deg

v
=4, cycle

min
=8

FER, deg
c
=8, deg

v
=4, cycle

min
=8

uncoded

(b) LDPC (128,64).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=6, deg

v
=3, cycle

min
=6

FER, deg
c
=6, deg

v
=3, cycle

min
=6

BER, deg
c
=6, deg

v
=3, cycle

min
=10

FER, deg
c
=6, deg

v
=3, cycle

min
=10

BER, deg
c
=8, deg

v
=4, cycle

min
=6

FER, deg
c
=8, deg

v
=4, cycle

min
=6

BER, deg
c
=8, deg

v
=4, cycle

min
=10

FER, deg
c
=8, deg

v
=4, cycle

min
=10

uncoded

(c) LDPC (256,128).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=6, deg

v
=3, cycle

min
=8

FER, deg
c
=6, deg

v
=3, cycle

min
=8

BER, deg
c
=6, deg

v
=3, cycle

min
=10

FER, deg
c
=6, deg

v
=3, cycle

min
=10

BER, deg
c
=8, deg

v
=4, cycle

min
=6

FER, deg
c
=8, deg

v
=4, cycle

min
=6

uncoded

(d) LDPC (512,256).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=6, deg

v
=3, cycle

min
=8

FER, deg
c
=6, deg

v
=3, cycle

min
=8

BER, deg
c
=6, deg

v
=3, cycle

min
=10

FER, deg
c
=6, deg

v
=3, cycle

min
=10

BER, deg
c
=8, deg

v
=4, cycle

min
=8

FER, deg
c
=8, deg

v
=4, cycle

min
=8

BER, deg
c
=8, deg

v
=4, cycle

min
=10

FER, deg
c
=8, deg

v
=4, cycle

min
=10

uncoded

(e) LDPC (1024,512).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=6, deg

v
=3, cycle

min
=10

FER, deg
c
=6, deg

v
=3, cycle

min
=10

BER, deg
c
=6, deg

v
=3, cycle

min
=12

FER, deg
c
=6, deg

v
=3, cycle

min
=12

BER, deg
c
=8, deg

v
=4, cycle

min
=8

FER, deg
c
=8, deg

v
=4, cycle

min
=8

BER, deg
c
=8, deg

v
=4, cycle

min
=10

FER, deg
c
=8, deg

v
=4, cycle

min
=10

uncoded

(f) LDPC (2048,1024).

Figure 4-3: Correction performance of 50% redundancy codes.

44

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=4, deg

v
=3, cycle

min
=8

FER, deg
c
=4, deg

v
=3, cycle

min
=8

BER, deg
c
=4, deg

v
=3, cycle

min
=10

FER, deg
c
=4, deg

v
=3, cycle

min
=10

BER, deg
c
=5, deg

v
=4, cycle

min
=6

FER, deg
c
=5, deg

v
=4, cycle

min
=6

BER, deg
c
=5, deg

v
=4, cycle

min
=8

FER, deg
c
=5, deg

v
=4, cycle

min
=8

uncoded

(a) LDPC (64,16).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=4, deg

v
=3, cycle

min
=8

FER, deg
c
=4, deg

v
=3, cycle

min
=8

BER, deg
c
=4, deg

v
=3, cycle

min
=10

FER, deg
c
=4, deg

v
=3, cycle

min
=10

BER, deg
c
=5, deg

v
=4, cycle

min
=6

FER, deg
c
=5, deg

v
=4, cycle

min
=6

BER, deg
c
=5, deg

v
=4, cycle

min
=8

FER, deg
c
=5, deg

v
=4, cycle

min
=8

uncoded

(b) LDPC (128,32).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=4, deg

v
=3, cycle

min
=10

FER, deg
c
=4, deg

v
=3, cycle

min
=10

BER, deg
c
=4, deg

v
=3, cycle

min
=12

FER, deg
c
=4, deg

v
=3, cycle

min
=12

BER, deg
c
=5, deg

v
=4, cycle

min
=8

FER, deg
c
=5, deg

v
=4, cycle

min
=8

uncoded

(c) LDPC (256,64).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=4, deg

v
=3, cycle

min
=12

FER, deg
c
=4, deg

v
=3, cycle

min
=12

BER, deg
c
=4, deg

v
=3, cycle

min
=14

FER, deg
c
=4, deg

v
=3, cycle

min
=14

BER, deg
c
=5, deg

v
=4, cycle

min
=6

FER, deg
c
=5, deg

v
=4, cycle

min
=6

uncoded

(d) LDPC (512,128).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=4, deg

v
=3, cycle

min
=10

FER, deg
c
=4, deg

v
=3, cycle

min
=10

BER, deg
c
=4, deg

v
=3, cycle

min
=12

FER, deg
c
=4, deg

v
=3, cycle

min
=12

BER, deg
c
=4, deg

v
=3, cycle

min
=14

FER, deg
c
=4, deg

v
=3, cycle

min
=14

BER, deg
c
=5, deg

v
=4, cycle

min
=10

FER, deg
c
=5, deg

v
=4, cycle

min
=10

uncoded

(e) LDPC (1024,256).

0 5 10 15
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

/ F
ra

m
e

E
rr

or
 R

at
e

BER, deg

c
=4, deg

v
=3, cycle

min
=12

FER, deg
c
=4, deg

v
=3, cycle

min
=12

BER, deg
c
=4, deg

v
=3, cycle

min
=14

FER, deg
c
=4, deg

v
=3, cycle

min
=14

BER, deg
c
=5, deg

v
=3, cycle

min
=12

FER, deg
c
=5, deg

v
=3, cycle

min
=12

BER, deg
c
=5, deg

v
=3, cycle

min
=14

FER, deg
c
=5, deg

v
=3, cycle

min
=14

uncoded

(f) LDPC (2048,512).

Figure 4-4: Correction performance of 75% redundancy codes.

45

4.2 Genetic optimization of LDPC codes

4.2.1 Optimization algorithm principle

Considering a linear block code C = (n, k) as a candidate solution of an optimization

problem and the objective function f0 : C → R, the goal is to find the optimal

solution C∗ such that f0(C
∗) ≤ f0(C) as a local minimum ||C − C∗|| ≤ δ, where δ

determines the subspace size. According to the parameters of the algorithm and the

optimization problem, the local minimum can be equal to the global minimum. A

constraint function gi(C) ≤ bi, i = 1, ...,m can be also considered.

Figure 4-5: A diagram of the optimization process.

The genetic optimization algorithm requires generating the initial population, mu-

tation and crossover operators, and methods used for selection and evaluation candi-

date solutions. The proposed operators and methods are described in the folllowing

sections.

4.2.2 Tanner graph mutations

For reproducing the next generations of candidate solutions in the optimization pro-

cess, operators performing mutations or crossover are needed. A mutation of the

Tanner graph is reproduced with the use of the following operations:

46

• Addition of R random edges,

• Erasure of R random edges,

• Addition of an edge connected to a chosen node u ∈ G and some node v ∈ G :

d(u, v) > M and d(u, v) ≡ 1 (mod 2) (connection of two distant nodes),

• Erasure of an edge in order to break a cycle of length l < Q; the example can

be seen in Fig. 4-6,

• Addition of an edge between nodes u, v ∈ G: (dG(u) = 1 ∧ dG(v) = 1) and

d(u, v) ≡ 1 (mod 2) (connection of nodes with a degree equal to one),

• Addition of an edge between nodes u, v ∈ G : dG(v) = 1 and d(u, v) =

max{d(u, v)|d(u, v) ≡ 1 (mod 2)}; the example can be seen in Fig. 4-7,

where G is the Tanner graph, E are edges of the graph G, and parameters R,M,Q are

chosen randomly with regard to the Tanner graph size (it is convenient to tune them

experimentally for each optimization task). The operation performed for reproducing

one mutant is also chosen randomly. The operator works with graph search algorithms

for finding cycles in the Tanner graph.

variable nodes

check nodes
a cycle of length 6 found,

one edge will be removed

Figure 4-6: Breaking cycles in the Tanner graph as an example.

4.2.3 Recombination of Tanner graphs

Supposing (V N,CN) - bipartite graph G as the Tanner graph of the LDPC code C,

a coloured subgraph Hβ (called the chromosome), such H ⊆ G, we define algorithms

47

variable nodes

check nodes

5 5 5 3 1 3 distances

a new edge between a variable node of degree 1

and the most distant check node

u

Figure 4-7: Adding a new edge connected with the node u : dG(u) = 1 as an example.

to combine chromosomes Hβ
i in order to create a new Tanner graph GTG,

GTG =
(
U =

⋃
Ui, E =

{⋃
Ei, {Ej}

})
, (4.1)

where Ei are edges of chromosomes Hi, Ej are edges ensuring that graph GTG is

connected. Ui are node chromosomes.

A vertex colouring function α,

α : v ∈ G→ [0, 1], (4.2)

is used to mark nodes which are included in the chromosome H. The algorithm

implementing the vertex colouring works with 3 parameters, vreq (the number of re-

quested variable nodes), creq (the number of requested check nodes), and vstart (the

node where the colouring function starts). The nodes of the graph G are selected with

the use of the Breadth-First Search (BFS) starting at vstart and terminated when the

number of selected nodes reaches the values vreq and creq, as can be seen in Algo-

rithm 6. The algorithm partly keeps the degree distribution and other parameters,

e. g. cycle occurrence, of the graph G. The reproduced chromosome Hβ uses vertex

colouring function β,

β : v ∈ H → [0,max(dvmax, dcmax)], (4.3)

where dcmax is the maximum check node degree and dvmax is the maximum variable

48

node degree, as the difference between the original node degree and the node degree

in the chromosome H, as defined in Algorithm 7. These values are then applied in the

recombination function for edge addition to connect the input chromosomes Hi among

each other, as described in Algorithm 8. The recombination function reproduces a

new Tanner graph GTG, consisting of chromosomes Hset = {Hβ
i }, i = 1, ..., k.

The colouring algorithm implements BFS in order to partly keep the distribution

of cycles in the resulting chromosome H. By combining several graphs together in

the optimization process, we can get codes with interesting correction capabilities

measured by the fitness function.

Algorithm 6 Node colouring

1: procedure colour nodes

Input: vreq - requested variable nodes,
creq - requested check nodes,
(V N,CN) - bipartite graph G,
vstart ∈ G - starting node for traversing
Output: coloured graph Gα

2: for all u ∈ G do
3: α(u) = 0
4: end for
5: α(vstart) = 1
6: for k = 0 to (vreq+creq) do
7: for all u ∈ {v|vstart →k u} do
. Implemented via BFS algorithm

8: if u ∈ V N and |{u|α(u) = 1}| < vreq then
9: α(u) = 1

10: end if
11: if u ∈ CN and |{u|α(u) = 1}| < creq then
12: α(u) = 1
13: end if
14: if |{u ∈ CN |α(u) = 1}| = creq

and |{u ∈ V N |α(u) = 1}| = vreq then
15: return (G,α)
16: end if
17: end for
18: end for
19: end procedure

49

Algorithm 7 Generating chromosome

1: procedure Chromosome generation
Input: (V N,CN)-bipartite coloured graph Gα

Output: chromosome graph Hβ

2: UH = {∀u ∈ Gα : α(u) = 1}
3: EH = {∀e = (u, v) ∈ Gα : α(u) = 1

∧
α(v) = 1}

4: for all u ∈ UH do
5: β(u) = |{(u, v) : v ∈ Gα, α(u) = 1

∧
α(v) = 0}| . number of unconnected

edges
6: end for

return ((UH , EH), β)
7: end procedure

 1

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 1

 0

 1

 0

 0

 1

 0

 1

 0

 0

 1

 1

 1

 0

 0

 1

 1

 1

 0

 3

 0

starting node remaining

edges

graph traversing

node coloring

required number

of nodes reached

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 1

 0

 1

 0

 1

 1

 0

 0

 0

 1

 1

 1

 1

 0

 0

 1

 0

 0

 1

 1

 1

 0

 1

 0

 1

 1

 0

 0

 0

 1

 1

 1

 1

 0

 0

 1

 0

 0

 1

 1

 1

 1

 1

 0

 1

 1

 0

 0

 0

 1

 1

 1

 1

 0

 0

 1

 0

 0

 1

 1

 0

 1

 0

 1

 1

 0

 1

 1

 0

 0

 0

 0

Figure 4-8: Generating the chromosome. Numbers are node degress corresponding to
the selected part of the graph.

4.2.4 Fitness function

The fitness function is used for evaluating candidate solutions (a measure of correction

capabilities) during the optimization process. Several types of fitness functions are

50

Algorithm 8 Combining chromosomes

1: procedure Combine Chromosomes

Input: Hset = {Hβ
1 , H

β
2 , ..., H

β
k } coloured graph, dmin

Output: bipartite graph GTG

2: UTG = {U1, U2, ..., Uk : Ui ∈ Hβ
i }

3: ETG = {E1, E2, ..., Ek : Ei ∈ Hβ
i }

4: GTG = (UTG, ETG) . new Tanner Graph
5: while ∃v ∈ V N : β(v) > 0 do
6: k = β(v) . node v chosen randomly
7: for i = 0 to k do
8: if ∃c : β(c) > 0, c ∈ CN then
9: e = (c, v : (β(c) > 0,max{k|v →k c}))

10: β(c) = β(c)− 1
11: else
12: e = (c, v : (c ∈ CN,max{k|v →k c}))
13: end if
14: β(v) = β(v)− 1
15: add e = (c, v) to the set ETG
16: end for
17: end while
18: while ∃c ∈ CN : β(c) > 0 do
19: k = β(c)
20: for i = 0 to k do
21: if ∃v : β(v) > 0, v ∈ V N then
22: e = (c, v : (β(v) > 0,max{k|c→k v}))
23: β(v) = β(v)− 1
24: else
25: e = (c, v : (v ∈ V N,max{k|c→k v}))
26: end if
27: β(c) = β(c)− 1
28: add e = (c, v) to the set ETG
29: end for
30: end while

return (UTG, ETG)
31: end procedure

51

considered in this work,

• required Eb/N0 to achieve the specific Bit Error Rate,

• correction capability for specific error patterns (e. g. bursts),

• correction capability for specific number of corrupted bits in the codeword.

Considering a Bit Error Rate (BER) simulation in a discrete sequence of EB/N0

with the common difference, which starts at a given value and terminates when the

BER is lower than a given THRESHOLD value, the fitness value is calculated as the

following:

f =

∣∣∣∣EBN0

∣∣∣∣+BER

(∣∣∣∣EBN0

∣∣∣∣) . (4.4)

where
∣∣∣EBN0

∣∣∣ is the length of the sequence. The computational time increases with a

lower THRESHOLD value and also with the precision of the BER simulation.

For burst optimization tasks, a burst error pattern is used as an optimization

parameter. It is given by EP = (x1, x2, ..., xk), where xi are lengths of error bursts in

the codeword and |EP| is the number of burst errors. The total number of corrupted

bits is then
k∑
i=1

EP (i), (4.5)

where EP (i) = xi.

The fitness function checks all combinations of error bursts given by burst lengths

as elements of EP and calculates the number of corrupted codewords after the cor-

rection. The product of the sum or the ratio of corrupted codewords to all possible

combinations of error patterns is then used as the evaluation value. It should be noted

that this method also evaluates all combinations of error bursts given by the sum of

all possible combinations of xi ∈ EP (e. g. all possible error burst combinations for

EP = (3, 2) are also burst errors of length 5). This type of evaluation does not include

any stochastic process and it is faster than the previous one.

Another type of evaluation considered in this work is the calculation of correction

performance for a given sequence of corrupted bits. Then, error patterns of given

52

Hamming weights are randomly generated. Usually, an interval of Hamming weights

(the number of corrupted bits) where the correction performance changes rapidly can

be found,

f =
errmax∑
i=errmin

2i−errminN(i), (4.6)

where errmin is the minimal number of corrupted bits, errmax is the maximal

number of corrupted bits and N(i) is a measure of the correction performance at i

corrupted bits (e. g. the number of codewords failed in correction when the total

number of tested codewords is the same for any i).

