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Abstract

We are now in the era of high precision particle physics, spurred on by a wealth of
new data from the Large Hadron Collider (LHC). In order to match the precision
set by modern experiments and test the limits of the Standard Model, we must
increase the sophistication of our theoretical predictions. Much of the data
available involve the interaction of protons, which are composite particles. These
interactions are described by combining perturbative Quantum Chromodynamics
(QCD) with parton distribution functions (PDFs), which encapsulate the non-
perturbative behaviour. Increasing accuracy and precision of these PDFs is

therefore of great value to modern particle physics.

PDFs are determined by multi-dimensional fits of experimental data to theoretical
predictions from QCD. Uncertainties in PDF's arise from those in the experimental
data and theoretical predictions, as well as from the fitting procedure itself.
Those in the theory come from many sources. Here we consider two of the most
important: the first are missing higher order uncertainties (MHOUS), arising
due to truncating the predictions’ perturbative expansion; the second are nuclear

uncertainties, due to difficulty making predictions in a nuclear environment.

In this thesis we consider how to include theory uncertainties in PDF fits by
constructing a theory covariance matrix and adding this to the experimental
one. MHOUs are estimated and included as a proof of concept in next-to-leading
order PDFs. We find that these capture many of the important features of the
known PDF's at the next order above. We then investigate nuclear uncertainties,
estimate their magnitude and assess their impact on the PDFs. Finally, we
consider how to make predictions with theory uncertainties using PDFs which
themselves include theory uncertainties. Here there are correlations between the
PDFs and the predictions, which can lead to a shift in the predictions and their

uncertainties, which can significantly improve their accuracy and precision.



Lay summary

This thesis is about determining Parton Distribution Functions (PDFs). These
tell us about what is inside protons, which are positively charged particles that
help make up the nuclei at the centre of atoms. Protons are made up of
tightly bound constituents called partons, which include quarks and gluons. High
energy particle colliders like the Large Hadron Collider (Fig. 0.0.1) smash protons
together and look at the interactions of the partons. Each parton is responsible
for some fraction of the total momentum of the proton. The size of this fraction
can be expressed as a probability, and this is done through PDFs. Because of
this, PDFs are very important for studying physics at high energies and searching

for new fundamental particles.

Current particle physics theories cannot deal on their own with the messy internal
structure of the proton. This means we have to work out the PDFs using a
combination of theory and experiments. Neither of these give us perfect results,
and this uncertainty leads to uncertainty in the final form of the PDFs. This
thesis focusses on uncertainties in the theory used to determine PDFs, which
have previously been ignored. We show how to factor in uncertainties in the
theory, and do this for a couple of important sources of uncertainty. We also

show how to properly use the new PDF's, which requires some additional care.

Figure 0.0.1 The ATLAS detector at the Large Hadron Collider [1].
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PDF plus 9pt MHOU, but now including also the shift and
the correlation between theoretical uncertainties. In the
centre panel we also show the NNLO prediction with NNLO
PDFs (but no theoretical uncertainties), as a dashed line.
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Introduction

Over the past 100 years, following the discovery of the atomic nucleus by
Rutherford in 1911, great strides have been made towards understanding
subatomic structure. We now know that atoms are made up of hadrons (such as
protons and neutrons) and leptons (such as the electron). Probing hadrons with
high energy photons shows that they are composed of quarks and gluons.

up quark

gluon

down quark

Figure 0.0.2 A visualisation of the internal structure of the proton. Quarks are
bound together by gluons. Artist: Eleanor Conole.

The Standard Model of particle physics has proven thus far to be an extremely
accurate model of nature at the subatomic scale, and the current focus is on
providing ever more precise experimental and theoretical results to test it and
search for new physics which it cannot explain.

Cutting edge high energy physics experiments are currently being carried out at
colliders such as the Large Hadron Collider (LHC) [6] at CERN, and new colliders

Xix



are anticipated in coming years [7-9]. Many of these experiments involve the
collision of protons. At a basic level we can think of a proton as being composed
of two up quarks and one down quark bound together by the strong interaction,
which we describe using Quantum Chromodynamics (QCD). However, the proton
(Fig. 0.0.2) is in reality highly complicated and the QCD calculations for it are
intractable. This means protons must currently be treated using probabilistic
methods.

When two protons collide we do not know which constituents, or “partons” are
interacting, or what individual properties they have, such as their momentum
and spin. We need some way of relating the known properties of the proton to
the unknown properties of the partons. One way of doing this is using parton
distribution functions (PDFs), which to first approximation give the probability
of picking out a certain type of parton with certain properties.

Confinement of the quarks means experimental data are collected at the hadronic
level, whereas theoretical predictions using QCD are made at the partonic level.
The parton model provides a link between the two; in this framework partonic
predictions are convolved with corresponding PDFs, summing over all possible
partonic interactions. This produces PDF-dependent hadronic predictions. For
useful theoretical predictions we therefore need as precise and accurate a handle
on the PDFs as possible.

QCD can'’t give us the PDF's directly but crucially they are process independent,
where process here means the type of scattering pathway. This means that they
can be determined in a global fit between multi-process experimental data and
corresponding theoretical predictions. Fig. 0.0.3 shows the fitted functional form
of the PDFs in NNPDF4.0 [10]. Once these have been determined, they can be
used to make predictions for any observable involving protons.

Because the PDFs must be inferred from measurements and our current
knowledge of QCD, they are not exactly known. The uncertainties in their form
then propagate through to predictions made using them. There are three places
these uncertainties can be introduced:

1. through uncertainties in the experimental measurements;

2. through uncertainties in the input theory;

3. through the fitting procedure.
Until recently, experimental uncertainties were the dominant source, meaning
that theory uncertainties have been largely ignored in standard PDF fits.
However, with the onset of increasingly high precision experiments and the

corresponding drive of PDFs down to 1% accuracy [11, 12], a proper treatment
of theory uncertainties is becoming pressing.
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Figure 0.0.3 The different PDF flavours determined in the latest NNPDF/.0
determination. Here and henceforth the solid bands are 68%
confidence level and the dashed lines encompass 1o uncertainties.
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Chapter 1

Background

Parton distribution functions (PDFs) bridge the gap between short and long
range physics, allowing perturbative Quantum Chromodynamics (QCD) to be
applied at the hadronic scale. They embody the incalculable strongly coupled
dynamics, and are determined by a comparison of perturbative theory with
experiment. Once determined, their form is process-independent and so they

can be re-deployed in future calculations.

This section provides some background to PDF's neccesary for understanding the
remainder of this thesis. It is divided in to two main parts, being the necessary

physics and the necessary methodology of PDF determination.

To review the physics, we begin by looking at the process of deep inelastic
scattering (DIS), and how the naive parton model was developed to explain
these experimental observations. Next we look at this in the context of QCD,
see how PDFs fit into the picture, and how they evolve with the scale of the
physics. Finally we briefly touch on hadron-hadron collisions, which along with
DIS constitute the bulk of the processes in modern PDF fits.

To review the methodology we consider the NNPDF fitting strategy, explaining
how theory and experiment are used together with neural networks to determine
PDFs. We distinguish between the NNPDF3.1 methodology, on which the results
in Chapters 3 and 5 are based, and the NNPDF4.0 methodology, on which
the results in Chapter 4 are based. We note that the difference between these

methodologies doesn’t affect the main lines of argument in these chapters.



1.1 Physics background

1.1.1 Deep inelastic scattering

For a more in-depth analysis, see [13, 14]. In this section we rely heavily on
15, 16).

The notion of bombarding matter to uncover its structure has led to many
important discoveries in the last hundred or so years, starting with the Geiger-
Marsden experiments from 1908-1913 and the subsequent uncovering of the
atomic nucleus [17]. In the decades following the discovery of the neutron in 1932,
nuclei were probed at higher energies, leading to them being understood in terms
of “form factors” which parametrised their electric and magnetic distributions.
At this stage it was clear that they are not point-like particles and so a series
of important experiments were carried out in the 1960s at the Stanford Linear
Accelerator (SLAC), involving a high energy beam of charged leptons scattering
off a stationary hadronic target. This process is known as deep inelastic

scattering.

In this section we will consider the example of electrons incident on protons, as
shown in Fig. 1.1.1. In the deep inelastic regime, there is a large momentum
transfer, ¢ = k — K/, mediated by a virtual photon. The proton, P, with mass M
and initial momentum p, fragments into some hadronic state X, and the electron
starts with energy £ and momentum k and ends with energy E’ and momentum
k'. The momentum transfer is large enough that the masses of the proton and

electron can be neglected.

It is customary to define some useful variables for help in the analysis, listed in
the table below.

Variable | Definition Interpretation

Q° —¢* = —(k —k)? | momentum transfer
v p-q= M(E' — E) | energy transfer

x g—j scaling parameter

y e=1- % inelasticity € [0, 1]

The interaction is made up of a leptonic current (that of the electron) and a

hadronic current (the fragmentation of the proton from P to X). This means we



can express the squared matrix element, |M|?, as
o>
MP= N, W, (111)
q

where L, is the leptonic part, determined from perturbative Quantum Electrody-
namics (QED), and W#* is the hadronic part, containing the incalculable strongly
coupled dynamics. « is the QED coupling constant and N is a normalisation
constant which can differ according to convention, hence we keep it undefined

here so as to render the analysis clearer.

k/

\ B

L%

Figure 1.1.1 Deep inelastic scattering.

From QED, for an unpolarised photon beam in the DIS regime we can use the

Feynman rules at tree level to write

Ly = Y a(k)yuu(k)a(k)yu(k’)

spins

= TT(I’?’{/’Y;L'%’VV) (112)
_ 4(@/{; TR, — gk k)

= 4(4]{#/{,, — Qk“q,, - 2]@(]# + g,uuq2)a

where in the last line we used the fact that the electron is massless so 0 = k'2 =
Pk 20k = ¢*=2q k.



Finding the hadronic tensor is more difficult because we lack knowledge of the
hadronic states P and X, so our only constraints are that W#” is Lorentz-invariant
and that the electromagnetic current must be conserved, so g - W = 0. Since we
are considering only the electromagnetic interaction, we ignore the possibility for
Z boson exchange and therefore also require parity conservation. This allows us

to write the general form of the tensor as

v v ququ p-q v vDq
Wh (p,q) = —(g” — )Wl(p, q) + (p“ —q”?) (p —q ?) Wa(p, q),
(1.1.3)

where W; and W, are scalar functions which encapsulate the strong dynamics.

These scalar functions are often written as:

Fi(2,Q%) = Wi(p, q);
Fy(z, Q%) = vWa(p, q); (1.1.4)
FL(‘ra QQ) = FQ(x7Q2> - QxFl(vaQ%

and are known as the “structure functions”. Often the hadronic tensor is
parametrised in terms of F, and Fj, the latter of which is the longitudinal

structure function and encapsulates the longitudinal component.

We can now combine Eqns. 1.1.2 and 1.1.3 in Eqn. 1.1.1, making use of the fact
that due to current conservation ¢*L,, = 0 to help simplify things. This leads us
to the result:

M =16 /vj—f{<—2q2>w1<p, Q)+ (4<p-k>2 _4(p.q><p.k>>)w2<p, q>}. (1.1.5)

1.1.2 The parton model

Carrying out DIS experiments allows us to measure the structure functions for
different values of x and Q2. It transpired that no clear Q? dependence was
observed, and this is known as Bjorken scaling [18]. Because Q? is the photon’s
squared momentum, it corresponds to the energy at which the hadron is being
probed. The fact that the structure functions are not dependent on this suggests
that the interaction is point-like. This led to the formulation of the “parton
model”, which described the proton as a composite state made up of point-like

particles termed “partons”[19-21].



Furthermore, Fy,(z) was measured to be 0, known as the Callan-Gross relation [18,
22], which suggests that the point-like particles could not absorb longitudinal
photons. This fitted in nicely with the quark models developed shortly before
[23-26], which described hadrons in terms of spin-1/2 quarks; spin-1/2 particles
cannot interact with longitudinal photons. This was the first experimental

evidence for the existence of quarks.

In the DIS regime, Q? is large and so the virtual photon probes at the short
timescale 1/Q), meaning that the interaction will be effectively instantaneous
when compared with the inner proton dynamics which operate at the QCD
scale 1/ \gcp ~ 1 fm. In the parton model we make the assumption that the
partons have only a small momentum transverse to the proton’s, and that they
are effectively on shell for the interaction (k? ~ 0). In addition, we consider the
process in the infinite momentum frame of the proton, in which its diameter is
Lorentz contracted by M/|p| (a small number), so we can assume the photon will
only interact with one parton because it will only traverse a narrow cross-section

of the proton. The updated picture is shown in Fig. 1.1.2.

k/

Figure 1.1.2 DIS in the parton model. One parton with momentum p interacts
with the virtual photon, and the other partons “spectate”.

We parametrise the momentum of the interacting parton as &p, £ € [0,1]. The



parton in the final state has negligible mass so its momentum squared is zero:

Ep+q)°=0
= 2p-q+¢ =0
— 2p-q—Q°=0

QQ
2p-q

(1.1.6)

Il
8

== (=

This allows us to identify the parton’s momentum fraction in this frame with the

Bjorken x variable.

We can think of the total collection of interactions in terms of a weighted sum
over the interactions between the photon and the individual point-like partons,
integrated over the possible parton momentum fractions. So we can write the

proton-level hadronic tensor, W, in terms of the parton-level ones, ng as

1 ~
Wi = @me)wgw (1.1.7)

where ¢ runs over the possible quark flavours and f, are distributions, with
fq(x)dz giving the probability that in an interaction a parton of flavour ¢ will be
found in the momentum range z — x 4+ dx. We call these functions “parton
distribution functions” (PDFs). We consider x here rather than ¢ following
momentum conservation in Eqn. 1.1.6. The factor of 1/Q? is convention. Using

Eqgn 1.1.1, we can see that
1 .
IM|*= @qu(x)wqﬁ (1.1.8)
q

This means that the total amplitude can be expressed in terms of the partonic
amplitudes and the PDFs. If we assume that the partons are massless Dirac
particles, we can draw a mathematical equivalence with electron-muon scattering.
In this scenario the electron has a current like Eqn. 1.1.2, and the muon has the
same, but with the substitutions & — p and ¢ — —¢. Once again we can use

quL"” = 0 and the expression

2
(Mo = N LE) L™ (1.1.9)

gt (w)



to show (in the massless limit)
2

[Mep "= 16 N% <16(p k) +8¢%(p- k) + 2q4> . (1.1.10)

Using the symmetry of Fig. 1.1.2, we can see this is analogous to |/\>lq|2 under the
substitution p — xp, provided we replace the charge of the electron, e, with that
of the parton, e,, so that &« — e,«. Making use of the expression p-k = Q*/2zy,

2 2

|/\/l > = { (2zp - k)* +4(2xp - k)¢ + 2q4}

=16 N 224 { (Q_2) (Q2>Q2+2Q } (1.1.11)
— 16 Ne§a2{2+4(1y_2y)}.

Now we can use this alongside Eqn. 1.1.5 in Eqn. 1.1.8, giving us

=W = qu(x)eQ

F,=vW,y = 2332 fo(x)el
q

(1.1.12)

We see immediately that the Callan-Gross relation, F(z) = Fy(z)—2xFi(x) = 0,

is satisfied, as was observed experimentally.

However, it was soon observed that this relation was not exact, which is known
as “scaling violation”. In order to understand this behaviour it is necessary to

revisit the parton model in the light of Quantum Chromodynamics (QCD).

1.1.3 Quantum Chromodynamics (QCD)

QCD is the theory of the strong force. This is responsible for binding together
hadrons, and explains the short-range interactions which occur within them. It is
a gauge theory where the quark fields are realised as fundamental representations
of the SU(3) symmetry group and interactions between them are carried out via
gauge bosons termed “gluons”, which are expressed in the adjoint representation
[27].

Quark models showed that the structure of observed hadrons can be explained

using the SU(3); group alongside the association of quarks with different

7



“flavours” [23-26] . The additional SU(3). colour symmetry was put forwards in
order that the quarks satisfied Fermi-Dirac statistics [28]. Each quark is assigned
an additional colour ((anti-)red, green or blue) in such a way that the composite
hadrons are colourless. The additional local symmetry is accompanied by eight
gauge bosons, the gluons. Colour is the charge of QCD, just as electric charge is
for QED. An important difference is that, unlike chargeless photons in QED, the

gluons themselves also have colour and this leads to complex self-interactions.

QCD can be expressed through the Lagrangian

1 oo :
L= =S FoF™ + 3 (iP] — mé)q;, (1.1.13)

where the covariant derivative is
Dyuip(x) = (9, — iv/Ara T A%)i(x), (1.1.14)
and the field strength tensor is
Fi, = 0,A, — 0,A; + \/Mf“bcAZAi. (1.1.15)

The indices u, v are spacetime indices, ,j are quark colour indices and a,b,c
are gluon colour indices. The first term in the Lagrangian arises from the self-
interacting gluons, A, and the second term from the quarks, ¢, which obey the
Dirac equation. «g is the strong coupling constant, which dictates the strength
of the interaction, and T are the eight SU(3) generators. f are the SU(3)
structure constants. For simplicity we have assumed all quarks have the same
mass, m. Note that gauge fixing and ghost terms are omitted. For more

information see [13].

Colour self-interactions give rise to the important properties of “confinement”

and “asymptotic freedom”. The QCD potential is of the form
o
V(r) ~ —+kr, (1.1.16)
r

where the first term drops off with distance like QED, but the second term comes
from the self-interactions and means that separating two quarks takes infinite
energy. This explains why we have not observed free quarks (“confinement”).
Additionally, the QCD colour charge decreases with shorter distances. This
means that at very short distances or high energies the quarks become “free”,

which is known as “asymptotic freedom”. This crucial fact allows us to apply the



tool of perturbation theory in such regimes.

QCD is subject to divergences in the ultra-violet (high energies) and infra-red
(low energies). The former are regulated by renormalisation, which introduces a
“renormalisation scale”, pugr. This is non-physical, and so observables cannot
depend on it. This observation leads to a “renormalisation group equation”
(RGE), which can be solved by the introduction of a running coupling, dependent
on the scale Q? (i.e. ay — a,(Q?)), which satisfies

Q2 Oas

= B(ay), (1.1.17)

The beta function, 5(as), can be expressed perturbatively as an expansion in as

and is currently known to N3LO.

At one-loop order the solution of this equation is

(@) = —Uh) (11.18)

where [ is the first coefficient of the [ expansion. From this solution, taking into
account that fy is positive, we can explicitly see asymptotic freedom because ay
decreases as the energy scale increases. We also see the role of the renormalisation
scale in specifying a particular reference value for ay. In particular, the scale at
which the coupling constant starts to diverge is known as the QCD scale, A, and
is of order 100 MeV.

Quantities are infrared safe if they do not depend on long-distance physics. This
means we can apply perturbation theory because «y is small enough in the short-
distance regime. Unforunately, at the partonic level, structure functions and cross

sections are not infrared safe.

1.1.4 The QCD improved parton model and factorisation

In the naive parton model, we did not include any interactions involving gluons;
their incorporation leads to the QCD improved parton model. The addition of
gluons leads to significant complications, owing to the fact that the interacting
quarks are free to emit gluons at some stage before detection (remember the
detector is at long-distance so we cannot ignore the long-distance physics). When

these gluons are “soft” (low energy) or collinear to one of the partons we run into



infrared divergences. This situation is equivalent to the internal propagator quark
going on-shell, or in other words there is a large time separation between the
partonic interaction and the gluon emission. The observed violation of Bjorken
scaling has its origins in interactions with gluons. In infrared-safe observables the
soft and collinear divergences exactly cancel [29, 30], but for other cases we need

a way of dealing with the disparate short and long range physics.

Figure 1.1.3  Fuactorisation and the QCD improved parton model

This is done using the factorisation theorem [31], which allows us to factorise
the incalculable long-distance physics into the PDFs, meaning we are able to use
perturbative QCD as a predictive theory. The PDFs are then non-perturbative,
meaning we must obtain them from experiments, but they are universal quantities
and so once determined can be applied everywhere, much like the coupling
constants. This process introduces the artificial “factorisation scale”, g, in
addition to the renormalisation scale. The factorisation scale separates the short
and long distance physics; loosely, if a parton’s transverse momentum is less than
wr it is considered part of the hadron and is factored into the PDFs, otherwise
it is seen as taking part in the hard scattering process, and will appear in the

partonic cross section.
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Figure 1.1.4 A quark radiating a gluon before interacting.

We can write a DIS cross section as

. Q?
oDIS _ Z/d:l:fz(x, 13)6; (x, = (1.1.19)
p Hp
corresponding to Fig 1.1.3, where ¢ runs over partons.
We can see how this works in practice by considering the case where a quark
emits a gluon before interaction with the photon, such as in Fig. 1.1.4. Here the
parent parton, with fraction y of the proton’s momentum, emits a gluon giving

rise to a daughter parton with a fraction z of the parent hadron’s momentum.

We can see that z = z/y.

It transpires (see [14] for the derivation) that the structure function F, can be

expressed as

g Bl 2 ()(B)] oo

11



m is a cutoff introduced to regularise the collinear divergence and you can see that
as m — 0 the structure function diverges. A divergence also occurs for (1—2z) — 0,
and this is a soft divergence because it corresponds to the gluon being emitted
with zero momentum. The quantity P,, is the quark-quark “splitting function”,
detailing the probability that a quark emits a gluon leaving a daughter quark

with fraction z of the parent’s momentum. In the M.S renormalisation scheme

this has the form L1 )
+ z

= — . 1.1.21

qu 3 < 1 — ) ( )

We want an expression which is free from the soft and collinear divergences. We

can proceed by defining

Zi(w) = %/:% )P, (g) (1.1.22)

and separating 1.1.20 into a singular part and a calculable part, like

Fy(2,Q%) _ Se {fi@) + i, (z)In (%) + I, () In (Q—;H (1.1.23)

T Hr

7

Notice we introduced the artificial factorisation scale, g, to do this. Grouping

the singular terms together as

2
i H
o) = 1) + Ty (45, (1124
we have factorised the divergences into the PDF f;(z), giving a new PDF,
fi(z, p2) , which also depends on up. Noting that at leading order fi(y) =

fi(y, N%), we are able to write

F: ’ s [td 2
% - ZG? |:fi(5l77“%7) + ;l—ﬂ/m ?yfi(?/a/i%)Pq (g) In (%)} +0(a?).

(1.1.25)

We know that F, is an observable quantity and thus should be independent of

12



ur, leading to a RGE:

i@Fg(x, Q2) o 8fz(x’ ILL%')

e2r Olmpz Oyl
a, [tdy (0fi(y. 1%) ’ x
= A LA AR S O [y 2 =
+ o Y ( 8ln,u% n (,U%?) f(yvluF)>PQQ(y)
=0.
(1.1.26)
This can be further simplified by noting that % is of O(a?), and so
F
Ofi(z, p) _ as /1 dy > (fﬂ)
e A N - N AT = 1.1.27
(()IDM% or /. yf<y 115)Pag y ( )

This equation describes the evolution of the newly defined PDFs with scale, a
product of the factorisation of the divergences into them. In practice this equation

is solved numerically.

When we also include the gluon as a parton, we open ourselves up to more splitting
possibilities (e.g. gluon — quark and gluon — gluon), and this result generalises

to a set of coupled differential equations known as the DGLAP equations [32-34]:

i
Oln p2,

Qg
-y Epy0 (11.28)

%

where we have used the Mellin convolution, defined

1
Pof= %P<§>f(y,u%), (1.1.20)

T

and the index ¢ runs from —n; to ny (where n; is the number of flavours), with
the negative indices referring to the antiquarks, 0 to the gluon and the positive

ones to the quarks.

The DGLAP equations are commonly dealt with in Mellin space where the
convolution is transformed into a product; the Mellin transform from z-space
to Mellin space is defined as

M(n) = /01 dx "' M(z). (1.1.30)

Considering the Mellin transform of the RHS of the DGLAP equation, and

13



suppressing the parton indices, ¢, for clarity, we have

! Ydy o x
dr 2"t / = = 73(—) 7
/0 L w P fy, pp)

_ /01 dr 2" [/01 dy /01 dz % P(2)f(y)d(x — yz) (1.1.31)

s

R .0 / dy v ()

2m Jo 0

_ ;—;P(n) f(n) =~(n) f(n),

where (n);; (with parton indices explicit) are known as the anomalous dimen-

sions, and are calculable order by order in perturbation theory.

1.1.5 Hadroproduction

At the LHC most processes involve the interaction of two protons. Hadron-
hadron collisions can be approached in much the same way as DIS, but instead

the process is like in Fig. 1.1.5.

Figure 1.1.5 Factorisation in hadron-hadron collisions.

Because two protons are involved the expression for the cross section is the natural
extension of the DIS case (Eqn. 1.1.19):

F

2
g = Z / dxldffgfi<5(]1, /,L%‘)fj(l’g, /,L%-‘)CATU (ZL‘h T, /62_27 ) . (1132)
,J
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1.1.6 Sum rules

Although PDFs may seem at first sight to be totally unknown there are some
theoretical observations which we can use to constrain their form. These are
known as the “sum rules” [13]. Intuitively, adding up all the momenta of the

partons must equal the momentum of the proton. This enforces the condition

/01 Ay o fil, Q) = 1. (1.1.33)

1

The other thing we know about the proton is that it is made up of two up and one
down “valence” quarks. Any other quarks must be pair-produced from the sea,
and therefore come with an antiquark of the same flavour. So we can normalise

the PDFs using the expressions:

/1 dx(fu — fa) = 2; (1.1.34a)
0
/ de(fy— i) = 1; (1.1.34D)
0
/1 de(f,— f7) =0, q=s,ct,b. (1.1.34c)

Note that these conditions require that the PDFs are integrable.

1.2 Methodological background

In this section we review the necessary background for PDF determination within
the NNPDF [35] framework. The results in this thesis are based on two different
versions of this: NNPDF3.1 and NNPDF4.0. First we touch on the experimental
and theoretical inputs to PDF fits, which are common to both versions. Then
we outline the NNPDF3.1 framework, which was used to generate the results
in Chapters 3 and 5. We summarise the NNPDF fitting strategy, and detail
information on neural networks specific to this context. Finally, we explain the
main differences between this and NNPDF4.0, which was used to generate the

results in Chapter 4.
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Figure 1.2.1 Plot of the (x,Q?) range spanned by data included in the upcoming
NNPDF/.0 NLO fit. Datasets in NNPDF3.1 are those without the
black edge.

1.2.1 Experimental and theoretical input

NNPDF uses a variety of experimental data from a number of particle colliders,
including those based at CERN [36] and Fermilab [37]. These are observables
such as cross sections, differential cross sections and structure functions. Fig.
1.2.1 is a plot of the (x,Q?) range spanned by the datasets in the upcoming
NNPDF4.0 release, with those in NNPDF3.1 [10] shown without a black edge.
Much of the data are from DIS processes, which are crucial in determining PDF
functional form, but in recent years increasingly more LHC collider data has been
added including ¢t production and high energy jets. For a full review of the data
in both NNPDF3.1 and NNPDF4.0 see [38].

Theoretical predictions of the corresponding parton-level observables are com-
puted using external codes [39-43]. These are converted to higher orders of
perturbation theory as necessary using QCD and electroweak correction factors
(known as “c” or “k” factors). They are then combined with DGLAP evolution
kernels, which evolve PDF's from an initial reference energy scale to the energy

scale of each experiment using the DGLAP equations (Eqn. 1.1.28). This

16



evolution is done using APFEL [44].

1.2.2 Experimental uncertainties

Experimental uncertainties are described using a covariance matrix, Cj;, which
gives the uncertainties and correlations between each of the data points 7,5 =

1,..., Ngat. It encapsulates the total breakdown of errors, o, and can be con-

uncorr

structed using uncorrelated errors (o}

), and additive (0;,) and multiplicative

(0i.m) correlated systematic errors (more on these below):
Oi' = (5Z‘j0';mw”0';ncow + Z O-i,ao-j,a + ( Z Ui,maj,m) DiDj7 (121)
a m

where D, are the experimental data values.

Structurally, the uncorrelated statistical uncertainties appear down the diagonal
and these are what we would recognise intuitively as the statistical error “on a
data point”. However, correlated systematic uncertainties can also appear on
the off-diagonals. Correlated uncertaintes include those which link multiple data
points, for example systematic uncertainties from a particular detector which will

affect all of its data in a similar way.

Systematic uncertainties further divide into two types, “additive” and “mul-
tiplicative”. Additive systematics are perhaps a more familiar type of error,
and are independent of the datapoint values themselves. On the other hand,
multiplicative systematics depend on the measured values. In the context of
particle physics experiments, a common example is total detector luminosity. This
is because recorded cross sections are dependent on the luminosity of the detector;
a higher luminosity means more collisions will take place so the measured cross

section will be greater.

