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We investigate the effects of deformed algebra, admitted from minimal length, on canonical description of quantum black holes.
Using themodified partition function in the presence of all orders of the Planck length, we calculate the thermodynamical properties
of quantum black holes. Moreover, after obtaining some thermodynamical quantities including internal energy, entropy, and heat
capacity, we conclude that, at high temperature limits due to the decreasing of the number of microstates, the entropy tends to
upper bounds.

1. Introduction

As it is known, one of the most important results of
introducing General Relativity (GR) is the development of
human’s insight of the universe. However, at high energy
levels or very short distances, the study of the attributes of
physical phenomena leads to new problems which makes an
important contribution to our understanding of the nature.
These issues are revealed specially in Planck scales where
quantum effects play essential roles just like the gravitational
effects.

Although GR seems to be a purely classical theory, for
some major applications such as cosmology and black hole
(BH) theories, the quantization of gravity is themain problem
of theoretical physics community. Since there is not a full
theory of quantum gravity (QG), different approaches are
introduced towards QG from phenomenological grounds.
For instance, the canonical quantum theory of gravity which
was first introduced by De Witt can be considered in this
category [1]. It is worthmentioning that all approaches to QG
scenario including string theory, noncommutative geometry,
and loop quantum gravity (LQG) have shown the existence
of a minimal measurable length [2, 3].

One way to survey some phenomenological aspects of
effective QG candidates is the deformation of algebraic
structure of ordinary quantum mechanics. In this sense, the

generalized uncertainty principle [4, 5] and noncommutative
geometry [6, 7] can be mentioned as the most famous defor-
mations which impose the ultraviolet and infrared cutoffs for
the physical systems [8, 9]. As it is known, noncommutative
geometry imposes the ultraviolet (UV) and infrared (IR)
cutoffs on the spacetime manifold [8, 9]. According to the
fact that the existence of UV and IR cutoffs is necessary
for regularization and renormalization of quantum fields
in curved spacetimes, the noncommutative geometry can
be considered as an appropriate framework to formulate
theories which deal with UV and IR cutoffs. It has been
proved that quantum field theories in a noncommutative
background are naturally regularized.

The study of black hole thermodynamics in quantumfield
theory which is governed in curved spacetime is interesting
because it leads to black hole thermal emission via Hawking
process [10–12]. Also, in order to calculate the standard sta-
tistical mechanics quantities of black holes, the Hamiltonian
formulation of black hole is needed. It is worth mentioning
that although formulating BH’s Hamiltonian in the classical
framework of GR is impossible, for some particular cases
like the Schwarzschild BH, it is possible [13–15]. Quantization
of the Schwarzschild mass is found out within this process
which coincides with Bekenstein proposal [16, 17]. It should
be noted that the applications of quantum gravity have been
widely studied. In particular, the quantum gravity canmodify
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the thermodynamics of black hole, such as Schwarzschild-
Tangherlini black hole [18, 19] and Reissner Nordstrom de
Sitter quintessence black hole [20, 21], and the strength of
the quantum gravitational effect can be constrained by the
gravitational wave events [22].

In this paper, using the higher order deformed commu-
tation relation [𝑋, 𝑃] = 𝑖ℏ exp(𝜆𝑃2), we investigate semi-
classical statistical mechanics which implies the existence
of the minimal measurable length. Also, it is shown that
our results coincide with those obtained from full quantum
considerations in the limit of high temperature. Since thisway
is appropriate to investigate the thermodynamical properties
of quantumblack holes, we use that to study thermodynamics
of the quantum black hole in new framework and find cor-
rections to the Hawking entropy. It should be noted that our
method can be very interesting because we obtain solutions
without solving the Hamiltonian eigenvalue problem.

