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Abstract

We are now in the era of high precision particle physics, spurred on by a wealth of

new data from the Large Hadron Collider (LHC). In order to match the precision

set by modern experiments and test the limits of the Standard Model, we must

increase the sophistication of our theoretical predictions. Much of the data

available involve the interaction of protons, which are composite particles. These

interactions are described by combining perturbative Quantum Chromodynamics

(QCD) with parton distribution functions (PDFs), which encapsulate the non-

perturbative behaviour. Increasing accuracy and precision of these PDFs is

therefore of great value to modern particle physics.

PDFs are determined by multi-dimensional fits of experimental data to theoretical

predictions from QCD. Uncertainties in PDFs arise from those in the experimental

data and theoretical predictions, as well as from the fitting procedure itself.

Those in the theory come from many sources. Here we consider two of the most

important: the first are missing higher order uncertainties (MHOUs), arising

due to truncating the predictions’ perturbative expansion; the second are nuclear

uncertainties, due to difficulty making predictions in a nuclear environment.

In this thesis we consider how to include theory uncertainties in PDF fits by

constructing a theory covariance matrix and adding this to the experimental

one. MHOUs are estimated and included as a proof of concept in next-to-leading

order PDFs. We find that these capture many of the important features of the

known PDFs at the next order above. We then investigate nuclear uncertainties,

estimate their magnitude and assess their impact on the PDFs. Finally, we

consider how to make predictions with theory uncertainties using PDFs which

themselves include theory uncertainties. Here there are correlations between the

PDFs and the predictions, which can lead to a shift in the predictions and their

uncertainties, which can significantly improve their accuracy and precision.
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Lay summary

This thesis is about determining Parton Distribution Functions (PDFs). These

tell us about what is inside protons, which are positively charged particles that

help make up the nuclei at the centre of atoms. Protons are made up of

tightly bound constituents called partons, which include quarks and gluons. High

energy particle colliders like the Large Hadron Collider (Fig. 0.0.1) smash protons

together and look at the interactions of the partons. Each parton is responsible

for some fraction of the total momentum of the proton. The size of this fraction

can be expressed as a probability, and this is done through PDFs. Because of

this, PDFs are very important for studying physics at high energies and searching

for new fundamental particles.

Current particle physics theories cannot deal on their own with the messy internal

structure of the proton. This means we have to work out the PDFs using a

combination of theory and experiments. Neither of these give us perfect results,

and this uncertainty leads to uncertainty in the final form of the PDFs. This

thesis focusses on uncertainties in the theory used to determine PDFs, which

have previously been ignored. We show how to factor in uncertainties in the

theory, and do this for a couple of important sources of uncertainty. We also

show how to properly use the new PDFs, which requires some additional care.

Figure 0.0.1 The ATLAS detector at the Large Hadron Collider [1].
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Introduction

Over the past 100 years, following the discovery of the atomic nucleus by
Rutherford in 1911, great strides have been made towards understanding
subatomic structure. We now know that atoms are made up of hadrons (such as
protons and neutrons) and leptons (such as the electron). Probing hadrons with
high energy photons shows that they are composed of quarks and gluons.

u 

d 
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up quark 

down quark 

gluon 

d 

u 
u 

Figure 0.0.2 A visualisation of the internal structure of the proton. Quarks are
bound together by gluons. Artist: Eleanor Conole.

The Standard Model of particle physics has proven thus far to be an extremely
accurate model of nature at the subatomic scale, and the current focus is on
providing ever more precise experimental and theoretical results to test it and
search for new physics which it cannot explain.

Cutting edge high energy physics experiments are currently being carried out at
colliders such as the Large Hadron Collider (LHC) [6] at CERN, and new colliders

xix



are anticipated in coming years [7–9]. Many of these experiments involve the
collision of protons. At a basic level we can think of a proton as being composed
of two up quarks and one down quark bound together by the strong interaction,
which we describe using Quantum Chromodynamics (QCD). However, the proton
(Fig. 0.0.2) is in reality highly complicated and the QCD calculations for it are
intractable. This means protons must currently be treated using probabilistic
methods.

When two protons collide we do not know which constituents, or “partons” are
interacting, or what individual properties they have, such as their momentum
and spin. We need some way of relating the known properties of the proton to
the unknown properties of the partons. One way of doing this is using parton
distribution functions (PDFs), which to first approximation give the probability
of picking out a certain type of parton with certain properties.

Confinement of the quarks means experimental data are collected at the hadronic
level, whereas theoretical predictions using QCD are made at the partonic level.
The parton model provides a link between the two; in this framework partonic
predictions are convolved with corresponding PDFs, summing over all possible
partonic interactions. This produces PDF-dependent hadronic predictions. For
useful theoretical predictions we therefore need as precise and accurate a handle
on the PDFs as possible.

QCD can’t give us the PDFs directly but crucially they are process independent,
where process here means the type of scattering pathway. This means that they
can be determined in a global fit between multi-process experimental data and
corresponding theoretical predictions. Fig. 0.0.3 shows the fitted functional form
of the PDFs in NNPDF4.0 [10]. Once these have been determined, they can be
used to make predictions for any observable involving protons.

Because the PDFs must be inferred from measurements and our current
knowledge of QCD, they are not exactly known. The uncertainties in their form
then propagate through to predictions made using them. There are three places
these uncertainties can be introduced:

1. through uncertainties in the experimental measurements;

2. through uncertainties in the input theory;

3. through the fitting procedure.

Until recently, experimental uncertainties were the dominant source, meaning
that theory uncertainties have been largely ignored in standard PDF fits.
However, with the onset of increasingly high precision experiments and the
corresponding drive of PDFs down to 1% accuracy [11, 12], a proper treatment
of theory uncertainties is becoming pressing.
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Chapter 1

Background

Parton distribution functions (PDFs) bridge the gap between short and long

range physics, allowing perturbative Quantum Chromodynamics (QCD) to be

applied at the hadronic scale. They embody the incalculable strongly coupled

dynamics, and are determined by a comparison of perturbative theory with

experiment. Once determined, their form is process-independent and so they

can be re-deployed in future calculations.

This section provides some background to PDFs neccesary for understanding the

remainder of this thesis. It is divided in to two main parts, being the necessary

physics and the necessary methodology of PDF determination.

To review the physics, we begin by looking at the process of deep inelastic

scattering (DIS), and how the näıve parton model was developed to explain

these experimental observations. Next we look at this in the context of QCD,

see how PDFs fit into the picture, and how they evolve with the scale of the

physics. Finally we briefly touch on hadron-hadron collisions, which along with

DIS constitute the bulk of the processes in modern PDF fits.

To review the methodology we consider the NNPDF fitting strategy, explaining

how theory and experiment are used together with neural networks to determine

PDFs. We distinguish between the NNPDF3.1 methodology, on which the results

in Chapters 3 and 5 are based, and the NNPDF4.0 methodology, on which

the results in Chapter 4 are based. We note that the difference between these

methodologies doesn’t affect the main lines of argument in these chapters.
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1.1 Physics background

1.1.1 Deep inelastic scattering

For a more in-depth analysis, see [13, 14]. In this section we rely heavily on

[15, 16].

The notion of bombarding matter to uncover its structure has led to many

important discoveries in the last hundred or so years, starting with the Geiger-

Marsden experiments from 1908-1913 and the subsequent uncovering of the

atomic nucleus [17]. In the decades following the discovery of the neutron in 1932,

nuclei were probed at higher energies, leading to them being understood in terms

of “form factors” which parametrised their electric and magnetic distributions.

At this stage it was clear that they are not point-like particles and so a series

of important experiments were carried out in the 1960s at the Stanford Linear

Accelerator (SLAC), involving a high energy beam of charged leptons scattering

off a stationary hadronic target. This process is known as deep inelastic

scattering.

In this section we will consider the example of electrons incident on protons, as

shown in Fig. 1.1.1. In the deep inelastic regime, there is a large momentum

transfer, q = k− k′, mediated by a virtual photon. The proton, P , with mass M

and initial momentum p, fragments into some hadronic state X, and the electron

starts with energy E and momentum k and ends with energy E ′ and momentum

k′. The momentum transfer is large enough that the masses of the proton and

electron can be neglected.

It is customary to define some useful variables for help in the analysis, listed in

the table below.

Variable Definition Interpretation
Q2 −q2 = −(k − k′)2 momentum transfer
ν p · q = M(E ′ − E) energy transfer

x Q2

2ν
scaling parameter

y q·p
k·p = 1− E′

E
inelasticity ∈ [0, 1]

The interaction is made up of a leptonic current (that of the electron) and a

hadronic current (the fragmentation of the proton from P to X). This means we
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can express the squared matrix element, |M|2, as

|M|2= N α2

q4
LµνW

µν , (1.1.1)

where Lµν is the leptonic part, determined from perturbative Quantum Electrody-

namics (QED), and W µν is the hadronic part, containing the incalculable strongly

coupled dynamics. α is the QED coupling constant and N is a normalisation

constant which can differ according to convention, hence we keep it undefined

here so as to render the analysis clearer.

X

k
k′

p

q

Figure 1.1.1 Deep inelastic scattering.

From QED, for an unpolarised photon beam in the DIS regime we can use the

Feynman rules at tree level to write

(1.1.2)

Lµν =
∑
spins

ū(k′)γµu(k)ū(k)γνu(k′)

= Tr(/k′γµ/kγν)

= 4

(
kµk

′
ν + kνk

′
µ − gµνk · k′

)
= 4

(
4kµkν − 2kµqν − 2kνqµ + gµνq

2

)
,

where in the last line we used the fact that the electron is massless so 0 = k
′2 =

q2 + k2 − 2q · k =⇒ q2 = 2q · k.
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Finding the hadronic tensor is more difficult because we lack knowledge of the

hadronic states P andX, so our only constraints are thatW µν is Lorentz-invariant

and that the electromagnetic current must be conserved, so q ·W = 0. Since we

are considering only the electromagnetic interaction, we ignore the possibility for

Z boson exchange and therefore also require parity conservation. This allows us

to write the general form of the tensor as

W µν(p, q) = −
(
gµν − qµqν

q2

)
W1(p, q) +

(
pµ − qµp · q

q2

)(
pν − qν p · q

q2

)
W2(p, q),

(1.1.3)

where W1 and W2 are scalar functions which encapsulate the strong dynamics.

These scalar functions are often written as:

F1(x,Q2) = W1(p, q);

F2(x,Q2) = νW2(p, q);

FL(x,Q2) = F2(x,Q2)− 2xF1(x,Q2),

(1.1.4)

and are known as the “structure functions”. Often the hadronic tensor is

parametrised in terms of F2 and FL, the latter of which is the longitudinal

structure function and encapsulates the longitudinal component.

We can now combine Eqns. 1.1.2 and 1.1.3 in Eqn. 1.1.1, making use of the fact

that due to current conservation qµLµν = 0 to help simplify things. This leads us

to the result:

(1.1.5)|M|2 = 16 N α2

q4

{
(−2q2)W1(p, q) +

(
4(p ·k)2−4(p · q)(p ·k))

)
W2(p, q)

}
.

1.1.2 The parton model

Carrying out DIS experiments allows us to measure the structure functions for

different values of x and Q2. It transpired that no clear Q2 dependence was

observed, and this is known as Björken scaling [18]. Because Q2 is the photon’s

squared momentum, it corresponds to the energy at which the hadron is being

probed. The fact that the structure functions are not dependent on this suggests

that the interaction is point-like. This led to the formulation of the “parton

model”, which described the proton as a composite state made up of point-like

particles termed “partons”[19–21].
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Furthermore, FL(x) was measured to be 0, known as the Callan-Gross relation [18,

22], which suggests that the point-like particles could not absorb longitudinal

photons. This fitted in nicely with the quark models developed shortly before

[23–26], which described hadrons in terms of spin-1/2 quarks; spin-1/2 particles

cannot interact with longitudinal photons. This was the first experimental

evidence for the existence of quarks.

In the DIS regime, Q2 is large and so the virtual photon probes at the short

timescale 1/Q, meaning that the interaction will be effectively instantaneous

when compared with the inner proton dynamics which operate at the QCD

scale 1/λQCD ∼ 1 fm. In the parton model we make the assumption that the

partons have only a small momentum transverse to the proton’s, and that they

are effectively on shell for the interaction (k2 ≈ 0). In addition, we consider the

process in the infinite momentum frame of the proton, in which its diameter is

Lorentz contracted by M/|p| (a small number), so we can assume the photon will

only interact with one parton because it will only traverse a narrow cross-section

of the proton. The updated picture is shown in Fig. 1.1.2.

k
k′

p

ξp

q

ξp+ q

Figure 1.1.2 DIS in the parton model. One parton with momentum p interacts
with the virtual photon, and the other partons “spectate”.

We parametrise the momentum of the interacting parton as ξp, ξ ∈ [0, 1]. The
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parton in the final state has negligible mass so its momentum squared is zero:

(ξp+ q)2 = 0

=⇒ 2ξp · q + q2 = 0

=⇒ 2ξp · q −Q2 = 0

=⇒ ξ =
Q2

2p · q ≡ x.

(1.1.6)

This allows us to identify the parton’s momentum fraction in this frame with the

Björken x variable.

We can think of the total collection of interactions in terms of a weighted sum

over the interactions between the photon and the individual point-like partons,

integrated over the possible parton momentum fractions. So we can write the

proton-level hadronic tensor, Wµν in terms of the parton-level ones, Ŵ q
µν , as

Wµν =
1

Q2

∑
q

fq(x)Ŵ q
µν , (1.1.7)

where q runs over the possible quark flavours and fq are distributions, with

fq(x)dx giving the probability that in an interaction a parton of flavour q will be

found in the momentum range x → x + dx. We call these functions “parton

distribution functions” (PDFs). We consider x here rather than ξ following

momentum conservation in Eqn. 1.1.6. The factor of 1/Q2 is convention. Using

Eqn 1.1.1, we can see that

|M|2=
1

Q2

∑
q

fq(x)|M̂q|2. (1.1.8)

This means that the total amplitude can be expressed in terms of the partonic

amplitudes and the PDFs. If we assume that the partons are massless Dirac

particles, we can draw a mathematical equivalence with electron-muon scattering.

In this scenario the electron has a current like Eqn. 1.1.2, and the muon has the

same, but with the substitutions k → p and q → −q. Once again we can use

qµL
µν = 0 and the expression

|M(eµ)|2= N α2

q4
L(e)
µνL

µν
(µ) (1.1.9)
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to show (in the massless limit)

|M(eµ)|2= 16 N α2

q4

(
16(p · k)2 + 8q2(p · k) + 2q4

)
. (1.1.10)

Using the symmetry of Fig. 1.1.2, we can see this is analogous to |M̂q|2 under the

substitution p→ xp, provided we replace the charge of the electron, e, with that

of the parton, eq, so that α→ eqα. Making use of the expression p ·k = Q2/2xy,

|M̂q|2 = 16 N e2
qα

2

q4

{
4(2xp · k)2 + 4(2xp · k)q2 + 2q4

}
= 16 N e2

qα
2

Q4

{
4

(
Q2

y

)2

− 4

(
Q2

y

)
Q2 + 2Q4

}
= 16 N e2

qα
2

{
2 + 4

(
1− y
y2

)}
.

(1.1.11)

Now we can use this alongside Eqn. 1.1.5 in Eqn. 1.1.8, giving us

F1 ≡ W1 =
∑
q

fq(x)e2
q,

F2 ≡ νW2 = 2x
∑
q

fq(x)e2
q.

(1.1.12)

We see immediately that the Callan-Gross relation, FL(x) ≡ F2(x)−2xF1(x) = 0,

is satisfied, as was observed experimentally.

However, it was soon observed that this relation was not exact, which is known

as “scaling violation”. In order to understand this behaviour it is necessary to

revisit the parton model in the light of Quantum Chromodynamics (QCD).

1.1.3 Quantum Chromodynamics (QCD)

QCD is the theory of the strong force. This is responsible for binding together

hadrons, and explains the short-range interactions which occur within them. It is

a gauge theory where the quark fields are realised as fundamental representations

of the SU(3) symmetry group and interactions between them are carried out via

gauge bosons termed “gluons”, which are expressed in the adjoint representation

[27].

Quark models showed that the structure of observed hadrons can be explained

using the SU(3)f group alongside the association of quarks with different
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“flavours” [23–26] . The additional SU(3)c colour symmetry was put forwards in

order that the quarks satisfied Fermi-Dirac statistics [28]. Each quark is assigned

an additional colour ((anti-)red, green or blue) in such a way that the composite

hadrons are colourless. The additional local symmetry is accompanied by eight

gauge bosons, the gluons. Colour is the charge of QCD, just as electric charge is

for QED. An important difference is that, unlike chargeless photons in QED, the

gluons themselves also have colour and this leads to complex self-interactions.

QCD can be expressed through the Lagrangian

L = −1

4
F a
µνF

aµν + q̄i(i /Dji −mδji )qj, (1.1.13)

where the covariant derivative is

Dµψ(x) = (∂µ − i
√

4παsT
aAaµ)ψ(x), (1.1.14)

and the field strength tensor is

F a
µν = ∂µA

a
ν − ∂νAaµ +

√
4παsf

abcAbµA
c
ν . (1.1.15)

The indices µ, ν are spacetime indices, i, j are quark colour indices and a, b, c

are gluon colour indices. The first term in the Lagrangian arises from the self-

interacting gluons, A, and the second term from the quarks, q, which obey the

Dirac equation. αs is the strong coupling constant, which dictates the strength

of the interaction, and T a are the eight SU(3) generators. fabc are the SU(3)

structure constants. For simplicity we have assumed all quarks have the same

mass, m. Note that gauge fixing and ghost terms are omitted. For more

information see [13].

Colour self-interactions give rise to the important properties of “confinement”

and “asymptotic freedom”. The QCD potential is of the form

V (r) ∼ α

r
+ kr, (1.1.16)

where the first term drops off with distance like QED, but the second term comes

from the self-interactions and means that separating two quarks takes infinite

energy. This explains why we have not observed free quarks (“confinement”).

Additionally, the QCD colour charge decreases with shorter distances. This

means that at very short distances or high energies the quarks become “free”,

which is known as “asymptotic freedom”. This crucial fact allows us to apply the
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tool of perturbation theory in such regimes.

QCD is subject to divergences in the ultra-violet (high energies) and infra-red

(low energies). The former are regulated by renormalisation, which introduces a

“renormalisation scale”, µR. This is non-physical, and so observables cannot

depend on it. This observation leads to a “renormalisation group equation”

(RGE), which can be solved by the introduction of a running coupling, dependent

on the scale Q2 (i.e. αs → αs(Q
2)), which satisfies

Q2 ∂αs
∂Q2

= β(αs), (1.1.17)

The beta function, β(αs), can be expressed perturbatively as an expansion in αs

and is currently known to N3LO.

At one-loop order the solution of this equation is

αs(Q
2) =

αs(µ
2
R)

1 + β0αs(µ2
R) ln (Q

2

µ2
R

)
, (1.1.18)

where β0 is the first coefficient of the β expansion. From this solution, taking into

account that β0 is positive, we can explicitly see asymptotic freedom because αs

decreases as the energy scale increases. We also see the role of the renormalisation

scale in specifying a particular reference value for αs. In particular, the scale at

which the coupling constant starts to diverge is known as the QCD scale, Λ, and

is of order 100 MeV.

Quantities are infrared safe if they do not depend on long-distance physics. This

means we can apply perturbation theory because αs is small enough in the short-

distance regime. Unforunately, at the partonic level, structure functions and cross

sections are not infrared safe.

1.1.4 The QCD improved parton model and factorisation

In the näıve parton model, we did not include any interactions involving gluons;

their incorporation leads to the QCD improved parton model. The addition of

gluons leads to significant complications, owing to the fact that the interacting

quarks are free to emit gluons at some stage before detection (remember the

detector is at long-distance so we cannot ignore the long-distance physics). When

these gluons are “soft” (low energy) or collinear to one of the partons we run into
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infrared divergences. This situation is equivalent to the internal propagator quark

going on-shell, or in other words there is a large time separation between the

partonic interaction and the gluon emission. The observed violation of Björken

scaling has its origins in interactions with gluons. In infrared-safe observables the

soft and collinear divergences exactly cancel [29, 30], but for other cases we need

a way of dealing with the disparate short and long range physics.

σ̂i

fi(x)

k
k′

p

ξp

q

ξp+ q

Figure 1.1.3 Factorisation and the QCD improved parton model

This is done using the factorisation theorem [31], which allows us to factorise

the incalculable long-distance physics into the PDFs, meaning we are able to use

perturbative QCD as a predictive theory. The PDFs are then non-perturbative,

meaning we must obtain them from experiments, but they are universal quantities

and so once determined can be applied everywhere, much like the coupling

constants. This process introduces the artificial “factorisation scale”, µF , in

addition to the renormalisation scale. The factorisation scale separates the short

and long distance physics; loosely, if a parton’s transverse momentum is less than

µF it is considered part of the hadron and is factored into the PDFs, otherwise

it is seen as taking part in the hard scattering process, and will appear in the

partonic cross section.
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k
k′

p

yp

zyp ≡ xp

q

xp+ q

(1− z)yp

Figure 1.1.4 A quark radiating a gluon before interacting.

We can write a DIS cross section as

σDIS =
∑
i

∫
dxfi(x, µ

2
F )σ̂i

(
x,
Q2

µ2
F

)
, (1.1.19)

corresponding to Fig 1.1.3, where i runs over partons.

We can see how this works in practice by considering the case where a quark

emits a gluon before interaction with the photon, such as in Fig. 1.1.4. Here the

parent parton, with fraction y of the proton’s momentum, emits a gluon giving

rise to a daughter parton with a fraction z of the parent hadron’s momentum.

We can see that z = x/y.

It transpires (see [14] for the derivation) that the structure function F2 can be

expressed as

(1.1.20)
F2(x,Q2)

x
=
∑
i

e2
i

∫ 1

x

dy

y
fi(y)

[
δ

(
1− x

y

)
+
αs
2π
Pqq
(
x

y

)
ln

(
Q2

m2

)]
.
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m is a cutoff introduced to regularise the collinear divergence and you can see that

asm→ 0 the structure function diverges. A divergence also occurs for (1−z)→ 0,

and this is a soft divergence because it corresponds to the gluon being emitted

with zero momentum. The quantity Pqq is the quark-quark “splitting function”,

detailing the probability that a quark emits a gluon leaving a daughter quark

with fraction z of the parent’s momentum. In the MS renormalisation scheme

this has the form

Pqq =
4

3

(
1 + z2

1− z

)
. (1.1.21)

We want an expression which is free from the soft and collinear divergences. We

can proceed by defining

I iqq(x) ≡ αs
2π

∫ 1

x

dy

y
fi(y)Pqq

(
x

y

)
, (1.1.22)

and separating 1.1.20 into a singular part and a calculable part, like

(1.1.23)
F2(x,Q2)

x
=
∑
i

e2
i

[
fi(x) + I iqq(x) ln

(
µ2
F

m2

)
+ I iqq(x) ln

(
Q2

µ2
F

)]
.

Notice we introduced the artificial factorisation scale, µF , to do this. Grouping

the singular terms together as

fi(x, µ
2
F ) = fi(x) + I iqq(x) ln

(
µ2
F

m2

)
, (1.1.24)

we have factorised the divergences into the PDF fi(x), giving a new PDF,

fi(x, µ
2
F ) , which also depends on µF . Noting that at leading order fi(y) =

fi(y, µ
2
F ), we are able to write

F2(x,Q2)

x
=
∑
i

e2
i

[
fi(x, µ

2
F ) +

αs
2π

∫ 1

x

dy

y
fi(y, µ

2
F )Pqq

(
x

y

)
ln

(
Q2

µ2
F

)]
+O(α2

s).

(1.1.25)

We know that F2 is an observable quantity and thus should be independent of
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µF , leading to a RGE:

1

e2
ix

∂F2(x,Q2)

∂ lnµ2
F

=
∂fi(x, µ

2
F )

∂ lnµ2
F

+
αs
2π

∫ 1

x

dy

y

(
∂fi(y, µ

2
F )

∂ lnµ2
F

ln

(
Q2

µ2
F

)
− fi(y, µ2

F )

)
Pqq
(
x

y

)
= 0.

(1.1.26)

This can be further simplified by noting that
∂fi(y,µ

2
F )

∂ lnµ2
F

is of O(α2
s), and so

∂fi(x, µ
2
F )

∂ lnµ2
F

=
αs
2π

∫ 1

x

dy

y
fi(y, µ

2
F )Pqq

(
x

y

)
. (1.1.27)

This equation describes the evolution of the newly defined PDFs with scale, a

product of the factorisation of the divergences into them. In practice this equation

is solved numerically.

When we also include the gluon as a parton, we open ourselves up to more splitting

possibilities (e.g. gluon → quark and gluon → gluon), and this result generalises

to a set of coupled differential equations known as the DGLAP equations [32–34]:

∂fi
∂ lnµ2

F

=
∑
i

αs
2π
Pij ⊗ fj, (1.1.28)

where we have used the Mellin convolution, defined

P ⊗ f ≡
∫ 1

x

dy

y
P
(
x

y

)
f(y, µ2

F ), (1.1.29)

and the index i runs from −nf to nf (where nf is the number of flavours), with

the negative indices referring to the antiquarks, 0 to the gluon and the positive

ones to the quarks.

The DGLAP equations are commonly dealt with in Mellin space where the

convolution is transformed into a product; the Mellin transform from x-space

to Mellin space is defined as

M(n) ≡
∫ 1

0

dx xn−1M(x). (1.1.30)

Considering the Mellin transform of the RHS of the DGLAP equation, and

13



suppressing the parton indices, i, for clarity, we have∫ 1

0

dx xn−1

∫ 1

x

dy

y

αs
2π
P
(
x

y

)
f(y, µ2

F )

=

∫ 1

0

dx xn−1

[ ∫ 1

0

dy

∫ 1

0

dz
αs
2π
P(z)f(y)δ(x− yz)

]
=
αs
2π

∫ 1

0

dz zn−1 P(z)

∫ 1

0

dy yn−1f(y)

=
αs
2π
P(n) f(n) ≡ γ(n) f(n),

(1.1.31)

where γ(n)ij (with parton indices explicit) are known as the anomalous dimen-

sions, and are calculable order by order in perturbation theory.

1.1.5 Hadroproduction

At the LHC most processes involve the interaction of two protons. Hadron-

hadron collisions can be approached in much the same way as DIS, but instead

the process is like in Fig. 1.1.5.

fi(x1)

σ̂ij

fj(x2)

p1

p2

x2p2

x1p1

Figure 1.1.5 Factorisation in hadron-hadron collisions.

Because two protons are involved the expression for the cross section is the natural

extension of the DIS case (Eqn. 1.1.19):

σ =
∑
i,j

∫
dx1dx2fi(x1, µ

2
F )fj(x2, µ

2
F )σ̂ij

(
x1, x2,

Q2

µ2
F

, ...

)
. (1.1.32)
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1.1.6 Sum rules

Although PDFs may seem at first sight to be totally unknown there are some

theoretical observations which we can use to constrain their form. These are

known as the “sum rules” [13]. Intuitively, adding up all the momenta of the

partons must equal the momentum of the proton. This enforces the condition

∫ 1

0

dx
∑
i

xfi(x,Q
2) = 1. (1.1.33)

The other thing we know about the proton is that it is made up of two up and one

down “valence” quarks. Any other quarks must be pair-produced from the sea,

and therefore come with an antiquark of the same flavour. So we can normalise

the PDFs using the expressions:

∫ 1

0

dx(fu − fū) = 2; (1.1.34a)

∫ 1

0

dx(fd − fd̄) = 1; (1.1.34b)

∫ 1

0

dx(fq − fq̄) = 0, q = s, c, t, b. (1.1.34c)

Note that these conditions require that the PDFs are integrable.

1.2 Methodological background

In this section we review the necessary background for PDF determination within

the NNPDF [35] framework. The results in this thesis are based on two different

versions of this: NNPDF3.1 and NNPDF4.0. First we touch on the experimental

and theoretical inputs to PDF fits, which are common to both versions. Then

we outline the NNPDF3.1 framework, which was used to generate the results

in Chapters 3 and 5. We summarise the NNPDF fitting strategy, and detail

information on neural networks specific to this context. Finally, we explain the

main differences between this and NNPDF4.0, which was used to generate the

results in Chapter 4.
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Figure 1.2.1 Plot of the (x,Q2) range spanned by data included in the upcoming
NNPDF4.0 NLO fit. Datasets in NNPDF3.1 are those without the
black edge.

1.2.1 Experimental and theoretical input

NNPDF uses a variety of experimental data from a number of particle colliders,

including those based at CERN [36] and Fermilab [37]. These are observables

such as cross sections, differential cross sections and structure functions. Fig.

1.2.1 is a plot of the (x,Q2) range spanned by the datasets in the upcoming

NNPDF4.0 release, with those in NNPDF3.1 [10] shown without a black edge.

Much of the data are from DIS processes, which are crucial in determining PDF

functional form, but in recent years increasingly more LHC collider data has been

added including tt̄ production and high energy jets. For a full review of the data

in both NNPDF3.1 and NNPDF4.0 see [38].

Theoretical predictions of the corresponding parton-level observables are com-

puted using external codes [39–43]. These are converted to higher orders of

perturbation theory as necessary using QCD and electroweak correction factors

(known as “c” or “k” factors). They are then combined with DGLAP evolution

kernels, which evolve PDFs from an initial reference energy scale to the energy

scale of each experiment using the DGLAP equations (Eqn. 1.1.28). This
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evolution is done using APFEL [44].

1.2.2 Experimental uncertainties

Experimental uncertainties are described using a covariance matrix, Cij, which

gives the uncertainties and correlations between each of the data points i, j =

1, ..., Ndat. It encapsulates the total breakdown of errors, σ, and can be con-

structed using uncorrelated errors (σuncorri ), and additive (σi,a) and multiplicative

(σi,m) correlated systematic errors (more on these below):

Cij = δijσ
uncorr
i σuncorrj +

∑
a

σi,aσj,a +

(∑
m

σi,mσj,m

)
DiDj, (1.2.1)

where Di are the experimental data values.

Structurally, the uncorrelated statistical uncertainties appear down the diagonal

and these are what we would recognise intuitively as the statistical error “on a

data point”. However, correlated systematic uncertainties can also appear on

the off-diagonals. Correlated uncertaintes include those which link multiple data

points, for example systematic uncertainties from a particular detector which will

affect all of its data in a similar way.

Systematic uncertainties further divide into two types, “additive” and “mul-

tiplicative”. Additive systematics are perhaps a more familiar type of error,

and are independent of the datapoint values themselves. On the other hand,

multiplicative systematics depend on the measured values. In the context of

particle physics experiments, a common example is total detector luminosity. This

is because recorded cross sections are dependent on the luminosity of the detector;

a higher luminosity means more collisions will take place so the measured cross

section will be greater.