Fig. 1.2.2 is an example of an experimental covariance matrix for data included
in an NNPDF fit. The data are grouped according to what type of process the
interaction belongs to (DIS charged current (CC) and neutral current (NC), Drell-
Yan (DY), jets and top production). Systematic correlations within experiments
are responsible for off-diagonal contributions, and these are mostly positive
correlations but there is some anticorrelated behaviour in DIS CC, as a result

of data in different kinematic regimes.
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Experimental Covariance Matrix
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Figure 1.2.2 An example of an experimental covariance matriz for data
included in an NNPDF fit. The data are grouped according to what
type of process the interaction belongs to (DIS charged current

(CC) and neutral current (NC), Drell-Yan (DY), jets and top
production).
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The covariance matrix can be used to define the x? figure of merit,

o 1
Ndat

Y (D, ~ T)C;; (D, — T)). (1.22)

which measures how good the fit is between the experimental data D; with
associated covariance Cj;, and theory predictions 7;. In practice, this definition is
subject to d’Agostini bias [45] due to the presence of normalisation uncertainties.
To avoid this, NNPDF employ the iterative t0 procedure [46] whereby D; in
Eqn. 1.2.1 are replaced initially with the predictions from a baseline fit, and the

covariance matrix is iterated concurrently with preprocessing.

1.2.3 NNPDF fitting strategy

There are a number of groups currently active in carrying out proton PDF fits
including MSHT [47], CTEQ [48], NNPDF [35], HERAPDF /xFitter [49] and
ABM [50]. The work in this thesis has been carried out in the framework
developed by the NNPDF collaboration, so we will concentrate on this fitting
strategy, which is summarised in Fig. 1.2.3. There are two main features which

differ from other fitting collaborations’ [51]. These are:

1. The use of Monte Carlo approach to error analysis;

2. Fitting using artificial neural networks.

In the following sections we will provide an overview of these aspects, which can
be found in more detail in [10, 52, 53].
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Figure 1.2.3 NNPDF general strategy. Image credit: Eleanor Conole.

1.2.4 Monte Carlo approach

The uncertainties in the functional form of PDFs come as a direct consequence
of the uncertainties in the experimental and theoretical inputs. In order to
propagate experimental uncertainties through to the PDFs, NNPDF represent the
experimental data (central values and uncertainty distribution) as a Monte Carlo
ensemble. This is a set of N,., Monte Carlo “replicas” which, given high enough
replica number, have a mean value equal to the data central value and covariance
equal to the experimental covariance. Fig 1.2.4 is a schematic illustrating the
generation of these “pseudodata”, DW®) k =1,. ..y Nyep. They are generated using

. k A k
Gaussian random numbers ng and 7! ).

D= (D" + > nPo") T[] +aPa"), (1.2.3)

where D is the experimental data value, and ¢ and ¢™ are the additive and
multiplicative uncertainties discussed in Sec. 1.2.2. Sometimes uncertainties are

asymmetric, and in this case we adjust the data value such that the uncertainties
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Figure 1.2.4 Generation of Monte Carlo replicas of pseudodata from data with
uncertainties. Left: experimental data; right: five Monte Carlo
replicas.

are made symmetric. Explicitly, the pseudodata replicas satisfy the relations:

(DY = D% (D) — DYY((DIMy — DO)) = Cy, (1.2.4)

1

in the limit of N,., — 0o, where the notation (-) denotes the mean over replicas.

Fig. 1.2.5 shows the distribution of pseudodata for a single data point.
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Figure 1.2.5 Histogram of the distribution of 100 pseudodata replicas for a
single data point with 8.89% uncertainty, normalised to D°. The
purple line is the mean value (D®), which is equal to D° (black
line) to arbitrary precision.

Once the pseudodata have been generated, each replica, D®_ is fitted separately
to the theoretical predictions, T;] fq(k)], which depend on the PDF replicas, fék)
(where ¢ runs over the fitted flavours: ¢, u, d, s, ¢, @, d, 5, ¢). This is done by

fitting the PDFs to minimise a target error function based on the y?:

Ndat
1 _
0= LSS 00 - nEe)F 0 - ). (29
W og =1

Here C(ty) is the t0 covariance matrix, which is Eqn. 1.2.1 with D; — ¢ ;, where
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to are theory predictions from a similar previous fit. This is to remove d’Agostini
bias [45, 46]. Doing this fit then results in a PDF set of each flavour. These act
as a Monte Carlo parametrisation of the PDFs (for example, Fig. 1.2.6). This
means that the PDFs and their errors can be extracted by taking the means
and standard deviations over the ensemble. The final PDFs are made publicly
available as downloadable files on the LHAPDF website [54, 55].

dy at 10.0 GeV

NNPDF 3.1 NLO

0.25 -

0.20 ~

xdy(x)

0.15 A

0.10 -

1072 1071 10°
X

Figure 1.2.6 Monte Carlo replicas for the down valence quark PDF NNPDF3.1
at NLO.

1.2.5 Neural networks

Inspired by how the brain processes information, in machine learning neural
networks are graphs of connected nodes. They are trained by example, so have
the capability to learn a PDF’s functional form given a set of data. Using
neural networks rather than specific functional forms allows us to avoid the
theoretical bias which goes into selecting such a functional form. The layout, or
“architecture”, consists of input layers, hidden layers and output layers. Nodes
can be either input nodes or activation nodes, the latter of which have an

associated activation function which is applied to their output.

Neural networks in NNPDF3.1

Fig. 1.2.7 depicts the architecture used in NNPDF3.1. This is a “2-5-3-1"
archiecture, where the numbers refer to the number of nodes in each layer. It

is a “multilayer perceptron”, meaning the graph is fully connected, and it is a
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Figure 1.2.7 Schematic depiction of the 2-5-3-1 architecture of an artificial
neural network of NNPDFS3.1. Here 551) and 551) are the variables
x and In(1/x) respectively.

feed-forward; information can only be passed in one direction through the layers
(from input to output). The two inputs are x and In(1/x), and the output, f or
€@ is the PDF at the parametrisation scale, Q. In this network the output of

a node in the [*" layer is given by
inputs
! 1) (- I
O = g( S wlel 4 9§’) (1.2.6)
J

where the ws and s are “weights” and “thresholds”; parameters to be minimised

with respect to. ¢ is an “activation function” which is set to

—L___ for hidden layers
g(z) = ¢ Hreets Y (1.2.7)

z for the output layer.

The choice of this sigmoid activation function for the hidden layers allows
sufficient non-linear freedom in the functional form, and the linear activation
function for the output layer ensures the range of the PDF's is not restricted to
[0,1].

The training of the neural networks is implemented using a “genetic algo-
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rithm” [56] (CMA-ES), so-called because of the introduction of mutation to the
fitting parameters. This additional degree of randomness helps to avoid getting
stuck in local minima. In practice, this involves “mutating” some chosen fraction

of the thresholds, ¢, by perturbing them at random.

1.2.6 Parametrisation, preprocessing and postprocessing

A scale of () = 1.65 GeV is chosen to parametrise the PDFs at, and then they
can be determined at any other scale by evolution using the DGLAP equations
(Eqn. 1.1.28). The PDFs are fitted whilst parametrised in a “fitting basis” of

eight combinations of flavours, to help convergence [57], defined:

® 9

Y= Zu,d,s q; + QH

o Iz=u—d;
o Ts=u+d—2s;
L4 VE Zu’d’s ql_q't;

°
0

Since the form of the neural networks (NV;(x)) is determined by training on
experimental data, the output is not meaningful outwith the data region. The
functional form of the PDFs in this so-called “extrapolation region” is in
practice fixed through enforcement of the known high and low z behaviour via

“preprocessing”; the PDFs are parametrised as:
fi(z) = Az (1 — 2)% Ny(z). (1.2.8)

A; are normalisation coeflicients, which are fixed at each iteration of the fit. There
are seven of these initial coefficients, three of which are set by the valence sum
rules and one by the momentum sum rule. The other three are initially set to

1; see [58] for more information. The powers «; and §; are fitted parameters
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determined by iteration from one fit to the next. This preprocessing has the
effect that the PDF's approach 0 at large z, and generally grow at small x. This
is because the probability of the existence of a parton is generally small at high

x and larger with decreasing x outwith the data region.

Postprocessing is also applied to the PDF replicas to remove those which don’t
satisfy certain quality conditions. That is, where the target error function or arc-
length of the replica is more than four standard deviations outwith the mean, or

where the positivity of the resulting cross-sections is not satisfactorily maintained.

20

-20

Figure 1.2.8 OQverlearning: the data points (black dots) fluctuate around the
linear underlying law (black line), but the neural network continues
to minimise the error function until it passes through every data
point (blue curve), fitting the noise in the data. Image credit:
Eleanor Conole.

1.2.7 Cross validation

Neural networks are effective at learning the functional form which underlies data.
Sometimes, if there are more degrees of freedom in the PDF than in the data,
they can be “too effective”, picking up not just the underlying law but also the

noise. This is known as “overlearning” (see Fig. 1.2.8 for an example).

To circumvent this problem, the data are split into a training and a validation set.
The training data are used to optimise the neural network, and the validation data
are used to test the network output, in a process known as “cross validation”. As
training epochs elapse, the target error function compared to both the training
and validation data should decrease as the network learns the underlying law.

At some point, however, the network will begin to learn the noise in the training
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Figure 1.2.9 Cross validation with the lookback method. Image credit: Eleanor
Conole.

data, at which point the training error function will continue to decrease, but
the validation error function will stop decreasing and start to increase again.
In NNPDF3.1 we determine the optimum fit using the “lookback” method
(Fig. 1.2.9), where after training the model corresponding to the minimum in

the validation error function is selected.

1.3 NNPDF4.0

The earlier parts of this section describe the methodology for the NNPDF3.1 [10]
release, on which Chapters 3 and 5 are based. However, at the time of writing
this thesis a new release, NNPDF4.0, is being launched. The work in Chapter 4
is based on this methodology, and so we briefly explain the main developments
between NNPDF3.1 and NNPDF4.0. For more information see [38, 59|, and the
future NNPDF4.0 paper.
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1.3.1 Methodology

NNPDF4.0 heralds some significant methodological changes to the NNPDF
procedure, the most important of which we will outline here. Perhaps most
strikingly, the architecture of the neural network is changed [60] from that
in Fig. 1.2.7, which is implemented separately for each flavour, to a single
neural network with flexible architecture. The implementation is via Keras [61]
and Tensorflow [62], and the optimisation is with an inbuilt gradient descent
algorithm rather than the genetic algorithm in NNPDF3.1. The stopping criterion
follows a patience method where the fit stops once the minimiser is stable for a
set length of time. All of these parameters, including architecture are determined
via hyperoptimisation with k-folding, which is a process to determine the best

combination for stability and performance.

Additionally, positivity of PDF replicas is now strictly enforced rather than them
being allowed to be negative within a threshold. This is following a recent
study [63] which showed that M S PDFs are strictly positive.

1.3.2 Theory developments

There are two main theory developments between NNPDF3.1 and NNPDF4.0.
One is the treatment of nuclear and deuteron data using an additional uncertainty.

This forms the basis of Chapter 4 so we will not discuss it further here.

The other is the inclusion of NLO electroweak (EW) corrections. This consists
of QED corrections to the DGLAP evolution as well as NLO EW corrections
for a variety of processes; wherever EW corrections are available they are added
to increase precision. This is very important as EW corrections can be up to
~ 20% [64] in some regions. The corrections are provided as interpolation grids
via the PineAPPL library [65].

1.3.3 Validation of PDFs

The effectiveness of the fitting methodology has traditionally been tested using
closure tests [57], which use a separate PDF to create proxy known “true values”.
This procedure has been updated, whereby fits are carried out to many proxy

PDF replicas, and the bias and variance of the results are compared. This is made
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possible by the significantly increased speed of the new fitting methodology [60].

1.3.4 New data

NNPDF4.0 also includes a large number of additional datasets, including many
from the 13 TeV run at the LHC (see Fig. 1.2.1). What’s more, many of the

existing datasets’ implementation has been improved [38].
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Chapter 2

Theory uncertainties in PDFs

The concept of experimental uncertainties is one that is familiar to any scientist.
Whenever we make a measurement it is accompanied by an uncertainty which
quantifies our degree of confidence in its accuracy. The smaller this uncertainty
is, the more useful the measurement is. Not providing an uncertainty arguably
renders the measurement useless, as the implicit uncertainty could in principle

be arbitrarily large.

But uncertainties also apply to theoretical predictions. In a broad sense, there
is some uncertainty associated with our degree of confidence in a particular
theoretical model, but even within the parameters of a model a prediction can
often be uncertain. In the case of QCD there are many contributions to this
uncertainty. One of the most obvious is the truncation of the perturbation series
to fixed order, necessary because successively complex calculations are required

for increasing orders. Other contributions include:
e non-perturbative effects such as higher-twist terms;

e treatment of heavy quarks and the impact of nuclear environments [66, 67];

e choice of model parameters such as a, and particle masses, which have
to be determined from experiment, and are subject to different theoretical
definitions [68, 69].

PDFs are produced in fits which compare experimental measurements with

theoretical predictions, so uncertainties in both these places should end up in the
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PDFs. In the past we have got away with arguing that theory uncertainties are
small compared to experimental uncertainties [67], and so the experimental ones
with dominate the PDF uncertainty. In regions where this is not the case, such as
the higher-twist region, the data are simply not included in the fit. But such an
argument is increasingly becoming a stretch, due to ultra-precision measurements,
the advent of the high-luminosity LHC [70], and anticipated future colliders [7-9].

To calculate theoretical uncertainties we must first consider what it is we are
trying to calculate. Underlying the uncertainty is a “true” value, which we
are unable to determine exactly. This suggests a Bayesian approach is most
appropriate [71, 72], where the uncertainty quantifies our belief that the true
value lies within a certain range. We will use such a Bayesian framework, and
assume Gaussianity of the expected true value of the theory calculation in order
to simplify the situation. This should be sufficient to capture the main features

of the uncertainty.

In this section we will show that including general theory uncertainties in PDFs
can be done by constructing a theory covariance matrix, S, to complement the
experimental covariance matrix, C'. Theory uncertainties can then be included
in a fit by the replacement C' — C' + S [73]. The plus sign appears because the
experimental and theoretical uncertainties are independent, so the uncertainties
are combined in quadrature. They are also on an equal footing in terms of their
effect on the PDFs. When there are many data sets, for example in a global
fit, there can be very strong correlations in theory uncertainty, even outwith
individual experiments. This is because the underlying theory connects different

predictions, even when the corresponding data come from different experiments.

2.1 Fitting PDFs including theory uncertainties

Historically, experimental uncertainties have been the dominant source of
uncertainty in PDF fits. In the NNPDF3.1 framework, both replica generation
and computation of x? are based entirely on these. We must now try to match
the ongoing drive to increase experimental precision by including uncertainties
introduced at the theoretical level. This is especially important given data sets
new in NNPDF3.1 such as the Z boson transverse momentum distributions [74—
76], which have very high experimental precision. Without the inclusion of

theoretical uncertainties, this has led to tension with the other datasets.
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In future NNPDF fits theoretical uncertainties will be included following a
procedure outlined in Sec. 4.1 of [73]. This hinges on a result from Bayesian
statistics which applies to Gaussian uncertainties. Namely, theory uncertainties
can be included by directly adding a theoretical covariance matrix to the
experimental covariance matrix prior to the fitting. We will now give a brief

summary of this derivation.

When determining PDFs we incorporate information from experiments in the
form of Ny, experimental data points D;, ¢« = 1,..., Ngo:. The associated un-
certainties and their correlations are encapsulated in an experimental covariance
matrix Cj;. Parts of the matrix which associate two independent experiments
will be populated by zeros. However we would expect there to be correlations

between data points from the same detector, for example.

Each data point is a measurement of some fundamental “true” value, 7;, dictated
by the underlying physics. In order to make use of the data in a Bayesian
framework, we assume that the experimental values follow a Gaussian distribution
about the unknown 7. Then, assuming the same prior for D and T, we can write

an expression for the conditional probability of T given the known data D:
1

However, in a PDF fit we cannot fit to the unknown true values 7, and must
make do with predictions based on current theory 7. This is the origin of theory
uncertainties in PDF fits; where our theory is incomplete, fails to describe the
physics well enough, or where approximations are made, we will introduce all
kinds of subtle biases into the PDF fit. The theory predictions themselves also
depend on PDFs, so uncertainties already present in the PDFs are propagated
through. This, in particular, leads to a high level of correlation because the PDFs
are universal, and shared between all the theory predictions. In Chapter 5 we

will take an in-depth look into these correlations.

We can take a similar approach when writing an expression for the conditional
probability of the true values 7 given the available theory predictions T, by
assuming that the true values are Gaussianly distributed about the theory
predictions.

P(T|T) = P(T|T)  exp < (T; — 1;-)51.;1(7; — Tj)), (2.1.2)

1
2
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where S;; is a “theory covariance matrix” encapsulating the magnitude and
correlation of the various theory uncertainties. We will need to do some work
to determine S;; for the different sources of uncertainty, and this will be outlined

in detail in the following chapters.

When we fit PDFs we aim to maximise the probability that a PDF-dependent
theory is true given the experimental data available. This amounts to maximising
P(T'|D), marginalised over the unknown true values 7. To make this more useful

for fitting purposes, we can relate it to P(D|T") using Bayes’ Theorem:
P(D|T)P(T|DT) = P(T|T)P(D|TT), (2.1.3)

where we note that the experimental data, D, do not depend on our modelled
values T, so P(D|TT) = P(D|T). So we can integrate Bayes’ Theorem over the

possible values of the N-dimensional true values 7 :
/ DNT P(DIT)P(T|DT) = / DNT P(TIT)P(D|T), (2.1.4)

and because [ DNTP(T|TD) = 1, as all possible probabilities for the true values

must sum to one,
P(DIT) = / DNT P(TIT)P(DIT). (2.15)

We can always write the theory predictions, 7', in terms of their shifts, A, relative
to the true values, 7
N =T, —1T;. (2.1.6)

These shifts quantify the accuracy of the theoretical predictions, and can be
thought of as nuisance parameters in the PDF fit. We can express Eqn. 2.1.5 in
terms of the shifts, A;, making use of the assumptions of Gaussianity in Eqns.
2.1.1 and 2.1.2:

P(D|T) /DNA exp < - %(Di —T; — A)
. (2.1.7)

To evalute the Gaussian integrals, consider the exponent: switching to a vector

notation for the time being, we can expand this out and then complete the square,
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making use of the symmetry of S and C:

(D-T—-AN"CYD~-T—-A)+ATSA
=D (CHr+SHA-ATCHD-T)-(D-T)'C'A+(D-T)'C'(D-T)
= (A—-(Ct s Hre (D -T)H (Ot +857h
x (A—(C' 4 STHT'CHD - T))
—(D-1mfctot+sH e (D-T)+(D-T)'C(D-T).
(2.1.8)

Now, integrating Eqn. 2.1.7 over A leads to a constant from the Gaussian
integrals, which we can absorb, and only the parts of the exponent without A

remain:

P(T|D) = P(D|T)  exp (- %(D - ct-c (Tt +sTH oY (D - T)> :

(2.1.9)
We can further simplify this by noting that
(Cfl 4 Sfl)fl — (Cfl(c_i_ S)Sfl)fl (2110)
=S(C+S)'C,
which means we can rewrite
clt-clct+shHlet=ct-c's(Cc+85) (2.1.11)
=(CHC+8)-C'9)(C+9)!
=(C+95)"
Finally, with indices restored we are left with
1
P(T|D) x exp ( — §(Di —T3)(C+ S); (D; — Tj)). (2.1.12)

Comparing this result to Eqn. 2.1.1, we can confirm that when we possess
theoretical predictions, T;, rather than true values, 7;, we can account for this
by adding a theoretical covariance matrix, S;; to the experimental covariance
matrix, C;; [73]. This means the theory uncertainties are on an equal footing
with experimental systematic uncertainties. Note that Cj; is positive definite by

construction and so (C'+95);; is always invertible, even if S;; has zero eigenvalues.
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Now all that remains is to construct a theory covariance matrix which parametrises
each instance of theoretical uncertainty. This is a nebulous task, given that we
are not privy to the true values, 7, and so are unable to simply apply the formal
definition

Sij = (T = T)(T; — T7)), (2.1.13)

where (-) denotes an average over true values, 7. We need to find methods to
calculate the various contributions, S;;, (be they mising higher order uncertain-
ties, nuclear corrections, higher twist corrections etc.) which not only encapsulate
the per-point theoretical uncertainties but also preserve the correlations between
different data points. Unlike experimental uncertainties, these correlations can
exist outwith individual experiments; in fact, all data in PDF fits depend
themselves on PDF's, and this common link will lead to correlations between

all datapoints, albeit of varying strength.

The rest of this thesis addresses two of the most important types of theoretical
uncertainties: missing higher order uncertainties (Chapter 3) and nuclear
uncertainties (Chapter 4). For each type, we show how to construct a theoretical
covariance matrix, and present and discuss the results of PDF fits including these
covariance matrices. Then in Chapter 5 we consider how to use these PDFs with
theory uncertainties to make new physics predictions which also include theory

uncertainties.
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Chapter 3

Missing higher order uncertainties

In this chapter we address the dominant source of theory uncertainty in current
PDF fits: missing higher order uncertainties (MHOUs). In Sec. 3.1 we explain
their origin, then in Sec. 3.2 we revise their standard method of estimation,
through scale variation. We then show how to use this to construct a theory
covariance matrix (Sec. 3.3), and test the validity of this at NLO against the
known NNLO result (Sec. 3.5). Finally, we present the PDFs including MHOUs
(Sec. 3.6).

3.1 Introduction

PDF fits rely on the comparison of experimental data with theoretical predictions
at the partonic level. These predictions are carried out in the framework of
perturbation theory, where results are expressed as an expansion in the strong
coupling constant, a,. The first non-zero contribution to the expansion is known
as “leading order” (LO), the next is “next-to-leading order” (NLO), and so on
(NNLO, N3LO etc.). Because in the perturbative regime a, is small (0.11791
+ 0.00009 [77] at My), corrections from higher orders are increasingly small.
Predictions must be directly calculated at each order by considering all the
possible contributing Feynman diagrams, and this becomes exponentially more
complicated with increasing orders; the cutting edge of calculations is currently
at the N3LO level. PDF's are fitted using predictions truncated at a given order,
with NNLO PDFs being the modern standard.
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Figure 3.1.1 Comparison of NNPDF3.1 PDFs at different perturbative orders:
LO (green); NLO (orange); NNLO (blue). PDFs are normalised
to the LO result, and displayed at scale Q = 10 GeV.

These missing higher order terms in the expansion for theory predictions lead to
MHOUs, which are currently the dominant source of uncertainty in PDF fits. We
can see that going from LO to NLO to NNLO in Fig. 3.1.1 that the functional form
of the PDF changes, and that the change from LO to NLO is greater than that
from NLO to NNLO. MHOUs are currently not included in the PDF uncertainties,
justified historically by the claim that they are small compared to experimental
contributions to the PDF uncertainty, especially at NNLO. This justification,
however, is now on shakier ground with PDF uncertainties dropping as low as
1% at the electroweak scale. QCD MHOU uncertainties themselves are typically
~ 1%) [78] and, with the current push to N3LO precision, will only become

increasingly important as time goes on.

In addition to a missing source of per-point uncertainty on each data point,
MHOUs can affect a PDF fit more insidiously by impacting on the desired
weight of data sets relative to one another; regions of data with high MHOU
are naturally to be trusted less when used to determine the PDF's, and so should
carry less weight in the fitting process. If MHOUSs are included, these data will
be deweighted automatically because they will carry higher uncertainty, however

in the absence of MHOUs they may impact on a fit to an undesirable degree.
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Having established the importance of including MHOUs, in the next section we
will go on to develop a formalism for estimating them, and constructing a MHOU

covariance matrix.

3.2 Scale variation

The most popular method for estimating MHOUs is by “scale variation”. This
is based on making theoretical predictions at a range of values of the artificial
renormalisation (pup) and factorisation (up) scales introduced in Chapter 1. The
renormalisation group equation (RGE; 1.1.17) and factorisation theorem only
hold to all orders in perturbation theory, and in this case varying the scale values
will have no effect on any results. However, when the perturbative expansion
is truncated, there will be a residual ur and pupr dependence which characterises
the degree of MHOU. Varying these scales and observing the impact on the

predictions can therefore provide an estimate of the MHOUs.

Although other approaches to estimating MHOUSs, based on the current known
orders, have been suggested [79-82], we adopted the method of scale variations
not only because it is the most widely used, but also because it is the
most easily implemented for our purposes. Firstly, the renormalisation group
invariance is incorporated automatically, which ensures the MHOUSs decrease
as the perturbative order increases. Secondly, the scale dependece of ag(u%)
and the PDFs is universal to all processes, which is important for PDF fits
dealing with a range of interactions. Finally, correlations between data points
are implicitly maintained because predictions for different scale values will be
smooth functions of kinematics; this ensures that neighbouring regions of phase

space will be strongly correlated.

There are, however, some disadvantages. Firstly, the definition of the two scales
themselves has been historically approached in various ways, often differently for
DIS and hadronic collisions, but also changing over time. Since PDFs use both
DIS and hadronic data we need to settle on a consistent approach. Secondly,
there is no cut and dry method for determining the range of varied scale choices,
and in fact the choice of central scales are themselves to some degree arbitrary;
for example, top production processes commonly have both central scales set to
the top mass, m;, and DIS processes have both set to Bjorken (). Though there

is physical motivation for these choices, we could equally well pick 2m; rather
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than m; in the former case, for example. A standard approach is to take the 7-
point envelope of the predictions obtained by varying (ur,ugr) independently
in {1/2,1,2}, excluding (1/2,1/2) and (2,2). However, for our purposes we
do not want a per-point envelope but rather a covariance matrix which retains

correlations between data points. We will address both of these drawbacks below.

Finally, scale variation techniques will not pick up any “new physics” at higher
orders, be it additional colour configurations, singularities or mechanisms of
interaction. This is harder to deal with, and requires resummation techniques
among other methods. In this work we assume these effects to be less important,

and do not address them for the time being.

In the remainder of this section we will review the technique of scale variation,
and with it the definitions of pur and pugr. We will converge on a general formalism
that can be applied to both electroproduction and hadroproduction. We will show
that there are two independent directions of scale variation and discuss how to
combine them, both in single process and multi-process interactions. We will

then go on to show how to use this to build a covariance matrix in Sec. 3.3.

3.2.1 Renormalisation group invariance

It is customary when making a theory prediction to pick a renormalisation scale,
lr, that is indicative of the physical scale of the interaction, (). We will denote
this “central” theory prediction by T'(Q?%). In general, a theory prediction at
scale iz can be written T (as(u%), p%/Q?), where we explicitly note that o itself

depends on the renormalisation scale. From this we can see that

T(Q?) =T(a,(Q%),1). (3.2.1)
The strong coupling constant satisfies the RGE
) @ 2 2
uRd_2a8<uR) = Blas(kr)), (3.2.2)
Hr

and we can expand the beta function perturbatively as

Blas) = ﬁoag + Blag + 52043 +.... (3.2.3)

As discussed in Chapter 1, renormalisation group invariance tells us that a
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prediction of a physical quantity (such as T) to all orders must be independent

of pg, because this scale is unphysical. This means we can write

d —
/ﬁzmT (s (1), p2/ Q%) = 0. (3.2.4)

Before proceeding further, we introduce some variables to make the analysis

clearer:

PR =hQP t=In(QYAY),  k=lnk = lnpd/Q7, (3.2.5)
where A is the QCD scale. This means «a,(p%) is a function of In u% /A% =t + k.

Revisiting Eqn. 3.2.4, we can write this as

0 = %T(as(t + k), K)
= L )Tt 4 1) )| T+ ), )
I T ] F R
(3.2.6)
assuming that 7 is analytic in «, and x. To simplify this we can use
d d d
oot k)= as(t+r) = dlnu%as(t +r) = Blas(t + k), (3.2.7)

where we have used the definition of the beta function (Eqn. 3.2.2), and this

means that

+ 2T(as(t + K), k)

0= 2T(Ozs(t + K), K) 5

- (3.2.8)

K Qg

We can now Taylor expand T (as, k) about the central scale p% = Q*> = k =
1 =— k =0 for fixed ay:

T(as(t+ k), k) = T(a(t+kK),0)

OK?

—l—/sﬁT(oas(t + k), 0)

T
- (ot + #,0)

1,2
+ 5K

Qs

Qs
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Then, using Eqn. 3.2.6, we can replace % with —%, and write

T(as(t+k),k) = T(as(t+r),0)— K%T(as(t + k), 0)

K

+ 3R T(as(t+K),0)| +...

o2

2
t K

d L o d?

