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We discuss the status of observables and operator ordering ambiguity in the quantum

cosmology model with Brown-Kuchař dust as the matter field. In order to study the

dynamics of the FLRW universe, Hubble parameter and Ricci scalar are expressed as
a function of phase space variables. As these functions exhibit operator ordering am-

biguity, we write several Hermitian extensions corresponding to these observables. For

the unitarily evolving semiclassical wave packet constructed in,1 we have computed the
expectation value of these observables, which shows that very early in the collapsing

branch and very late in the expanding branch, the expectation values of the Hubble pa-

rameter and the Ricci scalar matches the classically obtained results irrespective of the
operator ordering chosen. The expectation value of the Hubble parameter vanishes, and

Ricci scalar attains an extremum at the point of classical singularity for all orderings,

showing a robust singularity resolution. The signature of the operator ordering ambiguity
is most pronounced at the classical singularity. For Weyl ordering, the expectation value

of the Ricci scalar becomes negative for certain parameter values. We have computed
the expectation value of other curvature invariants as well, which follows the trend.

Keywords: FLRW Model, Wheeler-DeWitt equation, Operator ordering ambiguity,

Quantum Cosmology, Brown-Kuchař dust

1. Introduction

Any consistent quantization scheme for gravity must address the longstanding issues

that plague the theory, like observables in quantum gravity or operator ordering

ambiguity. In this work we will address the issue of operator ordering ambiguity

in the observables of quantum gravity, in the context of flat FLRW model with

Brown-Kuchař dust.2

General relativity is an example of singular systems, which has diffeomor-

phisms and time reparametrizations as gauge freedom.3 A consistent (Dirac) ob-

servable in the general relativity must be invariant under diffeomorphisms and time

reparametrizations. Now the systems with time reparametrization symmetry are

tricky to handle, as the Hamiltonian of such systems itself is a constraint. Which

would means that physical observables in the theory would be frozen in time or

are constant of motion. To circumvent this issue, a possible resolution is proposed

by Kuchař,4 a phase space function does not need to have weakly vanishing Pois-

son bracket with Hamiltonian constraint to be an observable of general relativity.

 T
he

 S
ix

te
en

th
 M

ar
ce

l G
ro

ss
m

an
n 

M
ee

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
E

R
M

A
N

 E
L

E
C

T
R

O
N

 S
Y

N
C

H
R

O
T

R
O

N
 @

 H
A

M
B

U
R

G
 o

n 
01

/3
0/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



539

The special objects which have vanishing Poisson bracket with Hamiltonian con-

straint are called a perennials.

Upon quantization, one would ideally like to obtain a self-adjoint extension of all

the relevant observables appearing in the theory and study their spectral properties.

But if one is interested in the expectation value of the operators in a wave packet,

Hermiticity of the operator is sufficient to ensure the reality of the expectation

value. For that reason we will concern ourselves with the Hermitian extensions of

the observables and their expectation value for the wave packets constructed in the

quantum model.

In this analysis, we will follow Kuchař’s prescription4 of observables in the quan-

tum gravity models. For the FLRW model we will write the Hermitian extension of

the operators that correspond to the Hubble parameter and the curvature invari-

ants. We will find the expectation value of these operators and show the robustness

of the singularity resolution claimed in the aforementioned quantum cosmology

model. Apart from that, we will also address the operator ordering ambiguity in

these observables and discuss at what stage this ambiguity will play a role.

2. FLRW Model with Brown-Kuchař Dust

We will start with the canonical formulation of the flat FLRW model coupled to

Brown-Kuchař dust. We will first write the Hamiltonian constraint for this system

and then write the phase space expression for the observables we are interested in.