4.2.5 Parallelization

In this section, the application of parallelization for accelerating the optimization

convergency is presented. The algorithm of coarse grained parallelism, also known as

the island model [55], [71], uses several computing threads (denoted as L) for run-

ning genetic optimization processes. These threads share their best solutions among

each other. During every certain time period of generations (denoted as K), an

exchange of the best solutions is made among threads performing the genetic opti-

mization. This method significantly improves the convergence speed of the proposed

optimization process. However, the improvement depends on both the number of

computing threads and the period of generations. In the implementation, all opti-

mization threads regularly send their best solutions to the thread responsible for the

maintenance. When a certain period of generation is reached, each thread sends a

query for a code created from the combination of all best solutions. After receiving

the best solution, the solution is included in the optimization process performed by

the particular thread. The principle is illustrated in Fig. 4-10.

53

10
0

10
1

10
2

10
3

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

5

generation

fit
ne

ss

mutations only (mean)
mutation+crossover (mean)

Figure 4-9: A demonstrative evolution of the fitness function. The optimization
using only mutations is compared to the optimization using the combination of the
mutations and crossover operators.

code code code

code code

...

Tanner graph

 mutations

Elitism

code code code

code code

...

Evaluation

(a) Creating a new generation.

Instigation

Sharing

solutions

Finished

Managing

thread

Optimizating

threads

(b) Thread instigation process.

Figure 4-10: The principle of the optimization algorithm.

54

4.3 Application of optimization tasks

4.3.1 Sample optimization using mutations

An optimization of LDPC (128,64) code is considered. The LDPC (128,64) code

was optimized for the best performance on AWGN channel. The optimization were

running for 10 generations with 7 codes in the population and used the elitism concept,

as can be seen in Fig. 4-11. The best improvement of EB/N0 is 1,15 dB (listed in

Table 4.1). The same experiment was running in 76 independent simulations. The

fitness function used for evaluating was based on finding the minimum BER threshold,

as described in Eq. 4.4 on page 52. The initial set contained the population of 30

codes, produced according to Algorithm 5. Various plots regarding the BER and

fitness values are depicted in Fig. 4-12.

tgA1 tgA2 tgA3 tgA4 tgA5

Previous generation

tgA6 tgA7

Better code

tgB1 tgB2 tgB3 tgB4 tgB5 tgB6 tgB7

New mutants

tgA1 tgA2 tgB1 tgB2 tgB3 tgB5 tgB6

Next generation

Figure 4-11: Reproducing the next generations of Tanner graphs.

Table 4.1: Minimum Eb/N0 thresholds for a given BER = 10−4 before and after the
optimization.

generation value threshold
intial best value - best resulting thread 4.50 dB
inital best value - worst resulting thread 5.80 dB
10th best value - best resulting thread 4.25 dB
10th best value - worst resulting thread 5.50 dB

55

0 2 4 6 8 10
85

90

95

100

105

110

115

120

Generation [−]

F
itn

es
s

va
lu

e
[−

]

0 2 4 6 8 10
85

90

95

100

105

110

115

120

Generation [−]

F
itn

es
s

va
lu

e
[−

]

(a) Fitness values for all 76 simulations

0 2 4 6 8 10
85

90

95

100

105

110

115

120

Generation [−]

F
itn

es
s

va
lu

e
[−

]

Average value
Minimum value
Maximum value

0 2 4 6 8 10
85

90

95

100

105

110

115

120

Generation [−]

F
itn

es
s

va
lu

e
[−

]

(b) Box plot Eb/N0 for BER = 10−4

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delta [dB]

F
(d

el
ta

)

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

delta [dB]

F
(d

el
ta

)

(c) Fitness values for all 76 simulations

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

Initial set 10th generation

T
re

sh
ol

d
fo

r
be

r
<

 1
0

−
4 [d

B
]

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

Initial set 10th generation

T
re

sh
ol

d
fo

r
be

r
<

 1
0

−
4 [d

B
]

(d) Box plot Eb/N0 for BER = 10−4

−1 0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

B
it

E
rr

or
 R

at
e

[−
]

E
b
/N

0
 [dB]

best LDPC(128,64) in 10th generation
BPSK without code

−1 0 1 2 3 4 5 6 7
10

−4

10
−3

10
−2

10
−1

10
0

B
it

E
rr

or
 R

at
e

[−
]

E
b
/N

0
 [dB]

(e) Detail of BER values

3 3.5 4 4.5 5
10

−4

10
−3

10
−2

10
−1

B
it

E
rr

or
 R

at
e

[−
]

E
b
/N

0
 [dB]

best LDPC(128,64) in 10th generation
best LDPC(128,64) in initial set
’worst’ LDPC(128,64) in 10th generation
’worst’ LDPC(128,64) in initial set

3 3.5 4 4.5 5
10

−4

10
−3

10
−2

10
−1

B
it

E
rr

or
 R

at
e

[−
]

E
b
/N

0
 [dB]

(f) Detail of the fitness function

Figure 4-12: An optimization task using Tanner graph mutations

56

4.3.2 Long run optimization of LDPC (128,64) code

In this section, the application of the proposed genetic optimization methods is pre-

sented. The LDPC code of length (128,64) was chosen for the optimization task. The

chosen code was optimized to provide the best performance at 10 iterations. The

fitness function used Eq. 4.6 on page 53 with parameters errmin = 1 and errmax = 20.

Codes before the optimization and after the optimization are compared in Fig. 4-

13a and Fig 4-13b in terms of correcting capabilities. The evolution of the fitness

function is shown in Fig. 4-13 and the best code achieved is listed in Table 4.2.

4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Number of corrupted bits

C
or

re
ct

io
n

ca
pa

bi
lit

ie
s

[%
]

after optimization
before optimization

(a) Correction capabilites.

4 4.5 5 5.5 6 6.5 7 7.5 8
10

−7

10
−6

10
−5

10
−4

E
b
/N

0
 [dB]

B
E

R
 [−

]

Optimized code
Best code from the initial population
CCSDS standard code

(b) Bit error rate simulation.

Figure 4-13: The optimization task run on (128,64) LDPC code to provide the best
performance at 10 decoding iterations. The initial population were generated with
the use of Algorithm 5.

57

0 500 1000 1500 2000 2500 3000
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1
x 10

7

Generation

F
itn

es
s

va
lu

e

Average
Optimization threads

Figure 4-14: Evolution of fitnes value of the optimization task LDPC (128,64), 10
decoding iterations).

Table 4.2: The optimized (128,64) code. The parity-check matrix is listed in the
hexadecimal format.

row H matrix
1-2 00002800040010000000041000000000 00000100000001000100008080010000
3-4 00020008000000081000800000000000 00008000008000000000000400006021
5-6 00000008040040400024000000000000 0040000A000000000040001000080000
7-8 80000000000810009000000280800000 30000000020000200000000040000000
9-10 04010041000000001200000010080000 00000400820000008200000000400000
11-12 00002400200000000800000010000000 00000400408000020040020000020000
13-14 00000000002000000004401000004200 00800000000004044004000440000000
15-16 00200028000804000000000002000000 00400100101000000010000000001000
17-18 20000400000100000000080000000040 40080000400000000002000080040288
19-20 010000000000000CA000040000000000 00000200020248000000000004000000
21-22 01200200000000000000100000000001 60000000000204000000004800000000
23-24 00020800800000000000080400040000 00048000000101000000000000800002
25-26 40000040000000004104000000000014 00000000000000000000044008003800
27-28 000A0010002000804000000000000000 00800000004001000000010010004000
29-30 00100000000000404010000000000400 00000000000600800000010080200400
31-32 00001000000000040050000020000020 04200000050000000000000000040400
33-34 00001000020000004002000200012000 10000000000000000020004000800200
35-36 00000000000000080180000008000020 00004008100002020000042000000000
37-38 80005020000000100000000000200040 00010002020000010000150000000000
39-40 28002000010000001000002000000801 00100000000020000100080000180000
41-42 0000000000000A000A00000600100000 00840080000040000400200000040000
43-44 41404000200000000000000000000100 00000000800040840000002000000800
45-46 02008000000000021008100008000000 00000005000000100000000000440080
47-48 00000000000000401001000060000002 02000000400820000201010000000000
49-50 00080000010002000001400100200000 0A000000040080000040004000000000
51-52 00000000000080000080001105004040 00000820000000002200000008000200
53-54 02080000004100200010000200000000 00000050180100000000000080000000
55-56 00000000102000000200800000800000 08028000000000002020000080008000
57-58 00000010000000000020001020000009 00002080080000180000000000000600
59-60 00008004000000000200002020080000 00400000800000000400100081400000
61-62 000000000020001000080000C0100000 00000811000000200000000000020020
63-64 00000000000200000000000200000805 00000101000006800000000000008000

58

4.3.3 Comparison of the optimized LDPC code with the RS

code

The irregular LDPC(120,88) was designed with the use of genetic optimization. The

length of this code was chosen according to solutions used in CERN for coding GBT

packets [42]. The GBT packet is splitted into to parts and each part is coded by Reed-

Solomon (15,11). The presented solution assumes that the whole packet is encoded

as one codeword. Results are shown in Fig. 4-15.

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

F
ra

m
e

er
ro

r
co

rr
ec

tio
n

ra
te

 [%
]

corrupted bits

Reed−Solomon (15,11)
proposed LDPC (120,88)

(a) Correction performance against the num-
ber of corrupted bits

0 2 4 6 8 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

[−
]

uncoded
Reed−Solomon (15,11)
LDPC (120,88)

(b) Bit Error Rate simulation of LDPC
and RS codes

Figure 4-15: Comparison of the genetically designed LDPC (120,88) with the RS
(15,11) code.

4.3.4 Evaluation of parallelization

The performance of the accelerated LDPC code genetic construction was tested by

the optimization experiment performed on LDPC (64,56) code. The code construc-

tion algorithm proposed in Section 4.1 had generated 50 different codes, which were

included in the initial population. The optimization using mutations was held until

a code with a capability of correcting all single bit errors using the Sum-Product

(SP) decoder [70] was reached. The number of required generations is measured for

different number of optimization threads and different sharing periods.

59

Each consequently reproduced generation contains 7 codes. The algorithm pre-

serves the best codes in the whole generation process with the use of elitism, which

avoids the loss of the best code during the optimization process. The two best codes

from a previous generation are included in a new generation, while two worst codes

from a new generation are dropped.

Table 4.3 shows the number of generations required for finding a code with 100%

correction capabilities of single bit errors for particular numbers of sharing periods

and optimizing threads. Tables 4.4, 4.5 show the minimum and median values of the

required generations for the condition defined above. As can be seen, the optimal

sharing period K was found to be 100. The fitness values were calculated as the

number of uncorrectable single bit errors. An illustrative graph for L = 4 is shown

in Fig. 4-16 and the comparison of the values for K =10,100,1000,10000 is shown in

Fig. 4-17.

Table 4.3: Mean required number of generations for achieving a 100% correction
capability of single bit errors.

Sharing period 10 100 1000 10000

2 threads 25942 26003 24125a 31330a

4 threads 15830 19889 21358 34002

8 threads 22526 9028 12275 21060

16 threads 21003 3852 5403 18314

No sharing 67598b

a One optimization fails in convergence
b Two optimizations fails in convegence

Table 4.4: Minimum required number of generations for achieving a 100% correction
capability of single bit errors.

Sharing period 10 100 1000 10000

2 threads 10039 2675 7428 1096

4 threads 8712 3382 9200 4600

8 threads 2460 3102 9525 11954

16 threads 4502 2274 1386 1822

No sharing 1887

60

Table 4.5: Median required number of generations for achieving a 100% correction
capability of single bit errors.

Sharing period 10 100 1000 10000

2 threads 20842 21870 34002 31330

4 threads 14058 13991 22502 30614

8 threads 14777 9137 11002 20002

16 threads 21047 3608 4911 19544

No sharing 8670

Figure 4-16: Fitness values for L = 4 and K = 100.

Figure 4-17: Fitness values for L = 4 and different sharing periods.

61

Chapter 5

Mapping LDPC decoder onto

parallel architectures

In this chapter, a general parallel approach of an iterative Low Density Parity Check

(LDPC) decoder is proposed. The presented parallel approach can be implemented

in platforms allowing massive parallel computing, such as Graphics Processing Units

(GPUs), Field Programmable Gate Arrays (FPGAs), and computer data storages.

The proposed approach supports decoding of any irregular LDPC code, and the max-

imum node degree is not limited. Benchmarks of the LDPC decoder implemented

using Open Computing Language (OpenCL) [90] and Compute Unified Device Ar-

chitecture (CUDA) [89] frameworks are discussed and the performance comparison is

presented.

Inspiring by various comparisons between the OpenCL and CUDA applications

from different fields of research, e. g. [3], [6], [23], we have developed parallel algo-

rithms for LDPC decoding using OpenCL and CUDA. Several contributions published

so far deal with a general comparison of OpenCL and CUDA [18] and with fitting the

LDPC decoder on GPU platform [79], [20], [82], [68], [5], [83], [26]. [69], [66]. How-

ever, the decoders are mostly limited for applications with some families of LDPC

codes or bounded with the maximum node degree in the associated Tanner graph.

The proposed parallel approach is suitable for decoding any irregular LDPC code

without the bound in terms of the maximum node degree.

62

The SP algorithm works as an iterative process of message passing between the

two sets of nodes (variable and check) in the Tanner graph. Although the number

of operations needed to be performed grows with the number of edges in the graph,

the algorithm can be accelerated when deployed on massive parallel architectures.

Moreover, the potential acceleration achieved by the parallelization of calculations

grows with the number of edges in the graph, because more values can be calculated

simultaneously. This can lead to interesting applications for long block length codes

providing excellent error correcting capabilities.

In recent years, there has been an increasing interest in implementing LDPC

decoders in a wide variety of hardware architectures, including GPU. Several contri-

butions deal with fitting the decoder on parallel architectures with the use OpenCL or

CUDA frameworks and discuss the benchmarks [79], [20], [82], [68], [5], [83], [26], [69],

[66]. However, work reviewed so far deal mostly with some families of LDPC codes

and the application of parallel decoders is limited. The proposed approach divides

calculations into a scalable number of threads. Each thread performs the calcula-

tion of the value outgoing through the edge, which is associated with the thread itself

(edge-level parallelization). The approach was chosen because of its suitability for any

irregular LDPC matrices, scalability for any code block lengths and deployablity on

many hardware architectures. It is also convenient for derived algorithms for LDPC

decoding, such as Min-Sum (MS) or adaptive MS [77]. In the previous work dealing

with the parallel LDPC decoding, the calculations were mostly divided on the level

of rows and columns of the parity-check matrices, which is the main difference from

the proposed approach.

5.1 A general parallelization of LDPC decoders

In this section, the approach of the edge-level parallelization used for the LDPC

decoder is described.

Considering the LDPC code and associated Tanner graph, the following arrays

are defined as address iterators for the parallel message passing algorithm (described

63

in Algorithms 9, 10 and 11):

• a sorted m-tuple of variable nodes v = (v0, . . . , vm) starting with the lowest

index and associated m-tuple of check nodes c = (c0, . . . , cm), such i, j : Hi,j = 1

and i ∈ [0, n − k), j ∈ [0, n); then, (ci, vj) unequivocally defines an edge in the

Tanner graph; n is the number of variable nodes and (n− k) is the number of

check nodes, k is the number of information bits, and m is the number of edges

in the Tanner graph

• m-tuple of edges e = (e0, . . . em) = (0, 1, 2, ..., |c|),

• m-tuple of connected edges t = (t0, . . . , tm) with a variable node vk, where,

tk = |{vk}| for k ∈ {0, 1, . . . ,m− 1}, and vk ∈ v

• m-tuple of starting positions s = (s0, . . . , sm) for iterating in order to calculate

the value passed through the edge ek; sk = arg mink(vk : vk ∈ v)

• m-tuple u = (u0, . . . , um) of relative positions of the ek associated with the

connected node vk; uk = k − |(vq) : q < k, vq 6= vk|

The arrays defined above are used as address iterators for calculations of messages

outgoing from variable nodes to check nodes (the first half of the iteration). The

arrays are also shown in the illustrative example. Supposing the code (14,7), the

parity-check matrix and arrays derived by the principle described above are shown in

Appendix A.