= T{t+k)— RET(t + K) + 3K @T(t + k) +..(3.2.10)
This tells us how to find a scale varied theoretical prediction, T, in terms of the
t dependence of the central prediction, T'. Furthermore, we can express this ¢
dependence as an « dependence using

d _dag(t) 0 = B 0 —
%T(t) =— aasT(O‘s(t)’()) = B(as(t))gasT(as(t),O). (3.2.11)

Noting that 8(a,) = O(a?), we see that ~2 = O(a,) and LLL = O(a?) etc.

The pattern follows that every time a derivative is taken with respect to ¢t you pick
up a power of ay as a consequence of the chain rule in differentiating. Looking
back at Eqn. 3.2.10 it is clear that each power of k is associated with a power of

a. Expressing the theory prediction perturbatively as
T = OéSTLO —+ OégTNLO + OégTNNLO + ... y (3212)
we can match powers of o in Eqn. 3.2.10 to obtain the expressions

Tro(as(t + k), k) = Tro(t + k),
Trio(as(t + k), k) = Taro(t + k) — /{%TLO(t + k),
Tnno(as(t + k), k) = Tanro(t + £) — k2 Tnro(t + k)
+ 12 LTt + K).

(3.2.13)

The difference between the scale varied prediction and the central scale prediction,

A(t,r) =T (as(t +k),k) —T(t). (3.2.14)

can be used to estimate the MHOU. From Eqn. 3.2.13 we find the explicit
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expressions for the theory uncertainties

Aro(t, k) = Tro(t + k) — Tro(t),
Anpo(t, k) = (TnLo(t + k) — /{%TLO(t + k) — Tnro(t),
Axnro(t, k) = (Tanro(t + &) — k2 Txo(t + k)
+ 12 L To(t + k) — Tanwol(t) -

(3.2.15)

At LO we can see that the uncertainty results entirely from the choice of k, in
other words of ug in the ay evaluation. At NLO we can see that the leading
part of Txro(t + k) is subtracted off by the O(k) term, meaning that the
uncertainty is reduced with respect to LO. At NNLO, in addition, the O(x?)
term subtracts off the subleading dependence of Txnpo(t + k) — /{%TNLO(t + k),
and so the uncertainty is yet smaller. This pattern of decreased scale variation
uncertainties with increased perturbative order reflects our general understanding
of the behaviour of MHOUs.

It is also apparent that the size of MHOU depends on the value of x, in other words
on the size of scale variation. This introduces a degree of arbitrariness into MHOU
estimation, with the historical empirical range of choice being x € [—1n4,In4].
In practice, we must investigate the dependence of A on k, using validation at
lower orders against known higher orders to converge on a suitable prescription.
This will be addressed in Sec. 3.3.

We will now go on to show how RG invariance can be applied to processes
involving hadrons, where the partonic cross section is also convolved with a PDF.
We will show that in this scenario there are two independent scales, and thus two
independent sources of MHOU: one from the «a, dependence in the hard cross

section; the other from the anomalous dimensions in the PDF evolution.

3.2.2 Scale variation in partonic cross sections

We will start with DIS, where there is only one hadron then move to the case of
hadron-hadron collisions, such as those carried out at the LHC. In each case we
will consider RG invariance to find an expression for pg variation in the partonic
observable, for the case where the PDF is evaluated at the physical scale. Scale
variation in PDF evolution, i.e. the up variation, will be addressed in the next

section.
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Deep Inelastic Scattering

For DIS processes, theory predictions are of the structure functions discussed in

Chapter 1. These can be expressed as a convolution of a parton level coefficient,
C, with a PDF, f:

F(Q*) = C(z,0s(Q%) ® f(z,Q%), (3.2.16)

where ® is a convolution in the momentum fraction, z, and there is an implicit
sum over parton flavours. There will be a MHOU in F due to truncating
the coefficient function, C, to fixed perturbative order. We can estimate
this by keeping the PDF scale (or factorisation scale) fixed and varying the

renormalisation scale in C'. This will result in a scale-varied structure function,

F(Q* 1) = Clas(pg), np/Q%) ® F(Q%), (3.2.17)

where we have made the x-dependence implicit and the scale dependence explicit
in the coefficient function. We can use the quantities defined in Eqn. 3.2.5 to

write this as

F(t,k) = Clas(t+ k), k) @ f(t). (3.2.18)

We know that the structure function, an observable, is RG invariant, and, because
we are keeping the factorisation scheme fixed, the PDF is independent of j1g. This
means that the coefficient functions must also obey RG invariance, and so in a

parallel with Eqn. 3.2.10 we can write
Clas(t+ k), k) = Clt + k) — kEC(t+ 1) + L2 LC(E+R) +...,  (3.2.19)

where, like before, we denote the central scale quantities without a bar. In order
to evaluate the derivatives, note that the coefficient function can be expressed as

a perturbative expansion in ay,
C(t) = co + as(t)er + a2(t)cg + a2 (t)es + ..., (3.2.20)

and that Zo,(t,k) = B(as(t,k), where the beta function also admits the

expansion in Eqn. 3.2.2. Explicitly, this leads us to

#C (1) = ai(t)Boct + (1) (Brer + 2Boc2) + - .-

s e (3.2.21)
2O(t) = 2a;5(t)Byer + ..,
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resulting in the perturbative expression for ug variation of C"

Clas(t+ k), k) = co + as(t + r)ep + a2(t + k) (e — KBocr)

. - (3.2.22)
+ ai(t+ k) (es — k(Prer + 280ca) + K=Bger) + .. ..

Using Eqn. 3.2.16 we finally get an expression for the ug variation of F"

F(t, k) = co @ f(t) + aslt + w)er @ f(t) + af(t + 5) (e2 = Kfocr) ® f(?)
+al(t+ k) (c3 — k(Bicr 4 2Boca) + K Bier) @ f(t) + ... .
(3.2.23)

In practice, when predicting scale varied observables, using these equations is
relatively straightforward. Because the coefficients, ¢; and f3;, are already known
to some order, the workflow consists of some basic algebra to create the new,
scale varied, coefficients at each order from the central-scale coefficients at the

surrounding orders.

Hadron-hadron collisions

Hadron-hadron collisions can be considered in a similar way to DIS, the difference
being that the observable cross section, X, depends on two PDF's, one for each of
the hadrons:

() = H(t) @ (f(t)® f(t), (3.2.24)

where H is the parton level cross section and this time we have used ¢ = In(Q?/A?)
from the outset. Once again, there is an implicit sum over parton flavours. As

before, we can vary xk = In(?/Q?) in H whilst keeping f fixed, so that

N(t, k) = H(as(t+ k), k) @ (f(t) @ f(t)), (3.2.25)
where
H(os(t),w) = Ht) — kSHE) + 2L H(t) + ... . (3.2.26)

Because hadron-hadron collisions involve a range of processes, we consider a

generic process starting at O(aZ) for n € Z, so that

H(t) = a2(t)ho + al ™ (t)hy + ol () ha + ... . (3.2.27)
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Once again using Lo, (¢, k) = B(a,(t, k) and Eqn. 3.2.2 we arrive at

LH(t) =nal ' (t)B(as)ho + (n+ 1)l (t)Blas)hy + ...
= o™ nfohg + T (nBiho + (n 4 1)Boht) + . .. (3.2.28)
CH(t) = o n(n+1)82he + . ...

dt? s

Overall, to evaluate ¥ we can therefore use Eqn. 3.2.25 along with

H(as, k) = ahy+ a2 (hy — knfBohy)
+ gt (hy — w(nfrho + (n +1)Bohs)
+irk’n(n+1)B5hi) + ... (3.2.29)

Again, to evaluate the scale varied cross section, all that is needed is to modify
the coefficients at each order using those at the central scale for the surrounding

orders.

3.2.3 Scale variation in evolution of PDFs

We now turn to the effects of scale variation in the PDFs themselves. This is a
crucial contribution to MHOUs because the PDFs are common to predictions for
all processes, and therefore responsible for widespread correlations in uncertainty.
MHOUs in the PDFs arise from the truncation of the perturbative expansion of
the splitting functions (or, in Mellin space, the anomalous dimensions) in the
DGLAP evolution equations (Eqn. 1.1.28) discussed in Chapter 1. The scale
evolution of the PDFs can be encapsulated in Mellin space in the equation
p d 2

upmf(w) = y(as(pp)) f(ug) (3.2.30)

where the parton flavour indices are left implicit and the anomalous dimension,

v, can be expressed as an expansion in oy as
V(t) = as(t)ro +aZ ()77 + () + - (3.2.31)

Note that we refer to a separate factorisation scale, pp, distinct from the
renormalisation scale, ug, in the previous section. This is because each scale
is associated with a separate RGE and they are therefore independent; to explore

the full space of scale variations they need to be considered separately.
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To solve for the PDF, we can integrate Eqn. 3.2.30 to give

F(u) = exp( / dﬂ—‘fwas(m)) h. (3.2.32)

0

where fy is the PDF at the initial scale, po. Note that the LHS is independent
of the choice of . To consider the effect of scale variations on the PDF, we can

proceed similarly to Sec. 3.2.2, defining

ph = kQ?, t =1n(Q?*/A?), k=Ink=1Inu%/Q (3.2.33)

and finding the scale varied anomalous dimension

F(as(t), k) = Y(t) — w Ly (t) + 22 Ly(t) + - - (3.2.34)

Once again we can use the beta function expansion (Eqn. 3.2.2) alongside
Eqn. 3.2.31 to give

F(as(t +k),5) = a,(t+ k) +a2(t+ k) (71— K£Bovo)
+a(t+ w) (v — KB + 280m) + K2 B570)

+ e (3.2.35)
which has the same form as Eqn. 3.2.29 upon setting n = 1. We can use this
equation to estimate MHOUs in PDFs; which can be done by refitting the PDF
at each scale choice using different anomalous dimensions. This method has
been applied in previous analyses [83-85], but the process of refitting the PDFs
is computationally intensive and so we would like to avoid having to do this if
possible. Instead, we can look directly at the PDF level and consider evaluating

the PDFs themselves at different scales, as was done in [86].

We can define the scale varied PDF as that obtained by varying the scale in the

anomalous dimension,

Fflas(t+K), k) = exp ( /t dt'F(a(t' + k), /‘6)) fo (3.2.36)

to

Shifting integration variable ¢ — ¢’ — k whilst redefining the initial scale, we can
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then apply Eqn. 3.2.34 and expand the exponential, i.e.

Flast+ 1), 5) = exp( / o dt’ﬁ(as(t’),m)) £

to

= exp ([/M dt'v(t’)] — ky(t+ k) + 5/3%7(75 +K)+ .. )

to

X exp (/{'y(to) — %,%2%7(150) +.. ) fo (3.2.37)

= [1 — Kyt +K) + 1P (P(E+ R) + %"Y(t +K)+ .. }

t+kK d

X exp (/ dt’”y(t’)) exp (/‘i’}/(t0> — %/ﬂza”y(to) +.. ) fo-
to

We can absorb the factor resulting from variation of ¢y into the initial PDFs, f,

by again redefining the initial scale in such a way that the additional term from

shifting the lower limit of exp ( :fﬁ dt'~(t' )) exactly cancels out the ¢, variation

factor. This means that exp (ky(to) — $k*%~(to) +...) fo — fo. Then, noting

2
also that exp ( tzﬂ dt'~(t )) fo = f(t+ k), we end up with the result

flas(t+ k), k) = {1 — ky(t+ k) + 1 (Pt + k) + %’y(t +K))+.. ] ft+kK).

(3.2.38)
This result, which comes from varying the scale at which the PDF is evaluated,
is equivalent to the result which comes from varying the scale in the anomalous
dimension, Eqn. 3.2.35. This is because there is only one RGE and therefore only
one scale which the PDF depends on. Furthermore, note that Eqn. 3.2.38 shows
us that the scale dependence can be factorised out of the PDF. This means we
are free to instead factor it into the parton level coefficient function, which will
always appear convolved with the PDF. This is useful when making a scale varied
prediction when only a central PDF is available, and has been used in the past to
make predictions for new LHC processes (e.g. Higgs production [87]). However, in
the case where we also want to consider ugr variation in the coefficient function,
the two scale variations will be mixed up, and this can lead to a complicated
interplay, especially in the presence of heavy quark effects. In this work we adopt

the method of scale variation for PDFs by using Eqn. 3.2.38.
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3.2.4 Varying two scales together

We now consider the simultaneous variation of pg in the parton level observable
and pp in the PDFs; in order to explore the full range of scale variation space.
We will derive formulae for scale variation up to NNLO which are needed to

construct a MHOU covariance matrix.

For a DIS process we can write the double-scale-varied structure function as
F(Q 1 1) = Clas(uk), nz/Q%) © Flas(ur), np/Q%). (3.2.39)
Similarly to before, we can define the variables
iirymy = k@, K(r/r) = I k(pyR), tir/r) =t + KRy (3.2.40)
and use them to write the structure function as
F(t,kp,kg) = C(tg, kg) f(tr, kF). (3.2.41)

We then need to apply the equations for the scale varied PDFs and coefficient

functions from the previous section,

fltr,kr) = f(tr) — Kl f(tr) + 1m%jt2f(tp)

a : (3.2.42)
C(tR, liR> = C(tR) - /{RdtC’(tR) + I{RdtQ C(tR)

and use the fact that % ~ O(ay) to see that

F(f,/ﬁp, K,R) = C(tR)f(tF) — (HFC(tR)if(tF) + "QRdtC(tR)f( ))
1 (R (tR) & F(tr) + 2mrr SC(tR) £ £ (tr)

122 O(tg) f(tF)> +O>?). (3.2.43)

Taking a closer look, and comparing to Eqn. 3.2.39, we can write this in terms of
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partial derivatives of F"
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+l€R—

atR tF>
O*F

OtpOtr

_ oF
F(ta RFp, ’%R) - F(tFa tR) - (K/F a
(32
O*F
+3 <aT

+K2 PF
"o,

tr

+ 2KFpKR
tr

t ) T (3.2.44)

Considering this expression, we can think of p=2

8 .
3tn and KR~ as being the

generators of the two types of scale variations.

For hadron-hadron processes, the double-scale-varied cross section is instead
i(tp, tR, Rp, HR) = F(O&S(tR), /{R) & (7(tp, I{F) & T(tF, KJF)) . (3245)

ox

and we can apply exactly the same approach as above, leading to
+ Kr ——
" otr

tF>
0%y

OtpOtr

_ by
Z(t, /'iF,/ﬂZR) = E(tp,tR) — (2/‘%17 8—
Otp

tr
2

0y

+1 (2/12 —
2\ o,
li R
"ot

+4KpKR
tr

t ) TR (3.2.46)

where this time we pick up a factor of 2 with each RF%, due to the two PDF's.

3.2.5 Scale variation for multiple processes

We are now approaching a formalism which can be applied to carry out scale
variations for the data included in PDF fits. But first we need to work out how
to carry out simultaneous scale variations involving data from more than one

process, for example DIS and Drell-Yan.

For the case of two separate processes, the parton level cross sections will be
totally independent, so there will be two separate RGEs and therefore two
separate renormalisation scales, and hence renormalisation scale variation should
be uncorrelated. However, all the processes share a common factorisation scale,

and so the factorisation scale variation must be correlated.
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This correlation can be complex because the DGLAP equation is a matrix
equation, and the anomalous dimension matrix has several independent eigen-
values (at NLO there are two singlet and one non-singlet, and more at higher
orders). In order to fully preserve the correlations we ought to consider a separate
factorisation scale for each of these components, and fully correlate this across all
processes. In this current work, however, we attempt to reduce the complexity by
retaining full correlation in the factorisation scale, only varying one scale. This
approximation might be inaccurate when considering two processes with evolution
dependent on different anomalous dimensions, in which case we would not be fully
exploring the scale variation space. We draw attention to this limitation as an

area of future study.

Sticking for the time being with correlated factorisation scale variation, for two
processes we will have in general three scales: two renormalisation scales and
one factorisation scale; ug,, (g, and pp. If we vary each scale independently by
a factor of 2 about their central value we will have seven total scale choices to
consider. Each time we add another process we will add another renormalisation
scale, and in effect add another dimension to the scale variation. For p
independent processes, labelled a = 1,...,p, there will be p + 1 independent
scale parameters and 3 + 2p total scale variations; one variation is the central
scale, two variations up and down for the factorisation scale, and two variations

up and down for each of the p renormalisation scales.

3.3 Building the theory covariance matrix

We now have all the components we need to set about constructing a theory
covariance matrix; we can carry out double scale variation for both DIS
and hadron-hadron processes, and correlate scale variation between multiple
processes. All that remains is to formulate a prescription for estimating MHOUs

given scale variations.

In Chapter 2 we formulated a method for including theory uncertainties in PDF's
using a theory covariance matrix composed using a distribution of shifts between
theory predictions at fixed order and the unknown all-order “true” theory. We
know that scale variation can be used to provide an estimate of these shifts, but
as discussed previously the exact combination of scales is arbitrary. To address

this problem, we present a series of prescriptions for constructing the theory
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covariance matrix, which we will later go on to test using results at known orders
and, in addition, by studying the impact on the PDF's; we can then select the

best prescription.

We consider a set of data involving p different types of processes, each with data
points {is}, a = 1,...,p and an associated renormalisation scale ratio kg, =
In ,u%a /Q?. The theory covariance matrix can be constructed by taking an average
over the outer products of the shifts in scale varied theory relative to the central

theory. For the a-th process, these shifts are
Aia(K/F7/€Ra) = ﬂa(ﬁF7 K’Ra) _ﬂa(()? 0) ° (331>

For a given prescription, m, we then choose a set of points, V,,,, in p+1-dimensional
scale variation space, and construct the theory covariance matrix by summing

over these points, normalised by a prescription-dependent factor N,,:

Sij - mZAia(HfaﬁRa)Aib(ﬁf7ﬁRb) . (332)

Vi

Note that a and b can label either the same or different processes. Importantly,
since the covariance matrix is assembled as a sum of outer products it will
necessarily be positive semi-definite. However, given that the dimension of the
data is O(1000) and the dimension of V;,, will be in general considerably smaller,

we expect S to be singular in most instances.

It now remains to develop a prescription, m. We must consider the full set of

data, so there are two scenarios:

1. ¢ and j belong to the same process;

2. 7 and j belong to different processes.

Because S is rank 2, we only need to consider a maximum of two different
processes at any one time. Finally, we can choose how to correlate the scale
variation; we can pick a “symmetric prescription”, in which the scales are varied
independently, or an “asymmetric prescription”, where they are correlated. This
second scenario amounts to setting pur = pg, which is like varying the scale in the
physical cross section; because in a central prediction we typically set both scales
to the physical scale of the process (e.g. @ for DIS), we can call this varying the

scale of the process.
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Figure 3.3.1 Symmetric prescriptions for a single process, indicating the
sampled values for the factorisation scale kg and renormalisation
scale kr in each case. The origin of coordinates corresponds to
the central scales kp = kg = 0. We show the three prescriptions
5-point (left), 5-point (middle) and 9-point (right).

3.3.1 Symmetric prescriptions

In a symmetric prescription, the scales are varied in an uncorrelated way.

One process

For a single process (p = 1), there are two scales, kp and kgr. Let us denote
the number of independent scales as s, so here s = 2. We can write the theory

covariance matrix as

Sij = Ntm Z Ai(kr, kr)Aj(KF, KR) (3.3.3)

Um

where v,, is the set of m scale-varied points and n,, is a normalisation factor, to be
determined. Note that v,, excludes any points for which A; vanishes, since these
will not contribute to S. In practice, this means the central point (kg = kg = 0)
is not included. Overall there is one central point and m variations about it, so
we typically refer to a given prescription as an “(m + 1)-point prescription”. We
can find n,, by summing over the number of independent scales, s, and averaging

over the contributions from each scale, m. This means we can write
N, = S/M. (3.3.4)

We will now outline three different prescriptions, depicted in Fig. 3.3.1. In each
case we denote the values of the scales (kr; kg), varying each by the fixed values
k = {0,£1In4}, which we denote {0, £} respectively. We also adopt the notation
AfY = Ay(+1n4,0), A)” = A;(0, —In4), ete. for the shifts.
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e 5-point: vy = {(%;0),(0;£)} and ny = 2/4 = 1/2. This amounts to
scale variation for each scale in turn, keeping the other fixed. We find the
covariance matrix

(5pt) _ 1 0A+0 —0 A —0 0+ A0 0— A 0—
We find that the variations of each scale are added together in quadrature,

as one would expect for independent contributions to the MHOU.

e 5-point: U, = {(£; £)}, where (&; &) are assumed uncorrelated, and 7, =
2/4 = 1/2. This is the complement of 5-point, exploring a different region

of scale variation space.

5 e A—— A A
SOPY = LIAFTAFT L ATTAT™ + AFTATT + ATTATTY. (3.3.6)
e 9-point: vg = v4 @ Uy (the union of 5-point and 5-point) and ng =

2/8 = 1/4. Here we include every combination, varying the scales totally

independently.

SEPY = LIAFOAT 1 ATOATO 1 AVFAS 4+ AV~ A

Y (3.3.7)
FASTATT HATTATT HATTATT HATTATT

Two processes

In the case that p = 2 we can have either uncorrelated or partially correlated
scale variations. We will have p + 1 = 3 independent scales to vary, and our set
of scale variation points, V;,,, will be much larger than for one process (v,,). If we

label the processes a = 1,b = 2, we can view the two-process covariance matrix

Sil j1 Sil j2
Sij=< ! ! ) : (3.3.8)
Si2j1 Si2j2

as

so the diagonal elements deal with data points in the same process, and the off-
diagonals deal with data points in different processes. For the diagonal blocks,

the form of S must be equivalent to the p = 1 case, and so

Sivjy = N Z Ay (kp, K/Rl)Ajl (KF, KRy) = Ty Z A, (Kr, KRl)Ajl (Kp, KRy) -
Vi Um

(3.3.9)
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Figure 3.3.2 Same as Fig. 3.3.1, now for the case of two different processes with
a common factorisation scale, kp, and different renormalisation
scales, kg, and Kg,, so the diagrams are now in 3d. We again
show the three prescriptions 5-point (left), 5-point (middle) and
9-point (right).

This means that v, must be a subset of V,,,, so that if we sum over V,,, setting rp,
to 0, we should recover v, up to a degeneracy factor, d,,, which is the number of

copies of v, in V,,. This means the overall normalisation factor is
Npw = 1/ - (3.3.10)

We now go on to consider the 5-point, 5-point and 9-point prescriptions for the
case of two processes, depicted in Fig. 3.3.2. We expand the notation to include

three scales, that is (kp; KR, , KR,)-

e 5-point: We vary the factorisation scale holding the renormalisation scales
fixed, and the renormalisation scales holding the factorisation scale fixed, so
that V; = {2(£;0,0), (0; 4+, £)}. This means Vj, has eight elements in total.
The factor of two comes from considering the one-process case, where we
can set kr, = 0, and must return a multiple of v,. Explicitly, we will get
{2(£;0,0),2(0; £,0)}, picking up a factor of two on the second term because
there are two terms implicitly here, for kg, = + and —. We need to include
a factor of two from the outset on the first term so we end up with an overall
factor at the end, in this case dy = 2. This means Ny = (1/2)/2 = 1/4.
The off-diagonal blocks of the covariance matrix are evaluated as

S = HRALAL + 20,000 + (AN + AL)(AY + AY)) (33.11)

1172 1

When generalising to 3 processes, we simply write Vy = {4(%;0,0,0),
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(0;+,+£,4)}, and this time dy = 4 by the same arguments as above.
However, we can still use Eqn. 3.3.11 to evalutate all of the off-diagonal
blocks because we will only ever be considering two of the three processes

at a time.

e 5-point: V, = {(&; £, £)}, so we are essentially exploring the outer corners
of the 3d scale variation space. V4 has eight elements, and there are two
elements for each in 7, meaning that Ny = (1/2)/2 = 1/4. The off-diagonal

blocks of the covariance matrix are evaluated as

SO — LAAFH L AFT) (AT + AL + (AT + AL (AT + A7)
(3.3.12)
For three processes the generalisation is simply V, = {(&; %, &, +)}, with
N, =1/8.

e 9-point: Again, all three scales are varied completely independently and
Vs = {3(0; £, 4),2(£;,D,D)}, where @ means either +, — or 0. Note the
factors of 2 and 3, which arise from arguments similar to that for 5-point;
namely, that V5 must reduce to a multiple of vs when kg, is set to 0. The
overall dg = 6 and so Ng = 1/24. The off-diagonal blocks of the covariance

matrix are

SO = 3 {250 + ALY+ ATAL + AL + AT
F2(A 0+ AT+ ALTAL AT A} (3.3.13)
F3(AN + ATAL + AL}

For three processes, Vg = {9(0; +, £+, +), 4(+;D,D,D)} and ds = 36.

3.3.2 Asymmetric prescriptions

It is sometimes argued that since only the cross-section is actually physical, a
single process has only one scale, namely the “scale of the process”. This is like
setting kp = Kkg. In addition, it is also possible to consider varying the scale
of the process on top of the variation of factorisation and renormalisation scales
already considered. The logic behind this is that the three scales each estimate a
different source of MHOU:

e Varying the scale of the process estimates the MHOU on the hard cross

section which is proportional to collinear logarithms;
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Figure 3.3.3 Same as Fig. 3.3.1, now in the case of the asymmetric
prescriptions for a single process with factorisation scale kg and
renormalisation scale k. We display the 3-point (left) and 7-point
(right) prescriptions, defined in the text.

e Varying the renormalisation scale estimates the MHOU on the hard cross

section which is proportional to the beta function;

e Varying the factorisation scale estimates the MHOU in the anomalous

dimension.

However, both of these approaches will suppress correlations between uncertain-
ties in PDF evolution across different processes, and may therefore overestimate
the MHOU. Ultimately, the best scheme, be it a symmetric or an asymmetric
prescription, must be established through a validation procedure such as the one

outlined in later sections.

We will now formulate prescriptions for these two asymmetric prescriptions, being
the 3-point and 7-point prescriptions, respectively. These are depicted for a single

process in Fig. 3.3.3.

e 3-point: We set kp = kp and vary this scale. We have v, = {£} and
s =1, m =2 and ny = 1/2, so we are just averaging over the two scale-
varied options. For a single process

3pt A
SEPY = LIAFTATT + ATTATTY. (3.3.14)

For two different processes we have Vo = {£,+}, and can see explicitly

that we are ignoring the correlations in kp between the two processes. We

have dy = 2 and so Ny = (1/2)/2 = 1/4, and the off-diagonal blocks of the
covariance matrix are evaluated as

gBpt) _ %{(AZJF + A;*)(A;F;r 4 Aj;*)}. (3.3.15)

11j2
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e 7-point: We combine varying the scale of the process with kr and kg
variation. We will end up with essentially a combination of 3-point
(scale of process) and 5-point (individual factorisation and renormali-
sation). For a single process, vg = {(£:;0),(0;%),(+;4+),(—;—)} =
{(£;0),(0; ), (£; )}, where (£;£) simply means that the variation is

fully correlated (so there are only 2 terms, not 4). Then s = 2 and m = 6

so ng = 1/3, and for a single process

STPY = LIAFOATO L ATOATO L AM AN L A A L AFFATT L ATTATT)

(3.3.16)
For more than one process, variations of the scale of the process are
uncorrelated between processes so the up variation enclosed in the scale
of the process variation will be decorrelated. So overall for two processes
we will be in a 4d scale variation space, (kg,, kg,; KE,, KRr,).- Then Vg =
{2(+,0;+,0),2(—,0; —,0), (0, £;0, %), (&, £; £, £)}, where (£, £; £, £) =
{(+,+;+,+), (+,+—,—), (=, —+,+),(—,—; —,—)}, and thus dsg = 2, so
Ng = 1/6, and the off-diagonal theory covariance matrix reads

7 _ _ _ _
ST =LIOAFONTO 4 2AZONT0 4 (A% 4+ AXT) (A% 4+ AY) 3.3.17)
(AL ATAL A}

3.4 Results for the theory covariance matrix

In this section we summarise the data used to calculate theory covariance matrices
using the prescriptions in the previous section. We divide the data into processes,
each with a distinct renormalisation scale. We present the theory covariance

matrices for each prescription at NLO.