The line element and the Ricci scalar for a homogeneous and isotropic flat FLRW

spacetime is

ds2 =−N 2(t)dt2 + a2(t)dx2, (1)

R =
6

N 2

[
−Ṅ ȧ

Na
+
ä

a
+

(
ȧ

a

)2
]
, (2)

where a(τ) is the scale factor and N is the lapse function. The action for this model

with Brown-Kuchař dust2,5 written in ADM form is,

S = SG + Sm =

∫ (
pȧ+ pτ τ̇ −N (HG +HD)

)
dt. (3)

The Hamiltonian constraint for this model is given by,

H = HG +HD = − κ2

6V0

p2a
2a

+ pτ ≈ 0. (4)

In the further analysis, we will choose κ2 = 6V0. The solution of the Friedmann’s

equations with dust as matter is a(t) ∝ t2/3. The dust proper time τ and the coordi-

nate time t are related as τ̇ = 1 =⇒ τ(t) = t+const. This model exhibits curvature

singularity and has two disjointed solutions, representing a universe expanding from

a Big Bang singularity and a universe collapsing to a Big Crunch singularity.
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2.1. Hubble Parameter and Ricci Scalar

We are interested in the canonical expression for the Hubble parameter and the

Ricci scalar. Using defining equation for the momentum conjugate to scale factor

and the Hamilton’s equations of motion, we get

ȧ = − paN
a

, (5)

ä = −paṄ
a

− p2aN 2

2a3
. (6)

Since we are working in comoving gauge N = 1, the Hubble parameter takes the

form

H =
ȧ

a
= −a−2pa. (7)

From (2), (5) and (6), the Ricci scalar is given by,

R =
3p2a
a4

. (8)

Classically for dust as matter source, the Ricci scalar is R = 4/3t2. The flat FLRW

model with dust as matter has curvature singularity at t = 0 when a ∼ t2/3 → 0

and R → ∞.

2.2. Riemann and Kretschmann Scalar

Riemann Scalar for this model is

Rie =RµνR
µν = 9

(ȧṄ − N ä)2

a2N 6
+ 3

(aN ä− aȧṄ + 2N ȧ2)2

a4N 6
=

3p4a
a8

. (9)

Kretschmann Scalar for this model is,

K = RµναβR
µναβ = 12

(
(ȧṄ − N ä)2

N 6a2
+

ȧ4

a4N 4

)
=

15p4a
a8

= 5Rie. (10)

Classically for dust as matter, Riemann and Kretschmann scalar takes the form

Rie = 16/27t4, and K = 80/27t4. These curvature invariants also diverge at t = 0.

3. Quantum Cosmology

Quantization of this system is done by implementation of the constraint H ≈ 0 as

supplementary condition on wave functions. Brown-Kuchař dust appears as natural

clock for the quantum theory and we are essentially working with dust proper time.

Wheeler Dewitt equation for this model takes the form of Schrödinger equation,

i
∂Ψ(R, τ)

∂τ
= ĤΨ(a, τ), (11)

Ĥ = ℏ2a−1+p+q d

da
a−p d

da
a−q. (12)
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Since the Hamiltonian is a product of non-commuting variables, therefore, it does

not have a unique quantum counterpart and the model exhibits operator order-

ing ambiguity. The parameters p and q represent our freedom to choose operator

ordering. The eigenvalue of Hamiltonian can be interpreted as Misner-Sharp mass

which on-shell is related to the energy of the dusta. The self-adjoint extensions of

Hamiltonian (12) are discussed in.1

To make the momentum operator P̂ Hermitian on the real half line R+, we

choose measure a2 and the momentum operator that is symmetric with this measure

p̂a = −ia−1∂aa. Therefore, to accommodate hermiticity of the momentum, we have

to impose the constraint 1 − p − 2q = 2 or p + 2q = −1 on operator ordering

parameters. Using this constraint, we can eliminate one of these parameters. It is

shown in,6 the expectation values of a general observables in a general wave packet

constructed in this model is independent of parameter q and it appears as a free

parameter in the model. Therefore, the above constraint does not put any restriction

on the physical content of the theory. The detailed discussion about the Hermiticity

and the self-adjointness of momentum operator on real half-line can be found in.6

The positive energy stationary states with this choice are,

ϕ1E(a) =
2√
3
E

1
4 J 2|q|

3

(
2

3

√
2Ea

3
2

)
. (13)