Fig. 1.2.2 is an example of an experimental covariance matrix for data included

in an NNPDF fit. The data are grouped according to what type of process the

interaction belongs to (DIS charged current (CC) and neutral current (NC), Drell-

Yan (DY), jets and top production). Systematic correlations within experiments

are responsible for off-diagonal contributions, and these are mostly positive

correlations but there is some anticorrelated behaviour in DIS CC, as a result

of data in different kinematic regimes.
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Figure 1.2.2 An example of an experimental covariance matrix for data
included in an NNPDF fit. The data are grouped according to what
type of process the interaction belongs to (DIS charged current
(CC) and neutral current (NC), Drell-Yan (DY), jets and top
production).
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The covariance matrix can be used to define the χ2 figure of merit,

χ2 =
1

Ndat

(Di − Ti)C−1
ij (Dj − Tj), (1.2.2)

which measures how good the fit is between the experimental data Di with

associated covariance Cij, and theory predictions Ti. In practice, this definition is

subject to d’Agostini bias [45] due to the presence of normalisation uncertainties.

To avoid this, NNPDF employ the iterative t0 procedure [46] whereby Di in

Eqn. 1.2.1 are replaced initially with the predictions from a baseline fit, and the

covariance matrix is iterated concurrently with preprocessing.

1.2.3 NNPDF fitting strategy

There are a number of groups currently active in carrying out proton PDF fits

including MSHT [47], CTEQ [48], NNPDF [35], HERAPDF/xFitter [49] and

ABM [50]. The work in this thesis has been carried out in the framework

developed by the NNPDF collaboration, so we will concentrate on this fitting

strategy, which is summarised in Fig. 1.2.3. There are two main features which

differ from other fitting collaborations’ [51]. These are:

1. The use of Monte Carlo approach to error analysis;

2. Fitting using artificial neural networks.

In the following sections we will provide an overview of these aspects, which can

be found in more detail in [10, 52, 53].
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Figure 1.2.3 NNPDF general strategy. Image credit: Eleanor Conole.

1.2.4 Monte Carlo approach

The uncertainties in the functional form of PDFs come as a direct consequence

of the uncertainties in the experimental and theoretical inputs. In order to

propagate experimental uncertainties through to the PDFs, NNPDF represent the

experimental data (central values and uncertainty distribution) as a Monte Carlo

ensemble. This is a set of Nrep Monte Carlo “replicas” which, given high enough

replica number, have a mean value equal to the data central value and covariance

equal to the experimental covariance. Fig. 1.2.4 is a schematic illustrating the

generation of these “pseudodata”, D(k), k = 1, ..., Nrep. They are generated using

Gaussian random numbers n
(k)
a and n̂

(k)
m :

D(k) = (D0 +
∑
a

n(k)
a σa)

∏
m

(1 + n̂(k)
m σp), (1.2.3)

where D0 is the experimental data value, and σa and σm are the additive and

multiplicative uncertainties discussed in Sec. 1.2.2. Sometimes uncertainties are

asymmetric, and in this case we adjust the data value such that the uncertainties
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Figure 1.2.4 Generation of Monte Carlo replicas of pseudodata from data with
uncertainties. Left: experimental data; right: five Monte Carlo
replicas.

are made symmetric. Explicitly, the pseudodata replicas satisfy the relations:

〈D(k)
i 〉 = D0

i ; 〈(〈D(k)
i 〉 −D0

i )(〈D(k)
j 〉 −D0

j )〉 = Cij, (1.2.4)

in the limit of Nrep →∞, where the notation 〈·〉 denotes the mean over replicas.

Fig. 1.2.5 shows the distribution of pseudodata for a single data point.

Figure 1.2.5 Histogram of the distribution of 100 pseudodata replicas for a
single data point with 8.89% uncertainty, normalised to D0. The
purple line is the mean value 〈D(k)〉, which is equal to D0 (black
line) to arbitrary precision.

Once the pseudodata have been generated, each replica, D(k), is fitted separately

to the theoretical predictions, Ti[f
(k)
q ], which depend on the PDF replicas, f

(k)
q

(where q runs over the fitted flavours: g, u, d, s, c, ū, d̄, s̄, c̄). This is done by

fitting the PDFs to minimise a target error function based on the χ2:

χ2 (k) =
1

Ndat

∑
q

Ndat∑
i,j=1

(D
(k)
i − Ti[f (k)

q ])C(t0)−1
ij (D

(k)
j − Tj[f (k)

q ]). (1.2.5)

Here C(t0) is the t0 covariance matrix, which is Eqn. 1.2.1 with Di → t0 i, where
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t0 are theory predictions from a similar previous fit. This is to remove d’Agostini

bias [45, 46]. Doing this fit then results in a PDF set of each flavour. These act

as a Monte Carlo parametrisation of the PDFs (for example, Fig. 1.2.6). This

means that the PDFs and their errors can be extracted by taking the means

and standard deviations over the ensemble. The final PDFs are made publicly

available as downloadable files on the LHAPDF website [54, 55].

Figure 1.2.6 Monte Carlo replicas for the down valence quark PDF NNPDF3.1
at NLO.

1.2.5 Neural networks

Inspired by how the brain processes information, in machine learning neural

networks are graphs of connected nodes. They are trained by example, so have

the capability to learn a PDF’s functional form given a set of data. Using

neural networks rather than specific functional forms allows us to avoid the

theoretical bias which goes into selecting such a functional form. The layout, or

“architecture”, consists of input layers, hidden layers and output layers. Nodes

can be either input nodes or activation nodes, the latter of which have an

associated activation function which is applied to their output.

Neural networks in NNPDF3.1

Fig. 1.2.7 depicts the architecture used in NNPDF3.1. This is a “2-5-3-1”

archiecture, where the numbers refer to the number of nodes in each layer. It

is a “multilayer perceptron”, meaning the graph is fully connected, and it is a
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Figure 1.2.7 Schematic depiction of the 2-5-3-1 architecture of an artificial

neural network of NNPDF3.1. Here ξ
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x and ln(1/x) respectively.

feed-forward; information can only be passed in one direction through the layers

(from input to output). The two inputs are x and ln(1/x), and the output, f or

ξ(4), is the PDF at the parametrisation scale, Q0. In this network the output of

a node in the lth layer is given by

ξ
(l)
i = g

( inputs∑
j

ω
(l)
ij ξ

(l−1)
j + θ

(l)
i

)
(1.2.6)

where the ωs and θs are “weights” and “thresholds”; parameters to be minimised

with respect to. g is an “activation function” which is set to

g(z) =

 1
1+exp(−z) for hidden layers

z for the output layer.
(1.2.7)

The choice of this sigmoid activation function for the hidden layers allows

sufficient non-linear freedom in the functional form, and the linear activation

function for the output layer ensures the range of the PDFs is not restricted to

[0,1].

The training of the neural networks is implemented using a “genetic algo-
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rithm” [56] (CMA-ES), so-called because of the introduction of mutation to the

fitting parameters. This additional degree of randomness helps to avoid getting

stuck in local minima. In practice, this involves “mutating” some chosen fraction

of the thresholds, θ, by perturbing them at random.

1.2.6 Parametrisation, preprocessing and postprocessing

A scale of Q = 1.65 GeV is chosen to parametrise the PDFs at, and then they

can be determined at any other scale by evolution using the DGLAP equations

(Eqn. 1.1.28). The PDFs are fitted whilst parametrised in a “fitting basis” of

eight combinations of flavours, to help convergence [57], defined:

� g;

� Σ ≡∑u,d,s qi + q̄i;

� T3 ≡ u− d;

� T8 ≡ u+ d− 2s;

� V ≡∑u,d,s qi − q̄i;

� V3 ≡ ū− d̄;

� V8 ≡ ū− d̄− 2s̄;

� c.

Since the form of the neural networks (Ni(x)) is determined by training on

experimental data, the output is not meaningful outwith the data region. The

functional form of the PDFs in this so-called “extrapolation region” is in

practice fixed through enforcement of the known high and low x behaviour via

“preprocessing”; the PDFs are parametrised as:

fi(x) = Aix
−αi(1− x)βiNi(x). (1.2.8)

Ai are normalisation coefficients, which are fixed at each iteration of the fit. There

are seven of these initial coefficients, three of which are set by the valence sum

rules and one by the momentum sum rule. The other three are initially set to

1; see [58] for more information. The powers αi and βi are fitted parameters
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determined by iteration from one fit to the next. This preprocessing has the

effect that the PDFs approach 0 at large x, and generally grow at small x. This

is because the probability of the existence of a parton is generally small at high

x and larger with decreasing x outwith the data region.

Postprocessing is also applied to the PDF replicas to remove those which don’t

satisfy certain quality conditions. That is, where the target error function or arc-

length of the replica is more than four standard deviations outwith the mean, or

where the positivity of the resulting cross-sections is not satisfactorily maintained.

-5 
-20 

-10 

0 

10 

20 

-2.5 0 2.5 5 

Figure 1.2.8 Overlearning: the data points (black dots) fluctuate around the
linear underlying law (black line), but the neural network continues
to minimise the error function until it passes through every data
point (blue curve), fitting the noise in the data. Image credit:
Eleanor Conole.

1.2.7 Cross validation

Neural networks are effective at learning the functional form which underlies data.

Sometimes, if there are more degrees of freedom in the PDF than in the data,

they can be “too effective”, picking up not just the underlying law but also the

noise. This is known as “overlearning” (see Fig. 1.2.8 for an example).

To circumvent this problem, the data are split into a training and a validation set.

The training data are used to optimise the neural network, and the validation data

are used to test the network output, in a process known as “cross validation”. As

training epochs elapse, the target error function compared to both the training

and validation data should decrease as the network learns the underlying law.

At some point, however, the network will begin to learn the noise in the training
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Figure 1.2.9 Cross validation with the lookback method. Image credit: Eleanor
Conole.

data, at which point the training error function will continue to decrease, but

the validation error function will stop decreasing and start to increase again.

In NNPDF3.1 we determine the optimum fit using the “lookback” method

(Fig. 1.2.9), where after training the model corresponding to the minimum in

the validation error function is selected.

1.3 NNPDF4.0

The earlier parts of this section describe the methodology for the NNPDF3.1 [10]

release, on which Chapters 3 and 5 are based. However, at the time of writing

this thesis a new release, NNPDF4.0, is being launched. The work in Chapter 4

is based on this methodology, and so we briefly explain the main developments

between NNPDF3.1 and NNPDF4.0. For more information see [38, 59], and the

future NNPDF4.0 paper.
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1.3.1 Methodology

NNPDF4.0 heralds some significant methodological changes to the NNPDF

procedure, the most important of which we will outline here. Perhaps most

strikingly, the architecture of the neural network is changed [60] from that

in Fig. 1.2.7, which is implemented separately for each flavour, to a single

neural network with flexible architecture. The implementation is via Keras [61]

and Tensorflow [62], and the optimisation is with an inbuilt gradient descent

algorithm rather than the genetic algorithm in NNPDF3.1. The stopping criterion

follows a patience method where the fit stops once the minimiser is stable for a

set length of time. All of these parameters, including architecture are determined

via hyperoptimisation with k-folding, which is a process to determine the best

combination for stability and performance.

Additionally, positivity of PDF replicas is now strictly enforced rather than them

being allowed to be negative within a threshold. This is following a recent

study [63] which showed that MS PDFs are strictly positive.

1.3.2 Theory developments

There are two main theory developments between NNPDF3.1 and NNPDF4.0.

One is the treatment of nuclear and deuteron data using an additional uncertainty.

This forms the basis of Chapter 4 so we will not discuss it further here.

The other is the inclusion of NLO electroweak (EW) corrections. This consists

of QED corrections to the DGLAP evolution as well as NLO EW corrections

for a variety of processes; wherever EW corrections are available they are added

to increase precision. This is very important as EW corrections can be up to

∼ 20% [64] in some regions. The corrections are provided as interpolation grids

via the PineAPPL library [65].

1.3.3 Validation of PDFs

The effectiveness of the fitting methodology has traditionally been tested using

closure tests [57], which use a separate PDF to create proxy known “true values”.

This procedure has been updated, whereby fits are carried out to many proxy

PDF replicas, and the bias and variance of the results are compared. This is made
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possible by the significantly increased speed of the new fitting methodology [60].

1.3.4 New data

NNPDF4.0 also includes a large number of additional datasets, including many

from the 13 TeV run at the LHC (see Fig. 1.2.1). What’s more, many of the

existing datasets’ implementation has been improved [38].
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Chapter 2

Theory uncertainties in PDFs

The concept of experimental uncertainties is one that is familiar to any scientist.

Whenever we make a measurement it is accompanied by an uncertainty which

quantifies our degree of confidence in its accuracy. The smaller this uncertainty

is, the more useful the measurement is. Not providing an uncertainty arguably

renders the measurement useless, as the implicit uncertainty could in principle

be arbitrarily large.

But uncertainties also apply to theoretical predictions. In a broad sense, there

is some uncertainty associated with our degree of confidence in a particular

theoretical model, but even within the parameters of a model a prediction can

often be uncertain. In the case of QCD there are many contributions to this

uncertainty. One of the most obvious is the truncation of the perturbation series

to fixed order, necessary because successively complex calculations are required

for increasing orders. Other contributions include:

� non-perturbative effects such as higher-twist terms;

� treatment of heavy quarks and the impact of nuclear environments [66, 67];

� choice of model parameters such as αs and particle masses, which have

to be determined from experiment, and are subject to different theoretical

definitions [68, 69].

PDFs are produced in fits which compare experimental measurements with

theoretical predictions, so uncertainties in both these places should end up in the
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PDFs. In the past we have got away with arguing that theory uncertainties are

small compared to experimental uncertainties [67], and so the experimental ones

with dominate the PDF uncertainty. In regions where this is not the case, such as

the higher-twist region, the data are simply not included in the fit. But such an

argument is increasingly becoming a stretch, due to ultra-precision measurements,

the advent of the high-luminosity LHC [70], and anticipated future colliders [7–9].

To calculate theoretical uncertainties we must first consider what it is we are

trying to calculate. Underlying the uncertainty is a “true” value, which we

are unable to determine exactly. This suggests a Bayesian approach is most

appropriate [71, 72], where the uncertainty quantifies our belief that the true

value lies within a certain range. We will use such a Bayesian framework, and

assume Gaussianity of the expected true value of the theory calculation in order

to simplify the situation. This should be sufficient to capture the main features

of the uncertainty.

In this section we will show that including general theory uncertainties in PDFs

can be done by constructing a theory covariance matrix, S, to complement the

experimental covariance matrix, C. Theory uncertainties can then be included

in a fit by the replacement C → C + S [73]. The plus sign appears because the

experimental and theoretical uncertainties are independent, so the uncertainties

are combined in quadrature. They are also on an equal footing in terms of their

effect on the PDFs. When there are many data sets, for example in a global

fit, there can be very strong correlations in theory uncertainty, even outwith

individual experiments. This is because the underlying theory connects different

predictions, even when the corresponding data come from different experiments.

2.1 Fitting PDFs including theory uncertainties

Historically, experimental uncertainties have been the dominant source of

uncertainty in PDF fits. In the NNPDF3.1 framework, both replica generation

and computation of χ2 are based entirely on these. We must now try to match

the ongoing drive to increase experimental precision by including uncertainties

introduced at the theoretical level. This is especially important given data sets

new in NNPDF3.1 such as the Z boson transverse momentum distributions [74–

76], which have very high experimental precision. Without the inclusion of

theoretical uncertainties, this has led to tension with the other datasets.
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In future NNPDF fits theoretical uncertainties will be included following a

procedure outlined in Sec. 4.1 of [73]. This hinges on a result from Bayesian

statistics which applies to Gaussian uncertainties. Namely, theory uncertainties

can be included by directly adding a theoretical covariance matrix to the

experimental covariance matrix prior to the fitting. We will now give a brief

summary of this derivation.

When determining PDFs we incorporate information from experiments in the

form of Ndat experimental data points Di, i = 1, ..., Ndat. The associated un-

certainties and their correlations are encapsulated in an experimental covariance

matrix Cij. Parts of the matrix which associate two independent experiments

will be populated by zeros. However we would expect there to be correlations

between data points from the same detector, for example.

Each data point is a measurement of some fundamental “true” value, Ti, dictated

by the underlying physics. In order to make use of the data in a Bayesian

framework, we assume that the experimental values follow a Gaussian distribution

about the unknown T . Then, assuming the same prior for D and T , we can write

an expression for the conditional probability of T given the known data D:

P (T |D) = P (D|T ) ∝ exp

(
− 1

2
(Ti −Di)C

−1
ij (Tj −Dj)

)
. (2.1.1)

However, in a PDF fit we cannot fit to the unknown true values T , and must

make do with predictions based on current theory T . This is the origin of theory

uncertainties in PDF fits; where our theory is incomplete, fails to describe the

physics well enough, or where approximations are made, we will introduce all

kinds of subtle biases into the PDF fit. The theory predictions themselves also

depend on PDFs, so uncertainties already present in the PDFs are propagated

through. This, in particular, leads to a high level of correlation because the PDFs

are universal, and shared between all the theory predictions. In Chapter 5 we

will take an in-depth look into these correlations.

We can take a similar approach when writing an expression for the conditional

probability of the true values T given the available theory predictions T , by

assuming that the true values are Gaussianly distributed about the theory

predictions.

P (T |T ) = P (T |T ) ∝ exp

(
− 1

2
(Ti − Ti)S−1

ij (Tj − Tj)
)
, (2.1.2)
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where Sij is a “theory covariance matrix” encapsulating the magnitude and

correlation of the various theory uncertainties. We will need to do some work

to determine Sij for the different sources of uncertainty, and this will be outlined

in detail in the following chapters.

When we fit PDFs we aim to maximise the probability that a PDF-dependent

theory is true given the experimental data available. This amounts to maximising

P (T |D), marginalised over the unknown true values T . To make this more useful

for fitting purposes, we can relate it to P (D|T ) using Bayes’ Theorem:

P (D|T )P (T |DT ) = P (T |T )P (D|T T ), (2.1.3)

where we note that the experimental data, D, do not depend on our modelled

values T , so P (D|T T ) = P (D|T ). So we can integrate Bayes’ Theorem over the

possible values of the N -dimensional true values T :∫
DNT P (D|T )P (T |DT ) =

∫
DNT P (T |T )P (D|T ), (2.1.4)

and because
∫
DNT P (T |TD) = 1, as all possible probabilities for the true values

must sum to one,

P (D|T ) =

∫
DNT P (T |T )P (D|T ). (2.1.5)

We can always write the theory predictions, T , in terms of their shifts, ∆, relative

to the true values, T :

∆i ≡ Ti − Ti. (2.1.6)

These shifts quantify the accuracy of the theoretical predictions, and can be

thought of as nuisance parameters in the PDF fit. We can express Eqn. 2.1.5 in

terms of the shifts, ∆i, making use of the assumptions of Gaussianity in Eqns.

2.1.1 and 2.1.2:

P (D|T ) ∝
∫
DN∆ exp

(
− 1

2
(Di − Ti −∆i)

× C−1
ij (Dj − Tj −∆j)−

1

2
∆iS

−1
ij ∆j

)
.

(2.1.7)

To evalute the Gaussian integrals, consider the exponent: switching to a vector

notation for the time being, we can expand this out and then complete the square,
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making use of the symmetry of S and C:

(D − T −∆)TC−1(D − T −∆) + ∆TS−1∆

= DT (C−1 +S−1)∆−∆TC−1(D−T )− (D−T )TC−1∆ + (D−T )TC−1(D−T )

= (∆− (C−1 + S−1)−1C−1(D − T ))T (C−1 + S−1)

× (∆− (C−1 + S−1)−1C−1(D − T ))

− (D − T )TC−1(C−1 + S−1)−1C−1(D − T ) + (D − T )TC−1(D − T ).
(2.1.8)

Now, integrating Eqn. 2.1.7 over ∆ leads to a constant from the Gaussian

integrals, which we can absorb, and only the parts of the exponent without ∆

remain:

P (T |D) = P (D|T )∝ exp

(
− 1

2
(D−T )T (C−1−C−1(C−1 +S−1)−1C−1)(D−T )

)
.

(2.1.9)

We can further simplify this by noting that

(2.1.10)(C−1 + S−1)−1 = (C−1(C + S)S−1)−1

= S(C + S)−1C,

which means we can rewrite

(2.1.11)C−1 − C−1(C−1 + S−1)−1C−1 = C−1 − C−1S(C + S)−1

= (C−1(C + S)− C−1S)(C + S)−1

= (C + S)−1.

Finally, with indices restored we are left with

(2.1.12)P (T |D) ∝ exp

(
− 1

2
(Di − Ti)(C + S)−1

ij (Dj − Tj)
)
.

Comparing this result to Eqn. 2.1.1, we can confirm that when we possess

theoretical predictions, Ti, rather than true values, Ti, we can account for this

by adding a theoretical covariance matrix, Sij to the experimental covariance

matrix, Cij [73]. This means the theory uncertainties are on an equal footing

with experimental systematic uncertainties. Note that Cij is positive definite by

construction and so (C+S)ij is always invertible, even if Sij has zero eigenvalues.
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Now all that remains is to construct a theory covariance matrix which parametrises

each instance of theoretical uncertainty. This is a nebulous task, given that we

are not privy to the true values, T , and so are unable to simply apply the formal

definition

Sij = 〈(Ti − Ti)(Tj − Tj)〉, (2.1.13)

where 〈·〉 denotes an average over true values, T . We need to find methods to

calculate the various contributions, Sij, (be they mising higher order uncertain-

ties, nuclear corrections, higher twist corrections etc.) which not only encapsulate

the per-point theoretical uncertainties but also preserve the correlations between

different data points. Unlike experimental uncertainties, these correlations can

exist outwith individual experiments; in fact, all data in PDF fits depend

themselves on PDFs, and this common link will lead to correlations between

all datapoints, albeit of varying strength.

The rest of this thesis addresses two of the most important types of theoretical

uncertainties: missing higher order uncertainties (Chapter 3) and nuclear

uncertainties (Chapter 4). For each type, we show how to construct a theoretical

covariance matrix, and present and discuss the results of PDF fits including these

covariance matrices. Then in Chapter 5 we consider how to use these PDFs with

theory uncertainties to make new physics predictions which also include theory

uncertainties.
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Chapter 3

Missing higher order uncertainties

In this chapter we address the dominant source of theory uncertainty in current

PDF fits: missing higher order uncertainties (MHOUs). In Sec. 3.1 we explain

their origin, then in Sec. 3.2 we revise their standard method of estimation,

through scale variation. We then show how to use this to construct a theory

covariance matrix (Sec. 3.3), and test the validity of this at NLO against the

known NNLO result (Sec. 3.5). Finally, we present the PDFs including MHOUs

(Sec. 3.6).

3.1 Introduction

PDF fits rely on the comparison of experimental data with theoretical predictions

at the partonic level. These predictions are carried out in the framework of

perturbation theory, where results are expressed as an expansion in the strong

coupling constant, αs. The first non-zero contribution to the expansion is known

as “leading order” (LO), the next is “next-to-leading order” (NLO), and so on

(NNLO, N3LO etc.). Because in the perturbative regime αs is small (0.11791

± 0.00009 [77] at MZ), corrections from higher orders are increasingly small.

Predictions must be directly calculated at each order by considering all the

possible contributing Feynman diagrams, and this becomes exponentially more

complicated with increasing orders; the cutting edge of calculations is currently

at the N3LO level. PDFs are fitted using predictions truncated at a given order,

with NNLO PDFs being the modern standard.

35



0.2 0.4 0.6 0.8
x

0.7

0.8

0.9

1.0

1.1

1.2

Ra
tio

 to
 N

NP
DF

31
_lo

_a
s_

01
18

u at 10.0 GeV
NNPDF31_lo_as_0118 (68 c.l.+1 )
NNPDF31_nlo_as_0118 (68 c.l.+1 )
NNPDF31_nnlo_as_0118 (68 c.l.+1 )

0.2 0.4 0.6 0.8
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ra
tio

 to
 N

NP
DF

31
_lo

_a
s_

01
18

d at 10.0 GeV
NNPDF31_lo_as_0118 (68 c.l.+1 )
NNPDF31_nlo_as_0118 (68 c.l.+1 )
NNPDF31_nnlo_as_0118 (68 c.l.+1 )

0.2 0.4 0.6 0.8
x

10

8

6

4

2

0

2

4

Ra
tio

 to
 N

NP
DF

31
_lo

_a
s_

01
18

g at 10.0 GeV

NNPDF31_lo_as_0118 (68 c.l.+1 )
NNPDF31_nlo_as_0118 (68 c.l.+1 )
NNPDF31_nnlo_as_0118 (68 c.l.+1 )

Figure 3.1.1 Comparison of NNPDF3.1 PDFs at different perturbative orders:
LO (green); NLO (orange); NNLO (blue). PDFs are normalised
to the LO result, and displayed at scale Q = 10 GeV.

These missing higher order terms in the expansion for theory predictions lead to

MHOUs, which are currently the dominant source of uncertainty in PDF fits. We

can see that going from LO to NLO to NNLO in Fig. 3.1.1 that the functional form

of the PDF changes, and that the change from LO to NLO is greater than that

from NLO to NNLO. MHOUs are currently not included in the PDF uncertainties,

justified historically by the claim that they are small compared to experimental

contributions to the PDF uncertainty, especially at NNLO. This justification,

however, is now on shakier ground with PDF uncertainties dropping as low as

1% at the electroweak scale. QCD MHOU uncertainties themselves are typically

∼ 1%) [78] and, with the current push to N3LO precision, will only become

increasingly important as time goes on.

In addition to a missing source of per-point uncertainty on each data point,

MHOUs can affect a PDF fit more insidiously by impacting on the desired

weight of data sets relative to one another; regions of data with high MHOU

are naturally to be trusted less when used to determine the PDFs, and so should

carry less weight in the fitting process. If MHOUs are included, these data will

be deweighted automatically because they will carry higher uncertainty, however

in the absence of MHOUs they may impact on a fit to an undesirable degree.
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Having established the importance of including MHOUs, in the next section we

will go on to develop a formalism for estimating them, and constructing a MHOU

covariance matrix.

3.2 Scale variation

The most popular method for estimating MHOUs is by “scale variation”. This

is based on making theoretical predictions at a range of values of the artificial

renormalisation (µR) and factorisation (µF ) scales introduced in Chapter 1. The

renormalisation group equation (RGE; 1.1.17) and factorisation theorem only

hold to all orders in perturbation theory, and in this case varying the scale values

will have no effect on any results. However, when the perturbative expansion

is truncated, there will be a residual µR and µF dependence which characterises

the degree of MHOU. Varying these scales and observing the impact on the

predictions can therefore provide an estimate of the MHOUs.

Although other approaches to estimating MHOUs, based on the current known

orders, have been suggested [79–82], we adopted the method of scale variations

not only because it is the most widely used, but also because it is the

most easily implemented for our purposes. Firstly, the renormalisation group

invariance is incorporated automatically, which ensures the MHOUs decrease

as the perturbative order increases. Secondly, the scale dependece of αs(µ
2
R)

and the PDFs is universal to all processes, which is important for PDF fits

dealing with a range of interactions. Finally, correlations between data points

are implicitly maintained because predictions for different scale values will be

smooth functions of kinematics; this ensures that neighbouring regions of phase

space will be strongly correlated.

There are, however, some disadvantages. Firstly, the definition of the two scales

themselves has been historically approached in various ways, often differently for

DIS and hadronic collisions, but also changing over time. Since PDFs use both

DIS and hadronic data we need to settle on a consistent approach. Secondly,

there is no cut and dry method for determining the range of varied scale choices,

and in fact the choice of central scales are themselves to some degree arbitrary;

for example, top production processes commonly have both central scales set to

the top mass, mt, and DIS processes have both set to Björken Q. Though there

is physical motivation for these choices, we could equally well pick 2mt rather
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than mt in the former case, for example. A standard approach is to take the 7-

point envelope of the predictions obtained by varying (µF , µR) independently

in {1/2, 1, 2}, excluding (1/2, 1/2) and (2, 2). However, for our purposes we

do not want a per-point envelope but rather a covariance matrix which retains

correlations between data points. We will address both of these drawbacks below.

Finally, scale variation techniques will not pick up any “new physics” at higher

orders, be it additional colour configurations, singularities or mechanisms of

interaction. This is harder to deal with, and requires resummation techniques

among other methods. In this work we assume these effects to be less important,

and do not address them for the time being.

In the remainder of this section we will review the technique of scale variation,

and with it the definitions of µF and µR. We will converge on a general formalism

that can be applied to both electroproduction and hadroproduction. We will show

that there are two independent directions of scale variation and discuss how to

combine them, both in single process and multi-process interactions. We will

then go on to show how to use this to build a covariance matrix in Sec. 3.3.

3.2.1 Renormalisation group invariance

It is customary when making a theory prediction to pick a renormalisation scale,

µR, that is indicative of the physical scale of the interaction, Q. We will denote

this “central” theory prediction by T (Q2). In general, a theory prediction at

scale µR can be written T (αs(µ
2
R), µ2

R/Q
2), where we explicitly note that αs itself

depends on the renormalisation scale. From this we can see that

T (Q2) ≡ T (αs(Q
2), 1). (3.2.1)

The strong coupling constant satisfies the RGE

µ2
R

d2

dµ2
R

αs(µ
2
R) = β(αs(µ

2
R)), (3.2.2)

and we can expand the beta function perturbatively as

β(αs) = β0α
2
s + β1α

3
s + β2α

4
s + . . . . (3.2.3)

As discussed in Chapter 1, renormalisation group invariance tells us that a
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prediction of a physical quantity (such as T ) to all orders must be independent

of µR, because this scale is unphysical. This means we can write

µ2
R

d

dµ2
R

T
(
αs(µ

2
R), µ2

R/Q
2
)

= 0. (3.2.4)

Before proceeding further, we introduce some variables to make the analysis

clearer:

µ2
R = kQ2, t = ln(Q2/Λ2), κ = ln k = lnµ2

R/Q
2, (3.2.5)

where Λ is the QCD scale. This means αs(µ
2
R) is a function of lnµ2

R/Λ
2 = t+ κ.