3.4.1 Input data and process categorisation

In order to use these prescriptions, we must first divide our data into distinct
“processes”. There is some degree of arbitrariness here, but the idea is to group
together data which might have a similar structure of MHOUs under a common
renormalisation scale. First we will review the data included in these fits, then

we will outline the process categorisation. This is summarised in Table 3.4.1.
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Process Type Dataset Reference  Ngay Ngat (process)
NMC 88, 89] 134
SLAC [90] 12
DIS NC BCDMS [91, 92] 530 1593
HERA %, [96] 886
HERA 0%~ [97] 31
NuTeV dimuon [93, 94] 41
DIS CC CHORUS [95] 430 552
HERA o2, [96] 81
ATLAS W, Z, 7 TeV 2010 [102] 30
ATLAS W, Z, 7 TeV 2011 [103)] 34
ATLAS low-mass DY 2011 [104] 4
ATLAS high-mass DY 2011 [105] 5
ATLAS Z pr 8 TeV (pl, My) [76] 44
ATLAS Z pr 8 TeV (pY,yz) [76] 48
CMS Drell-Yan 2D 2011 [110] 88
CMS W asy 840 pb [111] 11
CMS W asy 4.7 pb [112] 11
DY CMS W rap 8 TeV [113] 22 484
CMS Z pr 8 TeV (p, My) [75] 28
LHCb Z 940 pb [118] 9
LHCb Z — ee 2 fb [119] 17
LHCb W, Z — p 7 TeV [120] 29
LHCb W, Z — pu 8 TeV [121] 30
CDF Z rap [98] 29
DO Z rap [99] 28
DO W — ev asy [100] 8
DO W — uv asy [101] 9
JET ATLA.S jets 2011 7 TeV [106] 31 164
CMS jets 7 TeV 2011 (114] 133
ATLAS o}2P [107, 108] 3
TOP ATLASM;S;S rap [109] 10 2%
CMS of? [115, 116] 3
CMS tt rap [117] 10
Total 2819 2819

Table 3.4.1 Input data and process categorisation.
to one of five categories: neutral-current DIS (DIS NC), charged-
current DIS (DIS CC), Drell-Yan (DY), jet production (JET) and

top quark pair production (TOP).

FEach dataset is assigned

The data considered here are a mildly altered version of those in NNPDF3.1 [10].
More exactly, they include: fixed-target [88-95] and HERA [96] DIS structure

functions; charm cross-sections from HERA [97]; gauge boson production

from the Tevatron [98-101]; electroweak boson production, inclusive jet, Z pr
distributions, and ¢t total and differential cross-sections from ATLAS [76, 102
109], CMS [75, 110-117] and LHCb [118-121]. In total they make up 2819 data

points.

We identify five categories to divide the data into: neutral current DIS (DIS
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NC); charged current DIS (DIS CC); Drell-Yan (DY); jet production (JET); and
top production (TOP). These represent groups of data with similar expected
MHO terms. For instance, predictions for DY processes can be differential in
differing variables, but all are obtained by integrating the same underlying, fully
differential, distribution. This means they should have a similar perturbative
structure. On the other hand, these distributions constrain different PDFs and
so complex correlations between the PDFs will be introduced. Note that DIS is

split up into CC and NC due to the differing structure of interaction.

3.4.2 NLO theory covariance matrices

All calculations are performed using the same settings as in [10]. Theoretical
predictions are provided by APFEL [44] for the DIS structure functions and by
APFELgrid [122] combined with APPLgrid [123] for the hadronic cross-sections.
They are all evaluated using the central NLO PDF obtained by performing a NLO
fit to the same dataset, for consistency. The resulting predictions are then used

to construct the theory covariance matrices using the ReportEngine software [2].

We now present the theory covariance matrices at NLO, and discuss their
features. In Fig. 3.4.1 we compare the square root of the diagonal elements of the
experiment (C) and theory (S) covariance matrices, normalised to experimental
data values; these are equivalent to the fractional per-point uncertainties. In this
and what follows, the data are grouped by process and, within each process, by
dataset according to Table 3.4.1, wherein they are binned according to kinematics
(the same as in the experimental papers). S is the 9-pt covariance matrix, being
that with the largest number of independent scale variations. On the whole,
the size of NLO MHOUs is comparable to the experimental uncertainties, and
we can see that each will dominate in different regions. One particularly striking
instance of this is seen in the HERA data, which can be found in the middle of DIS
NC: for high (x, Q?) there is low statistics and so the experimental uncertainties
dominate; for low (x, Q?) perturbation theory holds less strongly and the MHOUs
dominate. We can also explore the structure of correlations between data points

by viewing the covariance matrices as a whole.

In Fig. 3.4.2 we show C alongside S (9-point) as a % of experimental data
value. It is immediately obvious that S contains a much richer and more vibrant
structure than C'; experimental correlations only exist within experiments as

the experiments are isolated from one another. However, predictions for these
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Figure 3.4.1 Comparison of the per-point experimental (blue) and 9-point
theoretical (red) uncertainties, normalised to data. In this and
what follows, data are grouped by process and, within each process,
by dataset, following Table 3.4.1

Experimental Covariance Matrix Theory Covariance matrix (9 pt)
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Figure 3.4.2 Comparison of the experimental C;; (left) and the 9-point
theoretical S;; (right) covariance matrices. Entries are displayed
as a percentage of the experimental value.

experiments originate from a common theoretical framework, and therefore theory
uncertainties can exist between any two data points, regardless of experimental
origin. In particular, data points within the same process are assigned a common
renormalisation scale, inducing correlations between them. Furthermore, all

points are predicted using the same PDF's and, in the 9-point prescription, share

a common factorisation scale.
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and the the combined experimental and theoretical correlation
matrices computed using the prescriptions described in Sec. 3.3:
the symmetric prescriptions (5-pt top right, 5-pt centre left, 9-pt
centre right); and asymmetric prescriptions (3-pt bottom left, 7-pt

bottom right).
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This introduces entries in S outwith individual processes. Along the block
diagonal we note that correlations within an individual experiment are broadly
positive, due to these points sharing a close kinematic region. In other regions we
see a mixture of positive and negative correlations, for example HERA is generally

positively correlated with DY but negatively correlated with fixed target DIS.

The exact structure of S is dependent on the chosen prescription in Sec. 3.3. In
Fig. 3.4.3 we delve into these differences by comparing correlation matrices for

each prescription, defined for an arbitrary matrix A as

Aij
VAi/Aj;

This removes the effect of the differing magnitude of entries, laying bare the

corrg = (3.4.1)

underlying structure; a value of 1 corresponds to full correlation between two
points, a value of 0 corresponds to no correlation and a value of -1 corresponds
to full anticorrelation. This time we look at the impact of adding the theory
covariance matrix to the experiement covariance matrix. In all cases a richer

structure emerges, however we note that:

e For 3-point the correlations between processes are a lot weaker, and this
is because both factorisation and renormalisation scale are uncorrelated

between processes;

e For 7-point (the other asymmetric prescription), the correlations are weaker
than in 5-point despite the fact that 7-point uses the same scale variation
points as 5-point plus two additional ones. This is because the up variation

is combined with the uncorrelated “scale of process” variation;
e All three symmetric prescriptions show similar patterns of correlation.
From this, it seems that any of the symmetric prescriptions might be a suitable
choice. However, in the next section we outline more quantitative tests to validate

whether or not each prescription provides a reasonable estimate of MHOUSs, and

hence determine the best prescription.
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3.5 Validating the theory covariance matrix

Whilst in general the structure of MHOs is unknown to us, due to the perturbative
nature of calculations we do know that the MHOU is dominated by the next
MHO; so at NLO we expect the MHOU to be dominated by the NNLO terms.
A good test of the NLO theory covariance matrix, therefore, is that it reliably
encapsulates the known NNLO predictions. In this section we describe a method
of validation based on this observation.We summarise the procedure here, before

going into some considerable detail in Sec. 3.5.1.

We consider the space of experimental data, D, spanned by the vector of
experimental data points, D;, i@ = 1,..., Ngq. The theory covmat, S;; acts as
a linear operator on this space. We know that S;; is positive semi-definite and
symmetric, and therefore has positive or zero eigenvalues only. As an uncertainty
matrix, S;; defines ellipsoids, E, of given confidence level. These lie in the
subspace S € D, and are centred on the NLO prediction, TNLO. A test of
the efficacy of S;; is that the 1-o ellipse broadly encapsulates the known shift
to the next higher order, §; ~ TNNLO — TNLO = Note that here TNVLO must
be evaluated using the same NLO PDF, to ensure that the shift is due only to
perturbative differences and not to effects from refitting. This is a robust test,
owing to the great difference between dim D ~ 1000 and dim S ~ 10; for a

random matrix we would expect only 1% of ¢; to lie in S.

3.5.1 Details of validation procedure

Recall that the ellipse £ € S € D, where dim D = Ny, and dim S = Ny, We

define dimensionless quantities by normalising to the theory prediction at NLO:

g S

fTiNNLO _ fTZ-NLO
ij = TNLOTNLO
? J

5; = (3.5.1)

NLO
T;

We expect the component of §; along each axis of the ellipse, F, to be the
same order as the 1-o ellipse. Physically, this means that the eigenvectors of \S;;
correctly estimate all the independent directions of uncertainty in theory space.
The size of the shift in each direction is given by the corresponding eigenvalue.
The null subspace of F, i.e., directions with vanishing eigenvalues, corresponds to

directions in D where the theory uncertainty is very small and can be neglected.
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We can find the eigenvectors and eigenvalues of §Z~j by diagonalising it. The
non-zero eigenvalues are \* = (s%)%; a = 1,..., Ny, and there are Ngg; — Ny
additional zero eigenvalues - this is a large number. We choose the eigenvectors,

es', to be orthonormal such that
D evel =5 (3.5.2)

This diagonalisation procedure is somewhat involved owing to the large number
of zero eigenvalues. To make this easier, we can project S onto the subspace,
S, where all the eigenvalues are positive definite by construction. We can then
perform the diagonalisation here. We can make this projection by noting that S
is spanned by the vectors used to construct S;;, that is {A;(kr, kr,) : kKF, kR, €
Vin}. Correspondingly, §ij is spanned by 32 = ;)TN LO  The caveat is that
not all of these vectors are linearly independent, and so we must find a linearly
independent subset of these on a case by case basis, of which there will be Ngy.

We now consider each of the prescriptions in Sec. 3.3 in turn.

3-point

Here the factorisation scale is always correlated with the renormalisation scale
variation so we can consider (kg,,kg,,--.,/r,) only. Note that here we must
consider all p processes rather than just 2 because we are interested in the space
spanned by the whole of S, whereas before we were constructing S piece by piece.
The table below summarises the possible permutations of scale variations under
this scheme; each type of scale variation configuration is displayed alongisde the

number of permutations of this type.

3-point
No. of vectors (KRy>KRys - - -5 KR,)
1 (+ s )
1 (= )
P (— ,+, +, .) and cyclic
p (+,— ..) and cyclic

So we naively have 2+ 2p vectors in this space. However, these are not all linearly

independent. Explicitly, we have the following restrictions:

e If we sum all of the cyclic permutations in the lower two rows we get
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p( (4,4 ) (==

first two rows. This is one restriction;

e Each pair of complimentary cyclic permutations, e.g., (—,+,+,...) and

(+,—,—,...), sum to the sum of the first two rows. These are another p

restrictions.

Overall this means we have 24+-2p—1—p = p+1 linearly independent contributions,

and so N**! = p + 1. This means we can choose rows 1 and 3 as our linearly

sub

independent vectors.

5-point

We can apply similar arguments here, this time also considering the factorisation

scale.

5-point

No. of vectors

(K;F;HRUHRW ..

© K;Rp)

Again we the same p+ 1 restrictions as in 3-point and so Ny, = 3+2p—(p+1) =

p+ 3. We choose rows 1, 3 and 4 as our linearly independent vectors.

5-point

5-point

No. of vectors

2

2p

(K’F;K‘R17K'R27 ..

(j:;_a_)_a"

(:I:, +’_7_7"

i K:Rp)

)

.) and cyclic

This time since we have £ for every possibility, there are 2(p + 1) restrictions,

) ), which is just p times the sum of the
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and so Ngyp =4 +4p —2(p+1) = 2p+ 2. We choose rows 1 and 3 as our linearly

independent vectors.

7-point

This is just the sum of 3-point and 5-point, so Ny = p+1+p+3 = 2p + 4.

Likewise we combine the vectors from 3-point and 5-point.

9-point

9-point

No. of vectors (KP; KRy KRy - - > KRy)

3 (@;_7_7_a"')
3p @;+,—,—,...) and cyclic

(£;0,—,—,...) and cyclic

This time we have 3(p + 1) restrictions from the top four rows and an additional
2(p+1) from the bottom three, so overall Ny, = 64+6p+2+4p—3(p+1)—2(p+1) =

5p + 3. We choose rows 1, 3 and 7 as our linearly independent vectors.

Now that we have determined a suitable subspace, we can project the shift, 9;,

onto these eigenvectors:

0% = el (3.5.3)

For a reasonable covariance matrix, 6% should be a similar size to E in each

dimension. We can then find the total component of the shift in 5,

07 = 5%, (3.5.4)

a

and the complementary component in the remaining space, D /S,

Smiss — §; — 67 (3.5.5)
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v

Figure 3.5.1 Schematic representation of the geometric relation between the
shift vector, 6 € D, (here drawn as 3d), and the component, §°, of
the shift vector which lies in the subspace, S (here drawn as 2d),
containing the ellipse, E, defined by the theory covariance matrix.
The angle 6 between & and 6° is also shown; the dotted line shows
the other side of the triangle, 6™ € D/8S.

The validation will be a success if most of § is in S, i.e. [07%|< |§;|. Fig. 3.5.1
depicts the relationship between these objects. Note that 6, §° and §™** make
up a right angled triangle, with some angle, #, between § and §°. For a successful
validation, # should be “small”. Although there is no distinct cut-off of values
here, note that given the dimension of D is 100 times larger than S, for a random

covariance matrix we would expect 6 very close to 90°.

3.5.2 Results of validation tests

We now apply the validation tests outlined thus far to the NLO theory covariance

matrices for the various prescriptions.

A first check can be done by comparing the diagonal elements, o; where §“ =
(0;)?, with the shifts, §;. This tests whether the per-point uncertainties encompass
the NLO to NNLO shift. In Fig. 3.5.2, these comparisons are shown for all the
prescriptions. Clearly, the shape of the MHOU is similar to the shape of the
shift for the majority of the data and for each prescription. In fact, there is
little difference between the prescriptions, except for the size of the uncertainty;

5-point is the least conservative and 5-point is the most conservative.
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Figure 3.5.2

<~ <& S &£ <=

The diagonal uncertainties o; (red) symmetrized about zero,
compared to the shift 6; for each datapoint (black), for the
prescriptions. From top to bottom: 8-point, 5-point 5-point, 7-
point and 9-point (bottom). All values are shown as percentage of
the central theory prediction.
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From this we can see that the theory covmat is qualitatively descriptive of the
observed higher order shift, in terms of size and correlation. We also note that
the majority of the influence of prescription choice is on the off-diagonal elements.
The range of scale variation looks to be broadly appropriate, therefore, with the
caveat that for some points the MHOU is overestimated (see in particular NC
DIS). This is a conservative treatment, however it could affect the weighting of

data sets adversely.

To examine the efficacy of the correlations, we must turn to the methods discussed
in the previous section. We first look at the angle, 6, between the shift and its

component in the subspace, S, spanned by the theory covariance matrix.

Prescription Ny, 0

5-pt 8 33
5-pt 12 31°
9-pt 28 26°
3-pt 6  52°
7-pt 14 20°

Table 3.5.1 The angle, 0, between the NNLO-NLO shift and its component, 51-3,
lying within the subspace S (see Fig. 3.5.1) spanned by the theory
covariance matriz for different prescriptions. The dimension of the
subspace S in each case is also given.

Tab. 3.5.1 displays these values for each of the prescriptions. All of these
are reasonably small, given that N, < Ny, but 9-point is the best, with
0 = 26°, due to the more comprehensive structure of scale variations. 3-point is
unsurprisingly, the worst, suggesting that lack of correlation in the factorisation

scale misses important correlations in the universal PDF evolution.

Tab. 3.5.2 shows the same analysis carried out individually for the various
processes. The same hierarchy of prescriptions is evident within each process,
with @ smallest for the processes with the least data (e.g. TOP). This is expected,
since larger collections of data span a greater kinematic range and include a
richer structure, which is correspondingly harder to capture. DIS NC, the largest
process, is the most poorly described. Note that the global value for 6 is better
than this, and so it is correlations within individual processes which are hardest

to capture.
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Presc. Ny DISNC DISCC DY JET TOP

1593 552 484 164 26
5pt 4 390 21°  25° 17°  11°
5pt 4 38° 17° 23° 220 10°
9pt 8 320 16° 220 140 3
3pt 2 54° 36° 39° 24°  12°
7pt 6 35° 17° 220 16°  3°

Table 3.5.2 Same as Table 3.5.1 for each process of Table 3.4.1. The number
of data points in each process is given directly below the name of
the process.

Having established what fraction of 9; falls within S, we now go on to look at
the complimentary component which falls outside, 6/"**. Fig. 3.5.3 shows this
alongside ;. The missing element is non-zero for all processes, and with a shape
following that of the shift. This suggests there could be a component of 9; which
is missing for most data points, pointing to a poor estimation of the MHOU in
the PDFs, which is common to all data. A good candidate for this is that the
factorisation scale variation, as mentioned before, is only approximate; it would
be better to include a separate variation for each of the eigenvalues of evolution,

e.g. to first order splitting up the singlet and non-singlet.
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Figure 3.5.3 The NNLO-NLO shift, &; (black), compared to its component, 6™
(blue), which lies outside the subspace S, computed using the 9-
point prescription.
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Figure 3.5.4 The projection, 6%, of the normalised shift vector, 6;, along each

eigenvector, €

@
77

of S, compared to the corresponding eigenvalue ,

s%, ordered by the size of the projections (from largest to smallest).
In each case results are shown as absolute (upper) and as ratios
§%/s% (lower). The magnitude of missing component, |6/5| is
also shown (blue star). Prescriptions: (top left) 3-point, 5-point

5-point, T-point and 9-point (bottom right)
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The components, e (green), of the eigenvectors, corresponding
to the five largest eigenvalues for the 9-point theory covariance
matriz. ~ The NNLO-NLO shift, ¢; (black), is shown for

coOmparison.

We know the component of the shift in the space of theory uncertainties, S, but

we still need to see what fraction of this is encapsulated by the ellipse, £. To

do this we look at the eigenvalues of the theory covariance matrix, A\* = (s%)2.

These are the lengths of the semi-axes of E, and there are as many as Ny,;,. We

can compare them to 6%, the projections of the shift onto each eigenvector.

Fig. 3.5.4 shows

these values for each prescription. All the prescriptions do a

reasonable job, in that the largest eigenvalue is similar to the projection of the

shift in that direction. Additionally, the size of the eigenvalues tends to decrease

as the shift in that direction decreases. As expected, 3-point overestimates the
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uncertainty, with 0% < s for all eigenvalues. This is also the case for most of 5-
and 5-point. However, for the more complicated 7- and 9-point there is a better
estimation for the larger eigenvalues, although a high scatter and poor prediction
for the smaller ones; note that this is a result of only six scales being varied,
so there is limited information available. Additionally, the missing component
is less than the largest projection for the symmetric prescriptions but is greater
for the asymmetric prescriptions. This, once again, supports the adoption of a

symmetric prescription.

Finally we investigate the components of the eigenvectors in the data space,
D. The five largest of these for the 9-point are plotted in Fig. 3.5.5, alongside 9.
Each of these can be identified with a component of the variation. From largest to
smallest: 1 is largely DIS NC; 2 is a mixture of DIS NC and CC; 3 is DY} 4 is DIS
CC; 5 is JETS. Unsurprisingly, the largest is dominated by the largest process,
and so on, until the important TOP contribution appears at the (unshown) 9th

eigenvector.

Overall, we have shown that all of the prescriptions capture most of the important
features of the MHOs, and that 9-point does so the most accurately, given its
more complex structure of scale variation. We therefore adopt 9-point as our
chosen prescription, and proceed in the next section to include a 9-point theory

covariance matrix in NLO PDF fits.

3.6 PDFs with missing higher order uncertainties

In this section we present the goal of this project: PDFs at NLO with the
systematic inclusion of MHOUs. We compare NLO PDFs with and without
MHOUs against the known NNLO PDFs, addressing the stability of the results
to changes in prescription for the covariance matrix (9-pt vs 7-pt vs 3-pt). We
break down the impact of MHOUs by including them separately in the Monte-
Carlo sampling and the fitting.

To recap, there are only two places in which a theory covariance matrix changes
the PDF determination:
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Sampling

Recall from Chapter 1 that Monte Carlo pseudodata replicas D(k), E=1,... Nyep,

i

are generated such that their covariance gives the total covariance matrix:

1 Nrep

. ® _ pWD® _ DV — 1S
Ni;ﬂ_l}@ Nrep(Nrep - 1) ;<DZ <DZ>>(DJ <DJ>) Cl] + Sz]; (361)

where (...) denotes an average over replicas.

Fitting

During fitting the x? is minimised, and this depends on S;; through the equation:

Ndat
1 j—
= Nat Z(D" —T)(C +9);(D; = Ty), (3.6.2)
Z?]

where Cj; is the t0 covariance matrix to avoid d’Agostini bias [45, 46|, as

mentioned in Chapter 1.

We can assess the quality of the fit using this x? estimator alongside the ¢

estimator, defined as

6 = /(X T — X2, [(T)], (3.6.3)

where Xixp is evaluated using the (non-t0) experimental covariance matrix, Cj;.

Following [57], this can be expressed as

Nat

Z (Cij + Si) 1 Xij, (3.6.4)

i,7=1

1

dat

©
I

where X;; = (T;1;) — (T;)(1}) is the covariance matrix of theoretical predictions.
This is a measure of the consistency of the data; if they are consistent, then they
should combine to reduce the uncertainty and so ¢ < 1. The result should be a

factor of r4 greater than when S is not included, where

Ndat
1
re= |1+ > C;'Si 3.6.5
¢ Ndat ij=1 ! ’ ( )

73



This means that if there were no other changes we would expect PDF uncer-
tainties to increase by 74 upon including MHOUs. The PDFs considered in this
section are summarised in Table 3.6.2. NNLO PDFs with MHOUs are to be
determined in a future work. The ¢ and x? values for these fits are shown in

Tables 3.6.1, 3.6.3, broken down by process type and, for x? by dataset.

X2/ Ngat in the NNPDF3.1 global fits
Dataset Ndat NLO NNLO
C  Cc+50H o s opsGm oy sPY o sER)

NMC 134 1.241 1.239 1.264 1.253 1.235 1.246 1.222
SLAC 12 0.868 0.503 0.485 0.509 0.493 0.738 0.693
BCDMS 530  1.040 1.029 1.046 1.062 1.033 1.042 1.062
HERA 0%, 886  1.086 1.044 1.046 1.079 1.044 1.190 1.098
HERA 0§ 31 1.395 1.037 1.082 1.172 1.055 1.563 1.163
DIS NC 1593 1.088 1.079 1.086 1.095 1.081 1.227 1.084
NuTeV dimuon 41 0.474 0.388 0.355 0.359 0.421 0.406 0.470
CHORUS 430 1.037 0.891 0.896 0.900 0.898 1.081 1.124
HERA 0%, 81 1.154 1.070 1.067 1.106 1.062 1.103 1.126
DIS CC 552  1.012 0.928 0.933 0.960 0.929 1.036 1.079
ATLAS W, Z 7 TeV 2010 30 0.999 0.880 0.916 0.975 0.892 0.984 0.935
ATLAS W, Z 7 TeV 2011 34 3.306 2.224 2.282 2.389 2.205 3.107 1.807
ATLAS low-mass DY 7 TeV 4 0.684 0.654 0.668 0.690 0.660 0.733 1.024
ATLAS high-mass DY 7 TeV 5 1.677 1.736 1.700 1.660 1.667 1.577 1.498
ATLAS Z pr 8 TeV (plk, My) 44 1.171 1.067 1.070 1.067 1.062 1.183 0.907
ATLAS Z pr 8 TeV (p, yu) 48 1.666 1.583 1.614 1.688 1.638 1.641 0.865
CMS Drell-Yan 2D 2011 88 1.220 1.067 1.098 1.169 1.062 1.132 1.319
CMS W asy 840 pb 11 0.965 1.022 0.966 0.987 1.045 1.034 0.863
CMS W asy 4.7 fb 11 1.662 1.670 1.704 1.713 1.659 1.657 1.750
CMS W rap 8 TeV 22 0.955 0.611 0.609 0.587 0.627 0.665 0.826
CMS Z pr 8 TeV (plk, My) 28 3.895 3.745 3.712 3.836 3.706 3.905 1.339
LHCb Z 940 pb 9 1.238 1.191 1.162 1.179 1.165 1.281 1.437
LHCb Z — ee 2 fb 17 1.305 1.303 1.305 1.313 1.334 1.250 1.203
LHCb W, Z — pu 7 TeV 29 1.262 1.106 1.267 1.261 1.134 1.207 1.536
LHCb W, Z — pu 8 TeV 30 1.194 1.027 1.125 1.154 1.054 1.152 1.438
CDF Z rap 29 1.554 1.313 1.433 1.505 1.311 1.418 1.510
DO Z rap 28 0.649 0.601 0.626 0.640 0.597 0.618 0.604
DO W — ev asy 8 1.176 1.066 1.055 1.083 1.029 1.200 2.558
DO W — pv asy 9 1.400 1.450 1.372 1.361 1.439 1.395 1.374
DY 484  1.486 1.447 1.485 1.483 1.461 1.434 1.231
ATLAS jets 2011 7 TeV 31 1.069 1.019 1.065 1.079 1.026 1.031 1.076
CMS jets 7 TeV 2011 133 0.869 0.786 0.790 0.830 0.795 0.883 0.921
JETS 164  0.907 0.839 0.858 0.901 0.848 0.911 0.950
ATLAS o{oP 3 2.577 0.787 0.853 0.982 0.770 2.442 0.903
ATLAS #£ rap 10 1.258 0.955 0.867 0.910 0.935 1.355 1.424
CMS otoP 3 0.984 0.170 0.234 0.333 0.158 0.859 0.140
CMS tf rap 10 0.950 0.910 0.923 0.933 0.916 0.942 1.039
TOP 26  1.260 1.012 1.016 1.077 1.001 1.264 1.068
Total 2819 1.139 1.109 1.129 1.139 1.113 1.220 1.105

Table 3.6.1 Breakdown of x? values by dataset and process.

74



Label Order Cov. Mat. Comments
NNPDF31 nlo_as_0118_kF_1 kR_1 NLO C baseline Global NLO
NNPDF31_nlo_as_0118_scalecov_9pt NLO C + SOpt)

NNPDF31 nlo_as_0118_scalecov_7pt NLO C + S(7vt)

NNPDF31 nlo_as_0118_scalecov_3pt NLO C + 56

NNPDF31 nlo_as 0118 _scalecov 9pt_fit NLO C + SOPY S only in x? definition
NNPDF31 nlo_as 0118 scalecov_ 9pt_sampl NLO C + SOpt) S only in sampling
NNPDF31_nnlo_as_0118_kF_1_kR_1 NNLO C baseline Global NNLO

Table 3.6.2

Summary of the PDFs discussed in this section. The perturbative
order and treatment of uncertainties for each are indicated.

¢
Process NLO NNLO
C C+SO Cp s o sGm o siPY s o
DISNC 0266 0412 0.393 0.384 0.414 1.137 0.305
DIS CC  0.389  0.408 0.427 0.442 0.388 0.502 0.471
DY 0361  0.377 0.369 0.379 0.378 0.603 0.380
JETS 0295  0.359 0.327 0.333 0.336 0.461 0.392
TOP 0375  0.443 0.387 0.405 0.382 0.612 0.363
Total 0314  0.405 0.394 0.394 0.400 0.932 0.362

Table 3.6.3

¢ for fits with S compared to without. Results are shown for the
9-, 7-, and 3- point prescriptions. For 9-point the impact is broken
down by inclusion of S in either fitting (Sgir) or sampling (Ssampl)
only. The final column is a comparison to the NNLO C only fit.

3.6.1 Fit quality

We can see that including MHOUs causes the x? to decrease, both globally and for

many individual datasets. This is an indication that the fit quality has improved,

and is to be expected as we have added additional uncertainties. This varies

slightly by prescription, with 9-point showing the greatest improvement, down
3%, which is comparable to the NNLO value. This suggests that the theory

uncertainty is doing a reasonable job of accounting for the NNLO correction.

Individual datasets follow a similar trend, with the caveat that at NNLO some

datasets acquire additional uncertainties, which confuses the comparison (e.g.

CMS Z pr). ¢ increases by 30% for 9-point, less than the expected value of
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r$=1.69, suggesting a resolution of tension between datasets. This is relatively

stable across prescription choice, although a little higher for 9-point.