2. Quantum Corrections to Black Holes

It is known that when a pair of appropriate canonical
coordinates (m, 𝑝𝑚) is identified, Schwarzschild black hole
can be described as a canonical systemwhich its Hamiltonian
is described by its mass; that is, 𝐻 = m [13–15]. But a
canonical transformation takes place in a new canonical pair(𝑎, 𝑝𝑎), which leads to the following newHamiltonian [13–15]:

𝐻 = 𝑝2
𝑎2𝑎 + 𝑎2 , (1)

󵄨󵄨󵄨󵄨𝑝𝑚
󵄨󵄨󵄨󵄨 = ∫2m

𝑎

𝑑𝑏√2m𝑏−1 − 1
= √2m𝑎 − 𝑎2 + (1 − 𝑎

m
) + 12𝜋m

𝑝𝑎 = sgn (𝑝𝑚)√2m𝑎 − 𝑎2.
(2)

The ranges of the variables are 𝑎 > 0 and −∞ < 𝑝𝑎 < ∞. The
transformation is well-defined, one-to-one, and canonical.
Using (1), the Wheeler-Dewitt equation is obtained as [23–
25]

ℎ2𝐺2

𝑐6 𝑎−𝑠−1 𝑑𝑑𝑎 (𝑎𝑠 𝑑𝑑𝑎𝜓 (𝑎)) = (𝑎 − 2𝐺𝑀𝑐2 )𝜓 (𝑎) . (3)

For the special case, if we set 𝑠 = 2 (Indeed, there are
various possibilities for ordering. Since the factor-ordering
parameter will not affect the semiclassical calculations in
minisuperspace models, one usually chooses a special value
for it in a given model.), 𝑅𝑠 = 2𝐺𝑀/𝑐2, 𝜓(𝑎) = (1/𝑎)𝑈(𝑎),
and 𝜉 = 𝑎 − 𝑅𝑠, the correspondingWheeler-DeWitt equation
can be expressed in the form of a Schrödinger equation for a
quantum harmonic oscillator as [23–26]

(−12𝑙2𝑝𝐸𝑝
𝑑2𝑑𝑥2 + 𝐸𝑝2𝑙2𝑝𝐸2

𝑝

)𝑈 (𝑥) = 𝑅𝑠4𝑙𝑝𝐸𝑠𝑈 (𝑥) , (4)

where 𝑙𝑝 is the Planck length, 𝐸𝑝 = √ℏ𝑐2/𝐺 is the Planck
energy, 𝐸𝑠 = 𝑀𝑐2 is the black hole ADM energy, and

𝑅𝑠 = 2𝐺𝑀/𝑐2 is the Schwarzschild radius (where the
variable 𝜉 indicates the gravitational degrees of freedomof the
Schwarzschild black hole, defining the appropriate constants
and considering the fact that the energy of excitations asso-
ciated with variable 𝑎 is not positive as a phase coordinate.𝜓(𝑎) = (1/𝑎)𝑈(𝑎) is the BH wave function.).

After initial results which were given by Duff [27],
the most important quantum correction to the Newtonian
potential (NP) is derived by Donoghue, with the acceptance
of GR as the basic theory of gravity. Also, Donoghue [28,
29] formulated GR as an effective field theory (EFT) and
he established that interaction between two bodies can be
considered as a potential gravitational energy [30–33]; that
is,

𝑈 (𝑟) = −𝐺𝑀𝑚𝑟 (1 + 3𝐺 (𝑀 + 𝑚)𝑟𝑐2 + 4110𝜋 ℓ2𝑃𝑟2 ) . (5)

Clearly, the first term of correction has no power of ℏ. So,
it is a classical effect and this is due to the nonlinear nature of
GR. The second term of correction is a true quantum effect,
linear in ℏ. Now, the potential which is generated by mass𝑀
reads

𝑉 (𝑟) = −𝐺𝑀𝑟 (1 + 3𝐺𝑀𝑟 (1 + 𝑚𝑀) + 4110𝜋 ℓ2𝑃𝑟2 ) . (6)

Next, we attend to the effective potential which is obtained
from a metric in general form

