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Abstract

The design and tuning of accelerators are both compli-
cated processes involving many physical effects. Of these,
the modeling of coherent synchrotron radiation has long
been one of the most complicated and time consuming. This
is especially true when modeling two and three-dimensional
CSR, which is often neglected in state-of-the-art accelerator
modeling due to its time consuming nature. We present a
neural network designed to model 2D CSR, demonstrating
both faithful accuracy to the physics and a dramatic speedup
over even the fastest existing codes. We study its perfor-
mance in the context of the last bunch compressor of the
FACET-II facility, where the intense short pulse demands
at least a 2D treatment, and find that we can reproduce the
results of more standard tracking codes in a fraction of the
time.

INTRODUCTION

Coherent synchrotron radiation (CSR) is a deleterious
effect found in linear accelerators that occurs during bunch
compression [1, 2]. Bunch compression is achieved by chirp-
ing the time-energy distribution of the bunch then sending
it through a series of magnets that modifies a particle’s path
length as a function of its energy. In those magnets, the
bunch emits synchrotron radiation due to the bending, and
that synchrotron radiation can catch up with the bunch down-
stream and modulate its energy in the dispersive magnets,
leading to emittance growth. This is often one of the key
brightness reducing effects in high brightness electron linacs.

The modelling of CSR is inherently complicated, since
it is a collective effect that propagates with the bunch. To
minimize computation time, a one-dimensional line charge
approximation is used in most state-of-the-art codes [1, 3].
Such a model does a good job of predicting the behavior of
most scenarios, however it is strictly valid only in the limit of
a thin beam. The exact condition for the 1D model to apply
is called the Derbenev criterion: for a bunch of transverse
size o7, length o, and a magnet with bending radius p, it
reads o, < RV 30'22 3 [4]. Though historically this limit
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has not been important, recent proposals are approaching
regimes where 2D and 3D effects cannot be ignored [5, 6].

Although now many codes have implemented a 1D CSR
model and some even 2D or 3D models, computational times
are still prohibitive for large-scale design studies or accel-
erator control room use. 1D codes can easily increase total
start to end simulation time by an order of magnitude, and
the existing 2D/3D codes are so slow that they are generally
run only in standalone simulations to isolate specific physics.
Edelen et al proposed to speed up 1D CSR simulations using
neural networks, which can learn the physics of 1D CSR
and encode it in a dramatically less expensive calculation
[7]. Here, we propose to do the same for the 2D CSR effect
with a network architecture modified to tailor to the specific
requirements of the 2D problem. We will show an example
application to a dipole magnet inspired by the FACET-1I
facility [6].

PROBLEM FORMULATION

2D CSR is calculated using the language of wakefields. In
particular, the bunch wake functions which are proportional
to the longitudinal and transverse kicks to a given particle
are given by a convolution of the beam distribution function
with the wake potentials [8—10]:

We,2) = [de’ [ ) d2taclx = SE)pp(x',2)
We(x,2) = ./dx/-/f(x—x’) dz'yo(x = X', 5E) pp (¥, 2')

where x and z are the transverse (in the bend plane) and lon-
gitudinal coordinates, pj, is the beam distribution function,
R is the bending radius in the magnet, and i , are the single
particle wake potentials defined in terms of the beam energy,
bending radius, and distance into the magnet. Although
convolutions can be implemented relatively efficiently, these
are complicated by the fact that depending on the location
of the emitter and observer electrons, the boundaries of the
longitudinal integration change. Thus, although relatively
fast codes have been written to account for 2D effects, they
still present a dramatic slowdown to start to end simulations.

To move towards the language of neural networks, we can
describe the 2D CSR problem as one of image generation.
In particular, given an image (the 2D beam distribution on
a grid) and the parameters of the bend magnet (distance
into the magnet s, bending radius R, beam energy ), we
would like to predict two images: the transverse and longitu-
dinal wakes on the same grid as the beam distribution. This
suggests that an appropriate network architecture would be
one that resembles a convolutional autoencoder. In convo-
lutional autoencoders, an input image is first represented in
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Figure 1: Schematic depiction of the concept behind the 2D CSR neural network. An input image representing the beam
density is first reduced through a set of convolutional layers to a low-dimensional latent space representation which is
concatenated with the scalar inputs. After further processing in a fully connected network, a set of deconvolutional layers
expands the scalars back up to two images representing the wakes.

a lower dimensional format using convolutional layers in
a stage called the encoder. Once can think of this encoder
as performing more general principal component analysis
(PCA) tailored to the specific problem at hand. Given this
low-dimensional, latent space representation of the image,
one can construct another set of layers called the decoder
that can reconstruct the input image, potentially modified
in a desired way. This method has been applied to many
problems, such as image denoising.