Let us now turn our attention to the fits were S is only included in the sampling
or the fitting. For sampling only, we expect the uncertainty to increase, leading
to broad fluctuations in the data replicas, but because this is not accounted for
in the x? the fit quality should be worse. This is indeed what we see, with the
x? increasing and the ¢ tripling in value. For fitting only, the MHOU should
mostly affect the weighting between datasets, and therefore the central value of
the PDFs. We can see that the x? is close to that of the fit with S in fitting and
sampling, and the ¢ increases less. But it is clear that it is the inclusion of S in

the fitting which drives the best fit.

3.6.2 Form of PDFs

We now consider the form of the PDFs themselves. Fig 3.6.1 shows the NLO PDFs
before and after adding (9-point) MHOUSs. These are compared to the central
value of the NNLO C-only PDF. Results are shown at the parametrisation scale,
Q = 1.6 GeV, alongside a higher scale, Q = 10 GeV, for ¢, ¥, d and s. In the data
region, the PDF uncertainties increase a small amount, but the biggest difference
is in the significant shift of central value, up to 1-o. This corresponds with what
we saw earlier in the ¢ values, which increase only a small amount, suggesting that
tension in the data region has been partially resolved. Outwith the data region,
however, the uncertainties increase more, particularly in the poorly-understood

extrapolation region at very low x.

We can see that the central values are compatible with the NNLO ones within
uncertainties, and that in some instances adding MHOUs can shift the central
value towards the NNLO one; the strange content shifts up and the gluon shifts
down. Comparing the different prescriptions (Fig. 3.6.2), it is apparent that the
results are fairly stable, with the asymmetric prescriptions (3-point and 7-point)
showing closer similarity to one another but with 3-point having slightly larger

uncertainties.
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Figure 3.6.2 Same as Fig. 3.6.1 but comparing the 3- (blue), 7- (orange), and

9-point (green) prescriptions, normalised to 9-point.

The right

hand panel shows the relative PDF uncertainties for clarity.
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Figure 3.6.3 Same as Fig. 3.6.1, now comparing C + SOPY fit (green) with
those in which the theory covariance matriz S is included either
in the x? definition (orange) or in the generation of Monte Carlo
replicas (blue), but not in both.

Finally we compare using S in only fitting or sampling (Fig 3.6.3). For sampling

only, the PDF uncertainty increases dramatically, with poor fit quality, especially

in the quark distributions. For fitting only, the central value is affected due to the

change in relative weights of the datasets, such that it is similar to that for fitting

+ sampling. The uncertainty, however, shows only a very small change in the data

region. This all arises because the inclusion of MHOUs in data generation cause

the pseudodata broadness to increase dramatically, which is in turn balanced by a

relaxation of tensions due to the inclusion of MHOUSs in fitting. This has the effect

of a sizeable shift in central values with only a small increase in uncertainties.

3.7 Summary

We have presented the first PDFs with MHOUSs included in their uncertainties,

paving the way for the routine inclusion of theory uncertainties in future

PDFs. This chapter has been primarily focussed on the formalism necessary
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for including MHOUs, and on the validation of the method. We find that
scale variation appears to work well for this purpose, and that our prescriptions
for combining scales are more successful and free from instabilities than the
established “envelope” techniques. It is also clear that there is scope for more
complex scale variation techniques, particularly for the factorisation scale, which

as a first step could be split into singlet and non-singlet variation.

The PDFs detailed in this chapter, along with PDFs with varied scales, are
available in LHAPDF format [55] from the NNPDF website:

http://nnpdf .mi.infn.it/nnpdf3-1th/

It now remains to investigate the impact of including MHOUs in PDFs on
phenomenology, that is, in using them to compute predictions for cross-sections.
For this some thorough analysis is required to address the potential “double
counting” of theory uncertainties, where they are included both in the PDF and
in the hard cross-section. We will address this in considerable detail in Chapter 5.
First, however, we will look at one other important form of theory uncertainties:

those due to nuclear effects.
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Chapter 4

Nuclear Uncertainties

The theory covariance formalism developed in Chapter 2 can be applied to any
source of theory uncertainty in PDFs. One of the most important of these is
nuclear uncertainties. A wide range of data is needed to pin down the form of
PDFs, including that where the proton is not in a free state. More precisely,
this encompasses DIS and DY fixed target measurements involving deuteron and
heavy nuclear targets. In these cases the proton’s interaction is altered due to the
surrounding nuclear environment, and this difference propagates through to the
fitted PDFs, leading to an unwanted shift in their central values and uncertainties.
We cannot simply discard these data, as they play a crucial role in the strangeness
content of the proton and also the light flavour separation at high z, a region
important for searches for physics beyond the Standard Model. Instead, we must
determine corrections to the PDF central value and additional uncertainties to

account for the use of nuclear data.

Given their importance, there have been wide-ranging studies of deuteron and
heavy nuclear corrections: deuteron corrections have been included in previous
PDF determinations via nuclear smearing functions [67, 124-127] based on models
of the deuteron wavefunction [128-132]; heavy nuclear corrections have been
included following a selection of nuclear models [125, 133, 134] or fitting the
data [126]. Using such models, however, can introduce a bias that is difficult to
quantify precisely. In the past, NNPDF has opted to ignore nuclear effects on
the assumption that they are small [10, 57, 67], however this is another source of
uncertainty that is becoming increasingly important as PDF precision increases.

Furthermore it is thought that the shape of PDFs can be affected, especially
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at high x [124], and this was evidenced in previous NNPDF fits with deuteron
corrections following Eq. (8) of [125], with parameter values from [135]; however,
an increase in x? here suggested that the nuclear uncertainty was not effectively

determined.

In this chapter we show how to account for nuclear effects, both deuteron and
heavy nuclear, in proton PDF fits. We do this using a theory covariance matrix of
nuclear uncertainties, and propose two alternatives for their inclusion: one is to
simply apply a nuclear uncertainty, effectively deweighting the affected datasets
in the PDF fit proportionally (just like we did for MHOUSs in Chapter 3); the
other is to shift the PDF central values by applying a nuclear correction, including
smaller nuclear uncertainties as a result. If the shift is estimated accurately, then
for an uncertainty smaller than the shift the second method gives a more precise

outcome.

We can determine nuclear corrections by comparing the theory predictions for
nuclear observables using proton PDF's with those using the correct nuclear PDF
(nPDF). This shift can be identified with Eqn. 2.1.6 in Chapter 2, i.e. quantifying
the size of nuclear correction for that data point. The collective shifts can then
be used to construct a theory covariance matrix based on Eqn. 2.1.13. In carrying
out this work we looked first at heavy nuclear corrections (for Cu, Fe and Pb)
and then at deuteron corrections, addressing them separately because deuterons,
being only a proton and a neutron, are distinct from a heavy nuclear environment

such as °°Fe, with 26 protons and 30 neutrons bound together.

For the heavy nuclear PDFs we initially used [136] a combination of three
available nPDF sets (DSSZ [137], nCTEQ15 [138], and EPPS16 [139]), but
NNPDF subsequently released its own global nPDFs, nNNPDF2.0 [140], which
is what we will consider in this Chapter. Given the enhanced difficulty of nPDF
determination, all of these nPDF sets are only available at NLO. For the deuteron
PDFs we developed a self-consistent iterative procedure to determine deuteron
PDFs at NNLO within the NNPDF formalism, and used the output of this to
determine deuteron corrections [141]. These deuteron PDFs have the advantage
over those from nNNPDF2.0 that they are NNLO, but are based on less data so
have larger uncertainties. This should at worst lead to a conservative uncertainty

estimation, but we will discuss the comparison in Section 4.5.

This chapter is organised as follows. First we review the nuclear data in proton

PDF fits (Sec. 4.1). Then we consider heavy nuclear uncertainties including the
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resulting covariance matrix (Sec. 4.2). We then look at deuteron uncertainties
in the same way (Sec. 4.3), before including combined nuclear uncertainties in
NNPDF4.0 proton PDF fits in Sec 4.4. We summarise the results in Sec. 4.5.

4.1 Nuclear data in PDFs

We consider the NNPDF4.0 NNLO dataset which consists of ~ 4000 data points,
of which ~ 10% are deuteron data and ~ 20% are heavy nuclear data. The table
below summarises the datasets which make up the total nuclear data, giving the

name of dataset, the observable it corresponds to, and the nuclear target involved.

Nuclear data

Dataset Process Nat Target
DYEG05 [142] DY 85 8Cu
NuTeV [143] DIS CC 76 2oFe
CHORUS [95] DIS CC 832 205Ph
SLAC [90] DIS NC 67 ‘H
BCDMS [144] DIS NC 581 ’H

NMC [8§] DIS CC 204 2H and p
DYES866/NuSea [145] DY 15 2H and p
DYE906/SeaQuest DY 6 ’H and p
[146]

Table 4.1.1 The nuclear data in NNPDF/.0. The process (Deep inelastic
scattering (DIS) charged current (CC), neutral current (NC) and
Drell-Yan (DY) is displayed for each dataset, alongside the number
of data (Ngat) and the target.

4.2 Heavy nuclear uncertainties

We can include heavy nuclear uncertainties using the covariance matrix method-
ology previously developed in NNPDF [147]. To construct the covariance matrix,
we can look directly at the source of uncertainty in our use of nuclear data: we
currently calculate nuclear observables, TV (where i labels the data point), using
a proton PDF, f,. Instead we should be using the corresponding nPDF, fy. This

means that each contribution to the covariance matrix can be determined
AP = TN = TN ), (4.2.1)
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where £ indexes the nPDF replicas. Including V,., contributions, one for each
replica, means that the uncertainty in the nPDF is automatically incorporated

into the nuclear uncertainty. A covariance matrix can then be constructed as

1 Nrep

_ (k) A (K)
Sij = Nrep;Ai A (4.2.2)

We call this the “deweighted” approach, because this theory covariance matrix

will deweight the nuclear datasets in the fit.

A more ambitious approach is to also try and correct the value of the nuclear
observable we use, so that it is based on the nPDF rather than the proton one.

This can be done by applying a shift,
0T =T [fn] = T3], (4.2.3)

to the nuclear observables. In this case we must amend the contributions to the

covariance matrix so that they are relative to the new central value
AP = TN = TN fn) (424)

We call this the “shifted” approach.

We can then include the nuclear covariance matrix in a normal proton PDF
fit, allowing uncertainties due to nuclear data to be automatically accounted
for. Note that although we use nuclear data to determine uncertainties, we
are not double counting the nuclear data; we use them once to determine the
nuclear uncertainty and once to do a global fit to find the proton PDFs. Adding

uncertainties actually makes the nuclear data count less.

In the above equations the nuclear observables, T, are calculated from the
proton observables, T;, by taking into account the non-isoscalarity of the target,
i.e. by combining the proton and neutron observables in accordance with the

atomic number, Z and mass number, A. Explicitly,

11) = 5 (2811 + (4= 20715,

1

(4.2.5)
1) = 5 (2] + (4= 200

The first line is what is done in standard NNPDF fits, and the second line is

84



the extension to the nPDF case. Here f,/y is the PDF for the proton bound in
a nucleus, N, and f,,y is the same for the neutron. We assume that the two
are related by swapping v and d quarks. We obtain these PDFs directly from
nNNPDF2.0, but they relate to fy via

1

fv =+

(2t + (A= D1fv) (126)
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Figure 4.2.1 Ratio between the nuclear observables computed with nPDFs,
TZ-N [fn], and the central prediction computed with proton PDFs,
(TN[f,)). The error is the standard deviation of the distribution of
TN[fn] replicas. Data are organised in bins of increasing (z, Q?)
within each dataset.

Before proceeding to the covariance matrix itself, we can first investigate the
change to the nuclear observables that arises from using nPDFs rather than
proton ones. Fig. 4.2.1 shows the ratio of the observables calculated with nuclear
PDFs to those with proton PDF's, for the heavy nuclear datasets. We can see in all
datasets that there is a kinematic dependence, although this is especially evident
in CHORUS. This is a result of the kinematic dependence of the ratio of proton
and nuclear PDF's; which fits with the downwards turn at high = expected from
nuclear shadowing models. CHORUS v and NuTeV v data in particular show a
systematic shift downwards which is not comfortably within errors. This suggests

that applying a shift as well as an uncertainty could be a sensible strategy.
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4.2.1 The heavy nuclear covariance matrix

We now turn to the covariance matrix for heavy nuclear uncertainties. Fig. 4.2.2
shows the square roots of the diagonal elements of this covariance matrix, which

are equivalent to the % per-point uncertainties. For the deweighted case, it

% of data

% of data

Figure 4.2.2 Square root of diagonal elements of covariance matrices for C
(purple), S (orange) and C+S (blue). All values are displayed as
a % of data. Top: deweighted; bottom: shifted.

is clear that the heavy nuclear uncertainties are comparable to the experimental
uncertainties and are larger in most regions other than CHORUS ©. This suggests
that all datasets apart from that will be significantly deweighted in the fit. We
see that the plot has many features in common with Fig. 4.2.1, in particular the
kinematic pattern, and this makes sense as the covariance matrix is composed
using the difference in observables when using nPDFs versus proton ones. For
the shifted case, we see a marked decrease in the diagonal of S, such that nuclear

per-point uncertainties seem no longer significant for CHORUS.
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Figure 4.2.3 Correlation matrices for heavy nuclear data. The experiment
correlation matriz, C, is shown above the total correlation
matrices, C + S, for both the deweighted (left) and the shifted
(right) case.

Fig. 4.2.3 investigates the pattern of correlations, displaying correlation matrices
as defined in Sec. 3.4 of Chapter 3. Note that in [136] we considered covariance
matrices experiment by experiment (a conservative approach), but here we
compute the full heavy nuclear covariance matrix, including correlations between
experiments. We display the correlation matrices for both the deweighted
and shifted theory covariance matrices. Adding the theory covariance matrix
introduces correlations on the off-block diagonals in both cases, but these are
particularly strong in the deweighted case. CHORUS v shows especially larger
correlations upon introducing the deweighted S, but these are reduced almost to
experiment level when the shifted S is used instead. This is a clear consequence
of the systematic shift in Fig. 4.2.1, which is larger than the uncertainty from the
nPDF. Once again, this is evidence that using the shifted formulism could be an

appropriate choice.
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4.3 Deuteron uncertainties

We now turn to uncertainties from deuteron data. The logic is the same as for
heavy nuclear uncertainties, except we have a lot more deuteron data than heavy
nuclear data from a particular element. This allows us to fit our own deuteron
PDFs within the NNPDF methodology, resulting in NNLO PDFs to calculate

uncertainties rather than NLO ones.

The whole procedure is outlined in Fig. 4.3.1. We split the global data into
“proton” and “deuteron” data, where the proton data in fact include the heavy
nuclear data considered in the previous section; this allows us to focus purely on
deuteron uncertainties. The deuteron data are a combination of “pure” deuteron
data, coming from deuteron-only targets (SLAC and BCDMS), and “mixed”
deuteron data, which are ratios so depend also on proton target data (NMC,
DYES866,/NuSea and DYE906/SeaQuest). We can denote the pure data as T2 f,]
and the mixed data as T¢[fs, f,], indicating the additional dependence of the
latter on the proton PDF.

In normal proton PDF fits any deuteron observable is calculated using the
isoscalar PDF,

fo= U+ fu) (4.3.)

where f,, is the neutron PDF, obtained under the assumption of isospin invariance

(by swapping u and d quarks in f,). The procedure is as follows:

1. The proton data are used to fit pure proton PDFs (uncontaminated by
deuteron data), {f,gk) k=1,..., Ny} with central value f) = f,.

2. We cannot fit the pure deuteron PDFs without additional input because
of the mixed ratio data (T{[f4, f,]); these data require a proton PDF as
input. We can use f]? from the proton-only fit here, but since this is only
the central value we must include a proton covariance matrix to account for

the uncertainty due to the proton PDF. This is composed

_ /AP (k) ADp, (k)
Sk = (A7 A7)
AP (k) _ ﬂd[féo), f(k)] _ Tid[féo), f(O)],

p p

(4.3.2)

where here ¢ runs over the deuteron ratio data only. This encapsulates the

correlations between the ratio datasets due to their common dependence on
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deuteron fit global fit

Global data N

Proton data Deuteron data

Y

Iteration of PDFs with Final PDFs with
Proton only PDFs Deuteron only PDFs deuteron deuteron
uncertainties uncertainties
Proton covmat Deuteron covmat
Converged? —Yes

J

Figure 4.3.1 OQutline of the iterative procedure used to determine proton PDFs
with deuteron uncertainties. The data are split into proton data
and deuteron data. The proton data are used to find proton-only
PDFs which are needed to fit deuteron observables in deuteron-only
PDFs. These are used to construct a deuteron covariance matric
which is used in a global proton PDF fit. The whole process is
iterated to consistency.

No

the proton PDF.

3. Fit the deuteron PDF's using Cj; +Sfj for the deuteron ratio data. However,
in practice S? depends on féo) and we don’t know this yet (that’s what
we're trying to find!). To first approximation we can replace féo) — fs(o),
using the isoscalar PDF from Eqn. 4.3.1. This is a reasonable exchange,
given that Sf'j is a measure of uncertainty, and acts only to deweight data
in the fit; using f; should have only a very small effect. In principle, we
could then iterate this to consistency, using the output f; to determine a
new Sf'j and perform a new deuteron fit. However we are less interested
in determining the deuteron PDFs themselves, more in their application in
creating a covariance matrix for fitting proton PDFs. Any (already small)
effect from using f; in S? will become smaller when finding f; and then
smaller again when finding f,, where the only influence is via a covariance

matrix which depends on f;.
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4. Use fy4 to generate a deuteron covariance matrix:

ng = <A;1 (k)’ A?’ (/f)>
A ) _ T3] — T i € pure (4.3.3)

Z Ta[fP, #1901 — T O, £9) i € mixed,

1

or, for the shifted case,

AL B) _ ﬂd[ffgk)] - Tid[féo)] 1 € pure (43.4)
Z Ed[fék)a féo)] - ﬂd[féo), Igo)] 7 € mixed,
d Tz‘d[fcg())] - Tz‘d[fs(o)] 1 € pure
017 = (4.3.5)

TafO, 70— 7O, £ i € mixed.

)

S?incorporates correlations between the deuteron data due to their common
dependence on the deuteron PDF and, for the ratio data, their consequential

dependence on proton PDFs.

5. Perform a global proton PDF fit incorporating S? for the deuteron data.

These are PDFs with deuteron uncertainties included.

6. Use the resulting proton PDFs in place of the proton-only PDF's in Step 2,
thus iterating the procedure. We expect this to converge rapidly for a few
reasons: first, the influence of deuteron data in a proton fit is small; second,
a small change in the proton PDF makes little difference to the deuteron
uncertainty; third, the effect of deuteron uncertainties on the weight of data

in the fit is anticipated to be small.

Note that once again in this procedure we are not double counting the deuteron
data; we use them once to determine the deuteron uncertainty and once to do
a global fit to find the proton PDFs. Adding uncertainties actually makes the

deuteron data count less.

The fits performed are summarised in Tab. 4.3.1. The baseline fit, global-base,
is the baseline fit for NNPDF4.0 [38] without nuclear uncertainties included (the
uncertainties we determine in this Chapter will be included in the final NNPDF4.0
release). We determine a proton-only fit in what we term “Iteration 0”7, and then

perform two iterations of determining the deuteron and global proton fits, termed
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Iteration Dataset Fit ID Description

Baseline Proton and Deuteron  global-base NNPDF4.0 fit without nuclear uncertainties

Iteration 0  Proton proton-ite0 Same as baseline, but restricted to the proton
dataset

Iteration 1 Deuteron deuteron-itel Same as baseline, but restricted to the deuteron

dataset and supplemented with a proton covariance
matrix determined from the proton-ite0 fit according
to Eqn. 4.3.2.

Proton and Deuteron  global-itel-dw  Same as baseline, but supplemented with a deuteron
covariance matrix determined from the deuteron-
itel fit according to Eqn. 4.3.3.

Iteration 2 ~ Deuteron deuteron-ite2 Same as deuteron-itel, but with a proton covariance

matrix determined from the global-itel-dw fit.

Proton and Deuteron  global-ite2-dw  Same as global-itel-dw, but with a deuteron
covariance matrix determined from the deuteron-
ite2 fit.

Proton and Deuteron  global-ite2-sh Same as global-ite2-sh, but with a deuteron
covariance matrix and shifts determined according
to Eqn. refeq:deuteronshifted.

Table 4.3.1 A summary of the fits performed in this study, see text for details.

“Iteration 1”7 and “Iteration 2”.

As in the case for heavy nuclear data, it is useful to first look at the effect on
the deuteron observables of using the deuteron PDF rather than the proton one
(Fig. 4.3.2). The uncertainties are quite large but the ratio of observables is
consistent with 1 in most regions other than high x, where nuclear shadowing is
expected to play a part leading to large negative corrections. This mirrors what
was seen in the heavy nuclear case (Fig. 4.2.1). The observables for NuSea show
a systematic offset outwith uncertainties, like what we saw for CHORUS and
NuTeV v.

4.3.1 The deuteron covariance matrix

We now go on to investigate the deuteron covariance matrix. The diagonal
elements are displayed in Fig. 4.3.3. Again, we see a pattern that parallels the
pattern in the deuteron observable ratios; the size of the per-point uncertainty

depends on the kinematics.
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Figure 4.3.2 Like Fig. 4.2.1 but for deuteron observables. Ratio between the

deuteron observables computed with Iteration 1 deuteron PDFss,
Tid[fd], and the central prediction computed with the isoscalar
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Figure 4.3.3 Top panel: Square root of diagonal elements of covariance

matrices for C (purple), S (deweighted; orange) and C + S
(deweighted; blue). All values are displayed as a % of 6 ta.
Bottom panel: Correlation matrices. C (left) and C ™+ S
(deweighted; right). The deweighted case only is displayed, but
the qualitative features remain the same for the shifted case.



The deuteron uncertainty is smaller than the experimental uncertainty for the
pure deuteron datasets (SLAC and BCDMS), but is comparable for the mixed
ratio data (NMC, NuSea and SeaQuest). This is because ratio data have smaller
experimental uncertainties due to a significant cancellation of systematic errors.
The bottom part of the figure shows the full matrix plots. As above, we see the
most impact is on the ratio data. The figures show only the deweighted case, but

this is qualitatively similar to the shifted case.

4.3.2 Deuteron correction factor

As an additional investigation, we can use the fitted deuteron PDF's to evaluate a
correction to Fy by computing the ratio Fi¢ /FY. This can then be compared to the
result from nNNPDF2.0 and to the parametric correction used in MSHT20 [47],

which is based on four fitted parameters.

Q=10 GeV

1.15
= =« deuteron fit (NNLO)
== NNNPDF2.0 (NLO)
1.101 MSHT (NNLO 4 params.)
1.051
Na
'y
0w
0.95-
0.90+
0.85 '
102 1071

X

Figure 4.3.4 F2d/F§’ evaluated using deuteron PDFs from the present determi-
nation (deuteron-ite2), deuteron PDFs from nNNPDF2.0, and via
the model correction used in MSHT20 fits.

This comparison can be seen in Fig. 4.3.4 at ) = 10 GeV. From this, deuteron
correction to the structure function is clearly small, just a few percent across

the whole of x. The shape of the distribution also fits that expected from
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nuclear shadowing, with a dip at large x. All three determinations agree within
uncertainties, giving us confidence in the robustness of our procedure. They
also all have uncertainties of a similar size, despite the fact that nNNPDF2.0 is
only at NLO. This is because it also contains heavy nuclear data through the
constraint of continuity of A/Z. The uncertainty for the deuteron fit at NNLO
is slightly larger at low z in the non-data region, reflecting the more conservative

determination with no model dependence or continuity constraints imposed.

4.4 PDFs with nuclear uncertainties

Having constructed and studied deuteron and heavy nuclear uncertainties, we can
then include them in fits. Table 4.4.1 summarises the various configurations of
nuclear uncertainties and shifts, including that where nuclear data are left out of
the fit entirely. The NNPDF4.0 release includes (deweighted) deuteron and heavy

nuclear uncertainties as a default, so it serves as the baseline for comparison.

Fit label Description

NNPDF4.0 Baseline fit from NNPDF4.0

No nuclear data Without nuclear datasets

No nuclear unc. Without nuclear uncertainties

Heavy nuclear unc. Heavy nuclear uncertainties only

Heavy nuclear shifted Heavy nuclear uncertainties with shifted central value
Deuteron unc. Deuteron uncertainties only

Deuteron shifted Deuteron uncertainties with shifted central value
Shifted (All) nuclear uncertainties with shifted central value

Table 4.4.1 A summary of the fits with different treatments of nuclear data.

‘ No nuc dat  No nuc unc ‘ D unc H nuc unc NNPDF4.0 ‘ D shift H nuc shift  Shifted

X2 1.286 1.269 1.257 1.193 1.162 1.244 1.196 1.166
¢ 0.176 0.160 0.158 0.160 0.164 0.158 0.170 0.169

Table 4.4.2 Total x? and ¢ values for nuclear data sets for the various fits.

Table 4.4.2 gives the total x? and ¢ values for these fits, where ¢ is defined

¢ = (AT — T, (4.4.1)

where T are the theoretical predictions and (-) denotes the average over PDF
replicas. In [57] it is shown that this gives the ratio of uncertainties after fitting

to the uncertainties of the original data, averaged over data points. The partial
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values per nuclear dataset can be seen in Fig. 4.4.1. Overall, including nuclear
uncertainties causes the x? to drop from 1.27 to 1.16, indicating a substantially
better fit quality. This is to be expected, seeing as we are adding an uncertainty

into the fit, accompanied by an increase in ¢.

x? by nuclear_group ¥? by nuclear_group x? by nuclear_group
NMC d/p NMC d/p NMC d/p

E60!

E866/NuSea BODMS d E866/NUSea BGDMS d E866/NySea BQDMS d

Deuteron uncs
Deuteron shifted

No nuc uncs RUS v Nu Heavy nuc uncs RUS v Nu
Shifted Heavy nuc shifted

Nu

— —

NuTeV v CHORUS v NuTeV v CHORUS v NuTeV v CHORUS ¥

¢ by nuclear_group ¢ by nuclear_group ¢ by nuclear_group
NMC d/p NMC d/p NMC d/p

E60!

E866/NUSea BODMS d  E866/NySea BODMS d  E866/NySea BODMS d

Nu No nuc uncs RUS v Nu Heavy nuc uncs RUS v Nu

Shifted Heavy nuc shifted
~ e — _ I —— _
NuTeV v CHORUS v NuTeV v CHORUS v NuTeV v CHORUS v

Deuteron uncs RUS v
Deuteron shifted

Figure 4.4.1 Partial x* (top row) and ¢ (bottom row) values broken down by
nuclear dataset for the different configurations of uncertainties.
All other datasets are collected under OTHER.

The worst fit is the no nuclear data fit, demonstrating that the nuclear data
do play a role in determining the PDFs, however this effect is less marked
compared to that observed for NNPDF3.1 in [136], owing to the improved 4.0
methodology and increased dataset which means that nuclear data are becoming
less crucial. It is therefore worth continuing to review the impact of nuclear data
as there may become a point where they are no longer useful. The NNPDF4.0
baseline gives the best fit, which is dominated by the inclusion of heavy nuclear
uncertainties without a shift. The impact at the nuclear dataset level is striking,
with a significant improvement in both y? and ¢ for most of these datasets. The

difference between the deweighted and shifted prescriptions, however, is minimal.

It’s also helpful to look at the PDFs themselves. Nuclear uncertainties have
an effect which is important in the large x region, where the nuclear data are.
Firstly, Fig. 4.4.2 shows the effect of removing the nuclear data from the fit
entirely. Removing the nuclear data shifts the central values of the PDFs and

increases the uncertainties, however the two agree within uncertainties. As noted
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before, this effect is smaller than what was observed for NNPDF3.1 in [136].

Now we would like to know what impact adding nuclear uncertainties has on
the PDFs. In Fig. 4.4.3 we compare NNPDF4.0 to the fit without nuclear
uncertainties. Including nuclear uncertainties causes a significant change to
the shape of the PDFs in the large = region. This corresponds to the nuclear
shadowing region, where nPDF's are lower compared to proton ones. Having no
nuclear uncertainties causes the PDF's to be pulled downwards in this region, in
the direction of the nPDFs.

U at 100.0 GeV d at 100.0 GeV

No nuclear data (68 c | +10) No nuclear data (68 c | +10)
NNPDF4.0 baseline (68 cl.+10) NNPDF4.0 baseline (68 cl.+10)
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Ratio to NNPDF4.0 baseline
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Figure 4.4.2 Comparison of NNPDF}.0 (orange) with a fit with the nuclear
data left out (green).

a at 30.0 GeV d at 30.0 GeV
1.75 2.00 - NNPDF4.0 (68 c.l+10)
No nuclear uncs (68 c | +10)
1.504 1.751 Heavy nuclear uncs only (68 ¢l +10)
o o 1.501
< 1251 <
& & 1251
5 1.001 z
= = 1.001
] 8
g 0757 2 075
£=] =
I I
© 0.50 £ 450
i NNPDF4.0 (68 c.l.+10) 0.254
025 No nuclear uncs (68 c.|.+1a)
Heavy nuclear uncs only (68 cl +10) 4
0.00- : : : : : 0-00 : : : : :
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 4.4.3 Impact of including nuclear uncertainties in NNPDF/.0. The
default (green) is to include them for all nuclear data. Fits with
no nuclear uncertainties (orange) and with only heavy nuclear
uncertainties (blue) are also shown.