𝑑𝑠2 = 𝑓 (𝑟) 𝑑𝑡2 − 𝑔𝑖𝑘 (𝑥1, 𝑥2, 𝑥3) 𝑑𝑥𝑖𝑑𝑥𝑘, (7)

where 𝑟 = |x| = (𝑥21 + 𝑥22 + 𝑥23)1/2 and 𝑥1, 𝑥2, and 𝑥3 are the
standard Cartesian coordinates. From (7), the standard form
of the Schwarzschild metric, namely,

𝑑𝑠2 = (1 − 2𝐺𝑀𝑟 )𝑑𝑡2 − (1 − 2𝐺𝑀𝑟 )−1 𝑑𝑟2 − 𝑟2𝑑Ω2, (8)

in harmonic coordinates leads to

𝑑𝑠2 = (𝑅 − 𝐺𝑀𝑅 + 𝐺𝑀)𝑑𝑡2 − (𝑅 + 𝐺𝑀𝑅 − 𝐺𝑀)𝑑𝑅2

− (𝑅 + 𝐺𝑀)2 𝑑Ω2, (9)

where 𝑅 = 𝑟 − 𝐺𝑀. For any general form of metric, we have
[34]

𝑑𝑠2 = 𝑓 (𝑟) 𝑑𝑡2 − 𝑓 (𝑟)−1 𝑑𝑟2 − 𝐶 (𝑟) 𝑑Ω2. (10)

Now, form (7) and (10), we get

𝑑𝑠2 = 𝑓 (𝑟) 𝑑𝑡2 − (𝑓 (𝑟)−1 − 𝐶 (𝑟)𝑟2 ) 1𝑟2 (x ⋅ 𝑑x)2
− 𝐶 (𝑟)𝑟2 𝑑x2. (11)

The point that should be noted here is that for a particle
far from the source which moves slowly in a stationary
and weak gravitational field, that is, 𝑟 → ∞, the effective
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Newtonian potential is given by the metric (7). So, the
effective Newtonian potential is

𝑉 (𝑟) ≃ 12 (𝑓 (𝑟) − 1) . (12)

According to [23–26], using the path integral method
which is applied for the harmonic oscillator, quantum effects
on thermodynamics of the Schwarzschild BH can be intro-
duced. To this end, the modified harmonic potential and
the quantum corrected Hamiltonian for Schwarzschild black
holes read

𝑉 (𝑥) = 𝑚𝜔2

2 (𝑥2 + 𝛽𝑄ℏ212𝑚 ) ,
𝐻𝑄 = 𝑝2

2𝑚𝑝
+ 𝑚𝑝𝜔2𝑥2

2 + 𝛽𝑄𝐸2
𝑝16𝜋 ,

(13)

where𝜔 is the frequency of the quantum harmonic oscillator,
namely, 𝜔 = √3/2𝜋(𝐸𝑝/ℏ), and 𝛽𝑄 = 𝛽𝐻[1 − 1/𝛽𝐻𝑀c2 +
O(𝐸𝑝/𝑀𝑐2)] is the quantum corrected inverse BH temper-
ature. As it is known, in thermodynamics for a quantum
system, the partition function is given by

𝑍 = 1ℎ ∫ 𝑒−𝛽𝐻(𝑝,𝑥)𝑑𝑝𝑑𝑥, (14)

where 𝛽 = 1/𝑇 and 𝑇 is thermodynamical temperature of a
system.Note that when there is not any deformed coordinates
and momenta in the system, 𝑥𝑖 and 𝑝𝑖 are still ordinary
canonically conjugate; that is, {𝑥𝑖, 𝑥𝑗} = {𝑝𝑖, 𝑝𝑗} = 0 and{𝑥𝑖, 𝑝𝑗} = 𝛿𝑖𝑗. So, the resulted partition function gives

𝑍 = 1ℎ ∫∞

−∞
∫∞

−∞
𝑒−𝛽(𝑝2/2𝑚𝑝+𝑚𝑝𝜔2𝑥2/2+𝛽𝑄𝐸2𝑝/16𝜋)𝑑𝑝𝑑𝑥

= 2𝜋𝑇𝑒−𝐸2𝑝/16𝜋𝑇2ℎ𝜔 .
(15)