In our case this might look something like Fig. 1. We
will focus our attention on a particular bend magnet and
beam energy such that the bend radius and beam energy are
implicit parameters of the model. In that case our inputs
are a 2D beam density image on a grid, the distance into
the bend magnet s, the grid step sizes dx and dz, and the
peak charge density p;,4x. These inputs are shown on the
left of Fig. 1. We can distinguish then between our image
input and our scalar inputs. In order to combine these inputs
in a way the network will understand, we first reduce the
dimensionality of the beam image using an encoder section
composed of convolutional layers. The low-dimensional
latent space vector is then concatenated with the scalar inputs,
sent into a fully connected neural network for intermediate
processing, then finally into a decoder section. The decoder
consists of a set of deconvolutional layers which outputs two
new images: one representing the transverse wake and one
representing the longitudinal wake.

APPLICATION TO FACET-II LIKE DIPOLE

We now make these concepts concrete by applying them
to the case of a dipole magnet inspired by FACET-1I. We
consider a beam energy of 30 GeV and magnet length of
20 m. We have obtained an input beam distribution from
start-to-end simulations of FACET-II dumped just before the
final compressor and tracked through the first three dipole
magnets up to the entrance of the fourth, where the beam is
shortest and therefore CSR effects are most relevant. The
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Figure 2: Example images of the beam density (top), longi-
tudinal wake (middle) and transverse wake (bottom) from
the dataset.

2D CSR calculation in the fourth dipole is performed using
a Julia-based code that runs on a GPU [11]. As a first pass
to generating training data for the neural network, we scale
this input beam in x and z by factors between 0.1 and 2. By
computing the CSR wakes at 20 steps in the magnet, we
obtain from each simulation 20 training datasets. In total we
generated 2000 such datasets, relegating 1990 for training
and 10 for validation. A sample of the datasets is shown
in Fig. 2, where we plot the beam charge density (top row),
longitudinal wake (middle), and transverse wake (bottom)
for three of the examples. We see that the dataset consists of
a diverse set of input images despite the simplistic approach
to generating training data.

Our final network structure is summarized in Fig. 3. It
starts with the encoder section, which consists of 7 iterations
of image dimension reduction and processing with 3x3 and
7x7 convolutional layers in order to make the model sensitive
to both fine and coarse features of the input image. At the end
of the encoder the output is reduced to 16 numbers using
a 16 node dense layer, which are then concatenated with
the 4 input scalars. This set of 20 numbers representing the
inputs is then further processed in 3 dense layers before being
reshaped to a small 2D image for input into the decoder. The
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Figure 3: The final network architecture implemented.

decoder is essentially an inverse of the encoder in structure,
and at its output we use a two channel convolutional layer
to generate the two output images. We trained the model
using the Adam optimizer with a mean absolute error loss
function. We employed learning rate reduction on plateaus
to reach an optimal point in the training.

To test the model, we rewrote the previously mentioned
Julia based 2D CSR code to have it call our model in the CSR
tracking steps. This reduces the time taken to compute the
2D CSR wakes from 60+ seconds per step on a GPU using
Julia to milliseconds on one CPU using the neural network.
Figure 4 summarizes the results of tracking the same scaled
inputs through the dipoles. The first four subplots on the
left show the evolution of the geometric emittance of the
beam for different starting scaling factors indicated by the
Sx,z» The top right subplot shows the relative final emittance
error as a function of the scale factor in x and the bottom
right shows the average cumulative emittance error through
the dipole. In general we observe errors around the 10%
level at the dipole exit, which is quite good considering the
relatively small quantity of training data employed thus far.
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Figure 4: Summary of results tracking through the dipole
using the CSR neural network compared to the Julia code.
The left four subplots show example emittance evolutions
through the dipole, the top right shows the relative final
emittance error as a function of the x scaling factor, and
the bottom right shows the average relative emittance error
through the bend.
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The specific layer choices are described in the text.