The first half of the iteration of the LDPC decoding process calculates the val-

ues passed from the variable nodes to the check nodes. With the use of the array

iterators we can perform such calculations without any complicated operations with

array indices. The pseudo code is shown in Algorithm 9. The local index of the

thread (according to the OpenCL terminology) is denoted as lid and the number of

synchronized threads working in parallel is denoted as lgsize. Because all threads

performing the calculations have to be synchronized after they finish writing to the

memory and the number of synchronizable threads is strictly limited (e. g. 1024),

64

the calculations are divided in several steps (pages) if necessary. This is when the

number of edges is greater than the lgsize variable. An illustrative example for 12

synchronizable threads is shown in Fig. A-2.

The arrays for the second half on the iteration can be derived similarly. Keeping

of the unique edge identifier (ci, vj) and associated edge index ek, the arrays c,v, e

are sorted starting with the lowest check node index and other arrays are derived

considering the messages outgoing from the check nodes. Such arrays are then denoted

as e, c,v, t, s,u) in the following descriptions. As a demonstrative example, the arrays

for the second half of the iteration are shown in Table B.2.

The algorithm performing the second half of the iteration processes the arrays

described above. Its pseudo code is shown in Algorithm 9. After finishing the second

half of the iteration we can continue with the next iteration. The whole decoding

principle remains the same, as described in Algorithm 9.

For example, the address iterators for the LDPC (14,7) code are listed in Table A.1

and Table B.2. Both tables are particularly useful for understanding the principle

and checking the correctness of the implementation. To keep the consistency and for

tutorial purposes, both tables are associated with the LDPC (14,7) code given by the

parity-check matrix from Fig. A-2.

5.2 OpenCL and CUDA implementation

In current signal and data processing systems, there is an unambiguous trend to use

parallel architectures to increase the processing speed, which plays a crucial role in real

time applications and determines a deployability of computationally complex algo-

rithms in hardware. Hardware devices supporting massively parallel processing algo-

rithms generally include Graphics Processing Units (GPUs) and Field Programmable

Gate Arrays (FPGAs).

In this work, the CUDA and the OpenCL frameworks are used for GPU computa-

tions. The OpenCL is an open standard for parallel programming using the different

computational devices, such as CPU, GPU, or FPGA. It provides a programming

65

Algorithm 9 Parallel message passing

1: procedure Iterate to Check Nodes
. Half on an iteration
Input: r – incoming values e, s, t, u
Output: q

2: for (p = 0; p < totaledges; p+ = lgsize) do
3: for i = slid+p to slid+p + tlid+p − 1 do
4: if i = ulid+p + slid+p then continue
5: end if
6: value = perform calculations . Algorithm 1
7: end for
8: index = elid+p
9: qindex = value

10: end for
11: end procedure

12: procedure Iterate to Variable Nodes
. Half on an iteration
Input: q – incoming values e, s, t, u
Output: r

13: for (p = 0; p < totaledges; p+ = lgsize) do
14: for i = slid+p to slid+p + tlid+p − 1 do
15: if i = ulid+p + slid+p then continue
16: end if
17: value = perform calculations . Algorithm 1
18: end for
19: index = elid+p
20: rindex = value
21: end for
22: end procedure

language based on the C99 standard. Unlike OpenCL, CUDA is only for NVIDIA

devices starting from G80 series (so called CUDA-enabled GPUs). CUDA gives a

possibility to write programs based on the C/C++ and Fortran languages.

When implementing an algorithm on GPU platform using OpenCL or CUDA

frameworks, two main issues have to be considered:

• size of the local memory (OpenCL) or shared memory (CUDA),

• size of the working group (OpenCL) or block size (CUDA).

66

Algorithm 10 Parallel calculation of the estimation

1: procedure Calculate Estimation
. Parallel approach
Input: r – incoming values s, t, v
Output: ĉ

2: for (p = 0; p < totaledges; p+ = lgsize) do
3: Q(1) = rlid+p
4: Q(0) = 1− rlid+p
5: for i = slid+p to slid+p + tlid+p − 1 do
6: Q(1) = Q(1)ri+p
7: Q(0) = Q(0)(1− ri+p)
8: end for
9: index = vlid+p

10: if Q(1) > Q(0) then ĉindex = 1
11: else ĉindex = 0
12: end if
13: index = vlid+p
14: qindex = value
15: end for
16: end procedure

GPU devices offer several types of the allocable memory, which differ in their

speed and their size. The memory type used to store variables is specified in the

source code by the prefix according to the OpenCL or CUDA syntax rules. Generally,

the largest allocable size, typically in gigabytes for current devices, is located in the

global memory. However, the global memory is also the slowest one. A higher speed

is provided by the local memory, but the size is typically only in kilobytes. Exceeding

the limited size of the local memory usually leads to incorrect results without any

warnings in the compilation report.

Another crucial issue related to an algorithm implementation in GPU devices is

the working group size. Although the GPU can run thousands of threads in parallel,

these threads are not synchronized among each other in terms of writing to the

memory. The threads are split up into working groups and they can be synchronized

only among other threads at the same working group. The size of the working groups

is limited (typically 1024).

Both frameworks processes two types of code

67

Algorithm 11 Parallel calculation of the syndrome

1: procedure Calculate Syndrome
. Parallel approach
Input: ĉ – codeword estimation, s, t, c, v
Output: z – syndrome ĉH>

2: for (p = 0; p < totaledges; p+ = lgsize) do
3: value = 0
4: for i = slid+p to slid+p + tlid+p − 1 do
5: index = vlid+p
6: value ˆ = ĉindex
7: end for
8: index = clid+p
9: zindex = value

10: end for
11: end procedure

• host (runtime), running serially on CPU

• kernel (device), running parallely on GPU

The kernel is executed by the host. In CUDA, the kernel execution is more

straightforward compared to OpenCL. Both codes execute the kernel berSimulate in

100 working groups (blocks) with 512 threads per one working group. Because the

kernel function has to be considered as a function running in parallel, each thread has

its own unique identifier - the combination of global ID and local ID in OpenCL or

the combination of thread ID and block ID in CUDA, which can be recalculated vice

versa. Types used for code definition and passing messages are pointed in Listing A.1.

Some main differencies between the OpenCL and CUDA syntax rules are shown

in Table A.3, which can be used when moving the source code from one framework

to another one.

5.3 Experimental evaluation

Developed algorithms for LDPC decoding were run on NVIDIA Tesla K40 (Atlas) and

Intel Xeon E5-2695v2 platforms [91, 92]. The NVIDIA device contains 2880 CUDA

cores and runs at 745 MHz. The peak performance for double precision computations

68

with floating point is 1.43 TFLOPS. The clock frequency of the Intel Xeon CPU is

2.4 GHz. All measurements include the time required for random generation, realized

by the Xorshift+ algorithm and the Box-Muller transform.

Benchmarks were performed through the calculation of the Bit Error Rate at

Eb/N0 = 2dB for a code given by the NASA CCSDS standard [93] and its pro-

tographically expanded derivations [59], [19]. Based on the results obtained from

NVIDIA Tesla K80, we got slightly better performance with the use of the CUDA

framework, as shown in Fig. 5-1. Compared to the CPU implementation run on In-

tel Xeon, the acceleration grows with the size of working groups and the number of

decoders running in parallel to the limit of the device, as illustrated in Fig. 5-2, 5-3.

GPU become very effective for longer block length codes, as also shown in Table 5.1.

The ratio between CPU (C++ compiler with O3 optimization) and GPU was 25 for

code of 262144 bits.

To keep the generality, no simplifications in the decoding algorithm were applied

and the experimental evaluation was performed with the use of the global memory.

For further acceleration, several tasks can be considered, i. e. usage of the local

memory, variables with a lower precision, look-up tables, or modifications of the

algorithm for certain families of LDPC codes. For example, by moving the part of

variables in the local (shared) memory, the decoder works approximately 40% faster in

our experience. However, it is not possible to decode longer codewords because of the

size limitations (240 kB of the local memory per working group). Another possibility

for greater optimization could be the parallelization of less computationally intensive

functions. After applying parrallel algorithms for passing messages, calculating the

syndrome and the estimation, the most serial time-consuming operation is checking

syndrome for all zero equality (approximately 34% of the decoding function in our

experience).

69

10
2

10
3

10
4

10
5

10
6

8

10

12

14

16

18

20

22

24

26

code bits

A
cc

el
er

at
io

n
−

 C
P

U
 w

ith
 O

3
op

tim
iz

at
io

n
ag

ai
ns

t G
P

U

OpenCL
CUDA

Figure 5-1: The acceleration dependence on the length of the code. Comparison for
OpenCL and CUDA frameworks (local group of 512 threads and 100 decoders working
in parallel) against CPU implementation using C++ compiler with O3 optimization.
Time was mesuared for 10000 decoded codewords at Eb/N0 =2dB.

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

size of the working group

C
P

U
 w

ith
 O

3
op

tim
iz

at
io

n
tim

e
to

 G
P

U
 ti

m
e

(256,128)
(1024,512)
(4096,2048)

Figure 5-2: The acceleration dependence on the block (working group) for 100 de-
coders running in parallel.

70

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

number of decoders working in parallel

C
P

U
 w

ith
 O

3
op

tim
iz

at
io

n
tim

e
to

 G
P

U
 ti

m
e

(256,128) code
(8192,4096) code

Figure 5-3: Acceleration dependence on the number of decoders working in parallel
when the size of the working group is 512.

Table 5.1: Comparison for OpenCL and CUDA framework (local group of 512 threads
and 100 decoders working in parallel) against the CPU implementation using C++
compiler with O3 optimization. Time was mesuared for 10000 decoded codewords at
Eb/N0 =2dB.

code edges OpenCL CUDA C++ C++ with O3 opt.

(256,128) 1024 0.32 s 0.32 s 24.24 s 3.11 s
(512,256) 2048 0.64 s 0.61 s 26.98 s 6.24 s
(1024,512) 4096 1.26 s 1.24 s 99.59 s 12.52 s
(2048,1024) 8192 2.56 s 2.51 s 105.56 s 25.27 s
(4096,2048) 16384 5.54 s 5.46 s 415.35 s 69.17 s
(8192,4096) 32768 12.08 s 12.08 s 545.74 s 172.67 s
(16384,8192) 65536 26.27 s 26.08 s 1717.25 s 367.75 s
(32768,16384) 131072 57.40 s 56.02 s 2893.91 s 1025.9 s
(65536,32768) 242144 117.31 s 116.86 s 8572.08 s 1989.26 s
(131072,65536) 524288 244.36 s 242.43 s 14082.71 s 5215.11 s
(262144,131072) 1048576 510.06 s 498.16 s 35104.28 s 12287.61 s

71

Chapter 6

Improving performance of LDPC

decoders

The performance of decoding algorithms is usually simulated on the Additive White

Gaussian Noise (AWGN) channel. The simulation results provide the dependence of

a Bit Error Rate (BER) on a Signal-To-Noise (SNR) ratio. SNR is often recalculated

to Eb/N0.

The convergence of BP algorithms is guaranteed solely in graphs with a tree

structure. The occurrence of cycles in the Tanner graph causes the convergence

failure, which has a negative impact on the decoding performance. Short cycles

generally cause the worse convergence. However, there are methods that show how

the convergence of the BP can be improved [4], [31], [32], [72], [75], [77], [78]. Two

innovative methods are described in the following sections.

6.1 Belief Propagation Based on Estimation Back-

tracking

The first proposed method, the estimation BackTracking (BT), holds all estimations

calculated progressively in each iteration. The estimations are saved in the array

or in the stack and backtracked if the forward decoding is not successful. This al-

72

gorithm is performed only if the traditional BP decoding fails. When a maximum

number of iterations is reached in the BP decoding and the codeword estimation

after this does not meet all parity checks, the proposed backtracking algorithm is

performed. Improved decoding algorithms are denoted as SP-BT for Sum-Product

with the estimation BackTracking, MS-BT for Min-Sum with the estimation Back-

Tracking, and BF-BT for Bit-Flipping with estimation BackTracking. The proposed

algorithm improves the Bit Error Rate (BER) of the LDPC decoders, which is shown

in the following section.

The backtracking process searches for the bits which meet the parity-check con-

dition. The estimations cit are backtracked starting with the last estimation. If some

parity-check conditions in cit are met, relevant bits in cBT are replaced by the bits

from cit and the syndrome is checked. The whole algorithm for soft and hard decoding

is described in Algorithm 12 and 13.

Algorithm 12 Improved soft-decision BP algorithm

1: procedure Decode

Input: y, p, ITERATIONS
Output: ĉ

2: Initialize: pj(a) = P (cj = a|yj), it← 0
3: Send to check nodes: qj→i = log(pj(0)/pj(1))
4: Calculate ri→j values and send back to variable nodes
. Different formulas for different algorithms

5: if ĉH> = 0 then
6: return ĉit . termination, successful
7: end if
8: if it = ITERATIONS then
. See Algorithm 14

9: end if
10: Calculate qj→i values and send to check nodes

. Different formulas for different algorithms
11: it← it+ 1
12: goto(4)
13: end procedure

The implementation of the Estimation Backtracking algorithm adds a non-negligible

complexity in the BP decoder. In particular, the algorithm requires logical operations

73

Algorithm 13 Improved Bit-Flipping algorithm

1: procedure Decode

Input: y, ITERATIONS
Output: ĉ

2: Initialize: bj = yj, it← 0
3: Send to check nodes: qj→i = bj
4: Calculate ri→j = xor of all qj→i
. Calculate ri→j based on the exclusive OR of all incoming qj→i values and send
back to variable nodes

5: rj =
∑
ri→j

. Calculate the sum rj of all incoming messages to the each variable node of index
j,

6: Flip bj, j ∈ argmax(r0, r1, .., rn−1)
7: ĉit = (bj), j = 0, 1, ..., n− 1
8: if ĉH> = 0 then
9: return ĉit . termination, successful

10: end if
11: if it = ITERATIONS then

. See Algorithm 14
12: end if
13: Calculate qj→i values and send to check nodes
14: it← it+ 1
15: goto(4)
16: end procedure

74

for performing the algorithm and memory for saving the node indices. It can be also

bypassed when a low decoding time is crucial. In the next sections, a description of

the proposed algorithm is provided, which is followed by the complexity analysis and

a simulation of the decoding performance.

6.1.1 Algorithm description

Let Mj be the vector of check nodes connected with j-th variable node and Ni the

vector of variable nodes connected with the i-th check node. Then

Mj = {i} ⇔ Hi,j = 1 (6.1)

Ni = {j} ⇔ Hi,j = 1 (6.2)

where H is the parity-check matrix of the LDPC code. The estimation of a codeword

after it-th iteration is denoted as ĉit, where it is 1, 2, ..., ITERATIONS, and ITERA-

TIONS is the actual number of iterations performed by the BP decoding algorithm.

The estimation of a codeword produced by the proposed algorithm is denoted as ĉBT .

The proposed estimation BackTracking is described in Algorithm 14 in more detail.

At the initialization, the last estimation of a codeword is copied into ĉBT and then,

the estimations ĉit are iterated starting with the last vector. In each iteration, the

bits of ĉit met the parity-check condition are copied into the vector ĉBT , where they

replace the old values in the same positions. This is performed through two for cycles

using vectorsMj and Ni, as can be seen in Algorithm 14. If all bits of ĉBT meet the

parity-check condition (ĉitH
> = 0), the algorithm is terminated and the vector ĉBT

is returned as the codeword estimation. Otherwise, the algorithm continues to the

previous ĉit.