Next, we obtain Helmholtz free energy, entropy, internal
energy, and specific heat capacity, respectively, as follows:

𝐹 = −𝑇 ln (𝑍) = −𝑇 ln(2𝜋𝑇ℎ𝜔 ) + 𝐸2
𝑝16𝜋𝑇,

𝑆 = 𝜕𝐹𝜕𝑇 = ln(2𝜋𝑇ℎ𝜔 ) + 𝐸2
𝑝16𝜋𝑇2

+ 1,
𝑈 = −𝑇2 𝜕 (𝐹/𝑇)𝜕𝑇 = 𝐸2

𝑝8𝜋𝑇 + 𝑇,
𝐶 = 𝜕𝑈𝜕𝑇 = 1 − 𝐸2

𝑝8𝜋𝑇2
.

(16)

Clearly, by setting 𝐸𝑝 = 0, we recover the classical quan-
tities. In brick wall model [35–40], the ordinary uncertainty
relation is given by

Δ𝑥Δ𝑝 ≥ ℏ2 . (17)

Then, the entropy of black hole can be obtained as follows
[35–40]:

𝑆0 = 𝛽2 𝜕𝐹0𝜕𝛽
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽=𝛽𝐻 = 𝛽2

𝜋 ∫𝐿

𝑟++𝜖
𝑑𝑟

⋅ 1√𝑓 ∫∞

𝑚√𝑓
𝑑𝜔𝜔𝑒𝛽𝜔 (𝜔2/𝑓 − 𝑚2)1/2

(𝑒𝛽𝜔 − 1)2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽=𝛽𝐻

,
(18)

where 𝐹0 is the Helmholtz free energy, 𝜖 is the ultraviolet
regulator, 𝐿 is the infrared regulator, 𝜔 is the energy of
particle, and 𝛽 is the inverse Hawking temperature. In
massless case, the black hole entropy can be calculated as
follows [35–39]:

𝑆0 ≈ 112 ln( 12Λ𝜖) , (19)

where Λ is the cosmological constant. For the external case,
we can assume that 𝛽 → ∞. So, we have

𝑆ext0 = 𝛽2 𝜕𝐹0𝜕𝛽
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽→∞

= 0. (20)

Although these results include a logarithmic divergence, they
will be changed due to the effects of GUP.

3. The Effects of Deformed Algebra on
Some Thermodynamical Quantities

In quantummechanical levels, the nature of UV limitation of
Feynman propagator can be obtained by a nonlinear relation
between the high energy momentum, 𝑝, and the wave vector
of a particle, 𝑓(𝑘); that is, 𝑝 = 𝑓(𝑘) [41–45].

Now, considering the situations in our paper, the
standard momentum measure 𝑑𝑝 should be changed to𝑑𝑝∏𝑖(𝜕𝑘𝑖/𝜕𝑝𝑗). From now on, we turn our attention to
the identical case and work with one space-like dimension.
Following [6–9, 41–45], the following is obtained:

𝜕𝑝𝜕𝑘 = ℏ exp (𝛼2𝑙2𝑝𝑝2) , (21)

where 𝛼 is a dimensionless constant. In this step, using (21)
the dispersion relation is given by

𝑘 (𝑝) = √𝜋2𝛼𝑙𝑝Erf (𝛼𝑙𝑝𝑝) , (22)

and the results can be obtained from the following represen-
tation in momentum space:

𝑋 = 𝑖ℏ exp (𝜆𝑃2) 𝜕𝑝 𝑃 = 𝑝, (23)

in which 𝜆 = 𝛼2𝑙2𝑝. The corrections to the standard Heisen-
berg algebra become effective in the so-called quantum
regime, where the momentum and length scales are of the
order of the Planck mass, 𝑚𝑝, and the Planck length, 𝑙𝑝,
respectively.
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The algebra which is defined by (23) leads to the following
generalized commutator:

[𝑋, 𝑃] = 𝑖ℏ exp (𝜆𝑃2) (24)

and implies the generalized uncertainty principle, namely,
GUP∗,

Δ𝑋Δ𝑃 ≥ ℏ2 ⟨exp (𝜆𝑃2)⟩ . (25)

Now, if we use the property (Δ𝑃)2 = ⟨𝑃2⟩ − ⟨𝑃⟩2, then the
saturate GUP∗ is obtained as

(Δ𝑋) (Δ𝑃) = ℏ2 exp (𝜆 ((Δ𝑃)2 + ⟨𝑃⟩2)) . (26)

Next, taking the square of this relation implies that

𝑢 = 𝑊(𝑢) 𝑒𝑊(𝑢), (27)

where𝑊(𝑢) = −2𝜆(Δ𝑃)2 and 𝑢 = −𝜆ℏ2/2(Δ𝑋)2.
As is known, (27) is exactly indicated in the definition

of the Lambert function [46] and its various branches are
labeled by the integer 𝑘 = 0, ±1, ±2, . . .. Now, it should be
noted that if 𝑢 is a real number, (27) leads to a pair of real
solutions for −1/𝑒 ≤ 𝑢 ≤ 0 which are denoted by𝑊−1(𝑢) and𝑊0(𝑢), respectively. Also, it can only have one real solution
for 𝑢 ≥ 0, namely,𝑊0(𝑢), and for −∞ < 𝑢 < −1/𝑒, there is no
real solution.

Now, using (27) the uncertainty in momentum is
expressed as

Δ𝑃 = ℏ2Δ𝑋𝑒−(1/2)𝑊(−𝜆ℏ2/2(Δ𝑋)2). (28)

Then, according to the argument of the Lambert function
(28) we have the condition 𝜆ℏ2/2(Δ𝑋)2 ≤ 1/𝑒 which leads to
the following minimal uncertainty in position:

(Δ𝑋)min = ℏ√ 𝑒𝜆2 . (29)

Here, the momentum uncertainty can be obtained in
terms of the minimal length as

Δ𝑃 = ℏ2Δ𝑋exp(−12𝑊(−1𝑒 (Δ𝑋minΔ𝑋 )2)) . (30)

Fromnowon, for simplicity we set 𝑙𝑝 = 𝑚−1
𝑝 = 𝑇−1

𝑝 = √𝐺 = 1.
Now, using the deformed algebra (24), the canonical

partition function for a system reads

𝑍new = 1ℎ ∫
Γ
𝜔 exp (−𝛽𝐻)

= 1ℎ ∫𝑑𝑞∫ 𝑑𝑝𝐽 (𝑞, 𝑝) exp (−𝛽𝐻 (𝑞, 𝑝)) , (31)

where 𝐻(𝑋, 𝑃) is the Hamiltonian of the system, 𝑇 is tem-
perature, and 𝐽 = 𝜕(𝑋1, 𝑃1, . . . , 𝑋𝐷, 𝑃𝐷)/𝜕(𝑥1, 𝑝1, . . . , 𝑥𝐷, 𝑝𝐷)

is the Jacobian of the transformation in𝐷-dimensions. Since
the Jacobian can be read off from the deformed Poisson
brackets, in one dimension, it is concluded that [47]

𝐽 = 𝜕 (𝑋1, 𝑃1)𝜕 (𝑥1, 𝑝1) = {𝑋1, 𝑃1} . (32)

So, we obtain

𝐽 = exp (𝜆𝑃2) . (33)

Consequently, using the new partition function, it is easy to
investigate the effects of deformed phase space on thermody-
namical properties of the statistical systems.