Revisiting Eqn. 3.2.4, we can write this as

0 =
d

dκ
T (αs(t+ κ), κ)

=
d

dκ
αs(t+ κ)

∂

∂αs
T (αs(t+ κ), κ)

∣∣∣∣
κ

+
∂

∂κ
T (αs(t+ κ), κ)

∣∣∣∣
αs

,

(3.2.6)

assuming that T is analytic in αs and κ. To simplify this we can use

d

dκ
αs(t+ κ) =

d

dt
αs(t+ κ) =

d

d lnµ2
R

αs(t+ κ) = β(αs(t+ κ)) , (3.2.7)

where we have used the definition of the beta function (Eqn. 3.2.2), and this

means that

0 =
∂

∂t
T (αs(t+ κ), κ)

∣∣∣∣
κ

+
∂

∂κ
T (αs(t+ κ), κ)

∣∣∣∣
αs

. (3.2.8)

We can now Taylor expand T (αs, κ) about the central scale µ2
R = Q2 =⇒ k =

1 =⇒ κ = 0 for fixed αs:

T (αs(t+ κ), κ) = T (αs(t+ κ), 0)

+κ
∂

∂κ
T (αs(t+ κ), 0)

∣∣∣∣
αs

+ 1
2
κ2 ∂

2

∂κ2
T (αs(t+ κ, 0)

∣∣∣∣
αs

+ . . .

. (3.2.9)
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Then, using Eqn. 3.2.6, we can replace ∂
∂κ

with − ∂
∂t

, and write

T (αs(t+ κ), κ) = T (αs(t+ κ), 0)− κ ∂
∂t
T (αs(t+ κ), 0)

∣∣∣∣
κ

+ 1
2
κ2 ∂

2

∂t2
T (αs(t+ κ), 0)

∣∣∣∣
κ

+ . . .

= T (t+ κ)− κ d
dt
T (t+ κ) + 1

2
κ2 d

2

dt2
T (t+ κ) + . . . .(3.2.10)

This tells us how to find a scale varied theoretical prediction, T , in terms of the

t dependence of the central prediction, T . Furthermore, we can express this t

dependence as an αs dependence using

d

dt
T (t) =

dαs(t)

dt

∂

∂αs
T (αs(t), 0) = β(αs(t))

∂

∂αs
T (αs(t), 0). (3.2.11)

Noting that β(αs) = O(α2
s), we see that 1

T
dT
dt

= O(αs) and 1
T
d2T
dt2

= O(α2
s) etc.

The pattern follows that every time a derivative is taken with respect to t you pick

up a power of αs as a consequence of the chain rule in differentiating. Looking

back at Eqn. 3.2.10 it is clear that each power of κ is associated with a power of

αs. Expressing the theory prediction perturbatively as

T = αsTLO + α2
sTNLO + α3

sTNNLO + . . . , (3.2.12)

we can match powers of αs in Eqn. 3.2.10 to obtain the expressions

T LO(αs(t+ κ), κ) = TLO(t+ κ),

TNLO(αs(t+ κ), κ) = TNLO(t+ κ)− κ d
dt
TLO(t+ κ),

TNNLO(αs(t+ κ), κ) = TNNLO(t+ κ)− κ d
dt
TNLO(t+ κ)

+ 1
2
κ2 d2

dt2
TLO(t+ κ).

(3.2.13)

The difference between the scale varied prediction and the central scale prediction,

∆(t, κ) = T (αs(t+ κ), κ)− T (t) . (3.2.14)

can be used to estimate the MHOU. From Eqn. 3.2.13 we find the explicit
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expressions for the theory uncertainties

∆LO(t, κ) = TLO(t+ κ)− TLO(t),

∆NLO(t, κ) = (TNLO(t+ κ)− κ d
dt
TLO(t+ κ))− TNLO(t),

∆NNLO(t, κ) = (TNNLO(t+ κ)− κ d
dt
TNLO(t+ κ)

+ 1
2
κ2 d2

dt2
TLO(t+ κ))− TNNLO(t) .

(3.2.15)

At LO we can see that the uncertainty results entirely from the choice of κ, in

other words of µR in the αs evaluation. At NLO we can see that the leading

part of TNLO(t + κ) is subtracted off by the O(κ) term, meaning that the

uncertainty is reduced with respect to LO. At NNLO, in addition, the O(κ2)

term subtracts off the subleading dependence of TNNLO(t+ κ)− κ d
dt
TNLO(t+ κ),

and so the uncertainty is yet smaller. This pattern of decreased scale variation

uncertainties with increased perturbative order reflects our general understanding

of the behaviour of MHOUs.

It is also apparent that the size of MHOU depends on the value of κ, in other words

on the size of scale variation. This introduces a degree of arbitrariness into MHOU

estimation, with the historical empirical range of choice being κ ∈ [− ln 4, ln 4].

In practice, we must investigate the dependence of ∆ on κ, using validation at

lower orders against known higher orders to converge on a suitable prescription.

This will be addressed in Sec. 3.3.

We will now go on to show how RG invariance can be applied to processes

involving hadrons, where the partonic cross section is also convolved with a PDF.

We will show that in this scenario there are two independent scales, and thus two

independent sources of MHOU: one from the αs dependence in the hard cross

section; the other from the anomalous dimensions in the PDF evolution.

3.2.2 Scale variation in partonic cross sections

We will start with DIS, where there is only one hadron then move to the case of

hadron-hadron collisions, such as those carried out at the LHC. In each case we

will consider RG invariance to find an expression for µR variation in the partonic

observable, for the case where the PDF is evaluated at the physical scale. Scale

variation in PDF evolution, i.e. the µF variation, will be addressed in the next

section.
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Deep Inelastic Scattering

For DIS processes, theory predictions are of the structure functions discussed in

Chapter 1. These can be expressed as a convolution of a parton level coefficient,

C, with a PDF, f :

F (Q2) = C(x, αs(Q
2))⊗ f(x,Q2), (3.2.16)

where ⊗ is a convolution in the momentum fraction, x, and there is an implicit

sum over parton flavours. There will be a MHOU in F due to truncating

the coefficient function, C, to fixed perturbative order. We can estimate

this by keeping the PDF scale (or factorisation scale) fixed and varying the

renormalisation scale in C. This will result in a scale-varied structure function,

F (Q2, µ2
R) = C(αs(µ

2
R), µ2

R/Q
2)⊗ f(Q2) , (3.2.17)

where we have made the x-dependence implicit and the scale dependence explicit

in the coefficient function. We can use the quantities defined in Eqn. 3.2.5 to

write this as

F (t, κ) = C(αs(t+ κ), κ)⊗ f(t). (3.2.18)

We know that the structure function, an observable, is RG invariant, and, because

we are keeping the factorisation scheme fixed, the PDF is independent of µR. This

means that the coefficient functions must also obey RG invariance, and so in a

parallel with Eqn. 3.2.10 we can write

C(αs(t+ κ), κ) = C(t+ κ)− κ d
dt
C(t+ κ) + 1

2
κ2 d2

dt2
C(t+ κ) + . . . , (3.2.19)

where, like before, we denote the central scale quantities without a bar. In order

to evaluate the derivatives, note that the coefficient function can be expressed as

a perturbative expansion in αs,

C(t) = c0 + αs(t)c1 + α2
s(t)c2 + α3

s(t)c3 + . . . , (3.2.20)

and that d
dt
αs(t, κ) = β(αs(t, κ), where the beta function also admits the

expansion in Eqn. 3.2.2. Explicitly, this leads us to

d
dt
C(t) = α2

s(t)β0c1 + α3
s(t)(β1c1 + 2β0c2) + . . . ,

d2

dt2
C(t) = 2α3

s(t)β
2
0c1 + . . . ,

(3.2.21)
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resulting in the perturbative expression for µR variation of C:

C(αs(t+ κ), κ) = c0 + αs(t+ κ)c1 + α2
s(t+ κ)(c2 − κβ0c1)

+ α3
s(t+ κ)(c3 − κ(β1c1 + 2β0c2) + κ2β2

0c1) + . . . .
(3.2.22)

Using Eqn. 3.2.16 we finally get an expression for the µR variation of F :

F (t, κ) = c0 ⊗ f(t) + αs(t+ κ)c1 ⊗ f(t) + α2
s(t+ κ) (c2 − κβ0c1)⊗ f(t)

+ α3
s(t+ κ)

(
c3 − κ(β1c1 + 2β0c2) + κ2β2

0c1

)
⊗ f(t) + . . . .

(3.2.23)

In practice, when predicting scale varied observables, using these equations is

relatively straightforward. Because the coefficients, ci and βi, are already known

to some order, the workflow consists of some basic algebra to create the new,

scale varied, coefficients at each order from the central-scale coefficients at the

surrounding orders.

Hadron-hadron collisions

Hadron-hadron collisions can be considered in a similar way to DIS, the difference

being that the observable cross section, Σ, depends on two PDFs, one for each of

the hadrons:

Σ(t) = H(t)⊗ (f(t)⊗ f(t)) , (3.2.24)

where H is the parton level cross section and this time we have used t = ln(Q2/Λ2)

from the outset. Once again, there is an implicit sum over parton flavours. As

before, we can vary κ = ln(µ2/Q2) in H whilst keeping f fixed, so that

Σ(t, κ) = H(αs(t+ κ), κ)⊗ (f(t)⊗ f(t)), (3.2.25)

where

H(αs(t), κ) = H(t)− κ d
dt
H(t) + 1

2
κ2 d2

dt2
H(t) + . . . . (3.2.26)

Because hadron-hadron collisions involve a range of processes, we consider a

generic process starting at O(αns ) for n ∈ Z, so that

H(t) = αns (t)h0 + αn+1
s (t)h1 + αn+2

s (t)h2 + . . . . (3.2.27)
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Once again using d
dt
αs(t, κ) = β(αs(t, κ) and Eqn. 3.2.2 we arrive at

d
dt
H(t) = nαn−1

s (t)β(αs)h0 + (n+ 1)αns (t)β(αs)h1 + . . .

= αn+1
s nβ0h0 + αn+2

s (nβ1h0 + (n+ 1)β0h1) + . . .

d2

dt2
H(t) = αn+2

s n(n+ 1)β2
0h0 + . . . .

(3.2.28)

Overall, to evaluate Σ we can therefore use Eqn. 3.2.25 along with

H(αs, κ) = αnsh0 + αn+1
s (h1 − κnβ0h0)

+ αn+2
s (h2 − κ(nβ1h0 + (n+ 1)β0h1)

+1
2
κ2n(n+ 1)β2

0h1) + . . . . (3.2.29)

Again, to evaluate the scale varied cross section, all that is needed is to modify

the coefficients at each order using those at the central scale for the surrounding

orders.

3.2.3 Scale variation in evolution of PDFs

We now turn to the effects of scale variation in the PDFs themselves. This is a

crucial contribution to MHOUs because the PDFs are common to predictions for

all processes, and therefore responsible for widespread correlations in uncertainty.

MHOUs in the PDFs arise from the truncation of the perturbative expansion of

the splitting functions (or, in Mellin space, the anomalous dimensions) in the

DGLAP evolution equations (Eqn. 1.1.28) discussed in Chapter 1. The scale

evolution of the PDFs can be encapsulated in Mellin space in the equation

µ2
F

d

dµ2
F

f(µ2
F ) = γ(αs(µ

2
F ))f(µ2

F ) , (3.2.30)

where the parton flavour indices are left implicit and the anomalous dimension,

γ, can be expressed as an expansion in αs as

γ(t) = αs(t)γ0 + α2
s(t)γ

2
1 + α3

s(t)γ
3
2 + · · · . (3.2.31)

Note that we refer to a separate factorisation scale, µF , distinct from the

renormalisation scale, µR, in the previous section. This is because each scale

is associated with a separate RGE and they are therefore independent; to explore

the full space of scale variations they need to be considered separately.
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To solve for the PDF, we can integrate Eqn. 3.2.30 to give

f(µ2
F ) = exp

(∫ µ2
F

µ0

dµ2

µ2
γ(αs(µ

2))

)
f0 , (3.2.32)

where f0 is the PDF at the initial scale, µ0. Note that the LHS is independent

of the choice of µ0. To consider the effect of scale variations on the PDF, we can

proceed similarly to Sec. 3.2.2, defining

µ2
F = kQ2, t = ln(Q2/Λ2), κ = ln k = lnµ2

F/Q
2, (3.2.33)

and finding the scale varied anomalous dimension

γ(αs(t), κ) = γ(t)− κ d
dt
γ(t) + 1

2
κ2 d2

dt2
γ(t) + · · · . (3.2.34)

Once again we can use the beta function expansion (Eqn. 3.2.2) alongside

Eqn. 3.2.31 to give

γ(αs(t+ κ), κ) = αs(t+ κ)γ0 + α2
s(t+ κ)(γ1 − κβ0γ0)

+ α3
s(t+ κ)(γ2 − κ(β1γ0 + 2β0γ1) + κ2β2

0γ0)

+ · · · , (3.2.35)

which has the same form as Eqn. 3.2.29 upon setting n = 1. We can use this

equation to estimate MHOUs in PDFs, which can be done by refitting the PDF

at each scale choice using different anomalous dimensions. This method has

been applied in previous analyses [83–85], but the process of refitting the PDFs

is computationally intensive and so we would like to avoid having to do this if

possible. Instead, we can look directly at the PDF level and consider evaluating

the PDFs themselves at different scales, as was done in [86].

We can define the scale varied PDF as that obtained by varying the scale in the

anomalous dimension,

f(αs(t+ κ), κ) = exp

(∫ t

t0

dt′γ(αs(t
′ + κ), κ)

)
f0 (3.2.36)

Shifting integration variable t′ → t′− κ whilst redefining the initial scale, we can
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then apply Eqn. 3.2.34 and expand the exponential, i.e.

f(αs(t+ κ), κ) = exp

(∫ t+κ

t0

dt′γ(αs(t
′), κ)

)
f0

= exp

([∫ t+κ

t0

dt′γ(t′)

]
− κγ(t+ κ) + 1

2
κ2 d

dt
γ(t+ κ) + . . .

)
× exp

(
κγ(t0)− 1

2
κ2 d

dt
γ(t0) + . . .

)
f0 (3.2.37)

=

[
1− κγ(t+ κ) + 1

2
κ2(γ2(t+ κ) +

d

dt
γ(t+ κ)) + . . .

]
× exp

(∫ t+κ

t0

dt′γ(t′)

)
exp

(
κγ(t0)− 1

2
κ2 d

dt
γ(t0) + . . .

)
f0 .

We can absorb the factor resulting from variation of t0 into the initial PDFs, f0,

by again redefining the initial scale in such a way that the additional term from

shifting the lower limit of exp
(∫ t+κ

t0
dt′γ(t′)

)
exactly cancels out the t0 variation

factor. This means that exp
(
κγ(t0)− 1

2
κ2 d

dt
γ(t0) + . . .

)
f0 → f0. Then, noting

also that exp
(∫ t+κ

t0
dt′γ(t′)

)
f0 = f(t+ κ), we end up with the result

f(αs(t+ κ), κ) =

[
1− κγ(t+ κ) + 1

2
κ2(γ2(t+ κ) +

d

dt
γ(t+ κ)) + . . .

]
f(t+ κ) .

(3.2.38)

This result, which comes from varying the scale at which the PDF is evaluated,

is equivalent to the result which comes from varying the scale in the anomalous

dimension, Eqn. 3.2.35. This is because there is only one RGE and therefore only

one scale which the PDF depends on. Furthermore, note that Eqn. 3.2.38 shows

us that the scale dependence can be factorised out of the PDF. This means we

are free to instead factor it into the parton level coefficient function, which will

always appear convolved with the PDF. This is useful when making a scale varied

prediction when only a central PDF is available, and has been used in the past to

make predictions for new LHC processes (e.g. Higgs production [87]). However, in

the case where we also want to consider µR variation in the coefficient function,

the two scale variations will be mixed up, and this can lead to a complicated

interplay, especially in the presence of heavy quark effects. In this work we adopt

the method of scale variation for PDFs by using Eqn. 3.2.38.
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3.2.4 Varying two scales together

We now consider the simultaneous variation of µR in the parton level observable

and µF in the PDFs, in order to explore the full range of scale variation space.

We will derive formulae for scale variation up to NNLO which are needed to

construct a MHOU covariance matrix.

For a DIS process we can write the double-scale-varied structure function as

F (Q2, µ2
F , µ

2
R) = C(αs(µ

2
R), µ2

R/Q
2)⊗ f(αs(µ

2
F ), µ2

F/Q
2). (3.2.39)

Similarly to before, we can define the variables

µ2
(F/R) = k(F/R)Q

2, κ(F/R) = ln k(F/R), t(F/R) = t+ κ(F/R) (3.2.40)

and use them to write the structure function as

F (t, κF , κR) = C(tR, κR)f(tF , κF ). (3.2.41)

We then need to apply the equations for the scale varied PDFs and coefficient

functions from the previous section,

f(tF , κF ) = f(tF )− κF d
dt
f(tF ) + 1

2
κ2
F
d2

dt2
f(tF ) + ... ,

C(tR, κR) = C(tR)− κR d
dt
C(tR) + 1

2
κ2
R
d2

dt2
C(tR) + ... ,

(3.2.42)

and use the fact that ∂
∂t
∼ O(αs) to see that

F (t, κF , κR) = C(tR)f(tF )−
(
κFC(tR) d

dt
f(tF ) + κR

d
dt
C(tR)f(tF )

)
+1

2

(
κ2
FC(tR) d

2

dt2
f(tF ) + 2κRκF

d
dt
C(tR) d

dt
f(tF )

+κ2
R
d2

dt2
C(tR)f(tF )

)
+O(α3

s) . (3.2.43)

Taking a closer look, and comparing to Eqn. 3.2.39, we can write this in terms of
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partial derivatives of F :

F (t, κF , κR) = F (tF , tR)−
(
κF

∂F

∂tF

∣∣∣∣
tR

+ κR
∂F

∂tR

∣∣∣∣
tF

)
+1

2

(
κ2
F

∂2F

∂t2F

∣∣∣∣
tR

+ 2κFκR
∂2F

∂tF∂tR

+κ2
R

∂2F

∂t2R

∣∣∣∣
tF

)
+ · · · . (3.2.44)

Considering this expression, we can think of κF
∂
∂tF

and κR
∂
∂tR

as being the

generators of the two types of scale variations.

For hadron-hadron processes, the double-scale-varied cross section is instead

Σ(tF , tR, κF , κR) = H(αs(tR), κR)⊗
(
f(tF , κF )⊗ f(tF , κF )

)
. (3.2.45)

and we can apply exactly the same approach as above, leading to

Σ(t, κF , κR) = Σ(tF , tR)−
(

2κF
∂Σ

∂tF

∣∣∣∣
tR

+ κR
∂Σ

∂tR

∣∣∣∣
tF

)
+1

2

(
2κ2

F

∂2Σ

∂t2F

∣∣∣∣
tR

+ 4κFκR
∂2Σ

∂tF∂tR

+κ2
R

∂2Σ

∂t2R

∣∣∣∣
tF

)
+ · · · , (3.2.46)

where this time we pick up a factor of 2 with each κF
∂
∂tF

, due to the two PDFs.

3.2.5 Scale variation for multiple processes

We are now approaching a formalism which can be applied to carry out scale

variations for the data included in PDF fits. But first we need to work out how

to carry out simultaneous scale variations involving data from more than one

process, for example DIS and Drell-Yan.

For the case of two separate processes, the parton level cross sections will be

totally independent, so there will be two separate RGEs and therefore two

separate renormalisation scales, and hence renormalisation scale variation should

be uncorrelated. However, all the processes share a common factorisation scale,

and so the factorisation scale variation must be correlated.
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This correlation can be complex because the DGLAP equation is a matrix

equation, and the anomalous dimension matrix has several independent eigen-

values (at NLO there are two singlet and one non-singlet, and more at higher

orders). In order to fully preserve the correlations we ought to consider a separate

factorisation scale for each of these components, and fully correlate this across all

processes. In this current work, however, we attempt to reduce the complexity by

retaining full correlation in the factorisation scale, only varying one scale. This

approximation might be inaccurate when considering two processes with evolution

dependent on different anomalous dimensions, in which case we would not be fully

exploring the scale variation space. We draw attention to this limitation as an

area of future study.

Sticking for the time being with correlated factorisation scale variation, for two

processes we will have in general three scales: two renormalisation scales and

one factorisation scale; µR1 , µR2 and µF . If we vary each scale independently by

a factor of 2 about their central value we will have seven total scale choices to

consider. Each time we add another process we will add another renormalisation

scale, and in effect add another dimension to the scale variation. For p

independent processes, labelled a = 1, . . . , p, there will be p + 1 independent

scale parameters and 3 + 2p total scale variations; one variation is the central

scale, two variations up and down for the factorisation scale, and two variations

up and down for each of the p renormalisation scales.

3.3 Building the theory covariance matrix

We now have all the components we need to set about constructing a theory

covariance matrix; we can carry out double scale variation for both DIS

and hadron-hadron processes, and correlate scale variation between multiple

processes. All that remains is to formulate a prescription for estimating MHOUs

given scale variations.

In Chapter 2 we formulated a method for including theory uncertainties in PDFs

using a theory covariance matrix composed using a distribution of shifts between

theory predictions at fixed order and the unknown all-order “true” theory. We

know that scale variation can be used to provide an estimate of these shifts, but

as discussed previously the exact combination of scales is arbitrary. To address

this problem, we present a series of prescriptions for constructing the theory
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covariance matrix, which we will later go on to test using results at known orders

and, in addition, by studying the impact on the PDFs; we can then select the

best prescription.

We consider a set of data involving p different types of processes, each with data

points {ia}, a = 1, . . . , p and an associated renormalisation scale ratio κRa =

lnµ2
Ra
/Q2. The theory covariance matrix can be constructed by taking an average

over the outer products of the shifts in scale varied theory relative to the central

theory. For the a-th process, these shifts are

∆ia(κF , κRa) ≡ Tia(κF , κRa)− Tia(0, 0) . (3.3.1)

For a given prescription, m, we then choose a set of points, Vm, in p+1-dimensional

scale variation space, and construct the theory covariance matrix by summing

over these points, normalised by a prescription-dependent factor Nm:

Sij = Nm

∑
Vm

∆ia(κf , κRa)∆ib(κf , κRb
) . (3.3.2)

Note that a and b can label either the same or different processes. Importantly,

since the covariance matrix is assembled as a sum of outer products it will

necessarily be positive semi-definite. However, given that the dimension of the

data is O(1000) and the dimension of Vm will be in general considerably smaller,

we expect S to be singular in most instances.

It now remains to develop a prescription, m. We must consider the full set of

data, so there are two scenarios:

1. i and j belong to the same process;

2. i and j belong to different processes.

Because S is rank 2, we only need to consider a maximum of two different

processes at any one time. Finally, we can choose how to correlate the scale

variation; we can pick a “symmetric prescription”, in which the scales are varied

independently, or an “asymmetric prescription”, where they are correlated. This

second scenario amounts to setting µF = µR, which is like varying the scale in the

physical cross section; because in a central prediction we typically set both scales

to the physical scale of the process (e.g. Q for DIS), we can call this varying the

scale of the process.
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κR
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κF
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κF

Figure 3.3.1 Symmetric prescriptions for a single process, indicating the
sampled values for the factorisation scale κF and renormalisation
scale κR in each case. The origin of coordinates corresponds to
the central scales κF = κR = 0. We show the three prescriptions
5-point (left), 5̄-point (middle) and 9-point (right).

3.3.1 Symmetric prescriptions

In a symmetric prescription, the scales are varied in an uncorrelated way.

One process

For a single process (p = 1), there are two scales, κF and κR. Let us denote

the number of independent scales as s, so here s = 2. We can write the theory

covariance matrix as

Sij = nm
∑
vm

∆i(κF , κR)∆j(κF , κR) , (3.3.3)

where vm is the set of m scale-varied points and nm is a normalisation factor, to be

determined. Note that vm excludes any points for which ∆i vanishes, since these

will not contribute to S. In practice, this means the central point (κF = κR = 0)

is not included. Overall there is one central point and m variations about it, so

we typically refer to a given prescription as an “(m+ 1)-point prescription”. We

can find nm by summing over the number of independent scales, s, and averaging

over the contributions from each scale, m. This means we can write

nm = s/m. (3.3.4)

We will now outline three different prescriptions, depicted in Fig. 3.3.1. In each

case we denote the values of the scales (κF ;κR), varying each by the fixed values

κ = {0,± ln 4}, which we denote {0,±} respectively. We also adopt the notation

∆+0
i = ∆i(+ ln 4, 0), ∆0−

i = ∆i(0,− ln 4), etc. for the shifts.
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� 5-point: v4 = {(±; 0), (0;±)} and n4 = 2/4 = 1/2. This amounts to

scale variation for each scale in turn, keeping the other fixed. We find the

covariance matrix

S
(5pt)
ij = 1

2
{∆+0

i ∆+0
j + ∆−0

i ∆−0
j + ∆0+

i ∆0+
j + ∆0−

i ∆0−
j } . (3.3.5)

We find that the variations of each scale are added together in quadrature,

as one would expect for independent contributions to the MHOU.

� 5-point: v4 = {(±;±)}, where (±;±) are assumed uncorrelated, and n4 =

2/4 = 1/2. This is the complement of 5-point, exploring a different region

of scale variation space.

S
(5pt)
ij = 1

2
{∆++

i ∆++
j + ∆−−i ∆−−j + ∆+−

i ∆+−
j + ∆−+

i ∆−+
j } . (3.3.6)

� 9-point: v8 = v4 ⊕ v4 (the union of 5-point and 5-point) and n8 =

2/8 = 1/4. Here we include every combination, varying the scales totally

independently.

S
(9pt)
ij = 1

4
{∆+0

i ∆+0
j + ∆−0

i ∆−0
j + ∆0+

i ∆0+
j + ∆0−

i ∆0−
j

+∆++
i ∆++

j + ∆+−
i ∆+−

j + ∆−+
i ∆−+

j + ∆−−i ∆−−j } .
(3.3.7)

Two processes

In the case that p = 2 we can have either uncorrelated or partially correlated

scale variations. We will have p + 1 = 3 independent scales to vary, and our set

of scale variation points, Vm, will be much larger than for one process (vm). If we

label the processes a = 1, b = 2, we can view the two-process covariance matrix

as

Sij =

(
Si1j1 Si1j2

Si2j1 Si2j2

)
, (3.3.8)

so the diagonal elements deal with data points in the same process, and the off-

diagonals deal with data points in different processes. For the diagonal blocks,

the form of S must be equivalent to the p = 1 case, and so

Si1j1 = Nm

∑
Vm

∆i1(κF , κR1)∆j1(κF , κR1) = nm
∑
vm

∆i1(κF , κR1)∆j1(κF , κR1) .

(3.3.9)
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Figure 3.3.2 Same as Fig. 3.3.1, now for the case of two different processes with
a common factorisation scale, κF , and different renormalisation
scales, κR1 and κR2, so the diagrams are now in 3d. We again
show the three prescriptions 5-point (left), 5̄-point (middle) and
9-point (right).

This means that vm must be a subset of Vm, so that if we sum over Vm setting κR2

to 0, we should recover vm up to a degeneracy factor, dm, which is the number of

copies of vm in Vm. This means the overall normalisation factor is

Nm = nm/dm . (3.3.10)

We now go on to consider the 5-point, 5-point and 9-point prescriptions for the

case of two processes, depicted in Fig. 3.3.2. We expand the notation to include

three scales, that is (κF ;κR1 , κR2).

� 5-point: We vary the factorisation scale holding the renormalisation scales

fixed, and the renormalisation scales holding the factorisation scale fixed, so

that V4 = {2(±; 0, 0), (0;±,±)}. This means V4 has eight elements in total.

The factor of two comes from considering the one-process case, where we

can set κR2 = 0, and must return a multiple of v4. Explicitly, we will get

{2(±; 0, 0), 2(0;±, 0)}, picking up a factor of two on the second term because

there are two terms implicitly here, for κR2 = + and −. We need to include

a factor of two from the outset on the first term so we end up with an overall

factor at the end, in this case d4 = 2. This means N4 = (1/2)/2 = 1/4.

The off-diagonal blocks of the covariance matrix are evaluated as

S
(5pt)
i1j2

= 1
4
{2∆+0

i1
∆+0
j2

+ 2∆−0
i1

∆−0
j2

+ (∆0+
i1

+ ∆0−
i1

)(∆0+
j2

+ ∆0−
j2

)}. (3.3.11)

When generalising to 3 processes, we simply write V4 = {4(±; 0, 0, 0),
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(0;±,±,±)}, and this time d4 = 4 by the same arguments as above.

However, we can still use Eqn. 3.3.11 to evalutate all of the off-diagonal

blocks because we will only ever be considering two of the three processes

at a time.

� 5-point: V 4 = {(±;±,±)}, so we are essentially exploring the outer corners

of the 3d scale variation space. V 4 has eight elements, and there are two

elements for each in v4, meaning that N4 = (1/2)/2 = 1/4. The off-diagonal

blocks of the covariance matrix are evaluated as

S
(5pt)
i1j2

= 1
4
{(∆++

i1
+ ∆+−

i1
)(∆++

j2
+ ∆+−

j2
) + (∆−+

i1
+ ∆−−i1 )(∆−+

j2
+ ∆−−j2 )} .

(3.3.12)

For three processes the generalisation is simply V 4 = {(±;±,±,±)}, with

N4 = 1/8.

� 9-point: Again, all three scales are varied completely independently and

V8 = {3(0;±,±), 2(±;±©,±©)}, where ±© means either +, − or 0. Note the

factors of 2 and 3, which arise from arguments similar to that for 5-point;

namely, that V8 must reduce to a multiple of v8 when κR2 is set to 0. The

overall d8 = 6 and so N8 = 1/24. The off-diagonal blocks of the covariance

matrix are

S
(9pt)
i1j2

= 1
24
{2(∆+0

i1
+ ∆++

i1
+ ∆+−

i1
)(∆+0

j2
+ ∆++

j2
+ ∆+−

j2
)

+2(∆−0
i1

+ ∆−+
i1

+ ∆−−i1 )(∆−0
j2

+ ∆−+
j2

+ ∆−−j2 )}
+3(∆0+

i1
+ ∆0−

i1
)(∆0+

j2
+ ∆0−

j2
)}.

(3.3.13)

For three processes, V8 = {9(0;±,±,±), 4(±;±©,±©,±©)} and d8 = 36.

3.3.2 Asymmetric prescriptions

It is sometimes argued that since only the cross-section is actually physical, a

single process has only one scale, namely the “scale of the process”. This is like

setting κF = κR. In addition, it is also possible to consider varying the scale

of the process on top of the variation of factorisation and renormalisation scales

already considered. The logic behind this is that the three scales each estimate a

different source of MHOU:

� Varying the scale of the process estimates the MHOU on the hard cross

section which is proportional to collinear logarithms;
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κR

κF
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κF

Figure 3.3.3 Same as Fig. 3.3.1, now in the case of the asymmetric
prescriptions for a single process with factorisation scale κF and
renormalisation scale κR. We display the 3-point (left) and 7-point
(right) prescriptions, defined in the text.

� Varying the renormalisation scale estimates the MHOU on the hard cross

section which is proportional to the beta function;

� Varying the factorisation scale estimates the MHOU in the anomalous

dimension.