6.1.2 Memory requirements

The proposed algorithm requires all codeword estimations to be stored in the memory

(stack). These vectors are being read during backtracking process starting with the

75

Algorithm 14 Estimation backtracking

1: procedure Estimation backtracking

Input: ĉit, it = 1, 2, ..., ITERATIONS,M,N
Output: ĉBT

2: Initialize: ĉBT = ĉITERATIONS

3: for it = ITERATIONS− 1 downto 0 do
4: for k = 0 to n− 1 do . all variable nodes
5: parity ← 0
6: for all i ∈Mk do
7: bit ← 0
8: for all j ∈ Ni do
9: bit ← bit xor ĉit(j)

10: end for
11: bit ← parity xor bit
12: end for
13: if parity = 0 then
14: ĉBT (k)← ĉit(k)
15: end if
16: end for
17: end for
18: return ĉBT
19: end procedure

76

last codeword estimation. The number of bits needed to be stored is:

n× ITERATIONS (6.3)

where n is the number of columns of H. The Estimation Backtracking algorithm also

requires the vectors Mj and Ni to be stored. Supposing the average variable degree

dv, the average check degree dc, the number of integers needed to be stored is:

n× dv + (n− k)× dc (6.4)

where (n− k) is the number of rows of H. However, information provided by vectors

Mj and Ni can be shared with the BP decoder. Thus, the memory requirements

highly depend on the architecture used for the implementation of the decoder.

6.1.3 Complexity requirements

The BT algorithm also requires a non-negligible number of logical operations to be

performed. The operations are ORs and eXclusive ORs (XORs). The maximum

number of ORs performed during the estimation backtracking is given by the formula

below:

n× dv × ITERATIONS (6.5)

and the maximum number of XORs performed during the BT algorithm is the fol-

lowing:

n× dc × dv × ITERATIONS (6.6)

These values are reached if the BT algorithm is terminated as unsuccessful or if it

succeeds in the last iteration.

6.1.4 Comprehensive AWGN simulations

The performance of the proposed decoding algorithms was tested on Mackay’s widely

known code (504,252) [36], irregular code (128,64) [10], irregular code (256,128) pro-

77

vided by CCSDS NASA standard [93]. The dependence of the Bit Error Rate on

the Signal-to-Noise Ratio was measured while the Additive White Gaussian Noise

(AWGN) channel was used for the transmission. Comprehensive simulations were

running for 150 iterations. All Bit Error Rates are calculated from 400 codewords

for which the iterative decoding algorithm failed at particular Signal-to-Noise Ratios.

The Bit Error Rates simulated on LDPC (128,64), CCSDS (256,128) and MacKay’s

(502,252) code with the use of SP of are shown in Fig. 6-1, 6-2, 6-3. The MS-BT and

BF-BT algorithms are demonstraded in Fig. 6-4, 6-5. Results confirm an improve-

ment of the Bit Error Rate calculated for particular Eb/N0 ratio. The simulated BER

can be decreased several times according to the used code. The largest improvement

from tested codes can be seen in the simulation of MacKay’s code.

3.5 4 4.5 5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

MS, 150 iterations
MS−BT, 150 iterations

Figure 6-1: Bit error rate performance simulated on NASA CCSDS (256,128) stan-
dard.

78

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

MS, 150 iterations
MS−BT, 150 iterations

Figure 6-2: Bit error rate performance simulated on MacKay’s (504,252) code.

3 3.5 4 4.5 5
10

−6

10
−5

10
−4

10
−3

10
−2

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

SP, 150 iterations
SP−BT, 150 iterations

Figure 6-3: Bit error rate simulated on our irregular LDPC (128,64) code. The
original SP algorithm and the improved SP-BT are compared.

79

3 4 5 6 7 8 9 10

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

BF, 150 iterations
BF−BT, 510 iterations

Figure 6-4: Bit error rate simulated on our irregular LDPC (128,64) code. The original
Bit-Flipping algorithm and the improved Bit-Flipping algorithm with backtracking
of estimations are compared.

4.5 5 5.5 6 6.5
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

MS, 150 iterations
MS−BT, 150 iterations

Figure 6-5: Bit error rate simulated on our irregular LDPC (128,64) code. The
original Min-Sum algorithm and improved Min-Sum algorithm with backtracking of
estimations are compared.

80

6.2 Mutational LDPC decoding

The second proposed method is based on the following principle. Considering the

LDPC code C defined by the optimized parity-check matrix H and the unique gen-

erator matrix G, such GH> = 0. Because the parity-check matrix is not unique,

the decoder for the same code can run using different H matrices, which belong to

the same code space. The convergence properties of the decoders are different then.

Although the LDPC code is usually defined by the optimized H parity matrix for

decoding under the Belief Propagation algorithm and decoding with the use of other

parity-check matrices provides worse correcting performance, it can be shown that

the information from several decoders can be combined together for achieving better

performance.

All codewords of the code C satisfies the condition cH> = 0, where H consists of

(n− k) row vectors, denoted as hi. Therefore, all matrices which belong to the same

code space are given by all possible summations of row vectors among each other.

H =


h1

h2

...

h(n−k)

 ˜


h1 ⊕

(⊕
i1∈I1 hi1

)
h2 ⊕

(⊕
i2∈I2 hi2

)
...

h(n−k) ⊕
(⊕

i(n−k)∈I(n−k) hi(n−k)

)

 , (6.7)

where Is ⊆ {1, 2, . . . , (n− k)} for s ∈ {1, 2, . . . , (n− k)}.

Supposing a slight mutation of the parity-check matrix performed according to

Algorithm 15, the overall estimaton of the codeword is calculated by combining infor-

mation of several decoders. There are two algorithms for performing the combination

considered:

• voting (majority),

• calculating the global estimation based on probabilities (described in the fol-

lowinig sections)

The methodologies for combining the information based of probabilities are de-

81

scribed in the following paragraphs. These methodologies provide better performance

than the majority.

Algorithm 15 Mutation of H matrix

1: procedure Mutate
Input: H, M . M is the number of mutations
Output: Hm . a mutated matrix

2: for k = 0 to M− 1 do
3: r1 = random, r2 = random
4: H(r1) = H(r1)⊕H(r2)
. H(r1),H(r2) are rows of the matrix H

5: end for
6: end procedure

6.2.1 Principle of Mutational LDPC decoding

The principle of the Mutational LDPC (MLDPC) decoding, utilizing several decoders

working in parallel, is introduced in the following paragraphs. We define the proba-

bilities pm, sj (a) = pm, s(cj = a|yj) as the amount of belief that the sent j-th symbol

is equal to a after s-th iteration of m-th decoder, where a ∈ {0, 1}. For s = 0, the

probabilities are the initial probabilities pm, 0j (a) = p0j(a). After the initialization,

their values are sent to check nodes as qij messages:

qm, sij (a) = pm, 0j (a), (6.8)

where m is the mutation index, i is the check node index, j is the variable node index,

and s is the iteration index (s = 0 here).

The values, indicating how check nodes are satisfied with pm, 0j after s-th iteration,

are calculated as follows:

rm, sij (0) =
1

2
+

1

2

∏
j′∈Nmi \j

(
1− qm, sij′ (1)

)
(6.9)

rm, sij (1) = 1− rm, sij (0) (6.10)

82

where Nm
i = {j} for all Hm

ij = 1, and Hm is a matrix produced by slight mutations

according to the principle given in Eq. 6.7 and Algorithm 15 .

Then, the probabilities of beliefs are updated:

pm, sj (a) = Km, s
j pm, 0j (a)

∏
i∈Mm

j

rm, sij (a) (6.11)

where Km, s
j is the normalization constant to satisfy pm, sj (0)+pm, sj (1) = 1, andMm

j =

{i} for all Hm
ij = 1. Considering pm, sj as independent events, we can calculate the

overal probabilities of beliefs:

psj(a) = Ks
j

∏
m

pm, sj (a), (6.12)

where Ks
j : psj(0) + psj(1) = 1. and update the codeword estimation:

ĉsj =

0 psj(0) > psj(1)

1 otherwise

(6.13)

If ĉsH> = 0, decoding is terminated as successful. If not, it continues with the

following calculations:

qm, s+1
ij (a) = Km, s+1

ij pm, 0j (a)
∏

i′∈Mm
j \i

rm, si′j (a) (6.14)

where Km, s+1
ij : qm, s+1

ij (0)+qm, s+1
ij (1) = 1, and moves to Eq. (6.9) and (6.10) with the

incremented iteration index s. If decoding is not successful after a given maximum

number of iterations, it is terminated. We denote the method decribed above as

MLDPC decoding. The state-of-the art LDPC decoding is shown in Fig. 6-6 and the

proposed MLDPC decoding is depicted in Fig. 6-7

83

p(a) c
00

p(a)
s

cs

s+1

s > maxIT
H

cH=0
Ts

cH=0
T0

Figure 6-6: State-of-the art LDPC decoding scheme.

p(a) c
00

p (a)
m,s

s+1

p (a)=
s

p (a)
m , l

cs

>maxIT

H
m

H

cH=0
T0

l selection

l<s

cH=0
Ts

s

m

Figure 6-7: The proposed MLDPC scheme.

6.2.2 Entropy based algorithm (MLDPCe)

Using the iteration index l, explained below, we modify formula (6.12) to get the

Overall Probability Vector (OPV),

psj(a) = Ks
j

∏
m

pm, l
m

(a) (6.15)

We define the probability that the received bit was incorrect after s-th iteration

84

as follows:

wm, sj =

p
m, s
j (1) p0j < 0.5

1− pm, sj (1) p0j ≥ 0.5

(6.16)

After normalization:

wj
m, s =

wm, sj∑n
j′=1w

m, s
j′

(6.17)

Then, the entropy S of m-th decoder after s iterations is defined as follows:

Sm(s) = −
∑
j

wj
m, s logwj

m, s (6.18)

Considering the entropy difference given by

∆Sm(t) = Sm(t)− Sm(t− 1) (6.19)

we define the iteration index lm as:

lm : argmin (δ (sgn(∆S(t))− 1)) + 1) |∆S| (6.20)

where t ≤ s and δ is the delta function. Then, the index lm corresponds to the

iterations index, where the entropy difference is minimal and not positive. This

algorithm is said to be Algorithm MLDPCe.

6.2.3 Metric based algorithm (MLDPCr)

We suggest to define a radius as an approximate distance of the codeword from the

received vector. Considering the initial probaiblity vector p0 and the initial estimation

ĉ0, the radius is given by the metric:

R =
∑
j

|p0j − ĉ0j | (6.21)

Considering the distance d(ĉ0, ĉs), given as the number of different bits in two

85

input binary vectors, we define the iteration index l for MLDPCr as follows:

lm = argmin
t

∣∣R− d(ĉ0, ĉt)
∣∣ (6.22)

Algorithm 16 Message passing in MLDPC algorithm

1: procedure Values to Check Nodes
Input: p, r
Output: q
. M is the number of mutational decoders,
M and N are defined in Section II

2: for all m ∈ [0,M− 1] do
3: for all j ∈ [0, |M|) do
4: for all i ∈ [0, |N |) do
5: qmij (a) = p0j(a)

6: for all i′ ∈Mj \ i do
7: qmi′j(a) = qmij (a)rm, si′j (a)

8: end for
9: end for

10: end for
11: end for
12: end procedure
13: procedure Values to Variable Nodes

Input: q
Output: r

14: for all m ∈ [0,M− 1] do
15: for all j ∈ [0, |M|) do
16: for all i ∈ [0, |N |) do
17: rmij (0) = 1, rmij (1) = 1

18: for all j′ ∈ Ni \ j do
19: rmij (0) = rmij (0)(1− 2qmij′(1))

20: rmij (1) = rmij (1)(1− 2qmij′(0))

21: end for
22: rmij (0) = 1/2 + 1/2rmij (0)

23: rmij (1) = 1− rmij (1)

24: end for
25: end for
26: end for
27: end procedure

The performance of the proposed MLDPC decoding was compared using several

widely known LDPC codes, generated according to WiMAX [94] and CCSDS [93]

86

Algorithm 17 Modified soft-decision decoding

1: procedure DecodeLDPC . SP algorithm
Input: y – output from a demodulator
maxIT – maximum number of iterations
Output: ĉ

2: q = p
3: r =Values to Variable Nodes(q)
4: ĉ =Calculate Estimation(r)
5: if ĉH> = 0 then return ĉ
6: end if
7: for s ∈ (1,maxIT) do
8: qs =Values to Check Nodes(rs)
9: rs =Values to Variable Nodes(qs)

10: ps =Update Probabilities(p0, rs)
11: ls =Selection(p0,p1, ...,ps)

. Selection according to
the criterea (MLDPC, MLDPCe, MLDPCr)

12: ĉ =Calculate Estimation(p, ls)
13: if ĉH> = 0 then return ĉ
14: end if
15: end for
16: end procedure

Algorithm 18 Function for updating probabilities

1: procedure Update Probabilities
Input: p0, r
Output: p

2: for all m ∈ [0, k) do
3: for all j ∈ [0, |M|) do
4: pmj (a) = p0j(a)

5: for all i ∈Mj do
6: pmj (a) = pmj (a)rmij (a)

7: end for
8: end for
9: end for

10: end procedure

standards. Performance results are shown in Fig. 6-8, 6-10, 6-11, and Table 6.1 re-

spectively. The most significant improvement can be seen in the error floor region

and for the MLDPCe algorithm. A comparison for different codes is shown in Ta-

ble 6.1, where the MLDPCe algorithm also provides the lowest Bit Error Rate. A

87

Algorithm 19 Function for calculating the estimation

1: procedure Calculate Estimation
Input: p – all probabilities
ls – indices from m-th decoder, where m ∈ 1...M
Output: ĉ

2: for all j ∈ [0, |M|) do
3: Qj(a) = p0j(a)

4: for all m ∈ [0,M) do
5: l = l(m)

6: Qj(a) = Qj(a)pm,lj

7: end for
8: if Qj(a) > Qj(a) then ĉj = 0
9: else ĉj = 1

10: end if
11: end for
12: end procedure

demonstrative example of the entropy evolution is depicted in Fig. 6-12, 6-13.

1 1.5 2 2.5 3 3.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
 / N

0
 [dB]

B
it

E
rr

or
 R

at
e,

 F
ra

m
e

E
rr

or
 R

at
e

BER − SP
FER − SP
BER − MLDPC
FER − MLDPC
BER − MLDPCe
FER − MLDPCe
BER − MLDPCr
FER − MLDPCr

Figure 6-8: Simulation on WiMAX 1056 code, 4 additional decoders were used.

88

2 2.2 2.4 2.6 2.8 3
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

E
b
 / N

0
 [dB]

B
it

E
rr

or
 R

at
e

BER − SP
BER − MLDPCe

Figure 6-9: Simulation on WiMAX 1056 code, 19 additional decoders were used.

4 4.5 5 5.5 6 6.5 7
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

E
b
 / N

0
 [dB]

B
it

E
rr

or
 R

at
e,

 F
ra

m
e

E
rr

or
 R

at
e

BER − SP
FER − SP
BER − MLDPC
FER − MLDPC
BER − MLDPCe
FER − MLDPCe
BER − MLDPCr
FER − MLDPCr

Figure 6-10: Simulation on CCSDS 128 code, 4 additional decoders were used.

6.2.4 Memory and complexity requirements

The algorithm requires several number of decoders working independently with mu-

tated matrices and it produces one codeword estimation based on all decoders. There-

89

2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
 / N

0

B
it

E
rr

or
 R

at
e,

 F
ra

m
e

E
rr

or
 R

at
e

BER − SP
FER − SP
BER − MLDPC
FER − MLDPC
BER − MLDPCe
FER − MLDPCe
BER − MLDPCr
FER − MLDPCr

Figure 6-11: Simulation on WiMAX 2304 code, 4 additional decoders were used.

fore, the complexity increases linearly with the number of mutants. Using entropy

and radius adds a non-neglible calculations, but keeps the lineariy.