Which form an orthogonal set under the scalar product we have chosen, thus making

them suitable for the construction of wave packet. From the positive energy modes, a

unitarily evolving wave packet is constructed by choosing a normalized Poisson-like

distribution

ψ(R, τ) =

∫ ∞

0

d
√
Eϕ1E(R)e

iEτA(
√
E), (14)

A(
√
E) =

√
2λ

1
2 (κ+1)√

Γ(κ+ 1)

√
E

κ+ 1
2 e−

λ
2 E , (15)

where κ ≥ 0 and λ > 0 are real parameters with κ being dimensionless and λ has

dimensions of length or inverse of energy. For this choice of distribution, expectation

value of the Hamiltonian is inversely proportional to λ. With this distribution and

constraint κ = 2|q|/3, the wave packet takes the form,

ψ(a, τ) =
√
3

a|q|√
Γ( 23 |q|+ 1)

( √
2λ
3

λ
2 − iτ

) 2
3 |q|+1

e
− 2a3

9(λ
2

−iτ) . (16)

Taking this constraint on the parameter makes the distribution a function of the

operator ordering parameter. We can not be sure if the dependency of an observable

aMisner-Sharpe mass for spherically symmetric system ds2 = gab(z)dz
adzb + R2(z)dΩ2

is MMS = R(z)
(
1− gab∂aR(z)∂bR(z)

)
/2. For the case of FLRW mode, Misner-Sharp mass

is MMS = aȧ2r3/2 = (4πr3/3)ρa3G. The gravitational Hamiltonian is given by H =
−(3V/8πG)aȧ2 = −V ρa3, since ρa3 is a constant of motion and the Hamiltonian represents

energy associated with the dust.
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on parameter q is coming from the its dependence on the shape of the distribution

or is it a genuine artifact of the operator ordering ambiguity. The signature of

this parameter on the observables is discussed in6 and we are not interested in

operator ordering ambiguity in the Hamiltonian operator here. We are interested in

the operator ordering ambiguity in the observables of this theory. It is shown in,1

this model avoids singularity following DeWitt’s criteria and in the current context,

it represents a bouncing cosmology model.

4. Observables

In this analysis, we will follow Kuchař’s proposal,4,7, 8 the observables in a time

reparametrization invariant systems need not to commute with Hamiltonian con-

straint. Moreover in the quantum domain, we will require the Hermitian extension

of operators to ensure the reality of expectation value of these observables. We will

write the Hermitian extension of phase space functions that we are interested in

and compute their expectation values in the wave packet (16).

4.1. Hubble Parameter

Corresponding to the canonical form of the Hubble parameter (7), several operator

orderings for which the Hubble parameter is Hermitian can be written as,

F.O.1 → Ĥ1 = −a−1p̂aa
−1, (17)

F.O.2 → Ĥ2 = −1

2

(
an−2p̂aa

−n + a−np̂aa
n−2
)
, (18)

Ĥ1ψ = Ĥ2ψ = i a−2 ∂ψ

∂a
= H̄. (19)

To ensure the Hermiticity of the operator, the boundary term i
[
ψ∗χ

]∞
0

has to

vanish. It is achieved by the wavefunctions that vanishes when a → 0 or a → ∞.

For the wave packets (16), it is the case provided q ̸= 0.

The expectation value of the Hubble parameter for the wave packet (16) is,

H̄1 = ⟨ψ|Ĥ1|ψ⟩ = i

∫ ∞

0

ψ∗(a, τ)
∂ψ(a, τ)

∂a
da =

8τ

3(λ2 + 4τ2)
. (20)

In the large τ limit, i.e. τ2 >> λ2, we recovers the classical value of Hubble param-

eter for the flat FLRW model with dust as matter.

H̄|λ→0 =
2

3τ
. (21)

The expectation value of the Hubble parameter is plotted in Fig. 1.

The Hubble parameter H̄ has global maximum at τ = λ/2 and global minimum

at τ = −λ/2. At the point of classical singularity the Hubble parameter vanishes

thus signifying a robust singularity resolution.
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Fig. 1. Expectation value of the Hubble Parameter for different λ values.