However, both of these approaches will suppress correlations between uncertain-

ties in PDF evolution across different processes, and may therefore overestimate

the MHOU. Ultimately, the best scheme, be it a symmetric or an asymmetric

prescription, must be established through a validation procedure such as the one

outlined in later sections.

We will now formulate prescriptions for these two asymmetric prescriptions, being

the 3-point and 7-point prescriptions, respectively. These are depicted for a single

process in Fig. 3.3.3.

� 3-point: We set κF = κR and vary this scale. We have v2 = {±} and

s = 1, m = 2 and n2 = 1/2, so we are just averaging over the two scale-

varied options. For a single process

S
(3pt)
ij = 1

2
{∆++

i ∆++
j + ∆−−i ∆−−j } . (3.3.14)

For two different processes we have V2 = {±,±}, and can see explicitly

that we are ignoring the correlations in κF between the two processes. We

have d2 = 2 and so N2 = (1/2)/2 = 1/4, and the off-diagonal blocks of the

covariance matrix are evaluated as

S
(3pt)
i1j2

= 1
4
{(∆++

i1
+ ∆−−i1 )(∆++

j2
+ ∆−−j2 )} . (3.3.15)
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� 7-point: We combine varying the scale of the process with κR and κF

variation. We will end up with essentially a combination of 3-point

(scale of process) and 5-point (individual factorisation and renormali-

sation). For a single process, v6 = {(±; 0), (0;±), (+; +), (−;−)} =

{(±; 0), (0;±), (±;±)}, where (±;±) simply means that the variation is

fully correlated (so there are only 2 terms, not 4). Then s = 2 and m = 6

so n6 = 1/3, and for a single process

S
(7pt)
ij = 1

3
{∆+0

i ∆+0
j +∆−0

i ∆−0
j +∆0+

i ∆0+
j +∆0−

i ∆0−
j +∆++

i ∆++
j +∆−−i ∆−−j } .

(3.3.16)

For more than one process, variations of the scale of the process are

uncorrelated between processes so the µF variation enclosed in the scale

of the process variation will be decorrelated. So overall for two processes

we will be in a 4d scale variation space, (κF1 , κR1 ;κF2 , κR2). Then V6 =

{2(+, 0; +, 0), 2(−, 0;−, 0), (0,±; 0,±), (±,±;±,±)}, where (±,±;±,±) =

{(+,+; +,+), (+,+;−,−), (−,−; +,+), (−,−;−,−)}, and thus d6 = 2, so

N6 = 1/6, and the off-diagonal theory covariance matrix reads

S
(7pt)
i1j2

=1
6
{2∆+0

i1
∆+0
j2

+ 2∆−0
i1

∆−0
j2

+ (∆0+
i1

+ ∆0−
i1

)(∆0+
j2

+ ∆0−
j2

)

+ (∆++
i1

+ ∆−−i1 )(∆++
j2

+ ∆−−j2 )} .
(3.3.17)

3.4 Results for the theory covariance matrix

In this section we summarise the data used to calculate theory covariance matrices

using the prescriptions in the previous section. We divide the data into processes,

each with a distinct renormalisation scale. We present the theory covariance

matrices for each prescription at NLO.

3.4.1 Input data and process categorisation

In order to use these prescriptions, we must first divide our data into distinct

“processes”. There is some degree of arbitrariness here, but the idea is to group

together data which might have a similar structure of MHOUs under a common

renormalisation scale. First we will review the data included in these fits, then

we will outline the process categorisation. This is summarised in Table 3.4.1.
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Process Type Dataset Reference Ndat Ndat (process)

DIS NC

NMC [88, 89] 134

1593

SLAC [90] 12

BCDMS [91, 92] 530

HERA σp
NC [96] 886

HERA σc
NC [97] 31

DIS CC

NuTeV dimuon [93, 94] 41

552CHORUS [95] 430

HERA σp
CC [96] 81

DY

ATLAS W,Z, 7 TeV 2010 [102] 30

484

ATLAS W,Z, 7 TeV 2011 [103] 34

ATLAS low-mass DY 2011 [104] 4

ATLAS high-mass DY 2011 [105] 5

ATLAS Z pT 8 TeV (pllT ,Mll) [76] 44

ATLAS Z pT 8 TeV (pllT , yZ) [76] 48

CMS Drell-Yan 2D 2011 [110] 88

CMS W asy 840 pb [111] 11

CMS W asy 4.7 pb [112] 11

CMS W rap 8 TeV [113] 22

CMS Z pT 8 TeV (pllT ,Mll) [75] 28

LHCb Z 940 pb [118] 9

LHCb Z → ee 2 fb [119] 17

LHCb W,Z → µ 7 TeV [120] 29

LHCb W,Z → µ 8 TeV [121] 30

CDF Z rap [98] 29

D0 Z rap [99] 28

D0 W → eν asy [100] 8

D0 W → µν asy [101] 9

JET
ATLAS jets 2011 7 TeV [106] 31

164
CMS jets 7 TeV 2011 [114] 133

TOP

ATLAS σtop
tt [107, 108] 3

26
ATLAS tt̄ rap [109] 10

CMS σtop
tt [115, 116] 3

CMS tt̄ rap [117] 10

Total 2819 2819

Table 3.4.1 Input data and process categorisation. Each dataset is assigned
to one of five categories: neutral-current DIS (DIS NC), charged-
current DIS (DIS CC), Drell-Yan (DY), jet production (JET) and
top quark pair production (TOP).

The data considered here are a mildly altered version of those in NNPDF3.1 [10].

More exactly, they include: fixed-target [88–95] and HERA [96] DIS structure

functions; charm cross-sections from HERA [97]; gauge boson production

from the Tevatron [98–101]; electroweak boson production, inclusive jet, Z pT

distributions, and tt̄ total and differential cross-sections from ATLAS [76, 102–

109], CMS [75, 110–117] and LHCb [118–121]. In total they make up 2819 data

points.

We identify five categories to divide the data into: neutral current DIS (DIS
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NC); charged current DIS (DIS CC); Drell-Yan (DY); jet production (JET); and

top production (TOP). These represent groups of data with similar expected

MHO terms. For instance, predictions for DY processes can be differential in

differing variables, but all are obtained by integrating the same underlying, fully

differential, distribution. This means they should have a similar perturbative

structure. On the other hand, these distributions constrain different PDFs and

so complex correlations between the PDFs will be introduced. Note that DIS is

split up into CC and NC due to the differing structure of interaction.

3.4.2 NLO theory covariance matrices

All calculations are performed using the same settings as in [10]. Theoretical

predictions are provided by APFEL [44] for the DIS structure functions and by

APFELgrid [122] combined with APPLgrid [123] for the hadronic cross-sections.

They are all evaluated using the central NLO PDF obtained by performing a NLO

fit to the same dataset, for consistency. The resulting predictions are then used

to construct the theory covariance matrices using the ReportEngine software [2].

We now present the theory covariance matrices at NLO, and discuss their

features. In Fig. 3.4.1 we compare the square root of the diagonal elements of the

experiment (C) and theory (S) covariance matrices, normalised to experimental

data values; these are equivalent to the fractional per-point uncertainties. In this

and what follows, the data are grouped by process and, within each process, by

dataset according to Table 3.4.1, wherein they are binned according to kinematics

(the same as in the experimental papers). S is the 9-pt covariance matrix, being

that with the largest number of independent scale variations. On the whole,

the size of NLO MHOUs is comparable to the experimental uncertainties, and

we can see that each will dominate in different regions. One particularly striking

instance of this is seen in the HERA data, which can be found in the middle of DIS

NC: for high (x, Q2) there is low statistics and so the experimental uncertainties

dominate; for low (x, Q2) perturbation theory holds less strongly and the MHOUs

dominate. We can also explore the structure of correlations between data points

by viewing the covariance matrices as a whole.

In Fig. 3.4.2 we show C alongside S (9-point) as a % of experimental data

value. It is immediately obvious that S contains a much richer and more vibrant

structure than C; experimental correlations only exist within experiments as

the experiments are isolated from one another. However, predictions for these
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what follows, data are grouped by process and, within each process,
by dataset, following Table 3.4.1

DIS NC
DIS CC DY JETSTOP

DIS NC

DIS CC

DY

JETS
TOP

Experimental Covariance Matrix

102
101

100
10 1

10 2

0

10 2
10 1

100
101

102

%
 o

f d
at

a

DIS NC
DIS CC DY JETSTOP

DIS NC

DIS CC

DY

JETS
TOP

Theory Covariance matrix (9 pt)

101

100

10 1

10 2

0

10 2

10 1

100

101

%
 o

f d
at

a

Figure 3.4.2 Comparison of the experimental Cij (left) and the 9-point
theoretical Sij (right) covariance matrices. Entries are displayed
as a percentage of the experimental value.

experiments originate from a common theoretical framework, and therefore theory

uncertainties can exist between any two data points, regardless of experimental

origin. In particular, data points within the same process are assigned a common

renormalisation scale, inducing correlations between them. Furthermore, all

points are predicted using the same PDFs and, in the 9-point prescription, share

a common factorisation scale.
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matrices computed using the prescriptions described in Sec. 3.3:
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This introduces entries in S outwith individual processes. Along the block

diagonal we note that correlations within an individual experiment are broadly

positive, due to these points sharing a close kinematic region. In other regions we

see a mixture of positive and negative correlations, for example HERA is generally

positively correlated with DY but negatively correlated with fixed target DIS.

The exact structure of S is dependent on the chosen prescription in Sec. 3.3. In

Fig. 3.4.3 we delve into these differences by comparing correlation matrices for

each prescription, defined for an arbitrary matrix A as

corrAij ≡
Aij√

Aii
√
Ajj

. (3.4.1)

This removes the effect of the differing magnitude of entries, laying bare the

underlying structure; a value of 1 corresponds to full correlation between two

points, a value of 0 corresponds to no correlation and a value of -1 corresponds

to full anticorrelation. This time we look at the impact of adding the theory

covariance matrix to the experiement covariance matrix. In all cases a richer

structure emerges, however we note that:

� For 3-point the correlations between processes are a lot weaker, and this

is because both factorisation and renormalisation scale are uncorrelated

between processes;

� For 7-point (the other asymmetric prescription), the correlations are weaker

than in 5-point despite the fact that 7-point uses the same scale variation

points as 5-point plus two additional ones. This is because the µF variation

is combined with the uncorrelated “scale of process” variation;

� All three symmetric prescriptions show similar patterns of correlation.

From this, it seems that any of the symmetric prescriptions might be a suitable

choice. However, in the next section we outline more quantitative tests to validate

whether or not each prescription provides a reasonable estimate of MHOUs, and

hence determine the best prescription.
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3.5 Validating the theory covariance matrix

Whilst in general the structure of MHOs is unknown to us, due to the perturbative

nature of calculations we do know that the MHOU is dominated by the next

MHO; so at NLO we expect the MHOU to be dominated by the NNLO terms.

A good test of the NLO theory covariance matrix, therefore, is that it reliably

encapsulates the known NNLO predictions. In this section we describe a method

of validation based on this observation.We summarise the procedure here, before

going into some considerable detail in Sec. 3.5.1.

We consider the space of experimental data, D, spanned by the vector of

experimental data points, Di, i = 1, . . . , Ndat. The theory covmat, Sij acts as

a linear operator on this space. We know that Sij is positive semi-definite and

symmetric, and therefore has positive or zero eigenvalues only. As an uncertainty

matrix, Sij defines ellipsoids, E, of given confidence level. These lie in the

subspace S ∈ D, and are centred on the NLO prediction, TNLOi . A test of

the efficacy of Sij is that the 1-σ ellipse broadly encapsulates the known shift

to the next higher order, δi ∼ TNNLOi − TNLOi . Note that here TNNLOi must

be evaluated using the same NLO PDF, to ensure that the shift is due only to

perturbative differences and not to effects from refitting. This is a robust test,

owing to the great difference between dim D ∼ 1000 and dim S ∼ 10; for a

random matrix we would expect only 1% of δi to lie in S.

3.5.1 Details of validation procedure

Recall that the ellipse E ∈ S ∈ D, where dim D = Ndat and dim S = Nsub. We

define dimensionless quantities by normalising to the theory prediction at NLO:

Ŝij =
Sij

TNLOi TNLOj

; δi =
TNNLOi − TNLOi

TNLOi

. (3.5.1)

We expect the component of δi along each axis of the ellipse, E, to be the

same order as the 1-σ ellipse. Physically, this means that the eigenvectors of Sij

correctly estimate all the independent directions of uncertainty in theory space.

The size of the shift in each direction is given by the corresponding eigenvalue.

The null subspace of E, i.e., directions with vanishing eigenvalues, corresponds to

directions in D where the theory uncertainty is very small and can be neglected.
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We can find the eigenvectors and eigenvalues of Ŝij by diagonalising it. The

non-zero eigenvalues are λα ≡ (sα)2; α = 1, . . . , Nsub and there are Ndat − Nsub

additional zero eigenvalues - this is a large number. We choose the eigenvectors,

eαi , to be orthonormal such that ∑
i

eαi e
β
i = δαβ. (3.5.2)

This diagonalisation procedure is somewhat involved owing to the large number

of zero eigenvalues. To make this easier, we can project Ŝ onto the subspace,

S, where all the eigenvalues are positive definite by construction. We can then

perform the diagonalisation here. We can make this projection by noting that S

is spanned by the vectors used to construct Sij, that is {∆i(κF , κRa) : κF , κRa ∈
Vm}. Correspondingly, Ŝij is spanned by ∆̂i ≡ δi/T

NLO
i . The caveat is that

not all of these vectors are linearly independent, and so we must find a linearly

independent subset of these on a case by case basis, of which there will be Nsub.

We now consider each of the prescriptions in Sec. 3.3 in turn.

3-point

Here the factorisation scale is always correlated with the renormalisation scale

variation so we can consider (κR1 , κR2 , . . . , κRp) only. Note that here we must

consider all p processes rather than just 2 because we are interested in the space

spanned by the whole of S, whereas before we were constructing S piece by piece.

The table below summarises the possible permutations of scale variations under

this scheme; each type of scale variation configuration is displayed alongisde the

number of permutations of this type.

3-point

No. of vectors (κR1 , κR2 , . . . , κRp)

1 (+,+,+, . . . )

1 (−,−,−, . . . )
p (−,+,+, . . . ) and cyclic

p (+,−,−, . . . ) and cyclic

So we näıvely have 2+2p vectors in this space. However, these are not all linearly

independent. Explicitly, we have the following restrictions:

� If we sum all of the cyclic permutations in the lower two rows we get
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p( (+,+,+, . . . ) + (−,−,−, . . . ) ), which is just p times the sum of the

first two rows. This is one restriction;

� Each pair of complimentary cyclic permutations, e.g., (−,+,+, . . . ) and

(+,−,−, . . . ), sum to the sum of the first two rows. These are another p

restrictions.

Overall this means we have 2+2p−1−p = p+1 linearly independent contributions,

and so N3pt
sub = p + 1. This means we can choose rows 1 and 3 as our linearly

independent vectors.

5-point

We can apply similar arguments here, this time also considering the factorisation

scale.

5-point

No. of vectors (κF ;κR1 , κR2 , . . . , κRp)

2 (±; 0, 0, 0, . . . )

1 (0;−,−,−, . . . )
1 (0; +,+,+, . . . )

p (0;−,+,+, . . . ) and cyclic

p (0; +,−,−, . . . ) and cyclic

Again we the same p+1 restrictions as in 3-point and so Nsub = 3+2p−(p+1) =

p+ 3. We choose rows 1, 3 and 4 as our linearly independent vectors.

5-point

5-point

No. of vectors (κF ;κR1 , κR2 , . . . , κRp)

2 (±; +,+,+, . . . )

2 (±;−,−,−, . . . )
2p (±;−,+,+, . . . ) and cyclic

2p (±; +,−,−, . . . ) and cyclic

This time since we have ± for every possibility, there are 2(p + 1) restrictions,
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and so Nsub = 4 + 4p− 2(p+ 1) = 2p+ 2. We choose rows 1 and 3 as our linearly

independent vectors.

7-point

This is just the sum of 3-point and 5-point, so Nsub = p + 1 + p + 3 = 2p + 4.

Likewise we combine the vectors from 3-point and 5-point.

9-point

9-point

No. of vectors (κF ;κR1 , κR2 , . . . , κRp)

3 (±©; +,+,+, . . . )

3 (±©;−,−,−, . . . )
3p (±©;−,+,+, . . . ) and cyclic

3p (±©; +,−,−, . . . ) and cyclic

2 (±; 0, 0, 0, . . . )

2p (±; 0,−,−, . . . ) and cyclic

2p (±; 0,+,+, . . . ) and cyclic

This time we have 3(p+ 1) restrictions from the top four rows and an additional

2(p+1) from the bottom three, so overallNsub = 6+6p+2+4p−3(p+1)−2(p+1) =

5p+ 3. We choose rows 1, 3 and 7 as our linearly independent vectors.

Now that we have determined a suitable subspace, we can project the shift, δi,

onto these eigenvectors:

δα =
∑
i

δie
α
i . (3.5.3)

For a reasonable covariance matrix, δα should be a similar size to E in each

dimension. We can then find the total component of the shift in S,

δSi =
∑
α

δαeαi , (3.5.4)

and the complementary component in the remaining space, D/S,

δmissi = δi − δSi . (3.5.5)
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Figure 3.5.1 Schematic representation of the geometric relation between the
shift vector, δ ∈ D, (here drawn as 3d), and the component, δS, of
the shift vector which lies in the subspace, S (here drawn as 2d),
containing the ellipse, E, defined by the theory covariance matrix.
The angle θ between δ and δS is also shown; the dotted line shows
the other side of the triangle, δmiss ∈ D/S.

The validation will be a success if most of δ is in S, i.e. |δmissi |� |δi|. Fig. 3.5.1

depicts the relationship between these objects. Note that δ, δS and δmiss make

up a right angled triangle, with some angle, θ, between δ and δS. For a successful

validation, θ should be “small”. Although there is no distinct cut-off of values

here, note that given the dimension of D is 100 times larger than S, for a random

covariance matrix we would expect θ very close to 90°.

3.5.2 Results of validation tests

We now apply the validation tests outlined thus far to the NLO theory covariance

matrices for the various prescriptions.

A first check can be done by comparing the diagonal elements, σi where Ŝii =

(σi)
2, with the shifts, δi. This tests whether the per-point uncertainties encompass

the NLO to NNLO shift. In Fig. 3.5.2, these comparisons are shown for all the

prescriptions. Clearly, the shape of the MHOU is similar to the shape of the

shift for the majority of the data and for each prescription. In fact, there is

little difference between the prescriptions, except for the size of the uncertainty;

5-point is the least conservative and 5-point is the most conservative.
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Figure 3.5.2 The diagonal uncertainties σi (red) symmetrized about zero,
compared to the shift δi for each datapoint (black), for the
prescriptions. From top to bottom: 3-point, 5-point 5-point, 7-
point and 9-point (bottom). All values are shown as percentage of
the central theory prediction.
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From this we can see that the theory covmat is qualitatively descriptive of the

observed higher order shift, in terms of size and correlation. We also note that

the majority of the influence of prescription choice is on the off-diagonal elements.

The range of scale variation looks to be broadly appropriate, therefore, with the

caveat that for some points the MHOU is overestimated (see in particular NC

DIS). This is a conservative treatment, however it could affect the weighting of

data sets adversely.

To examine the efficacy of the correlations, we must turn to the methods discussed

in the previous section. We first look at the angle, θ, between the shift and its

component in the subspace, S, spanned by the theory covariance matrix.

Prescription Nsub θ

5-pt 8 33o

5-pt 12 31o

9-pt 28 26o

3-pt 6 52o

7-pt 14 29o

Table 3.5.1 The angle, θ, between the NNLO-NLO shift and its component, δSi ,
lying within the subspace S (see Fig. 3.5.1) spanned by the theory
covariance matrix for different prescriptions. The dimension of the
subspace S in each case is also given.

Tab. 3.5.1 displays these values for each of the prescriptions. All of these

are reasonably small, given that Nsub � Ndat, but 9-point is the best, with

θ = 26°, due to the more comprehensive structure of scale variations. 3-point is

unsurprisingly, the worst, suggesting that lack of correlation in the factorisation

scale misses important correlations in the universal PDF evolution.

Tab. 3.5.2 shows the same analysis carried out individually for the various

processes. The same hierarchy of prescriptions is evident within each process,

with θ smallest for the processes with the least data (e.g. TOP). This is expected,

since larger collections of data span a greater kinematic range and include a

richer structure, which is correspondingly harder to capture. DIS NC, the largest

process, is the most poorly described. Note that the global value for θ is better

than this, and so it is correlations within individual processes which are hardest

to capture.
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Presc. Nsub DIS NC DIS CC DY JET TOP

1593 552 484 164 26

5-pt 4 39o 21o 25o 17o 11o

5-pt 4 38o 17o 23o 22o 10o

9-pt 8 32o 16o 22o 14o 3o

3-pt 2 54o 36o 39o 24o 12o

7-pt 6 35o 17o 22o 16o 3o

Table 3.5.2 Same as Table 3.5.1 for each process of Table 3.4.1. The number
of data points in each process is given directly below the name of
the process.

Having established what fraction of δi falls within S, we now go on to look at

the complimentary component which falls outside, δmissi . Fig. 3.5.3 shows this

alongside δi. The missing element is non-zero for all processes, and with a shape

following that of the shift. This suggests there could be a component of δi which

is missing for most data points, pointing to a poor estimation of the MHOU in

the PDFs, which is common to all data. A good candidate for this is that the

factorisation scale variation, as mentioned before, is only approximate; it would

be better to include a separate variation for each of the eigenvalues of evolution,

e.g. to first order splitting up the singlet and non-singlet.
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Figure 3.5.3 The NNLO-NLO shift, δi (black), compared to its component, δmiss
i

(blue), which lies outside the subspace S, computed using the 9-
point prescription.
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δα/sα (lower). The magnitude of missing component, |δmiss

i | is
also shown (blue star). Prescriptions: (top left) 3-point, 5-point
5-point, 7-point and 9-point (bottom right) 70



Figure 3.5.5 The components, eαi (green), of the eigenvectors, corresponding
to the five largest eigenvalues for the 9-point theory covariance
matrix. The NNLO-NLO shift, δi (black), is shown for
comparison.

We know the component of the shift in the space of theory uncertainties, S, but

we still need to see what fraction of this is encapsulated by the ellipse, E. To

do this we look at the eigenvalues of the theory covariance matrix, λα = (sα)2.

These are the lengths of the semi-axes of E, and there are as many as Nsub. We

can compare them to δα, the projections of the shift onto each eigenvector.

Fig. 3.5.4 shows these values for each prescription. All the prescriptions do a

reasonable job, in that the largest eigenvalue is similar to the projection of the

shift in that direction. Additionally, the size of the eigenvalues tends to decrease

as the shift in that direction decreases. As expected, 3-point overestimates the

71



uncertainty, with δα < sα for all eigenvalues. This is also the case for most of 5-

and 5-point. However, for the more complicated 7- and 9-point there is a better

estimation for the larger eigenvalues, although a high scatter and poor prediction

for the smaller ones; note that this is a result of only six scales being varied,

so there is limited information available. Additionally, the missing component

is less than the largest projection for the symmetric prescriptions but is greater

for the asymmetric prescriptions. This, once again, supports the adoption of a

symmetric prescription.

Finally we investigate the components of the eigenvectors in the data space,

D. The five largest of these for the 9-point are plotted in Fig. 3.5.5, alongside δ.

Each of these can be identified with a component of the variation. From largest to

smallest: 1 is largely DIS NC; 2 is a mixture of DIS NC and CC; 3 is DY; 4 is DIS

CC; 5 is JETS. Unsurprisingly, the largest is dominated by the largest process,

and so on, until the important TOP contribution appears at the (unshown) 9th

eigenvector.

Overall, we have shown that all of the prescriptions capture most of the important

features of the MHOs, and that 9-point does so the most accurately, given its

more complex structure of scale variation. We therefore adopt 9-point as our

chosen prescription, and proceed in the next section to include a 9-point theory

covariance matrix in NLO PDF fits.

3.6 PDFs with missing higher order uncertainties

In this section we present the goal of this project: PDFs at NLO with the

systematic inclusion of MHOUs. We compare NLO PDFs with and without

MHOUs against the known NNLO PDFs, addressing the stability of the results

to changes in prescription for the covariance matrix (9-pt vs 7-pt vs 3-pt). We

break down the impact of MHOUs by including them separately in the Monte-

Carlo sampling and the fitting.

To recap, there are only two places in which a theory covariance matrix changes

the PDF determination:
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Sampling

Recall from Chapter 1 that Monte Carlo pseudodata replicas D
(k)
i , k = 1, . . . Nrep,

are generated such that their covariance gives the total covariance matrix:

lim
Nrep→∞

1

Nrep(Nrep − 1)

Nrep∑
k=1

(D
(k)
i − 〈Di〉)(D(k)

j − 〈Dj〉) = Cij + Sij, (3.6.1)

where 〈. . . 〉 denotes an average over replicas.

Fitting

During fitting the χ2 is minimised, and this depends on Sij through the equation:

χ2 =
1

Ndat

Ndat∑
i,j

(Di − Ti)(C + S)−1
ij (Dj − Tj), (3.6.2)

where Cij is the t0 covariance matrix to avoid d’Agostini bias [45, 46], as

mentioned in Chapter 1.

We can assess the quality of the fit using this χ2 estimator alongside the φ

estimator, defined as

φ =
√
〈χ2

exp[Ti]〉 − χ2
exp[〈Ti〉], (3.6.3)

where χ2
exp is evaluated using the (non-t0) experimental covariance matrix, Cij.

Following [57], this can be expressed as

φ =

√√√√ 1

Ndat

Ndat∑
i,j=1

(Cij + Sij)−1Xij, (3.6.4)

where Xij = 〈TiTj〉 − 〈Ti〉〈Tj〉 is the covariance matrix of theoretical predictions.

This is a measure of the consistency of the data; if they are consistent, then they

should combine to reduce the uncertainty and so φ� 1. The result should be a

factor of rφ greater than when S is not included, where

rφ =

√√√√1 +
1

Ndat

Ndat∑
i,j=1

C−1
ij Sij. (3.6.5)
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This means that if there were no other changes we would expect PDF uncer-

tainties to increase by rφ upon including MHOUs. The PDFs considered in this

section are summarised in Table 3.6.2. NNLO PDFs with MHOUs are to be

determined in a future work. The φ and χ2 values for these fits are shown in

Tables 3.6.1, 3.6.3, broken down by process type and, for χ2 by dataset.

χ2/Ndat in the NNPDF3.1 global fits

Dataset Ndat NLO NNLO

C C + S(9pt) C + S(7pt) C + S(3pt) C + S
(9pt)
fit C + S

(9pt)
samp C

NMC 134 1.241 1.239 1.264 1.253 1.235 1.246 1.222

SLAC 12 0.868 0.503 0.485 0.509 0.493 0.738 0.693

BCDMS 530 1.040 1.029 1.046 1.062 1.033 1.042 1.062

HERA σp
NC 886 1.086 1.044 1.046 1.079 1.044 1.190 1.098

HERA σc
NC 31 1.395 1.037 1.082 1.172 1.055 1.563 1.163

DIS NC 1593 1.088 1.079 1.086 1.095 1.081 1.227 1.084

NuTeV dimuon 41 0.474 0.388 0.355 0.359 0.421 0.406 0.470

CHORUS 430 1.037 0.891 0.896 0.900 0.898 1.081 1.124

HERA σp
CC 81 1.154 1.070 1.067 1.106 1.062 1.103 1.126

DIS CC 552 1.012 0.928 0.933 0.960 0.929 1.036 1.079

ATLAS W,Z 7 TeV 2010 30 0.999 0.880 0.916 0.975 0.892 0.984 0.935

ATLAS W,Z 7 TeV 2011 34 3.306 2.224 2.282 2.389 2.205 3.107 1.807

ATLAS low-mass DY 7 TeV 4 0.684 0.654 0.668 0.690 0.660 0.733 1.024

ATLAS high-mass DY 7 TeV 5 1.677 1.736 1.700 1.660 1.667 1.577 1.498

ATLAS Z pT 8 TeV (pllT ,Mll) 44 1.171 1.067 1.070 1.067 1.062 1.183 0.907

ATLAS Z pT 8 TeV (pllT , yll) 48 1.666 1.583 1.614 1.688 1.638 1.641 0.865

CMS Drell-Yan 2D 2011 88 1.220 1.067 1.098 1.169 1.062 1.132 1.319

CMS W asy 840 pb 11 0.965 1.022 0.966 0.987 1.045 1.034 0.863

CMS W asy 4.7 fb 11 1.662 1.670 1.704 1.713 1.659 1.657 1.750

CMS W rap 8 TeV 22 0.955 0.611 0.609 0.587 0.627 0.665 0.826

CMS Z pT 8 TeV (pllT ,Mll) 28 3.895 3.745 3.712 3.836 3.706 3.905 1.339

LHCb Z 940 pb 9 1.238 1.191 1.162 1.179 1.165 1.281 1.437

LHCb Z → ee 2 fb 17 1.305 1.303 1.305 1.313 1.334 1.250 1.203

LHCb W,Z → µ 7 TeV 29 1.262 1.106 1.267 1.261 1.134 1.207 1.536

LHCb W,Z → µ 8 TeV 30 1.194 1.027 1.125 1.154 1.054 1.152 1.438

CDF Z rap 29 1.554 1.313 1.433 1.505 1.311 1.418 1.510

D0 Z rap 28 0.649 0.601 0.626 0.640 0.597 0.618 0.604

D0 W → eν asy 8 1.176 1.066 1.055 1.083 1.029 1.200 2.558

D0 W → µν asy 9 1.400 1.450 1.372 1.361 1.439 1.395 1.374

DY 484 1.486 1.447 1.485 1.483 1.461 1.434 1.231

ATLAS jets 2011 7 TeV 31 1.069 1.019 1.065 1.079 1.026 1.031 1.076

CMS jets 7 TeV 2011 133 0.869 0.786 0.790 0.830 0.795 0.883 0.921

JETS 164 0.907 0.839 0.858 0.901 0.848 0.911 0.950

ATLAS σtop
tt 3 2.577 0.787 0.853 0.982 0.770 2.442 0.903

ATLAS tt̄ rap 10 1.258 0.955 0.867 0.910 0.935 1.355 1.424

CMS σtop
tt 3 0.984 0.170 0.234 0.333 0.158 0.859 0.140

CMS tt̄ rap 10 0.950 0.910 0.923 0.933 0.916 0.942 1.039

TOP 26 1.260 1.012 1.016 1.077 1.001 1.264 1.068

Total 2819 1.139 1.109 1.129 1.139 1.113 1.220 1.105

Table 3.6.1 Breakdown of χ2 values by dataset and process.
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Label Order Cov. Mat. Comments

NNPDF31 nlo as 0118 kF 1 kR 1 NLO C baseline Global NLO
NNPDF31 nlo as 0118 scalecov 9pt NLO C + S(9pt)

NNPDF31 nlo as 0118 scalecov 7pt NLO C + S(7pt)

NNPDF31 nlo as 0118 scalecov 3pt NLO C + S(3pt)

NNPDF31 nlo as 0118 scalecov 9pt fit NLO C + S(9pt) S only in χ2 definition
NNPDF31 nlo as 0118 scalecov 9pt sampl NLO C + S(9pt) S only in sampling

NNPDF31 nnlo as 0118 kF 1 kR 1 NNLO C baseline Global NNLO

Table 3.6.2 Summary of the PDFs discussed in this section. The perturbative
order and treatment of uncertainties for each are indicated.