Also displayed in Fig. 4.4.3 is a fit with only heavy nuclear uncertainties. It is
clear that heavy nuclear uncertainties are responsible for the bulk of the impact,
which is expected given the impact at the data level is more significant for thcese
data (see Figs. 4.2.2 and 4.3.3).
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Figure 4.4.4 The impact of shifting (orange) versus deweighting (green) for the
d distribution. The right panel shows the uncertainties for clarity.
The effects on the u distribution are qualitatively similar.

Next, we look at what happens when we also apply a shift to the nuclear data,
following Eqn. 4.2.3. This can be seen in Fig. 4.4.4 for the d distribution. There is
a clear reduction of PDF uncertainties when using the shifted prescription versus
the deweighted prescription. However, as we saw before, there is little impact
at the level of x? and ¢ values, and the two outcomes are equivalent within
uncertainties. From this we see that choosing one of these approaches over the
other will not have a great impact. When making the choice of approach, we
note that the shift is calculated relative to the value with proton PDF's, and so is
itself dependent on the proton PDF's. This opens up the risk of double counting,
and so the shift must be treated with caution. Adding uncertainties, however,
always decreases the weight of data points, and so the deweighted prescription is
the most conservative. Given also that it leads to a slightly lower total x? and ¢,
we will opt to use the deweighted prescription in NNPDF4.0; including only an

uncertainty for both deuteron and heavy nuclear data.

4.5 Summary

Nuclear data are important in PDF fits, but effects due to the nuclear environment
are hard to quantify. To bring PDF's to 1% accuracy, we need to address these
“small” but nevertheless important differencecs. We used the theory covariance
matrix formalism outlined in Chapter 2 to include nuclear uncertainties in the
next generation PDF fits. We adopted an empirical approach by recalculating

predictions for nuclear observables with nuclear PDFs and using the shifts in
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predictions to construct a nuclear covariance matrix.

We analysed deuteron and heavy nuclear data separately, using nNNPDF2.0 for
heavy nuclear PDFs, and fitting deuteron PDF's using an iterative procedure in
the NNPDF3.1 methodology. The resulting uncertainties are a crucial ingredient
in the latest release, NNPDF4.0. Including the uncertainties causes a modest
shift in the central value of PDFs and an increase in errors, in the high =z
nuclear data region. This difference is driven by the heavy nuclear data. We also
investigated a procedure to shift the nuclear predictions, which was equivalent
within uncertainties to including only an uncertainty, but with a slightly higher
global x? and smaller PDF uncertainties. We opt to include uncertainties without
a shift in NNPDF4.0.

98



Chapter 5

Making predictions using PDFs with
theoretical uncertainties

Earlier in this thesis we have discussed the importance of theoretical uncertainties,
and how to include them in PDFs. We have also produced PDFs including
MHOUs (see Chapter 3) and deuteron and nuclear uncertainties (see Chapter 4),
which are freely available. In the future, PDFs with theory uncertainties will
become the norm, and will be used widely to make theoretical predictions for

observables by convoluting them with parton-level hard cross sections.

When making predictions for hadronic observables there are two sources of
uncertainty: the hard cross section and the PDF. Typically, MHOUSs for the
former are estimated using scale variation, and these are added in quadrature
to the latter. When the PDFs themselves also include MHOUSs, we can think
of the two scale evolutions considered being Qo — Qqr and Qo — Qprea, Where
(o is the PDF parametrisation scale, Q4. is the scale of data in the PDF and
Qpred is the scale the prediction is made at. Then each of these sources has
both a contribution from renormalisation scale variation and from factorisation
scale variation. The PDFs themselves contain data from various processes, so
when making a prediction for a process which is included in the PDFs there will
invariably be correlations between the renormalisation scale variation in the PDF
and that in the hard cross section. Even if the process is a new one, for example
Higgs production, correlations due to factorisation scale variation will always be
present. Simply combining the two sources of uncertainty in quadrature will miss

these correlations and lead to an inflation in overall uncertainties. Hence we refer
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to this method of combining uncertainties in quadrature as the “conservative

prescription”.

This issue was explored in detail in [148], noting that PDF's are a tool to express
one observable in terms of others. This can be realised exactly in the simple case
of fully correlated factorisation scale variation for non-singlet structure functions.
Here the PDF can be eliminated entirely, and it is manifest that there is only one
independent scale (Quat — Qprea), rather than two, with the MHOUs cancelling
to a large degree. If MHOUs were used in both the PDF and the hard cross
section in this case, it would amount to “double counting”. It was also shown

that correlations existed for renormalisation scale variation, albeit less strongly.

When using PDFs in predictions we include both sources of scale variation in
an uncorrelated way, and so miss the MHOU cancellation and corresponding
reduction in uncertainties. As noted in [5], this is a consequence of PDFs being
universal. We cannot reconstruct the full data and MHOUs from the PDF's alone
as information is lost in the fitting process; one set of PDFs could arise from
many different data possibilities. However, if we want PDFs to be useful in a
wide range of predictions, universality is required and so it would at first sight

seem like we must live with this loss of correlation.

In [5] it was argued that we know the increase in PDF uncertainties due to
MHOUs is small, and the effect is mostly realised in changes to the central
value as the fit is rebalanced by changes to the weighting of different data.
Indicative cases were explored in Chapter 7 of the study, where it was seen that
the PDF uncertainty is consequently much smaller than the MHOU on the hard
cross section. When combining these two in quadrature, the effect of missing
correlations was therefore argued to be likely small, and so the overestimate of
uncertainty would also be small. It was argued that a small overestimate of
uncertainty is better than neglecting MHOUs altogether. It is therefore one of

the aims of this study to see whether these claims are justified.

In this chapter we investigate correlations between PDF MHOUs and hard cross
section MHOUs when making predictions. Although we focus on MHOUs, the
analysis extends naturally to all sources of theory uncertainty. We develop a
method for algebraically determining these correlations, and show how to include
them when making a prediction. This is a complicated problem so we proceed

incrementally:
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e In Sec. 5.1 we show how a theoretical uncertainty can be reformulated in
terms of a nuisance parameter, which holds the key to the propagation
of uncertainties. We consider two extremal toy models: one where the
theory is rigid with no unknown parameters (“pure theory”); the other
where the theory is completely flexible and can fit the data exactly (“pure

phenomenology”).

e In Sec. 5.2 we move on to a model where the data are fitted using just
one parameter. Here the correlations lead to a shift in the theoretical

predictions. This is somewhere between the two scenarios in Sec. 5.1.

e In Sec. 5.3 we extend this analysis to a multi-parameter fit with multiple
theory uncertainties, and then to a PDF fit, where the PDFs are continuous

functions with a functional uncertainty:.

e In Sec. 5.4 we present numerical results comparing this procedure with the
naive approach of adding the uncorrelated contributions in quadrature, in
the context of the NLO global fit with MHOUs discussed in Chapter 3. We
make predictions including MHOUs for repetitions of all the experiments
already in the fit (so-called “autopredictions”). We then investigate the
scenario of a prediction for a process already in the fit (top production),
and for a new process (Higgs production). We show that including
these correlations leads to a shift in the central value of the prediction,
which is within the uncertainties for the naive approach but takes the
NLO predictions closer to the known NNLO result, reducing the x? to
experimental data. Furthermore, we find that for the autopredictions and
top predictions there is a significant reduction in uncertainties due to the
correlations, so the correlated predictions are both more precise and more
accurate. For Higgs production, we find that the effect is much weaker,
because there are only correlations through the factorisation scale and
not through the renormalisation scale. We emphasise the power of these

correlations as a way to improve theoretical predictions.

e In Sec. 5.5 we provide a summary.
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5.1 Predictions with correlated theory

uncertainties

We saw in Chapter 2 that to include theory uncertainties in a fit all you need to
do is add a theory covariance matrix, S;;, to the experimental covariance matrix
(. Recall that 4,57 = 1,..., Ngo Tun over data points. The only assumptions
underlying this result are that all uncertainties are Gaussian, and that the
theory uncertainties are independent of the experimental data. Since Gaussian
experimental uncertainties are already assumed in NNPDF’s framework, these
assumptions are very reasonable. We can express the result as the conditional

probability
1 T -1
P(T|D) ocexp(—ﬁ(T—D) (C+5S) (T—D)). (5.1.1)

Recall that both C' and S are real and symmetric, that C' is positive definite and
that S is positive semidefinite and will generally possess many zero eigenvalues. In

a fit we determine T from D by maximising P(T'| D), which amounts to minimising

X’ = (T - D)'(C+S)YT - D) (5.1.2)
with respect to the free parameters which characterise the theory prediction.

In this section we start off by considering one single source of fully correlated
theory uncertainty, so that

S = BpT, (5.1.3)

where 3 are real and non-zero.

5.1.1 Nuisance parameters

We can model the theory uncertainty as a fully correlated shift in the theory
prediction:
T — T+ M\, (5.1.4)

where \ is a nuisance parameter characterising the scale of the shift. We will now

show that this will lead us to Eqn. 5.1.1. Firstly, assuming Gaussian experimental
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uncertainties, we can write
P(T|D)) o exp ( — %(T + A8 —=D)Y'CHT + A3 — D)). (5.1.5)
Using Bayes’ Theorem,
P(T|DXN)P(A|D) < P(A|TD)P(T|D). (5.1.6)

We want to find P(T|D), so we need an expression for the prior for A,
P(A|D) = P(\), where we assume that the theory uncertainty is independent

of the experimental data. We choose a unit-width Gaussian centred on zero,
P(\) o exp ( — —/\2>. (5.1.7)
Marginalising over A, Eqn. 5.1.5 becomes
P(T|D) o /d)\exp ( — % [(T + A3 —=D)Y'CHT + A3 — D) + AQ] ) (5.1.8)

We can evaluate the term in [-] by remembering S = 337, introducing the variable

Z=(1+p"Cc7'p)!
=1-p85C+9)7'3 (5.1.9)

?

where the second line comes from the observation that
(1+pTCp)(1 - pT(C+9)718) =1. (5.1.10)
Now completing the square:

[]= (T - D)'C™(T — D)+ (T — D)'C'\g+ A\pT"C~YT — D)
+ABTCTINB + A2
=(T—-D)'C™YT — D)+ (T — D)Y'C '\ + \g'C™(T — D)+ \*Z~*
=Z ' \+ZpTC YT — D))?
— Z(B"C™H(T - D))>+ (T — D)'C™(T — D)
(5.1.11)
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SO

[1=Z*\+2ZB"C~HT — D))?

(5.1.12)
+(T - D)'(C™' - ZzC~'SC~)(T - D).

Finally, we can use the Sherman-Morrison formula, which states that for an

invertible square matrix, A, and column vectors wu, v:

Aty AY
T\-1 _ 21 _
(A4uv" )" =A 0T ATy (5.1.13)
so we have that
(Ct—zctso = (CcTt - zetppteh
—133T -1
-1_ w (5.1.14)
T+ 5TAp
=(C+9)™,
so overall
[]=Z"'A\+2z3"C~ YT - D))*+ (T — D)'(C+S)"(T - D)
=Z'\+ZB"C YT — D))* + x* (5.1.15)
=7 A=)+
where we used the definition of the x? (Eqn. 5.1.2) and we have defined
A= Z8'C (D —-1T)
BTC_I
=—%°o—(D-T)
T(O-1
L+ AR08 (5.1.16)
_ P p_ T)
- C+ BBT(

= BT<C + 5)71<D - T)7

where to get to the second line we used the definition of Z (Eqn. 5.1.9). Plugging
this back into Eqn. 5.1.8, we get

1.2 1 -
P(T|D) x /d)\ 5 exp < ~ 370 A)Q)

x e 22X

(5.1.17)

which is Eqn. 5.1.1. The advantage of this approach is that we can also get
the posterior distribution for A (after fitting using D and T'), by using Bayes’

104



Theorem (Eqn. 5.1.6):

P(T|DN)P(N)
P(T|D)

<xmp<—%“T+AB—DVCAH#AB—D%+V—Xﬂ)(5LB)

P(\TD) =

m@m(—%ZAQ—XO,

where we recognised the similarity between the exponent here and in Eqn. 5.1.8.
So the effect of the fit is to shift the centre of the distribution from 0 — A, and
the width from 1 — Z. Note that from the definition of Z (Eqn. 5.1.9),

0<Z<1, (5.1.19)

so the theory uncertainty is always reduced when information on D is added.
Fig. 5.1.1 gives a sketch of this effect.

m— Prior
= Posterior

0 A

Figure 5.1.1 Sketch of the prior (Eqn. 5.1.7) and posterior (Eqn. 5.1.18)
distributions for A. Adding information shifts the distribution and
reduces the width.

5.1.2 Predictions without fits

We will now test out this formalism for a toy model where we have “pure theory”
values, Ty. These have no unknown parameters, so cannot be fitted. They do,
however, have a theory uncertainty. Despite the fact we cannot fit them to the
data, Ty # D in general, the data can still give us information on the predictions

via the nuisance parameters in the theory uncertainties. The expectation value
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of A can be evaluated
E[\ = NA/d)\ A P(\TyD) = \Ty, D). (5.1.20)
Note that N, is set such that E[1] = 1. We can then find the variance
Var[\] = E[(\ — E[)\)?] = Z. (5.1.21)

Both of these can be seen straight away from the form of the posterior for A,
Eqn. 5.1.18.

In the nuisance parameter formalism, we can write
T(\) =Ty + A. (5.1.22)

Before comparing these theory predictions to the data, we could use the prior for

A in this expression, which would give us
E[T()\)] =Ty, Cov[(T(\)] = BpT = S. (5.1.23)

But we could instead first compare 17" to D, and then use the posterior

distribution. In that case we’d end up with

E[T(\)] =Ty + T, D)3
=Ty + BB"(C+S)" (D —Ty) (5.1.24)
=To+S(C+S) (D -Ty),

where we substituted Eqn. 5.1.16 to get to the second line, and

Cov[(T(\)] = E[(T(\) — E[T(M)])?
— Var[\]557 (5.1.25)
— 78,

We can think of these predictions as “autopredictions”, i.e. we:

1. compare the data to the theory;

2. use the information from 1. to make new predictions for exact repetitions

of the same experiments.
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From Eqn. 5.1.24 we can see that there is a shift in the autopredictions of
6T = —S(C + S) " (Ty — D), (5.1.26)

and that the uncertianties are reduced by a factor v/Z, thanks to information

provided by the data. Overall, the autoprediction covariance matrix is

7S =S8—S(C+S)'s

(5.1.27)
—C(C+8)7'S=S(C+8)"'C

To see the impact of the shift in the predictions, we can compare the experimental
X2 (i.e. using the experimental covariance matrix only) of the original predictions

to the autopredictions. The original x? is
2 _ T A1
Xeap = (To — D)"C™(Ty — D), (5.1.28)
and, using Eqn. 5.1.26, the autoprediction x? is

o = (To + 6T — DY'C(T}y + 6T — D)

= (T, — S(C+S) YT, — D) - D)Y'C (T, — S(C + S)' (T, — D) — D)
=((1=8(C+S)™) Ty —D))'C~H(1 = S(C+8)" )Ty — D))

= (C(C+9)™ Ty — D))'C~HC(C + S) (T, — D))
= (T, — D)(C + S)~'C(C + S) (T, — D),

(5.1.29)

where we used Eqn. 5.1.26 to get to the second line. From this we can see
that X2, < X&pp because C' + S is positive definite. In other words, the shifts
always lead to improved quality of fit by exploiting the theory uncertainty to add

information from the data.

We can investigate this more explicitly by using a simple model where the
experimental covariance matrix is diagonal and the theory uncertainty is fully
correlated. Writing § = se, where s is the size of correlated theory uncertainty
and e’e = 1, we have

C = o, S = s?eel (5.1.30)
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where o is the per-point uncertainty. Then we can evaluate:

2
(C+8) 1= % (1 i €6T> :

o2 + 52

Z=(1+s*/c*)"".

(5.1.31)

so the reduction in the theory uncertainties depends on s?/o?:

e for s? < o2, there is a small influence of the data on the theory uncertainty;

e for 02 < s?, the theory uncertainty size is reduced from s to o, because in

the limit s%/0? — 00, Z — o2ee’;

e for theory uncertainties the same size as experimental ones, 0% ~ s*/N
and Z ~ 1/(N + 1), so if there are a large number of independent data
points then there is a large reduction in uncertainty; more data gives more

information.

In this model the autoprediction shifts are

—g2

0T = ———€T(Ty — D)e, 5.1.32
o2 + g2 (To ) ( )

which are in the direction of the theory uncertainty, e, as we would expect. When

s?/0? — oo, e (Ty+6T) — eI D, so in this direction the autopredictions coincide

with the data.

It can also be shown that the autoprediction x? is

1 s%(s* 4 20?%)
2 T T
Xauto — (TO — D) ; (1 — Wee (TO — D), (5133)
so the contributions to the x? which are orthogonal to e are unchanged, and
the contributions along e are reduced by Z2?. This means unless the theory
uncertainties are very small, we will end up with a y? for the autopredictions
which is size (N — 1) rather than N, because the contribution along e will be

substantially reduced.

We can also make genuine predictions, T]7 1=1,... N. In this scenario these
also have no free parameters, but their theory uncertainty is correlated with that
of T;, i =1,...,N, for which we have experimental data, D;. We can write the

predictions in the nuisance parameter formalism as (in a slight abuse of notation)
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T(\) =T + A3, (5.1.34)

where the vector B gives the size and direction of the theory uncertainty in T. 1f
\ are independent of A, then the theory uncertainties in T are uncorrelated with

those in T" and the covariance for the predictions is just
S =pBp". (5.1.35)

In the opposite scenario where they are fully correlated, A = A and we can use the

data D for T to improve our prediction by using the posterior of A, i.e. P(A|TD):

E[T(\)] =T+ X(T, D)3

o (5.1.36)
=T+ B87(C+8)""(D-T),

where once again we have used Eqn. 5.1.16 to get to the second line. So there is

a shift in the predictions of
6T = —=S(C + 8) T — D), (5.1.37)

where S = E BT is the covariance matrix of cross correlations between the theory
uncertainty in the theory for which there are data and that in the predictions.

The covariance matrix of the predictions can be calculated

Cov[T(N)] = E[(T(\) — E[T(\))
= (G- DAG - D3 .
= Var[)\]ﬁﬁT
= Z8S.

So the covariance of the genuine predictions is reduced by the same factor, Z, as
the autopredictions. This means the data can work via the correlations in theory
uncertainties to produce more precise and (if the theory is correct) more accurate
predictions for observables that aren’t yet measured. This is accompanied by a

shift which is proportional to the cross covariance between theory uncertainties.

We can understand a little more about the various theory covariance matrices

by imagining we obtained some experimental measurements, D, corresponding

to predictions T. Then we could add these to the fit, and would get a new fitting
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theory covariance matrix with dimensions (N + N) x (N + N) and content

S g T ART
A I (5.1.39)
ST5 pB" Bp
Here the role of S and ST as cross-correlation theory covariance matrices is clear.
We can see that the theory uncertainties in the prediction are consistent with

the theory uncertainties we would use when including observables in a fit, which

makes sense in the comparison with the autopredictions case.

Ideally, the shifted predictions would give a better x? to the new data 5, but
this is not guaranteed because the shifts were induced from the old data, D, and

there could be inconsistencies between D and D.

5.1.3 Autopredictions in a perfect fit

We have just considered the scenario where 7' is unfitted to the data. Now
consider the “opposite” situation of a perfect fit. Here T have a high level of
flexibility, and can fit D exactly. P(7T'|D) is always maximised when 7" = D, so

x? = 0. We can extract the expectation value and covariance of T' as

E[T) = NT/ dI'T P(T|D) = D, (5.1.40)
where N7 is such that E[1] = 1, and

Cov[T] = E[(T — E[T])*] = C + S. (5.1.41)

We can write the autopredictions again in the nuisance parameter formalism, so

again in a slight abuse of notation
TN =T+ M. (5.1.42)

When calculating the expectation value of a function of T" and A, we must take
some care. The data, D are always held fixed because they are set values from
experiment. Then the expectation value can be calculated using conditional

probabilities,

E[f(T,\)] ENT/dT ./\/'A/d)\ F(T, \)P(\TD)P(T|D). (5.1.43)
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We must therefore integrate first over A\, because this is conditional on 7', and
then over T. So to get the expectation value of A\, we first take the expectation
value over \, with both T"and D fixed, using the definition of X from Eqn. 5.1.16:

E[N = EIMT, D)]

(5.1.44)
= 7(C +S)'E[D —T].

Then we take the expectation value over T', keeping D fixed, which just gives us
E\ =p"(C+S)™ (D - D) =0. (5.1.45)
For the variance we have
Var[\] = E[(A — E[\])?] = E[M\]. (5.1.46)

To evaluate this we can use the trick of adding and subtracting A(T, D) to A
because we are aiming to put it in terms of Z = E[(A — X\(T, D))?]. Making use
of Eqn. 5.1.9 and Eqn. 5.1.41,

Var[\] = E[(A — X(T, D) + X(T, D))?]
= B[(A = \(T., D))*] + E[X(T, D)?|
=74 8Y(C+ 8)'E[(T — D)(T — D)T|(C + 8)~'3
=7+ pT(C + 9)'Cov[T)(C + 5)7'3
=1-31(C+8) "B+ 61(C+9)'s
= 1.

(5.1.47)

So in a perfect fit, the posterior distribution of nuisance parameters is exactly the
same as the prior. All the information from the data is absorbed into the fitted
parameters, and so we are left with no update to the theoretical uncertainty. In
the calculation of the variance you can see how the reduction by factor Z that
we saw in the pure theory case is exactly cancelled by the factor due to the
fluctuation of A(T', D) due to the covariance of 7.

We can now use the posterior of A to calculate the autopredictions. First we

calculate the expectation value:

E[T(\)] = E[T + \3] = D, (5.1.48)
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which is a consistency check. Next we calculate the covariance, where we
remember the expectation value is taken first over A with 7" and D fixed, and
then over T' with D fixed:

E[(T(\) — E[T(N)])?]

E[(T — D + AB)(T — D + \3)7]

E[(T — D)(T — D)"] + E\S(T — D)
+ E[(T — D)A\BT] + E[\*]|358".

Cov[T(N)]

(5.1.49)

The first term is just Cov[T] and the last term is Var[\]S = S. To calculate the

middle terms, consider

EZS(T = D)'] = E[BNT, D)(T — D)']
= —S(C + S)™'E[(T — D)(T — D)"] (5.1.50)
= —S(C + S)~'Cov[T]

So overall

Cov[T(A\)] = Cov[T] — S(C + S)*Cov[T] — Cov[T]|(C + S)~*S + Var[\]S
=(C+8)—-5S-5+8
=C.
(5.1.51)

So in a perfect fit, the covariance of the autopredictions is equal to the covariance
of the data. This happened because the covariance arising from the fit (the first
term in Eqn. 5.1.49), and the covariance arising in the autopredictions (the last
term in Eqn. 5.1.49) are each cancelled by the cross covariance between the fit
and the prediction. This is the effect which was noted in [148]. In a perfect
fit, there is no distinction between the autopredictions and the data, and so the
theory uncertainty is irrelevant. In other words, the case of a perfect fit can be
thought of as “pure phenomenology”; the only information we are left with is in
the data. As a result we can’t make genuine predictions for points we don’t have

experimental data for because there’s no real underlying theory.

5.2 One-parameter fits

Previously, we looked at two unrealistic simple models;
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1. Fixed theory which cannot be fitted to data (pure theory);

2. Over-flexible theory which is fitted perfectly to data (pure phenomenology).

These helped us to develop the nuisance parameter approach, but in reality we
want somewhere between these two extremes; normally the theory has parameters
which are constrained by the data and can be fitted, however the theory is rigid
enough to be able to make new predictions, f, where no data exist. We will see
that in this more realistic case there are features from both the pure theory and

the pure pheno cases, namely:

1. shifts in the central values;
2. reduction in uncertainty;

3. correlations of theory uncertainties.

First we will consider a theory with one fitted parameter. Then we will generalise
this to many fitted parameters, which is a description of many modern PDF
fits. Finally, we will consider an NNPDF fit, where the many parameters are

encapsulated in a neural network.

Starting with the single parameter fit, T'(f) only depend on a single parameter,
. The x? (Eqn. 5.1.2) will be minimised for some 6 = 6, with variance Var[6)].
Once 6y has been determined we can then make some predictions, T (0o), where
the tilde denotes they are predictions for theories separate from the fit inputs.

These predictions will have uncertainties proportional to Var[6)].

We have assumed that the uncertainties are Gaussian, and so they are differen-

tiable. This means we can linearise 7'(¢) about T'(6y) = To:
TO) =Ty + (0 —0)TH+ ... (5.2.1)

We want to determine the uncertainty in the fitted 6, so we need to propagate
the uncertainties in the data, D, and the theory, T'(f), into §. We can do this
using the standard NNPDF approach (see Chapter 1) of generating pseudodata
replicas, D), which are Gaussianly distributed about the actual data, D, with
covariance C' 4+ S. It is important to remember that these are just a device

for propagating the uncertainty, and we must still hold D constant when taking
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expectation values. More explicitly, we can define the average over replicas for

any function, F', of the replicas as

Nrcp
<F<D(T))> - ereipIEoo Nicp Zl F(D(T))

Then the replicas will satisfy

in the limit of N,¢, — oo.

(5.2.2)

(5.2.3)

The fit proceeds by fitting a parameter replica, (), for each pseudodata replica,

D) by minimising
X[ = (T(8) = D)1 (C + 8)~H(T(9) — D),
with respect to 6. Using Eqn. 5.2.1, this leads to

_T(C+ 87DV~ Ty)

) — g : :
TT(C + S)~'Ty

Now 6y = (6, so using the replica averages in Eqn. 5.2.3 we find
TI(C+S)™ (D~ Ty) =0,

so we can rewrite Eqn. 5.2.5 as

_ T3 (C+5)" (D" — D)
Tg(C + S)_IT(] .

6" — g,

Using the fact that C' and S are symmetric,

Var[d] = (67 —6y)?)

T3 (C+8) ' {(DW — D)(DW — D)) (C + 8) Ty

(T3 (C+ 8)1Ty)?
= (I7(C+8) )

Note that:

(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

(5.2.8)

e data points with a large dependence on 6 have large Ty, and contribute more.
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e directions with large uncertainty, (C' + S), contribute less.

Now we have the uncertainty in the fitted parameter, 8, we can find the fitting
uncertainty. This is the covariance of T'(6) due to the experimental and theoretical

uncertainties from fitting 8. We will call this covariance matrix X. Using the
fact that E[T] = (T(0"))) = T(6y) = Ty and writing T = T(6™),

X =Cov[T(0)] = (T —T)(T" —Ty)T) (5.2.9)
= To((0") — 60)>)T T (5.2.10)
= To(TE(C + S) M) M1 (5.2.11)
= n(n"(C+ 9) 'n)"'nT, (5.2.12)

where in the last line we define Ty = |Ty|n, i.e. n is a unit vector in the direction of
Ty. We can see that X depends only on the direction (n) of Tj, not its magnitude.
Note that X is singular and also that

X =X(C+89)X, (5.2.13)
which will be useful later. Using Eqn. 5.2.7 in Eqn. 5.2.1, we can see that
T — Ty = X(C + S)"Y(D™") — DO, (5.2.14)

so X(C + S)7! projects the data replicas onto the theory replicas.

Now let’s revisit the model for covariance matrices, Eqn. 5.1.30. If we define the
angle between the theoretical uncertainties and the @ variation by cos¢ = n'e,
we find that

2 | (22
T 1 o"+sTsin o
20,2 | 2
T 00" +5%)

n' Xn = (0% ¢ sZsin? )’ (5.2.16)

Note that using any vector other than n here gives 0. We can see that the effects
from the theory uncertainty (s) depend on its degree of alignment with n, the

direction of the parameter dependence.

e For complete alignment, ¢ = 0 and the variance of 7" in this direction is
(02 + s?).

s 2

5 , so the theory

e When they are orthogonal, = Z and the variance is o
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uncertainty doesn’t factor into the fitting.