4.2. Ricci Scalar

We will write general operator orderings that will make the operator corresponding

to the phase space function given in Eq. (8) Hermitian with the given measure.

There are two choices, normal symmetric operator ordering and Weyl ordering.

R̂1 = 3a−j p̂aa
2j−4p̂aa

−j , (22)

R̂2 = −3

2

(
a−j p̂aa

−kp̂aa
j+k−4 + aj+k−4p̂aa

−kp̂aa
−j
)
. (23)

Here j and k are parameters that encapsulate the operator ordering ambiguity

and describe our freedom in choosing operator ordering corresponding to the Ricci

scalar.

For the operators to be Hermitian, the boundary term

−3

[
a−2

(
ψ∗ ∂χ

∂a
− ∂ψ∗

∂a
χ

)]∞
0

= 0 (24)

has to be satisfied. For the case of the wave packet (16), the boundary term vanishes

when q > 3/2. The expectation value of the Ricci scalar for this wave packet is,

R̄1 =
16
(
λ2(3|q|+ 2(j − 4)(j − 1)) + 4|q|(2|q| − 3)τ2

)
3|q|(2|q| − 3) (λ2 + 4τ2)

2 , (25)

R̄2 =
16
(
λ2(3|q| − 2j(j + k − 4) + 5k − 12) + 4|q|(2|q| − 3)τ2

)
3|q|(2|q| − 3) (λ2 + 4τ2)

2 . (26)

We see, the expectation value is well behaved regular function in the domain of

parameters that ensure the Hermiticity. Again for large |τ | i.e. τ2 >> λ2, we recover

the classical expression for the Ricci scalar irrespective of the operator ordering

chosen,

R̄ =
4

3τ2
. (27)
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For the limit q >> j, k there is no signature of the operator ordering parameters j

and k in the expectation value of the Ricci scalar.

R̄1 = R̄2 =
16
(
3|q|λ2 + 4|q|(2|q| − 3)τ2

)
3|q|(2|q| − 3) (λ2 + 4τ2)

2 . (28)

The Ricci scalar in this regime has local minima at τ = 0 and global maxima at

τ = ±λ/2. Surprisingly in the large q regime, the Ricci scalar has maxima at the

dust proper time, where the Hubble parameter has extrema.
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Fig. 2. Expectation value of the Ricci scalar R̄1 for different operator orderings.
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Fig. 3. Expectation value of Ricci scalar with Weyl ordering R̄2 for different operator ordering

parameters.

We have plotted the Ricci scalar for normal operator ordering in Fig. 2 and

for the Weyl ordering in Fig 3. We see that the signature of the operator ordering

parameters is most pronounced at the point of classical singularity i.e. at τ = 0.

Moreover, as we keep on increasing parameter q, the expectation value of the Ricci

scalar for different operator ordering keeps on merging and for very large q, there

is no signature of the operator ordering parameters. For the case of Weyl ordered

Ricci scalar, the expectation value of the operator has negative values for certain

parameter range.
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4.3. Riemann and Kretschmann Scalar

Since the Kretschmann scalar is proportional to the Riemann scalar, we will write

the Hermitian extensions of one of them, say, Kretschmann scalar and find the

expectation value of the operator with given wave packet (16).

F.O.1 → K̂1 = 15a−4p̂4aa
−4, (29)

F.O.2 → K̂2 = 15p̂2aa
−8p̂2a, (30)

F.O.3 → K̂3 =
15

2

(
p̂4aa

−8 + a−8p̂4a
)
, (31)

F.O.4 → K̂4 =
15

2

(
a−2p̂4aa

−6 + a−6p̂4aa
−2
)
. (32)

The boundary term which needs to vanish for the Hermiticity of these operators is,[
a−6

(
ψ∗χ′′′ − ψ

′∗χ′′ + ψ
′′∗χ′ − ψ

′′′∗χ− 6a−1(ψ∗χ′′

−ψ
′′∗χ
)
+ 30a−2(ψ∗χ′ − ψ

′∗χ)
)]∞

0

= 0 =⇒ |q| > 9

2
(33)