φ

Process NLO NNLO

C C + S(9pt) C + S(7pt) C + S(3pt) C + S
(9pt)
fit C + S

(9pt)
sampl C

DIS NC 0.266 0.412 0.393 0.384 0.414 1.137 0.305

DIS CC 0.389 0.408 0.427 0.442 0.388 0.502 0.471

DY 0.361 0.377 0.369 0.379 0.378 0.603 0.380

JETS 0.295 0.359 0.327 0.333 0.336 0.461 0.392

TOP 0.375 0.443 0.387 0.405 0.382 0.612 0.363

Total 0.314 0.405 0.394 0.394 0.400 0.932 0.362

Table 3.6.3 φ for fits with S compared to without. Results are shown for the
9-, 7-, and 3- point prescriptions. For 9-point the impact is broken
down by inclusion of S in either fitting (Sfit) or sampling (Ssampl)
only. The final column is a comparison to the NNLO C only fit.

3.6.1 Fit quality

We can see that including MHOUs causes the χ2 to decrease, both globally and for

many individual datasets. This is an indication that the fit quality has improved,

and is to be expected as we have added additional uncertainties. This varies

slightly by prescription, with 9-point showing the greatest improvement, down

3%, which is comparable to the NNLO value. This suggests that the theory

uncertainty is doing a reasonable job of accounting for the NNLO correction.

Individual datasets follow a similar trend, with the caveat that at NNLO some

datasets acquire additional uncertainties, which confuses the comparison (e.g.

CMS Z pT ). φ increases by 30% for 9-point, less than the expected value of
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rφ=1.69, suggesting a resolution of tension between datasets. This is relatively

stable across prescription choice, although a little higher for 9-point.

Let us now turn our attention to the fits were S is only included in the sampling

or the fitting. For sampling only, we expect the uncertainty to increase, leading

to broad fluctuations in the data replicas, but because this is not accounted for

in the χ2 the fit quality should be worse. This is indeed what we see, with the

χ2 increasing and the φ tripling in value. For fitting only, the MHOU should

mostly affect the weighting between datasets, and therefore the central value of

the PDFs. We can see that the χ2 is close to that of the fit with S in fitting and

sampling, and the φ increases less. But it is clear that it is the inclusion of S in

the fitting which drives the best fit.

3.6.2 Form of PDFs

We now consider the form of the PDFs themselves. Fig 3.6.1 shows the NLO PDFs

before and after adding (9-point) MHOUs. These are compared to the central

value of the NNLO C-only PDF. Results are shown at the parametrisation scale,

Q = 1.6 GeV, alongside a higher scale, Q = 10 GeV, for g, Σ, d̄ and s. In the data

region, the PDF uncertainties increase a small amount, but the biggest difference

is in the significant shift of central value, up to 1-σ. This corresponds with what

we saw earlier in the φ values, which increase only a small amount, suggesting that

tension in the data region has been partially resolved. Outwith the data region,

however, the uncertainties increase more, particularly in the poorly-understood

extrapolation region at very low x.

We can see that the central values are compatible with the NNLO ones within

uncertainties, and that in some instances adding MHOUs can shift the central

value towards the NNLO one; the strange content shifts up and the gluon shifts

down. Comparing the different prescriptions (Fig. 3.6.2), it is apparent that the

results are fairly stable, with the asymmetric prescriptions (3-point and 7-point)

showing closer similarity to one another but with 3-point having slightly larger

uncertainties.
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Figure 3.6.1 NLO PDFs based on C (green) and C+S(9pt) (orange) normalised
to the former, alongside the central value of the NNLO fit based
on C (blue line). Results are shown at Q = 1.6 GeV (left column)
and Q = 10 GeV (right column). From top to bottom: gluon; total
quark singlet; anti-down quark; strange quark.
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Figure 3.6.2 Same as Fig. 3.6.1 but comparing the 3- (blue), 7- (orange), and
9-point (green) prescriptions, normalised to 9-point. The right
hand panel shows the relative PDF uncertainties for clarity.
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Figure 3.6.3 Same as Fig. 3.6.1, now comparing C + S(9pt) fit (green) with
those in which the theory covariance matrix S is included either
in the χ2 definition (orange) or in the generation of Monte Carlo
replicas (blue), but not in both.

Finally we compare using S in only fitting or sampling (Fig 3.6.3). For sampling

only, the PDF uncertainty increases dramatically, with poor fit quality, especially

in the quark distributions. For fitting only, the central value is affected due to the

change in relative weights of the datasets, such that it is similar to that for fitting

+ sampling. The uncertainty, however, shows only a very small change in the data

region. This all arises because the inclusion of MHOUs in data generation cause

the pseudodata broadness to increase dramatically, which is in turn balanced by a

relaxation of tensions due to the inclusion of MHOUs in fitting. This has the effect

of a sizeable shift in central values with only a small increase in uncertainties.

3.7 Summary

We have presented the first PDFs with MHOUs included in their uncertainties,

paving the way for the routine inclusion of theory uncertainties in future

PDFs. This chapter has been primarily focussed on the formalism necessary
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for including MHOUs, and on the validation of the method. We find that

scale variation appears to work well for this purpose, and that our prescriptions

for combining scales are more successful and free from instabilities than the

established “envelope” techniques. It is also clear that there is scope for more

complex scale variation techniques, particularly for the factorisation scale, which

as a first step could be split into singlet and non-singlet variation.

The PDFs detailed in this chapter, along with PDFs with varied scales, are

available in LHAPDF format [55] from the NNPDF website:

http://nnpdf.mi.infn.it/nnpdf3-1th/

It now remains to investigate the impact of including MHOUs in PDFs on

phenomenology, that is, in using them to compute predictions for cross-sections.

For this some thorough analysis is required to address the potential “double

counting” of theory uncertainties, where they are included both in the PDF and

in the hard cross-section. We will address this in considerable detail in Chapter 5.

First, however, we will look at one other important form of theory uncertainties:

those due to nuclear effects.
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Chapter 4

Nuclear Uncertainties

The theory covariance formalism developed in Chapter 2 can be applied to any

source of theory uncertainty in PDFs. One of the most important of these is

nuclear uncertainties. A wide range of data is needed to pin down the form of

PDFs, including that where the proton is not in a free state. More precisely,

this encompasses DIS and DY fixed target measurements involving deuteron and

heavy nuclear targets. In these cases the proton’s interaction is altered due to the

surrounding nuclear environment, and this difference propagates through to the

fitted PDFs, leading to an unwanted shift in their central values and uncertainties.

We cannot simply discard these data, as they play a crucial role in the strangeness

content of the proton and also the light flavour separation at high x, a region

important for searches for physics beyond the Standard Model. Instead, we must

determine corrections to the PDF central value and additional uncertainties to

account for the use of nuclear data.

Given their importance, there have been wide-ranging studies of deuteron and

heavy nuclear corrections: deuteron corrections have been included in previous

PDF determinations via nuclear smearing functions [67, 124–127] based on models

of the deuteron wavefunction [128–132]; heavy nuclear corrections have been

included following a selection of nuclear models [125, 133, 134] or fitting the

data [126]. Using such models, however, can introduce a bias that is difficult to

quantify precisely. In the past, NNPDF has opted to ignore nuclear effects on

the assumption that they are small [10, 57, 67], however this is another source of

uncertainty that is becoming increasingly important as PDF precision increases.

Furthermore it is thought that the shape of PDFs can be affected, especially
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at high x [124], and this was evidenced in previous NNPDF fits with deuteron

corrections following Eq. (8) of [125], with parameter values from [135]; however,

an increase in χ2 here suggested that the nuclear uncertainty was not effectively

determined.

In this chapter we show how to account for nuclear effects, both deuteron and

heavy nuclear, in proton PDF fits. We do this using a theory covariance matrix of

nuclear uncertainties, and propose two alternatives for their inclusion: one is to

simply apply a nuclear uncertainty, effectively deweighting the affected datasets

in the PDF fit proportionally (just like we did for MHOUs in Chapter 3); the

other is to shift the PDF central values by applying a nuclear correction, including

smaller nuclear uncertainties as a result. If the shift is estimated accurately, then

for an uncertainty smaller than the shift the second method gives a more precise

outcome.

We can determine nuclear corrections by comparing the theory predictions for

nuclear observables using proton PDFs with those using the correct nuclear PDF

(nPDF). This shift can be identified with Eqn. 2.1.6 in Chapter 2, i.e. quantifying

the size of nuclear correction for that data point. The collective shifts can then

be used to construct a theory covariance matrix based on Eqn. 2.1.13. In carrying

out this work we looked first at heavy nuclear corrections (for Cu, Fe and Pb)

and then at deuteron corrections, addressing them separately because deuterons,

being only a proton and a neutron, are distinct from a heavy nuclear environment

such as 56Fe, with 26 protons and 30 neutrons bound together.

For the heavy nuclear PDFs we initially used [136] a combination of three

available nPDF sets (DSSZ [137], nCTEQ15 [138], and EPPS16 [139]), but

NNPDF subsequently released its own global nPDFs, nNNPDF2.0 [140], which

is what we will consider in this Chapter. Given the enhanced difficulty of nPDF

determination, all of these nPDF sets are only available at NLO. For the deuteron

PDFs we developed a self-consistent iterative procedure to determine deuteron

PDFs at NNLO within the NNPDF formalism, and used the output of this to

determine deuteron corrections [141]. These deuteron PDFs have the advantage

over those from nNNPDF2.0 that they are NNLO, but are based on less data so

have larger uncertainties. This should at worst lead to a conservative uncertainty

estimation, but we will discuss the comparison in Section 4.5.

This chapter is organised as follows. First we review the nuclear data in proton

PDF fits (Sec. 4.1). Then we consider heavy nuclear uncertainties including the
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resulting covariance matrix (Sec. 4.2). We then look at deuteron uncertainties

in the same way (Sec. 4.3), before including combined nuclear uncertainties in

NNPDF4.0 proton PDF fits in Sec 4.4. We summarise the results in Sec. 4.5.

4.1 Nuclear data in PDFs

We consider the NNPDF4.0 NNLO dataset which consists of ∼ 4000 data points,

of which ∼ 10% are deuteron data and ∼ 20% are heavy nuclear data. The table

below summarises the datasets which make up the total nuclear data, giving the

name of dataset, the observable it corresponds to, and the nuclear target involved.

Nuclear data
Dataset Process Ndat Target

DYE605 [142] DY 85 64
32Cu

NuTeV [143] DIS CC 76 56
26Fe

CHORUS [95] DIS CC 832 208
82 Pb

SLAC [90] DIS NC 67 2H
BCDMS [144] DIS NC 581 2H
NMC [88] DIS CC 204 2H and p
DYE866/NuSea [145] DY 15 2H and p
DYE906/SeaQuest
[146]

DY 6 2H and p

Table 4.1.1 The nuclear data in NNPDF4.0. The process (Deep inelastic
scattering (DIS) charged current (CC), neutral current (NC) and
Drell-Yan (DY) is displayed for each dataset, alongside the number
of data (Ndat) and the target.

4.2 Heavy nuclear uncertainties

We can include heavy nuclear uncertainties using the covariance matrix method-

ology previously developed in NNPDF [147]. To construct the covariance matrix,

we can look directly at the source of uncertainty in our use of nuclear data: we

currently calculate nuclear observables, TNi (where i labels the data point), using

a proton PDF, fp. Instead we should be using the corresponding nPDF, fN . This

means that each contribution to the covariance matrix can be determined

∆
(k)
i = TNi [f

(k)
N ]− TNi [fp], (4.2.1)
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where k indexes the nPDF replicas. Including Nrep contributions, one for each

replica, means that the uncertainty in the nPDF is automatically incorporated

into the nuclear uncertainty. A covariance matrix can then be constructed as

Sij =
1

Nrep

Nrep∑
k

∆
(k)
i ∆

(k)
j . (4.2.2)

We call this the “deweighted” approach, because this theory covariance matrix

will deweight the nuclear datasets in the fit.

A more ambitious approach is to also try and correct the value of the nuclear

observable we use, so that it is based on the nPDF rather than the proton one.

This can be done by applying a shift,

δTNi = TNi [fN ]− TNi [fp], (4.2.3)

to the nuclear observables. In this case we must amend the contributions to the

covariance matrix so that they are relative to the new central value

∆
(k)
i = TNi [f

(k)
N ]− TNi [fN ]. (4.2.4)

We call this the “shifted” approach.

We can then include the nuclear covariance matrix in a normal proton PDF

fit, allowing uncertainties due to nuclear data to be automatically accounted

for. Note that although we use nuclear data to determine uncertainties, we

are not double counting the nuclear data; we use them once to determine the

nuclear uncertainty and once to do a global fit to find the proton PDFs. Adding

uncertainties actually makes the nuclear data count less.

In the above equations the nuclear observables, TNi , are calculated from the

proton observables, Ti, by taking into account the non-isoscalarity of the target,

i.e. by combining the proton and neutron observables in accordance with the

atomic number, Z and mass number, A. Explicitly,

TNi [fp] =
1

A

(
ZTi[fp] + (A− Z)Ti[fn]

)
,

TNi [fN ] =
1

A

(
ZTi[fp/N ] + (A− Z)Ti[fn/N ]

)
.

(4.2.5)

The first line is what is done in standard NNPDF fits, and the second line is
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the extension to the nPDF case. Here fp/N is the PDF for the proton bound in

a nucleus, N , and fn/N is the same for the neutron. We assume that the two

are related by swapping u and d quarks. We obtain these PDFs directly from

nNNPDF2.0, but they relate to fN via

fN =
1

A

(
Zfp/N + (A− Z)fn/N

)
. (4.2.6)

Figure 4.2.1 Ratio between the nuclear observables computed with nPDFs,
TNi [fN ], and the central prediction computed with proton PDFs,
〈TNi [fp]〉. The error is the standard deviation of the distribution of
TNi [fN ] replicas. Data are organised in bins of increasing (x,Q2)
within each dataset.

Before proceeding to the covariance matrix itself, we can first investigate the

change to the nuclear observables that arises from using nPDFs rather than

proton ones. Fig. 4.2.1 shows the ratio of the observables calculated with nuclear

PDFs to those with proton PDFs, for the heavy nuclear datasets. We can see in all

datasets that there is a kinematic dependence, although this is especially evident

in CHORUS. This is a result of the kinematic dependence of the ratio of proton

and nuclear PDFs, which fits with the downwards turn at high x expected from

nuclear shadowing models. CHORUS ν and NuTeV ν data in particular show a

systematic shift downwards which is not comfortably within errors. This suggests

that applying a shift as well as an uncertainty could be a sensible strategy.
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4.2.1 The heavy nuclear covariance matrix

We now turn to the covariance matrix for heavy nuclear uncertainties. Fig. 4.2.2

shows the square roots of the diagonal elements of this covariance matrix, which

are equivalent to the % per-point uncertainties. For the deweighted case, it

Figure 4.2.2 Square root of diagonal elements of covariance matrices for C
(purple), S (orange) and C+S (blue). All values are displayed as
a % of data. Top: deweighted; bottom: shifted.

is clear that the heavy nuclear uncertainties are comparable to the experimental

uncertainties and are larger in most regions other than CHORUS ν̄. This suggests

that all datasets apart from that will be significantly deweighted in the fit. We

see that the plot has many features in common with Fig. 4.2.1, in particular the

kinematic pattern, and this makes sense as the covariance matrix is composed

using the difference in observables when using nPDFs versus proton ones. For

the shifted case, we see a marked decrease in the diagonal of S, such that nuclear

per-point uncertainties seem no longer significant for CHORUS.
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Figure 4.2.3 Correlation matrices for heavy nuclear data. The experiment
correlation matrix, C, is shown above the total correlation
matrices, C + S, for both the deweighted (left) and the shifted
(right) case.

Fig. 4.2.3 investigates the pattern of correlations, displaying correlation matrices

as defined in Sec. 3.4 of Chapter 3. Note that in [136] we considered covariance

matrices experiment by experiment (a conservative approach), but here we

compute the full heavy nuclear covariance matrix, including correlations between

experiments. We display the correlation matrices for both the deweighted

and shifted theory covariance matrices. Adding the theory covariance matrix

introduces correlations on the off-block diagonals in both cases, but these are

particularly strong in the deweighted case. CHORUS ν shows especially larger

correlations upon introducing the deweighted S, but these are reduced almost to

experiment level when the shifted S is used instead. This is a clear consequence

of the systematic shift in Fig. 4.2.1, which is larger than the uncertainty from the

nPDF. Once again, this is evidence that using the shifted formulism could be an

appropriate choice.

87



4.3 Deuteron uncertainties

We now turn to uncertainties from deuteron data. The logic is the same as for

heavy nuclear uncertainties, except we have a lot more deuteron data than heavy

nuclear data from a particular element. This allows us to fit our own deuteron

PDFs within the NNPDF methodology, resulting in NNLO PDFs to calculate

uncertainties rather than NLO ones.

The whole procedure is outlined in Fig. 4.3.1. We split the global data into

“proton” and “deuteron” data, where the proton data in fact include the heavy

nuclear data considered in the previous section; this allows us to focus purely on

deuteron uncertainties. The deuteron data are a combination of “pure” deuteron

data, coming from deuteron-only targets (SLAC and BCDMS), and “mixed”

deuteron data, which are ratios so depend also on proton target data (NMC,

DYE866/NuSea and DYE906/SeaQuest). We can denote the pure data as T di [fd]

and the mixed data as T di [fd, fp], indicating the additional dependence of the

latter on the proton PDF.

In normal proton PDF fits any deuteron observable is calculated using the

isoscalar PDF,

fs =
1

2
(fp + fn), (4.3.1)

where fn is the neutron PDF, obtained under the assumption of isospin invariance

(by swapping u and d quarks in fp). The procedure is as follows:

1. The proton data are used to fit pure proton PDFs (uncontaminated by

deuteron data), {f (k)
p : k = 1, . . . , Nrep} with central value f 0

p ≡ fp.

2. We cannot fit the pure deuteron PDFs without additional input because

of the mixed ratio data (T di [fd, fp]); these data require a proton PDF as

input. We can use f 0
p from the proton-only fit here, but since this is only

the central value we must include a proton covariance matrix to account for

the uncertainty due to the proton PDF. This is composed

Spij = 〈∆p, (k)
i ,∆

p, (k)
j 〉

∆
p, (k)
i = T di [f

(0)
d , f (k)

p ]− T di [f
(0)
d , f (0)

p ],
(4.3.2)

where here i runs over the deuteron ratio data only. This encapsulates the

correlations between the ratio datasets due to their common dependence on
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Proton data Deuteron data

Global data

Proton only PDFs Deuteron only PDFs

Proton covmat Deuteron covmat

INPUT ITERATION

deuteron fit global fit

Iteration of PDFs with
deuteron

uncertainties

Yes

Final PDFs with
deuteron

uncertainties

No

Converged?

Figure 4.3.1 Outline of the iterative procedure used to determine proton PDFs
with deuteron uncertainties. The data are split into proton data
and deuteron data. The proton data are used to find proton-only
PDFs which are needed to fit deuteron observables in deuteron-only
PDFs. These are used to construct a deuteron covariance matrix
which is used in a global proton PDF fit. The whole process is
iterated to consistency.

the proton PDF.

3. Fit the deuteron PDFs using Cij+Spij for the deuteron ratio data. However,

in practice Sp depends on f
(0)
d and we don’t know this yet (that’s what

we’re trying to find!). To first approximation we can replace f
(0)
d → f

(0)
s ,

using the isoscalar PDF from Eqn. 4.3.1. This is a reasonable exchange,

given that Spij is a measure of uncertainty, and acts only to deweight data

in the fit; using fs should have only a very small effect. In principle, we

could then iterate this to consistency, using the output fd to determine a

new Spij and perform a new deuteron fit. However we are less interested

in determining the deuteron PDFs themselves, more in their application in

creating a covariance matrix for fitting proton PDFs. Any (already small)

effect from using fs in Sp will become smaller when finding fd and then

smaller again when finding fp, where the only influence is via a covariance

matrix which depends on fd.
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4. Use fd to generate a deuteron covariance matrix:

Sdij = 〈∆d, (k)
i ,∆

d, (k)
j 〉

∆
d, (k)
i =

T di [f
(k)
d ]− T di [f

(0)
s ] i ∈ pure

T di [f
(k)
d , f

(0)
p ]− T di [f

(0)
s , f

(0)
p ] i ∈ mixed,

(4.3.3)

or, for the shifted case,

∆
d, (k)
i =

T di [f
(k)
d ]− T di [f

(0)
d ] i ∈ pure

T di [f
(k)
d , f

(0)
p ]− T di [f

(0)
d , f

(0)
p ] i ∈ mixed,

(4.3.4)

δT di =

T di [f
(0)
d ]− T di [f

(0)
s ] i ∈ pure

T di [f
(0)
d , f

(0)
p ]− T di [f

(0)
s , f

(0)
p ] i ∈ mixed.

(4.3.5)

Sd incorporates correlations between the deuteron data due to their common

dependence on the deuteron PDF and, for the ratio data, their consequential

dependence on proton PDFs.

5. Perform a global proton PDF fit incorporating Sd for the deuteron data.

These are PDFs with deuteron uncertainties included.

6. Use the resulting proton PDFs in place of the proton-only PDFs in Step 2,

thus iterating the procedure. We expect this to converge rapidly for a few

reasons: first, the influence of deuteron data in a proton fit is small; second,

a small change in the proton PDF makes little difference to the deuteron

uncertainty; third, the effect of deuteron uncertainties on the weight of data

in the fit is anticipated to be small.

Note that once again in this procedure we are not double counting the deuteron

data; we use them once to determine the deuteron uncertainty and once to do

a global fit to find the proton PDFs. Adding uncertainties actually makes the

deuteron data count less.

The fits performed are summarised in Tab. 4.3.1. The baseline fit, global-base,

is the baseline fit for NNPDF4.0 [38] without nuclear uncertainties included (the

uncertainties we determine in this Chapter will be included in the final NNPDF4.0

release). We determine a proton-only fit in what we term “Iteration 0”, and then

perform two iterations of determining the deuteron and global proton fits, termed
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Iteration Dataset Fit ID Description

Baseline Proton and Deuteron global-base NNPDF4.0 fit without nuclear uncertainties

Iteration 0 Proton proton-ite0 Same as baseline, but restricted to the proton
dataset

Iteration 1 Deuteron deuteron-ite1 Same as baseline, but restricted to the deuteron
dataset and supplemented with a proton covariance
matrix determined from the proton-ite0 fit according
to Eqn. 4.3.2.

Proton and Deuteron global-ite1-dw Same as baseline, but supplemented with a deuteron
covariance matrix determined from the deuteron-
ite1 fit according to Eqn. 4.3.3.

Iteration 2 Deuteron deuteron-ite2 Same as deuteron-ite1, but with a proton covariance
matrix determined from the global-ite1-dw fit.

Proton and Deuteron global-ite2-dw Same as global-ite1-dw, but with a deuteron
covariance matrix determined from the deuteron-
ite2 fit.

Proton and Deuteron global-ite2-sh Same as global-ite2-sh, but with a deuteron
covariance matrix and shifts determined according
to Eqn. refeq:deuteronshifted.

Table 4.3.1 A summary of the fits performed in this study, see text for details.

“Iteration 1” and “Iteration 2”.

As in the case for heavy nuclear data, it is useful to first look at the effect on

the deuteron observables of using the deuteron PDF rather than the proton one

(Fig. 4.3.2). The uncertainties are quite large but the ratio of observables is

consistent with 1 in most regions other than high x, where nuclear shadowing is

expected to play a part leading to large negative corrections. This mirrors what

was seen in the heavy nuclear case (Fig. 4.2.1). The observables for NuSea show

a systematic offset outwith uncertainties, like what we saw for CHORUS and

NuTeV ν.

4.3.1 The deuteron covariance matrix

We now go on to investigate the deuteron covariance matrix. The diagonal

elements are displayed in Fig. 4.3.3. Again, we see a pattern that parallels the

pattern in the deuteron observable ratios; the size of the per-point uncertainty

depends on the kinematics.
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Figure 4.3.2 Like Fig. 4.2.1 but for deuteron observables. Ratio between the
deuteron observables computed with Iteration 1 deuteron PDFs,
T di [fd], and the central prediction computed with the isoscalar
PDF, 〈T di [fs]〉. The error is the standard deviation of the
distribution of T di [fd] replicas. Data are organised in bins of
increasing (x,Q2) within each dataset.

Figure 4.3.3 Top panel: Square root of diagonal elements of covariance
matrices for C (purple), S (deweighted; orange) and C + S
(deweighted; blue). All values are displayed as a % of data.
Bottom panel: Correlation matrices. C (left) and C + S
(deweighted; right). The deweighted case only is displayed, but
the qualitative features remain the same for the shifted case.
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The deuteron uncertainty is smaller than the experimental uncertainty for the

pure deuteron datasets (SLAC and BCDMS), but is comparable for the mixed

ratio data (NMC, NuSea and SeaQuest). This is because ratio data have smaller

experimental uncertainties due to a significant cancellation of systematic errors.

The bottom part of the figure shows the full matrix plots. As above, we see the

most impact is on the ratio data. The figures show only the deweighted case, but

this is qualitatively similar to the shifted case.

4.3.2 Deuteron correction factor

As an additional investigation, we can use the fitted deuteron PDFs to evaluate a

correction to F2 by computing the ratio F d
2 /F

p
2 . This can then be compared to the

result from nNNPDF2.0 and to the parametric correction used in MSHT20 [47],

which is based on four fitted parameters.

10 2 10 1

x
0.85

0.90

0.95

1.00

1.05

1.10

1.15

F2 d
/F

2 p

Q=10 GeV
deuteron fit (NNLO)
nNNPDF2.0 (NLO)
MSHT (NNLO 4 params.)

Figure 4.3.4 F d2 /F
p
2 evaluated using deuteron PDFs from the present determi-

nation (deuteron-ite2), deuteron PDFs from nNNPDF2.0, and via
the model correction used in MSHT20 fits.

This comparison can be seen in Fig. 4.3.4 at Q = 10 GeV. From this, deuteron

correction to the structure function is clearly small, just a few percent across

the whole of x. The shape of the distribution also fits that expected from
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nuclear shadowing, with a dip at large x. All three determinations agree within

uncertainties, giving us confidence in the robustness of our procedure. They

also all have uncertainties of a similar size, despite the fact that nNNPDF2.0 is

only at NLO. This is because it also contains heavy nuclear data through the

constraint of continuity of A/Z. The uncertainty for the deuteron fit at NNLO

is slightly larger at low x in the non-data region, reflecting the more conservative

determination with no model dependence or continuity constraints imposed.

4.4 PDFs with nuclear uncertainties

Having constructed and studied deuteron and heavy nuclear uncertainties, we can

then include them in fits. Table 4.4.1 summarises the various configurations of

nuclear uncertainties and shifts, including that where nuclear data are left out of

the fit entirely. The NNPDF4.0 release includes (deweighted) deuteron and heavy

nuclear uncertainties as a default, so it serves as the baseline for comparison.

Fit label Description

NNPDF4.0 Baseline fit from NNPDF4.0

No nuclear data Without nuclear datasets

No nuclear unc. Without nuclear uncertainties

Heavy nuclear unc. Heavy nuclear uncertainties only

Heavy nuclear shifted Heavy nuclear uncertainties with shifted central value

Deuteron unc. Deuteron uncertainties only

Deuteron shifted Deuteron uncertainties with shifted central value

Shifted (All) nuclear uncertainties with shifted central value

Table 4.4.1 A summary of the fits with different treatments of nuclear data.

No nuc dat No nuc unc D unc H nuc unc NNPDF4.0 D shift H nuc shift Shifted

χ2 1.286 1.269 1.257 1.193 1.162 1.244 1.196 1.166
φ 0.176 0.160 0.158 0.160 0.164 0.158 0.170 0.169

Table 4.4.2 Total χ2 and φ values for nuclear data sets for the various fits.

Table 4.4.2 gives the total χ2 and φ values for these fits, where φ is defined

φ ≡
√
〈χ2[T ]〉 − χ2[〈T 〉], (4.4.1)

where T are the theoretical predictions and 〈·〉 denotes the average over PDF

replicas. In [57] it is shown that this gives the ratio of uncertainties after fitting

to the uncertainties of the original data, averaged over data points. The partial
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values per nuclear dataset can be seen in Fig. 4.4.1. Overall, including nuclear

uncertainties causes the χ2 to drop from 1.27 to 1.16, indicating a substantially

better fit quality. This is to be expected, seeing as we are adding an uncertainty

into the fit, accompanied by an increase in φ.

Figure 4.4.1 Partial χ2 (top row) and φ (bottom row) values broken down by
nuclear dataset for the different configurations of uncertainties.
All other datasets are collected under OTHER.

The worst fit is the no nuclear data fit, demonstrating that the nuclear data

do play a role in determining the PDFs, however this effect is less marked

compared to that observed for NNPDF3.1 in [136], owing to the improved 4.0

methodology and increased dataset which means that nuclear data are becoming

less crucial. It is therefore worth continuing to review the impact of nuclear data

as there may become a point where they are no longer useful. The NNPDF4.0

baseline gives the best fit, which is dominated by the inclusion of heavy nuclear

uncertainties without a shift. The impact at the nuclear dataset level is striking,

with a significant improvement in both χ2 and φ for most of these datasets. The

difference between the deweighted and shifted prescriptions, however, is minimal.

It’s also helpful to look at the PDFs themselves. Nuclear uncertainties have

an effect which is important in the large x region, where the nuclear data are.

Firstly, Fig. 4.4.2 shows the effect of removing the nuclear data from the fit

entirely. Removing the nuclear data shifts the central values of the PDFs and

increases the uncertainties, however the two agree within uncertainties. As noted
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before, this effect is smaller than what was observed for NNPDF3.1 in [136].

Now we would like to know what impact adding nuclear uncertainties has on

the PDFs. In Fig. 4.4.3 we compare NNPDF4.0 to the fit without nuclear

uncertainties. Including nuclear uncertainties causes a significant change to

the shape of the PDFs in the large x region. This corresponds to the nuclear

shadowing region, where nPDFs are lower compared to proton ones. Having no

nuclear uncertainties causes the PDFs to be pulled downwards in this region, in

the direction of the nPDFs.