5.2.1 Autopredictions in single parameter fits

We can now get the expectation and covariance of the autopredictions in the

one-parameter model. We write the autopredictions again as
TO,\)=T(0)+ A\5. (5.2.17)

As before, we compute the expectation values over A using P(A|T'D) and then
over T using P(T'|D). We do the expectation over T" by averaging over the theory
replicas T = T(6)). All this time we must hold D fixed as the probabilities
are conditional on the data. As stated before, D) are not physical, they are just
an artificial device we use to allow us to propagate the uncertainties. So we don’t

average over the data replicas when getting the expectation values. Explicitly,
BTN = (M [ 1 SO NPOTODY). (5219

where we recall that (-) denotes the replica average.

Expectation value

To get the expectation value of the autopredictions, we do the same steps as we
did for the perfect fit, but now we have the theory replicas as well. So first we

find the expectation value of \, using the definition of X in Eqn. 5.1.16,

EN = (XT(6)"), D))
BY(C + S)"HD - Ty) (5.2.19)
Xo.

We can see the parallel here with the pure theory scenario, where the nuisance
parameters can have non-zero expectation values. This is because the one

parameter fit is not perfect. We can now calculate the expectation value of
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the autopredictions:

E[T(0,))] = (T + X(T", D))
=Ty + \of3 (5.2.20)
=Ty + S(C+S)" YD —1Ty),

and therefore the shift induced is
6T = —S(C + S) (T, — D). (5.2.21)

Note that Eqn. 5.2.6 tells us that n” (C' +S)~*(Ty — D) = 0, so the shifts are only
non-zero when n and e point in different directions. When they are parallel (i.e.
¢ = 0), the theory uncertainty is absorbed by the fit, like in the perfect fit. We
can use the same arguments as we did in the pure theory case to conclude that

the shifts always improve the fit to experimental data.

Covariance

Now we can find the covariance of autopredictions. We start by computing the

variance of ), again using the trick of adding and subtracting A(T™"), D):

(T™, D)+ XT", D) — o)

(T, D)2 + E[(NT™, D) — X)?] (5.2.22)
(A= XNT™, DYNT™, D) = Xo)]

[(MT", D) = X)(A = N(T™, D))].

The next step is to take the expectation value over A, and we see that the two

cross terms are 0 because A — ). So
Var[\] = E[(A = X(T, D))} + ((N(T™), D) — X)?), (5.2.23)

where when taking the expectation value over T" we use the replica average. The
first term is just Z, and to evaluate the second term we can use Eqn. 5.1.16 to
substitute for \:

Var[\ = Z 4 BT(C + S)"H(T" — Ty)) (T — Ty)"NC + 9)718.  (5.2.24)
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Now we can use the definitions of Z, Eqn. 5.1.9, and X, Eqn. 5.2.9, to write

Var[\| = 1 — B5(C+ 9) '8+ p1(C +9) ' X(C+ 9)'p

(5.2.25)

Il
N

So unlike in a perfect fit, the last two terms don’t cancel. So the information in
the data can’t just be totally absorbed into the fitted parameter, because there
isn’t enough flexibility for this to happen. As a result that information can have

an impact on the nuisance parameters.

We can see that Z > Z because (C 4+ S)"'X(C + S)~! is positive semidefinite,
and Z < 1 because X (C + S)7! is projective (Eqn. 5.2.14), so its eigenvalues are
either 0 or 1. Overall

0<Z<Z<I1, (5.2.26)

so the information from the data about the theory uncertainties is less in the
single parameter fit than in the pure theory. This is due to the uncertainty in
the fit. However, unlike in the perfect fit, the data do still constrain the theory
uncertainties, provided that the fitted parameter and the theory uncertainties are

in different directions.

In the simple model for uncertainties we introduced in Eqn. 5.1.30, it can be

shown that
o2

7 =
. 9
o2 + s2sin? ¢

(5.2.27)

SO

e Z =1 when ¢ =0, i.e. when n = e and the parameter variation is aligned

with the theory uncertainty;

e Z = Z only if ¢ = 7/2, i.e. n L e and here the data have the greatest

influence because there is no absorption of information into the fit.

Finally, we can use this information to calculate the covariance of the autopredic-
tions. Again, we first take the expectation value over A\, holding 7" and D fixed,

and then use the theory replicas to take the expectation value over T" with D
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fixed.

Cov[T(0,\)] = E[T(0,\) — E[T(0,\)])?]
= E[(T = To+ (A= X)B)(T —To+ (A= N)p)"]
= (T = To)(T™ = Ty)") + E[(A = X)B(T — Tp)"]
+ E[(T = To)(A = Mo)B"] + E[(A = N)?185".

(5.2.28)

The first term is Cov[T] = X and the last term is Var[A\]S. The cross terms can

be evaluated like

E[(A = X0)B(T = To)"] = (BT, ) A(To, D)(TV) — Tp)")

—S(C+8)™! [T] (5.2.29)
~S(C+95)™
So overall
Cov[T(0,\)] =X —S(C+9)'X - X(C+S) 'S+ Z5S. (5.2.30)

e The first term is the fitting uncertainty. This includes contributions from

both experiment and theory.

e The last term is the theory uncertainty in the prediction, reduced by a

factor Z through exposure to the data.

e The middle two terms are correlations between these two uncertainty

sources.

We can simplify this expression by noting that
ZS=S(C+8)'X(C+8)'S+2S (5.2.31)

and using the fact that

X—S(C+9) ' X—X(C+S)'S+S(C+9) X (C+S) 'S = C(C+S) ' X(C+S9)
(5.2.32)

to see that
Cov[T(\)] = C(C + S)'X(C+ S)'C + Z8. (5.2.33)

Note that in a perfect fit, X = C'+ S and so we just get C, which is what we
ended up with before.
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We didn’t see the same cancellation as in the perfect fit section, however, because
Cov[T] is X here, rather than C' + 5. So rather than getting the experimental
covariance matrix, C'; we end up with the sum in quadrature of the fitting
uncertainty, X and the theory uncertainty, .S, but each reduced due to the effects

from correlation.

In the simple model of uncertainties (Eqn. 5.1.30) it can be shown that

2

o?(0? + s?) T 52 T T S T
nn- — ———=cosolen” +ne )+ ee
< o2+ 52 i )

02 + s2sin’ ¢

Cov|[T'(N)] =
ov[T(N) S

(5.2.34)
Here the first term is X, the last term is ZS and the middle terms are the

correlation.

e If = 0, n = e and the result is just o?nn’, which is the experimental

uncertainty. This is the case of a perfect fit.

e If  =m/2, n L e and the correlation terms vanish. Then you end up with
X+78, i.e. the two contributions are added in quadrature, with the theory
uncertainty reduced by Z. This is the pure theory case.

From this we can see that the one parameter fit interpolates smoothly between

these two extremes.

Note that we can rewrite the covariance as

o%(0? + s?) 52 cos ¢ s scos¢ s*o?
COV[T()\)] = 02+8281n2¢(n_ o2 +326) (n B 0'2+826 ) + o2 +82€6 ’

(5.2.35)

In this recasting, we end up with ZS as the last term. We can see that X is

altered such that n gets an additional component in the direction of e, due to the

correlation with the theory. This:

1. changes the direction;

2. reduces the magnitude of the fitting uncertainty by a factor \/ sin? ¢ + Z2 cos? ¢,
although the resulting fitting uncertainty is still larger than it would have

been had the theory uncertainty not been included in the fit. We can see
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52 cos ¢

T € and calculating

this result by considering n =n —

9 2
— /sin? 21— ———
\/sm @ + cos ¢( 52+02)

= \/sin2 ¢+ Z2cos? ¢,

o2

where in the last line we used the fact that Z = m

5.2.2 Correlated predictions in single parameter fits

We are now in a position to consider genuine predictions in the case of a single
parameter fit. These are denoted T}(@), I1=1,... N. Note that the predictions,
0, depend on the same parameters as the fitted theory. There are two distinct

sources of uncertainty in these predictions:
1. that in the determination of §, which in turn comes from the experimental
uncertainties in D; and the theory uncertainties in 7;;

2. the theory uncertainties in ;.

1. are expressed via Eqns. 5.2.7 and 5.2.8. We can linearise the predictions, just
like we did for the fitted theory in Eqn. 5.2.1:

T(0) = Ty + (6 — 00)To = T(00). (5.2.37)

Then we can use the same approach as in Eqns. 5.2.9-5.2.12 to find the uncertainty
in 0, which is equivalent to the fitting uncertainty, X. Writing 7(") = T(Q(’” ) and
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making use of Eqn. 5.2.7:

X = Cov[T(0)]
= ((T" — To)(T™ — Tp)")
= (6 = B0)To) (6 — 60)To)") (5.2.39)

= To((67) — 60))T7

= To(TT(C + )" Ty)'T7.

2. can be either uncorrelated or correlation with the theory uncertainty in 7'.

(a)

If it is uncorrelated, e.g. if they are different types of theory uncertainty,
then we can denote the nuisance parameter for the predictions as . We
choose the same prior of a unit Gaussian centred on zero. Then we can

write

T(0,)) =T(6) + \B, (5.2.39)

where B gives the direction of the theory uncertainty in f, and X gives
the size. Then we can calculate the expectation and covariance of the

predictions,

E[T(8, )] = T(6)
Cov[T'(8,\)] = Cov[T(8)] + Var[\?|35T (5.2.40)
=X+8S.
So if the uncertainties are uncorrelated, we add the theory uncertainty in

T in quadrature with the uncertainty in 6 from the fit.

If it is fully correlated, e.g. factorisation scale variation, A= A, which

has non-zero expectation value and variance after the fit. Now
T(0,\) =Ty + Ty, D)3, (5.2.41)

so we end up with a similar shift to that of the autopredictions, which is

due to the correlation. Explicitly, the shift is

0T (60) = BA"(C'+ )~ H(D — To)

. (5.2.42)
= —5(C+8)" YTy — D),

where S = 837 is the cross covariance matrix of the theory uncertainties
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in the prediction with those in the fitted theory. The covariance of the

predictions is then

Cov[T(0,A)] = E[(NT(& A) iE[T(Q’ A_)])Q] ) (5.2.43)
= E[T(0) + A3 — Ty — MTo, D)5)?].
First take the expectation value over A, then over T (using the theory
replicas):
Cov[T(6,N)] = E[(T(6) — To) + (A — 2)B)?]
= ((T™ = To)(T") = To)™) + E[(A — 2)B(T — Tp)"]
+ B[(T — To) BT (A — Xo)] + E[(A — X0)2]BA".
(5.2.44)

The first term is just X and the last term is Var[/\]§ = 75. We can evaluate
the middle terms like

B[\ = 2)B(T — To)"] = (BN, D) — X(Ty, D))(T® — Ty)")

= —8(C+ S)"((T™ = Ty)(T™ — To)T) (5.2.45)
= -5(C+9)'XT,
where
X = (10 = T)/(T" = To)")
— Tol(0") — 90)2>f§ (5.2.46)
= To(TT(C + 8)"VTy) ' IT.
So overall

Cov[T(0, )] = X —S(C+ S)'XT = X(C +8) "5 +7Z5.  (5.2.47)

Note that we can write the last term as

7S =78+ 8(C+8)'X(C+8)'sT"

L SR N . (5.2.48)
=5 -5(C+8) 8" +8(C+8) ' X(C+8)S".

Here Z and Z are the same as for the autopredictions, and satisfy the same
bounds found before (Eqn. 5.2.26). Note that because C' is positive definite
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and S is positive semidefinite, then
0<S(C+8)'X(C+8)'ST<5C+5)""18"7 <8, (5.2.49)

so importantly the subtraction of S (C + S)*1§T is never large enough to

make the whole covariance matrix negative.

Summary

In summary, including correlations leads to three effects:

1. A shift in central value;
2. A reduction in theory uncertainties;

3. A reduction in fitting uncertainties.

During the fit, information that is implicit in the data about the theory is
propoagated via the corrleations. This leads to more precise (and hopefully more

accurate) predictions.

5.3 Correlated MHOUs in PDF fits

In this section we add another layer of complexity to the model we are building
up. Now the theory values, T;[f], depend on PDFs, f, which are determined in a
global fit to the IV data points, D;, with experimental covariance C;;. The PDFs
are then used to make N theory predictions, T}[f].

In a PDF fit there are many potential sources of theory uncertainty, but here we
will consider MHOUSs, computed with scale variation using a prescription from
Chapter 3. In this case S;; and g] s have many non-zero eigenvalues. We can
describe them using n nuisance parameters, Ao, a = 1,...,n. Usually n < N,

but we don’t impose a limit on n here.

We will now find the expectation value and covariance of these nuisance
parameters, and use those to find the shifts in predictions, and the change in

their uncertainties.
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5.3.1 Multiple nuisance parameters

Here we repeat the analysis of Sec. 5.1.1, but for multiple nuisance parameters
rather than just one. Each nuisance parameter is associated with a shift in theory
value T;[f] — Ti[f] + AaBialf], using summation notation for . Note that the
Bi don’t have to be mutually orthogonal. We pick a prior for each nuisance

parameter the same as in Sec. 5.1.1, i.e.
P(A|D) = P(\) x exp ( — $AaXa)- (5.3.1)
Once again we assume Gaussianity, and now instead of Eqn. 5.1.5 we get
P(T|DX) o< exp (= $(T[f] + AaBa — D)'CHTf] + AaBa — D). (5.3.2)
We can marginalise over A, to get

P(T’D) X /dn)‘ eXp (_%KT[]C] + )‘aﬁa - D)Tc_l(T[f] + Aﬁﬁﬂ - D) + 504,8)\04)\,3]) :
(5.3.3)
The next step is to complete the square in the exponent. After some work,

defining
Zap = (8ap + B C ' Bs) (5.3.4)

where the bracketed inverse is with respect to «a, 3, and
Xa = ZagB5C~H(D = T), (5.3.5)
we end up with
P(T|D) x /d")\ exp (—2(Aa — XQ)ZJE()\B — Ag) — 3x%) < exp(—3x?). (5.3.6)

Note that x? in this expression is given by Eqn. 5.1.2 but where S = 3,5L. Note
also the analogy between this and Eqn. 5.1.17.

We can then use Bayes’ Theorem to get the posterior distribution,

P(ATD) o exp (= 5(Aa — Xa)Zos (As — Ag)), (5.3.7)
and from this the expectation and covariance of )\, are

E[X\] = Ao, E[(Aa — Aa)(Ag — A3)] = Zus. (5.3.8)
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If we write 8 = eyf4, such that e, is a unit eigenvector of Z,s, then the
corresponding eigenvalue is z = (1 + B7C~!3)~!. This means 0 < z < 1 and
S0 Zup is positive definite, therefore invertible. What’s more, if all 2 < 1 then
dap — Zap 1s also positive definite. We can view Z,4 as the matrix version of the

coefficient from Sec. 5.1.1 as there are now many sources of uncertainty.

We can write, in analogy with before,
Zap = bap — Ba (C + S) ' Bg, (5.3.9)
which allows us to rewrite \,, using (1 — (C + S)71S)C~! = (C + S)7!, as

Ao = BE(C +8)"H (D —TI[f)). (5.3.10)

5.3.2 Fitting PDFs with fixed parametrisation

Now we can use the previous section’s results in the context of a PDF fit with
MHOUs. In this section, we consider a fixed parametrisation of PDFs, like that
adopted by, for example MSHT, CTEQ and ABM. Here the PDFs, f(6), depend
on m parameters, 0,, p = 1,...,m, where m < N such that the data are able to
determine all the parameters through x? minimisation. We will move on to the
somewhat different case of PDFs with neural networks (unsurprisingly relevant
to NNPDF) in the next section.

We adopt the same approach as in Sec. 5.2, but fitting m parameters, 6, rather
than a single one, §. Writing the PDF that minimises the x? as f(6°) = f,, and
using the notation Ty = T'(6°), T, = 9T'(6°) /06 with summation convention for

p, we can linearise T'(f) as
T0)=To+ (0, — )T, + ... (5.3.11)
Minimising this with respect to 67, we find
05) — 60 = (I} (C + 8)"'T,) "I} (C + 8) (D" — D), (5.3.12)

where the inverse of the left section is with respect to p,q. So

Covyll] = (0 —62)(05) — 02)
= (T +8)7T) (5.3.13)
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To find X, we can separate out the magnitude and direction of T}, by writing 7;, =
|T,|n,, where n, are (not necessarily orthogonal) unit vectors. Then Eqn. 5.2.12

becomes
X = Cov[T[f]] = np(n. (C 4+ S) " 'ng)'n]. (5.3.14)

q

Note that X (C + S)~! still projects the data replicas onto the theory replicas,
and the projective relation for X still holds.

Autopredictions

First consider the autopredictions, T'(f, ) = T[f] + Aafa- We can see that the
results from Sec. 5.2 still hold. In particular, the central values of \, are given
by

E\] = =5(C + 8)7H(T[fo] - D), (5.3.15)

and the shifts (Eqn. 5.2.21) are now
ST[f] = BaBL(C + 8)" (D = T[fy]) = =S(C + S) " (T[fo) - D). (5.3.16)

These shifts will improve the y? to experimental data, just like those in Sec. 5.1.

The covariance of A becomes an equation for a matrix rather than a coefficient:

Covas[A] = E[(Aa — E[Na]) (Mg — E[Ag])]
= 0as — Ba(C+8) "85+ BL(C+ S) ' X(C+5) "85 = Zap.

(5.3.17)
Like before, both EQB and 05 — Zxﬂ are positive semidefinite, so
0 < Zog < Zap < Sap- (5.3.18)
The covariance of the autopredictions then becomes
Cov[T(f,N)] =X = S(C+8)"'X —X(C+85)'S+ BaZasBh (53.19)

= C(C+ S)'X(C+S)"'C+ S~ S(C+8)'s.

Note that this result is identical to that in Sec. 5.2.
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Predictions for new observables

Now consider true predictions for new observables. The shifts (Eqn. 5.1.37) can

be written
ST[f] = BaBBT(C + )Y (D = T[fy]) = =S(C + S)"N(T[fo) = D),  (5.3.20)

where we have defined S = (,4%.

If the predictions are fully correlated, then T'(f, A) = T[f] + Ao/ and
Cov[T(f,N)] = X = S(C+ ) ' XT = X(C + S)7'87 + BuZasBl, (5.3.21)

where S = 3,47 and we have:

T,(TI(C + 8)7'T,) ' T,

p

T,(T1(C + 8)"'T,) 1,

p

(5.3.22)

<y

Using Eqn. 5.3.19, we can therefore write the last term as

ZS = Z5+S(C+8)'X(C+8)'S7, (5.3.23)

Z5 = §—5(C+58)'5". (5.3.24)

So we find that once again the result is exactly the same as in Sec. 5.3. In other
words, once we have eliminated the nuisance parameters, the only difference in

generalising one parameter to many is to amend the expressions for X, X and

-~

X.

5.3.3 Fitting NNPDFs

In NNPDF we don’t use a fixed parametrisation, but instead have a neural
network with a very large number of parameters, in general greater than the
number of data points. Here the ability to overfit is a danger, so we adopt a cross-
validation procedure when finding the optimal x? (see Chapter 1). This means
that when fitting each data replica, D), the x? is not exactly minimised; there

is random noise in the system which amounts to a “functional uncertainty” [57].

The fact that Eqn. 5.2.4 is not exactly minimised makes the analytical approach

imprecise, and while in general the results in Sec. 5.3.1 are valid, the exact
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relations for the fitted parameters (e.g. Eqn. 5.3.12) and subsequent results do

not hold. We are still able to use the PDF replicas to compute, for example
X = Cov[T[f]] = (T™) — TOY(T") — TO)Ty, (5.3.25)

where T = T[f"], and T©® = (T™). However, the projective relation for X
is no longer satisfied, and now X (C' + S)~! doesn’t project the data replicas on
to the theory replicas. We can confirm this for a given PDF by computing the

matrix

Y = Cov[T, D] = (T — TO) (D" — D)), (5.3.26)

For a fixed parametrisation, combining Eqn. 5.2.14 and Eqn. 5.2.3 shows that
Y = X = YT, But explicit computation in an NNPDF fit shows us that Y is
generally considerably smaller than X, because the fluctuations of theory replicas
are poorly correlated to those of the data replicas. This is despite the fluctuations
of the data replicas being about an order of magnitude greater than that of the
theory replicas. Although many X (C + S)~! eigenvalues will be zero (because
m < N), a lot of the non-zero eigenvalues will be larger than one as a result of
functional uncertainty. So although d,5 — Z,p is still positive definite, the upper
bound on 7&5, Eqn. 5.3.18, is no longer true; the covariance of the nuisance

parameters can be greater than the prior if there is a large functional uncertainty.

Note that X is not invertible, but this is not a technical limitation. The mapping
of the global dataset onto the PDF's is not invertible (excepting certain cases, for
example the data from a single process at a single scale explored in [148]). This
is because you can’t recover the full data from the PDF's alone, which is in part
because PDF's are only functions of x, but the data also depend on the scale;
when PDFs are delivered, the data are all projected onto a common PDF scale.
Additionally, the PDF's are universal and therefore process independent, so you

can’t say which processes were used to get the final PDFs.

Expectation and covariance of autopredictions

Once again we can consider autopredictions, now in a realistic NNPDF scenario.

We find that the shifts are given by a similar expression to Eqn. 5.3.16,

ST[f] = —S(C + S) 4T — D), (5.3.27)
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and will once again reduce the experimental x2. The covariance of autopredictions

is also still given by Eqn. 5.3.19:
P=Cov[T(f,N)]=C(C+S)'X(C+8)'C+(S—S(C+9)"S). (53.28)

If the theory uncertainty .S is much smaller than the experimental uncertainty C,
P approaches the result
Pon = X+ 5, (5.3.29)

the fitting uncertainty and theoretical uncertainty can be combined in quadrature,

and the ‘conservative’ prescription recommended in [5] is a useful approximation.

More generally, we can think of the two contributions to P being the correlated
PDF uncertainty and the correlated theory uncertainty. Because C' > 0, and
S >0, X >0, both of these contributions are positive semidefinite. Additionally,
the correlated theory uncertainty is bounded from above by the uncorrelated

theory uncertainty:
0<S—-S(C+8)'S=C(C+8)'s<8. (5.3.30)

At first glance it might appear that the correlated PDF uncertainty will also be
bounded from above by the uncorrelated PDF uncertainty X. One might think
this because since C' is positive definite, and S positive semi-definite, C' < C'+ S,
so C(C+ S)™' < 1,and C(C + S)'X(C + S)"'C < X. This argument is
wrong, however, and the correlated PDF uncertainty can sometimes exceed the

uncorrelated. Writing

C(C+8) ' X(C+S)'C=X—S(C+8)'X — X(C+S5)S

(5.3.31)
+S(C+8)LX(C + S)7'S,

in some circumstances the sum of the last three terms can be positive. For this
reason it seems impossible to prove in general that P < P,.,,, though in all

practical applications we have tested so far this seems to be the case.
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Genuine predictions

For genuine predictions, where the theory uncertainties in the predictions are
correlated with those in the fit theory, the shifts are given by Eqn. 5.3.20,

ST[f] = =S(C + 8)" (T — D), (5.3.32)

and the uncertainties are given by Eqn. 5.3.21, which are most usefully written

P = cov[ T(f.\)]
= X(C+ 85" —S(C+8) "' XT+5(C+9)'X(C+8)'ST
+(§ —5(C+ 8)~'87). (5.3.33)

The second line are contributions to the correlated PDF uncertainty, and the
third line are contributions to the correlated theory uncertainty. Note that we

also need to calculate

Cov[T[f, N]] = (T") — TO)(Tt) — TONTy, (5.3.34)
Cov[T[f, N, T[f, ] = (T — TO)(1") — 7O\ (5.3.35)

e
[l

When S is very small, we end up with the conservative result. This will be the
case for predictions of new processes, where the dominant MHOU is in the hard
cross section. However, for existing processes, S and S can be large, even if S is

small.

5.4 Numerical results

In this section we will apply all the results we worked up to in Sec. 5.3. We have
seen that in a realistic NNPDF fit, we just use the same analytic expressions
(Eqns. 5.3.27, 5.3.28, 5.3.32, 5.3.33) as we would for a fit of a PDF with fixed
parametrisation. This holds true despite the fact that PDFs possess a “functional
uncertainty”, due to the fact that PDF parameters are not uniquely fixed by the
fit. All the additional information we need to find the correlated predictions
and uncertainties are the matrices X, X and X , which we compute by taking
the ensemble average over the PDF replicas from the fit. In this section we will

compute these matrices for an NNPDF global fit with theory uncertainties, and
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use them to compute and predict both autopredictions and genuine predictions,
which include the effect of correlated theory uncertainties. We use as a baseline
the NNPDF3.1 NLO global fit with 9 point MHOUs which was generated in
Chapter 3. This includes 2819 data points, split up into 5 processes. We show
again the experimental and theory covariance matrices from this fit in Fig. 5.4.1

for reference.
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Figure 5.4.1 The experimental covam’ance matriz, Cjj, normalised to the
theoretical predictions T (left) and the corresponding theory
covariance matriz for MHOU, Sij (right).  The datasets are
arranged in the order given in Fig. 5.4.7 below: so SLAC data
are in the top left corner, and LHC top data in the lower right
corner.
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Figure 5.4.2 The covariance matrix of PDF uncertainties Xij, normalised

to the theoretical predictions T (left) and the corresponding
correlation matriz X;j/ X"X“ (right). The datasets are
arranged in the order given in Fig. 5.4.7 below: so SLAC data
are in the top left corner, and LHC top data in the lower right
corner.
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5.4.1 Covariance of PDF uncertainties X

The first thing to do to calculate predictions is to compute X;; (Eqn. 5.3.25),
which is shown in Fig. 5.4.2 as a heat map alongside its corresponding correlation

matrix. The off-diagonals of X are almost as large as the diagonals.

This is because theory predictions are often very strongly correlated, not only
for nearby bins within the same experiment but also for different processes at
nearby scales. This is primarily due to the smoothness of the underlying PDF's in
(x,Q?), but it is also a consequence of the highly correlated theory uncertainties
included in the fit.
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Figure 5.4.3 The square root of the diagonal elements of the matrices X
(in orange), C (in green) and S (in purple) normalised to the
theoretical predictions Ti(o), with those for C and S the same as

i Chapter 3. The datasets are arranged in the order given in
Fig. 5.4.7 below.

We compare PDF uncertainties to experimental and theory uncertainties by
looking at the per-point uncertainty in Fig. 5.4.3. Recall from Eqn. 5.2.3 that
C + S is the covariance of the data replicas to which the PDFs are fitted. At
NLO, the relative size of C;; and S; can vary quite alot between datasets; for
fixed target DIS, S;; is generally greater than Cj;, except at large x. For HERA
NC there is an interesting pattern whereby S;; < C; at large x, but the opposite

is true at small . The experimental uncertainty is also dominant for CHORUS,
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but for most of DY the theory uncertainty dominates.

The PDF uncertainties, X;; are generally less than both the experimental and
theoretical uncertainties. This makes sense because they are the product of a fit,
and so the uncertainty on each point is influenced by all the other data points in
the fit, which collectively conspire to reduce the uncertainty. We can clearly see
this effect in DY and JETS. The exception to this are datasets with very small
theory uncertainty, for example ratio datasets where systematic uncertainties
cancel between the numerator and denominator (e.g. NMC d/p, asymmetry data

and differential top). In these instances, X;; is above S;;, though still lower than
Cii.

5.4.2 Nuisance parameters

Now let’s look at the nuisance parameters A\, of the covariance matrix S.
We showed in Chapter 3 that for five processes in the 9 point prescription
there are 28 non-zero eigenvalues, and so we will have 28 nuisance parameters.
Fig. 5.4.4 shows these eigenvalues in descending order in the top panel, with
their nuisance parameters below. We computed the expectation value of the
nuisance parameters using Eqn. 5.3.16, and their uncertainties using Eqn. 5.3.17.
It helps to separate out the two contributions to the uncertainty on the nuisance

parameters, namely:

1. the scale uncertainty (Eqn. 5.3.8);

2. the PDF uncertainty (last term in Eqn. 5.3.17).

These are shown as the lower two panels in Fig. 5.4.4.

Recall that the prior for the nuisance parameters was a unit Gaussian centred on
zero (Eqn. 5.3.1). After fitting, we see that the total uncertainty in the nuisance
parameters for the largest ~9 eigenvalues has been substantially reduced, showing
that the MHOU along these directions has been learnt in the fitting process. For
the nuisance parameters corresponding to the smaller eigenvalues there is very
little reduction. This tells us that the data don’t constrain these directions very
well. The central values for the largest three eigenvalues are very close to zero
within uncertainties. This shows that the choice of prior was reasonable. The

next three or so significantly deviate from zero, showing that the data must
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have significant information about the MHOUs in these directions. For the
remaining smaller eigenvalues, the central values of the nuisance parameters are
all compatible with zero. For the very small ones it seems the data have had
no effect at all because the posterior distributions are the same as the prior. So
only the largest eigenvalues are actually relevant for PDF determination, and the

others are simply ignored by the fit.
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Figure 5.4.4 The 28 positive eigenvalues s* of the theory uncertainty matriz S;;
(above), shown in descending order, and 28 nuisance parameters
Ao corresponding to the 28 eigenvectors B, (below), as given
by Eqn. 5.53.15. The uncertainties in the nuisance parameters are
shown in total (square roots of the diagonal entries of Eqn. 5.53.17,
and broken down into the contribution from scale uncertainties
alone (square roots of the diagonal entries of Eqn. 5.5.8 and from
PDF uncertainties (square roots of the diagonal entries of the last
term in Eqn. 5.3.17. The yellow bands highlight the region between
+1.