Memory requirements depends on the decoders implementation and grows with

the number of mutants linearly. Using entropy or radius requires the best value, the

best iteration index, and associated probability vector to be stored.

90

0 10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

120

iteration number

di
st

an
ce

 fr
om

 th
e

so
lu

tio
n

MLDPCe algorithm
decoders using mutated matrices

0 10 20 30 40 50 60 70 80 90 100
60

80

100

120

140

160

iteration number

di
st

an
ce

 fr
om

 th
e

re
ce

iv
ed

 c
od

ew
or

d

MLDPCe algorithm
decoders using mutated matrices

0 10 20 30 40 50 60 70 80 90 100
5

5.2

5.4

5.6

5.8

en
tr

op
y

va
lu

e

iteration number

Figure 6-12: The Evolution of entropy values and distance values when the decoder
fails in the convergency.

91

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

iteration number

di
st

an
ce

 fr
om

 th
e

so
lu

tio
n

MLDPCe algorithm
decoders using mutated matrices

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

iteration number

di
st

an
ce

 fr
om

 th
e

re
ce

iv
ed

 c
od

ew
or

d

MLDPCe algorithm
decoders using mutated matrices

0 10 20 30 40 50 60 70 80 90 100
4.5

5

5.5

6

6.5

en
tr

op
y

va
lu

e

iteration number

Figure 6-13: The Evolution of entropy values and distance values when the decoder
oscillates.

92

Table 6.1: Simulated Bit Error Rate values. There were 4 additional mutational
decoders used for simulations. R = k/n is the code rate. Similarly, 4 additional
decoding attemps were used for dithered algorithm [32]

WiMAX 1056, R = 0.5
Eb/N0 = 2.8 dB BER FER

SP 3.11e-6 1.09e-5
SP+dithered 3.88e-7 8.58e-6

MLDPC 9.39e-8 4.99e-6
MLDPCe 4.29e-8 5.35e-6
MLDPCr 1.19e-7 5.02e-6

MS 7.27e-7 1.44e-5
MS+dithered 6.85e-7 8.30e-6

WiMAX 2304, R = 0.83
Eb/N0 = 4.05 dB BER FER

SP 3.65e-6 3.10e-5
SP+dithered 4.13e-7 3.07e-5

MLDPC 4.08e-8 1.15e-5
MLDPCe 3.68e-8 1.14e-5
MLDPCr 3.63e-7 1.11e-5

MS 5.17e-7 3.54e-5
MS + dithered 8.24e-7 2.72e-5

CCSDS 128, R = 0.5
Eb/N0 = 5.8 dB BER FER

SP 4.48e-8 4.20e-7
SP+dithered 4.43e-8 4.24e-7

MLDPC 1.12e-8 1.31e-7
MLDPCe 7.25e-9 1.20e-7
MLDPCr 8.51e-9 1.35e-7

MS 6.74e-6 7.21e-7
MS+dithered 1.91e-8 1.46e-7

93

Chapter 7

Conclusions

This thesis was focused on several issues related to Low Density Parity-Check (LDPC)

codes and proposed several novel methodologies in the topics of code construction

algorithms, decoder architectures and improving performance of state-the-art de-

coders. The main research contribution can be summarized as follows:

• Novel code construction techniques, especially genetic optimization algorithms.

• A method for mapping a decoder onto parallel architectures.

• Two unique algorithms for improving performance of state-of-the art LDPC

decoders.

LDPC code construction techniques, introduced in this work, involve the algo-

rithms generating Tanner graphs of controlled girth, applications of genetic optimiza-

tion algorithms, and applications of coarse grained parallelism for genetic algorithms

to accelerate their convergence.

Very interesting results were pointed out for different code lengths and different

redundancies using the construction method proposed. The algorithm of the control

girth has been shown to be a very useful method for constructing a wide variety of

LDPC codes. LDPC codes of block lengths in the range from 64 to 2048 bits and

redundancies in the range from 10% to 75% were constructed using this algorithm. For

all tested lengths and redundancies, the algorithm provides a powerful construction

method.

94

The proposed genetic optimization algorithms use the mutation and crossover op-

erators, various fitness functions, utilization of elitism to keep the best solutions, and

coarse grained parallelization for accelerating the convergence. These algorithms have

been applied to the optimization of short blocks length codes for different optimiza-

tion parameters. The interesting result was shown in the optimization of (128,64)

code to provide the best performance using 10 decoding iterations. The code gain

between the codes before and after the optimization was 0.4 dB at the Bit Error Rate

(BER) value of 10−7. Compared to the NASA CCSDS standard, the optimized code

achieved the value EB/N0 better by 0.15 dB at BER = 10−7. The LDPC (120,88)

code, also shown in the illustrative optimization task, was compared against the RS

code using the same length, where the constructed LDPC code provided a gain greater

than 2 dB.

Another important contribution of this work is a parallel implementation of the

decoder for any irregular LDPC code. The parallel architecture is particularly useful

for hardware implementations using GPUs and FPGAs. Associated benchmarks were

performed on GPU platform using OpenCL and CUDA frameworks. Using CCSDS

code and its protographically expanded derivations, the GPU implementation were

running up to 25 times faster compared to the serial implementation.

A significant novelty is offered in the methods introduced for improving perfor-

mance and lowering BER of LDPC decoders. Two main methods were introduced;

the Belief Propagation based on the estimation BackTracking and the Mutational

LDPC decoding (MLDPC). The Mutational LDPC decoding further utilizes the infor-

mation entropy (denoted as MLDPCe) and so called radius (denoted as MLDPCr) to

control the convergence. For tested codes and given input parameters, the MLDPCe

algorithm achieved 100 times lower BER compared to the state-of-the art algorithms

when using the WiMAX code.

The possible research work can continue towards unique applications in hardware

architectures, using neural networks for decoders, optimization of long block length

codes, applications with nonbinary codes, and other related issues.

95

Appendix A

On GPU implementation of LDPC

decoder

In this chapter, the principle of edge-level parallelization, used for GPU decoding, is

shown in an example. All variables in the example are consitent with the terminology

introduced in Chapter 5. The illustrated example is supported by consistent figures

associated with the same LDPC (14,7) code.

Considering the code given by the parity-check matrix (Fig. A-1) and associated

Tanner graph, the following arrays are defined as address iterators for the parallel

message passing algorithm (described in Algorithms 9, 10 and 11). All arrays are

listed in Table A.1 and B.2. Both tables are particularly useful for understanding the

principle and checking the correctness of the implementation. To keep the consistency

and for tutorial purposes, both tables are associated with the LDPC (14,7) code given

by the parity-check matrix from Fig. A-2.

96

0 0 0 1 0 0 0 1 0 0 1 0 1 0

1 0 1 0 0 0 0 1 1 0 0 0 0 1

0 1 0 1 1 0 1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 1 0 0 1 0 0 0 0

0 0 1 1 0 1 0 0 0 1 0 1 0 0

1 1 0 0 0 1 0 0 0 0 1 0 0 1

c6

c5

c4

c3

c2

c1

c0

v0 v1 v2 v3 v4 v5 v7 v8 v9 v10v11v6 v12v13

1st page

2nd page

3rd page

Figure A-1: Parity-check matrix divided into pages

Figure A-2: Parity-check matrix and the principle of the parallelization

v0 v1 v2 v3 v4 v5 v7 v8 v9 v10v11v6 v12v13

c0 c1 c2 c3 c4 c5 c6

(a) The first half of the iteration - from
variable nodes to check nodes. Values
used for the calculation of the message
between v0 and c3 are highlighted.

v0 v1 v2 v3 v4 v5 v7 v8 v9 v10v11v6 v12v13

c0 c1 c2 c3 c4 c5 c6

(b) The second half of the iteration - from
check nodes to variable nodes. Values
used for the calculation of the message
between c3 and v0 are highlighted.

Figure A-3: Tanner graph of the LDPC (14,7) code.

Table A.1: Addresses used for message calculation outgoing from variable nodes.

array values

e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

v
0 0 0 0 1 1 2 2 3 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13

c
5 3 2 0 4 0 5 1 6 4 1 4 3 1 0 4 2 6 5 5 4 2 1 6 0 3 1 6 3 5 0

t
4 4 4 4 2 2 2 2 3 3 3 2

s
0 0 0 0 4 4 6 6 8 8 8 11 11 13 13 15 15 17 17 19 19 21 21 23 23 25 25 27 27 29 29

u
0 1 2 3 0 1 0 1 0 1 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

97

Table A.2: Addresses used for message calculation outgoing from check nodes.

array values

e
3 5 14 24 30 7 10 13 22 26 2 16 21 1 12 25 28 4 9 11 15 20 0 6 18 19 29 8 17 23 27

v
0 1 5 10 13 2 3 5 9 11 0 6 9 0 4 11 12 1 3 4 6 8 0 2 7 8 13 3 7 10 12

c
0 0 0 0 0 1 1 1 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 6 6 6 6

t 5 5 5 5 5 5 5 5 5 5 3 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 4 4 4 4

s
0 0 0 0 0 5 5 5 5 5 10 10 10 13 13 13 13 17 17 17 17 17 22 22 22 22 22 27 27 27 27

u
0 1 2 3 4 0 1 2 3 4 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 0 1 2 3

Listing A.1: Types

typedef struct Edge{
int index ; // e array
int vn ; // v array
int cn ; // c array
int edgesConnectedToNode ; // t array
int abso lu t eSta r t Index ; // s array
int relat iveIndexFromNode ; // u array

} Edge ;

typedef struct EdgeData{
double passedValue ;

} EdgeData ;

typedef struct CodeInfo{
int to ta lEdges ; // number of edges
int varNodes ; // number of variable nodes
int checkNodes ; // number of check nodes

} CodeInfo ;

Table A.3: Comparison of chosen OpenCL and CUDA syntax rules

command OpenCL CUDA

thread synchronization barrier(CLK GLOBAL MEM FENCE); syncthreads();

kernel prefix kernel global

local memory prefix local shared

get local ID int lid = get local id(0); int lid = threadIdx.x;

get global ID int gid = get global id(0); int gid = blockIdx.x

* blockDim.x+ threadIdx.x;

98

Appendix B

Fully parallel LDPC decoder

implementation in FPGA

We introduce a scalable architecture for decoding irregular LDPC codes. The archi-

tecture allows easy deployability in Field Programmable Gate Arrays (FPGAs) and

it supports a wide variety of LDPC codes. The main limitation is the size of the

FPGA circuit. The architecture is described in the following section.

The aim is to design the architecture for decoding a wide variety of irregular LDPC

codes. The codes are generated with the of a framework, which produce the Very

High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL)

file. This file is than added to the source files of the decoder, which remains constant

(Fig. B-1).

Suppose

cn = (C0, C1, ..., CN CN) (B.1)

where Ck = k, k, ..., k |Ck| = |Mk| and N CN is the number of check nodes.

Tuple (cn(i), vn(i)), i = 1, 2, ..., N EDGES defines edges in the Tanner graph

Consider the tuple icn of check node input indices as the following:

icn = (Dc0 , Dc1,, ..., D|cn|) (B.2)

99

D0 = 0, D1 = 0, 1, ..., Dk = 0, 1, 2, ..., |Nk| (B.3)

The tuple of edges (cn(i), vn(i) sorted ascending by cn and the transformation:

S : (cn(i), vn(i))→ (cn′(i), vn′(i)) (B.4)

where (cn′(i), vn’(i)) is sorted ascending by vn’.

The tuple of variable input indices ivn′=(E0, E1, ..., Ek)

E0 = 0, E1 = 0, 1, ..., Ek = 0, 1, 2, ..., |Mk| (B.5)

A transformation

S−1 : (cn′(i), vn′(i))→ (cn(i), vn(i)) (B.6)

The set of variable node indices ivn related to icn is then given as:

S−1 : ivn′ → ivn (B.7)

Lengths of the tuples cn, vn, icn, ivn are equal to the number of edges in the

Tanner graph.

|cn| = |vn| = |icn| = |ivn| = K (B.8)

In paragraphs below, we define vectors used for the description of connections

and the storage. Vectors entityIndex1, entityIndex2, inputIndex1, inputIndex2,

edgeIndex1 and edgeIndex2 are used as indices for connections between entities.

The vector EDGE DATA represents memory elements for outgoing and incoming

messages.

The vectors of indices are filled by the method described in Algorithm 20. The

architecture of connections is depicted in Fig. B-2 and B-3. A simplified state diagram

of the decoding algorithms is shown in Fig. B-4.

100

Algorithm 20 Filling indices

1: procedure Filling indices

Input: cn,vn, icn, ivn
Output: entityIndex1,2, edgeIndex1,2, inputIndex1,2, ctr1, ctr2

2: ctr1 = 0, ctr2 = 0
3: for i = 0 to K − 1 do
4: for j = 0 to K − 1 do
5: if cn(i) = cn(j) and (i! = j) then
6: entityIndex1(ctr1) = i
7: inputIndex1(ctr1) = icn(j)
8: edgeIndex1(ctr1) = j
9: ctr1 + +

10: end if
11: if vn(i) = vn(j) and (i! = j) then
12: entityIndex2(ctr2) = i
13: inputIndex2(ctr2) = ivn(j)
14: edgeIndex2(ctr2) = j
15: ctr2 + +
16: end if
17: end for
18: end for
19: end procedure

101

Figure B-1: Flowchart of the decoder synthesis.

Figure B-2: Variable node unit in the relation of message passing, where i is in
0...ctr1− 1, ctr1 is the value after running Algorithm 20 and j is in 0...K − 1

Figure B-3: Check node unit in the relation of message passing, where i is 0...ctr2−1,
ctr2 is the value after running Algorithm 20 and j is 0...K − 1

The functionality of the decoder was tested by the simulations of the decoder

including generated codes by our framework. Syntheses of decoders for particular

codes were performed. The clock frequencies and circuit utilizations is shown in

Table B.1. The circuits were chosen because of their easy availability in development

102

Figure B-4: Simplified state diagram of the decoding algorithm.

kits [11].

Table B.1: Synthesis results. The number of required ALMs is compared for different
code lengths.