Figure 4.4.2 Comparison of NNPDF4.0 (orange) with a fit with the nuclear
data left out (green).

Figure 4.4.3 Impact of including nuclear uncertainties in NNPDF4.0. The
default (green) is to include them for all nuclear data. Fits with
no nuclear uncertainties (orange) and with only heavy nuclear
uncertainties (blue) are also shown.

Also displayed in Fig. 4.4.3 is a fit with only heavy nuclear uncertainties. It is

clear that heavy nuclear uncertainties are responsible for the bulk of the impact,

which is expected given the impact at the data level is more significant for thcese

data (see Figs. 4.2.2 and 4.3.3).
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Figure 4.4.4 The impact of shifting (orange) versus deweighting (green) for the
d̄ distribution. The right panel shows the uncertainties for clarity.
The effects on the ū distribution are qualitatively similar.

Next, we look at what happens when we also apply a shift to the nuclear data,

following Eqn. 4.2.3. This can be seen in Fig. 4.4.4 for the d̄ distribution. There is

a clear reduction of PDF uncertainties when using the shifted prescription versus

the deweighted prescription. However, as we saw before, there is little impact

at the level of χ2 and φ values, and the two outcomes are equivalent within

uncertainties. From this we see that choosing one of these approaches over the

other will not have a great impact. When making the choice of approach, we

note that the shift is calculated relative to the value with proton PDFs, and so is

itself dependent on the proton PDFs. This opens up the risk of double counting,

and so the shift must be treated with caution. Adding uncertainties, however,

always decreases the weight of data points, and so the deweighted prescription is

the most conservative. Given also that it leads to a slightly lower total χ2 and φ,

we will opt to use the deweighted prescription in NNPDF4.0; including only an

uncertainty for both deuteron and heavy nuclear data.

4.5 Summary

Nuclear data are important in PDF fits, but effects due to the nuclear environment

are hard to quantify. To bring PDFs to 1% accuracy, we need to address these

“small” but nevertheless important differencecs. We used the theory covariance

matrix formalism outlined in Chapter 2 to include nuclear uncertainties in the

next generation PDF fits. We adopted an empirical approach by recalculating

predictions for nuclear observables with nuclear PDFs and using the shifts in

97



predictions to construct a nuclear covariance matrix.

We analysed deuteron and heavy nuclear data separately, using nNNPDF2.0 for

heavy nuclear PDFs, and fitting deuteron PDFs using an iterative procedure in

the NNPDF3.1 methodology. The resulting uncertainties are a crucial ingredient

in the latest release, NNPDF4.0. Including the uncertainties causes a modest

shift in the central value of PDFs and an increase in errors, in the high x

nuclear data region. This difference is driven by the heavy nuclear data. We also

investigated a procedure to shift the nuclear predictions, which was equivalent

within uncertainties to including only an uncertainty, but with a slightly higher

global χ2 and smaller PDF uncertainties. We opt to include uncertainties without

a shift in NNPDF4.0.
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Chapter 5

Making predictions using PDFs with

theoretical uncertainties

Earlier in this thesis we have discussed the importance of theoretical uncertainties,

and how to include them in PDFs. We have also produced PDFs including

MHOUs (see Chapter 3) and deuteron and nuclear uncertainties (see Chapter 4),

which are freely available. In the future, PDFs with theory uncertainties will

become the norm, and will be used widely to make theoretical predictions for

observables by convoluting them with parton-level hard cross sections.

When making predictions for hadronic observables there are two sources of

uncertainty: the hard cross section and the PDF. Typically, MHOUs for the

former are estimated using scale variation, and these are added in quadrature

to the latter. When the PDFs themselves also include MHOUs, we can think

of the two scale evolutions considered being Q0 → Qdat and Q0 → Qpred, where

Q0 is the PDF parametrisation scale, Qdat is the scale of data in the PDF and

Qpred is the scale the prediction is made at. Then each of these sources has

both a contribution from renormalisation scale variation and from factorisation

scale variation. The PDFs themselves contain data from various processes, so

when making a prediction for a process which is included in the PDFs there will

invariably be correlations between the renormalisation scale variation in the PDF

and that in the hard cross section. Even if the process is a new one, for example

Higgs production, correlations due to factorisation scale variation will always be

present. Simply combining the two sources of uncertainty in quadrature will miss

these correlations and lead to an inflation in overall uncertainties. Hence we refer
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to this method of combining uncertainties in quadrature as the “conservative

prescription”.

This issue was explored in detail in [148], noting that PDFs are a tool to express

one observable in terms of others. This can be realised exactly in the simple case

of fully correlated factorisation scale variation for non-singlet structure functions.

Here the PDF can be eliminated entirely, and it is manifest that there is only one

independent scale (Qdat → Qpred), rather than two, with the MHOUs cancelling

to a large degree. If MHOUs were used in both the PDF and the hard cross

section in this case, it would amount to “double counting”. It was also shown

that correlations existed for renormalisation scale variation, albeit less strongly.

When using PDFs in predictions we include both sources of scale variation in

an uncorrelated way, and so miss the MHOU cancellation and corresponding

reduction in uncertainties. As noted in [5], this is a consequence of PDFs being

universal. We cannot reconstruct the full data and MHOUs from the PDFs alone

as information is lost in the fitting process; one set of PDFs could arise from

many different data possibilities. However, if we want PDFs to be useful in a

wide range of predictions, universality is required and so it would at first sight

seem like we must live with this loss of correlation.

In [5] it was argued that we know the increase in PDF uncertainties due to

MHOUs is small, and the effect is mostly realised in changes to the central

value as the fit is rebalanced by changes to the weighting of different data.

Indicative cases were explored in Chapter 7 of the study, where it was seen that

the PDF uncertainty is consequently much smaller than the MHOU on the hard

cross section. When combining these two in quadrature, the effect of missing

correlations was therefore argued to be likely small, and so the overestimate of

uncertainty would also be small. It was argued that a small overestimate of

uncertainty is better than neglecting MHOUs altogether. It is therefore one of

the aims of this study to see whether these claims are justified.

In this chapter we investigate correlations between PDF MHOUs and hard cross

section MHOUs when making predictions. Although we focus on MHOUs, the

analysis extends naturally to all sources of theory uncertainty. We develop a

method for algebraically determining these correlations, and show how to include

them when making a prediction. This is a complicated problem so we proceed

incrementally:
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� In Sec. 5.1 we show how a theoretical uncertainty can be reformulated in

terms of a nuisance parameter, which holds the key to the propagation

of uncertainties. We consider two extremal toy models: one where the

theory is rigid with no unknown parameters (“pure theory”); the other

where the theory is completely flexible and can fit the data exactly (“pure

phenomenology”).

� In Sec. 5.2 we move on to a model where the data are fitted using just

one parameter. Here the correlations lead to a shift in the theoretical

predictions. This is somewhere between the two scenarios in Sec. 5.1.

� In Sec. 5.3 we extend this analysis to a multi-parameter fit with multiple

theory uncertainties, and then to a PDF fit, where the PDFs are continuous

functions with a functional uncertainty.

� In Sec. 5.4 we present numerical results comparing this procedure with the

naive approach of adding the uncorrelated contributions in quadrature, in

the context of the NLO global fit with MHOUs discussed in Chapter 3. We

make predictions including MHOUs for repetitions of all the experiments

already in the fit (so-called “autopredictions”). We then investigate the

scenario of a prediction for a process already in the fit (top production),

and for a new process (Higgs production). We show that including

these correlations leads to a shift in the central value of the prediction,

which is within the uncertainties for the naive approach but takes the

NLO predictions closer to the known NNLO result, reducing the χ2 to

experimental data. Furthermore, we find that for the autopredictions and

top predictions there is a significant reduction in uncertainties due to the

correlations, so the correlated predictions are both more precise and more

accurate. For Higgs production, we find that the effect is much weaker,

because there are only correlations through the factorisation scale and

not through the renormalisation scale. We emphasise the power of these

correlations as a way to improve theoretical predictions.

� In Sec. 5.5 we provide a summary.
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5.1 Predictions with correlated theory

uncertainties

We saw in Chapter 2 that to include theory uncertainties in a fit all you need to

do is add a theory covariance matrix, Sij, to the experimental covariance matrix

Cij. Recall that i, j = 1, . . . , Ndat run over data points. The only assumptions

underlying this result are that all uncertainties are Gaussian, and that the

theory uncertainties are independent of the experimental data. Since Gaussian

experimental uncertainties are already assumed in NNPDF’s framework, these

assumptions are very reasonable. We can express the result as the conditional

probability

P (T |D) ∝ exp

(
− 1

2
(T −D)T (C + S)−1(T −D)

)
. (5.1.1)

Recall that both C and S are real and symmetric, that C is positive definite and

that S is positive semidefinite and will generally possess many zero eigenvalues. In

a fit we determine T fromD by maximising P (T |D), which amounts to minimising

χ2 = (T −D)T (C + S)−1(T −D) (5.1.2)

with respect to the free parameters which characterise the theory prediction.

In this section we start off by considering one single source of fully correlated

theory uncertainty, so that

S = ββT , (5.1.3)

where β are real and non-zero.

5.1.1 Nuisance parameters

We can model the theory uncertainty as a fully correlated shift in the theory

prediction:

T → T + λβ, (5.1.4)

where λ is a nuisance parameter characterising the scale of the shift. We will now

show that this will lead us to Eqn. 5.1.1. Firstly, assuming Gaussian experimental
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uncertainties, we can write

P (T |Dλ) ∝ exp

(
− 1

2
(T + λβ −D)TC−1(T + λβ −D)

)
. (5.1.5)

Using Bayes’ Theorem,

P (T |Dλ)P (λ|D) ∝ P (λ|TD)P (T |D). (5.1.6)

We want to find P (T |D), so we need an expression for the prior for λ,

P (λ|D) = P (λ), where we assume that the theory uncertainty is independent

of the experimental data. We choose a unit-width Gaussian centred on zero,

P (λ) ∝ exp

(
− 1

2
λ2

)
. (5.1.7)

Marginalising over λ, Eqn. 5.1.5 becomes

P (T |D) ∝
∫
dλ exp

(
− 1

2

[
(T + λβ −D)TC−1(T + λβ −D) + λ2

])
. (5.1.8)

We can evaluate the term in [·] by remembering S = ββT , introducing the variable

Z ≡ (1 + βTC−1β)−1

= 1− βT (C + S)−1β

,

(5.1.9)

where the second line comes from the observation that

(1 + βTC−1β)(1− βT (C + S)−1β) = 1. (5.1.10)

Now completing the square:

[·] = (T −D)TC−1(T −D) + (T −D)TC−1λβ + λβTC−1(T −D)

+ λβTC−1λβ + λ2

= (T −D)TC−1(T −D) + (T −D)TC−1λβ + λβTC−1(T −D) + λ2Z−1

= Z−1(λ+ ZβTC−1(T −D))2

− Z(βTC−1(T −D))2 + (T −D)TC−1(T −D)

(5.1.11)
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so

[·] = Z−1(λ+ ZβTC−1(T −D))2

+ (T −D)T (C−1 − ZC−1SC−1)(T −D).
(5.1.12)

Finally, we can use the Sherman-Morrison formula, which states that for an

invertible square matrix, A, and column vectors u, v:

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (5.1.13)

so we have that

(C−1 − ZC−1SC−1) = (C−1 − ZC−1ββTC−1)

= C−1 − C−1ββTC−1

1 + βTA−1β

= (C + S)−1,

(5.1.14)

so overall

[·] = Z−1(λ+ ZβTC−1(T −D))2 + (T −D)T (C + S)−1(T −D)

= Z−1(λ+ ZβTC−1(T −D))2 + χ2

≡ Z−1(λ− λ̄) + χ2,

(5.1.15)

where we used the definition of the χ2 (Eqn. 5.1.2) and we have defined

λ̄ = ZβTC−1(D − T )

=
βTC−1

1 + βTC−1β
(D − T )

=
βT

C + ββT
(D − T )

= βT (C + S)−1(D − T ),

(5.1.16)

where to get to the second line we used the definition of Z (Eqn. 5.1.9). Plugging

this back into Eqn. 5.1.8, we get

P (T |D) ∝
∫
dλ e−

1
2
χ2

exp

(
− 1

2
Z−1(λ− λ̄)2

)
∝ e−

1
2
χ2

,

(5.1.17)

which is Eqn. 5.1.1. The advantage of this approach is that we can also get

the posterior distribution for λ (after fitting using D and T ), by using Bayes’
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Theorem (Eqn. 5.1.6):

P (λ|TD) =
P (T |Dλ)P (λ)

P (T |D)

∝ exp

(
− 1

2

[
(T + λβ −D)TC−1(T + λβ −D) + λ2 − χ2

])
∝ exp

(
− 1

2
Z−1(λ− λ̄)

)
,

(5.1.18)

where we recognised the similarity between the exponent here and in Eqn. 5.1.8.

So the effect of the fit is to shift the centre of the distribution from 0 → λ̄, and

the width from 1 → Z. Note that from the definition of Z (Eqn. 5.1.9),

0 ≤ Z ≤ 1, (5.1.19)

so the theory uncertainty is always reduced when information on D is added.

Fig. 5.1.1 gives a sketch of this effect.

Figure 5.1.1 Sketch of the prior (Eqn. 5.1.7) and posterior (Eqn. 5.1.18)
distributions for λ. Adding information shifts the distribution and
reduces the width.

5.1.2 Predictions without fits

We will now test out this formalism for a toy model where we have “pure theory”

values, T0. These have no unknown parameters, so cannot be fitted. They do,

however, have a theory uncertainty. Despite the fact we cannot fit them to the

data, T0 6= D in general, the data can still give us information on the predictions

via the nuisance parameters in the theory uncertainties. The expectation value
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of λ can be evaluated

E[λ] = Nλ
∫
dλ λ P (λ|T0D) = λ̄(T0, D). (5.1.20)

Note that Nλ is set such that E[1] = 1. We can then find the variance

Var[λ] ≡ E[(λ− E[λ])2] = Z. (5.1.21)

Both of these can be seen straight away from the form of the posterior for λ,

Eqn. 5.1.18.

In the nuisance parameter formalism, we can write

T (λ) = T0 + λβ. (5.1.22)

Before comparing these theory predictions to the data, we could use the prior for

λ in this expression, which would give us

E[T (λ)] = T0, Cov[(T (λ)] = ββT = S. (5.1.23)

But we could instead first compare T to D, and then use the posterior

distribution. In that case we’d end up with

E[T (λ)] = T0 + λ̄(T,D)β

= T0 + ββT (C + S)−1(D − T0)

= T0 + S(C + S)−1(D − T0),

(5.1.24)

where we substituted Eqn. 5.1.16 to get to the second line, and

Cov[(T (λ)] = E[(T (λ)− E[T (λ)])2]

= Var[λ]ββT

= ZS.

(5.1.25)

We can think of these predictions as “autopredictions”, i.e. we:

1. compare the data to the theory;

2. use the information from 1. to make new predictions for exact repetitions

of the same experiments.

106



From Eqn. 5.1.24 we can see that there is a shift in the autopredictions of

δT = −S(C + S)−1(T0 −D), (5.1.26)

and that the uncertianties are reduced by a factor
√
Z, thanks to information

provided by the data. Overall, the autoprediction covariance matrix is

ZS = S − S(C + S)−1S

= C(C + S)−1S = S(C + S)−1C.
(5.1.27)

To see the impact of the shift in the predictions, we can compare the experimental

χ2 (i.e. using the experimental covariance matrix only) of the original predictions

to the autopredictions. The original χ2 is

χ2
exp = (T0 −D)TC−1(T0 −D), (5.1.28)

and, using Eqn. 5.1.26, the autoprediction χ2 is

χ2
auto = (T0 + δT −D)TC−1(T0 + δT −D)

= (T0 − S(C + S)−1(T0 −D)−D)TC−1(T0 − S(C + S)−1(T0 −D)−D)

= ((1− S(C + S)−1)(T0 −D))TC−1((1− S(C + S)−1)(T0 −D))

= (C(C + S)−1(T0 −D))TC−1(C(C + S)−1(T0 −D))

= (T0 −D)(C + S)−1C(C + S)−1(T0 −D),

(5.1.29)

where we used Eqn. 5.1.26 to get to the second line. From this we can see

that χ2
auto ≤ χ2

exp because C + S is positive definite. In other words, the shifts

always lead to improved quality of fit by exploiting the theory uncertainty to add

information from the data.

We can investigate this more explicitly by using a simple model where the

experimental covariance matrix is diagonal and the theory uncertainty is fully

correlated. Writing β = se, where s is the size of correlated theory uncertainty

and eT e = 1, we have

C = σ2I, S = s2eeT , (5.1.30)
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where σ is the per-point uncertainty. Then we can evaluate:

(C + S)−1 =
1

σ2

(
1− s2

σ2 + s2
eeT
)

;

Z = (1 + s2/σ2)−1.

(5.1.31)

so the reduction in the theory uncertainties depends on s2/σ2:

� for s2 � σ2, there is a small influence of the data on the theory uncertainty;

� for σ2 � s2, the theory uncertainty size is reduced from s to σ, because in

the limit s2/σ2 →∞, Z → σ2eeT ;

� for theory uncertainties the same size as experimental ones, σ2 ∼ s2/N

and Z ∼ 1/(N + 1), so if there are a large number of independent data

points then there is a large reduction in uncertainty; more data gives more

information.

In this model the autoprediction shifts are

δT =
−s2

σ2 + s2
eT (T0 −D)e, (5.1.32)

which are in the direction of the theory uncertainty, e, as we would expect. When

s2/σ2 →∞, eT (T0 +δT )→ eTD, so in this direction the autopredictions coincide

with the data.

It can also be shown that the autoprediction χ2 is

χ2
auto = (T0 −D)T

1

σ

(
1− s2(s2 + 2σ2)

(s2 + σ2)2
eeT
)

(T0 −D), (5.1.33)

so the contributions to the χ2 which are orthogonal to e are unchanged, and

the contributions along e are reduced by Z2. This means unless the theory

uncertainties are very small, we will end up with a χ2 for the autopredictions

which is size (N − 1) rather than N , because the contribution along e will be

substantially reduced.

We can also make genuine predictions, T̃I , I = 1, . . . Ñ . In this scenario these

also have no free parameters, but their theory uncertainty is correlated with that

of Ti, i = 1, . . . , N , for which we have experimental data, Di. We can write the

predictions in the nuisance parameter formalism as (in a slight abuse of notation)
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T̃ (λ̃) = T̃ + λ̃β̃, (5.1.34)

where the vector β̃ gives the size and direction of the theory uncertainty in T̃ . If

λ̃ are independent of λ, then the theory uncertainties in T̃ are uncorrelated with

those in T and the covariance for the predictions is just

S̃ = β̃β̃T . (5.1.35)

In the opposite scenario where they are fully correlated, λ̃ = λ and we can use the

data D for T to improve our prediction by using the posterior of λ, i.e. P (λ|TD):

E[T̃ (λ)] = T̃ + λ(T,D)β̃

= T̃ + β̃βT (C + S)−1(D − T ),
(5.1.36)

where once again we have used Eqn. 5.1.16 to get to the second line. So there is

a shift in the predictions of

δT̃ = −Ŝ(C + S)−1(T −D), (5.1.37)

where Ŝ = β̃βT is the covariance matrix of cross correlations between the theory

uncertainty in the theory for which there are data and that in the predictions.

The covariance matrix of the predictions can be calculated

Cov[T̃ (λ)] ≡ E[(T̃ (λ)− E[T̃ (λ)]2)

= E[((λ̃− λ)β̃)((λ̃− λ)β̃)T ]

= Var[λ]β̃β̃T

= ZS̃.

(5.1.38)

So the covariance of the genuine predictions is reduced by the same factor, Z, as

the autopredictions. This means the data can work via the correlations in theory

uncertainties to produce more precise and (if the theory is correct) more accurate

predictions for observables that aren’t yet measured. This is accompanied by a

shift which is proportional to the cross covariance between theory uncertainties.

We can understand a little more about the various theory covariance matrices

by imagining we obtained some experimental measurements, D̃, corresponding

to predictions T̃ . Then we could add these to the fit, and would get a new fitting
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theory covariance matrix with dimensions (N + Ñ)× (N + Ñ) and content(
S Ŝ

ŜT S̃

)
=

(
ββT ββ̃T

β̃βT β̃β̃T

)
. (5.1.39)

Here the role of Ŝ and ŜT as cross-correlation theory covariance matrices is clear.

We can see that the theory uncertainties in the prediction are consistent with

the theory uncertainties we would use when including observables in a fit, which

makes sense in the comparison with the autopredictions case.

Ideally, the shifted predictions would give a better χ2 to the new data D̃, but

this is not guaranteed because the shifts were induced from the old data, D, and

there could be inconsistencies between D and D̃.

5.1.3 Autopredictions in a perfect fit

We have just considered the scenario where T is unfitted to the data. Now

consider the “opposite” situation of a perfect fit. Here T have a high level of

flexibility, and can fit D exactly. P (T |D) is always maximised when T = D, so

χ2 = 0. We can extract the expectation value and covariance of T as

E[T ] = NT
∫

dT T P (T |D) = D, (5.1.40)

where NT is such that E[1] = 1, and

Cov[T ] ≡ E[(T − E[T ])2] = C + S. (5.1.41)

We can write the autopredictions again in the nuisance parameter formalism, so

again in a slight abuse of notation

T (λ) = T + λβ. (5.1.42)

When calculating the expectation value of a function of T and λ, we must take

some care. The data, D are always held fixed because they are set values from

experiment. Then the expectation value can be calculated using conditional

probabilities,

E[f(T, λ)] ≡ NT
∫
dT Nλ

∫
dλ f(T, λ)P (λ|TD)P (T |D). (5.1.43)
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We must therefore integrate first over λ, because this is conditional on T , and

then over T . So to get the expectation value of λ, we first take the expectation

value over λ, with both T and D fixed, using the definition of λ from Eqn. 5.1.16:

E[λ] = E[λ(T,D)]

= βT (C + S)−1E[D − T ].
(5.1.44)

Then we take the expectation value over T , keeping D fixed, which just gives us

E[λ] = βT (C + S)−1(D −D) = 0. (5.1.45)

For the variance we have

Var[λ] = E[(λ− E[λ])2] = E[λ2]. (5.1.46)

To evaluate this we can use the trick of adding and subtracting λ(T,D) to λ

because we are aiming to put it in terms of Z = E[(λ − λ(T,D))2]. Making use

of Eqn. 5.1.9 and Eqn. 5.1.41,

Var[λ] = E[(λ− λ(T,D) + λ(T,D))2]

= E[(λ− λ(T,D))2] + E[λ(T,D)2]

= Z + βT (C + S)−1E[(T −D)(T −D)T ](C + S)−1β

= Z + βT (C + S)−1Cov[T ](C + S)−1β

= 1− βT (C + S)−1β + βT (C + S)−1β

= 1.

(5.1.47)

So in a perfect fit, the posterior distribution of nuisance parameters is exactly the

same as the prior. All the information from the data is absorbed into the fitted

parameters, and so we are left with no update to the theoretical uncertainty. In

the calculation of the variance you can see how the reduction by factor Z that

we saw in the pure theory case is exactly cancelled by the factor due to the

fluctuation of λ(T,D) due to the covariance of T .

We can now use the posterior of λ to calculate the autopredictions. First we

calculate the expectation value:

E[T (λ)] = E[T + λβ] = D, (5.1.48)
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which is a consistency check. Next we calculate the covariance, where we

remember the expectation value is taken first over λ with T and D fixed, and

then over T with D fixed:

Cov[T (λ)] = E[(T (λ)− E[T (λ)])2]

= E[(T −D + λβ)(T −D + λβ)T ]

= E[(T −D)(T −D)T ] + E[λβ(T −D)T ]

+ E[(T −D)λβT ] + E[λ2]ββT .

(5.1.49)

The first term is just Cov[T ] and the last term is Var[λ]S = S. To calculate the

middle terms, consider

E[λβ(T −D)T ] = E[βλ(T,D)(T −D)T ]

= −S(C + S)−1E[(T −D)(T −D)T ]

= −S(C + S)−1Cov[T ].

(5.1.50)

So overall

Cov[T (λ)] = Cov[T ]− S(C + S)−1Cov[T ]− Cov[T ](C + S)−1S + Var[λ]S

= (C + S)− S − S + S

= C.

(5.1.51)

So in a perfect fit, the covariance of the autopredictions is equal to the covariance

of the data. This happened because the covariance arising from the fit (the first

term in Eqn. 5.1.49), and the covariance arising in the autopredictions (the last

term in Eqn. 5.1.49) are each cancelled by the cross covariance between the fit

and the prediction. This is the effect which was noted in [148]. In a perfect

fit, there is no distinction between the autopredictions and the data, and so the

theory uncertainty is irrelevant. In other words, the case of a perfect fit can be

thought of as “pure phenomenology”; the only information we are left with is in

the data. As a result we can’t make genuine predictions for points we don’t have

experimental data for because there’s no real underlying theory.

5.2 One-parameter fits

Previously, we looked at two unrealistic simple models;
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1. Fixed theory which cannot be fitted to data (pure theory);

2. Over-flexible theory which is fitted perfectly to data (pure phenomenology).

These helped us to develop the nuisance parameter approach, but in reality we

want somewhere between these two extremes; normally the theory has parameters

which are constrained by the data and can be fitted, however the theory is rigid

enough to be able to make new predictions, T̃ , where no data exist. We will see

that in this more realistic case there are features from both the pure theory and

the pure pheno cases, namely:

1. shifts in the central values;

2. reduction in uncertainty;

3. correlations of theory uncertainties.

First we will consider a theory with one fitted parameter. Then we will generalise

this to many fitted parameters, which is a description of many modern PDF

fits. Finally, we will consider an NNPDF fit, where the many parameters are

encapsulated in a neural network.

Starting with the single parameter fit, T (θ) only depend on a single parameter,

θ. The χ2 (Eqn. 5.1.2) will be minimised for some θ = θ0, with variance Var[θ].

Once θ0 has been determined we can then make some predictions, T̃ (θ0), where

the tilde denotes they are predictions for theories separate from the fit inputs.

These predictions will have uncertainties proportional to Var[θ].

We have assumed that the uncertainties are Gaussian, and so they are differen-

tiable. This means we can linearise T (θ) about T (θ0) ≡ T0:

T (θ) = T0 + (θ − θ0)Ṫ0 + . . . . (5.2.1)

We want to determine the uncertainty in the fitted θ, so we need to propagate

the uncertainties in the data, D, and the theory, T (θ), into θ. We can do this

using the standard NNPDF approach (see Chapter 1) of generating pseudodata

replicas, D(r), which are Gaussianly distributed about the actual data, D, with

covariance C + S. It is important to remember that these are just a device

for propagating the uncertainty, and we must still hold D constant when taking
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expectation values. More explicitly, we can define the average over replicas for

any function, F , of the replicas as

〈F (D(r))〉 = lim
Nrep→∞

1
Nrep

Nrep∑
r=1

F (D(r)). (5.2.2)

Then the replicas will satisfy

〈D(r)〉 ≡ D, 〈(D(r) −D)(D(r) −D)T 〉 = C + S. (5.2.3)

in the limit of Nrep →∞.

The fit proceeds by fitting a parameter replica, θ(r), for each pseudodata replica,

D(r), by minimising

χ2
r[θ] = (T (θ)−D(r))T (C + S)−1(T (θ)−D(r)), (5.2.4)

with respect to θ. Using Eqn. 5.2.1, this leads to

θ(r) − θ0 =
Ṫ T0 (C + S)−1(D(r) − T0)

Ṫ T0 (C + S)−1Ṫ0

. (5.2.5)

Now θ0 = 〈θ(r)〉, so using the replica averages in Eqn. 5.2.3 we find

Ṫ T0 (C + S)−1(D − T0) = 0, (5.2.6)

so we can rewrite Eqn. 5.2.5 as

θ(r) − θ0 =
Ṫ T0 (C + S)−1(D(r) −D)

Ṫ T0 (C + S)−1Ṫ0

. (5.2.7)

Using the fact that C and S are symmetric,

Var[θ] = 〈(θ(r) − θ0)2〉

=
Ṫ T0 (C + S)−1〈(D(r) −D)(D(r) −D)T 〉(C + S)−1Ṫ0

(Ṫ T0 (C + S)−1Ṫ0)2

= (Ṫ T0 (C + S)−1Ṫ0)−1. (5.2.8)

Note that:

� data points with a large dependence on θ have large Ṫ0 and contribute more.
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� directions with large uncertainty, (C + S), contribute less.

Now we have the uncertainty in the fitted parameter, θ, we can find the fitting

uncertainty. This is the covariance of T (θ) due to the experimental and theoretical

uncertainties from fitting θ. We will call this covariance matrix X. Using the

fact that E[T ] = 〈T (θ(r))〉 = T (θ0) = T0 and writing T (r) = T (θ(r)),

X ≡ Cov[T (θ)] = 〈(T (r) − T0)(T (r) − T0)T 〉 (5.2.9)

= Ṫ0〈(θ(r) − θ0)2〉Ṫ T0 (5.2.10)

= Ṫ0(Ṫ T0 (C + S)−1Ṫ0)−1Ṫ T0 (5.2.11)

= n(nT (C + S)−1n)−1nT , (5.2.12)

where in the last line we define Ṫ0 ≡ |Ṫ0|n, i.e. n is a unit vector in the direction of

Ṫ0. We can see that X depends only on the direction (n) of Ṫ0, not its magnitude.

Note that X is singular and also that

X = X(C + S)−1X, (5.2.13)

which will be useful later. Using Eqn. 5.2.7 in Eqn. 5.2.1, we can see that

T (r) − T0 = X(C + S)−1(D(r) −D(0)), (5.2.14)

so X(C + S)−1 projects the data replicas onto the theory replicas.

Now let’s revisit the model for covariance matrices, Eqn. 5.1.30. If we define the

angle between the theoretical uncertainties and the θ variation by cosφ = nT e,

we find that

nT (C + S)−1n =
σ2 + s2 sin2 φ

σ2(σ2 + s2)
, (5.2.15)

nTXn =
σ2(σ2 + s2)

(σ2 + s2 sin2 φ)
. (5.2.16)

Note that using any vector other than n here gives 0. We can see that the effects

from the theory uncertainty (s) depend on its degree of alignment with n, the

direction of the parameter dependence.

� For complete alignment, φ = 0 and the variance of T in this direction is

(σ2 + s2).

� When they are orthogonal, φ = π
2

and the variance is σ2, so the theory
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uncertainty doesn’t factor into the fitting.