4. Deformed Algebra on the Quantum
Black Hole

Based on Section 2, the modified Hamiltonian of the
Schwarzschild black holes is given by (13). Now, using the
deformed algebra (24), the new partition function is obtained
as

𝑍 = 1ℎ ∬ 𝑒−𝛽𝐻𝑄(𝑋,𝑃)𝐽 (𝑋, 𝑃) 𝑑𝑋𝑑𝑃
= 1ℎ ∫∫+∞

−∞

𝑒−𝛽(𝑃2/2𝑚+𝑚𝜔2𝑥2/2+𝛽𝐸𝑝
2/16𝜋)

𝑒𝜆𝑃2 𝑑𝑋𝑑𝑃,
(34)

which concludes that

𝑍GUP (𝑇, 𝜆) = 2𝜋𝑒−𝐸2𝑝/16𝜋𝑇2ℎ𝜔 √ 𝑇2

1 + 2𝑚𝜆𝑇. (35)

Next, we apply the modified partition function (35) to
obtain some thermodynamical quantities such as Helmholtz
free energy, entropy, internal energy, and heat capacity,
respectively, as follows:

𝐹 = −𝑇 ln(2𝜋√𝑇2/ (1 + 2𝑚𝜆𝑇)ℎ𝜔 ) + 𝐸2
𝑝16𝜋𝑇,

𝑆 = (12 + 𝐸2
𝑝16𝜋𝑇2

+ 12 + 4𝑚𝜆𝑇)
+ ln(2𝜋√𝑇2/ (1 + 2𝑚𝜆𝑇)ℎ𝜔 ) ,

𝑈 = 𝐸2
𝑝8𝜋𝑇 + (1 + 11 + 2𝑚𝜆𝑇) 𝑇2 ,

𝐶 = 12 − 𝐸2
𝑝8𝜋𝑇2

+ 12 (1 + 2𝑚𝜆𝑇)2 .

(36)

In this step, because of the duality properties of position
and momentum operators, we assume that Δ𝑋min ∝ Δ𝑃max.
Now, saturating the inequality in relation (28), we obtain

Δ𝑋 = Δ𝑋min 󳨀→
Δ𝑃 = Δ𝑃max = 1√2𝜆 . (37)
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Figure 1: Entropy of quantum black hole versus temperature for𝑚 = ℎ = 𝐸𝑝 = 𝜆 = 1. As we have obtained this result in [23–
25], in high energy limits and near the Plank length scale, the effects
of quantum gravity can be considered as a perturbation sentence
in quantum mechanical theory which leads to reducing the photon
radiation from the distant observer’s point of view. So, black holes
in quantum gravity frameworks have numerically smaller entropy
than the nondeformed black holes in four dimensions.

Thus, using the maximal momentum (37), the partition
function is expressed as

𝑍 = 1ℎ ∫∫+𝑃max

−𝑃max

𝑒−𝛽𝐻𝑄(𝑋,𝑃)𝑒𝜆𝑃2 𝑑𝑋𝑑𝑃
= 𝑒−𝛽2𝐸2𝑝/16𝜋ℎ𝜔 √ 1𝛽 (𝛽 + 2𝑚𝜆)Erf (√𝛽 + 2𝑚𝜆4𝑚𝜆 ) ,

(38)

which concludes the following entropy:

𝑆 = 12 + 𝐸2
𝑝16𝜋𝑇2

+ 12 + 4𝑚𝑇𝜆
− 𝑒−(1+𝑚𝜆𝑇)/4𝑚𝜆𝑇√(1 + 2𝑚𝜆𝑇) /𝑚𝜆𝑇2√𝜋 (1 + 2𝑚𝜆𝑇) erf (√(1 + 2𝑚𝜆𝑇) /4𝑚𝜆𝑇)
+ ln[𝜋√𝑇2/ (1 + 2𝑚𝜆𝑇) erf (√(1 + 2𝑚𝜆𝑇) /4𝑚𝜆𝑇)

2ℎ𝜔 ] .
(39)

To investigate the results more clear, we have depicted
entropy of quantumblack hole versus temperature in Figure 1,
in which it is shown that the modified entropy increases
with a slower slope (the blue solid line) more than the non-
deformed one (the red dashed line). Moreover, the entropy
approaches a maximum bound (the blue dotted line) at very
high temperature limit in deformed algebra which is not
observed in standard framework.