STRATIX V
5SGXEA7N2F40C2N

CLK Circuit utilization

LDPC(32, 16) 65 MHz 9,683

LDPC(64, 32) 103 MHz 29,152

LDPC(128, 64) 102 MHz 57,950

LDPC(256, 128) 102 MHz 120,730 of 234,720 ALMs

103

Table B.2: Addresses used for message calculation outgoing from check nodes.

array values

cn
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6,
6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12,

12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15

vn
24, 23, 21, 17, 16, 14, 5, 29, 30, 31, 22, 18, 19, 27, 30, 3, 0, 28, 2, 20, 26, 25,
29, 15, 22, 6, 8, 15, 10, 11, 18, 5, 7, 4, 11, 19, 3, 1, 7, 28, 6, 8, 13, 17, 12, 1,

12, 26, 10, 2, 8, 23, 0, 8, 9, 27, 4, 8, 31, 11, 20, 25, 9, 11, 16, 13

icn
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 0, 1, 2, 3, 4, 0, 1, 2, 0, 1,
2, 3, 4, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 0,

1, 2, 3, 0, 1, 2

ivn

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3,
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16,
17, 17, 17, 18, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23,
24, 24, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30,
30, 31, 31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 36,
37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43,
44, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 51, 51, 51,
52, 52, 52, 53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 57, 57, 58, 58, 59, 59, 59,

60, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 64, 64, 65, 65

entityIndex1

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3,
3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9,
10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16,
17, 17, 17, 18, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23,
24, 24, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28, 28, 29, 29, 29, 29, 30, 30, 30,
30, 31, 31, 31, 31, 32, 32, 32, 32, 33, 33, 33, 34, 34, 34, 35, 35, 35, 36, 36, 36,
37, 37, 37, 38, 38, 38, 39, 39, 39, 40, 40, 40, 41, 41, 41, 42, 42, 42, 43, 43, 43,
44, 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 48, 49, 49, 49, 50, 50, 50, 51, 51, 51,
52, 52, 52, 53, 53, 53, 54, 54, 54, 55, 55, 55, 56, 56, 57, 57, 58, 58, 59, 59, 59,

60, 60, 60, 61, 61, 61, 62, 62, 62, 63, 63, 64, 64, 65, 65

inputIndex1

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2,
4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5,
7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 1, 0, 1, 2, 3, 4,
0, 2, 3, 4, 0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3, 1, 2, 0, 2, 0, 1, 1, 2, 3, 4, 0, 2, 3, 4,
0, 1, 3, 4, 0, 1, 2, 4, 0, 1, 2, 3, 1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 1, 2, 3, 0, 2, 3,
0, 1, 3, 0, 1, 2, 1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 3, 0, 2, 3,
0, 1, 3, 0, 1, 2, 1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, 3, 0, 2, 3,

0, 1, 3, 0, 1, 2, 1, 2, 0, 2, 0, 1

edgeIndex1

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2,
4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5,
7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
11, 12, 13, 10, 12, 13, 10, 11, 13, 10, 11, 12, 15, 16, 17, 14, 16, 17, 14, 15, 17,
14, 15, 16, 19, 18, 21, 22, 23, 24, 20, 22, 23, 24, 20, 21, 23, 24, 20, 21, 22, 24,
20, 21, 22, 23, 26, 27, 25, 27, 25, 26, 29, 30, 31, 32, 28, 30, 31, 32, 28, 29, 31,
32, 28, 29, 30, 32, 28, 29, 30, 31, 34, 35, 36, 33, 35, 36, 33, 34, 36, 33, 34, 35,
38, 39, 40, 37, 39, 40, 37, 38, 40, 37, 38, 39, 42, 43, 44, 41, 43, 44, 41, 42, 44,
41, 42, 43, 46, 47, 45, 47, 45, 46, 49, 50, 51, 48, 50, 51, 48, 49, 51, 48, 49, 50,
53, 54, 55, 52, 54, 55, 52, 53, 55, 52, 53, 54, 57, 58, 56, 58, 56, 57, 60, 61, 62,

59, 61, 62, 59, 60, 62, 59, 60, 61, 64, 65, 63, 65, 63, 64

entityIndex2

1, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 26, 26, 26, 27, 28, 29, 29, 29, 30, 31, 32, 33, 34, 34, 34, 35, 36, 37, 38, 39,
40, 41, 41, 41, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, 50, 50, 51, 52, 53, 53,
53, 53, 54, 55, 56, 57, 57, 57, 57, 58, 59, 59, 59, 60, 61, 62, 63, 63, 63, 64, 65

inputIndex2
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 2,
1, 0, 1, 1, 0, 0, 3, 1, 0, 1, 1, 0, 1, 1, 1, 4, 2, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 4, 3, 1,

0, 1, 1, 4, 3, 2, 0, 0, 1, 1, 4, 3, 2, 1, 1, 3, 2, 0, 1, 1, 1, 3, 2, 1, 1, 1

edgeIndex2

51, 43, 64, 31, 22, 14, 58, 24, 30, 35, 55, 8, 36, 52, 39, 49, 60, 47, 61, 7, 27,
10, 40, 41, 50, 53, 57, 23, 48, 34, 59, 63, 11, 6, 38, 56, 29, 59, 63, 12, 15, 45,
32, 17, 25, 26, 50, 53, 57, 65, 3, 46, 37, 44, 20, 28, 18, 26, 41, 53, 57, 1, 16,
26, 41, 50, 57, 62, 13, 33, 26, 41, 50, 53, 9, 29, 34, 63, 19, 21, 54, 29, 34, 59,

4, 42

104

Appendix C

Burst correctability of optimized

codes

In this Chapter, results for multiple-burst error capabilities are presented.

The burst error pattern, used as an optimization parameter for fitness function,

is given by EP = (x1, x2, ..., xk), where xi are lengths of error bursts in the codeword

and |EP | is the number of burst errors (as proposed in Section 4.2). The total number

of corrupted bits is then
k∑
i=1

EP (i). (C.1)

This fitness function provides deterministic evaluation and can be calculated in a

reasonable period of time.

Tables C.1 -C.4 show the results of the best optimized codes. The optimization

tasks were held for 100 generations and the sharing period was 10 generations. The

correction performance for double burst error correction measured for different codes

and different burst lengths are given in Tables C.1-C.4.

105

Table C.1: Correcting capabilities measured for ultra short block lengths

variable nodes check nodes R burst lengths
(1,1) (2,1) (3,1)

64 16 0.25 71.5 13.6 8.5
(3,2) (4,2) (4,3)

64 32 0.5 90.7 59.3 33.4
(5,4) (6,5) (7,6)

64 48 0.75 98.4 87.3 48.4

Table C.2: Correcting capabilities measured by the ratio of frames which are able to
be corrected by the decoder

variable nodes check nodes R burst lengths
(1,1) (2,1) (3,1) (3,2) (4,2) (4,3) (5,3) (5,4) (6,4) (6,5)

128 32 0.25 98.8 90.1 55.8
128 40 0.3125 98.1 91.7 66.7
128 48 0.375 99.6 98.2 95.3
128 56 0.375 98.8 96.8 93.4 81.2 52.4
128 64 0.5 100 99.8 99.2 96.2 89.7 77.5 61.9

(5,3) (5,4) (6,4) (6,5) (7,5) (7,6) (8,6) (8,7) (9,7) (9,8)
128 72 0.5625 99.7 99.4 98.0 93.9 84.5 71.0
128 80 0.625 100.0 99.5 98.6 94.8 87.3 74.7 55.1 40.0

(7,5) (7,6) (8,6) (8,7) (9,7) (9,8) (10,8) (10,9) (11,9) (11,10)
128 88 0.6875 100.0 99.6 98.2 97.1 93.8 89.6 78.0 60.2
128 96 0.75 100 100 99.9 99.8 99.0 98.2 95.1 88.9 80.1

Table C.3: Correcting capabilities measured by the ratio of frames which are able to
be corrected by the decoder

variable nodes check nodes R burst lengths
(1,1) (2,1) (3,1) (3,2) (4,2) (4,3) (5,3) (5,4)

256 56 0.21875
256 64 0.25 99.7 97.9 93.6 84.5 59.8 29.4 6.3

(4,2) (4,3) (5,3) (5,4) (6,4) (6,5) (7,5) (7,6)
256 80 0.3125 96.6 93.3 88.6 75.6 51.5 23.4 10.7
256 96 0.375 99.8 98.4 95.9 89.9 86.6 74.5 49.9

(5,4) (6,4) (6,5) (7,5) (7,6) (8,6) (8,7) (9,7)
256 112 0.4375 99.8 99.7 99.5 97.2 94.3 91.6 85.2 73.3

(6,5) (7,5) (7,6) (8,6) (8,7) (9,7) (9,8) (10,8)
256 128 0.5 100 100 99.8 99.6 98.9 97.3 95.8 92.8
256 144 0.5625 100 100 99.8 99.5

(10,8) (10,9) (11,9) (11,10) (12,10) (12,11) (13,11) (13,12)
256 160 0.625 100 99.9 99.9 99.7 99.4 99.1

Table C.4: Correcting capabilities measured by the ratio of frames which are able to
be corrected by the decoder

variable nodes check nodes R burst lengths
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3) (5,4) (6,4) (6,5)

512 128 0.25 100 100 99.3 99.4 98.3 95.5 95.6 90.1 85.5
512 160 0.3125 99.9 99.7 99.4
512 192 0.375

(9,7)
512 256 0.5 100 99.9 98.2

(2,1) (3,1) (3,2) (4,2) (4,3) (5,3) (5,4) (6,4) (6,5)
1024 128 0.125 90.4
1024 256 0.25 99.7 99.6 99.1
1024 320 0.325 99.9

106

Appendix D

On Belief Propagation based on

the Estimation Backtracking

Decoding time measured on CPU

The time complexity of the decoder was measured on the CPU implementation. The

time is compared relatively for the MS decoding and MS-BT decoding. Results

measured for (128,64) code, (256,128) code and (504,252) code can be seen in figures

below. All results are normalized to relative values.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Corrupted bits

R
el

at
iv

e
de

co
di

ng
 ti

m
e

MS − 5 iterations
MS−BT − 5 iterations
MS − 10 iterations
MS−BT − 10 iterations
MS − 50 iterations
MS−BT − 50 iterations

(a) Relative decoding time vs the number of
corrupted bits in a codeword measured on the
LDPC(128,64) code.

10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Corrupted bits

R
el

at
iv

e
de

co
di

ng
 ti

m
e

MS − 5 iterations
MS−BT − 5 iterations
MS − 10 iterations
MS−BT − 10 iterations
MS − 50 iterations
MS−BT − 50 iterations

(b) Relative decoding time vs the number of
corrupted bits in a codeword measured on the
LDPC(504,252) code.

Figure D-1: Relative decoding time

107

Hardware implementation

CW estimation

(BP)
Iteration finished

(Push signal)

Decoding failed

(start backtracking)

Empty

CW

Estimation

(BT)

Parity

check

(BP)

Parity

check

Parity

check

(BT)

1

0

LIFO Pop

CW estimation

(BP)

LDPC

Decoder

N

Estimation

Backtracking

N

N

Figure D-2: Hardware architecture outline.

In this paragraph, we provide an outline of the hardware architecture, which is

shown in Fig. D-2. The architecture consists of several parts, including the BP LDPC

decoder, Last-In-First-Out (LIFO) memory and a block devoted for the implementa-

tion of the proposed backtracking algorithm. The multiplexer, located at the output,

switches between the BP decoder output and the output outgoing from the block

performing the estimation backtracking. Switching is controlled by the parity-check

signal, which is set to 1 when all bits in the estimation meet the parity-check con-

ditions given by the matrix H. A syndrome of the codeword estimation is equal to

the zero vector in such case. In practical implementations, the architecture can be

pipelined in order to increase the throughput. Then, the estimation backtracking

block is calculating the estimation of the codeword received before the codeword be-

ing processed by the decoder at the same time. Furthermore, when the throughput is

crucial, the estimation backtracking block can be bypassed by the multiplexer at the

output. The behavior of the architecture is then simplified and only the Estimation

Backtracking is not performed in such cases.

Error correction capabilities

The error correcting capabilities were simulated on MacKay’s widely known code

(504,252) [36], and irregular code (128,64) [10], irregular code (256,128) provided by

108

according to the CCSDS standard [93]. The error correcting capabilities are com-

pared to the number of corrupted bits and the number of iterations performed by

the Min-Sum (MS) decoder for particular codes respectively. This can be seen in Ta-

bles D.1, D.2, D.3. It should be highlighted that the number of iterations needed to be

performed by the decoder in order to achieve the same Bit Error Rate is significantly

decreased in several cases by using the proposed MS-BT algorithm. For (256,128)

code, the MS-BT algorithm with the use of 5 iterations outperformed the traditional

MS decoder with the use of 10 iterations in all tested cases (Table II). Furthermore,

the MS-BT using 5 iterations outperformed the MS algorithm using 50 iterations

for codewords with 7-11 corrupted bits. Similarly, for MacKay’s (504,252) code, the

MS-BT at 10 iterations outperformed the MS algorithm at 50 iterations in all tested

cases. Although this behavior was not observed for our short-length (128,64) code,

the MS-BT algorithm improved the error correcting capability significantly, with the

maximum improvement of 10% for certain number of corrupted bits.

4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
10

−8

10
−7

E
b
/N

0
 [dB]

B
it

E
rr

or
 R

at
e

MS − 10 iterations
MS−BT − 10 iterations
MS − 50 iterations
MS−BT − 10 iterations

Figure D-3: Bit error rate simulated on irregular MacKay’s (504,252) code compared
for different number of iterations. The values are calculated from 300 codewords for
which the iterative decoding algorithm failed at particular Signal-to-Noise Ratios.

109

Table D.1: Error correcting capability measured on our (128,64) LDPC code.

error correcting capability (%)
n-bit error iterations MS MS-BT

4 5 99.25 99.76
5 5 94.14 96.93
6 5 80.75 89.12
7 5 36.36 46.36
8 5 11.75 16.67
9 5 1.83 3.17
10 5 0.10 0.32
11 5 0.03 0.04
4 10 99.90 99.94
5 10 99.11 99.47
6 10 94.97 97.28
7 10 76.00 81.01
8 10 48.88 55.96
9 10 17.53 21.97
10 10 2.34 3.07
11 10 0.19 0.27
4 50 99.99 99.998
5 50 99.56 99.97
6 50 99.66 99.74
7 50 98.03 98.34
8 50 90.73 92.83
9 50 68.85 74.34
10 50 32.12 34.51
11 50 6.93 7.73

Table D.2: Error correcting capability measured on NASA CCSDS (256,128) LDPC
code.

error correcting capability (%)
n-bit error iterations MS MS-BT

6 5 99.34 99.52
7 5 93.78 95.08
8 5 71.50 75.29
9 5 37.57 44.88
10 5 9.19 11.09
11 5 1.21 1.66
6 10 99.50 99.51
7 10 94.60 94.99
8 10 74.38 75.30
9 10 38.07 42.13
10 10 10.51 11.23
11 10 1.50 1.59
6 50 99.52 99.53
7 50 94.79 95.25
8 50 74.65 75.61
9 50 38.33 43.33
10 50 10.49 10.83
11 50 1.48 1.69

Table D.3: Error correcting capability measured on MacKay’s (504,252) LDPC code.

error correcting capability (%)
n-bit error iterations MS MS-BT

16 5 93.22 97.80
17 5 84.26 94.02
18 5 55.19 76.78
19 5 44.63 68.51
20 5 16.05 36.17
21 5 5.10 16.83
16 10 98.32 99.54
17 10 95.22 98.46
18 10 87.44 92.65
19 10 73.36 86.01
20 10 47.74 57.46
21 10 26.07 35.89
16 50 98.36 99.58
17 50 95.5 98.47
18 50 88.23 92.72
19 50 74.58 86.08
20 50 50.85 57.66
21 50 27.90 36.77

110

Appendix E

MLDPC BER simulations

In this Section, BER simulations of MLDPC decoding are presented for selected codes

and parameters. Values are compared for differend number of iterations and different

number of corrupted bits.

Table E.1: Error correcting capability measured o MacKay’s (504,252) LDPC code
using MLDPC.

error correcting capability (%)
n-bit error iterations SP MLDPC MLDPCe

30 5 59.81 47.19 45.50
31 5 49.33 35.68 34.73
38 50 81.08 84.29 84.05
39 50 73.2 76.89 77.34

Table E.2: CCSDS 256, 4 additional decoders.

error correcting capability (%)
n-bit error iterations SP MLDPC MLDPCe MLDPCe(19 dec)

10 5 99.74 99.70 99.61 99.69
15 5 82.63 69.16 69.02 67.00
16 5 67.18 43.43 44.06 37.91
17 5 44.22 16.13 16.35 12.41
18 5 19.15 2.80 2.79 2.15
19 5 4.66 0.24 0.27 0.21
20 5 0.57 0.03 0.03 0.01
10 50 99.99 99.98 99.98 100.00
15 50 98.51 98.58 99.07 99.67
17 50 90.91 91.13 93.13 96.61
18 50 79.92 79.53 82.70 89.70
19 50 59.34 59.07 63.14 72.23
20 50 32.30 32.27 34.42 43.79
21 50 10.89 10.97 11.86 16.20
22 50 2.10 2.08 2.32 3.34
10 100 100.00 100.00 100.00 100.00
15 100 98.91 99.47 99.36 99.78
18 100 81.55 85.71 86.06 91.06
19 100 60.81 67.01 67.12 75.01
20 100 33.53 39.05 38.80 45.52
21 100 11.83 14.47 14.72 17.92
22 100 2.32 3.06 3.21 3.51

111

Table E.3: LDPC (128, 64), 4 additional decoders.

error correcting capability (%)
n-bit error iterations SP MLDPC MLDPCe MLDPCe(19 dec)

1 5 100.00 100.00 100.00 100.00
3 5 100.00 100.00 100.00 99.99
7 5 99.70 99.52 99.33 99.29
10 5 86.03 76.74 73.35 74.56
11 5 67.27 43.36 41.49 41.44
12 5 36.00 8.72 8.60 9.12
1 50 100.00 100.00 100.00 100.00
3 50 100.00 100.00 100.00 100.00
5 50 99.95 99.96 99.97 99.99
7 50 99.28 99.44 99.52 99.66
10 50 78.05 79.86 79.74 85.86
11 50 49.50 51.04 49.91 56.85
12 50 15.17 14.98 15.12 16.88
13 50 0.99 0.81 0.96 1.00
14 50 0.02 0.00 0.01 0.01
1 100 100.00 100.00 100.00 100.00
3 100 100.00 100.00 100.00 100.00
7 100 99.45 99.62 99.54 99.76
10 100 78.72 80.91 80.28 86.88
11 100 50.17 52.01 52.10 59.68
12 100 16.10 15.86 15.18 19.84
13 100 1.29 1.16 1.01 1.36
14 100 0.03 0.01 0.02 0.01

112

Appendix F

Feature based classification

The most time consuming operation in genetic optimization tasks is the calculation

of fitness values, which can take prohibitively long time. Therefore, a feature based

classification of Tanner graphs can be cosidered as an interesting approach to deal

with this issue.