5.2.1 Autopredictions in single parameter fits

We can now get the expectation and covariance of the autopredictions in the

one-parameter model. We write the autopredictions again as

T (θ, λ) = T (θ) + λβ. (5.2.17)

As before, we compute the expectation values over λ using P (λ|TD) and then

over T using P (T |D). We do the expectation over T by averaging over the theory

replicas T (r) ≡ T (θ(r)). All this time we must hold D fixed as the probabilities

are conditional on the data. As stated before, D(r) are not physical, they are just

an artificial device we use to allow us to propagate the uncertainties. So we don’t

average over the data replicas when getting the expectation values. Explicitly,

E[f(T, λ)] = 〈(Nλ
∫

dλ f(T (r), λ)P (λ|T (r), D))〉, (5.2.18)

where we recall that 〈·〉 denotes the replica average.

Expectation value

To get the expectation value of the autopredictions, we do the same steps as we

did for the perfect fit, but now we have the theory replicas as well. So first we

find the expectation value of λ, using the definition of λ in Eqn. 5.1.16,

E[λ] = 〈λ(T (θ)(r)), D)〉
= βT (C + S)−1(D − T0)

≡ λ0.

(5.2.19)

We can see the parallel here with the pure theory scenario, where the nuisance

parameters can have non-zero expectation values. This is because the one

parameter fit is not perfect. We can now calculate the expectation value of
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the autopredictions:

E[T (θ, λ)] = 〈T (r) + λ(T (r), D)β〉
= T0 + λ0β

= T0 + S(C + S)−1(D − T0),

(5.2.20)

and therefore the shift induced is

δT = −S(C + S)−1(T0 −D). (5.2.21)

Note that Eqn. 5.2.6 tells us that nT (C+S)−1(T0−D) = 0, so the shifts are only

non-zero when n and e point in different directions. When they are parallel (i.e.

φ = 0), the theory uncertainty is absorbed by the fit, like in the perfect fit. We

can use the same arguments as we did in the pure theory case to conclude that

the shifts always improve the fit to experimental data.

Covariance

Now we can find the covariance of autopredictions. We start by computing the

variance of λ, again using the trick of adding and subtracting λ(T (r), D):

Var[λ] = E[(λ− E[λ])2]

= E[(λ− λ(T (r), D) + λ(T (r), D)− λ0)2]

= E[(λ− λ(T (r), D))2] + E[(λ(T (r), D)− λ0)2]

+ E[(λ− λ(T (r), D)(λ(T (r), D)− λ0)]

+ E[(λ(T (r), D)− λ0)(λ− λ(T (r), D))].

(5.2.22)

The next step is to take the expectation value over λ, and we see that the two

cross terms are 0 because λ→ λ. So

Var[λ] = E[(λ− λ(T,D))2] + 〈(λ(T (r), D)− λ0)2〉, (5.2.23)

where when taking the expectation value over T we use the replica average. The

first term is just Z, and to evaluate the second term we can use Eqn. 5.1.16 to

substitute for λ:

Var[λ] = Z + βT (C + S)−1〈(T (r) − T0)(T (r) − T0)T 〉(C + S)−1β. (5.2.24)
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Now we can use the definitions of Z, Eqn. 5.1.9, and X, Eqn. 5.2.9, to write

Var[λ] = 1− βT (C + S)−1β + βT (C + S)−1X(C + S)−1β

≡ Z.
(5.2.25)

So unlike in a perfect fit, the last two terms don’t cancel. So the information in

the data can’t just be totally absorbed into the fitted parameter, because there

isn’t enough flexibility for this to happen. As a result that information can have

an impact on the nuisance parameters.

We can see that Z ≥ Z because (C + S)−1X(C + S)−1 is positive semidefinite,

and Z ≤ 1 because X(C + S)−1 is projective (Eqn. 5.2.14), so its eigenvalues are

either 0 or 1. Overall

0 < Z ≤ Z ≤ 1, (5.2.26)

so the information from the data about the theory uncertainties is less in the

single parameter fit than in the pure theory. This is due to the uncertainty in

the fit. However, unlike in the perfect fit, the data do still constrain the theory

uncertainties, provided that the fitted parameter and the theory uncertainties are

in different directions.

In the simple model for uncertainties we introduced in Eqn. 5.1.30, it can be

shown that

Z =
σ2

σ2 + s2 sin2 φ
, (5.2.27)

so

� Z = 1 when φ = 0, i.e. when n = e and the parameter variation is aligned

with the theory uncertainty;

� Z = Z only if φ = π/2, i.e. n ⊥ e and here the data have the greatest

influence because there is no absorption of information into the fit.

Finally, we can use this information to calculate the covariance of the autopredic-

tions. Again, we first take the expectation value over λ, holding T and D fixed,

and then use the theory replicas to take the expectation value over T with D
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fixed.

Cov[T (θ, λ)] = E[T (θ, λ)− E[T (θ, λ)])2]

= E[(T − T0 + (λ− λ0)β)(T − T0 + (λ− λ)β)T ]

= 〈(T (r) − T0)(T (r) − T0)T 〉+ E[(λ− λ0)β(T − T0)T ]

+ E[(T − T0)(λ− λ0)βT ] + E[(λ− λ0)2]ββT .

(5.2.28)

The first term is Cov[T ] = X and the last term is Var[λ]S. The cross terms can

be evaluated like

E[(λ− λ0)β(T − T0)T ] = 〈β(λ(T (r), D)− λ(T0, D))(T (r) − T0)T 〉
= −S(C + S)−1Cov[T ]

= −S(C + S)−1X.

(5.2.29)

So overall

Cov[T (θ, λ)] = X − S(C + S)−1X −X(C + S)−1S + ZS. (5.2.30)

� The first term is the fitting uncertainty. This includes contributions from

both experiment and theory.

� The last term is the theory uncertainty in the prediction, reduced by a

factor Z through exposure to the data.

� The middle two terms are correlations between these two uncertainty

sources.

We can simplify this expression by noting that

ZS = S(C + S)−1X(C + S)−1S + ZS (5.2.31)

and using the fact that

X−S(C+S)−1X−X(C+S)−1S+S(C+S)−1X(C+S)−1S = C(C+S)−1X(C+S)−1C

(5.2.32)

to see that

Cov[T (λ)] = C(C + S)−1X(C + S)−1C + ZS. (5.2.33)

Note that in a perfect fit, X = C + S and so we just get C, which is what we

ended up with before.
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We didn’t see the same cancellation as in the perfect fit section, however, because

Cov[T ] is X here, rather than C + S. So rather than getting the experimental

covariance matrix, C, we end up with the sum in quadrature of the fitting

uncertainty, X and the theory uncertainty, S, but each reduced due to the effects

from correlation.

In the simple model of uncertainties (Eqn. 5.1.30) it can be shown that

Cov[T (λ)] =
σ2(σ2 + s2)

σ2 + s2 sin2 φ

(
nnT − s2

σ2 + s2
cosφ(enT + neT ) +

s2

σ2 + s2
eeT
)
.

(5.2.34)

Here the first term is X, the last term is ZS and the middle terms are the

correlation.

� If φ = 0, n = e and the result is just σ2nnT , which is the experimental

uncertainty. This is the case of a perfect fit.

� If φ = π/2, n ⊥ e and the correlation terms vanish. Then you end up with

X+ZS, i.e. the two contributions are added in quadrature, with the theory

uncertainty reduced by Z. This is the pure theory case.

From this we can see that the one parameter fit interpolates smoothly between

these two extremes.

Note that we can rewrite the covariance as

Cov[T (λ)] =
σ2(σ2 + s2)

σ2 + s2 sin2 φ

(
n− s2 cosφ

σ2 + s2
e

)(
nT − s2 cosφ

σ2 + s2
eT
)

+
s2σ2

σ2 + s2
eeT .

(5.2.35)

In this recasting, we end up with ZS as the last term. We can see that X is

altered such that n gets an additional component in the direction of e, due to the

correlation with the theory. This:

1. changes the direction;

2. reduces the magnitude of the fitting uncertainty by a factor
√

sin2 φ+ Z2 cos2 φ,

although the resulting fitting uncertainty is still larger than it would have

been had the theory uncertainty not been included in the fit. We can see
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this result by considering ñ = n− s2 cosφ
s2+σ2 e and calculating

√
ñ · ñ
n · n =

√
1− 2s2 cos2 φ

s2 + σ2
+

s4 cos2 φ

(s2 + σ2)2

=

√
sin2 φ+ cos2 φ

(
1− 2s2

s2 + σ2
+

s4

(s2 + σ2)2

)

=

√
sin2 φ+ cos2 φ

(
1− s2

s2 + σ2

)2

=

√
sin2 φ+ Z2 cos2 φ,

(5.2.36)

where in the last line we used the fact that Z = σ2

σ2+s2
.

5.2.2 Correlated predictions in single parameter fits

We are now in a position to consider genuine predictions in the case of a single

parameter fit. These are denoted T̃I(θ), I = 1, . . . Ñ . Note that the predictions,

θ, depend on the same parameters as the fitted theory. There are two distinct

sources of uncertainty in these predictions:

1. that in the determination of θ, which in turn comes from the experimental

uncertainties in Di and the theory uncertainties in Ti;

2. the theory uncertainties in T̃I .

1. are expressed via Eqns. 5.2.7 and 5.2.8. We can linearise the predictions, just

like we did for the fitted theory in Eqn. 5.2.1:

T̃ (θ) = T̃0 + (θ − θ0)
˙̃
T 0 ≡ T̃ (θ0). (5.2.37)

Then we can use the same approach as in Eqns. 5.2.9-5.2.12 to find the uncertainty

in θ, which is equivalent to the fitting uncertainty, X̃. Writing T̃ (r) ≡ T̃ (θ(r)) and
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making use of Eqn. 5.2.7:

X̃ ≡ Cov[T̃ (θ)]

= 〈(T̃ (r) − T̃0)(T̃ (r) − T̃0)T 〉

= 〈((θ(r) − θ0)
˙̃
T 0)((θ(r) − θ0)

˙̃
T 0)T 〉

=
˙̃
T 0〈(θ(r) − θ0)2〉 ˙̃

T T0

=
˙̃
T 0(Ṫ T0 (C + S)−1Ṫ0)−1 ˙̃

T T0 .

(5.2.38)

2. can be either uncorrelated or correlation with the theory uncertainty in T .

(a) If it is uncorrelated, e.g. if they are different types of theory uncertainty,

then we can denote the nuisance parameter for the predictions as λ̃. We

choose the same prior of a unit Gaussian centred on zero. Then we can

write

T̃ (θ, λ̃) = T̃ (θ) + λ̃β̃, (5.2.39)

where β̃ gives the direction of the theory uncertainty in T̃ , and λ̃ gives

the size. Then we can calculate the expectation and covariance of the

predictions,

E[T̃ (θ, λ̃)] = T̃ (θ0)

Cov[T̃ (θ, λ̃)] = Cov[T̃ (θ)] + Var[λ2]β̃β̃T

= X̃ + S̃.

(5.2.40)

So if the uncertainties are uncorrelated, we add the theory uncertainty in

T̃ in quadrature with the uncertainty in θ from the fit.

(b) If it is fully correlated, e.g. factorisation scale variation, λ̃ = λ, which

has non-zero expectation value and variance after the fit. Now

T̃ (θ, λ) = T̃0 + λ(T0, D)β̃, (5.2.41)

so we end up with a similar shift to that of the autopredictions, which is

due to the correlation. Explicitly, the shift is

δT̃ (θ0) = β̃βT (C + S)−1(D − T0)

= −Ŝ(C + S)−1(T0 −D),
(5.2.42)

where Ŝ = β̃βT is the cross covariance matrix of the theory uncertainties
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in the prediction with those in the fitted theory. The covariance of the

predictions is then

Cov[T̃ (θ, λ)] = E[(T̃ (θ, λ)− E[T̃ (θ, λ)])2]

= E[T̃ (θ) + λβ̃ − T̃0 − λ(T0, D)β̃)2].
(5.2.43)

First take the expectation value over λ, then over T (using the theory

replicas):

Cov[T̃ (θ, λ)] = E[(T̃ (θ)− T̃0) + (λ− λ0)β̃)2]

= 〈(T̃ (r) − T̃0)(T̃ (r) − T̃0)T 〉+ E[(λ− λ0)β̃(T̃ − T̃0)T ]

+ E[(T̃ − T̃0)β̃T (λ− λ0)] + E[(λ− λ0)2]β̃β̃T .

(5.2.44)

The first term is just X̃ and the last term is Var[λ]S̃ = ZS̃. We can evaluate

the middle terms like

E[(λ− λ0)β̃(T̃ − T̃0)T ] = 〈β̃(λ(T (r), D)− λ(T0, D))(T̃ (r) − T̃0)T 〉
= −Ŝ(C + S)−1〈(T (r) − T0)(T̃ (r) − T̃0)T 〉
= −Ŝ(C + S)−1X̂T ,

(5.2.45)

where

X̂ = 〈(T (r) − T0)(T̃ (r) − T̃0)T 〉

=
˙̃
T 0〈(θ(r) − θ0)2〉 ˙̃

T T0

=
˙̃
T 0(Ṫ T0 (C + S)−1Ṫ0)−1Ṫ T0 .

(5.2.46)

So overall

Cov[T̃ (θ, λ)] = X̃ − Ŝ(C + S)−1X̂T − X̂(C + S)−1ŜT + ZS̃. (5.2.47)

Note that we can write the last term as

ZS̃ = ZS̃ + Ŝ(C + S)−1X̂(C + S)−1ŜT

= S̃ − Ŝ(C + S)−1ŜT + Ŝ(C + S)−1X̂(C + S)−1ŜT .
(5.2.48)

Here Z and Z are the same as for the autopredictions, and satisfy the same

bounds found before (Eqn. 5.2.26). Note that because C is positive definite
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and S is positive semidefinite, then

0 ≤ Ŝ(C + S)−1X̂(C + S)−1ŜT ≤ Ŝ(C + S)−1ŜT ≤ S̃, (5.2.49)

so importantly the subtraction of Ŝ(C + S)−1ŜT is never large enough to

make the whole covariance matrix negative.

Summary

In summary, including correlations leads to three effects:

1. A shift in central value;

2. A reduction in theory uncertainties;

3. A reduction in fitting uncertainties.

During the fit, information that is implicit in the data about the theory is

propoagated via the corrleations. This leads to more precise (and hopefully more

accurate) predictions.

5.3 Correlated MHOUs in PDF fits

In this section we add another layer of complexity to the model we are building

up. Now the theory values, Ti[f ], depend on PDFs, f , which are determined in a

global fit to the N data points, Di, with experimental covariance Cij. The PDFs

are then used to make Ñ theory predictions, T̃I [f ].

In a PDF fit there are many potential sources of theory uncertainty, but here we

will consider MHOUs, computed with scale variation using a prescription from

Chapter 3. In this case Sij and S̃IJ have many non-zero eigenvalues. We can

describe them using n nuisance parameters, λα, α = 1, . . . , n. Usually n � N ,

but we don’t impose a limit on n here.

We will now find the expectation value and covariance of these nuisance

parameters, and use those to find the shifts in predictions, and the change in

their uncertainties.
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5.3.1 Multiple nuisance parameters

Here we repeat the analysis of Sec. 5.1.1, but for multiple nuisance parameters

rather than just one. Each nuisance parameter is associated with a shift in theory

value Ti[f ] → Ti[f ] + λαβi,α[f ], using summation notation for α. Note that the

βi,α don’t have to be mutually orthogonal. We pick a prior for each nuisance

parameter the same as in Sec. 5.1.1, i.e.

P (λ|D) = P (λ) ∝ exp (− 1
2
λαλα). (5.3.1)

Once again we assume Gaussianity, and now instead of Eqn. 5.1.5 we get

P (T |Dλ) ∝ exp (− 1
2
(T [f ] + λαβα −D)TC−1(T [f ] + λαβα −D)). (5.3.2)

We can marginalise over λα to get

P (T |D) ∝
∫
dnλ exp

(
−1

2
[(T [f ] + λαβα −D)TC−1(T [f ] + λβββ −D) + δαβλαλβ]

)
.

(5.3.3)

The next step is to complete the square in the exponent. After some work,

defining

Zαβ = (δαβ + βTαC
−1ββ)−1, (5.3.4)

where the bracketed inverse is with respect to α, β, and

λα = Zαββ
T
β C
−1(D − T ), (5.3.5)

we end up with

P (T |D) ∝
∫
dnλ exp

(
−1

2
(λα − λα)Z−1

αβ (λβ − λβ)− 1
2
χ2
)
∝ exp(−1

2
χ2). (5.3.6)

Note that χ2 in this expression is given by Eqn. 5.1.2 but where S = βαβ
T
α . Note

also the analogy between this and Eqn. 5.1.17.

We can then use Bayes’ Theorem to get the posterior distribution,

P (λ|TD) ∝ exp (− 1
2
(λα − λα)Z−1

αβ (λβ − λβ)), (5.3.7)

and from this the expectation and covariance of λα are

E[λα] = λα, E[(λα − λα)(λβ − λβ)] = Zαβ. (5.3.8)
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If we write β = eαβα, such that eα is a unit eigenvector of Zαβ, then the

corresponding eigenvalue is z = (1 + βTC−1β)−1. This means 0 < z < 1 and

so Zαβ is positive definite, therefore invertible. What’s more, if all z < 1 then

δαβ − Zαβ is also positive definite. We can view Zαβ as the matrix version of the

coefficient from Sec. 5.1.1 as there are now many sources of uncertainty.

We can write, in analogy with before,

Zαβ = δαβ − βTα (C + S)−1ββ, (5.3.9)

which allows us to rewrite λα, using (1− (C + S)−1S)C−1 = (C + S)−1, as

λα = βTα (C + S)−1(D − T [f ]). (5.3.10)

5.3.2 Fitting PDFs with fixed parametrisation

Now we can use the previous section’s results in the context of a PDF fit with

MHOUs. In this section, we consider a fixed parametrisation of PDFs, like that

adopted by, for example MSHT, CTEQ and ABM. Here the PDFs, f(θ), depend

on m parameters, θp, p = 1, . . . ,m, where m < N such that the data are able to

determine all the parameters through χ2 minimisation. We will move on to the

somewhat different case of PDFs with neural networks (unsurprisingly relevant

to NNPDF) in the next section.

We adopt the same approach as in Sec. 5.2, but fitting m parameters, θp, rather

than a single one, θ. Writing the PDF that minimises the χ2 as f(θ0) ≡ f0, and

using the notation T0 ≡ T (θ0), Tp ≡ ∂T (θ0)/∂θ0
p with summation convention for

p, we can linearise T (θ) as

T (θ) = T0 + (θp − θ0
p)Tp + . . . . (5.3.11)

Minimising this with respect to θp, we find

θ(r)
p − θ0

p = (T Tp (C + S)−1Tq)
−1T Tq (C + S)−1(D(r) −D), (5.3.12)

where the inverse of the left section is with respect to p, q. So

Covpq[θ] = 〈(θ(r)
p − θ0

p)(θ
(r)
q − θ0

q)〉
= (T Tp (C + S)−1Tq)

−1. (5.3.13)
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To find X, we can separate out the magnitude and direction of Tp by writing Tp =

|Tp|np, where np are (not necessarily orthogonal) unit vectors. Then Eqn. 5.2.12

becomes

X ≡ Cov[T [f ]] = np(n
T
p (C + S)−1nq)

−1nTq . (5.3.14)

Note that X(C + S)−1 still projects the data replicas onto the theory replicas,

and the projective relation for X still holds.

Autopredictions

First consider the autopredictions, T (f, λ) ≡ T [f ] + λαβα. We can see that the

results from Sec. 5.2 still hold. In particular, the central values of λα are given

by

E[λα] = −βTα (C + S)−1(T [f0]−D), (5.3.15)

and the shifts (Eqn. 5.2.21) are now

δT [f ] = βαβ
T
α (C + S)−1(D − T [f0]) = −S(C + S)−1(T [f0]−D). (5.3.16)

These shifts will improve the χ2 to experimental data, just like those in Sec. 5.1.

The covariance of λ becomes an equation for a matrix rather than a coefficient:

Covαβ[λ] = E[(λα − E[λα])(λβ − E[λβ])]

= δαβ − βTα (C + S)−1ββ + βTα (C + S)−1X(C + S)−1ββ ≡ Zαβ.

(5.3.17)

Like before, both Zαβ and δαβ − Zαβ are positive semidefinite, so

0 < Zαβ ≤ Zαβ ≤ δαβ. (5.3.18)

The covariance of the autopredictions then becomes

Cov[T (f, λ)] = X − S(C + S)−1X −X(C + S)−1S + βαZαββ
T
β

= C(C + S)−1X(C + S)−1C + S − S(C + S)−1S.
(5.3.19)

Note that this result is identical to that in Sec. 5.2.
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Predictions for new observables

Now consider true predictions for new observables. The shifts (Eqn. 5.1.37) can

be written

δT̃ [f ] = β̃αβ
T
α (C + S)−1(D − T [f0]) = −Ŝ(C + S)−1(T [f0]−D), (5.3.20)

where we have defined Ŝ = β̃αβ
T
α .

If the predictions are fully correlated, then T̃ (f, λ) = T̃ [f ] + λαβ̃α and

Cov[T̃ (f, λ)] = X̃ − Ŝ(C + S)−1X̂T − X̂(C + S)−1ŜT + β̃αZαββ̃
T
β , (5.3.21)

where S̃ = β̃αβ̃
T
α and we have:

X̃ = T̃p(T
T
p (C + S)−1Tq)

−1T̃ Tq ;

X̂ = T̃p(T
T
p (C + S)−1Tq)

−1T Tq ,
(5.3.22)

Using Eqn. 5.3.19, we can therefore write the last term as

ZS̃ = ZS̃ + Ŝ(C + S)−1X(C + S)−1ŜT , (5.3.23)

ZS̃ = S̃ − Ŝ(C + S)−1ŜT . (5.3.24)

So we find that once again the result is exactly the same as in Sec. 5.3. In other

words, once we have eliminated the nuisance parameters, the only difference in

generalising one parameter to many is to amend the expressions for X, X̃ and

X̂.

5.3.3 Fitting NNPDFs

In NNPDF we don’t use a fixed parametrisation, but instead have a neural

network with a very large number of parameters, in general greater than the

number of data points. Here the ability to overfit is a danger, so we adopt a cross-

validation procedure when finding the optimal χ2 (see Chapter 1). This means

that when fitting each data replica, D(r), the χ2 is not exactly minimised; there

is random noise in the system which amounts to a “functional uncertainty” [57].

The fact that Eqn. 5.2.4 is not exactly minimised makes the analytical approach

imprecise, and while in general the results in Sec. 5.3.1 are valid, the exact
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relations for the fitted parameters (e.g. Eqn. 5.3.12) and subsequent results do

not hold. We are still able to use the PDF replicas to compute, for example

X ≡ Cov[T [f ]] = 〈(T (r) − T (0))(T (r) − T (0))T 〉, (5.3.25)

where T (r) ≡ T [f (r)], and T (0) ≡ 〈T (r)〉. However, the projective relation for X

is no longer satisfied, and now X(C + S)−1 doesn’t project the data replicas on

to the theory replicas. We can confirm this for a given PDF by computing the

matrix

Y ≡ Cov[T,D] = 〈(T (r) − T (0))(D(r) −D)T 〉. (5.3.26)

For a fixed parametrisation, combining Eqn. 5.2.14 and Eqn. 5.2.3 shows that

Y = X = Y T . But explicit computation in an NNPDF fit shows us that Y is

generally considerably smaller than X, because the fluctuations of theory replicas

are poorly correlated to those of the data replicas. This is despite the fluctuations

of the data replicas being about an order of magnitude greater than that of the

theory replicas. Although many X(C + S)−1 eigenvalues will be zero (because

m < N), a lot of the non-zero eigenvalues will be larger than one as a result of

functional uncertainty. So although δαβ − Zαβ is still positive definite, the upper

bound on Zαβ, Eqn. 5.3.18, is no longer true; the covariance of the nuisance

parameters can be greater than the prior if there is a large functional uncertainty.

Note that X is not invertible, but this is not a technical limitation. The mapping

of the global dataset onto the PDFs is not invertible (excepting certain cases, for

example the data from a single process at a single scale explored in [148]). This

is because you can’t recover the full data from the PDFs alone, which is in part

because PDFs are only functions of x, but the data also depend on the scale;

when PDFs are delivered, the data are all projected onto a common PDF scale.

Additionally, the PDFs are universal and therefore process independent, so you

can’t say which processes were used to get the final PDFs.

Expectation and covariance of autopredictions

Once again we can consider autopredictions, now in a realistic NNPDF scenario.

We find that the shifts are given by a similar expression to Eqn. 5.3.16,

δT [f ] = −S(C + S)−1(T (0) −D), (5.3.27)
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and will once again reduce the experimental χ2. The covariance of autopredictions

is also still given by Eqn. 5.3.19:

P ≡ Cov[T (f, λ)] = C(C + S)−1X(C + S)−1C + (S − S(C + S)−1S). (5.3.28)

If the theory uncertainty S is much smaller than the experimental uncertainty C,

P approaches the result

Pcon = X + S; (5.3.29)

the fitting uncertainty and theoretical uncertainty can be combined in quadrature,

and the ‘conservative’ prescription recommended in [5] is a useful approximation.

More generally, we can think of the two contributions to P being the correlated

PDF uncertainty and the correlated theory uncertainty. Because C > 0, and

S ≥ 0, X ≥ 0, both of these contributions are positive semidefinite. Additionally,

the correlated theory uncertainty is bounded from above by the uncorrelated

theory uncertainty:

0 ≤ S − S(C + S)−1S = C(C + S)−1S ≤ S. (5.3.30)

At first glance it might appear that the correlated PDF uncertainty will also be

bounded from above by the uncorrelated PDF uncertainty X. One might think

this because since C is positive definite, and S positive semi-definite, C ≤ C+S,

so C(C + S)−1 ≤ 1, and C(C + S)−1X(C + S)−1C ≤ X. This argument is

wrong, however, and the correlated PDF uncertainty can sometimes exceed the

uncorrelated. Writing

C(C + S)−1X(C + S)−1C = X − S(C + S)−1X −X(C + S)−1S

+ S(C + S)−1X(C + S)−1S,
(5.3.31)

in some circumstances the sum of the last three terms can be positive. For this

reason it seems impossible to prove in general that P ≤ Pcon, though in all

practical applications we have tested so far this seems to be the case.
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Genuine predictions

For genuine predictions, where the theory uncertainties in the predictions are

correlated with those in the fit theory, the shifts are given by Eqn. 5.3.20,

δT̃ [f ] = −Ŝ(C + S)−1(T (0) −D), (5.3.32)

and the uncertainties are given by Eqn. 5.3.21, which are most usefully written

as

P̃ ≡ Cov[T̃ (f, λ)]

= X̃ − X̂(C + S)−1ŜT − Ŝ(C + S)−1X̂T + Ŝ(C + S)−1X(C + S)−1ŜT

+(S̃ − Ŝ(C + S)−1ŜT ). (5.3.33)

The second line are contributions to the correlated PDF uncertainty, and the

third line are contributions to the correlated theory uncertainty. Note that we

also need to calculate

X̃ ≡ Cov[T̃ [f, λ]] = 〈(T̃ (r) − T̃ (0))(T̃ (r) − T̃ (0))T 〉, (5.3.34)

X̂ ≡ Cov[T̃ [f, λ], T [f, λ]] = 〈(T̃ (r) − T̃ (0))(T (r) − T (0))T 〉. (5.3.35)

When Ŝ is very small, we end up with the conservative result. This will be the

case for predictions of new processes, where the dominant MHOU is in the hard

cross section. However, for existing processes, S̃ and Ŝ can be large, even if S is

small.

5.4 Numerical results

In this section we will apply all the results we worked up to in Sec. 5.3. We have

seen that in a realistic NNPDF fit, we just use the same analytic expressions

(Eqns. 5.3.27, 5.3.28, 5.3.32, 5.3.33) as we would for a fit of a PDF with fixed

parametrisation. This holds true despite the fact that PDFs possess a “functional

uncertainty”, due to the fact that PDF parameters are not uniquely fixed by the

fit. All the additional information we need to find the correlated predictions

and uncertainties are the matrices X, X̃ and X̂, which we compute by taking

the ensemble average over the PDF replicas from the fit. In this section we will

compute these matrices for an NNPDF global fit with theory uncertainties, and
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use them to compute and predict both autopredictions and genuine predictions,

which include the effect of correlated theory uncertainties. We use as a baseline

the NNPDF3.1 NLO global fit with 9 point MHOUs which was generated in

Chapter 3. This includes 2819 data points, split up into 5 processes. We show

again the experimental and theory covariance matrices from this fit in Fig. 5.4.1

for reference.

Figure 5.4.1 The experimental covariance matrix, Cij, normalised to the

theoretical predictions T
(0)
i (left), and the corresponding theory

covariance matrix for MHOU, Sij (right). The datasets are
arranged in the order given in Fig. 5.4.7 below: so SLAC data
are in the top left corner, and LHC top data in the lower right
corner.

Figure 5.4.2 The covariance matrix of PDF uncertainties, Xij, normalised

to the theoretical predictions T
(0)
i (left), and the corresponding

correlation matrix Xij/
√
XiiXjj (right). The datasets are

arranged in the order given in Fig. 5.4.7 below: so SLAC data
are in the top left corner, and LHC top data in the lower right
corner.
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5.4.1 Covariance of PDF uncertainties X

The first thing to do to calculate predictions is to compute Xij (Eqn. 5.3.25),

which is shown in Fig. 5.4.2 as a heat map alongside its corresponding correlation

matrix. The off-diagonals of X are almost as large as the diagonals.

This is because theory predictions are often very strongly correlated, not only

for nearby bins within the same experiment but also for different processes at

nearby scales. This is primarily due to the smoothness of the underlying PDFs in

(x,Q2), but it is also a consequence of the highly correlated theory uncertainties

included in the fit.

Figure 5.4.3 The square root of the diagonal elements of the matrices X
(in orange), C (in green) and S (in purple) normalised to the

theoretical predictions T
(0)
i , with those for C and S the same as

in Chapter 3. The datasets are arranged in the order given in
Fig. 5.4.7 below.

We compare PDF uncertainties to experimental and theory uncertainties by

looking at the per-point uncertainty in Fig. 5.4.3. Recall from Eqn. 5.2.3 that

C + S is the covariance of the data replicas to which the PDFs are fitted. At

NLO, the relative size of Cii and Sii can vary quite alot between datasets; for

fixed target DIS, Sii is generally greater than Cii, except at large x. For HERA

NC there is an interesting pattern whereby Sii � Cii at large x, but the opposite

is true at small x. The experimental uncertainty is also dominant for CHORUS,
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but for most of DY the theory uncertainty dominates.