CONCLUSIONS

‘We have presented preliminary results towards the devel-
opment of a neural network for rapidly evaluating 2D CSR
effects. In our initial tests we have found good agreement
between simulations based on a full 2D CSR tracking code
and our neural network. The neural network approach has a
negligible impact on the simulation time, and represents a
promising step towards being able to regularly take 2D CSR
effects into account. The work in this paper isolates a single
bend magnet operating at a single beam energy. Although
this has its utility, for example in the accelerator control
room, if this method is to become useful in design studies
we must train it on more general datasets with more gen-
eral inputs. More immediately, further work will focus on
broadening the training dataset to include more exotic com-
pression configurations for this magnet as well as additional
hyperparameter tuning. Of course, in the long term another
goal is to move to 3D CSR. Very little needs to change in
terms of our network architecture to tackle that problem:
simply adding a third output convolutional layer would be
sufficient. The main challenge would be in efficiently and
accurately generating training data.

REFERENCES

[1] E.Saldin, E. Schneidmiller, and M. Yurkov, “On the coherent
radiation of an electron bunch moving in an arc of a circle,”
Nucl. Instrum. Methods Phys. Res., Sect. A, vol. 398, no. 2-3,
pp- 373-394, 1997.
doi:10.1016/s0168-9002(97)00822-x

[2] S. Heifets, G. Stupakov, and S. Krinsky, “Coherent syn-
chrotron radiation instability in a bunch compressor,” Phys.
Rev. Spec. Top. Accel. Beams, vol. 5, no. 6, 2002.
doi:10.1103/physrevstab.5.064401

[3] C. Mayes and G. Hoffstaetter, “Exact 1d model for coherent
synchrotron radiation with shielding and bunch compres-
sion,” Phys. Rev. Spec. Top. Accel. Beams, vol. 12, no. 2,
2009. doi:10.1103/physrevstab.12.024401

[4] Y.S. Derbenev, J. Rossbach, E. L. Saldin, and V. D. Shiltsev,
“Microbunch radiative tail-head interaction,” DESY, Tech.
Rep., 1995. http://cds.cern.ch/record/291102

[5] J. Rosenzweig et al., “An ultra-compact x-ray free-electron
laser,” New J. Phys., vol. 22, no. 9, p. 093 067, 2020.
doi:10.1088/1367-2630/abbl6c

WEPA: Wednesday Poster Session: WEPA
MC5.D13: Machine Learning




14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA105

2894

MC5.D13: Machine Learning

WEPA105

WEPA: Wednesday Poster Session: WEPA

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


ISBN: 978-3-95450-231-8

(6]

(7]

(8]

14th International Particle Accelerator Conference,Venice, Italy

V. Yakimenko et al., “FACET-II facility for advanced accel-
erator experimental tests,” Phys. Rev. Accel. Beams, vol. 22,
no. 10, 2019.
doi:10.1103/physrevaccelbeams.22.101301

A. Edelen and C. Mayes, ‘“Neural network solver for
coherent synchrotron radiation wakefield calculations in
accelerator-based charged particle beams,” arXiv preprint
arXiv:2203.07542, 2022.

Y. Cai and Y. Ding, “Three-dimensional effects of coherent
synchrotron radiation by electrons in a bunch compressor,”
Phys. Rev. Accel. Beams, vol. 23, no. 1, 2020.
doi:10.1103/physrevaccelbeams.23.014402

WEPA: Wednesday Poster Session: WEPA
MC5.D13: Machine Learning

ISSN: 2673-5490

[9]

[10]

[11]

JACoW Publishing
doi: 10.18429/JACoW-IPAC2023-WEPA105

Y. Cai, “Two-dimensional theory of coherent synchrotron
radiation with transient effects,” Phys. Rev. Accel. Beams,
vol. 24, no. 6, 2021.
doi:10.1103/physrevaccelbeams.?24.064402

G. Stupakov and J. Tang, “Calculation of the wake due to
radiation and space charge forces in relativistic beams,” Phys.
Rev. Accel. Beams, vol. 24, no. 2, 2021.
doi:10.1103/physrevaccelbeams.24.020701

W. Lou, Juliacsr2d, https://github.com/weiyuanlou/
JuliaCSR2D, 2022.

WEPA105
2895

e=ga Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.




14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-WEPA105

MC5.D13: Machine Learning

2895

WEPA: Wednesday Poster Session: WEPA

WEPA105

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