The main features of a Tanner graph can be:

• average cycle length,

• average degree of check nodes,

• variance of degree nodes,

• minimum degree of all nodes.

Two independent experiments were performed in order to test this approach. Ex-

periment A was held for 50 generations, whereas Experiment B was held for 100

generations. The required Signal-to-Noisel Ratio for the Bit Error Rate of 10−3 was

used as an evaluation function. The lower value of this function means better correc-

tion performance.

As can be seen in Fig. F-3a, the optimization algorithm converges to better codes

and the best codes are located at the bounded area of check node degrees. Other

figures depict variance of check node degrees and the 3D plot shows the average

degree and the degree variance.

113

The charts in Fig. F-3b indicates the interval where the best codes in terms of

the simulation used are located (the concentrated ares). This fact can be utilized to

speed up an optimization algorithm. If a code is located outside of the concentrated

area, the performance of the code is considered as inefficient with high probability

and such a code is then dropped during the optimization. Only codes located inside

the bounded interval of average degrees are passed to the time consuming simulator.

Using this principle, we can classify the codes in two groups.

Such a classificator needs to be prepared before doployment. Thereby, the algo-

rithm working with the classificator is separated into two steps sequentially performed:

• learning,

• deployment of the classificator

Table F.1 shows a comparison of times required for the formal description and the

time consuming simulation. The time required for the calculation of mean degrees of

check nodes is the fastest. The ratio between times required for the comprehensive

simulation and the calculation of mean degrees is depicted in Table F.2. As can be

seen in figures below, this feature may be used to distinguish if a code is potentionally

efficient or inefficient.

• codes potentially good, which will be passed to the simulator,

• codes potentially bad, which will be dropped.

Table F.1: Comparison of times required for formal description and comprehensive
simulation.

required time mean cycle length mean node degree Eb/N0 at 10−3

average 3.0126 ms 0.00015418 ms 11828 ms
minimum 1.137 ms 0.000135 ms 2407 ms
maximum 5.047 ms 0.000193 ms 17709 ms

median 3.112 ms 0.000155 ms 12545 ms

114

Formal

description

Feature

vector

Time

consuming

simulation

Data

storage

Fitness function during

learning process

Figure F-1: The algorithm of learning a feature based classificator.

Classification
Formal

description

Feature

vector

Time

consuming

simulation

Rule

Accelerated fitness function with

feature-based classification

Bad solution

Figure F-2: The algorithm for accelerating the evaluation function.

Table F.2: Comparison of times required for formal description and comprehensive
simulation.

Ratio Simulation / Formal description
mean 7.67E+07

minimum 1.78E+07
maximum 9.18E+07

median 8.09E+07

115

2 3 4 5 6 7 8
3

4

5

6

7

8

9

e
b
n
0
 a

t
1
e

3

avg degree

(a) Experiment A.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
3

4

5

6

7

8

9

e
b
n
0
 a

t
1
e

3

avg degree

(b) Experiment B.

Figure F-3: Required Signal to Noise Ratio against average variable node degrees.

0 5 10 15 20 25 30 35 40
3

4

5

6

7

8

9

degree variance

e
b
n
0
 a

t
1
e

3

(a) Experiment A.

0 5 10 15 20 25 30 35 40
3

4

5

6

7

8

9

degree variance

e
b
n
0
 a

t
1
e

3

(b) Experiment B.

Figure F-4: Required Signal to Noise Ratio against average variable node degrees.

2

4

6

8

0
10

20
30

40

3

4

5

6

7

8

9

average degree
degree variance

(a) Experiment A.

2

4

6

8

0
10

2030
40

3

4

5

6

7

8

9

average degre
degree variance

(b) Experiment B.

Figure F-5: Required Signal to Noise Ratio against features.

116

References

[1] C. Anton, L. Ionescu, I. Tutanescu, A. Mazare, G. Serban, Error detection and
correction using LDPC in parallel Hopfield networks, Electrical and Electronics
Engineering (ISEEE), 2013 4th International Symposium on , vol., no., pp.1,4,
11-13 Oct. 2013

[2] E. Arikan, Channel Polarization: A Method for Constructing Capacity-Achieving
Codes for Symmetric Binary-Input Memoryless Channels, in IEEE Transactions
on Information Theory, vol. 55, no. 7, pp. 3051-3073, July 2009.

[3] J. P. Arun, M. Mishra and S. V. Subramaniam, Parallel implementation of
MOPSO on GPU using OpenCL and CUDA, 2011 18th International Conference
on High Performance Computing, Bangalore, 2011, pp. 1-10.

[4] C. A. Aslam, Y. L. Guan and K. Cai, Improving the Belief-Propagation Conver-
gence of Irregular LDPC Codes Using Column-Weight Based Scheduling, in IEEE
Communications Letters, vol. 19, no. 8, pp. 1283-1286, Aug. 2015.

[5] M. Beermann, E. Monr, L. Schmalen and P. Vary, High speed decoding of non-
binary irregular LDPC codes using GPUs, SiPS 2013 Proceedings, Taipei City,
2013, pp. 36-41.

[6] G. Bernab, G. D. Guerrero and J. Fernndez, CUDA and OpenCL implementations
of 3D Fast Wavelet Transform, Circuits and Systems (LASCAS), 2012 IEEE Third
Latin American Symposium on, Playa del Carmen, 2012, pp. 1-4.

[7] R. Bose, D. Ray-Chaudhuri, On a Class of Error-Correcting Binary Codes. Inf.
and Control, vol. 3, pp. 68-79, 1960.

[8] N. Bonello, S. Chen, L. Hanzo, Low-Density Parity-Check Codes and Their Rate-
less Relatives, Communications Surveys & Tutorials, IEEE , vol.13, no.1, pp.3,26,
First Quarter 2011.

[9] G. J. Byers, F. Takawira, Fourier transform decoding of non-binary LDPC codes.
In Proceedings Southern African Telecommunication Networks and Applications
Conference, 2004.

[10] J. Broulim, V. Georgiev, LDPC error correction code utilization, Telecommuni-
cations Forum (TELFOR), 2012 20th , vol., no., pp.1048,1051, 20-22 Nov. 2012.

117

[11] J. Broulim, V. Georgiev, J. Moldaschl and L. Palocko, LDPC code optimization
based on Tanner graph mutations, 2013 21st Telecommunications Forum Telfor
(TELFOR), Belgrade, 2013, pp. 389-392.

[12] J. Broulim, P. Broulim, J. Moldaschl, V. Georgiev and R. Salom, Fully parallel
FPGA decoder for irregular LDPC codes, 2015 23rd Telecommunications Forum
Telfor (TELFOR), Belgrade, 2015, pp. 309-312.

[13] Sae-Young Chung, G. D. Forney Jr., T. J. Richardson, R. Urbanke, On the
design of low-density parity-check codes within 0.0045 dB of the Shannon limit,
Communications Letters, IEEE , vol.5, no.2, pp.58,60, Feb 2001.

[14] M. C. Davey, D. MacKay, Low-density parity check codes over GF(q), Commu-
nications Letters, IEEE , vol.2, no.6, pp.165,167, June 1998.

[15] M. C. Davey, D. MacKay, Low density parity check codes over GF(q), Information
Theory Workshop, 1998 , vol., no., pp.70,71, 22-26 Jun 1998.

[16] M. C. Davey, Error-correction using Low-Density Parity-Check Codes. Ph.D.
dissertation, University of Cambridge, 1999.

[17] P. Elias, Coding for Noisy Channels. IRE Conv. Rept. Pt. 4, pp. 37-47, 1955.

[18] J. Fang, A. L. Varbanescu and H. Sips, A Comprehensive Performance Compari-
son of CUDA and OpenCL, 2011 International Conference on Parallel Processing,
Taipei City, 2011, pp. 216-225.

[19] Y. Fang, G. Bi, Y. L. Guan and F. C. M. Lau, A Survey on Protograph LDPC
Codes and Their Applications, in IEEE Communications Surveys & Tutorials, vol.
17, no. 4, pp. 1989-2016, Fourthquarter 2015.

[20] G. Falcao, V. Silva, L. Sousa and J. Andrade, Portable LDPC Decoding on Mul-
ticores Using OpenCL [Applications Corner], IEEE Signal Processing Magazine,
vol. 29, no. 4, pp. 81-109, July 2012.

[21] M.P.C. Fossorier, Quasicyclic low-density parity-check codes from circulant per-
mutation matrices, Information Theory, IEEE Transactions on , vol.50, no.8,
pp.1788,1793, Aug. 2004.

[22] R. Hamming, Error detecting and error correcting codes. Bell Syst. Technical
Journal. vol. 29, pp. 41-56, 1950.

[23] C. Heinemann, S. S. Chaduvu, A. Byerly and A. Uskov, OpenCL and CUDA
software implementations of encryption/decryption algorithms for IPsec VPNs,
2016 IEEE International Conference on Electro Information Technology (EIT),
Grand Forks, ND, 2016, pp. 0765-0770.

[24] R. G. Gallager, Low Density Parity Check Codes, Transactions of the IRE Pro-
fessional Group on Information Theory, Vol. IT-8, January 1962, pp. 2l-28.

118

[25] M. J. E. Golay. Notes on Digital Coding, Proc. IRE 37: 657, 1949.

[26] Joo-Yul Park and Ki-Seok Chung, Parallel LDPC decoding using CUDA and
OpenMP. Park and Chung EURASIP Journal on Wireless Communications and
Networking, 2011.

[27] A. R. Karami, M. A. Attari, H. Tavakoli, H., Multi Layer Perceptron Neural
Networks Decoder for LDPC Codes,” Wireless Communications, Networking and
Mobile Computing, 2009. WiCom ’09. 5th International Conference on , vol., no.,
pp.1,4, 24-26 Sept. 2009.

[28] N. F. Kiyani, J. H. Weber, Analysis of random regular LDPC codes on Rayleigh
fading channels. Proceedings of the twenty-seventh symposium on information
theory in the Benelux. WIC, 2006. p. 69-76.

[29] L. Kocarev, Z. Tasev Z., A. Vardy, Improving turbo codes by control of transient
chaos in turbo-decoding algorithms, Electronics Letters, vol. 38, pp. 1184-1186,
2002.

[30] Y. Kou, S. Lin and M. P. C. Fossorier, Low-density parity-check codes based
on finite geometries: a rediscovery and new results, in IEEE Transactions on
Information Theory, vol. 47, no. 7, pp. 2711-2736, Nov 2001.

[31] A.D. Kumar, A. Dukkipati, A two stage selective averaging LDPC decoding, in
Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on
, vol., no., pp.2866-2870, 1-6 July 2012.

[32] F. Leduc-Primeau, S. Hemati, S. Mannor and W. J. Gross, Dithered Belief Prop-
agation Decoding, in IEEE Transactions on Communications, vol. 60, no. 8, pp.
2042-2047, August 2012.

[33] Wang Lin, Xiao Juan and Guanrong Chen, Density evolution method and thresh-
old decision for irregular LDPC codes, 2004 International Conference on Commu-
nications, Circuits and Systems (IEEE Cat. No.04EX914), Chengdu, 2004, pp.
25-28 Vol.1.

[34] G. Liva, M. Chiani, Protograph LDPC Codes Design Based on EXIT Analysis,
Global Telecommunications Conference, 2007. GLOBECOM ’07. IEEE , vol., no.,
pp.3250,3254, 26-30 Nov. 2007

[35] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. Spielman, Improved low-
density parity-check codes using irregular graphs and belief propagation, in Proc.
1998 Int. Symp. Information Theory, p. 117.

[36] D. J. MacKay. Encyclopedia of sparse graph codes. [Online]. Available:
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

119

[37] D. J. C. MacKay, R. M. Neal, Good Codes based on Very Sparse Matrices. Cryp-
tography and Coding. 5th IMA Conference, number 1025 in Lecture Notes in
Computer Science. 1995.

[38] D.J.C. MacKay, S.T. Wilson, M.C. Davey, Comparison of constructions of ir-
regular Gallager codes, Communications, IEEE Transactions on , vol.47, no.10,
pp.1449,1454, Oct 1999.

[39] D.J.C. MacKay, Good error-correcting codes based on very sparse matrices, In-
formation Theory, IEEE Transactions on , vol.45, no.2, pp.399,431, Mar 1999.

[40] N. Mobini, New Iterative Decoding Algorithms for Low-Density Parity-Check
(LDPC) Codes. Otawa-Carleton Institute for Electrical and Computer Engineer-
ing. 2011.

[41] T. K. Moon, Error Correction Coding : Mathematical methods and algorithms.
John Wiley & Sons, Inc., 2005, 756 s. ISBN 0-471-64800-0.

[42] P. Moreira, A. Marchioro, K. Kloukinas, The GBT, a Proposed Architecture for
Multi-Gb/s Data Transmission in High Energy Physics. CERN

[43] J. M. F. Moura, Jin Lu and Haotian Zhang, Structured low-density parity-check
codes, in IEEE Signal Processing Magazine, vol. 21, no. 1, pp. 42-55, Jan. 2004.

[44] D. Muller, Application of Boolean Switching Algebra to Switching Circuit Design.
IEEE Trans. on Computers, vol. 3, pp. 6-12, Sept. 1954.

[45] N. Obata, Jian Yung-Yih, K. Kasai, H. D. Pfister, Spatially-coupled multi-edge
type LDPC codes with bounded degrees that achieve capacity on the BEC under
BP decoding, Information Theory Proceedings (ISIT), 2013 IEEE International
Symposium on , vol., no., pp.2433,2437, 7-12 July 2013

[46] C.E. Shannon, A mathematical theory of communication. Bell Sys. Technical
Journal. vol. 27, pp. 379423, 623656, July, October, 1948.

[47] T. Ott, R. Stoop, The neurodynamics of belief propagation on binary markov
random fields. Advances in Neural Information Processing Systems 19, Cambridge,
MA: MIT Press. pp. 10571064. 2007.

[48] Prange E, Cyclic Error-Correcting Codes in Two Symbols. Air Force Cambridge
Research Center, Cambridge, MA, Tech. Rep. TN- 57-103, Sept. 1957.

[49] I. Reed. A class of Multiple-Error Correcting Codes and a Decoding Scheme.
IEEE Trans. Information Theory, vol. 4, pp. 38-49, Sept 1954.

[50] T. J. Richardson, M.A. Shokrollahi, R. L. Urbanke, Design of capacity-
approaching irregular low-density parity-check codes, Information Theory, IEEE
Transactions on , vol.47, no.2, pp.619,637, Feb 2001.