The expectation value of the Kretschamann scalar for various operator orderings is,

K̄1(τ) =
1280

(
λ2 + 4τ2

)−4

27|q|(2|q| − 9)(2|q| − 3)

(
8(2|q| − 9)(9|q| − 20)λ2τ2 + 3(9|q| − 40)λ4

+ 16|q|(2|q| − 9)(2|q| − 3)τ4
)
, (34)

K̄2(τ) =
1280

(
λ2 + 4τ2

)−4

27|q|(2|q| − 9)(2|q| − 3)(|q| − 3)

(
3(|q|(9|q|+ 29) + 504)λ4 + 8(|q| − 3)

(2|q| − 9)(9|q|+ 28)λ2τ2 + 16(|q| − 3)|q|(2|q| − 9)(2|q| − 3)τ4
)
, (35)

K̄3(τ) =
1280

(
λ2 + 4τ2

)−4

27(|q| − 3)|q|(2|q| − 9)(2|q| − 3)

(
3(|q|(9|q| − 259) + 1272)λ4 + 8(|q| − 3)

(2|q| − 9)(9|q| − 116)λ2τ2 + 16(|q| − 3)|q|(2|q| − 9)(2|q| − 3)τ4
)
, (36)

K̄4(τ) =
1280

(
λ2 + 4τ2

)−4

27(|q| − 3)|q|(2|q| − 9)(2|q| − 3)

(
3(|q| − 8)(9|q| − 43)λ4 + 8(|q| − 3)

(2|q| − 9)(9|q| − 44)λ2τ2 + 16(|q| − 3)|q|(2|q| − 9)(2|q| − 3)τ4
)
. (37)

Again, the expectation value of these observables is a well behaved regular func-

tion in the domain of parameters that ensures the Hermiticity of this observable.

Classical expression is recovered irrespective of the operator ordering chosen i.e.,

when τ2 >> λ2, K̄ = 80/27τ4.
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Fig. 4. Expectation value of Kretschmann scalar for various operator orderings.

We have plotted the expectation value of the Kretschmann scalar for different

operator orderings. Here as well, we can see the signature of operator ordering is

most pronounced at the point of classical singularity and Weyl ordered operator

attains negative values for certain parameter range. Thus, the Kretschmann scalar

also shows the features that are observed in the case of the Ricci scalar.

5. Discussion and Conclusion

We have studied the operator ordering ambiguity in the observables of a quantum

model of cosmology with Brown-Kuchař dust as the matter source. The quantum

model is singularity-free following DeWitt’s criteria and it is shown that the ex-

pectation value of the scale factor is regular function with non-zero minima at the

point of classical singularity and it follows classical trajectory, far away from the

singularity. Thus, the quantum model represents a bouncing cosmological model

which mimics classical behavior away from singularity.

We have studied the dynamics of the quantum FLRW model via the observables

of the theory, Hubble parameter and curvature invariants. After writing the phase

space functions for these observables, we have constructed the Hermitian exten-

sion of these observables. As these functions exhibit operator ordering ambiguity,

there exists infinite many Hermitian extensions. For unitarily evolving wave packet,

we have computed the expectation value of these observables. Very early in the

collapsing phase and late in the expanding phase, these expectation values mimic

the classical behavior irrespective of the operator ordering chosen. At the point of

classical singularity, expectation value of the Hubble parameter vanishes and the

Ricci scalar attains an extremum for all operator orderings, thus showing a robust

singularity resolution.

This extremum value of the Ricci scalar is sensitive to the operator ordering

parameters and the signature of these parameters is most pronounced at the point of

singularity. The expectation value of the Ricci scalar is insensitive to this parameter

away from singularity. Furthermore, in the large q regime, there is no signature of

operator ordering parameter and the two maxima of Ricci scalar are at the time

where the extrema of the Hubble parameter are located. For certain parameter

range, the expectation value of the Weyl ordered Ricci scalar attains negative values.

These features are present for the case of other curvature invariants as well.
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