Looking now at the split between scale uncertainty and PDF uncertainty, we see
that the MHOU for the largest eigenvalues is reduced a lot, showing that it is
learnt in the same way we saw in the simple models of Secs 5.1-5.3. However, there
is very little information extracted about the smaller ones. The PDF uncertainty
is also small for the largest and smallest eigenvalues, but dominates for the middle

ones.

Having seen that some directions of MHOU are more relevant in the fit, we may
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Figure 5.4.5 Nuisance parameters A\ for directions in the space of scale
variations corresponding to up/down changes in factorization
scale, and in renormalization scale for the five types of processes in
the determination of the 9-pt theory covariance matrix for MHOU.
The uncertainties in the nuisance parameters are shown in total,
and broken down into the contribution from scale uncertainties
alone and from PDF uncertainties, just as in Fig. 5.4.4. The
yellow bands highlight the region between +1.

wonder whether these have a physical interpretation; in Fig. 3.5.5 of Chapter
3 we saw that the largest eigenvectors of S were driven by factorisation scale
variation and then renormalisation scale variation for DIS NC. To investigate this,
we can switch bases, choosing 3, to correspond to factorisation scale variations
(up/down) and renormalisation scale variations (up/down for each process).

Fig. 5.4.5 is a similar plot to Fig. 5.4.4, but for this “physical” basis.

We see that the central values fluctuate about zero, but stay in the 4+1 band,
showing again that the impact of fitting the data on the nuisance parameters is
not large. This is reassuring as it backs up the choice of central scales and the
choice of range of scale variations (the latter being implicit in the prior for \,).
Looking just at the scale uncertainty, it is apparent that the factorisation scale
variation nuisance parameters have learnt the most information, which makes
sense as factorisation scale variation is common to all data in the fit. NC DIS,
being the largest process, is also learnt about to some extent. However, including
the PDF uncertainty washes out these effects. In particular, the uncertainties

in these directions can be slightly greater than one in total; in fact there is less
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learnt about the factorisation scale nuisance parameters that we had supposed in

the prior.

Already we see that information from the data in the fit significantly updates the
priors for the nuisance parameter distribution. From this it is likely that there
will be an effect at the level of the autopredictions, which is the subject of the

next section.

5.4.3 Autopredictions

As described in Sec. 5.1, autopredictions are where we fit a PDF and then use
that PDF to make predictions for the data that went into the PDF. These are
essentially postdictions, and are ideal for testing the extent of correlation between

theory uncertainties in the PDF fit and in the (auto)predictions.

Although this situation is somewhat artificial because experiments are never
redone in exactly the same way, the implications of this investigation will be
general. This is because for a global fit of this size (2819 data points, 35 datasets
and 5 processes), removing only one of the smaller datasets has negligible impact
on the PDFs.
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Figure 5.4.6 The shifts 0T;, Eqn. 5.3.27 (in blue) compared to the differences
between theory and data, D; — Ti(o) (in green), both normalised to

(0)

T
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Removing even a large dataset will only increase PDF uncertainties without
affecting the theory uncertainties for the remaining data. This means that if
we did the fit with a certain dataset removed, and did the analysis with that fit
instead, we would instead have a genuine prediction, and the correlations between
MHOUs in the PDF and the prediction would be very close to what we have for

the autopredictions.

To make the correlated autopredictions, we first compute 07; (Eqn. 5.3.16). This
is the shift in theory predictions arising due to theory correlations. We show this
in Fig. 5.4.6, normalised to the orginal theoretical prediction Ti(o). We also show
D, — Ti(o) for comparison. The shifts tend to be small, however for some datasets
(especially CHORUS and inclusive jets) there is a systematic overall shift of order
D; — T

It’s interesting to see whether the shifts improve the autopredictions. In Fig. 5.4.7
we show the x? of the autopredictions, using the experimental covariance matrix

only, for the following autoprediction central values:

e No theory uncertainty;
e Theory uncertainty in the fit;

e Shifted autopredictions.

We use only the experimental covariance matrix, in order to isolate the effects due

to the changing central value from those due to adding additional uncertainties.

The results for all cases are very similar. Including the theory uncertainty in
the fit has mixed results; some predictions get better at the expense of others
getting worse. This is because the main effect of including theory uncertainties
is to rebalance the fit. When the correlated shift is also included, the fit to most
datasets improves, in some cases substantially. The exact values are broken down
by process in Tab. 5.4.1. When including theory uncertainties, the x? goes up
slightly from 1.17 to 1.19. However, when the correlated shift is added, there is a

significant improvement across all processes, with the total x? dropping to 1.10.
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JETS TOP | Total

DIS NC DIS CC DY
No th uncs 1.13 0.98 1.56
Uncorr th uncs 1.15 1.06 1.53
Correlated th uncs 1.09 0.91 1.47

0.88 1.20 1.17
0.90 1.27 1.19
0.83 0.97 1.10

Table 5.4.1 The experimental x> per data point for each process, comparing
the original result of the NLO fit with no theory uncertainties to
the fit with theory uncertainties, and then including the shift in the
autopredictions.
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Figure 5.4.7 The experimental x* for each data set, comparing the original
result of the NLO fit with no theory uncertainties to the fit with
theory uncertainties, and then including the correlated shift in the

autopredictions.

Now let’s see whether we also end up with an increase in precision, by

considering the uncertainties in the autopredictions. In Fig. 5.4.8 we show the

full covariance matrix of autopredictions normalised to theory predictions and

also as a correlation matrix. Remember that F;; is the sum of:

1. The PDF uncertainty, derived from a combination of the experimental and

theory uncertainties in the fit;

2. The theory uncertainty in the autoprediction.

Each of these contributions is reduced due to the learning of the theory

uncertainties and the correlation between the two sources of theory uncertainty.
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As might be expected, we can see that there are very large correlations in the

autopredictions within datasets. These are due to:

1. Correlation of experimental uncertainties within datasets;

2. Smooth underlying PDFs;

3. Correlations of theory uncertainties.
Correlations are generally larger within each process than outwith them. This
suggests that the factorisation scale correlation is small compared to the

combination of the renormalisation scale correlation and the effects from PDF

smoothness and experimental uncertainties.
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Figure 5.4.8 The autoprediction covariance matriz P;; Eqn. 5.3.28, normalised

to the theoretical predictions Ti(o) (left), and the corresponding
corrrelation matriz P;;/\/P;iPj; (right).

Fig. 5.4.9 shows the percentage uncertainties of the autopredictions, /P;;/T;,
compared to the original PDF uncertainties, +/Xj;/T;. It also shows the
percentage uncertainties for the conservative prescription, \/W/Tl The
correlated autoprediction uncertainties are generally a similar size to the PDF
uncertainties. They are larger for some of the DY datasets and JETS, and
for most of DIS NC and some DY they are smaller. This is in stark contrast
to the uncorrelated conservative prescription, which are greater than the PDF
uncertainties across the board, sometimes by a lot, and typically a factor of two or
more. This is because they don’t take into account the correlation or the learning,
which leads to an overestimate, especially where the theory uncertainties are a

lot bigger than the PDF uncertainty. In fact, the conservative prescription only
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works well where the theory uncertainties are very small, for example the NMC
d/p ratio data.
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Figure 5.4.9 The percentage wuncertainties of the autopredictions +/Pj;
Egqn. 5.83.28 (cyan) compared to the PDF wuncertainty ~/Xj;
(orange), and the conservative result, \/PS™ Eqn. 5.3.29 (dark

blue), all normalised to the theoretical predictions Ti(o).

The upshot is that the correlated autopredictions are not only more accurate, they
are also more precise. But we do need to be wary of this increase in precision
because it depends implicitly on the assumptions made when modelling the prior
MHOUs that we made in Chapter 3. In particular, it is dependent on the choice
of independent scales, the size of variation, and the prescription for generating
S. For example, the aggressive reduction in small x uncertainty for HERA NC
may well be due to the unseparated singlet and non-singlet factorisation scale
variation; because of this the singlet evolution is overconstrained at small = [148].

We leave this as a matter for future work.

To understand better how these changes in uncertainty arise, we show in
Fig. 5.4.10 a breakdown of the diagonal elements of the correlated theory
uncertainty (the second term in Eqn. 5.3.28), normalised to the theory uncertainty

prior, S;;. Explicitly, the contributions are

S—S(C+8)'S+S(C+8)X(C+8)s. (5.4.1)
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The first term is the prior, the second term is due to learning, and the third term
is due to PDF fluctuations. Note that the first two terms are ZS and the whole

expression is Z.S in the one parameter model.
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Figure 5.4.10 The contributions to the diagonal elements of the correlated
theory uncertainty normalised to diagonal elements of S: (S —

S(C + S)fls)”/sm (pink), and (S — S(C + S)fls + S(C +
S)_IX(C—FS)_IS)Z','/SZ‘Z‘ (black).

We can see that the learning reduces the prior almost to zero for NC DIS and
DY, and by an order of magnitude for the rest. It is likely that more flexibility is
required in the prior. The PDF fluctuations then undo a lot of the learning, but

the overall uncertainty is still less than the prior.

We can do a similar breakdown for the correlated PDF uncertainty diagonals,
this time normalised to X;;. This is the first term in Eqn. 5.3.28, but expanded
out like in Eqn. 5.3.31. The correlation terms, —S(C' + S)™'X — X (C + S)715,
are very large as anticipated in [148]. This is especially true where there is a large
theory uncertainty (small x HERA NC or JETS), and here they can overwhelm
X and give a negative result. Despite that, the addition of PDF fluctuations in
S(C+S)'X(C+8)~1S (rememeber the breakdown in Eqn. 5.3.31) always leaves
the total positive, sometimes taking it higher than X. We can therefore see that
adding correlations generally reduces the uncertainties, but they can sometimes

increase them. The learning, however, always reduces them.
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Figure 5.4.11 The contributions to the diagonal elements of the correlated PDF

uncertainty normalised to diagonal elements of X: (X — S(C +
S)YLX — X(C + 8)718)ii /X (lilac), and (C(C + S)™'X(C +
S)LCYii/ X (see Eqn. 5.3.31 (green).

For the autopredictions, we expect high levels of learning and correlation, because
we are making predictions for exact repetitions of experiments already in teh fit.
However, as noted earlier, removing one of the smaller datasets will have little
effect on the fit, which leads us to suspect that there will be similar results
for genuine predictions if the process is already in the fit and, especially, if the

kinematics are similar.

5.4.4 Predictions for an existing process: top production

Finally we can consider genuine predictions for experiments that weren’t used in
the PDF fits. These can either be for processes already in the fit, or for new ones.

Here we consider the former, and in the next subsection we’ll end with the latter.

We look at tt production rapidity distributions in two channels (dilepton and
lepton + jets), measured by CMS at 13 TeV [3, 4]. There are a couple of reasons

for this choice:

e The base fit contains ¢t total cross sections at 7, 8 and 13 TeV and
normalised rapidity distributions at 8 TeV, all from both ATLAS and CMS.
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e The NLO theory uncertainty for the 13 TeV data is ~10%, considerably
larger than the PDF uncertainty.
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Figure 5.4.12 The upper two panels show predictions for tt unnormalised
rapidity distribution data taken at 18 TeV by CMS, the dilepton
rapidity distribution [3] (left) and the lepton+jets distribution [4]
(right). The four predictions show: the NLO fit with no MHOUs,
PDF error only; the combined PDF and MHOU fit, ignoring
correlations (thus /Ps™); the result with the same shift, but
with the correlations included exactly (thus Pryr), and the NNLO
result with no MHOU. In the middle panels the same is shown,
but normalised to the uncorrelated result. In the lower panels
we show the fractional reduction in the PDF uncertainty and the
theory uncertainty due to the inclusion of the correlations.

Both these things mean that we’d expect the correlation between the theory
uncertainties in these data and the 13 TeV distributions to be high, and so we
should see some of the largest effects currently possible with these PDFs. The
CMS 13 TeV tt rapidity predictions were computed using the same procedure
as the 8 TeV distributions in [10]: NLO theoretical predictions were generated
with Sherpa [149], in a format compliant with APPLgrid [123], using the MCgrid
code [150] and the Rivet [151] analysis package, with OpenLoops [152] for the

NLO matrix elements. Renormalisation and factorisation scales have been chosen
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based on the recommendation of [153] as Hr/4.

The predictions are shown in Fig. 5.4.12. The correlated shift is sizeable, about
5%, but this is still comfortably within the ~10% theory uncertainty. We'd
anticipate this given that Fig. 5.4.5 tells us that the shift in nuisance parameters
for the top renormalisation scale variation is also well within uncertainties. We
also see that the shift is almost fully correlated across the whole distribution. This
is because these are unnormalised distributions, so there is the restriction that
they must sum to the total cross section. They are therefore strongly correlated
with the measurements of the total cross section in the fit. We can confirm this by
breaking down the contributions to the shift from the different fitted data points,
seen in Table 5.4.2. The six total cross section measurements are responsibile for
the vast majority of the shift, with the 8 TeV normalised rapidity distributions
pushing the shift back down by about 25%. The rest of the data have almost no

impact.

ATLAS CMS Other
tot diff tot diff

7 TeV 8TeV 13TeV 8TeV | 7TTeV 8TeV 13 TeV 8 TeV

0.37 0.11 0.24 -0.21 0.26 0.21 0.07 -0.04 -0.01

Table 5.4.2 The fractional contributions of different data sets included in the
fit to the shifts in the top rapidity distributions, averaged over all
21 data points.

To see if the shift improves the predictions, we can compare it to the known
NNLO-NLO shift, just like we did in Chapter 3. Therefore, in Fig. 5.4.12 we
also show the full NNLO result (without theory uncertainties). It’s interesting
that the shift due to correlations, which we saw is driven by the tf total cross
section data, largely accounts for the NNLO correction; the data know that the
NLO theory predictions are a bit low, and that knowledge is propagated into the
predictions for the 13 TeV rapidity distributions.

In terms of the change in uncertainties, the middle panels show the same as the
top panels but as a ratio to the uncorrelated case, making the uncertainties more
visible. Comparing the difference between the uncorrelated and correlated is
striking; the correlated uncertainties are far smaller than the uncorrelated ones.
However, despite substantial reduction of the very large theory uncertainty, they
are still larger than the pure PDF uncertainties. Even though the uncertainties
have shrunk a lot, they are still compatible with the NNLO result thanks to a

shift in the central values. While the conservative prescription is also compatible
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with the NNLO result, it is immediately obvious from the plot that it is inferior.

A breakdown of the reduction in uncertainties due to the correlations is shown
in the bottom panels of Fig. 5.4.12. The correlated theory uncertainty is
substantially reduced (uniformly across rapidity). This is due to the learning
of the normalisation from the data already in the fit. The correlated PDF
uncertainty is reduced a lot less, maximally a factor of two for where the cross
section is small, but hardly at all where the cross section is large. From this it
is clear that the dominant effect here is the learning of the theory uncertainty in

the overall normalisation.
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Figure 5.4.13 The left hand plot shows the correlation matriz X[J/ )~(H)~(JJ
of the contribution of the PDF uncertainties to the predictions
for the 13 TeV rapidity distributions by CMS: the right hand

plot shows the correlation matriz ﬁu/\/ﬁnﬁy of the total
uncertainties including the correlated theoretical uncertainties.
Note the expanded scales on the heat maps, different in each plot.

The theory uncertainties in the predictions are all highly correlated with one
another, including between the two rapidity distributions. We can see this by
looking at the correlation matrices for X and ﬁ, shown in Fig. 5.4.13. The
predictions are all to start with more than 50% correlated by the PDF. Then,
when correlated theory uncertainties are included, the correlations bump up to >
70%. We saw before that this is due to the constraint that they must all sum to
give the total cross section. The pattern of correlations nicely shows the symmetry
within the dilepton distribution, and with the lepton + jets distribution; the

greater the rapidity separation, the smaller the correlation.
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5.4.5 Predicting a new process: Higgs production

At last we can make some predictions for a new process: one outwith the fit. For
this we choose Higgs production via gluon fusion. We calculate the total cross
section at 14 TeV using ggHiggs [154-156]. Renormalization and factorization
scales are set to half the Higgs’ mass, and the computation is performed using
rescaled effective theory.

gg—H gluon fusion @ 14 TeV
i :
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Figure 5.4.14 Predictions for the Higgs total cross-section at 14 TeV, made
using a variety of approximations. All results use NLO PDFs,
while the Higgs total cross-section is computed at NLO (left
panel), NNLO (centre panel) and N3LO (right panel). In
each panel, we then have, from left to right: MHOU included
only in the PDF determination in the 9pt scheme; the same
but with the factorization scale uncertainty (MHOU in PDF
evolution) included in quadrature; the same but with instead the
renormalization scale uncertainty (MHOU in the Higgs cross-
section); the total PDF uncertainty and 9pt MHOU combined
in quadrature, as recommended in [5]; the total PDF plus 9pt
MHOU, but now including also the shift and the correlation
between theoretical uncertainties. In the centre panel we also
show the NNLO prediction with NNLO PDF's (but no theoretical
uncertainties), as a dashed line.

Our results are shown in in Fig. 5.4.14. All results use the baseline NLO PDFs
with MHOUs, but the parton-level Higgs cross sections are computed at NLO,
NNLO and N3LO. We break down the uncertainties into:

1. The PDF uncertainty, X;

2. 3-point factorisation scale uncertainty;
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3. 3-point renormalisation scale uncertainty;

4. Uncorrelated (conservative prescription), P.ons;

5. Correlated, p.

Note that 2. and 3. sum to give the 5-point prescription in Chapter 3.

At NLO the MHOU in the Higgs cross section (estimated by varying the Higgs
renormalisation scale) completely dominates the other uncertainties, so the effect
of correlations between the sources of MHOU is negligible. At higher orders,
the renormalisation scale uncertainty shrinks dramatically until it is comparable
to the other sources of uncertainty at N®LO. Notice also that the shift due
to correlations is always very small compared to the overall uncertainty, and
gets smaller order by order. Here, unlike for top production, the fit includes
no information on Higgs production, so the renormalisation scale is totally
uncorrelated. This means any information from the fit must propagate through
factorisation scale uncertainties. We can see that at NNLO the small shift due to
this pulls the NNLO prediction very close to the calculation using NNLO PDFs,
although this is most likely coincidental. The effect of correlations on the total
uncertainties is also not very large, and the difference between the simplified and

full calculations is small.

Note that if we used NNLO (or higher order) PDFs with MHOUs here (we can’t -
they don’t exist!), the MHOU in the PDFs would have been smaller, and therefore

the effects due to theory uncertainty correlations would be again smaller.

From these examples of autopredictions, and genuine predictions for top and
Higgs, we have seen that the extent of the shift and correlation can vary
quite significantly, depending on the type of prediction being made and what
information is already contained in the PDFs. The conservative prescription
recommended in [5] is certainly not appropriate in general, as the full inclusion
of correlations can be quite substantially reduce uncertainties, as we saw both
for the autopredictions and top predictions. However, when predicting a
new process for which the PDF contains little information about correlated
theoretical uncertainties, unsurprisingly the impact of correlations is small and

the conservative prescription is sufficient.
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5.5 Summary

Main conclusion: When using PDFs which include MHOUs to make

predictions, taking account of the correlations between the MHOUSs in

the PDF and in the predictions can provide significant improvements

in accuracy and precision.

We considered the scenario where PDFs with theory uncertainties are used
to make predictions with theory uncertainties. We studied the correlations
between these two sources of theory uncertainties. We did this by recasting the
theory uncertainties as nuisance parameters for each PDF replica, which contain
information about the experimental data’s impact on the theory uncertainties.
We built our way through increasingly complex and correspondingly realistic
models of the fitting procedure, isolating three distinct but related effects, each

of which has a significant impact on the final theoretical predictions.

1. Shifts in central values: We understand that we can use experimental
data to determine PDFs. But we can also use them to find corrections to the
theory which improve the agreement between data and theory. This is done
via Bayesian learning through exposure of the fit theory to experimental
data. The correlation between the theory uncertainty in the fit and in
the predictions then propagates this knowledge through, leading to more
accurate predictions. We identified this effect first in Sec. 5.2.

2. Learning of theory uncertainties: In the same mechanism as 1.,
information from the data is learnt by the fit theory and propagated via
correlations to the predictions leading to a reduction in uncertainties. This

was also first identified in Sec. 5.2.

3. Correlations in theory uncertainties: The correlations between the
theory uncertainties in the fit and those in the prediction lead to a change
in the PDF uncertainties in the prediction, even where there isn’t a shift.
If these correlations are unaccounted for, the theory uncertainty is “double
counted”. This was first noted in [148]. The effect is separate to Bayesian

learning.

These three effects were found throughout in the simple models in Secs. 5.1, the

one parameter fits in Sec. 5.2 and the multiparameter fits in Sec. 5.3. Using the
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NNPDF3.1 NLO global fit with MHOUSs, we saw explicitly in Sec. 5.4 that the
shifts give reasonable estimates of NNLO corrections, and correspondingly reduce
the x? to the experimental data. We also showed that the uncertainty in the NLO
predictions can still be thought of as a sum in quadrature of a theory uncertainty
and a PDF uncertainty (which itself includes a theory uncertainty). However,
these uncertiainties are reduced by a factor that depends on the relative size
of the theory and experimental uncertainties, leading to significant shrinking in
some cases. The upshot of this is that the conservative prescription is genuinely
conservative, sometimes dramatically so. We expect these conclusions to also

be true for global fits with fixed parametrisations and tolerance [47, 48], were

MHOUs to be included.

We found that the degree of correlation is highly dependent on the type of pre-
diction being made. For the autopredictions (predictions for new measurements
of the same data points as those included in the fit), Sec. 5.4.3 where there is
maximal correspondence between the data in the fit and the predictions being
made, the correlation is very high, leading to shifts that improve the quality of the
fit to the data, together with a significant reduction in uncertainties, in some cases
down to a small fraction of the uncorrelated values. For genuine predictions for
new measurements of processes already included in the PDF fit, such as the new
measurements of differential top production discussed in Sec. 5.4.4, we observe
that the shift takes the correlated NLO predictions very close to the NNLO
prediction, with a significant reduction in uncertainties: the prediction is both
more accurate and more precise. For Higgs production, discussed in Sec. 5.4.5, a
process not included in the PDF fit, the level of correlation is much smaller, since
the dominant uncertainty (the MHOU in the hard cross-section) is uncorrelated
with the MHOU of the fitted processes. In this case the shift is well within
uncertainties, and the reduction in uncertainty very modest, so here the use of
the conservative prescription [5] is entirely appropriate. We expect this to be true

of predictions for any new process with large theoretical uncertainties.

The main conclusion is that when using PDFs which include MHOUs to make
predictions, taking account of the correlations between the MHOUSs in the PDF
and in the predictions can provide significant improvements in accuracy and
precision. This is especially true if the predicted process is among those included
in the fit.

However, we need to treat the correlated predictions with some care because

their reliability is contingent on the appropriate prior being chosen for MHOUs.
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If too many unjustified assumptions are made, we could end up with predictions
that are too aggressive. Bearing this in mind, the conservative (uncorrelated)
prescription could have its uses as an upper bound, especially for new processes

where we expect the degree of correlation to be low.

In order to calculate fully correlated predictions and uncertainties, one requires
besides the PDF replicas some additional information: the cross-correlations
between the theoretical uncertainties in the prediction and those in the theoretical
calculations used to determine the PDFs, S 77; and the cross-correlations between
the PDF uncertainties in the prediction and all the calculations included in the
fit, X 7j- In the future, it may be possible to present this information in separate
NNPDF deliverables to facilitate the calculation of the correlation effects.

Although we presented our numerical study of correlations in the context of
MHOUs, we would expect similar results for other kinds of theoretical uncertainty,
such as nuclear uncertainties, higher twist uncertainties, or indeed parametric
uncertainties: once the theory covariance matrix has been computed, the linear
algebra has no concern for the type of theoretical uncertainty it contains. This
suggests a new technique for determining external parameters in PDF fits, such
as quark masses or electroweak parameters, taking full account of all correlations
with the PDFs and MHOU. We hope to explore this possibility in the near future.
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Chapter 6

Conclusion

In this thesis we have considered uncertainties in the theoretical predictions that
go into PDF fits, and how these theory uncertainties can impact the PDFs, both
in changes to the PDFs’ central values and in changes to their uncertainties. In
Chapter 2 we showed how, under the assumptions that the theory uncertainties
are Gaussian and independent of the experimental data, they can be included in
PDF fits. This is by simply adding a theory covariance matrix to the existing
experimental covariance matrix, so that uncertainties from theory and experiment
stand on an equal footing. This theory covariance matrix is the covariance

between the theoretical predictions and the unknown “true” values fron nature.

The complexity of this procedure lies primarily in constructing the theory
covariance matrix, which cannot be determined exactly due to our lack of
knowledge of the underlying truth. Instead we can consider a series of nuisance
parameters which encapsulate the size of the shifts between predicted values and
true values. This theory covariance matrix then acts as a prior when it is included
in a PDF fit. We can in principle recalculate it using the new information obtained
by the fit and then iterate to convergence. However, for a well determined prior

this convergence should be fast.

We applied this procedure for including theory uncertainties in PDF fits to some
of the dominant sources of uncertainties: missing higher order uncertainties
(MHOUs, Chapter 3) and nuclear uncertainties (Chapter 4). MHOUSs, which
arise from the use of predictions to less than all orders in perturbation theory,
were estimated using the established method of scale variation, where the

artificial factorisation and renormalisation scales are varied to obtain a set of
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predictions. We developed multiple prescriptions for combining these variations
into a covariance matrix, and carried out PDF fits at NLO using the different
prescriptions. We checked the efficacy of the prescriptions by comparing to the
known results at NNLO. We adopted the “9 point” prescription, which performs
the best, and encapsulates many features of the missing higher orders. We note
that limitations in this prescription arise from the coarse categorisation of data
into different processes, and the use of only one factorisation scale. For example,
CHORUS data are categorised as charged current DIS, but in reality have a
component of charged current and of neutral current. The factorisation scale
variation could also be split up at the least into a singlet and a non-singlet
component, to allow a better exploration of scale variation space. We saw that a
large part of the missing higher orders that weren’t encapsulated by the 9 point
prescription was correlated globally, suggesting that this could be linked to the

factorsation scale.

Nuclear uncertainties come from the use of data for deuteron and nuclear
targets in fits for proton PDFs. The nuclear environment causes changes to the
observables which are hard to quantify precisely, and these propagate through to
the PDFs. To estimate the uncertainties we used an empirical approach using
nuclear PDFs, which contain information about the nuclear environment. We
constructed one nuclear covariance matrix for the deuteron data and one for the
heavy nuclear data. We included these as default in the imminent NNPDF4.0
determination, both at NLO and NNLO, noting that they help to resolve tension

between the nuclear and Drell-Yan data.

Finally, we considered the use of PDFs in making physics predictions, and how
this is complicated by the presence of theory uncertainties. Theory uncertainties
must be included in the PDF and in the prediction itself, but there exist
correlations between these two which must be taken into account, otherwise the
overall uncertainty will be inflated. We determined formulae for computing these
correlations, and used them to make fully correlated predictions with theory
uncertainties. We showed that when fitting a PDF, properly taking account of
a combination of Bayesian learning of information from the experimental data
during the fitting process, and correlations between the fit and the predictions,
results in both more accurate and more precise predictions, and an improvement
in x¥?. The improvement in accuracy and precision is dependent on the type of
prediction being made, whereby predictions with a closer proximity to data in the

fit (in terms of process type and kinematics) will be more significantly updated.
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This work extends naturally to the systematic inclusion of theory uncertainties
from other sources. These include: uncertainties due to chosen values of
parameters such as the strong coupling constant and the quark masses; and
uncertainties due to unknown higher twist contributions to the predictions. These
are both the subject of current investigation, but will contribute smaller effects
than MHOUs and nuclear uncertainties. Furthermore, the work on MHOUs
will be extended to NNLO and become standard in future NNPDF releases.
The extension from NLO to NNLO is conceptually trivial but requires technical
hurdles to be overcome. Doing this upgrade would also be a good time to consider

more complex renormalisation and factorisation scale splittings.
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