120

[51] T. J. Richardson and R. L. Urbanke, The capacity of low-density parity-check
codes under message-passing decoding, in IEEE Transactions on Information The-
ory, vol. 47, no. 2, pp. 599-618, Feb 2001.

[52] T. J. Richardson, R. L. Urbanke, Multi-Edge LDPC Codes. DRAFT, 2004.

[53] I. Reed, G. Solomon. Polynomial Codes over Certain Finite Field. J. Soc. Indust.
Appl. Math. vol. 8 pp. 300-304, 1960.

[54] D. A. Spielman, Finding good LDPC codes, 36th Annual Allerton Conference on
Communication, Control, and Computing, 1998.

[55] R. Tanese. Distributed Genetic Algorithms. Proceedings of the Third Interna-
tional Conference on Genetic Algorithms, pages 434-439. Morgan Kaufmann,
1989.

[56] R. M. Tanner, A recursive approach to low complexity codes, Information Theory,
IEEE Transactions on , vol.27, no.5, pp.533,547, Sep 1981.

[57] S. S. Tehrani, S. Mannor, W. J. Gross, Fully Parallel Stochastic LDPC Decoders,
Signal Processing, IEEE Transactions on , vol.56, no.11, pp.5692,5703, Nov. 2008.

[58] Tao Tian, C. Jones, J. D. Villasenor and R. D. Wesel, Construction of irreg-
ular LDPC codes with low error floors, Communications, 2003. ICC ’03. IEEE
International Conference on, 2003, pp. 3125-3129 vol.5.

[59] J. Thorpe, Low-Density Parity-Check (LDPC) Codes Constructed from Pro-
tographs, IPN Progress Report 42-154, 2003.

[60] J. Thorpe, K. Andrews, S. Dolinar, Methodologies for designing LDPC codes us-
ing protographs and circulants, Information Theory, 2004. ISIT 2004. Proceedings.
International Symposium on , vol., no., pp.238,, 27 June-2 July 2004.

[61] Tao Tian, C. R. Jones, J. D. Villasenor, R. D. Wesel, Selective avoidance of
cycles in irregular LDPC code construction, Communications, IEEE Transactions
on , vol.52, no.8, pp.1242,1247, Aug. 2004.

[62] C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-correcting
coding and decoding: Turbo-codes (1). Communications, 1993. ICC ’93 Geneva.
Technical Program, Conference Record, IEEE International Conference on , vol.2,
no., pp.1064,1070 vol.2, 23-26 May 1993.

[63] A. G. D. Uchoa, C. Healy, R. C. de Lamare, R. D. Souza, LDPC codes based
on Progressive Edge Growth techniques for block fading channels, Wireless Com-
munication Systems (ISWCS), 2011 8th International Symposium on , vol., no.,
pp.392,396, 6-9 Nov. 2011.

[64] B. Vasic, Combinatorial constructions of low-density parity check codes for iter-
ative decoding, Information Theory, 2002. Proceedings. 2002 IEEE International
Symposium on , vol., no., pp.312,, 2002

121

[65] B. Vasic and O. Milenkovic, Combinatorial constructions of low-density parity-
check codes for iterative decoding, in IEEE Transactions on Information Theory,
vol. 50, no. 6, pp. 1156-1176, June 2004.

[66] G. Wang, M. Wu, B. Yin and J. R. Cavallaro, High throughput low latency LDPC
decoding on GPU for SDR systems, Global Conference on Signal and Information
Processing (GlobalSIP), 2013 IEEE, Austin, TX, 2013, pp. 1258-1261.

[67] Z. Wang, Z. Cui, Low-Complexity High-Speed Decoder Design for Quasi-Cyclic
LDPC Codes, Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on , vol.15, no.1, pp.104,114, Jan. 2007.

[68] S. Wang, S. Cheng and Q. Wu, A parallel decoding algorithm of LDPC codes
using CUDA, 2008 42nd Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, 2008, pp. 171-175.

[69] X. Wen et al., A high throughput LDPC decoder using a mid-range GPU,
2014 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), Florence, 2014, pp. 7515-7519.

[70] N. Wiberg, Codes and Decoding on General Graphs. PhD thesis, Dept. of Elec-
trical Engineering, Lionkoing, Sweden, 1996. Lionkoing studies in Science and
Technologz. Dissertation No. 440.

[71] Darrell Whitley, Soraya Rana, Robert B. Heckendorn. Island model genetic al-
gorithms and linearly separable problems. Evolutionary Computing, pp. 109-125,
1997.

[72] Z. Wu, K. Su, L. Guo, A modified Min Sum decoding algorithm based on LMMSE
for LDPC codes, in AEU - International Journal of Electronics and Communica-
tions, vol. 68, i. 10, October 2014.

[73] Xiao-Yu Hu, E. Eleftheriou, D.M. Arnold, Progressive edge-growth Tanner
graphs, Global Telecommunications Conference, 2001. GLOBECOM ’01. IEEE
, vol.2, no., pp.995,1001 vol.2, 2001

[74] Xiao-Yu Hu, E. Eleftheriou, D.M. Arnold, Regular and irregular progressive edge-
growth tanner graphs, Information Theory, IEEE Transactions on , vol.51, no.1,
pp.386,398, Jan. 2005.

[75] M.R. Yazdani, S. Hemati, A.H. Banihashemi, Improving belief propagation on
graphs with cycles, in Communications Letters, IEEE , vol.8, no.1, pp.57-59, Jan.
2004, doi: 10.1109/LCOMM.2003.822499

[76] J. S. Yedidia, W. T. Freeman, Y. Weiss, Generalized belief propagation, in Ad-
vances Neural Inf. Proc. Syst. (NIPS), pp. 689695, MIT Press, 2001.

122

[77] X. Wu, Y. Song, M. Jiang and C. Zhao, Adaptive-Normalized/Offset Min-Sum
Algorithm, in IEEE Communications Letters, vol. 14, no. 7, pp. 667-669, July
2010.

[78] Z. Wu, K. Su, L. Guo, A modified Min Sum decoding algorithm based on LMMSE
for LDPC codes, in AEU - International Journal of Electronics and Communica-
tions, vol. 68, i. 10, October 2014.

[79] Yue Zhao, Xu Chen, Chiu-Wing Sham, Wai M. Tam, and Francis C.M. Lau Ef-
ficient Decoding of QC-LDPC Codes Using GPUs, Algorithms and Architectures
for Parallel Processing. 2011

[80] X. Zhang; F. Cai, Efficient Partial-Parallel Decoder Architecture for Quasi-Cyclic
Nonbinary LDPC Codes, Circuits and Systems I: Regular Papers, IEEE Transac-
tions on , vol.58, no.2, pp.402,414, Feb. 2011.

[81] Haotian Zhang and J. M. F. Moura, Large-girth LDPC codes based on graphical
models, 2003 4th IEEE Workshop on Signal Processing Advances in Wireless
Communications - SPAWC 2003 (IEEE Cat. No.03EX689), 2003, pp. 100-104.

[82] Y. Zhao and F. C. M. Lau, Implementation of Decoders for LDPC Block Codes
and LDPC Convolutional Codes Based on GPUs, IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 3, pp. 663-672, March 2014.

[83] Yue Zhao, Xu Chen, Chiu-Wing Sham, Wai M. Tam, and Francis C.M. Lau, Ef-
ficient Decoding of QC-LDPC Codes Using GPUs. 11th International Conference,
ICA3PP, Melbourne, Australia, October 24-26, 2011, Proceedings, Part I

[84] Xia Zheng, F. C. M. Lau, C. K. Tse, Constructing Short-Length Irregular LDPC
Codes with Low Error Floor, Communications, IEEE Transactions on , vol.58,
no.10, pp.2823,2834, October 2010.

[85] V. V. Zyablov, M. S. Pinsker, Estimation of the error-correction complexity for
Gallager low-density codes, Problems of Inform. Transmission, vol. 11, no. 1, pp.
2326, Jan.March 1975

[86] ETSI EN 302 755 European standard (DVB-T2) [Online]. Available:
http://www.etsi.org/. Accessed: [25-Nov-2016].

[87] IEEE 802 LAN/MAN Standards Committee materials, [Online]. Available:
http://www.ieee802.org/. Accessed: [25-Nov-2016].

[88] ETSI EN 302 307 European standard (DVB-S2), [Online]. Available:
http://www.etsi.org/. Accessed: [25-Nov-2016].

[89] NVIDIA Corporation, Cuda Runtime API, Reference manual, 2015 [On-
line]. Available: http://docs.nvidia.com/cuda/pdf/CUDA Runtime API.pdf. Ac-
cessed: [28-Jan-2018].

123

[90] Khronos OpenCL Working Group, The OpenCL Specification, 2011 [Online].
Available: https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf. Accessed:
[28-Jan-2018].

[91] Ryan Smith, NVIDIA Launches Tesla K80, GK210 GPU. AnandTech (November
17, 2014), Available: http://www.anandtech.com/tag/gpus. Accessed: [02-Jun-
2016]

[92] Whitepaper of NVIDIA’s Next Generation CUDA Compute Architecture: Kepler
GK110/210. Available: http://www.nvidia.com/object/gpu-architecture.html.
Accessed: [02-Jun-2016]

[93] CCSDS, Short Block Length LDPC Codes for TC Synchronization and Channel
Coding. Washington, DC, USA, Apr. 2015, CCSDS 231.1-O-1.

[94] IEEE Standard for Local and Metropolitan Area Networks Part 16: Air In-
terface for Fixed and Mobile Broadband Wireless Access Systems Amendment
2: Physical and Medium Access Control Layers for Combined Fixed and Mobile
Operation in Licensed Bands and Corrigendum 1,in IEEE Std 802.16e-2005 and
IEEE Std 802.16-2004/Cor 1-2005 (Amendment and Corrigendum to IEEE Std
802.16-2004) , vol., no., pp.0 1-822, 2006.

124

List of author’s publications

[1] J. Broulim, V. Georgiev, LDPC error correction code utilization, 20th Telecom-
munications Forum TELFOR 2012. Blehrad: IEEE, 2012. s. 1048-1051. ISBN:
978-1-4673-2984-2.

[2] M. Holik, V. Kraus, V. Georgiev, J. Broulim, The interface for the pixelated par-
ticle detector with the capability of the spectroscopy function and the coincidence
measurement operation, 21st Telecommunications Forum (TELFOR) Proceedings
of Papers. IEEE, 2013. s. 557-560. ISBN: 978-1-4799-1419-7.

[3] J. Broulim, V. Georgiev, J. Moldaschl, L. Palocko, LDPC code optimization based
on Tanner graph mutations, 21st Telecommunications Forum (TELFOR) Pro-
ceedings of Papers. Blehrad: IEEE, 2013. s. 389-392. ISBN: 978-1-4799-1419-7.

[4] L. Palocko, J. Broulim, J. Moldaschl, Decoder with the Dynamic CMOS Matrix,
21st Telecommunications Forum TELFOR 2013. Blehrad: IEEE, 2013. s. 612-615.
ISBN: 978-1-4799-1419-7.

[5] P. Broulim, J. Broulim, V. Georgiev, J. Moldaschl, Very high resolution time mea-
surement in FPGA, 22nd Telecommunications Forum TELFOR 2014 Proceedings
of Papers. Blehrad: IEEE, 2014. s. 745-748. ISBN: 978-1-4799-6190-0.

[6] J. Moldaschl, J. Broulim, L. Palocko, Principle of Power Factor Corrector with
Critical Conduction Mode, 2014 International Conference on Applied Electronics.
Pilsen: University of West Bohemia, 2014. s. 217-220. ISBN: 978-80-261-0276-2 ,
ISSN: 1803-7232.

[7] J. Moldaschl, J. Broulim, L. Palocko, Boost Power Factor Topology with Average
Current Control, 2014 International Conference on Applied Electronics. Pilsen:
University of West Bohemia, 2014. s. 213-216. ISBN: 978-80-261-0276-2 , ISSN:
1803-7232.

[8] R. Salom, J. Broulim, LDPC (512,480) genetic design as alternative to CRC in
implementation of AODV routing protocol stack., Proceedings of Papers : 2015
23rd Telecommunications Forum (TELFOR 2015). Piscataway: IEEE, 2015. s.
643-645. ISBN: 978-1-5090-0055-5.

125

[9] J. Broulim, P. Broulim, J. Moldaschl, V. Georgiev, R. Salom, Fully parallel FPGA
decoder for irregular LDPC codes, Proceedings of Papers : 2015 23rd Telecom-
munications Forum (TELFOR 2015). Piscataway: IEEE, 2015. s. 309-312. ISBN:
978-1-5090-0055-5.

[10] P. Broulim, J. Bartovsky, J. Broulim, P. Burian, V. Georgiev, M. Holik, V. Kraus,
A. Krutina, J. Moldaschl, V. Pavlicek, S. Pospisil, J. Vlasek, Compact device for
detecting single event effects in semiconductor components, Proceedings of Papers
: 2015 23rd Telecommunications Forum (TELFOR 2015). Piscataway: IEEE,
2015. s. 639-642. ISBN: 978-1-5090-0055-5.

[11] J. Zich, J. Broulim, Wireless unit for environmental monitoring, 2016 24th
Telecommunications Forum (TELFOR 2016) : Proceedings of Papers. Piscat-
away: IEEE, 2016. s. 643-646. ISBN: 978-1-5090-4086-5.

[12] J. Broulim, V. Georgiev, N. Boulgouris, On fast exhaustive search of the mini-
mum distance of linear block codes, 8th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT 2016) : pro-
ceedings. Piscataway: IEEE, 2016. s. 342-345. ISBN: 978-1-4673-8818-4 , ISSN:
2157-0221.

[13] J. Broulim, S. Davarzani, V. Georgiev, J. Zich, Genetic optimization of a short
block length LDPC code accelerated by distributed algorithms, 2016 24th Telecom-
munications Forum (TELFOR 2016) : Proceedings of Papers. Piscataway: IEEE,
2016. s. 250-253. ISBN: 978-1-5090-4086-5.

[14] J. Moldaschl, J. Broulim, An impact of the boost diode selection on the overall
efficiency of active power factor correctors, International Conference on Applied
Electronics (AE 2016) : proceedings. Piscataway: IEEE, 2016. s. 187-190. ISBN:
978-80-261-0601-2 , ISSN: 1803-7232.

[15] J. Broulim, J. Moldaschl, V. Georgiev, A programmable voltage source with high
speed current feedback protection, In International Conference on Applied Elec-
tronics (AE 2016) : proceedings. Piscataway: IEEE, 2016. s. 31-34. ISBN: 978-
80-261-0601-2 , ISSN: 1803-7232.

[16] J. Zich, J. Broulim, M. Holik, Smart single-phase battery storage system, 25th
Telecommunications Forum (TELFOR) : Proceedings of Papers. Piscataway:
IEEE, 2017. s. 589-592. ISBN: 978-1-5386-3073-0.

[17] J. Broulim, V. Georgiev, M. Holik, J. Zich, Improved belief propagation based
on the estimation backtracking, 25th Telecommunications Forum (TELFOR) :
Proceedings of Papers. Piscataway: IEEE, 2017. s. 262-265. ISBN: 978-1-5386-
3073-0.

[18] M. Holik, J. Broulim, V. Georgiev, Y. Mora Sierra, Enhanced timepix3 chipboard
for operation in vacuum and back-side-pulse spectroscopy, 25th Telecommunica-
tions Forum (TELFOR) : Proceedings of Papers. Piscataway: IEEE, 2017. s.
593-596. ISBN: 978-1-5386-3073-0.

126

[19] In preparation: OpenCL/CUDA algorithms for parallel decoding of any irregular
LDPC code using GPU

[20] In preparation: Mutational LDPC decoding using Information Entropy

[21] In preparation: A synchronization and data acquisition system for silicon detec-
tors

[22] In preparation: j-Pix : A multiplatform acquisition package for Timepix 3

127