The PDF uncertainties, Xii are generally less than both the experimental and

theoretical uncertainties. This makes sense because they are the product of a fit,

and so the uncertainty on each point is influenced by all the other data points in

the fit, which collectively conspire to reduce the uncertainty. We can clearly see

this effect in DY and JETS. The exception to this are datasets with very small

theory uncertainty, for example ratio datasets where systematic uncertainties

cancel between the numerator and denominator (e.g. NMC d/p, asymmetry data

and differential top). In these instances, Xii is above Sii, though still lower than

Cii.

5.4.2 Nuisance parameters

Now let’s look at the nuisance parameters λα of the covariance matrix S.

We showed in Chapter 3 that for five processes in the 9 point prescription

there are 28 non-zero eigenvalues, and so we will have 28 nuisance parameters.

Fig. 5.4.4 shows these eigenvalues in descending order in the top panel, with

their nuisance parameters below. We computed the expectation value of the

nuisance parameters using Eqn. 5.3.16, and their uncertainties using Eqn. 5.3.17.

It helps to separate out the two contributions to the uncertainty on the nuisance

parameters, namely:

1. the scale uncertainty (Eqn. 5.3.8);

2. the PDF uncertainty (last term in Eqn. 5.3.17).

These are shown as the lower two panels in Fig. 5.4.4.

Recall that the prior for the nuisance parameters was a unit Gaussian centred on

zero (Eqn. 5.3.1). After fitting, we see that the total uncertainty in the nuisance

parameters for the largest ∼9 eigenvalues has been substantially reduced, showing

that the MHOU along these directions has been learnt in the fitting process. For

the nuisance parameters corresponding to the smaller eigenvalues there is very

little reduction. This tells us that the data don’t constrain these directions very

well. The central values for the largest three eigenvalues are very close to zero

within uncertainties. This shows that the choice of prior was reasonable. The

next three or so significantly deviate from zero, showing that the data must
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have significant information about the MHOUs in these directions. For the

remaining smaller eigenvalues, the central values of the nuisance parameters are

all compatible with zero. For the very small ones it seems the data have had

no effect at all because the posterior distributions are the same as the prior. So

only the largest eigenvalues are actually relevant for PDF determination, and the

others are simply ignored by the fit.

Figure 5.4.4 The 28 positive eigenvalues sα of the theory uncertainty matrix Sij
(above), shown in descending order, and 28 nuisance parameters
λα corresponding to the 28 eigenvectors βα (below), as given
by Eqn. 5.3.15.The uncertainties in the nuisance parameters are
shown in total (square roots of the diagonal entries of Eqn. 5.3.17,
and broken down into the contribution from scale uncertainties
alone (square roots of the diagonal entries of Eqn. 5.3.8 and from
PDF uncertainties (square roots of the diagonal entries of the last
term in Eqn. 5.3.17. The yellow bands highlight the region between
±1.

Looking now at the split between scale uncertainty and PDF uncertainty, we see

that the MHOU for the largest eigenvalues is reduced a lot, showing that it is

learnt in the same way we saw in the simple models of Secs 5.1-5.3. However, there

is very little information extracted about the smaller ones. The PDF uncertainty

is also small for the largest and smallest eigenvalues, but dominates for the middle

ones.

Having seen that some directions of MHOU are more relevant in the fit, we may
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Figure 5.4.5 Nuisance parameters λ for directions in the space of scale
variations corresponding to up/down changes in factorization
scale, and in renormalization scale for the five types of processes in
the determination of the 9-pt theory covariance matrix for MHOU.
The uncertainties in the nuisance parameters are shown in total,
and broken down into the contribution from scale uncertainties
alone and from PDF uncertainties, just as in Fig. 5.4.4. The
yellow bands highlight the region between ±1.

wonder whether these have a physical interpretation; in Fig. 3.5.5 of Chapter

3 we saw that the largest eigenvectors of S were driven by factorisation scale

variation and then renormalisation scale variation for DIS NC. To investigate this,

we can switch bases, choosing βα to correspond to factorisation scale variations

(up/down) and renormalisation scale variations (up/down for each process).

Fig. 5.4.5 is a similar plot to Fig. 5.4.4, but for this “physical” basis.

We see that the central values fluctuate about zero, but stay in the ±1 band,

showing again that the impact of fitting the data on the nuisance parameters is

not large. This is reassuring as it backs up the choice of central scales and the

choice of range of scale variations (the latter being implicit in the prior for λα).

Looking just at the scale uncertainty, it is apparent that the factorisation scale

variation nuisance parameters have learnt the most information, which makes

sense as factorisation scale variation is common to all data in the fit. NC DIS,

being the largest process, is also learnt about to some extent. However, including

the PDF uncertainty washes out these effects. In particular, the uncertainties

in these directions can be slightly greater than one in total; in fact there is less
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learnt about the factorisation scale nuisance parameters that we had supposed in

the prior.

Already we see that information from the data in the fit significantly updates the

priors for the nuisance parameter distribution. From this it is likely that there

will be an effect at the level of the autopredictions, which is the subject of the

next section.

5.4.3 Autopredictions

As described in Sec. 5.1, autopredictions are where we fit a PDF and then use

that PDF to make predictions for the data that went into the PDF. These are

essentially postdictions, and are ideal for testing the extent of correlation between

theory uncertainties in the PDF fit and in the (auto)predictions.

Although this situation is somewhat artificial because experiments are never

redone in exactly the same way, the implications of this investigation will be

general. This is because for a global fit of this size (2819 data points, 35 datasets

and 5 processes), removing only one of the smaller datasets has negligible impact

on the PDFs.

Figure 5.4.6 The shifts δTi, Eqn. 5.3.27 (in blue) compared to the differences

between theory and data, Di − T (0)
i (in green), both normalised to

T
(0)
i .
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Removing even a large dataset will only increase PDF uncertainties without

affecting the theory uncertainties for the remaining data. This means that if

we did the fit with a certain dataset removed, and did the analysis with that fit

instead, we would instead have a genuine prediction, and the correlations between

MHOUs in the PDF and the prediction would be very close to what we have for

the autopredictions.

To make the correlated autopredictions, we first compute δTi (Eqn. 5.3.16). This

is the shift in theory predictions arising due to theory correlations. We show this

in Fig. 5.4.6, normalised to the orginal theoretical prediction T
(0)
i . We also show

Di− T (0)
i for comparison. The shifts tend to be small, however for some datasets

(especially CHORUS and inclusive jets) there is a systematic overall shift of order

Di − T (0)
i .

It’s interesting to see whether the shifts improve the autopredictions. In Fig. 5.4.7

we show the χ2 of the autopredictions, using the experimental covariance matrix

only, for the following autoprediction central values:

� No theory uncertainty;

� Theory uncertainty in the fit;

� Shifted autopredictions.

We use only the experimental covariance matrix, in order to isolate the effects due

to the changing central value from those due to adding additional uncertainties.

The results for all cases are very similar. Including the theory uncertainty in

the fit has mixed results; some predictions get better at the expense of others

getting worse. This is because the main effect of including theory uncertainties

is to rebalance the fit. When the correlated shift is also included, the fit to most

datasets improves, in some cases substantially. The exact values are broken down

by process in Tab. 5.4.1. When including theory uncertainties, the χ2 goes up

slightly from 1.17 to 1.19. However, when the correlated shift is added, there is a

significant improvement across all processes, with the total χ2 dropping to 1.10.
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DIS NC DIS CC DY JETS TOP Total
No th uncs 1.13 0.98 1.56 0.88 1.20 1.17
Uncorr th uncs 1.15 1.06 1.53 0.90 1.27 1.19
Correlated th uncs 1.09 0.91 1.47 0.83 0.97 1.10

Table 5.4.1 The experimental χ2 per data point for each process, comparing
the original result of the NLO fit with no theory uncertainties to
the fit with theory uncertainties, and then including the shift in the
autopredictions.

Figure 5.4.7 The experimental χ2 for each data set, comparing the original
result of the NLO fit with no theory uncertainties to the fit with
theory uncertainties, and then including the correlated shift in the
autopredictions.

Now let’s see whether we also end up with an increase in precision, by

considering the uncertainties in the autopredictions. In Fig. 5.4.8 we show the

full covariance matrix of autopredictions normalised to theory predictions and

also as a correlation matrix. Remember that Pij is the sum of:

1. The PDF uncertainty, derived from a combination of the experimental and

theory uncertainties in the fit;

2. The theory uncertainty in the autoprediction.

Each of these contributions is reduced due to the learning of the theory

uncertainties and the correlation between the two sources of theory uncertainty.
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As might be expected, we can see that there are very large correlations in the

autopredictions within datasets. These are due to:

1. Correlation of experimental uncertainties within datasets;

2. Smooth underlying PDFs;

3. Correlations of theory uncertainties.

Correlations are generally larger within each process than outwith them. This

suggests that the factorisation scale correlation is small compared to the

combination of the renormalisation scale correlation and the effects from PDF

smoothness and experimental uncertainties.

Figure 5.4.8 The autoprediction covariance matrix Pij Eqn. 5.3.28, normalised

to the theoretical predictions T
(0)
i (left), and the corresponding

corrrelation matrix Pij/
√
PiiPjj (right).

Fig. 5.4.9 shows the percentage uncertainties of the autopredictions,
√
Pii/Ti,

compared to the original PDF uncertainties,
√
Xii/Ti. It also shows the

percentage uncertainties for the conservative prescription,
√
P con
ii /Ti. The

correlated autoprediction uncertainties are generally a similar size to the PDF

uncertainties. They are larger for some of the DY datasets and JETS, and

for most of DIS NC and some DY they are smaller. This is in stark contrast

to the uncorrelated conservative prescription, which are greater than the PDF

uncertainties across the board, sometimes by a lot, and typically a factor of two or

more. This is because they don’t take into account the correlation or the learning,

which leads to an overestimate, especially where the theory uncertainties are a

lot bigger than the PDF uncertainty. In fact, the conservative prescription only
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works well where the theory uncertainties are very small, for example the NMC

d/p ratio data.

Figure 5.4.9 The percentage uncertainties of the autopredictions
√
Pii

Eqn. 5.3.28 (cyan) compared to the PDF uncertainty
√
Xii

(orange), and the conservative result,
√
P con
ii Eqn. 5.3.29 (dark

blue), all normalised to the theoretical predictions T
(0)
i .

The upshot is that the correlated autopredictions are not only more accurate, they

are also more precise. But we do need to be wary of this increase in precision

because it depends implicitly on the assumptions made when modelling the prior

MHOUs that we made in Chapter 3. In particular, it is dependent on the choice

of independent scales, the size of variation, and the prescription for generating

S. For example, the aggressive reduction in small x uncertainty for HERA NC

may well be due to the unseparated singlet and non-singlet factorisation scale

variation; because of this the singlet evolution is overconstrained at small x [148].

We leave this as a matter for future work.

To understand better how these changes in uncertainty arise, we show in

Fig. 5.4.10 a breakdown of the diagonal elements of the correlated theory

uncertainty (the second term in Eqn. 5.3.28), normalised to the theory uncertainty

prior, Sii. Explicitly, the contributions are

S − S(C + S)−1S + S(C + S)−1X(C + S)−1S. (5.4.1)
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The first term is the prior, the second term is due to learning, and the third term

is due to PDF fluctuations. Note that the first two terms are ZS and the whole

expression is ZS in the one parameter model.

Figure 5.4.10 The contributions to the diagonal elements of the correlated
theory uncertainty normalised to diagonal elements of S: (S −
S(C + S)−1S)ii/Sii (pink), and (S − S(C + S)−1S + S(C +
S)−1X(C + S)−1S)ii/Sii (black).

We can see that the learning reduces the prior almost to zero for NC DIS and

DY, and by an order of magnitude for the rest. It is likely that more flexibility is

required in the prior. The PDF fluctuations then undo a lot of the learning, but

the overall uncertainty is still less than the prior.

We can do a similar breakdown for the correlated PDF uncertainty diagonals,

this time normalised to Xii. This is the first term in Eqn. 5.3.28, but expanded

out like in Eqn. 5.3.31. The correlation terms, −S(C + S)−1X −X(C + S)−1S,

are very large as anticipated in [148]. This is especially true where there is a large

theory uncertainty (small x HERA NC or JETS), and here they can overwhelm

X and give a negative result. Despite that, the addition of PDF fluctuations in

S(C+S)−1X(C+S)−1S (rememeber the breakdown in Eqn. 5.3.31) always leaves

the total positive, sometimes taking it higher than X. We can therefore see that

adding correlations generally reduces the uncertainties, but they can sometimes

increase them. The learning, however, always reduces them.
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Figure 5.4.11 The contributions to the diagonal elements of the correlated PDF
uncertainty normalised to diagonal elements of X: (X − S(C +
S)−1X − X(C + S)−1S)ii/Xii (lilac), and (C(C + S)−1X(C +
S)−1C)ii/Xii (see Eqn. 5.3.31 (green).

For the autopredictions, we expect high levels of learning and correlation, because

we are making predictions for exact repetitions of experiments already in teh fit.

However, as noted earlier, removing one of the smaller datasets will have little

effect on the fit, which leads us to suspect that there will be similar results

for genuine predictions if the process is already in the fit and, especially, if the

kinematics are similar.

5.4.4 Predictions for an existing process: top production

Finally we can consider genuine predictions for experiments that weren’t used in

the PDF fits. These can either be for processes already in the fit, or for new ones.

Here we consider the former, and in the next subsection we’ll end with the latter.

We look at tt̄ production rapidity distributions in two channels (dilepton and

lepton + jets), measured by CMS at 13 TeV [3, 4]. There are a couple of reasons

for this choice:

� The base fit contains tt̄ total cross sections at 7, 8 and 13 TeV and

normalised rapidity distributions at 8 TeV, all from both ATLAS and CMS.
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� The NLO theory uncertainty for the 13 TeV data is ∼10%, considerably

larger than the PDF uncertainty.

Figure 5.4.12 The upper two panels show predictions for tt̄ unnormalised
rapidity distribution data taken at 13 TeV by CMS, the dilepton
rapidity distribution [3] (left) and the lepton+jets distribution [4]
(right). The four predictions show: the NLO fit with no MHOUs,
PDF error only; the combined PDF and MHOU fit, ignoring
correlations (thus

√
P con
II ); the result with the same shift, but

with the correlations included exactly (thus PII), and the NNLO
result with no MHOU. In the middle panels the same is shown,
but normalised to the uncorrelated result. In the lower panels
we show the fractional reduction in the PDF uncertainty and the
theory uncertainty due to the inclusion of the correlations.

Both these things mean that we’d expect the correlation between the theory

uncertainties in these data and the 13 TeV distributions to be high, and so we

should see some of the largest effects currently possible with these PDFs. The

CMS 13 TeV tt̄ rapidity predictions were computed using the same procedure

as the 8 TeV distributions in [10]: NLO theoretical predictions were generated

with Sherpa [149], in a format compliant with APPLgrid [123], using the MCgrid

code [150] and the Rivet [151] analysis package, with OpenLoops [152] for the

NLO matrix elements. Renormalisation and factorisation scales have been chosen
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based on the recommendation of [153] as HT/4.

The predictions are shown in Fig. 5.4.12. The correlated shift is sizeable, about

5%, but this is still comfortably within the ∼10% theory uncertainty. We’d

anticipate this given that Fig. 5.4.5 tells us that the shift in nuisance parameters

for the top renormalisation scale variation is also well within uncertainties. We

also see that the shift is almost fully correlated across the whole distribution. This

is because these are unnormalised distributions, so there is the restriction that

they must sum to the total cross section. They are therefore strongly correlated

with the measurements of the total cross section in the fit. We can confirm this by

breaking down the contributions to the shift from the different fitted data points,

seen in Table 5.4.2. The six total cross section measurements are responsibile for

the vast majority of the shift, with the 8 TeV normalised rapidity distributions

pushing the shift back down by about 25%. The rest of the data have almost no

impact.

ATLAS CMS Other

tot diff tot diff

7 TeV 8 TeV 13 TeV 8 TeV 7 TeV 8 TeV 13 TeV 8 TeV

0.37 0.11 0.24 -0.21 0.26 0.21 0.07 -0.04 -0.01

Table 5.4.2 The fractional contributions of different data sets included in the
fit to the shifts in the top rapidity distributions, averaged over all
21 data points.

To see if the shift improves the predictions, we can compare it to the known

NNLO-NLO shift, just like we did in Chapter 3. Therefore, in Fig. 5.4.12 we

also show the full NNLO result (without theory uncertainties). It’s interesting

that the shift due to correlations, which we saw is driven by the tt̄ total cross

section data, largely accounts for the NNLO correction; the data know that the

NLO theory predictions are a bit low, and that knowledge is propagated into the

predictions for the 13 TeV rapidity distributions.

In terms of the change in uncertainties, the middle panels show the same as the

top panels but as a ratio to the uncorrelated case, making the uncertainties more

visible. Comparing the difference between the uncorrelated and correlated is

striking; the correlated uncertainties are far smaller than the uncorrelated ones.

However, despite substantial reduction of the very large theory uncertainty, they

are still larger than the pure PDF uncertainties. Even though the uncertainties

have shrunk a lot, they are still compatible with the NNLO result thanks to a

shift in the central values. While the conservative prescription is also compatible
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with the NNLO result, it is immediately obvious from the plot that it is inferior.

A breakdown of the reduction in uncertainties due to the correlations is shown

in the bottom panels of Fig. 5.4.12. The correlated theory uncertainty is

substantially reduced (uniformly across rapidity). This is due to the learning

of the normalisation from the data already in the fit. The correlated PDF

uncertainty is reduced a lot less, maximally a factor of two for where the cross

section is small, but hardly at all where the cross section is large. From this it

is clear that the dominant effect here is the learning of the theory uncertainty in

the overall normalisation.

Figure 5.4.13 The left hand plot shows the correlation matrix X̃IJ/

√
X̃IIX̃JJ

of the contribution of the PDF uncertainties to the predictions
for the 13 TeV rapidity distributions by CMS: the right hand

plot shows the correlation matrix P̃IJ/

√
P̃II P̃JJ of the total

uncertainties including the correlated theoretical uncertainties.
Note the expanded scales on the heat maps, different in each plot.

The theory uncertainties in the predictions are all highly correlated with one

another, including between the two rapidity distributions. We can see this by

looking at the correlation matrices for X̃ and P̃ , shown in Fig. 5.4.13. The

predictions are all to start with more than 50% correlated by the PDF. Then,

when correlated theory uncertainties are included, the correlations bump up to >

70%. We saw before that this is due to the constraint that they must all sum to

give the total cross section. The pattern of correlations nicely shows the symmetry

within the dilepton distribution, and with the lepton + jets distribution; the

greater the rapidity separation, the smaller the correlation.
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5.4.5 Predicting a new process: Higgs production

At last we can make some predictions for a new process: one outwith the fit. For

this we choose Higgs production via gluon fusion. We calculate the total cross

section at 14 TeV using ggHiggs [154–156]. Renormalization and factorization

scales are set to half the Higgs’ mass, and the computation is performed using

rescaled effective theory.

Figure 5.4.14 Predictions for the Higgs total cross-section at 14 TeV, made
using a variety of approximations. All results use NLO PDFs,
while the Higgs total cross-section is computed at NLO (left
panel), NNLO (centre panel) and N3LO (right panel). In
each panel, we then have, from left to right: MHOU included
only in the PDF determination in the 9pt scheme; the same
but with the factorization scale uncertainty (MHOU in PDF
evolution) included in quadrature; the same but with instead the
renormalization scale uncertainty (MHOU in the Higgs cross-
section); the total PDF uncertainty and 9pt MHOU combined
in quadrature, as recommended in [5]; the total PDF plus 9pt
MHOU, but now including also the shift and the correlation
between theoretical uncertainties. In the centre panel we also
show the NNLO prediction with NNLO PDFs (but no theoretical
uncertainties), as a dashed line.

Our results are shown in in Fig. 5.4.14. All results use the baseline NLO PDFs

with MHOUs, but the parton-level Higgs cross sections are computed at NLO,

NNLO and N3LO. We break down the uncertainties into:

1. The PDF uncertainty, X̃;

2. 3-point factorisation scale uncertainty;
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3. 3-point renormalisation scale uncertainty;

4. Uncorrelated (conservative prescription), P̃cons;

5. Correlated, P̃ .

Note that 2. and 3. sum to give the 5-point prescription in Chapter 3.

At NLO the MHOU in the Higgs cross section (estimated by varying the Higgs

renormalisation scale) completely dominates the other uncertainties, so the effect

of correlations between the sources of MHOU is negligible. At higher orders,

the renormalisation scale uncertainty shrinks dramatically until it is comparable

to the other sources of uncertainty at N3LO. Notice also that the shift due

to correlations is always very small compared to the overall uncertainty, and

gets smaller order by order. Here, unlike for top production, the fit includes

no information on Higgs production, so the renormalisation scale is totally

uncorrelated. This means any information from the fit must propagate through

factorisation scale uncertainties. We can see that at NNLO the small shift due to

this pulls the NNLO prediction very close to the calculation using NNLO PDFs,

although this is most likely coincidental. The effect of correlations on the total

uncertainties is also not very large, and the difference between the simplified and

full calculations is small.

Note that if we used NNLO (or higher order) PDFs with MHOUs here (we can’t -

they don’t exist!), the MHOU in the PDFs would have been smaller, and therefore

the effects due to theory uncertainty correlations would be again smaller.

From these examples of autopredictions, and genuine predictions for top and

Higgs, we have seen that the extent of the shift and correlation can vary

quite significantly, depending on the type of prediction being made and what

information is already contained in the PDFs. The conservative prescription

recommended in [5] is certainly not appropriate in general, as the full inclusion

of correlations can be quite substantially reduce uncertainties, as we saw both

for the autopredictions and top predictions. However, when predicting a

new process for which the PDF contains little information about correlated

theoretical uncertainties, unsurprisingly the impact of correlations is small and

the conservative prescription is sufficient.
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5.5 Summary

Main conclusion: When using PDFs which include MHOUs to make

predictions, taking account of the correlations between the MHOUs in

the PDF and in the predictions can provide significant improvements

in accuracy and precision.

We considered the scenario where PDFs with theory uncertainties are used

to make predictions with theory uncertainties. We studied the correlations

between these two sources of theory uncertainties. We did this by recasting the

theory uncertainties as nuisance parameters for each PDF replica, which contain

information about the experimental data’s impact on the theory uncertainties.

We built our way through increasingly complex and correspondingly realistic

models of the fitting procedure, isolating three distinct but related effects, each

of which has a significant impact on the final theoretical predictions.

1. Shifts in central values: We understand that we can use experimental

data to determine PDFs. But we can also use them to find corrections to the

theory which improve the agreement between data and theory. This is done

via Bayesian learning through exposure of the fit theory to experimental

data. The correlation between the theory uncertainty in the fit and in

the predictions then propagates this knowledge through, leading to more

accurate predictions. We identified this effect first in Sec. 5.2.

2. Learning of theory uncertainties: In the same mechanism as 1.,

information from the data is learnt by the fit theory and propagated via

correlations to the predictions leading to a reduction in uncertainties. This

was also first identified in Sec. 5.2.

3. Correlations in theory uncertainties: The correlations between the

theory uncertainties in the fit and those in the prediction lead to a change

in the PDF uncertainties in the prediction, even where there isn’t a shift.

If these correlations are unaccounted for, the theory uncertainty is “double

counted”. This was first noted in [148]. The effect is separate to Bayesian

learning.

These three effects were found throughout in the simple models in Secs. 5.1, the

one parameter fits in Sec. 5.2 and the multiparameter fits in Sec. 5.3. Using the
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NNPDF3.1 NLO global fit with MHOUs, we saw explicitly in Sec. 5.4 that the

shifts give reasonable estimates of NNLO corrections, and correspondingly reduce

the χ2 to the experimental data. We also showed that the uncertainty in the NLO

predictions can still be thought of as a sum in quadrature of a theory uncertainty

and a PDF uncertainty (which itself includes a theory uncertainty). However,

these uncertiainties are reduced by a factor that depends on the relative size

of the theory and experimental uncertainties, leading to significant shrinking in

some cases. The upshot of this is that the conservative prescription is genuinely

conservative, sometimes dramatically so. We expect these conclusions to also

be true for global fits with fixed parametrisations and tolerance [47, 48], were

MHOUs to be included.

We found that the degree of correlation is highly dependent on the type of pre-

diction being made. For the autopredictions (predictions for new measurements

of the same data points as those included in the fit), Sec. 5.4.3 where there is

maximal correspondence between the data in the fit and the predictions being

made, the correlation is very high, leading to shifts that improve the quality of the

fit to the data, together with a significant reduction in uncertainties, in some cases

down to a small fraction of the uncorrelated values. For genuine predictions for

new measurements of processes already included in the PDF fit, such as the new

measurements of differential top production discussed in Sec. 5.4.4, we observe

that the shift takes the correlated NLO predictions very close to the NNLO

prediction, with a significant reduction in uncertainties: the prediction is both

more accurate and more precise. For Higgs production, discussed in Sec. 5.4.5, a

process not included in the PDF fit, the level of correlation is much smaller, since

the dominant uncertainty (the MHOU in the hard cross-section) is uncorrelated

with the MHOU of the fitted processes. In this case the shift is well within

uncertainties, and the reduction in uncertainty very modest, so here the use of

the conservative prescription [5] is entirely appropriate. We expect this to be true

of predictions for any new process with large theoretical uncertainties.

The main conclusion is that when using PDFs which include MHOUs to make

predictions, taking account of the correlations between the MHOUs in the PDF

and in the predictions can provide significant improvements in accuracy and

precision. This is especially true if the predicted process is among those included

in the fit.

However, we need to treat the correlated predictions with some care because

their reliability is contingent on the appropriate prior being chosen for MHOUs.
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If too many unjustified assumptions are made, we could end up with predictions

that are too aggressive. Bearing this in mind, the conservative (uncorrelated)

prescription could have its uses as an upper bound, especially for new processes

where we expect the degree of correlation to be low.

In order to calculate fully correlated predictions and uncertainties, one requires

besides the PDF replicas some additional information: the cross-correlations

between the theoretical uncertainties in the prediction and those in the theoretical

calculations used to determine the PDFs, ŜIj; and the cross-correlations between

the PDF uncertainties in the prediction and all the calculations included in the

fit, X̂Ij. In the future, it may be possible to present this information in separate

NNPDF deliverables to facilitate the calculation of the correlation effects.

Although we presented our numerical study of correlations in the context of

MHOUs, we would expect similar results for other kinds of theoretical uncertainty,

such as nuclear uncertainties, higher twist uncertainties, or indeed parametric

uncertainties: once the theory covariance matrix has been computed, the linear

algebra has no concern for the type of theoretical uncertainty it contains. This

suggests a new technique for determining external parameters in PDF fits, such

as quark masses or electroweak parameters, taking full account of all correlations

with the PDFs and MHOU. We hope to explore this possibility in the near future.
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Chapter 6

Conclusion

In this thesis we have considered uncertainties in the theoretical predictions that

go into PDF fits, and how these theory uncertainties can impact the PDFs, both

in changes to the PDFs’ central values and in changes to their uncertainties. In

Chapter 2 we showed how, under the assumptions that the theory uncertainties

are Gaussian and independent of the experimental data, they can be included in

PDF fits. This is by simply adding a theory covariance matrix to the existing

experimental covariance matrix, so that uncertainties from theory and experiment

stand on an equal footing. This theory covariance matrix is the covariance

between the theoretical predictions and the unknown “true” values fron nature.

The complexity of this procedure lies primarily in constructing the theory

covariance matrix, which cannot be determined exactly due to our lack of

knowledge of the underlying truth. Instead we can consider a series of nuisance

parameters which encapsulate the size of the shifts between predicted values and

true values. This theory covariance matrix then acts as a prior when it is included

in a PDF fit. We can in principle recalculate it using the new information obtained

by the fit and then iterate to convergence. However, for a well determined prior

this convergence should be fast.

We applied this procedure for including theory uncertainties in PDF fits to some

of the dominant sources of uncertainties: missing higher order uncertainties

(MHOUs, Chapter 3) and nuclear uncertainties (Chapter 4). MHOUs, which

arise from the use of predictions to less than all orders in perturbation theory,

were estimated using the established method of scale variation, where the

artificial factorisation and renormalisation scales are varied to obtain a set of
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predictions. We developed multiple prescriptions for combining these variations

into a covariance matrix, and carried out PDF fits at NLO using the different

prescriptions. We checked the efficacy of the prescriptions by comparing to the

known results at NNLO. We adopted the “9 point” prescription, which performs

the best, and encapsulates many features of the missing higher orders. We note

that limitations in this prescription arise from the coarse categorisation of data

into different processes, and the use of only one factorisation scale. For example,

CHORUS data are categorised as charged current DIS, but in reality have a

component of charged current and of neutral current. The factorisation scale

variation could also be split up at the least into a singlet and a non-singlet

component, to allow a better exploration of scale variation space. We saw that a

large part of the missing higher orders that weren’t encapsulated by the 9 point

prescription was correlated globally, suggesting that this could be linked to the

factorsation scale.

Nuclear uncertainties come from the use of data for deuteron and nuclear

targets in fits for proton PDFs. The nuclear environment causes changes to the

observables which are hard to quantify precisely, and these propagate through to

the PDFs. To estimate the uncertainties we used an empirical approach using

nuclear PDFs, which contain information about the nuclear environment. We

constructed one nuclear covariance matrix for the deuteron data and one for the

heavy nuclear data. We included these as default in the imminent NNPDF4.0

determination, both at NLO and NNLO, noting that they help to resolve tension

between the nuclear and Drell-Yan data.

Finally, we considered the use of PDFs in making physics predictions, and how

this is complicated by the presence of theory uncertainties. Theory uncertainties

must be included in the PDF and in the prediction itself, but there exist

correlations between these two which must be taken into account, otherwise the

overall uncertainty will be inflated. We determined formulae for computing these

correlations, and used them to make fully correlated predictions with theory

uncertainties. We showed that when fitting a PDF, properly taking account of

a combination of Bayesian learning of information from the experimental data

during the fitting process, and correlations between the fit and the predictions,

results in both more accurate and more precise predictions, and an improvement

in χ2. The improvement in accuracy and precision is dependent on the type of

prediction being made, whereby predictions with a closer proximity to data in the

fit (in terms of process type and kinematics) will be more significantly updated.
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This work extends naturally to the systematic inclusion of theory uncertainties

from other sources. These include: uncertainties due to chosen values of

parameters such as the strong coupling constant and the quark masses; and

uncertainties due to unknown higher twist contributions to the predictions. These

are both the subject of current investigation, but will contribute smaller effects

than MHOUs and nuclear uncertainties. Furthermore, the work on MHOUs

will be extended to NNLO and become standard in future NNPDF releases.

The extension from NLO to NNLO is conceptually trivial but requires technical

hurdles to be overcome. Doing this upgrade would also be a good time to consider

more complex renormalisation and factorisation scale splittings.
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