The phase space volume in the (1 + 1) dimension is
changed from 2𝜋 to 2𝜋𝑒𝜆𝑝2 and the number of quantum state
with energy less than 𝜖 is obtained as [35–40]

𝑛0 (𝜔) = 12𝜋 ∫𝑑𝑟 𝑑𝑝𝑟

= 1𝜋 ∫𝐿

𝑟++𝜖
𝑑𝑟 1√𝑓 (𝜔2

𝑓 − 𝑚2)1/2 ,
(40)

where 𝜔 is a parameter of Klein-Gordon equation and 𝑚 in
the mass of the scalar field in brick wall model.

Equation (40) can be related to

𝑛𝐼 (𝜔) = 12𝜋 ∫𝑑𝑟 𝑑𝑝𝑟𝑒−𝜆𝑝2

= 12𝜋 ∫𝑑𝑟 1√𝑓
(𝜔2/𝑓 − 𝑚2)1/2

𝑒𝜆(𝜔2/𝑓−𝑚2) .
(41)

Now, using (41), the free energy can be derived as [35–40]

𝐹0 = − 1𝜋 ∫𝐿

𝑟++𝜖
𝑑𝑟 1√𝑓 ∫∞

𝑚√𝑓
𝑑𝜔(𝜔2/𝑓 − 𝑚2)1/2

𝑒𝛽𝜔 − 1 , (42)

which turns to be a new equation as follows:

𝐹𝐼 = −∫∞

𝑚√𝑓
𝑑𝜔 𝑛𝐼 (𝜔)𝑒𝛽𝜔 − 1

= − 1𝜋 ∫𝑑𝑟 1√𝑓 ∫∞

𝑚√𝑓
𝑑𝜔 (𝜔2/𝑓 − 𝑚2)1/2

(𝑒𝛽𝜔 − 1) 𝑒𝜆(𝜔2/𝑓−𝑚2) .
(43)

From (43), the entropy of BH near the event horizon, that
is, in the range of (𝑟+, 𝑟+ + 𝜖) and 𝑓 → 0, is
𝑆0 = 𝛽2

𝜋 ∫𝐿

𝑟++𝜖
𝑑𝑟 1√𝑓 ∫∞

𝑚√𝑓
𝑑𝜔𝜔𝑒𝛽𝜔 (𝜔2/𝑓 − 𝑚2)1/2

(𝑒𝛽𝜔 − 1)2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛽=𝛽𝐻

. (44)

In deformed algebra, (44) changes to

𝑆𝐼 = 𝛽2

𝜋 ∫𝑑𝑟 1√𝑓 ∫∞

𝑚√𝑓

𝜔 (𝜔2/𝑓 − 𝑚2)1/2 𝑒𝛽𝜔
𝑒2𝛽𝜔−2𝑒𝜆(𝜔2/𝑓−𝑚2) 𝑑𝜔

= 1𝜋 ∫𝑟++𝜀

𝑟+

𝑑𝑟 1√𝑓 ∫∞

0

𝑓−1/2𝛽−1𝑥2(1 − 𝑒−𝑥) (𝑒𝑥 − 1) 𝑒𝜆𝑥2/𝛽2𝑓 𝑑𝑥,
(45)

where 𝑥 = 𝛽𝜔. It should be noted that as 𝑓 → 0, 𝜔2/𝑓 is the
dominant term in𝜔2/𝑓−𝑚2.The thermodynamic properties
near the horizon 𝑟+, 𝑟+ + 𝜖 are related to a proper distance of
the order of the minimal length; that is, Δ𝑥 ≈ 𝜆 [35–40]. So,
we have

𝜆 = ∫𝑟++𝜖

𝑟+

𝑑𝑟√𝑓 (𝑟) , (46)
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where 𝜆 is considered as a lower bound. Then, we obtain
entropy as

𝑆𝐼 = 1𝜋𝜆 ∫𝑟++𝜀

𝑟+

𝑑𝑟√𝑓 (𝑟) ∫
∞

0
𝑑𝑋 𝑎2𝑋2

(𝑒𝑎𝑋/2 − 𝑒−𝑎𝑋/2)2 𝑒𝑋2 , (47)

where

𝑥 = 𝛽√𝑓𝜆𝑋 = 𝑎𝑋. (48)

Thus

𝑆𝐼 = 1𝜋Σ𝐼 = 1𝜋 ∫∞

0

𝑎2𝑋2

(𝑒𝑎𝑋/2 − 𝑒−𝑎𝑋/2)2 𝑒𝑋2 𝑑𝑋. (49)

Obviously, if we set 𝑟 → 𝑟+,𝑓 → 0, and 𝑎 → 0, it is concluded
that

lim
𝑎→0

𝑎2𝑋2

(𝑒𝑎𝑋/2 − 𝑒−𝑎𝑋/2)2 = 1. (50)

Therefore,

Σ𝐼 = ∫∞

0

𝑑𝑋𝑒𝑋2 = √𝜋2 ,
𝑆𝐼 = 1𝜋Σ𝐼 = 12√𝜋. (51)

So, we deduce that 𝑆𝐼 is finite and independent of any
parameter. Also, we obtain that, in contrast to the brick wall
method, there is no divergence due to the effect of the GUP
on the quantum states [35–40].

We now want to consider this issue from the tunneling
picture’s point of view inWKB approximation. As it is shown
in [48, 49], all of the tunneling probabilities of classical
forbidden trajectory from inside to outside of the black hole
horizon are given by

Γ ∼ 𝑒−2ImI = 𝑒−𝐸/𝑇 = 𝑒𝑆𝑓𝑒𝑆𝑖 = 𝑒Δ𝑆, (52)

where Im is the imaginary part and I is the classical action of
trajectory. Also, 𝐸 is the energy of massless particle which is
trajected from a BH in the form of amassless shell. Moreover,Δ𝑆 is the difference between final and initial values of the
black hole entropy. The corrected entropy is given by [48–51]

𝑆new = 𝑆BH + 𝜁, (53)

where 𝜁 is the extra terms of entropy in the quantum gravity
framework. Thus, the corrected entropy is given by

Δ𝑆new = Δ𝑆BH + Δ𝜁, (54)

in which

Δ𝑆BH = 𝑆BH (𝑀 − 𝐸) − 𝑆BH (𝑀) ,
Δ𝜁 = 𝜁 (𝑀 − 𝐸) − 𝜁 (55)

and 𝑀 is the mass of BH. In usual tunneling radiation, the
tunneling probability does not consider the bound. However,
if the generalized second law is considered, it seems that
the bound is also valid on the tunneling radiation rate.
Substituting (54) into (52), the following is obtained:

Γnew ∼ ΓBH𝑒Δ𝜁. (56)

It is worthwhile to note that there is difference between
qualitative behavior of the solutions of the exact equations for
the tunneling probability, which is explained by the bound on
the tunneling probability, and the photon emission [50–54].

This bound depends on the quantum gravity models.
Existence of an exponential coefficient in the corrected
tunneling probability in (56) predicts a generalized quantum
tunneling through the horizon of the black hole, which
obtains from the quantum gravitational effects on the black
hole radiation [50, 51].

5. Summary and Conclusions

In this paper, using deformed algebra which was admitted
from a minimal measurable length, we investigated quan-
tum black holes in canonical ensemble. To this end, some
thermodynamical quantities including partition function,
Helmholtz free energy, entropy, internal energy, and specific
heat capacity were obtained. For more investigations, we
plotted entropy versus temperature which showed that the
modified entropy of the quantum black hole increased with
a slower slope more than the nondeformed ones. Next,
we obtained, in contrast to the standard models at high
temperature limits, that the entropy approached maximum
bounds. Also, we concluded that, in contrast to the brick wall
method, there was no divergence due to the effect of the GUP
on the quantum states. It is worthmentioning that our results
of existing a maximal bound in high temperature limits are
fully compatible with those obtained in gravity’s rainbow,
modified dispersion relation, polymer quantum gravity, and
noncommunicative setups. Note that the ordinary physical
quantities are recovered when 𝜆 → 0.
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